Science.gov

Sample records for autogenous shrinkage cracking

  1. Temperature dependence of autogenous shrinkage of silica fume cement pastes with a very low water–binder ratio

    SciTech Connect

    Maruyama, I.; Teramoto, A.

    2013-08-15

    Ultra-high-strength concrete with a large unit cement content undergoes considerable temperature increase inside members due to hydration heat, leading to a higher risk of internal cracking. Hence, the temperature dependence of autogenous shrinkage of cement pastes made with silica fume premixed cement with a water–binder ratio of 0.15 was studied extensively. Development of autogenous shrinkage showed different behaviors before and after the inflection point, and dependence on the temperature after mixing and subsequent temperature histories. The difference in autogenous shrinkage behavior poses problems for winter construction because autogenous shrinkage may increase with decrease in temperature after mixing before the inflection point and with increase in temperature inside concrete members with large cross sections.

  2. Study on effects of solar radiation and rain on shrinkage, shrinkage cracking and creep of concrete

    SciTech Connect

    Asamoto, Shingo; Ohtsuka, Ayumu; Kuwahara, Yuta; Miura, Chikako

    2011-06-15

    In this paper, the effects of actual environmental actions on shrinkage, creep and shrinkage cracking of concrete are studied comprehensively. Prismatic specimens of plain concrete were exposed to three sets of artificial outdoor conditions with or without solar radiation and rain to examine the shrinkage. For the purpose of studying shrinkage cracking behavior, prismatic concrete specimens with reinforcing steel were also subjected to the above conditions at the same time. The shrinkage behavior is described focusing on the effects of solar radiation and rain based on the moisture loss. The significant environment actions to induce shrinkage cracks are investigated from viewpoints of the amount of the shrinkage and the tensile strength. Finally, specific compressive creep behavior according to solar radiation and rainfall is discussed. It is found that rain can greatly inhibit the progresses of concrete shrinkage and creep while solar radiation is likely to promote shrinkage cracking and creep.

  3. Prediction of early-age shrinkage cracking in concrete elements

    NASA Astrophysics Data System (ADS)

    Weiss, William Jason

    1999-11-01

    When concrete is prevented from shrinking freely, tensile stresses develop which frequently result in cracking. Cracks in reinforced concrete structures reduce overall durability by allowing the penetration of water and aggressive agents, thereby accelerating the deterioration of the reinforcing steel. Highway pavements, bridge decks, and industrial floors are especially susceptible to this type of deterioration since these structures exhibit high rates of shrinkage and are frequently exposed to aggressive environmental conditions. The objectives of this investigation included the development of experimental procedures for assessing shrinkage cracking potential, the evaluation of mix composition on shrinkage cracking potential, and the development of theoretical models to simulate early-age cracking behavior. Specifically, the influence of a shrinkage-reducing admixture (SRA) was investigated. The shrinkage-reducing admixture substantially reduces free shrinkage and restrained shrinkage cracking while providing similar mechanical properties. An experimental procedure was developed in which a pressurized cylindrical specimen was used to assess tensile creep. Electrical properties were investigated using impedance spectroscopy to evaluate the moisture profiles of drying and wetting concrete. Restrained shrinkage experiments were developed and shrinkage cracking was shown to be size/geometry dependent, even though shrinkage strains and residual stress levels were comparable. A fracture mechanics modeling approach was developed to predict the behavior of a variety of restrained concrete specimens. This modeling approach was used to successfully explain experimental results from a variety of mixture compositions and specimen geometries. The model was used to demonstrate the influence of material and structural properties on the potential for cracking. A favorable correlation was observed between the predictions of the fracture-based model and the experimentally observed

  4. Analyses and models of the autogenous shrinkage of hardening cement paste. 1: Modeling at macroscopic scale

    SciTech Connect

    Hua, C.; Ehrlacher, A.; Acker, P.

    1995-10-01

    After having studied phenomena linked to hydration and self-desiccation, one notes that capillary depression is the main origin of the autogenous shrinkage of hardening cement paste. Based on this mechanism, modeling at macroscopic scale is undertaken for a commonly used cement paste (CPA 55) with a W/C ratio = 0.42. It consists in introducing a macroscopic stress due to the capillary depression and characterizing the viscoelastic aging behavior of the material. The result is in satisfactory agreement with measurements.

  5. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92–200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92–200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  6. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92-200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92-200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  7. AUTOGEN

    2003-05-29

    AUTOGEN computes collision-free sequences of robot motion instructions to permit traversal of three-dimensional space curves. Order and direction of curve traversal and orientation of end effector are constraided by a set of manufacturing rules. Input can be provided as a collection of solid models or in terms of wireframe objects and structural cross-section definitions. Entity juxtaposition can be inferred, with appropriate structural features automatically provided. Process control is asserted as a function of position andmore » orientation along each space curve, and is currently implemented for welding processes.« less

  8. AUTOGEN

    SciTech Connect

    2003-05-29

    AUTOGEN computes collision-free sequences of robot motion instructions to permit traversal of three-dimensional space curves. Order and direction of curve traversal and orientation of end effector are constraided by a set of manufacturing rules. Input can be provided as a collection of solid models or in terms of wireframe objects and structural cross-section definitions. Entity juxtaposition can be inferred, with appropriate structural features automatically provided. Process control is asserted as a function of position and orientation along each space curve, and is currently implemented for welding processes.

  9. Measurement of shrinkage and cracking in lyophilized amorphous cakes. Part I: final-product assessment.

    PubMed

    Ullrich, Sabine; Seyferth, Stefan; Lee, Geoffrey

    2015-01-01

    An experimental technique is presented to determine independently shrinkage and cracking in lyophilized amorphous cakes based on photographic imaging of their top surface. An inverse correlation between cake shrinkage and cracking during freeze-drying is seen. Shrinkage relaxes the drying tension and gives little cracking, whereas if shrinkage is restrained then more cracking occurs. A lower shrinkage and greater cracking with higher disaccharide concentration correlates with change in cake hardness and brittleness. Adhesion of the cake to the inside vial wall could not be identified as a determining factor for shrinkage. Shrinkage is non-uniform across the cake's surface and is manifested largely in the peripheral region. A correlation between shrinkage and w(g)' for different disaccharides suggests that drying tension develops as non-frozen water is lost from the porous solid after sublimation of the ice phase has exposed the solid/gas interface.

  10. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  11. Measurement of shrinkage and cracking in lyophilized amorphous cakes. Part IV: Effects of freezing protocol.

    PubMed

    Ullrich, Sabine; Seyferth, Stefan; Lee, Geoffrey

    2015-11-10

    The shrinkage and cracking of pure trehalose cakes during lyophilization has been determined quantitatively using different protocols for the freezing step. The influences of shelf cooling rate and of a two-step freezing protocol with holding and annealing phases were investigated. A small change in the shelf cooling rate from 0.4°C to 0.2°C per minute produced surprisingly large increases in shrinkage and reductions in cracking over all trehalose concentrations up to 30% w/v. The two-step freezing protocol also increased shrinkage and reduced cracking in the final-product cakes, especially at trehalose concentrations ≥ 15% and with large vial fill height. A combination of two-step freezing with use of TopLyo vials produced less than 1.5% cracking even at high trehalose concentrations and large fill height. The results give further confirmation of the causal linkage of shrinkage and cracking during lyophilization, and also illustrate how cracking can be greatly reduced by manipulating the freezing protocol.

  12. Assessment and prediction of drying shrinkage cracking in bonded mortar overlays

    SciTech Connect

    Beushausen, Hans Chilwesa, Masuzyo

    2013-11-15

    Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing was found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.

  13. A thermal active restrained shrinkage ring test to study the early age concrete behaviour of massive structures

    SciTech Connect

    Briffaut, M.; Benboudjema, F.; Nahas, G.

    2011-01-15

    In massive concrete structures, cracking may occur during hardening, especially if autogenous and thermal strains are restrained. The concrete permeability due to this cracking may rise significantly and thus increase leakage (in tank, nuclear containment...) and reduce the durability. The restrained shrinkage ring test is used to study the early age concrete behaviour (delayed strains evolution and cracking). This test shows, at 20 {sup o}C and without drying, for a concrete mix which is representative of a French nuclear power plant containment vessel (w/c ratio equal to 0.57), that the amplitude of autogenous shrinkage (about 40 {mu}m/m for the studied concrete mix) is not high enough to cause cracking. Indeed, in this configuration, thermal shrinkage is not significant, whereas this is a major concern for massive structures. Therefore, an active test has been developed to study cracking due to restrained thermal shrinkage. This test is an evolution of the classical restrained shrinkage ring test. It allows to take into account both autogenous and thermal shrinkages. Its principle is to create the thermal strain effects by increasing the temperature of the brass ring (by a fluid circulation) in order to expand it. With this test, the early age cracking due to restrained shrinkage, the influence of reinforcement and construction joints have been experimentally studied. It shows that, as expected, reinforcement leads to an increase of the number of cracks but a decrease of crack widths. Moreover, cracking occurs preferentially at the construction joint.

  14. Development and construction of low-cracking high-performance concrete (LC-HPC) bridge decks: Free shrinkage tests, restrained ring tests, construction experience, and crack survey results

    NASA Astrophysics Data System (ADS)

    Yuan, Jiqiu

    2011-12-01

    The development, construction, and evaluation of low-cracking high-performance concrete (LC-HPC) bridge decks are described based on laboratory test results and experiences gained during the construction of 13 LC-HPC bridge decks in Kansas, along with another deck bid under the LC-HPC specifications but for which the owner did not enforce the specification. This study is divided into four parts covering (1) an evaluation of the free shrinkage properties of LC-HPC candidate mixtures, (2) an investigation of the relationship between the evaporable water content in the cement paste and the free shrinkage of concrete, (3) a study of the restrained shrinkage performance of concrete using restrained ring tests, and (4) a description of the construction and preliminary evaluation of LC-HPC and control bridge decks constructed in Kansas. The first portion of the study involves evaluating the effects of the duration of curing, fly ash, and a shrinkage reducing admixture (SRA) on the free-shrinkage characteristics of concrete mixtures. The results indicate that an increase of curing period reduces free shrinkage. With 7 days of curing, concretes containing fly ash as a partial replacement for cement exhibit higher free shrinkage than concretes with 100% portland cement. When the curing period is increased to 14, 28, and 56 days, the adverse effect of adding fly ash on free shrinkage is minimized and finally reversed. The addition of an SRA significantly reduces free shrinkage for both the 100% portland cement mixture and the mixture containing fly ash. The second portion of the study investigates the relationship between the evaporable water content in the cement paste and the free shrinkage of concrete. A linear relationship between free shrinkage and evaporable water content in the cement paste is observed. For a given mixture, specimens cured for a longer period contain less evaporable water and exhibit lower free shrinkage and less weight loss in the free shrinkage

  15. Measurement of shrinkage and cracking in lyophilized amorphous cakes, part 3: hydrophobic vials and the question of adhesion.

    PubMed

    Ullrich, Sabine; Seyferth, Stefan; Lee, Geoffrey

    2015-06-01

    The importance of cake adhesion to the inside vial wall during lyophilization of amorphous trehalose cakes was determined by using hydrophobized vials. The degrees of cake shrinkage and cracking were determined independently by photographic imaging of the cake top surface in a dark cell. Additionally, measurements with microcomputed tomography were performed. Adhesion is found to be a determining factor in both cake shrinkage and cracking. The correlation between cake detachment from the vial inner wall and trehalose concentration indicates that adhesion of the frozen solute phase is a determining factor in shrinkage. The hydrophobized vials give reduced cracking at trehalose concentrations of up to 15%. The reduced wetting of the hydrophobized inside vial wall gives a planar cake topography with a uniform distribution of cracks within the cake.

  16. Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering

    NASA Astrophysics Data System (ADS)

    Pratt, Brian R.

    1998-04-01

    Syneresis cracks, often confused with subaerial desiccation phenomena, are traditionally ascribed to subaqueous shrinkage whereby salinity changes caused deflocculation of clay. This and other previously proposed mechanisms fail to account for their occurrence in low-energy, typically non-evaporitic facies, stratigraphically sporadic distribution, intrastratal formation under shallow burial depths, variation in morphology, degree of contraction, generation of sedimentary dikelets as crack fills, and deformation of dikelets and enclosing layers. Instead, it is suggested that ground motion from strong synsedimentary earthquakes caused argillaceous sediments to dewater, interbedded sands and silts to be almost simultaneously liquefied and injected into the resulting fissures, and then these dikelets to be distorted. Comparative rarity of syneresis cracks in Phanerozoic versus Precambrian marine strata is considered to be primarily an evolutionary consequence of theological changes caused by increased organic binding of clay flocs in the water column, greater input of organic matter into the sediment, and the diversification of sediment-dwelling bacteria and meiofauna in Phanerozoic deposits.

  17. Shrinkage Cracking: A mechanism for self-sustaining carbon mineralization reactions in olivine rocks

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xing, T.; Xiao, X.; De Andrade, V. J. D.; Karato, S. I.

    2015-12-01

    The hydration and carbonation of olivine results in an up to ~44% increase in solid molar volume, which may choke off of fluid supply and passivate reactive surfaces, thus preventing further carbonation reactions. The carbonation of olivine has ben studied extensively in the laboratory. To date, observations from these experimental studies indicate that carbonation reaction rates generally decrease with time and the extent of carbonation is limited in olivine rocks. Field studies, however, show that 100% hydration and carbonation occur naturally in ultramafic rocks. The disagreement between the laboratory results under controlled conditions and the field observations underlines the lack of understanding of the mechanisms responsible for the self-sustaining carbonation interaction in nature. We developed a state-of-the-art pressurized hydrothermal cell that is transparent to X-rays to characterize the real-time evolution of pore geometry during fluid-rock interaction using in-situ synchrotron-based X-ray microtomography. Through a time series of high-resolution 3-dimensional images, we document the microstructural evolution of a porous olivine aggregate reacting with a sodium bicarbonate solution at elevated pressure and temperature conditions. We observed porosity increases, near constant rate of crystal growth, and pervasive reaction-induced fractures. Based on the nanometer scale tomography data, we propose that shrinkage cracking is the mechanism responsible for producing new reactive surface and keep the carbonation reaction self-sustaining in our experiment. Shrinkage cracks are commonly observed in drying mud ponds, cooling lava flows and ice wedge fields. Stretching of a contracting surface bonded to a substrate of nearly constant dimensions leads to a stress buildup in the surface layer. When the stress exceeds the tensile strength, polygonal cracks develop in the surface layer. In our experiments, the stretching mismatch between the surface and interior of

  18. Field Method for Measuring the Shrinkage/Swelling Dynamics of Cracks Using a Low-Cost ``Crack-o-meter''

    NASA Astrophysics Data System (ADS)

    Stewart, R. D.; Abou Najm, M. R.; Rupp, D. E.; Selker, J. S.

    2010-12-01

    Shrinking/swelling soils are characterized by transient crack networks which function as dominant controls on the partitioning of surface and subsurface flow, the rate and depth of percolation, and evaporation rates. For such soils, understanding the dynamics of cracks is critical to accurately quantify their influence on groundwater recharge, stream-flow generation, and solute transport, among other component of a site’s hydrology. We propose a low-cost method for measuring transient crack-volume using a sealed plastic bag connected by a hose to a PVC standpipe. The empty bag is placed into the crack, and then water is added via the standpipe, until the bag has expanded to the boundaries of the crack and some water remains in the standpipe. As the crack shrinks or swells, its volume changes, causing water displacement within the bag, which is measured as a corresponding change in water level in the standpipe. An automated level logger within the standpipe is used to record changes in water level, which are converted to volumetric changes from the known internal cross-sectional area of the standpipe. The volume of water filling the bag is accurately measured at the start and completion of the experiment (to check for leakage). Adding the startup volume to the cumulative temporal volumetric change in the standpipe provides a simple and accurate method for monitoring transient crack volume. Currently, the design is undergoing preliminary testing in a field site in Ninhue, Chile, and field and laboratory testing in Corvallis, Oregon. Initial results from the Chilean field site suggest that the crack-o-meters are responding to the closing of cracks, but further effort is needed to calibrate and validate the results. We hope that these low-cost “crack-o-meters” will become useful and simple tools for researchers to quantify temporal changes in crack volume with the objective of incorporating these results into hydrological modeling efforts.

  19. Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Siebach, K. L.; Grotzinger, J. P.; Kah, L. C.; Stack, K. M.; Malin, M.; Léveillé, R.; Sumner, D. Y.

    2014-07-01

    The Sheepbed mudstone, Yellowknife Bay formation, Gale crater, represents an ancient lakebed now exhumed and exposed on the Martian surface. The mudstone has four diagenetic textures, including a suite of early diagenetic nodules, hollow nodules, and raised ridges and later diagenetic light-toned veins that crosscut those features. In this study, we describe the distribution and characteristics of the raised ridges, a network of short spindle-shaped cracks that crosscut bedding, do not form polygonal networks, and contain two to four layers of isopachous, erosion-resistant cement. The cracks have a clustered distribution within the Sheepbed member and transition laterally into concentrations of nodules and hollow nodules, suggesting that these features formed penecontemporaneously. Because of the erosion-resistant nature of the crack fills, their three-dimensional structure can be observed. Cracks that transition from subvertical to subhorizontal orientations suggest that the cracks formed within the sediment rather than at the surface. This observation and comparison to terrestrial analogs indicate that these are syneresis cracks—cracks that formed subaqueously. Syneresis cracks form by salinity changes that cause sediment contraction, mechanical shaking of sediment, or gas production within the sediment. Examination of diagenetic features within the Sheepbed mudstone favors a gas production mechanism, which has been shown to create a variety of diagenetic morphologies comparable to the raised ridges and hollow nodules. The crack morphology and the isopachous, layered cement fill show that the cracks were filled in the phreatic zone and that the Sheepbed mudstone remained fluid saturated after deposition and through early burial and lithification.

  20. A new system for crack closure of cementitious materials using shrinkable polymers

    SciTech Connect

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-05-15

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  1. Analysis, prediction, and case studies of early-age cracking in bridge decks

    NASA Astrophysics Data System (ADS)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  2. Crack

    MedlinePlus

    ... sound the drug makes as it heats up. Short-Term Effects Crack is a stimulant that is absorbed through ... quickly, after about 5 or 10 minutes. Other short-term effects include: higher heart rate, breathing rate, blood pressure , ...

  3. Autogen Version 2.0

    NASA Technical Reports Server (NTRS)

    Gladden, Roy

    2007-01-01

    Version 2.0 of the autogen software has been released. "Autogen" (automated sequence generation) signifies both a process and software used to implement the process of automated generation of sequences of commands in a standard format for uplink to spacecraft. Autogen requires fewer workers than are needed for older manual sequence-generation processes and reduces sequence-generation times from weeks to minutes.

  4. New methods to quantify the cracking performance of cementitious systems made with internal curing

    NASA Astrophysics Data System (ADS)

    Schlitter, John L.

    which is located outside of the sample to provide restraint against expansion. Second, the standard ring test is a passive test that only relies on the autogenous and drying shrinkage of the mixture to induce cracking. The dual ring test can be an active test because it has the ability to vary the temperature of the specimen in order to induce thermal stress and produce cracking. This ability enables the study of the restrained cracking capacity as the mixture ages in order to quantify crack sensitive periods of time. Measurements made with the dual ring quantify the benefits from using larger amounts of internal curing. Mixtures that resupplied internal curing water to match that of chemical shrinkage could sustain three times the magnitude of thermal change before cracking. The second device discussed in this thesis is a large scale slab testing device. This device tests the cracking potential of 15' long by 4" thick by 24" wide slab specimens in an environmentally controlled chamber. The current standard testing devices can be considered small scale and encounter problems when linking their results to the field due to size effects. Therefore, the large scale slab testing device was developed in order to calibrate the results of smaller scale tests to real world field conditions such as a pavement or bridge deck. Measurements made with the large scale testing device showed that the cracking propensity of the internally cured mixtures was reduced and that a significant benefit could be realized.

  5. Cure shrinkage in epoxy grouts for grouted repairs

    NASA Astrophysics Data System (ADS)

    Shamsuddoha, Md.; Islam, Md. Mainul; Aravinthan, Thiru; Manalo, Allan; Lau, Kin-tak

    2013-08-01

    Structures can go through harsh environmental adversity and can experience material loss and cracks during their service lives. Infill material is used to ensure a supporting bed for a grouted repair. Epoxy grouts are used for repairing and rehabilitating structures, such as foundations, bridges, piers, transportation pipelines, etc., because they are resistant to typical chemicals and possess superior mechanical properties than other grouts. The resin based infill used inside the void or cracked space of the repair is vulnerable to shrinkage. When these filled grouts have high resin content, cracks can develop from residual stresses, which can affect the load transfer performance. It follows that interlayer separation and cracking of infill layer can occur in a grouted repair. In this study, volumetric shrinkage of two epoxy grouts was measured over 28 days using a Pycnometer. The highest volumetric shrinkage measured after 7 days was found to be 2.72%. The results suggest that the volumetric shrinkage can be reduced to 1.1% after 7 days, through the introduction of a coarse aggregate filler; a 2.5 times reduction in shrinkage. About 98% and 92% of the total shrinkage over the 28 day period, of the unfilled and filled grouts respectively, was found to occur within 7 days of mixing. The gel-time shrinkages were also calculated, to determine the "postgel" part of the curing contraction which subsequently produces residual stresses in the hardened grout systems.

  6. AutoGen Version 5.0

    NASA Technical Reports Server (NTRS)

    Gladden, Roy E.; Khanampornpan, Teerapat; Fisher, Forest W.

    2010-01-01

    Version 5.0 of the AutoGen software has been released. Previous versions, variously denoted Autogen and autogen, were reported in two articles: Automated Sequence Generation Process and Software (NPO-30746), Software Tech Briefs (Special Supplement to NASA Tech Briefs), September 2007, page 30, and Autogen Version 2.0 (NPO- 41501), NASA Tech Briefs, Vol. 31, No. 10 (October 2007), page 58. To recapitulate: AutoGen (now signifying automatic sequence generation ) automates the generation of sequences of commands in a standard format for uplink to spacecraft. AutoGen requires fewer workers than are needed for older manual sequence-generation processes, and greatly reduces sequence-generation times. The sequences are embodied in spacecraft activity sequence files (SASFs). AutoGen automates generation of SASFs by use of another previously reported program called APGEN. AutoGen encodes knowledge of different mission phases and of how the resultant commands must differ among the phases. AutoGen also provides means for customizing sequences through use of configuration files. The approach followed in developing AutoGen has involved encoding the behaviors of a system into a model and encoding algorithms for context-sensitive customizations of the modeled behaviors. This version of AutoGen addressed the MRO (Mars Reconnaissance Orbiter) primary science phase (PSP) mission phase. On previous Mars missions this phase has more commonly been referred to as mapping phase. This version addressed the unique aspects of sequencing orbital operations and specifically the mission specific adaptation of orbital operations for MRO. This version also includes capabilities for MRO s role in Mars relay support for UHF relay communications with the MER rovers and the Phoenix lander.

  7. 9 CFR 113.113 - Autogenous biologics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... accordance with applicable standard requirement potency tests provided in 9 CFR part 113. If the culture of... the date of isolation. (vii) Number of doses of autogenous biologic requested and vaccination...

  8. 9 CFR 113.113 - Autogenous biologics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accordance with applicable standard requirement potency tests provided in 9 CFR part 113. If the culture of... the date of isolation. (vii) Number of doses of autogenous biologic requested and vaccination...

  9. 9 CFR 113.113 - Autogenous biologics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... applicable standard requirement potency tests provided in 9 CFR part 113. If the culture of microorganisms... the date of isolation. (vii) Number of doses of autogenous biologic requested and vaccination...

  10. 9 CFR 113.113 - Autogenous biologics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... accordance with applicable standard requirement potency tests provided in 9 CFR part 113. If the culture of... the date of isolation. (vii) Number of doses of autogenous biologic requested and vaccination...

  11. 9 CFR 113.113 - Autogenous biologics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accordance with applicable standard requirement potency tests provided in 9 CFR part 113. If the culture of... the date of isolation. (vii) Number of doses of autogenous biologic requested and vaccination...

  12. Documenting AUTOGEN and APGEN Model Files

    NASA Technical Reports Server (NTRS)

    Gladden, Roy E.; Khanampompan, Teerapat; Fisher, Forest W.; DelGuericio, Chris c.

    2008-01-01

    A computer program called "autogen hypertext map generator" satisfies a need for documenting and assisting in visualization of, and navigation through, model files used in the AUTOGEN and APGEN software mentioned in the two immediately preceding articles. This program parses autogen script files, autogen model files, PERL scripts, and apgen activity-definition files and produces a hypertext map of the files to aid in the navigation of the model. This program also provides a facility for adding notes and descriptions, beyond what is in the source model represented by the hypertext map. Further, this program provides access to a summary of the model through variable, function, sub routine, activity and resource declarations as well as providing full access to the source model and source code. The use of the tool enables easy access to the declarations and the ability to traverse routines and calls while analyzing the model.

  13. Roof System EPDM Shrinkage.

    ERIC Educational Resources Information Center

    Betker, Edward

    1998-01-01

    Looks at Ethylene Propylene Diene Terpolymer rubber roof membranes and the potential problems associated with this material's shrinkage. Discusses how long such a roof should perform and issues affecting repair or replacement. Recommends that a building's function be considered in any roofing decision. (RJM)

  14. Creep and shrinkage of high performance lightweight concrete: A multi-scale investigation

    NASA Astrophysics Data System (ADS)

    Lopez, Mauricio

    This multi-scale investigation aimed to provide new knowledge and understanding of creep and shrinkage of high performance lightweight concrete (HPLC) by assessing prestress losses in HPLC prestressed members in a large-scale study; by quantifying the effect of the constituent materials and external conditions on creep and shrinkage in a medium-scale study; and by improving the fundamental understanding of creep and shrinkage in a small-scale study. Creep plus shrinkage prestress losses were between two and eight times lower than those estimated for the design standards and approximately 50% of those measured in similar strength normal weight high performance concrete girders. The lower creep and shrinkage exhibited by HPLC was found to be caused by a synergy between the pre-soaked lightweight aggregate and the low water-to-cementitious material ratio matrix. That is, the water contained in the lightweight aggregate contributes to enhance hydration by providing an internal moist curing. The water in the aggregate also contributes to maintain a high internal relative humidity which reduces or eliminates autogenous shrinkage. This higher internal relative humidity also reduces creep by preventing load-induced water migration. Finally, lightweight aggregate exhibits a better elastic compatibility with the paste than normal weight aggregate. This improved elastic matching and the enhanced hydration are believed to reduce peak deformations at the ITZ which further decreases creep and shrinkage.

  15. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Autogenous-ignition temperature test. 35.20... Autogenous-ignition temperature test. (a) Purpose. The purpose of this test, referred to hereinafter as the ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  16. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Autogenous-ignition temperature test. 35.20... Autogenous-ignition temperature test. (a) Purpose. The purpose of this test, referred to hereinafter as the ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  17. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Autogenous-ignition temperature test. 35.20... Autogenous-ignition temperature test. (a) Purpose. The purpose of this test, referred to hereinafter as the ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  18. 30 CFR 35.20 - Autogenous-ignition temperature test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Autogenous-ignition temperature test. 35.20... Autogenous-ignition temperature test. (a) Purpose. The purpose of this test, referred to hereinafter as the ignition-temperature test, is to determine the lowest autogenous-ignition temperature of a hydraulic...

  19. Effects of powder characteristics on injection molding and burnout cracking

    SciTech Connect

    Bandyopadhyay, G.; French, K.W. )

    1994-03-01

    Silicon nitride particle size and size distributions were varied widely to determine their effects on burnout cracking of injection-molded test parts containing thick and thin sections. Elimination of internal cracking required significant burnout shrinkage, which did not occur by changes of particle size and size distribution. However, isopressing of test parts after burnout provided the dimensional shrinkage necessary for producing crack-free components.

  20. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    SciTech Connect

    Wyrzykowski, Mateusz; Trtik, Pavel; Münch, Beat; Weiss, Jason; Vontobel, Peter; Lura, Pietro

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  1. Store Security: Internal Shrinkage Control.

    ERIC Educational Resources Information Center

    Everhardt, Richard M.

    The document presents a 10-week training program designed to provide helpful and proven methods for controlling internal shrinkage in retail stores. Shrinkage includes the three problems of shoplifting, employee theft, and errors, each of which is addressed by the course. Ohio's laws are also discussed. The format for the course content section is…

  2. GENERALIZED DOUBLE PARETO SHRINKAGE.

    PubMed

    Armagan, Artin; Dunson, David B; Lee, Jaeyong

    2013-01-01

    We propose a generalized double Pareto prior for Bayesian shrinkage estimation and inferences in linear models. The prior can be obtained via a scale mixture of Laplace or normal distributions, forming a bridge between the Laplace and Normal-Jeffreys' priors. While it has a spike at zero like the Laplace density, it also has a Student's t-like tail behavior. Bayesian computation is straightforward via a simple Gibbs sampling algorithm. We investigate the properties of the maximum a posteriori estimator, as sparse estimation plays an important role in many problems, reveal connections with some well-established regularization procedures, and show some asymptotic results. The performance of the prior is tested through simulations and an application.

  3. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures

    SciTech Connect

    Sant, Gaurav; Lothenbach, Barbara; Juilland, Patrick; Le Saout, Gwenn; Weiss, Jason; Scrivener, Karen

    2011-03-15

    Studies on the early-age shrinkage behavior of cement pastes, mortars, and concretes containing shrinkage reducing admixtures (SRAs) have indicated these mixtures frequently exhibit an expansion shortly after setting. While the magnitude of the expansion has been noted to be a function of the chemistry of the cement and the admixture dosage; the cause of the expansion is not clearly understood. This investigation uses measurements of autogenous deformation, X-ray diffraction, pore solution analysis, thermogravimetry, and scanning electron microscopy to study the early-age properties and describe the mechanism of the expansion in OPC pastes made with and without SRA. The composition of the pore solution indicates that the presence of the SRA increases the portlandite oversaturation level in solution which can result in higher crystallization stresses which could lead to an expansion. This observation is supported by deformation calculations for the systems examined.

  4. Autogenous dermis-fat "baseball" orbital implant.

    PubMed

    Bullock, J D

    1987-01-01

    A new procedure has been devised for the construction of an autogenous dermis-fat orbital implant, in which two figure-eight-shaped dermis-fat grafts are sutured together into a baseball shape. Correct implant size can be determined by preplacement of different-sized Mule spheres and testing for accurate fit. The "baseball" implant eliminates deep orbital fat which is distant from a vascular supply, and because it is covered with dermis, it maximizes graft vascularization, thus promoting survival of the implanted tissues. In eight patients, followed postoperatively for as long as 28 months, baseball implants have produced highly satisfactory results.

  5. Mechanisms for shrinkage fracturing at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Watters, W. A.; Squyres, S. W.

    2009-12-01

    We investigate the role of water in fracturing at Meridiani Planum with the aim of shedding light on the history of densely-fractured outcroppings of light-toned rocks at low-latitudes on Mars. The fractures that occur throughout the inter-crater plains at Meridiani exhibit many characteristics of shrinkage cracks: they have significant width (i.e., not hairline), commonly connect in 90-degree and 120-degree junctions, and exhibit a "hierarchical" organization: i.e., the longest fractures are widest, and narrower fractures terminate against wider fractures at 90-degree junctions (T-shaped). Using the Pancam and Navcam stereo-pair images acquired by the Opportunity rover, we have measured the geometric scaling of fracture networks at Meridiani (e.g., fracture width vs. fracture separation) as well as the total volume change. We have also characterized the diversity of patterns in detail, as well as the modification of fractures and polygonal "tiles" by wind-blown sand abrasion. Identical observations were carried-out for an analogue site where similar fractures are ubiquitous in the playas of Death Valley, California, and where modification processes are also comparable. By also estimating the expected volume change and results from numerical models of shrinkage fracturing, we evaluate the likelihood of three candidate contraction mechanisms: loss of water bound in hydrated minerals (dehydration), loss of water from pore spaces (desiccation), and contraction from cooling (thermal fracturing). The evidence to date favors the second of these (desiccation); this result would have significant implications for the history of Meridiani since the time when sulfate-rich sediments were deposited.

  6. Scale Shrinkage in Vertical Equating.

    ERIC Educational Resources Information Center

    Camilli, Gregory; And Others

    1993-01-01

    Three potential causes of scale shrinkage (measurement error, restriction of range, and multidimensionality) in item response theory vertical equating are discussed, and a more comprehensive model-based approach to establishing vertical scales is described. Test data from the National Assessment of Educational Progress are used to illustrate the…

  7. Effect of the Key Mixture Parameters on Shrinkage of Reactive Powder Concrete

    PubMed Central

    Zubair, Ahmed

    2014-01-01

    Reactive powder concrete (RPC) mixtures are reported to have excellent mechanical and durability characteristics. However, such concrete mixtures having high amount of cementitious materials may have high early shrinkage causing cracking of concrete. In the present work, an attempt has been made to study the simultaneous effects of three key mixture parameters on shrinkage of the RPC mixtures. Considering three different levels of the three key mixture factors, a total of 27 mixtures of RPC were prepared according to 33 factorial experiment design. The specimens belonging to all 27 mixtures were monitored for shrinkage at different ages over a total period of 90 days. The test results were plotted to observe the variation of shrinkage with time and to see the effects of the key mixture factors. The experimental data pertaining to 90-day shrinkage were used to conduct analysis of variance to identify significance of each factor and to obtain an empirical equation correlating the shrinkage of RPC with the three key mixture factors. The rate of development of shrinkage at early ages was higher. The water to binder ratio was found to be the most prominent factor followed by cement content with the least effect of silica fume content. PMID:25050395

  8. Autogenous bone grafts contamination after exposure to the oral cavity.

    PubMed

    Nary Filho, Hugo; Pinto, Tábata Fernandes; de Freitas, Caio Peixoto; Ribeiro-Junior, Paulo Domingos; dos Santos, Pâmela Letícia; Matsumoto, Mariza Akemi

    2014-03-01

    The purpose of this paper was to analyze specimens of autogenous bone block grafts exposed to the oral cavity after ridge reconstructions. Specimens of chronic suppurative osteomyelitis (CSO) of the jaws were used as comparison for bacterial colonization pattern. For this, 5 specimens of infected autogenous bone grafts were used and 10 specimens of CSO embedded in paraffin were stained with Brown and Brenn technique and analyzed under light microscopy. The results showed a similar colonization pattern in both situations, with the establishment of bacterial biofilm and the predominance of Gram-positive bacteria. The conclusion was that the similarity in bacterial distribution and colonization between autogenous bone grafts and CSO stresses the necessity of more invasive procedures for the treatment of the autogenous bone grafts early exposed to the oral cavity.

  9. Autogenous bone grafts contamination after exposure to the oral cavity.

    PubMed

    Nary Filho, Hugo; Pinto, Tábata Fernandes; de Freitas, Caio Peixoto; Ribeiro-Junior, Paulo Domingos; dos Santos, Pâmela Letícia; Matsumoto, Mariza Akemi

    2014-03-01

    The purpose of this paper was to analyze specimens of autogenous bone block grafts exposed to the oral cavity after ridge reconstructions. Specimens of chronic suppurative osteomyelitis (CSO) of the jaws were used as comparison for bacterial colonization pattern. For this, 5 specimens of infected autogenous bone grafts were used and 10 specimens of CSO embedded in paraffin were stained with Brown and Brenn technique and analyzed under light microscopy. The results showed a similar colonization pattern in both situations, with the establishment of bacterial biofilm and the predominance of Gram-positive bacteria. The conclusion was that the similarity in bacterial distribution and colonization between autogenous bone grafts and CSO stresses the necessity of more invasive procedures for the treatment of the autogenous bone grafts early exposed to the oral cavity. PMID:24621694

  10. Cracking of high-solids epoxy coatings on steel structures in The Netherlands

    SciTech Connect

    Bijen, J. ); Montfort, J. van

    1999-05-01

    High-solids epoxy coatings on steel flood barriers in The Netherlands showed cracking shortly after application. An investigation revealed the cause of cracking. It appeared that shrinkage-induced stresses caused the coatings to fail. Two cracking phenomena are described and simulated by an accelerated test and computer modeling.

  11. Spontaneous shrinkage of vestibular schwannoma

    PubMed Central

    Romani, Rossana; Pollock, Jonathan

    2016-01-01

    Background: “Watch, wait, and rescan” (WWR) has an established place as a successful management option for a significant proportion of vestibular schwannomas (VS) as an alternative to microsurgical removal or stereotactic radiotherapy. VS may grow slowly and continuously, followed by stagnation or even shrinkage. We present two case reports of spontaneous shrinkage of VS along with a review of the literature. Case Description: A 29-year-old female presented with a progressive history of visual blurring and intermittent diplopia over 2 months. A 29 mm of maximum intracranial diameter (ICD) VS with secondary obstructive hydrocephalus was diagnosed. The patient underwent a ventriculo-peritoneal shunt with resolution of her symptoms and opted for initial WWR management. Interval scanning between 2007 and 2014 showed progressive reduction in the maximum ICD together with reduction in the degree of central tumor enhancement. Maximum ICD at most recent follow up was 22 mm. A 28-year-old female was referred with right sensorineural deafness. A right VS of maximum ICD of 27 mm was diagnosed. Initial WWR management was planned after discussion. Serial imaging showed an initial increase in the size of the tumor followed by progressive reduction in size. The most recent follow up showed a maximum ICD of 20 mm. Conclusion: Early WWR management can be associated with spontaneous shrinkage of VS over time. Prospective clinical study of larger numbers of such cases using the UK VS database may help to identify predictive factors for the spontaneous regression of VS. PMID:27280055

  12. Cure shrinkage of thermoset composites

    SciTech Connect

    Russell, J.D. )

    1993-01-01

    The shrinkage of thermoset composites during cure was studied using a volumetric dilatometer. The material systems studied were AS4 carbon fiber/Hercules' 3501-6 epoxy, IM7 carbon fiber/Hercules 8551-7A toughened epoxy and IM7 carbon fiber/BASF's 5250-4 bismaleimide. Shrinkage of the samples due to both polymerization and thermal expansion effects was seen. The volume changes of the materials during cure were then compared to results from dynamic mechanical analysis (DMA) and dielectric cure monitoring. Maximums in volume corresponded to minimums in storage and loss modulus from DMA and maximums in the dielectric loss factor. Resin shrinkage during the 177 deg C (350 F) hold corresponded to the onset of polymerization seen by the rapid increase in the storage modulus and the decrease in the dielectric loss factor response due to reduced ion mobility. These results show that volumetric dilatometry can be an effective tool in the development of materials processing strategies and can be useful in studying residual stresses in composites. 9 refs.

  13. [Chronobiologic aspects of autogenic training. Thermometric findings of autogenic training in relation to diurnal periodicity in autonomic dystonia patients].

    PubMed

    Stetter, F

    1985-01-01

    In a cohort of patients suffering from neuro-dystonia a group of test subjects well acquainted with the techniques of autogenous training and another consisting of patients unfamiliar with these techniques were compared with regard to the rise in the skin temperature in their fingers at various times of the day. Furthermore, the connection between the personal perception of warmth of the test subjects during autogenous training and the actually measured increase the temperature was observed: 1. In the test group as well as among the controls two different patterns of reaction with regard to diurnal fluctuations of the skin temperature occurred which were interpreted as so-called "morning types" and "evening types" respectively. 2. The increase in temperature induced by autogenous training in the test group was always higher than the one in the group of controls. 3. Subject to the circadian reaction pattern of the skin temperature there were fluctuations related to the actual time of day with regard to the increases in temperature induced by autogenous training. 4. There was merely a "slight" correlation between the personal experience or warmth and the measured temperature increase, and the intensity of the temperature experience seems to be influenced more by the relative initial value of the skin temperature than by the objectifyable temperature increase. These results are discussed with regard to practical consequences for the acquisition of autogenous training and its therapeutic application with neuro-dystonic patients. PMID:4002890

  14. Basin Depth Control on the Autogenic Timescale of Fluviodeltaic Systems

    NASA Astrophysics Data System (ADS)

    Carlson, B.; Kim, W.; Piliouras, A.

    2013-12-01

    ABSTRACT Autogenic processes are inherent processes in sediment transport that influence landscape building and leave distinct signatures in the sedimentary record. It is of great interest to understand autogenic processes in order to decouple internal processes from external controls, such as tectonics or climate change. Here we present results from a series of delta-building experiments to determine the variability of the fluviodeltaic autogenic timescale in response to varying basin water depth. This internal timescale was measured as the time that is required for the delta topset to be reworked through a full cycle of storage and release of sediment. The topset aggrades by fluvial sedimentation until it reaches a maximum slope, at which point a large amount of sediment starts to release, typically resulting in strong channelization. This is followed by a period of avulsions, lateral migration, and backfilling of channels on the topset. These storage and release events are repeated. We used time-lapse images to track shoreline positions and observe changes in progradation rate. The changes in topset topography were also used to determine storage and release duration. The experimental results indicate that the autogenic timescales generally increase with increasing basin water depth. These observations may be explained by the amount of time required to build a lobe with an area large enough to trigger a switch from a lobe-building release event to a backfilling storage event. Individual lobes show a similar surface area regardless of basin depth in the experiments. Deeper basin depth simply requires a larger volume to be filled within this area, thus more time to complete one autogenic process. However, when channel depth is significantly smaller than basin depth, e.g., in very deep basins, stochastic variability in sediment transport and channel lateral mobility outweighs the autogenic cyclicity. This study suggests that internal dynamics and its stratigraphic

  15. Selective Formation of Zigzag Edges in Graphene Cracks.

    PubMed

    Fujihara, Miho; Inoue, Ryosuke; Kurita, Rei; Taniuchi, Toshiyuki; Motoyui, Yoshihito; Shin, Shik; Komori, Fumio; Maniwa, Yutaka; Shinohara, Hisanori; Miyata, Yasumitsu

    2015-09-22

    We report the thermally induced unconventional cracking of graphene to generate zigzag edges. This crystallography-selective cracking was observed for as-grown graphene films immediately following the cooling process subsequent to chemical vapor deposition (CVD) on Cu foil. Results from Raman spectroscopy show that the crack-derived edges have smoother zigzag edges than the chemically formed grain edges of CVD graphene. Using these cracks as nanogaps, we were also able to demonstrate the carrier tuning of graphene through the electric field effect. Statistical analysis of visual observations indicated that the crack formation results from uniaxial tension imparted by the Cu substrates together with the stress concentration at notches in the polycrystalline graphene films. On the basis of simulation results using a simplified thermal shrinkage model, we propose that the cooling-induced tension is derived from the transient lattice expansion of narrow Cu grains imparted by the thermal shrinkage of adjacent Cu grains.

  16. A cure shrinkage model for analyzing the stresses and strains in encapsulated assemblies

    NASA Astrophysics Data System (ADS)

    Chambers, R. S.; Lagasse, R. R.; Guess, T. R.; Plazek, D. J.; Bero, C.

    Electrical component assemblies are encapsulated to provide delicate parts with voltage isolation and protection against damage caused by shock, vibration, and harsh atmospheric environments. During cure, thermosetting resins shrink and harden simultaneously. If the natural deformation of the resin is constrained by adhesion to the mold or to relatively stiff embedded components, cure shrinkage stresses are generated in the encapsulant. Subsequent cooling or thermal cycling produces additional stresses that are caused by the mismatches in thermal strains among the materials in the encapsulated assembly. Although cure shrinkage stresses frequently are neglected because they are considerably smaller than thermal stresses, cure shrinkage stresses can cause delamination or fractures in the encapsulant, since the partially cured resin is not as tough as the fully cured material. Cracks generated during cure can compromise performance (e.g., permit dielectric breakdown), degrade a component's protection, and grow under subsequent thermal cycling producing residual stresses that differ from those found in uncracked assemblies.

  17. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  18. Compressed sensing recovery via nonconvex shrinkage penalties

    NASA Astrophysics Data System (ADS)

    Woodworth, Joseph; Chartrand, Rick

    2016-07-01

    The {{\\ell }}0 minimization of compressed sensing is often relaxed to {{\\ell }}1, which yields easy computation using the shrinkage mapping known as soft thresholding, and can be shown to recover the original solution under certain hypotheses. Recent work has derived a general class of shrinkages and associated nonconvex penalties that better approximate the original {{\\ell }}0 penalty and empirically can recover the original solution from fewer measurements. We specifically examine p-shrinkage and firm thresholding. In this work, we prove that given data and a measurement matrix from a broad class of matrices, one can choose parameters for these classes of shrinkages to guarantee exact recovery of the sparsest solution. We further prove convergence of the algorithm iterative p-shrinkage (IPS) for solving one such relaxed problem.

  19. Autogenous Metallic Pipe Leak Repair in Potable Water Systems.

    PubMed

    Tang, Min; Triantafyllidou, Simoni; Edwards, Marc A

    2015-07-21

    Copper and iron pipes have a remarkable capability for autogenous repair (self-repair) of leaks in potable water systems. Field studies revealed exemplars that metallic pipe leaks caused by nails, rocks, and erosion corrosion autogenously repaired, as confirmed in the laboratory experiments. This work demonstrated that 100% (N = 26) of 150 μm leaks contacting representative bulk potable water in copper pipes sealed autogenously via formation of corrosion precipitates at 20-40 psi, pH 3.0-11.0, and with upward and downward leak orientations. Similar leaks in carbon steel pipes at 20 psi self-repaired at pH 5.5 and 8.5, but two leaks did not self-repair permanently at pH 11.0 suggesting that water chemistry may control the durability of materials that seal the leaks and therefore the permanence of repair. Larger 400 μm holes in copper pipes had much lower (0-33%) success of self-repair at pH 3.0-11.0, whereas all 400 μm holes in carbon steel pipes at 20 psi self-repaired at pH 4.0-11.0. Pressure tests indicated that some of the repairs created at 20-40 psi ambient pressure could withstand more than 100 psi without failure. Autogenous repair has implications for understanding patterns of pipe failures, extending the lifetime of decaying infrastructure, and developing new plumbing materials.

  20. Treatment of Childhood Migraine Using Autogenic Feedback Training.

    ERIC Educational Resources Information Center

    Labbe, Elise L.

    1984-01-01

    Compared autogenic feedback training with a waiting-list control group as a treatment for children (N=28) with migraine headaches. Children in the treatment condition were significantly improved at the end of treatment and at one-month and six-month follow-up. No improvement was found for the children in the control condition. (BH)

  1. Repair of the superior sulcus deformity using autogenous costal cartilage.

    PubMed

    Sutula, F C; Thomas, O

    1982-05-01

    Superior sulcus deformity is a late sequela of surgical anophthalmos. Many methods have been proposed to treat this difficult problem. A technique using autogenous costal cartilage that has resulted in satisfactory repair is presented. In addition to standard photographs and exophthalmometry measurements to follow these patients, a specific device to accurately measure orbital volume gain after operation was fashioned. PMID:7099560

  2. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  3. Assessment of the autogenous bone graft for sinus elevation

    PubMed Central

    Peng, Wang; Cho, Hyun-Young; Pae, Sang-Pill; Jung, Bum-Sang; Cho, Hyun-Woo; Seo, Ji-Hoon

    2013-01-01

    Objectives The posterior maxillary region often provides a limited bone volume for dental implants. Maxillary sinus elevation via inserting a bone graft through a window opened in the lateral sinus wall has become the most common surgical procedure for increasing the alveolar bone height in place of dental implants in the posterior maxillary region. The purpose of this article is to assess the change of bone volume and the clinical effects of dental implant placement in sites with maxillary sinus floor elevation and autogenous bone graft through the lateral window approach. Materials and Methods In this article, the analysis data were collected from 64 dental implants that were placed in 24 patients with 29 lacks of the bone volume posterior maxillary region from June 2004 to April 2011, at the Department of Oral and Maxillofacial Surgery, Inha University Hospital. Panoramic views were taken before the surgery, after the surgery, 6 months after the surgery, and at the time of the final follow-up. The influence of the factors on the grafted bone material resorption rate was evaluated according to the patient characteristics (age and gender), graft material, implant installation stage, implant size, implant placement region, local infection, surgical complication, and residual alveolar bone height. Results The bone graft resorption rate of male patients at the final follow-up was significantly higher than the rate of female patients. The single autogenous bone-grafted site was significantly more resorbed than the autogenous bone combined with the Bio-Oss grafted site. The implant installation stage and residual alveolar height showed a significant correlation with the resorption rate of maxillary sinus bone graft material. The success rate and survival rate of the implant were 92.2% and 100%, respectively. Conclusion Maxillary sinus elevation procedure with autogenous bone graft or autogenous bone in combination with Bio-Oss is a predictable treatment method for

  4. Development of novel low shrinkage dental nanocomposite

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Wu, Xiaorong; Liu, Yanju; Xie, Weili; Sun, Shouhua

    2009-07-01

    It has been the focus to develop low shrinkage dental composite resins in recent ten years. A major difficulty in developing low shrinkage dental materials is their deficiency in mechanical properties to clinical use. This paper reviews the present investigations of low shrinkage dental composite resins and attempts to develop a novel system with multifunctional POSS incorporated. In this paper, it is especially interesting to evaluate the influences of shrinkage with different weight percentage of POSS (0~15wt%) incorporated in dental composite resins. Their double bond conversions are evaluated and their microstructures are characterized with Fourier-transform infra-red spectroscopy and X-ray diffraction. Their mechanical properties are also presented in this paper. The results show that the shrinkage of nanocomposites with POSS can be reduced effectively from 3.53% to 2.18%. The mechanical properties of this novel system, such as strength, hardness and toughness, are also enhanced greatly. Especially with 2wt%POSS incorporated, the best integrative improved effects are revealed. The mechanism of shrinkage is discussed.

  5. STRESS CORROSION CRACKING IN TEAR DROP SPECIMENS

    SciTech Connect

    Lam, P; Philip Zapp, P; Jonathan Duffey, J; Kerry Dunn, K

    2009-05-01

    Laboratory tests were conducted to investigate the stress corrosion cracking (SCC) of 304L stainless steel used to construct the containment vessels for the storage of plutonium-bearing materials. The tear drop corrosion specimens each with an autogenous weld in the center were placed in contact with moist plutonium oxide and chloride salt mixtures. Cracking was found in two of the specimens in the heat affected zone (HAZ) at the apex area. Finite element analysis was performed to simulate the specimen fabrication for determining the internal stress which caused SCC to occur. It was found that the tensile stress at the crack initiation site was about 30% lower than the highest stress which had been shifted to the shoulders of the specimen due to the specimen fabrication process. This finding appears to indicate that the SCC initiation took place in favor of the possibly weaker weld/base metal interface at a sufficiently high level of background stress. The base material, even subject to a higher tensile stress, was not cracked. The relieving of tensile stress due to SCC initiation and growth in the HAZ and the weld might have foreclosed the potential for cracking at the specimen shoulders where higher stress was found.

  6. Autogenic training alters cerebral activation patterns in fMRI.

    PubMed

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.

  7. Knuckle Cracking

    MedlinePlus

    ... older obese people. Question: Can cracking knuckles / joints lead to arthritis? Answer: There is no evidence of ... or damaged joints due to arthritis could potentially lead more easily to ligament injury or acute trauma ...

  8. Junction formation during desiccation cracking.

    PubMed

    Toga, K B; Alaca, B Erdem

    2006-08-01

    In order to provide a sound physical basis for the understanding of the formation of desiccation crack networks, an experimental study is presented addressing junction formation. Focusing on junctions, basic features of the network determining the final pattern, provides an elemental approach and imparts conceptual clarity to the rather complicated problem of the evolution of crack patterns. Using coffee-water mixtures a clear distinction between junction formation during nucleation and propagation is achieved. It is shown that for the same drying suspension, one can switch from the well-known symmetric triple junctions that are unique to the nucleation phase to propagation junctions that are purely dictated by the variations of the stress state. In the latter case, one can even manipulate the path of a propagating crack in a deterministic fashion by changing the stress state within the suspension. Clear microscopic evidence is provided for the formation of propagation junctions, and material inhomogeneity is observed to be reflected by a broad distribution of angles, in stark contrast to shrinkage cracks in homogeneous solid films.

  9. Heat shrinkage of electron beam modified EVA

    NASA Astrophysics Data System (ADS)

    Datta, Sujit K.; Chaki, T. K.; Tikku, V. K.; Pradhan, N. K.; Bhowmick, A. K.

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%.

  10. Shrinkage and Sintering Behavior of a Low-Temperature Sinterable Nanosilver Die-Attach Paste

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Zhao, Meihua; Chen, Xu; Lu, Guo-Quan; Ngo, Khai; Luo, Shufang

    2012-09-01

    The drying and densification behavior of a nanosilver paste was studied by shrinkage and weight-loss measurements to provide fundamental understanding on the sintering behavior of the nanomaterial for packaging power devices and modules. The measured shrinkage behavior was found to be in good agreement with the weight-loss behavior of the paste as measured by thermogravitational analysis, and the comparison offered direct evidence of ~10% shrinkage contributed by late-stage densification of silver nanoparticles (NPs). It was found that sintered silver joints could be achieved without cracks or delamination under a ramp-soak temperature profile for bonding small-area chips, e.g., 3 mm × 3 mm or smaller. However, for bonding large-area chips, e.g., 5 mm × 5 mm or larger, rapid evaporation of the entrapped organic species caused the chips to delaminate, leading to large longitudinal cracks at the joint interface. Finally, examination of the microstructure evolution of the silver die-attach material revealed that binder molecules inhibited necking of the silver NPs and delayed densification during the sintering process of the nanosilver paste.

  11. Autogenous Regulation of Splicing of the Transcript of a Yeast Ribosomal Protein Gene

    NASA Astrophysics Data System (ADS)

    Dabeva, Mariana D.; Post-Beittenmiller, Martha A.; Warner, Jonathan R.

    1986-08-01

    The gene for a yeast ribosomal protein, RPL32, contains a single intron. The product of this gene appears to participate in feedback control of the splicing of the intron from the transcript. This autogenous regulation of splicing provides a striking analogy to the autogenous regulation of translation of ribosomal proteins in Escherichia coli.

  12. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    DOEpatents

    Sharp, D.J.; Armstrong, P.S.; Panitz, J.K.G.

    1998-03-17

    A solid electrolytic capacitor is described having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects. 2 figs.

  13. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    DOEpatents

    Sharp, Donald J.; Armstrong, Pamela S.; Panitz, Janda Kirk G.

    1998-01-01

    A solid electrolytic capacitor having a solid electrolyte comprising manganese dioxide dispersed in an aromatic polyamide capable of further cure to form polyimide linkages, the solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

  14. Autogenic-feedback training: A countermeasure for orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.; Kamiya, Joe; Miller, Neal E.; Pickering, Thomas G.

    1991-01-01

    NASA has identified cardiovascular deconditioning as a serious biomedical problem associated with long-duration exposure to microgravity in space. High priority has been given to the development of countermeasures for this disorder and the resulting orthostatic intolerance experienced by crewmembers upon their return to the 1g norm of Earth. The present study was designed to examine the feasibility of training human subjects to control their own cardiovascular responses to gravitational stimulation (i.e., a tilt table). Using an operant conditioning procedure, Autogenic-Feedback Training (AFT), we would determine if subjects could learn to increase their own blood pressure voluntarily.

  15. Reconstruction of the temporomandibular joint autogenous compared with alloplastic.

    PubMed

    Saeed, N; Hensher, R; McLeod, N; Kent, J

    2002-08-01

    The aims of and indications for temporomandibular joint (TMJ) reconstruction are well-established but the method of reconstruction is controversial. We describe a retrospective, two-centre audit of 49 patients treated with costochondral grafting and 50 patients treated with alloplastic joints. The characteristics of the patients were similar in both centres and the minimum follow-up period was 2 years. For each patient a number of variables were recorded including both subjective scores (pain and interference with eating) and objective data (interincisal distance). Patients in both groups showed an improvement in symptoms but more patients required reoperation in the autogenous group. PMID:12175828

  16. Autogenous electrolyte, non-pyrolytically produced solid capacitor structure

    SciTech Connect

    Sharp, D.J.; Armstrong, P.S.; Paintz, J.K.G.

    1998-04-01

    This report discusses the design of a solid electrolytic capacitor having a solid electrolyte comprised of manganese dioxide dispersed in an aromatic polyamide capable of to forming polyimide linkages. This solid electrolyte being disposed between a first electrode made of valve metal covered by an anodic oxide film and a second electrode opposite the first electrode. The electrolyte autogenously produces water, oxygen, and hydroxyl groups which act as healing substances and is not itself produced pyrolytically. Reduction of the manganese dioxide and the water molecules released by formation of imide linkages result in substantially improved self-healing of anodic dielectric layer defects.

  17. Cryogenic Autogenous Pressurization Testing for Robotic Refueling Mission 3

    NASA Technical Reports Server (NTRS)

    Boyle, R.; DiPirro, M.; Tuttle, J.; Francis, J.; Mustafi, S.; Li, X.; Barfknecht, P.; DeLee, C. H.; McGuire, J.

    2015-01-01

    A wick-heater system has been selected for use to pressurize the Source Dewar of the Robotic Refueling Mission Phase 3 on-orbit cryogen transfer experiment payload for the International Space Station. Experimental results of autogenous pressurization of liquid argon and liquid nitrogen using a prototype wick-heater system are presented. The wick-heater generates gas to increase the pressure in the tank while maintaining a low bulk fluid temperature. Pressurization experiments were performed in 2013 to characterize the performance of the wick heater. This paper describes the experimental setup, pressurization results, and analytical model correlations.

  18. Compensating for Shrinkage in Machined Ceramics

    NASA Technical Reports Server (NTRS)

    Aguilar, L.; Fitchett, B. T.

    1986-01-01

    Technique insures machined ceramics shrink to correct dimensions after baked in kiln. New method automatically compensates during machining for shrinkage later, when part baked. Applicable to numerically controlled machines that include provision to adjust for variations in cuttingtool size, but do not provide for automatic verification of dimensions of machined parts.

  19. Cross-Validation, Shrinkage, and Multiple Regression.

    ERIC Educational Resources Information Center

    Hynes, Kevin

    One aspect of multiple regression--the shrinkage of the multiple correlation coefficient on cross-validation is reviewed. The paper consists of four sections. In section one, the distinction between a fixed and a random multiple regression model is made explicit. In section two, the cross-validation paradigm and an explanation for the occurrence…

  20. Effect of Expansive Admixtures on the Shrinkage and Mechanical Properties of High-Performance Fiber-Reinforced Cement Composites

    PubMed Central

    Choi, Won-Chang; Yun, Hyun-Do

    2013-01-01

    High-performance fiber-reinforced cement composites (HPFRCCs) are characterized by strain-hardening and multiple cracking during the inelastic deformation process, but they also develop high shrinkage strain. This study investigates the effects of replacing Portland cement with calcium sulfoaluminate-based expansive admixtures (CSA EXAs) to compensate for the shrinkage and associated mechanical behavior of HPFRCCs. Two types of CSA EXA (CSA-K and CSA-J), each with a different chemical composition, are used in this study. Various replacement ratios (0%, 8%, 10%, 12%, and 14% by weight of cement) of CSA EXA are considered for the design of HPFRCC mixtures reinforced with 1.5% polyethylene (PE) fibers by volume. Mechanical properties, such as shrinkage compensation, compressive strength, flexural strength, and direct tensile strength, of the HPFRCC mixtures are examined. Also, crack width and development are investigated to determine the effects of the EXAs on the performance of the HPFRCC mixtures, and a performance index is used to quantify the performance of mixture. The results indicate that replacements of 10% CSA-K (Type 1) and 8% CSA-J (Type 2) considerably enhance the mechanical properties and reduce shrinkage of HPFRCCs. PMID:24376382

  1. A Bayesian Shrinkage Approach for AMMI Models

    PubMed Central

    de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  2. A Bayesian Shrinkage Approach for AMMI Models.

    PubMed

    da Silva, Carlos Pereira; de Oliveira, Luciano Antonio; Nuvunga, Joel Jorge; Pamplona, Andrezza Kéllen Alves; Balestre, Marcio

    2015-01-01

    Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior

  3. Shrinkage of dental composite in simulated cavity measured with digital image correlation.

    PubMed

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S L

    2014-07-21

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the "tooth-restoration" interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material.

  4. Shrinkage of dental composite in simulated cavity measured with digital image correlation.

    PubMed

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S L

    2014-01-01

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the "tooth-restoration" interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material. PMID:25079865

  5. Shrinkage of Dental Composite in Simulated Cavity Measured with Digital Image Correlation

    PubMed Central

    Li, Jianying; Thakur, Preetanjali; Fok, Alex S. L.

    2014-01-01

    Polymerization shrinkage of dental resin composites can lead to restoration debonding or cracked tooth tissues in composite-restored teeth. In order to understand where and how shrinkage strain and stress develop in such restored teeth, Digital Image Correlation (DIC) was used to provide a comprehensive view of the displacement and strain distributions within model restorations that had undergone polymerization shrinkage. Specimens with model cavities were made of cylindrical glass rods with both diameter and length being 10 mm. The dimensions of the mesial-occlusal-distal (MOD) cavity prepared in each specimen measured 3 mm and 2 mm in width and depth, respectively. After filling the cavity with resin composite, the surface under observation was sprayed with first a thin layer of white paint and then fine black charcoal powder to create high-contrast speckles. Pictures of that surface were then taken before curing and 5 min after. Finally, the two pictures were correlated using DIC software to calculate the displacement and strain distributions. The resin composite shrunk vertically towards the bottom of the cavity, with the top center portion of the restoration having the largest downward displacement. At the same time, it shrunk horizontally towards its vertical midline. Shrinkage of the composite stretched the material in the vicinity of the “tooth-restoration” interface, resulting in cuspal deflections and high tensile strains around the restoration. Material close to the cavity walls or floor had direct strains mostly in the directions perpendicular to the interfaces. Summation of the two direct strain components showed a relatively uniform distribution around the restoration and its magnitude equaled approximately to the volumetric shrinkage strain of the material. PMID:25079865

  6. Autogenic-Feedback Training Exercise (AFTE) Method and System

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S. (Inventor)

    1997-01-01

    The Autogenic-Feedback Training Exercise (AFTE) method of the present invention is a combined application of physiologic and perceptual training techniques. such as autogenic therapy and biofeedback. This combined therapy approach produces a methodology that is appreciably more effective than either of the individual techniques used separately. The AFTE method enables sufficient magnitude of control necessary to significantly reduce the behavioral and physiologic reactions to severe environmental stressors. It produces learned effects that are persistent over time and are resistant to extinction and it can be administered in a short period of time. The AFTE method may be used efficiently in several applications, among which are the following: to improve pilot and crew performance during emergency flying conditions; to train people to prevent the occurrence of nausea and vomiting associated with motion and sea sickness, or morning sickness in early pregnancy; as a training method for preventing or counteracting air-sickness symptoms in high-performance military aircraft; for use as a method for cardiovascular training, as well as for multiple other autonomic responses, which may contribute to the alleviation of Space Motion Sickness (SMS) in astronauts and cosmonauts; training people suffering from migraine or tension headaches to control peripheral blood flow and reduce forehead and/or trapezius muscle tension; training elderly people suffering from fecal incontinence to control their sphincter muscles; training cancer patients to reduce the nauseagenic effects of chemotherapy; and training patients with Chronic Intestinal Pseudo-obstruction (CIP).

  7. Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites.

    PubMed

    Park, Jeong-Kil; Lee, Geun-Ho; Kim, Jong-Hwa; Park, Mi-Gyoung; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2014-01-01

    This study evaluated the polymerization shrinkage, flexural and compressive properties of low-shrinkage resin composites. For the study, four methacrylate-based and one silorane-based resin composites were light cured using three different light-curing units (LCUs) and their polymerization shrinkage, flexural (strength (FS) and modulus (FM)) and compressive (strength (CS) and modulus (CM)) properties were evaluated. Data were statistically analyzed using ANOVA and a post-hoc Tukey test. The polymerization shrinkage ranged approximately 7.6-14.2 μm for 2-mm thick specimens depending on the resin product and LCU. Filtek LS showed the least shrinkage while the rest shrank approximately 13.2-14.2 μm. However, Filtek LS showed the greatest shrinkage difference for the used LCUs. FS and CS of the tested specimens ranged 96.2-152.1 MPa and 239.2-288.4 MPa, respectively, depending on the resin product and LCU. The highest and lowest FS and FM were recorded for the methacrylate-based resin composites. Among the specimens, Filtek LS showed the lowest CS and CM. PMID:24492120

  8. Polymerization shrinkage, flexural and compression properties of low-shrinkage dental resin composites.

    PubMed

    Park, Jeong-Kil; Lee, Geun-Ho; Kim, Jong-Hwa; Park, Mi-Gyoung; Ko, Ching-Chang; Kim, Hyung-Il; Kwon, Yong Hoon

    2014-01-01

    This study evaluated the polymerization shrinkage, flexural and compressive properties of low-shrinkage resin composites. For the study, four methacrylate-based and one silorane-based resin composites were light cured using three different light-curing units (LCUs) and their polymerization shrinkage, flexural (strength (FS) and modulus (FM)) and compressive (strength (CS) and modulus (CM)) properties were evaluated. Data were statistically analyzed using ANOVA and a post-hoc Tukey test. The polymerization shrinkage ranged approximately 7.6-14.2 μm for 2-mm thick specimens depending on the resin product and LCU. Filtek LS showed the least shrinkage while the rest shrank approximately 13.2-14.2 μm. However, Filtek LS showed the greatest shrinkage difference for the used LCUs. FS and CS of the tested specimens ranged 96.2-152.1 MPa and 239.2-288.4 MPa, respectively, depending on the resin product and LCU. The highest and lowest FS and FM were recorded for the methacrylate-based resin composites. Among the specimens, Filtek LS showed the lowest CS and CM.

  9. No advantage to rhBMP-2 in addition to autogenous graft for fracture nonunion.

    PubMed

    Takemoto, Richelle; Forman, Jordanna; Taormina, David P; Egol, Kenneth A

    2014-06-01

    Bone morphogenetic proteins are a necessary component of the fracture healing cascade. Few studies have delineated the efficacy of iliac crest bone graft and recombinant human bone morphogenetic protein 2 (rhBMP-2), especially, in comparison with the gold standard treatment of nonunion, which is autogenous bone graft alone. This study compared the outcome of patients with fracture nonunion treated with autogenous bone graft plus rhBMP-2 adjuvant vs patients treated with autogenous bone graft alone. A total of 118 consecutive patients who were to undergo long bone nonunion surgery with autogenous bone graft (50) or autogenous bone graft plus rhBMP-2 (68) were identified. Surgical intervention included either harvested iliac autogenous bone graft or autogenous bone graft plus 1.5 mg/mL of rhBMP-2 placed in and around the site of nonunion. No differences were found in the distribution of nonunion sites included within each group. Twelve-month follow-up was obtained on 100 of 118 patients (84.7%). Analyses of demographic characteristics (including tobacco), medical comorbidities, previous surgeries, and nonunion type (atrophic vs hypertrophic) did not differ. Postoperative complication rates did not differ. The percentage of patients who progressed to union did not differ. Mean time to union in the autogenous bone graft plus rhBMP-2 group was 6.6 months (±3.9) vs 5.4 (±2.7) months in the autogenous bone graft-only group (P=.06). Rates of revision (16.2% for rhBMP-2 plus autogenous bone graft vs 8% for autogenous bone graft) did not differ statistically (P=.19), nor did 12-month scores of pain and functional assessment. Although rhBMP-2 is a safe adjuvant, there was no benefit seen when rhBMP-2 was added to autogenous bone graft in the treatment of long bone nonunion. Given its high cost, rhBMP-2 should be reconsidered as an aid to autogenous bone graft in the treatment of nonunion.

  10. No advantage to rhBMP-2 in addition to autogenous graft for fracture nonunion.

    PubMed

    Takemoto, Richelle; Forman, Jordanna; Taormina, David P; Egol, Kenneth A

    2014-06-01

    Bone morphogenetic proteins are a necessary component of the fracture healing cascade. Few studies have delineated the efficacy of iliac crest bone graft and recombinant human bone morphogenetic protein 2 (rhBMP-2), especially, in comparison with the gold standard treatment of nonunion, which is autogenous bone graft alone. This study compared the outcome of patients with fracture nonunion treated with autogenous bone graft plus rhBMP-2 adjuvant vs patients treated with autogenous bone graft alone. A total of 118 consecutive patients who were to undergo long bone nonunion surgery with autogenous bone graft (50) or autogenous bone graft plus rhBMP-2 (68) were identified. Surgical intervention included either harvested iliac autogenous bone graft or autogenous bone graft plus 1.5 mg/mL of rhBMP-2 placed in and around the site of nonunion. No differences were found in the distribution of nonunion sites included within each group. Twelve-month follow-up was obtained on 100 of 118 patients (84.7%). Analyses of demographic characteristics (including tobacco), medical comorbidities, previous surgeries, and nonunion type (atrophic vs hypertrophic) did not differ. Postoperative complication rates did not differ. The percentage of patients who progressed to union did not differ. Mean time to union in the autogenous bone graft plus rhBMP-2 group was 6.6 months (±3.9) vs 5.4 (±2.7) months in the autogenous bone graft-only group (P=.06). Rates of revision (16.2% for rhBMP-2 plus autogenous bone graft vs 8% for autogenous bone graft) did not differ statistically (P=.19), nor did 12-month scores of pain and functional assessment. Although rhBMP-2 is a safe adjuvant, there was no benefit seen when rhBMP-2 was added to autogenous bone graft in the treatment of long bone nonunion. Given its high cost, rhBMP-2 should be reconsidered as an aid to autogenous bone graft in the treatment of nonunion. PMID:24972432

  11. Self-repair of cracks in brittle material systems

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn M.

    2016-04-01

    One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer

  12. Quantifying Autogenic Noisiness in Experimental Deltas and Submarine Fans

    NASA Astrophysics Data System (ADS)

    Hoyal, D.; Sheets, B. A.

    2006-12-01

    The long-term behavior of sedimentary systems in the absence of external forcing is relatively linear and predictable. For example, distributive systems in both shallow marine and deep water settings steadily fill accommodation available to them via progradation of an approximately symmetric leading edge (shoreline in the case of a delta, fan toe in deep water). However, nonlinear interactions between flow, sediment deposition and erosion lead to noise around this long-term drift. The primary source of noise is oscillation associated with channelization and levee formation, leading to local over-extension of the leading edge. The focus of this paper is quantification of this oscillation, the controls on its length and period, and its morphodynamic origin and implications. Experimental models of sedimentary systems enable the observation and quantification of this autogenic noise on small spatial and temporal scales that are difficult, and often impossible, to observe and measure in the field due to relatively large time and length scales in natural systems, or adverse observational conditions and environments, (e.g., the deep ocean). Some aspects of natural autogenic behavior, however, have been difficult to reproduce at experimental scales. By manipulating the cohesiveness of the experimental sediment mixtures, we have created models that evolve strong channels (low active flow area to overall surface area), well developed channel mouth bars, and complex distributive channel networks that are common in natural systems but have been notoriously difficult to recreate experimentally, particularly in strongly depositional systems. Analysis of experimental results shows that the autogenic oscillation is associated with cyclic morphodynamic evolution of distributary mouth bars and lobes. This cycle starts with avulsion and new channel elongation and ends with channel abandonment. In detail it includes the following sequence of events. (1) Avulsion to a steeper slope; (2

  13. Compensating For Shrinkage In A Cryogenic Seal

    NASA Technical Reports Server (NTRS)

    Hill, Arnold E.

    1993-01-01

    Proposed design for seals in liquid-hydrogen plumbing eliminates leaks caused by contraction of seals at low operating temperature. Each seal consists of rubber, polytetrafluorethylene, or lead O-ring including hollow core filled with water. At temperature of liquid hydrogen, anomalous expansion of water keeps seal gland filled and leaktight despite shrinkage of surrounding O-ring material. Design also used in systems using cryogenic fluids other than liquid hydrogen.

  14. Polymerization shrinkage assessment of dental resin composites: a literature review.

    PubMed

    Kaisarly, Dalia; Gezawi, Moataz El

    2016-09-01

    Composite restorations are widely used worldwide, but the polymerization shrinkage is their main disadvantage that may lead to clinical failures and adverse consequences. This review reports, currently available in vitro techniques and methods used for assessing the polymerization shrinkage. The focus lies on recent methods employing three-dimensional micro-CT data for the evaluation of polymerization shrinkage: volumetric measurement and the shrinkage vector evaluation through tracing particles before and after polymerization. Original research articles reporting in vitro shrinkage measurements and shrinkage stresses were included in electronic and hand-search. Earlier methods are easier, faster and less expensive. The procedures of scanning the samples in the micro-CT and performing the shrinkage vector evaluation are time consuming and complicated. Moreover, the respective software is not commercially available and the various methods for shrinkage vector evaluation are based on different mathematical principles. Nevertheless, these methods provide clinically relevant information and give insight into the internal shrinkage behavior of composite applied in cavities and how boundary conditions affect the shrinkage vectors. The traditional methods give comparative information on polymerization shrinkage of resin composites, whereas using three-dimensional micro-CT data for volumetric shrinkage measurement and the shrinkage vector evaluation is a highly accurate method. The methods employing micro-CT data give the researchers knowledge related to the application method and the boundary conditions of restorations for visualizing the shrinkage effects that could not be seen otherwise. Consequently, this knowledge can be transferred to the clinical situation to optimize the material manipulation and application techniques for improved outcomes. PMID:27540733

  15. Polymerization shrinkage assessment of dental resin composites: a literature review.

    PubMed

    Kaisarly, Dalia; Gezawi, Moataz El

    2016-09-01

    Composite restorations are widely used worldwide, but the polymerization shrinkage is their main disadvantage that may lead to clinical failures and adverse consequences. This review reports, currently available in vitro techniques and methods used for assessing the polymerization shrinkage. The focus lies on recent methods employing three-dimensional micro-CT data for the evaluation of polymerization shrinkage: volumetric measurement and the shrinkage vector evaluation through tracing particles before and after polymerization. Original research articles reporting in vitro shrinkage measurements and shrinkage stresses were included in electronic and hand-search. Earlier methods are easier, faster and less expensive. The procedures of scanning the samples in the micro-CT and performing the shrinkage vector evaluation are time consuming and complicated. Moreover, the respective software is not commercially available and the various methods for shrinkage vector evaluation are based on different mathematical principles. Nevertheless, these methods provide clinically relevant information and give insight into the internal shrinkage behavior of composite applied in cavities and how boundary conditions affect the shrinkage vectors. The traditional methods give comparative information on polymerization shrinkage of resin composites, whereas using three-dimensional micro-CT data for volumetric shrinkage measurement and the shrinkage vector evaluation is a highly accurate method. The methods employing micro-CT data give the researchers knowledge related to the application method and the boundary conditions of restorations for visualizing the shrinkage effects that could not be seen otherwise. Consequently, this knowledge can be transferred to the clinical situation to optimize the material manipulation and application techniques for improved outcomes.

  16. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  17. Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying

    NASA Astrophysics Data System (ADS)

    Shahari, N.; Jamil, N.; Rasmani, KA.

    2016-08-01

    A single phase heat and mass model has always been used to represent the moisture and temperature distribution during the drying of food. Several effects of the drying process, such as physical and structural changes, have been considered in order to increase understanding of the movement of water and temperature. However, the comparison between the heat and mass equation with and without structural change (in terms of shrinkage), which can affect the accuracy of the prediction model, has been little investigated. In this paper, two mathematical models to describe the heat and mass transfer in food, with and without the assumption of structural change, were analysed. The equations were solved using the finite difference method. The converted coordinate system was introduced within the numerical computations for the shrinkage model. The result shows that the temperature with shrinkage predicts a higher temperature at a specific time compared to that of the non-shrinkage model. Furthermore, the predicted moisture content decreased faster at a specific time when the shrinkage effect was included in the model.

  18. Silorane- and high filled-based "low-shrinkage" resin composites: shrinkage, flexural strength and modulus.

    PubMed

    Arrais, Cesar Augusto Galvão; Oliveira, Marcelo Tavares de; Mettenburg, Donald; Rueggeberg, Frederick Allen; Giannini, Marcelo

    2013-01-01

    This study compared the volumetric shrinkage (VS), flexural strength (FS) and flexural modulus (FM) properties of the low-shrinkage resin composite Aelite LS (Bisco) to those of Filtek LS (3M ESPE) and two regular dimethacrylate-based resin composites, the microfilled Heliomolar (Ivoclar Vivadent) and the microhybrid Aelite Universal (Bisco). The composites (n = 5) were placed on the Teflon pedestal of a video-imaging device, and VS was recorded every minute for 5 min after 40 s of light exposure. For the FS and FM tests, resin discs (0.6 mm in thickness and 6.0 mm in diameter) were obtained (n = 12) and submitted to a piston-ring biaxial test in a universal testing machine. VS, FS, and FM data were submitted to two-way repeated measures and one-way ANOVA, respectively, followed by Tukey's post-hoc test (a = 5%). Filtek LS showed lower VS than did Aelite LS, which in turn showed lower shrinkage than did the other composites. Aelite Universal and Filtek LS exhibited higher FS than did Heliomolar and Aelite LS, both of which exhibited the highest FM. No significant difference in FM was noted between Filtek LS and Aelite Universal, while Heliomolar exhibited the lowest values. Aelite LS was not as effective as Filtek LS regarding shrinkage, although both low-shrinkage composites showed lower VS than did the other composites. Only Filtek LS exhibited FS and FM comparable to those of the regular microhybrid dimethacrylate-based resin composite. PMID:23459774

  19. An Autogenously Regulated Expression System for Gene Therapeutic Ocular Applications

    PubMed Central

    Sochor, Matthew A.; Vasireddy, Vidyullatha; Drivas, Theodore G.; Wojno, Adam; Doung, Thu; Shpylchak, Ivan; Bennicelli, Jeannette; Chung, Daniel; Bennett, Jean; Lewis, Mitchell

    2015-01-01

    The future of treating inherited and acquired genetic diseases will be defined by our ability to introduce transgenes into cells and restore normal physiology. Here we describe an autogenous transgene regulatory system (ARES), based on the bacterial lac repressor, and demonstrate its utility for controlling the expression of a transgene in bacteria, eukaryotic cells, and in the retina of mice. This ARES system is inducible by the small non-pharmacologic molecule, Isopropyl β-D-1-thiogalactopyranoside (IPTG) that has no off-target effects in mammals. Following subretinal injection of an adeno-associated virus (AAV) vector encoding ARES, luciferase expression can be reversibly controlled in the murine retina by oral delivery of IPTG over three induction-repression cycles. The ability to induce transgene expression repeatedly via administration of an oral inducer in vivo, suggests that this type of regulatory system holds great promise for applications in human gene therapy. PMID:26597678

  20. Postoperative irradiation of fresh autogenic cancellous bone grafts

    SciTech Connect

    Schwartz, H.C.; Leake, D.L.; Kagan, A.R.; Snow, H.; Pizzoferrato, A.

    1986-01-01

    Discontinuity defects were created in the mandibles of dogs and then reconstructed immediately with fresh autogenic cancellous bone grafts and Dacron-urethane prostheses. The grafts were irradiated to a total dose of 5000 rads after waiting intervals of between 3 and 12 weeks. Nonirradiated grafts served as controls. The grafts were evaluated clinically, radiographically, and histologically. There was complete incorporation of all grafts, regardless of the interval between surgery and radiotherapy. There were no soft-tissue complications. The controls were distinguishable from the irradiated grafts only by the presence of hematopoietic bone marrow. Fibrofatty marrow was observed in the irradiated grafts. Theoretical support for this technique is found in the biology of cancellous bone grafting and the pathology of radiation injury. In view of the difficulties associated with mandibular bone grafting in preoperatively irradiated patients, a new method of reconstructing selected cancer patients who require both mandibular resection and radiotherapy is suggested.

  1. Autogenic reaction synthesis of photocatalysts for solar fuel generation

    DOEpatents

    Ingram, Brian J.; Pol, Vilas G.; Cronauer, Donald C.; Ramanathan, Muruganathan

    2016-04-19

    In one preferred embodiment, a photocatalyst for conversion of carbon dioxide and water to a hydrocarbon and oxygen comprises at least one nanoparticulate metal or metal oxide material that is substantially free of a carbon coating, prepared by heating a metal-containing precursor compound in a sealed reactor under a pressure autogenically generated by dissociation of the precursor material in the sealed reactor at a temperature of at least about 600.degree. C. to form a nanoparticulate carbon-coated metal or metal oxide material, and subsequently substantially removing the carbon coating. The precursor material comprises a solid, solvent-free salt comprising a metal ion and at least one thermally decomposable carbon- and oxygen-containing counter-ion, and the metal of the salt is selected from the group consisting of Mn, Ti, Sn, V, Fe, Zn, Zr, Mo, Nb, W, Eu, La, Ce, In, and Si.

  2. Autogenic Feedback Training Applications for Man in Space

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. This paper reviews the back-round research and procedures of an experiment designed to prevent space motion sickness in shuttle crewmembers. The preventive method used, Autogenic - Feedback Training (AFT) involves training subjects to control voluntarily several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during around based tests in over 300 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Other applications of AFT described include; (1) a potential treatment for post flight orthostatic intolerance, a serious biomedical problem resulting from long duration exposure to micro-g and (2) improving pilot performance during emergency flying conditions.

  3. [Free from stress by autogenic therapy. Relaxation technique yielding peace of mind and self-insight].

    PubMed

    Broms, C

    1999-02-10

    The utilisation of self-regulatory capacity is one of the purposes of autogenic therapy, a method consisting of exercises focused on the limbs, lungs, heart, diaphragm and head. The physiological response is muscle relaxation, increased peripheral blood flow, lower heart rate and blood pressure, slower and deeper breathing, and reduced oxygen consumption. Autogenic training is applicable in most pathological conditions associated with stress, and can be used preventively or as a complement to conventional treatment.

  4. Shrinkage, stress, and modulus of dimethacrylate, ormocer, and silorane composites

    PubMed Central

    Bacchi, Atais; Feitosa, Victor Pinheiro; da Silva Fonseca, Andrea Soares Quirino; Cavalcante, Larissa Maria Assad; Silikas, Nikolaos; Schneider, Luis Felipe Jochins

    2015-01-01

    Purpose: to evaluate the shrinkage, polymerization stress, elastic and bulk modulus resulting from composites formulated by siloranes, 2nd generation ormocers, and dimethacrylates. Materials and Methods: The bonded disc method was used to evaluate volumetric shrinkage. The polymerization stress was evaluated by mean of the Bioman. Cylindrical specimens (5 mm thickness and 6 mm diameter) were submitted to gradual loading. Young's and bulk modulus were obtained from the slope of the stress/strain curve. Data were analyzed using one-way analysis of variance and Tukey's test (5%). Results: Grandio and ormocer showed significant higher elastic and bulk modulus. Silorane presented significant lowest bulk modulus and maximum shrinkage. Ormocer and silorane presented lower values for the maximum rate of shrinkage. Extra-low shrinkage (ELS) composite presented the greatest maximum shrinkage. The higher maximum rate of shrinkage was attained by Grandio and ELS, statistically similar from each other. The silorane showed lower values of maximum stress and maximum rate of stress. The higher values of maximum stress were presented by ELS and Grandio, statistical similar between them. Grandio showed the significantly greatest maximum rate of stress. Conclusion: Silorane showed to promote lower shrinkage/stress among the composites, with the lowest elastic modulus. Ormocer showed lower shrinkage/stress than methacrylates despite of its high modulus. PMID:26430302

  5. Untangling climatic and autogenic signals in peat records

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Baird, Andrew J.; Young, Dylan M.; Swindles, Graeme T.

    2016-04-01

    Raised bogs contain potentially valuable information about Holocene climate change. However, autogenic processes may disconnect peatland hydrological behaviour from climate, and overwrite and degrade climatic signals in peat records. How can genuine climate signals be separated from autogenic changes? What level of detail of climatic information should we expect to be able to recover from peat-based reconstructions? We used an updated version of the DigiBog model to simulate peatland development and response to reconstructed Holocene rainfall and temperature reconstructions. The model represents key processes that are influential in peatland development and climate signal preservation, and includes a network of feedbacks between peat accumulation, decomposition, hydraulic structure and hydrological processes. It also incorporates the effects of temperature upon evapotranspiration, plant (litter) productivity and peat decomposition. Negative feedbacks in the model cause simulated water-table depths and peat humification records to exhibit homeostatic recovery from prescribed changes in rainfall, chiefly through changes in drainage. However, the simulated bogs show less resilience to changes in temperature, which cause lasting alterations to peatland structure and function and may therefore be more readily detectable in peat records. The network of feedbacks represented in DigiBog also provide both high- and low-pass filters for climatic information, meaning that the fidelity with which climate signals are preserved in simulated peatlands is determined by both the magnitude and the rate of climate change. Large-magnitude climatic events of an intermediate frequency (i.e., multi-decadal to centennial) are best preserved in the simulated bogs. We found that simulated humification records are further degraded by a phenomenon known as secondary decomposition. Decomposition signals are consistently offset from the climatic events that generate them, and decomposition

  6. Autogenous training--an anxiolytic and a factor contributing to the improvement of the quality of life.

    PubMed

    Gruden, V

    1999-06-01

    Autogenous training in its narrow sense of meaning belongs to the group of supportive psychotherapeutic techniques. In fact, it is an autosuggestive relaxation. Autogenous training has been for decades successfully used as prevention to anxious reactions. Since anxiety is an etiological factor of numerous psychic and psychosomatic disturbances, positive implications of autogenous training have been considerably broadened. Life without anxiety belongs to a more qualitative form of life. Autogenous training directs the trainee towards introspection and self-analysis. Self-respect (self-esteem) is the consequence of our own work on ourselves.

  7. Reorganization of the brain and heart rhythm during autogenic meditation

    PubMed Central

    Kim, Dae-Keun; Rhee, Jyoo-Hi; Kang, Seung Wan

    2014-01-01

    The underlying changes in heart coherence that are associated with reported EEG changes in response to meditation have been explored. We measured EEG and heart rate variability (HRV) before and during autogenic meditation. Fourteen subjects participated in the study. Heart coherence scores were significantly increased during meditation compared to the baseline. We found near significant decrease in high beta absolute power, increase in alpha relative power and significant increases in lower (alpha) and higher (above beta) band coherence during 3~min epochs of heart coherent meditation compared to 3~min epochs of heart non-coherence at baseline. The coherence and relative power increase in alpha band and absolute power decrease in high beta band could reflect relaxation state during the heart coherent meditation. The coherence increase in the higher (above beta) band could reflect cortico-cortical local integration and thereby affect cognitive reorganization, simultaneously with relaxation. Further research is still needed for a confirmation of heart coherence as a simple window for the meditative state. PMID:24454283

  8. Dynamics of tissue shrinkage during ablative temperature exposures

    PubMed Central

    Rossmann, Christian; Garrett-Mayer, Elizabeth; Rattay, Frank; Haemmerich, Dieter

    2014-01-01

    There is a lack of studies that examine dynamics of heat-induced shrinkage of organ tissues. Clinical procedures such as radiofrequency ablation, microwave ablation or high-intensity focused ultrasound, use heat to treat diseases such as cancer and cardiac arrhythmia. When heat is applied to tissues, shrinkage occurs due to protein denaturation, dehydration, and contraction of collagen at temperatures greater 50ºC. This is particularly relevant for image-guided procedures such as tumor ablation, where pre- and post-treatment images are compared and any changes in dimensions must be considered to avoid misinterpretations of the treatment outcome. We present data from ex vivo, isothermal shrinkage tests in porcine liver tissue, where axial changes in tissue length were recorded during 15 minutes of heating to temperatures between 60 and 95ºC. A mathematical model was developed to accurately describe the time and temperature-dependent shrinkage behavior. Shrinkage dynamics had same characteristics independent of temperature; the estimated relative shrinkage, adjusted for time since death, after 15 min heating to temperatures of 60, 65, 75, 85 and 95ºC, was 12.3, 13.8, 16.6, 19.2, and 21.7%, respectively. Our results demonstrate shrinkage dynamics of organ tissues, and suggest the importance of considering tissue shrinkage for thermal ablative treatments. PMID:24345880

  9. Factors affecting the shrinkage of fly ash geopolymers

    NASA Astrophysics Data System (ADS)

    Ridtirud, Charoenchai; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2011-02-01

    The shrinkage of fly ash geopolymers was studied in the present study. Fly ash was used as the source material for making the geopolymers. The effects of the concentration of NaOH, sodium silicate-to-NaOH ratio, liquid-to-ash ratio, curing temperature, and curing time on shrinkage were investigated. The geopolymers were cured at 25, 40, and 60°C, respectively. The results indicate that the shrinkage of geopolymers is strongly dependent on curing temperature and liquid-to-ash ratio. The increase in shrinkage is associated with the low strength development of geopolymers. It is also found that NaOH concentration and sodium silicate-to-NaOH ratio also affect the shrinkage of geopolymers but to a lesser extent.

  10. Allogenous cartilage graft versus autogenous cartilage graft in augmentation rhinoplasty: a decade of clinical experience.

    PubMed

    Tosun, Z; Karabekmez, F E; Keskin, M; Duymaz, A; Savaci, N

    2008-03-01

    Cartilage grafts have great value in augmentation rhinoplasty. For most surgeons, an autogenous cartilage graft is the first choice in rhinoplasty because of its resistance to infection and resorption. On the other hand, an allogenous cartilage graft might be preferred over an autogenous graft to avoid additional morbidity and lengthened operating time. Allogenous cartilage grafts not only have the advantage of averting donor site morbidity but also are resistant to infection, resembling autogenous cartilage grafts. The authors present their experience with 41 patients who underwent augmentation rhinoplasty using 22 autogenous and 19 allogenous cartilage grafts between June 1994 and August 2004. For evaluation of adequate augmentation rates, photographic analyses were performed on preoperative, early postoperative, and late postoperative photographs from all the patients. To assess patient satisfaction, the Facial Appearance Sorting Test (FAST) was applied preoperatively and late postoperatively in both groups. These results were compared, and it was concluded that in terms of resorption, there was no difference in the early and late postoperative follow-up data between allogenous and autogenous cartilage grafts. Evaluation of the preoperative and early postoperative photographic outcomes showed statistically significant differences with respect to adequate augmentation rates between the two groups. The FAST scores showed statistically significant differences between preoperative and late postoperative outcomes. There were no infections in the two groups of patients.

  11. Numerical model predictions of autogenic fluvial terraces and comparison to climate change expectations

    NASA Astrophysics Data System (ADS)

    Limaye, Ajay B. S.; Lamb, Michael P.

    2016-03-01

    Terraces eroded into sediment (alluvial) and bedrock (strath) preserve an important history of river activity. River terraces are thought to form when a river switches from a period of slow vertical incision and valley widening to fast vertical incision and terrace abandonment. Consequently, terraces are often interpreted to reflect changing external drivers including tectonics, sea level, and climate. In contrast, the intrinsic unsteadiness of lateral migration in rivers may generate terraces even under constant rates of vertical incision without external forcing. To explore this mechanism, we simulate landscape evolution by a vertically incising, meandering river and isolate the age and geometry of autogenic river terraces. Modeled autogenic terraces form for a wide range of lateral and vertical incision rates and are often paired and longitudinally extensive for intermediate ratios of vertical-to-lateral erosion rate. Autogenic terraces have a characteristic reoccurrence time that scales with the time for relief generation. There is a preservation bias against older terraces due to reworking of previously visited parts of the valley. Evolving, spatial differences in bank strength between bedrock and sediment reduce terrace formation frequency and length, favor pairing, and can explain sublinear terrace margins at valley boundaries. Age differences and geometries for modeled autogenic terraces are consistent, in cases, with natural terraces and overlap with metrics commonly attributed to terrace formation due to climate change. We suggest a new phase space of terrace properties that may allow differentiation of autogenic terraces from terraces formed by external drivers.

  12. Brain structural alterations in obsessive-compulsive disorder patients with autogenous and reactive obsessions.

    PubMed

    Subirà, Marta; Alonso, Pino; Segalàs, Cinto; Real, Eva; López-Solà, Clara; Pujol, Jesús; Martínez-Zalacaín, Ignacio; Harrison, Ben J; Menchón, José M; Cardoner, Narcís; Soriano-Mas, Carles

    2013-01-01

    Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. Although structural brain alterations have been consistently reported in OCD, their interaction with particular clinical subtypes deserves further examination. Among other approaches, a two-group classification in patients with autogenous and reactive obsessions has been proposed. The purpose of the present study was to assess, by means of a voxel-based morphometry analysis, the putative brain structural correlates of this classification scheme in OCD patients. Ninety-five OCD patients and 95 healthy controls were recruited. Patients were divided into autogenous (n = 30) and reactive (n = 65) sub-groups. A structural magnetic resonance image was acquired for each participant and pre-processed with SPM8 software to obtain a volume-modulated gray matter map. Whole-brain and voxel-wise comparisons between the study groups were then performed. In comparison to the autogenous group, reactive patients showed larger gray matter volumes in the right Rolandic operculum. When compared to healthy controls, reactive patients showed larger volumes in the putamen (bilaterally), while autogenous patients showed a smaller left anterior temporal lobe. Also in comparison to healthy controls, the right middle temporal gyrus was smaller in both patient subgroups. Our results suggest that autogenous and reactive obsessions depend on partially dissimilar neural substrates. Our findings provide some neurobiological support for this classification scheme and contribute to unraveling the neurobiological basis of clinical heterogeneity in OCD.

  13. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.

    PubMed

    Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A

    2016-05-01

    The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic

  14. Effective Expansion: Balance between Shrinkage and Hygroscopic Expansion.

    PubMed

    Suiter, E A; Watson, L E; Tantbirojn, D; Lou, J S B; Versluis, A

    2016-05-01

    The purpose of this study was to investigate the relationship between hygroscopic expansion and polymerization shrinkage for compensation of polymerization shrinkage stresses in a restored tooth. One resin-modified glass-ionomer (RMGI) (Ketac Nano, 3M ESPE), 2 compomers (Dyract, Dentsply; Compoglass, Ivoclar), and a universal resin-based composite (Esthet•X HD, Dentsply) were tested. Volumetric change after polymerization ("total shrinkage") and during 4 wk of water storage at 37°C was measured using an optical method (n= 10). Post-gel shrinkage was measured during polymerization using a strain gauge method (n= 10). Extracted human molars with large mesio-occluso-distal slot preparations were restored with the tested restorative materials. Tooth surfaces at baseline (preparation), after restoration, and during 4 wk of 37°C water storage were scanned with an optical scanner to determine cuspal flexure (n= 8). Occlusal interface integrity was measured using dye penetration. Data were analyzed using analysis of variance and post hoc tests (significance level 0.05). All tested materials shrunk after polymerization. RMGI had the highest total shrinkage (4.65%) but lowest post-gel shrinkage (0.35%). Shrinkage values dropped significantly during storage in water but had not completely compensated polymerization shrinkage after 4 wk. All restored teeth initially exhibited inward (negative) cuspal flexure due to polymerization shrinkage. Cuspal flexure with the RMGI restoration was significantly less (-6.4 µm) than with the other materials (-12.1 to -14.1 µm). After 1 d, cuspal flexure reversed to +5.0 µm cuspal expansion with the RMGI and increased to +9.3 µm at 4 wk. After 4 wk, hygroscopic expansion compensated cuspal flexure in a compomer (Compoglass) and reduced flexure with Dyract and resin-based composite. Marginal integrity (93.7% intact restoration wall) was best for the Compoglass restorations and lowest (73.1%) for the RMGI restorations. Hygroscopic

  15. Comparative fine structure of eggs of autogenous and anautogenous Culex pipiens (Diptera: Culicidae).

    PubMed

    Soliman, Belal A; Tewfick, Maha K; Wassim, Nahla M

    2014-12-01

    Culex (Cx.) pipiens is the potential vector human filariasis in Egypt. However, autogenous Cx. pipiens may be less efficient vector of Wuchereria (W.) bancrofti in endemic areas of Egypt compared to anautogenous counterparts. In this study, an attempt was made to differentiate eggs of autogenous and anautogenous Cx. pipiens using scanning electron micrographs. The results indicated that eggs of both species appear to be similar to great extent in surface morphology. Eggs of both forms are black and elongate-oval. Width is greatest at the anterior end. The posterior end is pointed. The micropylar disc is apparent with distinct edge. Exochorionic bridges are angular. Size of both eggs represented by length and width are comparable. In both eggs, length is greater than width. However, eggs of both forms can be distinguished from each other by the exochorionic bridges being longer and thinner in the autogenous eggs than in the anautogenous eggs. PMID:25643517

  16. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-11-03

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  17. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F.W.; Dubendorff, J.W.

    1998-10-20

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods. 12 figs.

  18. Cloning and expression of autogenes encoding RNA poly,erases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  19. Cloning and expression of autogenes encoding RNA polymerases of T7-like bacteriophages

    DOEpatents

    Studier, F. William; Dubendorff, John W.

    1998-01-01

    This invention relates to the cloning and expression of autogenes encoding RNA polymerases of T7 and T7-like bacteriophages, in which the RNA polymerase gene is transcribed from a promoter which is recognized by the encoded RNA polymerase. Cloning of T7 autogenes was achieved by reducing the activity of the RNA polymerase sufficiently to permit host cell growth. T7 RNA polymerase activity was controlled by combining two independent methods: lac-repression of the recombinant lac operator-T7 promoter in the autogene and inhibition of the polymerase by T7 lysozyme. Expression systems for producing the RNA polymerases of T7 and other T7-like bacteriophages, and expression systems for producing selected gene products are described, as well as other related materials and methods.

  20. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  1. Autogenic synthesis of SnO{sub 2} materials and their structural, electrochemical, and optical properties

    SciTech Connect

    Pol, V.G.; Calderon-Moreno, J.M.; Thackeray, M.M.

    2012-12-15

    During autogenic reactions, organometallic precursors are decomposed above their critical temperature within an enclosed chamber at high temperatures and pressures. It has recently been established that such reactions can be used to synthesize carbon-coated metal oxide and metal phosphate nanoparticles. These materials are of interest as electrodes for lithium-ion batteries. In this paper, we report the autogenic fabrication of a carbon-coated SnO{sub 2} product and a carbon-free SnO{sub 2} product after removal of the carbon coating by combustion. The major objectives of the study were to monitor any beneficial effects that carbon-coated electrodes containing a lithium alloying element such as Sn might have in improving the electrical connectivity between electrode particles, which expand and contract significantly on lithiation and delithiation, and their utility in lithium cells. Specifically, we report the compositional, structural and morphological properties, and electrochemical behavior of carbon-coated SnO{sub 2} electrodes. Given the importance of the optical properties of SnO{sub 2}, we also describe the effects of the carbon coating on the optical absorbance and photoluminescence of autogenically-prepared SnO{sub 2} materials. - Graphical abstract: One-step, solvent-free autogenic reactions yield nanosized SnO{sub 2} nanoparticles, uniformly coated and interconnected by 2-4 nm carbon layers, with improved electrochemical performance. Highlights: Black-Right-Pointing-Pointer Distinctive autogenic process synthesized SnO{sub 2} nanoparticles coated with 2-4 nm carbon layers. Black-Right-Pointing-Pointer Carbon coating improved capacity retention and cycling stability of SnO{sub 2} nanoparticles. Black-Right-Pointing-Pointer Carbon coating quenched photoluminescence of SnO{sub 2} component in SnO{sub 2}-C composite. Black-Right-Pointing-Pointer Autogenic approach is extremely versatile, holds promise for designing new nanoarchitectures.

  2. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  3. Autogenic-feedback training - A treatment for motion and space sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.

    1990-01-01

    A training method for preventing the occurrence of motion sickness in humans, called autogenic-feedback training (AFT), is described. AFT is based on a combination of biofeedback and autogenic therapy which involves training physiological self-regulation as an alternative to pharmacological management. AFT was used to reliably increase tolerance to motion-sickness-inducing tests in both men and women ranging in age from 18 to 54 years. The effectiveness of AFT is found to be significantly higher than that of protective adaptation training. Data obtained show that there is no apparent effect from AFT on measures of vestibular perception and no side effects.

  4. Anisotropic shrinkage characteristics of tape cast alumina

    NASA Astrophysics Data System (ADS)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  5. Cocaine (Coke, Crack) Facts

    MedlinePlus

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." Stacey is recovering from her ...

  6. Probing the origins and control of shrinkage stress in dental resin-composites: I. Shrinkage stress characterization technique.

    PubMed

    Lu, H; Stansbury, J W; Dickens, S H; Eichmiller, F C; Bowman, C N

    2004-10-01

    The accurate and reliable characterization of the polymerization shrinkage stress is becoming increasingly important, as the shrinkage stress still is a major drawback of current dimethacrylate-based dental materials and restricts its range of applications. The purpose of this research is to develop a novel shrinkage stress measurement device to elucidate the shrinkage stress evolution of dental restorative composites while allowing for controlled sample deformation during the polymerization. Furthermore, the device is designed to mimic the clinically relevant cusp-to-cusp displacement by systematically adjusting the instrument compliance, the bonded surface area/unbonded area by sample geometry, and the total bonded area by sample diameter. The stress measurement device based on the cantilever beam deflection theory has been successfully developed and characterized using a commercial dental composite. It was shown that this device is a highly effective, practical and reliable shrinkage stress measurement tool, which enables its facile applications to the investigation of shrinkage stress kinetics of both commercial and experimental composites, as well as for probing various aspects that dictate shrinkage stress development. PMID:15516870

  7. Effect of light-curing units and activation mode on polymerization shrinkage and shrinkage stress of composite resins.

    PubMed

    Lopes, Lawrence Gonzaga; Franco, Eduardo Batista; Pereira, José Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to evaluate the polymerization shrinkage and shrinkage stress of composites polymerized with a LED and a quartz tungsten halogen (QTH) light sources. The LED was used in a conventional mode (CM) and the QTH was used in both conventional and pulse-delay modes (PD). The composite resins used were Z100, A110, SureFil and Bisfil 2B (chemical-cured). Composite deformation upon polymerization was measured by the strain gauge method. The shrinkage stress was measured by photoelastic analysis. The polymerization shrinkage data were analyzed statistically using two-way ANOVA and Tukey test (p < or = 0.05), and the stress data were analyzed by one-way ANOVA and Tukey's test (p < or = 0.05). Shrinkage and stress means of Bisfil 2B were statistically significant lower than those of Z100, A110 and SureFil. In general, the PD mode reduced the contraction and the stress values when compared to CM. LED generated the same stress as QTH in conventional mode. Regardless of the activation mode, SureFil produced lower contraction and stress values than the other light-cured resins. Conversely, Z100 and A110 produced the greatest contraction and stress values. As expected, the chemically cured resin generated lower shrinkage and stress than the light-cured resins. In conclusion, The PD mode effectively decreased contraction stress for Z100 and A110. Development of stress in light-cured resins depended on the shrinkage value.

  8. Shrinkage covariance matrix approach for microarray data

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n < p. This leads to a biased estimate of the covariance matrix. In this study, the Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  9. Straining Graphene Using Thin Film Shrinkage Methods

    PubMed Central

    2014-01-01

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  10. Permeability Enhancement in Fine-Grained Sediments by Chemically Induced Clay Fabric Shrinkage

    SciTech Connect

    Wijesinghe, A M; Kansa, E J; Viani, B E; Blake, R G; Roberts, J J; Huber, R D

    2004-02-26

    The National Research Council [1] identified the entrapment of contaminants in fine-grained clay-bearing soils as a major impediment to the timely and cost-effective remediation of groundwater to regulatory standards. Contaminants trapped in low-permeability, low-diffusivity, high-sorptivity clays are not accessible to advective flushing by treatment fluids from permeable zones, and slowly diffuse out to recontaminate previously cleaned permeable strata. We propose to overcome this barrier to effective remediation by exploiting the ability of certain nontoxic EPA-approved chemicals (e.g., ethanol) to shrink and alter the fabric of clays, and thereby create macro-porosity and crack networks in fine-grained sediments. This would significantly reduce the distance and time scales of diffusive mass transport to advectively flushed boundaries, to yield orders of magnitude reduction in the time required to complete remediation. Given that effective solutions to this central problem of subsurface remediation do not yet exist, the cost and time benefits of successful deployment of this novel concept, both as a stand-alone technology and as an enabling pre-treatment for other remedial technologies that rely on advective delivery, is likely to be very large. This project, funded as a 1-year feasibility study by LLNL's LDRD Program, is a multi-directorate, multi-disciplinary effort that leverages expertise from the Energy & Environment Directorate, the Environmental Restoration Division, and the Manufacturing & Materials Evaluation Division of Mechanical Engineering. In this feasibility study, a ''proof-of-principle'' experiment was performed to answer the central question: ''Can clay shrinkage induced by ethanol in clay-bearing sediments overcome realistic confining stresses, crack clay, and increase its effective permeability by orders of magnitude within a time that is much smaller than the time required for diffusive mass transport of ethanol in the unaltered sediment

  11. Applying strain into graphene by SU-8 resist shrinkage

    NASA Astrophysics Data System (ADS)

    Takamura, Makoto; Hibino, Hiroki; Yamamoto, Hideki

    2016-07-01

    We investigated the use of the shrinkage of SU-8 resist caused by thermal annealing to apply strain into graphene grown by the chemical-vapor-deposition (CVD) method. We demonstrate that the shrinkage of resist deposited on top of graphene on a substrate induces a local tensile strain within a distance of 1–2 μm from the edge of the resist. The thermal shrinkage of SU-8 will allow us to design the local strain in graphene on substrates. We also show that the shrinkage induces a large tensile strain in graphene suspended between two bars of SU-8. We expect that a much larger strain can be induced by suppressing defects in CVD-grown graphene.

  12. Applying strain into graphene by SU-8 resist shrinkage

    NASA Astrophysics Data System (ADS)

    Takamura, Makoto; Hibino, Hiroki; Yamamoto, Hideki

    2016-07-01

    We investigated the use of the shrinkage of SU-8 resist caused by thermal annealing to apply strain into graphene grown by the chemical-vapor-deposition (CVD) method. We demonstrate that the shrinkage of resist deposited on top of graphene on a substrate induces a local tensile strain within a distance of 1-2 μm from the edge of the resist. The thermal shrinkage of SU-8 will allow us to design the local strain in graphene on substrates. We also show that the shrinkage induces a large tensile strain in graphene suspended between two bars of SU-8. We expect that a much larger strain can be induced by suppressing defects in CVD-grown graphene.

  13. Fluid catalytic cracking

    SciTech Connect

    Petty, R.H.; Bartley, B.H.

    1984-05-01

    A fluid catalytic cracking process is disclosed for sulfur-containing petroleum charge stocks. Sulfur contained in coke deposited on the fluidized cracking catalyst in the reactor is converted to sulfur oxides in the regenerator and removed from regenerator off-gases by incorporating a composite of alumina and bismuth oxides in a particulate cracking catalyst. Sulfur oxides produced during regeneration of the catalyst by burning the coke with air in the regenerator are captured by the alumina-bismuth oxides composite and converted to hydrogen sulfide in the cracking reactor. The hydrogen sulfide so produced is readily separated from petroleum products of the catalytic cracking reaction process.

  14. The measurement of polymerization shrinkage of composite resins with ESPI

    NASA Astrophysics Data System (ADS)

    Zhang, Zhang; Yang, Guo Biao

    2008-09-01

    In the current study, we used the method of electronic speckle pattern interferometry (ESPI) to measure polymerization shrinkage of composite resins. Standardized cavities were prepared and placed into the ESPI apparatus before the cavities were filled with composites (n=2) .The ESPI apparatus was constructed to measure the out-of-plane displacement of the resins surface during the polymerization. Experiments demonstrated that the ESPI technique was a viable method to measure the deformation of composite resins. It was responsive and sensitive to dimensional changes. We found that cavity shape, size and C- factor influenced the date of resins shrinkage. And the tooth deformation in response to polymerization of resins was measured by the ESPI too. We concluded that ESPI was a feasible method for assessing resins deformation induced by its polymerization shrinkage when it was bonded in tooth cavities. And the results were greatly influenced by the dimensions of cavities , or interface adhesive and so on. It could also measure the tooth deformation induced by shrinkage of bonded composite resins. We found that resins polymerization shrinkage date may overestimate shrinkage-induced tooth deformation.

  15. NSCLC tumor shrinkage prediction using quantitative image features.

    PubMed

    Hunter, Luke A; Chen, Yi Pei; Zhang, Lifei; Matney, Jason E; Choi, Haesun; Kry, Stephen F; Martel, Mary K; Stingo, Francesco; Liao, Zhongxing; Gomez, Daniel; Yang, Jinzhong; Court, Laurence E

    2016-04-01

    The objective of this study was to develop a quantitative image feature model to predict non-small cell lung cancer (NSCLC) volume shrinkage from pre-treatment CT images. 64 stage II-IIIB NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. For each patient, the planning gross tumor volume (GTV) was deformed onto the week 6 treatment image, and tumor shrinkage was quantified as the deformed GTV volume divided by the planning GTV volume. Geometric, intensity histogram, absolute gradient image, co-occurrence matrix, and run-length matrix image features were extracted from each planning GTV. Prediction models were generated using principal component regression with simulated annealing subset selection. Performance was quantified using the mean squared error (MSE) between the predicted and observed tumor shrinkages. Permutation tests were used to validate the results. The optimal prediction model gave a strong correlation between the observed and predicted tumor shrinkages with r=0.81 and MSE=8.60×10(-3). Compared to predictions based on the mean population shrinkage this resulted in a 2.92 fold reduction in MSE. In conclusion, this study indicated that quantitative image features extracted from existing pre-treatment CT images can successfully predict tumor shrinkage and provide additional information for clinical decisions regarding patient risk stratification, treatment, and prognosis. PMID:26878137

  16. Autogenic Training and Hand Temperature Biofeedback in the Treatment of Migraine: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Jessup, B.; And Others

    The possibility of alleviating migraine headaches by autogenic relaxation training, with or without hand temperature biofeedback, was assessed. The study examined five independent groups in a bi-directional control group design. Volunteer migraine sufferers served as subjects, each participating for 12 weeks. The first four weeks of the study were…

  17. Clinical application of autogenous mandibular bone grafts. Analysis of 166 cases.

    PubMed

    Hong, M; Chen, Z H; Sun, H; Bu, R F; Chen, M J; Xie, G C; Wang, Y M; Wang, X S

    1989-10-01

    Of the 166 patients receiving autogenous mandibular bone grafts during 1972-1987, 55 were used for repair of mandibular bone defect, 67 for correction of maxillofacial malformation and 44 for reconstruction of temporo-mandibular joint. Follow-up showed that 155 patients had satisfactory results after operation.

  18. Autogenic Feedback Training (Body Fortran) with Biofeedback and the Computer for Self-Improvement and Change.

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Sumintardja, Elmira Nasrudin

    1983-01-01

    Describes autogenic feedback training, which provides the basis whereby an individual is able to improve on well being through use of a technique described as "body fortran," implying that you program self as one programs a computer. Necessary requisites are described including relaxation training and the management of stress. (JAC)

  19. Shape recovery of shape memory alloy fiber embedded resin matrix smart composite after crack repair.

    PubMed

    Hamada, Kenichi; Kawano, Fumiaki; Asaoka, Kenzo

    2003-06-01

    Ni-Ti shape memory alloy fiber embedded resin matrix composites were produced for evaluation of "smart denture", a newly developing denture with the function to close its own crack. Their bending strength and shape recovery after instant crack repair was estimated. The embedded fibers did not decrease the bending strength of the composite after repair. The crack closure of the composites was performed well simply by heating at 80 degrees C. Nevertheless, they showed apparent deflection after crack repair. The following two phenomena were supposed to be the main cause of it: the polymerization shrinkage of matrix resin with heating, and the coefficient of the thermal expansion mismatch between the fiber and the matrix. The embedded fibers could close the crack of the matrix with enough high accuracy for specimen repair, but they turned out to change the specimen shape after repair.

  20. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    In-situ decommissioning of Reactors P- and R- at the Savannah River Site will require filling the reactor vessels with a special concrete based on materials such as magnesium phosphate, calcium aluminate or silica fume. Then the reactor vessels will be overlain with an 8 ft. thick layer of Ordinary Portland Cement (OPC) steel reinforced concrete, called the 'Cap Concrete'. The integrity of this protective layer must be assured to last for a sufficiently long period of time to avoid ingress of water into the reactor vessel and possible movement of radioactive contamination into the environment. During drying of this Cap Concrete however, shrinkage strains are set up in the concrete as a result of diffusion and evaporation of water from the top surface. This shrinkage varies with depth in the poured slab due to a non-uniform moisture distribution. This differential shrinkage results in restraint of the upper layers with larger shrinkage by lower layers with lesser displacements. Tensile stresses can develop at the surface from the strain gradients in the bulk slab, which can lead to surface cracking. Further, a mechanism called creep occurs during the curing period or early age produces strains under the action of restraining forces. To investigate the potential for surface cracking, an experimental and analytical program was started under TTQAP SRNL-RP-2009-01184. Slab sections made of Cap Concrete mixture were instrumented with embedded strain gages and relative humidity sensors and tested under controlled environmental conditions of 23 C and relative humidities (RH) of 40% and 80% over a period of 50 days. Calculation methods were also developed for predictions of stress development in the full-scale concrete placement over the reactor vessels. These methods were evaluated by simulating conditions for the test specimens and the calculation results compared to the experimental data. A closely similar test with strain gages was performed by Kim and Lee for a

  1. Fast shrinkage of tropical glaciers in Colombia

    NASA Astrophysics Data System (ADS)

    Ceballos, Jorge Luis; Euscátegui, Christian; Ramírez, Jair; Cañon, Marcela; Huggel, Christian; Haeberli, Wilfried; Machguth, Horst

    As a consequence of ongoing atmospheric temperature rise, tropical glaciers belong to the unique and threatened ecosystems on Earth, as defined by the Intergovernmental Panel on Climate Change (Houghton and others, 2001). Worldwide glacier monitoring, especially as part of the Global Climate Observing System (GCOS), includes the systematic collection of data on such perennial surface ice masses. Several peaks in the sierras of Colombia have lost their glacier cover during recent decades. Today, high-altitude glaciers still exist in Sierra Nevada de Santa Marta, in Sierra Nevada del Cocuy and on the volcanoes of Nevados del Ruiz, de Santa Isabel, del Tolima and del Huila. Comparison of reconstructions of maximum glacier area extent during the Little Ice Age with more recent information from aerial photographs and satellite images clearly documents a fast-shrinking tendency and potential disappearance of the remaining glaciers within the next few decades. In the past 50 years, Colombian glaciers have lost 50% or more of their area. Glacier shrinkage has continued to be strong in the last 15 years, with a loss of 10-50% of the glacier area. The relationship between fast glacier retreat and local, regional and global climate change is now being investigated. Preliminary analyses indicate that the temperature rise of roughly 1° C in the last 30 years recorded at high-altitude meteorological stations exerts a primary control on glacier retreat. The investigations on the Colombian glaciers thus corroborate earlier findings concerning the high sensitivity of glaciers in the wet inner tropics to temperature rise. To improve understanding of fast glacier retreat in Colombia, a modern monitoring network has been established according to the multilevel strategy of the Global Terrestrial Network for Glaciers (GTN-G) within GCOS. The observations are also contributions to continued assessments of hazards from the glacier-covered volcanoes and to integrated global change

  2. Crack mitigation in concrete bridge decks through experimental analysis and computer modeling

    NASA Astrophysics Data System (ADS)

    Richardson, Douglas M.

    Bridge deck cracking can cause deterioration of bridge decks, leading to a shorter life span and poor performance. Throughout the US, cracking has been identified as a problem, with transverse cracking along the deck at regular spacings being the most prominent type. This problem is usually caused by drying shrinkage within the concrete. The material properties, restraint, and distances without expansion joints all affect the crack pattern within the deck. This study will delve into the reasons that bridge decks crack, the strains that are associated with drying shrinkage, and possible methods for abating its effects. The research is divided into two parts, the first being laboratory experimentation, which was conducted through the use of two 7 ft. x 10 ft. experimental concrete bridge bays. Each bay was instrumented with strain and temperature gages throughout the deck and girders, which collected data for six months. The first deck was poured with a control concrete mix used currently in Illinois. The second deck was poured with a type K expansive concrete, which could battle the effects of shrinkage. For both decks, the results suggest a compressive strain throughout the rebar and along the top surface of the concrete, except for the locations where cracks are found (at these locations the strain slopes upward into tension). The strain in the type K deck, though, was notably less than that in the control deck and the onset of cracking was delayed by three weeks, giving the indication of an improvement over the current mix design. The second portion of the research was focused on using a finite element model to replicate the bridge bay and study the results. Equivalent temperature loading was used to apply the shrinkage loads recorded during the experimental portion of the research. The model was then expanded to encompass a full-scale bridge and in order to provide some insight into shrinkage strain in the real world. The end goal is to help alleviate cracking

  3. The Biological Response following Autogenous Bone Grafting for Large-Volume Defects of the Knee

    PubMed Central

    DeLano, Mark C.; Spector, Myron; Jeng, Lily; Pittsley, Andrew; Gottschalk, Alexander

    2012-01-01

    Objective: This report focuses on the biological events occurring at various intervals following autogenous bone grafting of large-volume defects of the knee joint’s femoral condyle secondary to osteochondritis dissecans (OCD) or osteonecrosis (ON). It was hypothesized that the autogenous bone graft would integrate and the portion exposed to the articular surface would form fibrocartilage, which would endure for years. Methods: Between September 29, 1987 and August 8, 1994, there were 51 patients treated with autogenous bone grafting for large-volume osteochondral defects. Twenty-five of the 51 patients were available for long-term follow-up up to 21 years. Patient follow-up was accomplished by clinical opportunity and intentional research. Videotapes were available on all index surgeries for review and comparison. All had preoperative and postoperative plain film radiographs. Long-term follow-up included MRI up to 21 years. Second-look arthroscopy and biopsy were obtained on 14 patients between 8 weeks and 20 years. Results: Radiological assessment showed the autogenous bone grafts integrated with the host bone. The grafts retained the physical geometry of the original placement. MRI showed soft tissue covering the grafts in all cases at long-term follow-up. Interval biopsy showed the surface covered with fibrous tissue at 8 weeks and subsequently converted to fibrocartilage with hyaline cartilage at 20 years. Conclusion: Autogenous bone grafting provides a matrix for large osteochondral defects that integrates with the host bone and results in a surface repair of fibrocartilage and hyaline cartilage that can endure for up to 20 years. PMID:26069622

  4. Environmental Crack Driving Force

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-03-01

    The effect of environment on the crack driving force is considered, first by assuming quasistatic extension of a stationary crack and second, by use of stress corrosion cracking (SCC) crack growth rate models developed previously by this author and developed further here. A quasistatic thermodynamic energy balance approach, of the Griffith-Irwin type, is used to develop stationary crack threshold expressions, tilde{J}_c , which represent the conjoint mechanical and electrochemical conditions, below which stationary cracks are stable. Expressions for the electrochemical crack driving force (CDF) were derived using an analysis that is analogous to that used by Irwin to derive his "strain energy release rate," G, which Rice showed as being equivalent to his mechanical CDF, J. The derivations show that electrochemical CDFs both for active path dissolution (APD) and hydrogen embrittlement (HE) mechanisms of SCC are simply proportional to Tafel's electrochemical anodic and cathodic overpotentials, η a and η c, respectively. Phenomenological SCC models based on the kinetics of APD and HE crack growth are used to derive expressions for the kinetic threshold, J scc, below which crack growth cannot be sustained. These models show how independent mechanical and environmental CDFs may act together to drive SCC crack advance. Development of a user-friendly computational tool for calculating Tafel's overpotentials is advocated.

  5. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  6. Fluid catalytic cracking

    SciTech Connect

    Bartley, B.H.; Petty, R.H.

    1982-08-17

    Gaseous sulfur compounds are removed from a sulfur-containing gas mixture by reacting sulfur oxides in the gas mixture with alumina in association with bismuth. The process is particularly useful in fluid catalytic cracking of sulfur-containing petroleum charge stocks wherein sulfur is contained in coke deposited on the fluidized cracking catalyst. By the process of this invention, sulfur oxides may be removed from regenerator off-gases from a fluidized catalytic cracking unit by incorporating particulate alumina impregnated with bismuth in particulate cracking catalyst whereby sulfur oxides generated in the regeneration of the catalyst are reacted with bismuth-impregnated alumina. Sulfur oxides produced during regeneration of the catalyst by burning the coke with air are captured and converted to hydrogen sulfide in the cracking reactor. The hydrogen sulfide so produced is readily separated from petroleum products of the catalytic cracking reaction process.

  7. Analyzing Leakage Through Cracks

    NASA Technical Reports Server (NTRS)

    Romine, William D.

    1993-01-01

    Two related computer programs written for use in analyzing leakage through cracks. Leakage flow laminar or turbulent. One program used to determine dimensions of crack under given flow conditions and given measured rate of leakage. Other used to determine rate of leakage of gas through crack of given dimensions under given flow conditions. Programs, written in BASIC language, accelerate and facilitate iterative calculations and parametric analyses. Solve equations of Fanno flow. Enables rapid solution of leakage problem.

  8. Crack Modelling for Radiography

    NASA Astrophysics Data System (ADS)

    Chady, T.; Napierała, L.

    2010-02-01

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  9. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner.

  10. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. PMID:24718363

  11. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  12. Bayesian Nonparametric Shrinkage Applied to Cepheid Star Oscillations.

    PubMed

    Berger, James; Jefferys, William; Müller, Peter

    2012-01-01

    Bayesian nonparametric regression with dependent wavelets has dual shrinkage properties: there is shrinkage through a dependent prior put on functional differences, and shrinkage through the setting of most of the wavelet coefficients to zero through Bayesian variable selection methods. The methodology can deal with unequally spaced data and is efficient because of the existence of fast moves in model space for the MCMC computation. The methodology is illustrated on the problem of modeling the oscillations of Cepheid variable stars; these are a class of pulsating variable stars with the useful property that their periods of variability are strongly correlated with their absolute luminosity. Once this relationship has been calibrated, knowledge of the period gives knowledge of the luminosity. This makes these stars useful as "standard candles" for estimating distances in the universe. PMID:24368873

  13. A shrinkage probability hypothesis density filter for multitarget tracking

    NASA Astrophysics Data System (ADS)

    Tong, Huisi; Zhang, Hao; Meng, Huadong; Wang, Xiqin

    2011-12-01

    In radar systems, tracking targets in low signal-to-noise ratio (SNR) environments is a very important task. There are some algorithms designed for multitarget tracking. Their performances, however, are not satisfactory in low SNR environments. Track-before-detect (TBD) algorithms have been developed as a class of improved methods for tracking in low SNR environments. However, multitarget TBD is still an open issue. In this article, multitarget TBD measurements are modeled, and a highly efficient filter in the framework of finite set statistics (FISST) is designed. Then, the probability hypothesis density (PHD) filter is applied to multitarget TBD. Indeed, to solve the problem of the target and noise not being separated correctly when the SNR is low, a shrinkage-PHD filter is derived, and the optimal parameter for shrinkage operation is obtained by certain optimization procedures. Through simulation results, it is shown that our method can track targets with high accuracy by taking advantage of shrinkage operations.

  14. Impact of Reaction Shrinkage on Stress in Semiconductor Packages

    NASA Astrophysics Data System (ADS)

    Mengel, Manfred; Mahler, Joachim

    2009-11-01

    The reliability of a semiconductor package is strongly influenced by the adhesion and temperature behavior of the package encapsulant. This study considers the effect of mold shrinkage during the encapsulation molding process. Four commercially available molds were investigated using warpage and thermomechanical analysis. It could be demonstrated that, for all four types, when molded on a silicon substrate, the temperature at which no stress occurred was in a range of 28-60°C above the molding temperature. This is caused by the shrinkage due to a crosslinking reaction of the mold polymer during the molding process. For a more precise understanding and simulation of the stress behavior inside a molded package, the effect of reaction shrinkage has to be considered.

  15. Shrinkage Stresses Generated during Resin-Composite Applications: A Review

    PubMed Central

    Schneider, Luis Felipe J.; Cavalcante, Larissa Maria; Silikas, Nick

    2010-01-01

    Many developments have been made in the field of resin composites for dental applications. However, the manifestation of shrinkage due to the polymerization process continues to be a major problem. The material's shrinkage, associated with dynamic development of elastic modulus, creates stresses within the material and its interface with the tooth structure. As a consequence, marginal failure and subsequent secondary caries, marginal staining, restoration displacement, tooth fracture, and/or post-operative sensitivity are clinical drawbacks of resin-composite applications. The aim of the current paper is to present an overview about the shrinkage stresses created during resin-composite applications, consequences, and advances. The paper is based on results of many researches that are available in the literature. PMID:20948573

  16. Prediction of ALLOY SHRINKAGE FACTORS FOR THE INVESTMENT CASTING PROCESS

    SciTech Connect

    Sabau, Adrian S

    2006-01-01

    This study deals with the experimental measurements and numerical predictions of alloy shrinkage factors (SFs) related to the investment casting process. The dimensions of the A356 aluminum alloy casting were determined from the numerical simulation results of solidification, heat transfer, fluid dynamics, and deformation phenomena. The investment casting process was carried out using wax patterns of unfilled wax and shell molds that were made of fused silica with a zircon prime coat. The dimensions of the die tooling, wax pattern, and casting were measured, in order to determine the actual tooling allowances. Several numerical simulations were carried out, to assess the level of accuracy for the casting shrinkage. The solid fraction threshold, at which the transition from the fluid dynamics to the solid dynamics occurs, was found to be important in predicting shrinkage factors (SFs). It was found that accurate predictions were obtained for all measued dimensions when the shell mold was considered a deformable material.

  17. Bayesian Nonparametric Shrinkage Applied to Cepheid Star Oscillations.

    PubMed

    Berger, James; Jefferys, William; Müller, Peter

    2012-01-01

    Bayesian nonparametric regression with dependent wavelets has dual shrinkage properties: there is shrinkage through a dependent prior put on functional differences, and shrinkage through the setting of most of the wavelet coefficients to zero through Bayesian variable selection methods. The methodology can deal with unequally spaced data and is efficient because of the existence of fast moves in model space for the MCMC computation. The methodology is illustrated on the problem of modeling the oscillations of Cepheid variable stars; these are a class of pulsating variable stars with the useful property that their periods of variability are strongly correlated with their absolute luminosity. Once this relationship has been calibrated, knowledge of the period gives knowledge of the luminosity. This makes these stars useful as "standard candles" for estimating distances in the universe.

  18. Shrinkage Stresses Generated during Resin-Composite Applications: A Review.

    PubMed

    Schneider, Luis Felipe J; Cavalcante, Larissa Maria; Silikas, Nick

    2010-01-01

    Many developments have been made in the field of resin composites for dental applications. However, the manifestation of shrinkage due to the polymerization process continues to be a major problem. The material's shrinkage, associated with dynamic development of elastic modulus, creates stresses within the material and its interface with the tooth structure. As a consequence, marginal failure and subsequent secondary caries, marginal staining, restoration displacement, tooth fracture, and/or post-operative sensitivity are clinical drawbacks of resin-composite applications. The aim of the current paper is to present an overview about the shrinkage stresses created during resin-composite applications, consequences, and advances. The paper is based on results of many researches that are available in the literature.

  19. Model-based adhesive shrinkage compensation for increased bonding repeatability

    NASA Astrophysics Data System (ADS)

    Müller, Tobias; Schlette, Christian; Lakshmanan, Shunmuganathan; Haag, Sebastian; Zontar, Daniel; Sauer, Sebastian; Wenzel, Christian; Brecher, Christian; Roβmann, Jürgen

    2016-03-01

    The assembly process of optical components consists of two phases - the alignment and the bonding phase. Precision - or better process repeatability - is limited by the latter one. The limitation of the alignment precision is given by the measurement equipment and the manipulation technology applied. Today's micromanipulators in combination with beam imaging setups allow for an alignment in the range of far below 100nm. However, once precisely aligned optics need to be fixed in their position. State o f the art in optics bonding for laser systems is adhesive bonding with UV-curing adhesives. Adhesive bonding is a multi-factorial process and thus subject to statistical process deviations. As a matter of fact, UV-curing adhesives inherit shrinkage effects during their curing process, making offsets for shrinkage compensation mandatory. Enhancing the process control of the adhesive bonding process is the major goal of the activities described in this paper. To improve the precision of shrinkage compensation a dynamic shrinkage prediction is envisioned by Fraunhofer IPT. Intense research activities are being practiced to gather a deeper understanding of the parameters influencing adhesive shrinkage behavior. These effects are of different nature - obviously being the raw adhesive material itself as well as its condition, the bonding geometry, environmental parameters like surrounding temperature and of course process parameters such as curing properties. Understanding the major parameters and linking them in a model-based shrinkage-prediction environment is the basis for improved process control. Results are being deployed by Fraunhofer in prototyping, as well as volume production solutions for laser systems.

  20. Shrinkage stress development in dental composites—An analytical treatment

    PubMed Central

    Fok, Alex S.L.

    2013-01-01

    Objectives The aim of this paper is to develop a comprehensive mathematical model for shrinkage stress development in dental composites that can account for the combined effect of material properties, specimen geometry and external constraints. Methods A viscoelastic model that includes the composite’s elastic, creep and shrinkage strains, and their interaction with the sample’s dimensions and the external constraint is developed. The model contains two dimensionless parameters. The first one represents the compliance of the external constraint relative to that of the composite sample, and the second controls the rate of shrinkage stress decay through creep. The resulting differential equation is solved for two special cases: zero compliance and zero creep. Predictions for shrinkage stress measurements are then made using the analytical solutions for instruments with different compliances, samples with different thicknesses and composites with different filler fractions. Results The model correctly predicts how shrinkage stress increases with time, its dependence on the interaction between the entire system’s compliance and the material properties, and the effect of the filler fraction on its maximum value. Comparisons with reported shrinkage stress measurements have provided very good agreement between theory and experiments. Significance The results provided by the model can help to resolve most, if not all, of the seemingly conflicting experimental observations reported in the literature. They can also provide some useful guidelines for optimizing the mechanical performance of dental composite restorations. The compliance ratio, a new parameter derived from the model, represents a fuller description of the constraints of the system. PMID:24029101

  1. Polymerization shrinkage stress of composites photoactivated by different light sources.

    PubMed

    Pires-de-Souza, Fernanda de Carvalho Panzeri; Drubi Filho, Brahim; Casemiro, Luciana Assirati; Garcia, Lucas da Fonseca Roberti; Consani, Simonides

    2009-01-01

    The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (alpha=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress. PMID:20069256

  2. Combined use of autogenic therapy and biofeedback in training effective control of heart rate by humans

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.

    1977-01-01

    Experiments were performed on 24 men and women (aged 20-27 yr) in three equal groups who were taught to control their own heart rates by autogenic training and biofeedback under dark and sound-isolated conditions. Group I was parasympathetic dominant, group II was sympathetic dominant, and group III consisted of parasympathetic-dominant subjects and controls who received only biofeedback of their own heart rates. The results corroborate three hypotheses: (1) subjects with para-sympathetic-dominant autonomic profiles perform in a way that is both qualitatively and quantitatively different from subjects with sympathetic-dominant autonomic profiles; (2) tests of interindividual variability yield data relevant to individual performance in visceral learning tasks; and (3) the combined use of autogenic training, biofeedback, and verbal feedback is suitable for conditioning large stable autonomic responses in humans.

  3. Post-mortem shrinkage of homograft aortic valves

    PubMed Central

    Dexter, F.; Donnelly, R. J.; Deverall, P. B.; Watson, D. A.

    1972-01-01

    Experience has shown that some frame-mounted homograft aortic valves, although competent immediately after mounting, are incompetent when subsequently presented for surgical use. Retraction and shrinkage of the cusps appears to be the cause of this change. Clinical and experimental studies have shown that shrinkage of homograft aortic valves occurs over an approximately five-day period after death of the donor and it is recommended that this period should elapse before mounting homograft aortic valves on to support frames. Images PMID:5039445

  4. Shrinkage Prediction for the Investment Casting of Stainless Steels

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  5. ACCELERATED MRI USING ITERATIVE NON-LOCAL SHRINKAGE

    PubMed Central

    Mohsin, Yasir Q.; Ongie, Gregory; Jacob, Mathews

    2015-01-01

    We introduce a fast iterative non-local shrinkage algorithm to recover MRI data from undersampled Fourier measurements. This approach is enabled by the reformulation of current non-local schemes as an alternating algorithm to minimize a global criterion. The proposed algorithm alternates between a non-local shrinkage step and a quadratic subproblem. The resulting algorithm is observed to be considerably faster than current alternating non-local algorithms. We use efficient continuation strategies to minimize local minima issues. The comparisons of the proposed scheme with state-of-the-art regularization schemes show a considerable reduction in alias artifacts and preservation of edges. PMID:25570265

  6. BWR internal cracking issues

    SciTech Connect

    Carpenter, C.E. Jr.; Lund, A.L.

    1999-07-01

    The regulatory issues associated with cracking of boiling water reactor (BWR) internals is being addressed by the Nuclear Regulatory Commission (NRC) staff and is the subject of a voluntary industry initiative. The lessons learned from this effort will be applied to pressurized water reactor (PWR) internals cracking issues.

  7. Operational Applications of Autogenic Feedback Training Exercise as a Treatment for Airsickness in the Military

    NASA Technical Reports Server (NTRS)

    Gebreyesus, Fiyore; Cowings, Patricia S.; Toscano, William B.

    2012-01-01

    Airsickness is experienced by about 50% of military aviators some time in their career. Aviators who suffer from recurrent episodes of airsickness are typically referred to the Naval Aerospace Medical Institute (NAMI) at Pensacola where they undergo extensive evaluation and 8 weeks of training in the Self-Paced Airsickness Desensitization (SPAD) program. Researchers at NASA Ames have developed an alternative mitigation training program, Autogenic Feedback Training Exercise (AFTE) that has demonstrated an 80% success rate for improving motion sickness tolerance.

  8. Sustainable exploitation and management of autogenic ecosystem engineers: application to oysters in Chesapeake Bay.

    PubMed

    Wilberg, Michael J; Wiedenmann, John R; Robinson, Jason M

    2013-06-01

    Autogenic ecosystem engineers are critically important parts of many marine and estuarine systems because of their substantial effect on ecosystem services. Oysters are of particular importance because of their capacity to modify coastal and estuarine habitats and the highly degraded status of their habitats worldwide. However, models to predict dynamics of ecosystem engineers have not previously included the effects of exploitation. We developed a linked population and habitat model for autogenic ecosystem engineers undergoing exploitation. We parameterized the model to represent eastern oyster (Crassostrea virginica) in upper Chesapeake Bay by selecting sets of parameter values that matched observed rates of change in abundance and habitat. We used the model to evaluate the effects of a range of management and restoration options including sustainability of historical fishing pressure, effectiveness of a newly enacted sanctuary program, and relative performance of two restoration approaches. In general, autogenic ecosystem engineers are expected to be substantially less resilient to fishing than an equivalent species that does not rely on itself for habitat. Historical fishing mortality rates in upper Chesapeake Bay for oysters were above the levels that would lead to extirpation. Reductions in fishing or closure of the fishery were projected to lead to long-term increases in abundance and habitat. For fisheries to become sustainable outside of sanctuaries, a substantial larval subsidy would be required from oysters within sanctuaries. Restoration efforts using high-relief reefs were predicted to allow recovery within a shorter period of time than low-relief reefs. Models such as ours, that allow for feedbacks between population and habitat dynamics, can be effective tools for guiding management and restoration of autogenic ecosystem engineers.

  9. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  10. Autogenous immunity to endogenous RNA tumor virus: humoral immune response to virus envelope antigens.

    PubMed

    Hanna, M G; Ihle, J N; Lee, J C

    1976-02-01

    Autogenous immune sera from several strains of mice have been examined for type-, group-, or interspecies-specific reactivities against leukemia virus envelope antigens and virus-induced cell surface proteins. The natural antibody of these test sera react with gp69/71, gp43, and p15 structural components on murine leukemia viruses including AKR, Friend, Rauscher, Moloney, and xenotropic BALB:virus-2. Furthermore, comparable radioimmune titration curves are obtained when these viruses are used in radioimmune precipitation assays. Competition experiments, however, suggest that natural immune sera are predominantly type specific and only weakly cross-react with the Rauscher or Friend virus. Natural immune sera react with the virion envelope but not with the virus-induced cell surface antigen. With respect to the biological activity of autogenous immune sera, there appears to be an inconsistency between the spectrum of virus-precipitating antibody and virus-neutralizing antibody. Although normal mouse serum readily neutralizes xenotropic viruses (BALB:virus-2), only weak neutralization of the ecotropic viruses can be achieved in vitro. Although there is a lack of direct evidence to indicate that autogenous immunity to murine leukemia virus is involved in the control of virus-mediated neoplasia, several empirical correlations point in this direction.

  11. Alternative method to treat oroantral communication and fistula with autogenous bone graft and platelet rich firbin

    PubMed Central

    Niedzielska, Iwona; Borgiel-Marek, Halina; Różanowski, Bartosz

    2016-01-01

    Background Removing a tooth from the jaw results in the occurrence of oroantral communication in beneficial anatomic conditions or in the case of a iatrogenic effect. Popularized treatments of the oroantral communication have numerous faults. Large bone defect eliminates the chance to introduce an implant. Purpose of this work was assessment of the usefulness of autogenous bone graft and PRF in normal bone regeneration in the site of oroantral communication. Material and Methods Bone regeneration in the site of oroantral communication was assessed in 20 patients. Bone defects were supplemented autogenous bone graft from mental protuberance in 14 cases and from oblique line in 6 cases. The graft was covered with a PRF membrane. Results In the study group in all cases closure of the oroantral communication was observed. The average width of the alveolar was 13 mm and the average height was 12.5 mm. In 3 patients an average increase of alveolar height of 1.5 mm was observed. Conclusions This method may be the best option to prepare alveolar for new implant and prosthetic solutions. Key words:Oroantral communication, oroantral fistula, autogenous bone graft, bone regeneration, platelet rich fibrin. PMID:27475687

  12. Technical innovations in ear reconstruction using a skin expander with autogenous cartilage grafts.

    PubMed

    Dashan, Yu; Haiyue, Jiang; Qinghua, Yang; Bo, Pan; Lin, Lin; Tailing, Wang; Yanmei, Wang; Xiao, Qin; Hongxing, Zhuang

    2008-01-01

    Pioneers such as Tanzer and Brent have established the foundations of microtia reconstruction using an autogenous costal cartilage framework. The framework and its skin coverage are the two limiting factors in ear reconstruction. At the present time autogenous rib cartilage and mastoid skin are still first choice materials for most surgeons. They have the combined advantages of well-matched texture and colour. To reconstruct a symmetrical, accurate, prominent auricle and minimise as much as possible the chest wall deformity caused by rib cartilage harvesting, we set out to improve our techniques for cartilaginous framework definition and to use the remnant ear to enhance the projection of the reconstructed ear. Since 2000, 342 cases (366 ears) were treated using our current techniques. Data pertaining to complications were recorded. Final results were assessed a minimum of 1 year postoperatively. The follow-up period ranged from 1 to 6 years. Most of the patients with microtia were satisfied with the results of their ear reconstruction. In conclusion, our techniques help to reduce the quantity of rib cartilage needed to fabricate ear framework and minimise chest wall deformity. The frameworks are accurate, prominent and stable. Reconstructed ears are similar in colour and appearance to the normal side. Our innovations are practical and reliable for microtia reconstruction using skin expanders in combination with a sculpted autogenous rib cartilage framework.

  13. Varying discharge controls on timescales of autogenic storage and release processes in fluvio-deltaic environments: Tank experiments

    NASA Astrophysics Data System (ADS)

    Powell, Erica J.; Kim, Wonsuck; Muto, Tetsuji

    2012-06-01

    Changes in external forcing have traditionally been the main areas of interest in understanding sedimentary records, while in most stratigraphic interpretation, autogenic behavior has been thought of as a "noise" generator. This study aims to investigate autogenic processes in a fluvio-deltaic system under a range of discharge conditions and to show that autogenic processes generate distinct signatures rather than random noise. A matrix of nine different experiments is presented here to systematically evaluate the effects of sediment and water discharge variations on the timescale of fluvial autogenic processes. Temporary sediment storage regularly occurs by backfilling of sediment in the fluvio-deltaic channels, followed by a period of strong channelization that releases the stored sediment. These storage and release processes cycle along with changes in the fluvial slope and planform pattern of the flow. Here we propose that the autogenic behavior of deltaic progradation has a distinct timescale that is controlled by sediment and water discharges. An increase in sediment discharge primarily reduces the autogenic timescale as higher sediment supply fills the channels faster. In contrast, the high sediment discharge causes a morphologic feedback by increasing the magnitude of fluvial slope change between the storage and release events and increasing the size of the temporary sediment storage (termed "the fluvial envelope"). This works against the sediment discharge control as the autogenic timescale is increased. Increasing the water discharge increases the autogenic timescale by improving the fluvial organization toward a strongly channelized system. Changes in autogenic timescale due to variations in the sediment and water discharges are nonlinear for different sediment to water discharge ratios. As the ratio decreases, the fluvial system is better organized and the timescale is more linearly related to the change in sediment discharge. As the ratio increases

  14. Sealing of cracks in cement using microencapsulated sodium silicate

    NASA Astrophysics Data System (ADS)

    Giannaros, P.; Kanellopoulos, A.; Al-Tabbaa, A.

    2016-08-01

    Cement-based materials possess an inherent autogenous self-healing capability allowing them to seal, and potentially heal, microcracks. This can be improved through the addition of microencapsulated healing agents for autonomic self-healing. The fundamental principle of this self-healing mechanism is that when cracks propagate in the cementitious matrix, they rupture the dispersed capsules and their content (cargo material) is released into the crack volume. Various healing agents have been explored in the literature for their efficacy to recover mechanical and durability properties in cementitious materials. In these materials, the healing agents are most commonly encapsulated in macrocontainers (e.g. glass tubes or capsules) and placed into the material. In this work, microencapsulated sodium silicate in both liquid and solid form was added to cement specimens. Sodium silicate reacts with the calcium hydroxide in hydrated cement paste to form calcium-silicate-hydrate gel that fills cracks. The effect of microcapsule addition on rheological and mechanical properties of cement is reported. It is observed that the microcapsule addition inhibits compressive strength development in cement and this is observed through a plateau in strength between 28 and 56 days. The improvement in crack-sealing for microcapsule-containing specimens is quantified through sorptivity measurements over a 28 day healing period. After just seven days, the addition of 4% microcapsules resulted in a reduction in sorptivity of up to 45% when compared to specimens without any microcapsule addition. A qualitative description of the reaction between the cargo material and the cementitious matrix is also provided using x-ray diffraction analysis.

  15. Composite cure and shrinkage associated with high intensity curing light.

    PubMed

    Yap, Adrian U J; Wong, N Y; Siow, K S

    2003-01-01

    This study investigated the effectiveness of cure and post-gel shrinkage of three visible light-cured composite resins (In Ten-S [IT], Ivoclar Vivadent; Z100 [ZO], 3M-ESPE; Tetric Ceram [TC], Ivoclar Vivadent) when polymerized with a very high intensity (1296 +/- 2 mW/cm2) halogen light (Astralis 10, Ivoclar Vivadent) for 10 seconds. Irradiation with a conventional (494 +/- 3 mW/cm2) halogen light (Spectrum, Dentsply) for 40 seconds was used for comparison. The effectiveness of cure was assessed by computing the hardness gradient between the top and bottom surfaces of 2-mm composite specimens after curing. A strain-monitoring device was used to measure the linear polymerization shrinkage associated with the various composites and curing lights. A sample size of five was used for both experiments. Data was analyzed using ANOVA/Scheffe's post-hoc and Independent Samples t-tests at significance level 0.05. Results showed that the effect of the curing method on the effectiveness of cure and shrinkage was material-dependent. Polymerization of IT and TC with Spectrum for 40 seconds resulted in significantly more effective cure than polymerization with Astralis for 10 seconds. Polymerization of ZO with Spectrum for 40 seconds resulted in significantly more shrinkage than polymerization with Astralis for 10 seconds. In view of the substantial time saving, using high intensity lights may be a viable method to polymerize composites.

  16. Freeze-drying shrinkage of glutaraldehyde fixed liver.

    PubMed

    Boyde, A; Franc, F

    1981-04-01

    Dimensional changes were recorded during the freeze drying (FD) of 1 mm cubes of glutaraldehyde (GA) fixed adult mouse liver. The areas of the front faces of these blocks was measured using a Quantimet 720 image analysing computer system. Interpolating the first straight line portion of the graphs of size versus time backwards to the origin allowed the determination of the original size even if the specimen was covered with some surface-water ice at the beginning of the experiment. GA fixed mouse liver shrinks 7.3% linearly during freeze drying. This gross shrinkage is not increased if the cold stage temperature is raised to approximately 263 K from approximately 223 K, but the rate of drying as monitored by the rate of shrinkage is greatly increased. If morphological specimens are to be prepared for scanning electron microscopy (SEM), freeze drying can be completed rapidly after an initial period at approximately 223 K, since ice recrystallization leading to increased ice crystal artefact will occur in the deep layers which will not be visible in the SEM. Shrinkage of single cells followed during freeze drying in the SEM showed similar gross dimensional changes of about 7.5% linear shrinkage to occur at and below 198 K. PMID:6783760

  17. Validity Shrinkage in Ridge Regression: A Simulation Study.

    ERIC Educational Resources Information Center

    Faden, Vivian; Bobko, Philip

    1982-01-01

    Ridge regression offers advantages over ordinary least squares estimation when a validity shrinkage criterion is considered. Comparisons of cross-validated multiple correlations indicate that ridge estimation is superior when the predictors are multicollinear, the number of predictors is large relative to sample size, and the population multiple…

  18. Scale Shrinkage and the Estimation of Latent Distribution Parameters.

    ERIC Educational Resources Information Center

    Camilli, Gregory

    1988-01-01

    The phenomenon of scale shrinkage is examined. Focus is on the pattern of decreasing variances in item response theory scale scores from fall to spring within a grade. It is demonstrated that questions concerning population distributions of true ability can be addressed with empirical Bayes techniques. (TJH)

  19. Shrinkage Estimation of Linear Combinations of True Scores.

    ERIC Educational Resources Information Center

    Longford, Nicholas T.

    1997-01-01

    It is demonstrated that, in the presence of population information, a linear combination of true scores can be estimated more efficiently than by the same linear combination of the observed scores. Three criteria for optimality are discussed, but they yield the same solution, described as a multivariate shrinkage estimator. (Author/SLD)

  20. Are trees able to grow in periods of stem shrinkage?

    PubMed

    Zweifel, Roman; Haeni, Matthias; Buchmann, Nina; Eugster, Werner

    2016-08-01

    Separating continuously measured stem radius (SR) fluctuations into growth-induced irreversible stem expansion (GRO) and tree water deficit-induced reversible stem shrinkage (TWD) requires a conceptualization of potential growth processes that may occur during periods of shrinking and expanding SR below a precedent maximum. Here, we investigated two physiological concepts: the linear growth (LG) concept, assuming linear growth, versus the zero growth (ZG) concept, assuming no growth during periods of stem shrinkage. We evaluated the physiological mechanisms underlying these two concepts and assessed their respective plausibilities using SR data obtained from 15 deciduous and evergreen trees. The application of the LG concept produced steady growth rates, whereas growth rates varied strongly under the ZG concept, more in accordance with mechanistic expectations. Further, growth increased for a maximum of 120 min after periods of stem shrinkage, indicating limited growth activity during those periods. However, this extra growth was found to be a small fraction of total growth only. Furthermore, TWD under the ZG concept was better explained by a hydraulic plant model than TWD under the LG concept. We conclude that periods of stem shrinkage allow for very little growth in the four tree species investigated. However, further studies should focus on obtaining independent growth data to ultimately validate these findings.

  1. Are trees able to grow in periods of stem shrinkage?

    PubMed

    Zweifel, Roman; Haeni, Matthias; Buchmann, Nina; Eugster, Werner

    2016-08-01

    Separating continuously measured stem radius (SR) fluctuations into growth-induced irreversible stem expansion (GRO) and tree water deficit-induced reversible stem shrinkage (TWD) requires a conceptualization of potential growth processes that may occur during periods of shrinking and expanding SR below a precedent maximum. Here, we investigated two physiological concepts: the linear growth (LG) concept, assuming linear growth, versus the zero growth (ZG) concept, assuming no growth during periods of stem shrinkage. We evaluated the physiological mechanisms underlying these two concepts and assessed their respective plausibilities using SR data obtained from 15 deciduous and evergreen trees. The application of the LG concept produced steady growth rates, whereas growth rates varied strongly under the ZG concept, more in accordance with mechanistic expectations. Further, growth increased for a maximum of 120 min after periods of stem shrinkage, indicating limited growth activity during those periods. However, this extra growth was found to be a small fraction of total growth only. Furthermore, TWD under the ZG concept was better explained by a hydraulic plant model than TWD under the LG concept. We conclude that periods of stem shrinkage allow for very little growth in the four tree species investigated. However, further studies should focus on obtaining independent growth data to ultimately validate these findings. PMID:27189708

  2. Measurement Error, Multidimensionality, and Scale Shrinkage: A Reply to Yen and Burket.

    ERIC Educational Resources Information Center

    Camilli, Gregory

    1999-01-01

    Yen and Burket suggested that shrinkage in vertical equating cannot be understood apart from multidimensionality. Reviews research on reliability, multidimensionality, and scale shrinkage, and explores issues of practical importance to educators. (SLD)

  3. Using hyperbranched oligomer functionalized glass fillers to reduce shrinkage stress

    PubMed Central

    Ye, Sheng; Azarnoush, Setareh; Smith, Ian R.; Cramer, Neil B.; Stansbury, Jeffrey W.; Bowman, Christopher N

    2012-01-01

    Objective Fillers are widely utilized to enhance the mechanical properties of polymer resins. However, polymerization stress has the potential to increase due to the higher elastic modulus achieved upon filler addition. Here, we demonstrate a hyperbranched oligomer functionalized glass filler UV curable resin composite which is able to reduce the shrinkage stress without sacrificing mechanical properties. Methods A 16-functional alkene-terminated hyperbranched oligomer is synthesized by thiol-acrylate and thiol-yne reactions and the product structure is analyzed by 1H-NMR, mass spectroscopy, and gel permeation chromatography. Surface functionalization of the glass filler is measured by thermogravimetric analysis. Reaction kinetics, mechanical properties and shrinkage stress are studied via Fourier transform infrared spectroscopy, dynamic mechanical analysis and a tensometer, respectively. Results Silica nanoparticles are functionalized with a flexible 16-functional alkene-terminated hyperbranched oligomer which is synthesized by multistage thiol-ene/yne reactions. 93% of the particle surface was covered by this oligomer and an interfacial layer ranging from 0.7 – 4.5 nm thickness is generated. A composite system with these functionalized silica nanoparticles incorporated into the thiol-yne-methacrylate resin demonstrates 30% reduction of shrinkage stress (from 0.9 MPa to 0.6 MPa) without sacrificing the modulus (3100 ± 300 MPa) or glass transition temperature (62 ± 3 °C). Moreover, the shrinkage stress of the composite system builds up at much later stages of the polymerization as compared to the control system. Significance Due to the capability of reducing shrinkage stress without sacrificing mechanical properties, this composite system will be a great candidate for dental composite applications. PMID:22717296

  4. Cure shrinkage effects in epoxy and polycyanate matrix composites

    SciTech Connect

    Spellman, G.P.

    1995-12-22

    A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLA RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.

  5. A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.

    ERIC Educational Resources Information Center

    Newman, Isadore; And Others

    A Monte Carlo study was conducted to estimate the efficiency of and the relationship between five equations and the use of cross validation as methods for estimating shrinkage in multiple correlations. Two of the methods were intended to estimate shrinkage to population values and the other methods were intended to estimate shrinkage from sample…

  6. A Monte Carlo Evaluation of Estimated Parameters of Five Shrinkage Estimate Formuli.

    ERIC Educational Resources Information Center

    Newman, Isadore; And Others

    1979-01-01

    A Monte Carlo simulation was employed to determine the accuracy with which the shrinkage in R squared can be estimated by five different shrinkage formulas. The study dealt with the use of shrinkage formulas for various sample sizes, different R squared values, and different degrees of multicollinearity. (Author/JKS)

  7. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  8. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  9. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  10. Inspecting cracks in foam insulation

    NASA Technical Reports Server (NTRS)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  11. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  12. Health, Height, Height Shrinkage, and SES at Older Ages: Evidence from China†

    PubMed Central

    Huang, Wei; Lei, Xiaoyan; Ridder, Geert; Strauss, John

    2015-01-01

    In this paper, we build on the literature that examines associations between height and health outcomes of the elderly. We investigate the associations of height shrinkage at older ages with socioeconomic status, finding that height shrinkage for both men and women is negatively associated with better schooling, current urban residence, and household per capita expenditures. We then investigate the relationships between pre-shrinkage height, height shrinkage, and a rich set of health outcomes of older respondents, finding that height shrinkage is positively associated with poor health outcomes across a variety of outcomes, being especially strong for cognition outcomes. PMID:26594311

  13. Early-age volume changes of extrudable reactive powder concrete

    NASA Astrophysics Data System (ADS)

    Cherkaoui, K.; Courtial, M.; Dunstetter, F.; Khelidj, A.; Mounanga, P.; de Noirfontaine, M. N.

    2010-06-01

    This article presents a study on the early-age autogenous deformations of Extrudable Reactive Powder Concretes (ERPCs), especially designed for the making of concrete pipes by extrusion. Different ERPC mixtures, with variable amounts of polycarboxylate superplasticizer (SP), have been investigated. Results on 28-day mechanical properties, early-age hydration rate, autogenous shrinkage and premature cracking risk are analyzed and discussed in relation with the ERPC mix parameters.

  14. Internal curing with lightweight aggregate produced from biomass-derived waste

    SciTech Connect

    Lura, Pietro; Wyrzykowski, Mateusz; Tang, Clarence; Lehmann, Eberhard

    2014-05-01

    Shrinkage of concrete may lead to cracking and ultimately to a reduction of the service life of concrete structures. Among known methods for shrinkage mitigation, internal curing with porous aggregates was successfully utilized in the last couple of decades for decreasing autogenous and drying shrinkage. In this paper, the internal curing performance of pre-saturated lightweight aggregates produced from biomass-derived waste (bio-LWA) was studied. In the first part of this paper, the microstructure of the bio-LWA is investigated, with special focus on their pore structure and on their water absorption and desorption behavior. The bio-LWA has large porosity and coarse pore structure, which allows them to release the entrained water at early age and counteract self-desiccation and autogenous shrinkage. In the second part, the efficiency of internal curing in mortars incorporating the bio-LWA is examined by neutron tomography, internal relative humidity and autogenous deformation measurements.

  15. A Crack Growth Evaluation Method for Interacting Multiple Cracks

    NASA Astrophysics Data System (ADS)

    Kamaya, Masayuki

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e. g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks.

  16. Shrinkage of renal tissue after impregnation via the cold Biodur plastination technique.

    PubMed

    Pereira-Sampaio, Marco A; Marques-Sampaio, Beatriz P S; Sampaio, Francisco J B; Henry, Robert W

    2011-08-01

    Thorough dehydration is a key for good plastination and invariably it leads to shrinkage. Shrinkage during plastination has been studied to lesser extent. Shrinkage was studied in 10 pig kidneys including regional shrinkage (cortex, medulla, sinus) and at which stages of the process (dehydration, impregnation, curing) shrinkage occurred. Kidneys were fixation by perfusion of 10% neutral buffered formalin solution via the renal artery. The vessels and ureter were filled with colored silicone (Dow Corning, Silastic E RTV Silicone Rubber) and the kidneys were cut into one centimeter transverse slices. Two slices of each kidney were plastinated via the classic von Hagens' method. Slices were photographed at the same focal length after preparation and at the end of each stage of plastination. Slice surface area was determined by a point-counting planimetry method. Post dehydration shrinkage of the kidney was 10.21% while post impregnation 10.11%. After completion of plastination, total area of kidney slice shrinkage was 19.72%. Cortical area shrunk 12.81% after dehydration and 13.16% after impregnation. After plastination, cortical area had shrunk 24.28%. No significant shrinkage occurred in the medulla and sinus. Results demonstrate that kidney shrinkage during impregnation is as intense as during dehydration. Significant shrinkage occurred in the renal cortex but not in the medulla and sinus. This demonstrates that different tissue types, even in the same specimen, have different rates of shrinkage during dehydration and impregnation. Therefore, plastinated specimens should be used carefully in research where obtaining measures is important.

  17. Autogenous temporalis fascia patch graft for porous polyethylene (Medpor) sphere orbital implant exposure

    PubMed Central

    Sagoo, M S; Olver, J M

    2004-01-01

    Background: Temporalis fascia has been recommended for hydroxyapatite sphere exposure. The aim of this study was to identify potential risk factors for exposure of porous polyethylene (Medpor) sphere implants and evaluate the use of autogenous temporalis fascia as a patch graft for exposure. Methods: A retrospective review of consecutive cases of porous polyethylene sphere orbital implant exposure. Results: Five cases presented between May 2000 and October 2001 (three males, two females; mean age 44.5 years). Three had enucleation (two with primary implants) and two had evisceration (one with primary implant). Exposure occurred in one primary, two secondary, and two replacement implants. Orbital implant diameter was 20 mm in four cases and 16 mm in one case (contracted socket). The mean time from implantation to exposure was 23 months (range 0.7–42.6). Three patients had secondary motility peg placement before exposure. The average time from last procedure (sphere implant or peg insertion) to exposure was 3 months (range 0.7–12.6). Four patients required surgical intervention, of which three needed more than one procedure. Autogenous temporalis fascia grafting successfully closed the defect without re-exposure in three of these four patients. The grafts were left bare in three patients, with a mean time to conjunctivalise of 2.4 months (range 1.6–3.2). Conclusions: Exposed porous polyethylene sphere implants were treated successfully with autogenous temporalis fascia graft in three of four patients. This technique is useful, the graft easy to harvest, and did not lead to prolonged socket inflammation, infection, or extrusion. PMID:15205243

  18. Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model.

    PubMed

    Sherman, Blake P; Lindley, Emily M; Turner, A Simon; Seim, Howard B; Benedict, James; Burger, Evalina L; Patel, Vikas V

    2010-12-01

    A prospective, randomized study was performed in an ovine model to compare the efficacy of an anorganic bovine-derived hydroxyapatite matrix combined with a synthetic 15 amino acid residue (ABM/P-15) in facilitating lumbar interbody fusion when compared with autogenous bone harvested from the iliac crest. P-15 is a biomimetic to the cell-binding site of Type-I collagen for bone-forming cells. When combined with ABM, it creates the necessary scaffold to initiate cell invasion, binding, and subsequent osteogenesis. In this study, six adult ewes underwent anterior-lateral interbody fusion at L3/L4 and L4/L5 using PEEK interbody rings filled with autogenous bone at one level and ABM/P-15 at the other level and no additional instrumentation. Clinical CT scans were obtained at 3 and 6 months; micro-CT scans and histomorphometry analyses were performed after euthanization at 6 months. Clinical CT scan analysis showed that all autograft and ABM/P-15 treated levels had radiographically fused outside of the rings at the 3-month study time point. Although the clinical CT scans of the autograft treatment group showed significantly better fusion within the PEEK rings than ABM/P-15 at 3 months, micro-CT scans, clinical CT scans, and histomorphometric analyses showed there were no statistical differences between the two treatment groups at 6 months. Thus, ABM/P-15 was as successful as autogenous bone graft in producing lumbar spinal fusion in an ovine model, and it should be further evaluated in clinical studies.

  19. Treatment of Rockwood type III acromioclavicular joint dislocation using autogenous semitendinosus tendon graft and endobutton technique

    PubMed Central

    Ye, Gang; Peng, Chao-An; Sun, Hua-Bin; Xiao, Jing; Zhu, Kang

    2016-01-01

    Background The aim of this study was to evaluate the therapeutic effect of autogenous semitendinosus graft and endobutton technique, and compare with hook plate in treatment of Rockwood type III acromioclavicular (AC) joint dislocation. Methods From April 2012 to April 2013, we treated 46 patients with Rockwood type III AC joint dislocation. Patients were randomly divided into two groups: Group A was treated using a hook plate and Group B with autogenous semitendinosus graft and endobutton technique. All participants were followed up for 12 months. Radiographic examinations were performed every 2 months postoperatively, and clinical evaluation was performed using the Constant–Murley score at the last follow-up. Results Results indicated that patients in Group B showed higher mean scores (90.3±5.4) than Group A (80.4±11.5) in terms of Constant–Murley score (P=0.001). Group B patients scored higher in terms of pain (P=0.002), activities (P=0.02), range of motion (P<0.001), and strength (P=0.004). In Group A, moderate pain was reported by 2 (8.7%) and mild pain by 8 (34.8%) patients. Mild pain was reported by 1 (4.3%) patient in Group B. All patients in Group B maintained complete reduction, while 2 (8.7%) patients in Group A experienced partial reduction loss. Two patients (8.7%) encountered acromial osteolysis on latest radiographs, with moderate shoulder pain and limited range of motion. Conclusion Autogenous semitendinosus graft and endobutton technique showed better results compared with the hook plate method and exhibited advantages of fewer complications such as permanent pain and acromial osteolysis. PMID:26811685

  20. Visualization study on distortion of a metal frame by polymerization shrinkage and thermal contraction of resin.

    PubMed

    Kakino, Ken; Endo, Kazuhiko; Hashimoto, Masanori; Furuta, Kunihiko; Ohno, Hiroki

    2014-01-01

    Three types of metal specimens (ring-shaped, plate-shaped, and a simulated anterior arch) for distortion observations were made from Au-Ag-Pd-Cu alloy. Distortion due to polymerization shrinkage and thermal contraction of a heat-curing acrylic resin containing 4-META (4-methacryloyloxyethyl trimellitate anhydride, 4-META resin) could be visualized for the ring-shaped specimen, which showed increasing distortion of the metal frame upon adhesion of the resin to the outer metal surface. Distortion of the plateshaped specimen adhering to 4-META resin decreased with increasing thickness of the cured resin. The distortion of the metal frame simulating an anterior arch of a six-unit bridge with a facing composite resin showed that the curvature of the metal frame was larger after curing of the facing composite resin. However, it recovered most of its original curvature with an associated increase in the number of cracks between the crowns after trimming the resin to a tooth profile. PMID:24492122

  1. Dehydration-induced shrinkage of dentin as a potential cause of vertical root fractures.

    PubMed

    Winter, Werner; Karl, Matthias

    2012-10-01

    Vertical root fractures (VRF) of endodontically treated teeth constitute a severe clinical condition frequently requiring removal of the affected tooth. Numerous attempts have been made to find the cause for VRF without reaching definitive conclusions. As changes in moisture content have been reported to appear as a consequence of root canal therapy, it is the goal of this paper to evaluate associated volume changes as a possible cause for VRF. Considering disk shaped horizontal cross sections of endodontically treated teeth with a moisture content of dentin decreasing from the root surface towards the root canal, both relative circumferential and relative radial stresses resulting from volume changes of dentin were calculated. It could be shown that the presence of a root canal itself increases radial and circumferential stresses acting on root dentin by a factor of two. Reduction in moisture content of dentin at the wall of the root canal results in shrinkage of the tooth structure and tensile stress. On the outer surface of the root, compressive stresses occur. Thus, VRF would start at the canal wall and propagate to the root surface. The theory presented appears to be consistent with previous reports on stress development as a consequence of dehydration of dentin and finite element analysis on root fractures. It may be concluded that dehydration of dentin induces cracks at the walls of a root canal which subsequently grow as a result of cyclic loading or traumatic overload. PMID:22960027

  2. Visualization study on distortion of a metal frame by polymerization shrinkage and thermal contraction of resin.

    PubMed

    Kakino, Ken; Endo, Kazuhiko; Hashimoto, Masanori; Furuta, Kunihiko; Ohno, Hiroki

    2014-01-01

    Three types of metal specimens (ring-shaped, plate-shaped, and a simulated anterior arch) for distortion observations were made from Au-Ag-Pd-Cu alloy. Distortion due to polymerization shrinkage and thermal contraction of a heat-curing acrylic resin containing 4-META (4-methacryloyloxyethyl trimellitate anhydride, 4-META resin) could be visualized for the ring-shaped specimen, which showed increasing distortion of the metal frame upon adhesion of the resin to the outer metal surface. Distortion of the plateshaped specimen adhering to 4-META resin decreased with increasing thickness of the cured resin. The distortion of the metal frame simulating an anterior arch of a six-unit bridge with a facing composite resin showed that the curvature of the metal frame was larger after curing of the facing composite resin. However, it recovered most of its original curvature with an associated increase in the number of cracks between the crowns after trimming the resin to a tooth profile.

  3. Reversible cerebral shrinkage in kwashiorkor: an MRI study.

    PubMed

    Gunston, G D; Burkimsher, D; Malan, H; Sive, A A

    1992-08-01

    Protein energy malnutrition is associated with cerebral atrophy which may be detrimental to intellectual development. The aim of this study was to document the anatomical abnormalities which lead to the appearance of cerebral atrophy using magnetic resonance imaging (MRI) in the acute stage of kwashiorkor and to monitor changes during nutritional rehabilitation. Twelve children aged 6 to 37 months requiring admission to hospital for the treatment of kwashiorkor were studied. The children were evaluated clinically, biochemically, and by MRI of their brains on admission and 30 and 90 days later. Brain shrinkage was present in every child on admission. White and grey matter appeared equally affected and the myelination was normal for age. At 90 days, the cerebral changes had resolved in nine and improved substantially in the remainder, by which time serum proteins and weight for age were within the normal range. The findings of this study suggest that brain shrinkage associated with kwashiorkor reverses rapidly with nutritional rehabilitation.

  4. On application of the empirical Bayes shrinkage in epidemiological settings.

    PubMed

    Zhao, Yuejen; Lee, Andy H; Barnes, Tony

    2010-02-01

    This paper aims to provide direct and indirect evidence on setting up rules for applications of the empirical Bayes shrinkage (EBS), and offers cautionary remarks concerning its applicability. In epidemiology, there is still a lack of relevant criteria in the application of EBS. The bias of the shrinkage estimator is investigated in terms of the sums of errors, squared errors and absolute errors, for both total and individual groups. The study reveals that assessing the underlying exchangeability assumption is important for appropriate use of EBS. The performance of EBS is indicated by a ratio statistic f of the between-group and within-group mean variances. If there are significant differences between the sample means, EBS is likely to produce erratic and even misleading information.

  5. Delayed reconstruction of the superior mesenteric vein with autogenous femoral vein.

    PubMed

    Tulip, Hans H; Smith, Sumona V; Valentine, R James

    2012-06-01

    A 38-year-old man underwent ligation of the superior mesenteric vein due to traumatic disruption. He developed severe bowel edema with large fluid losses through the open abdominal incision. On postoperative day 9, a superior mesenteric vein bypass was performed with autogenous femoral vein, and this resulted in prompt resolution of the bowel edema and allowed abdominal wound closure. He was able to resume a normal diet and was discharged on postinjury day 39. A magnetic resonance imaging scan performed 1 year later showed a patent graft.

  6. Effect of Oxygen Concentration on Autogenous Ignition Temperature and Pneumatic Impact Ignitability of Nonmetallic Materials

    NASA Technical Reports Server (NTRS)

    Smith, Sarah

    2009-01-01

    Extensive test data exist on the ignitability of nonmetallic materials in pure oxygen, but these characteristics are not as well understood for lesser oxygen concentrations. In this study, autogenous ignition temperature testing and pneumatic impact testing were used to better understand the effects of oxygen concentration on ignition of nonmetallic materials. Tests were performed using oxygen concentrations of 21, 34, 45, and 100 %. The following materials were tested: PTFE Teflon(Registered Trademark), Buna-N, Silicone, Zytel(Registered Trademark) 42, Viton(registered Trademark) A, and Vespel(Registered Trademark) SP-21.

  7. Stepwise surgical approach to diabetic partial foot amputations with autogenous split thickness skin grafting

    PubMed Central

    Ramanujam, Crystal L.; Zgonis, Thomas

    2016-01-01

    In the surgical treatment of severe diabetic foot infections, substantial soft tissue loss often accompanies partial foot amputations. These sizeable soft tissue defects require extensive care with the goal of expedited closure to inhibit further infection and to provide resilient surfaces capable of withstanding long-term ambulation. Definitive wound closure management in the diabetic population is dependent on multiple factors and can have a major impact on the risk of future diabetic foot complications. In this article, the authors provide an overview of autogenous skin grafting, including anatomical considerations, clinical conditions, surgical approach, and adjunctive treatments, for diabetic partial foot amputations. PMID:27283728

  8. Spinal shrinkage in unloaded and loaded drop-jumping.

    PubMed

    Fowler, N E; Lees, A; Reilly, T

    1994-01-01

    Plyometric activities, engaging the muscle in a stretch-shortening cycle, are widely used in athletic training. One such plyometric exercise is drop-jumping, where the athlete drops from a raised platform and immediately on landing performs a maximal vertical jump. These actions are also performed with the athlete externally loaded by the addition of weights to provide greater resistance. Exercises which involve repeated impacts have been shown to give rise to a loss of stature (shrinkage) which can be measured by means of a sensitive stadiometer. This study examined the shrinkage induced by unloaded and loaded drop-jumping from a height of 26 cm. Eight male subjects, aged 20-24 years, performed the test protocol three times, at the same time of day on each occasion. Fifty drop-jumps from a height of 26 cm were performed with no additional load and with a load of 8.5 kg carried in a weighted vest. The third condition was a standing trial where the subject stood for 10 min (the time taken to perform the jumps) wearing the weighted vest. Stature was measured before exercise, immediately after exercise and after a 20 min standing recovery. On a separate occasion the regimen was performed and the vertical reaction force was measured using a Kistler force platform. The mean change in stature for the two jump conditions showed shrinkages of 0.62 (+/- 0.43) mm for unloaded and 2.14 (+/- 1.56) mm for the loaded (p < 0.05). The variance in shrinkage was greater in the loaded case compared to the unloaded condition (p < 0.05) indicating a wider range of jumping strategies.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8112268

  9. Simulation of shrinkage and warpage of semi-crystalline thermoplastics

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Borchmann, N.; Spekowius, M.; Weber, M.; Schöngart, M.

    2015-05-01

    Today, the simulation of the injection molding process is state of the art. Besides the simulation of the manufacturing process, commercial simulation tools allow a prediction of the structural properties of the final part. Especially the complex shrinkage and warpage behavior is of interest as it significantly influences the part quality. Although modern simulation tools provide qualitatively correct results for several materials and processing conditions, significant deviations from the real component's behavior can occur for semi-crystalline thermoplastics. One underlying reason is the description on the macro scale used in these simulation tools. However, in semi-crystalline materials significant effects take place on the micro scale, e.g. crystalline superstructures that cannot be neglected. As part of a research project at IKV, investigations are carried out to improve the simulation accuracy of shrinkage and warpage. To point out differences in the accuracy of commercially available simulation tools, a reference part is computed for the materials polypropylene and polyoxymethylene. The results are validated by injection molding experiments. The shrinkage and warpage behavior is characterized by optical measuring technology. In future, models for the description of the pvT behavior of semi-crystalline thermoplastics will be implemented into the software package SphäroSim which was developed at IKV. With this software, crystallization kinetics for semi-crystalline thermoplastics can be calculated on the micro scale. With the newly implemented pvT models the calculation of shrinkage and warpage for semi-crystalline thermoplastics will be enabled on the micro scale.

  10. COMPARATIVE ANALYSIS OF THE SHRINKAGE STRESS OF COMPOSITE RESINS

    PubMed Central

    Pereira, Rosana Aparecida; de Araujo, Paulo Amarante; Castañeda-Espinosa, Juan Carlos; Mondelli, Rafael Francisco Lia

    2008-01-01

    The aim of this study was to compare the shrinkage stress of composite resins by three methods. In the first method, composites were inserted between two stainless steel plates. One of the plates was connected to a 20 kgf load cell of a universal testing machine (EMIC-DL-500). In the second method, disk-shaped cavities were prepared in 2-mm-thick Teflon molds and filled with the different composites. Gaps between the composites and molds formed after polymerization were evaluated microscopically. In the third method, the wall-to-wall shrinkage stress of the resins that were placed in bovine dentin cavities was evaluated. The gaps were measured microscopically. Data were analyzed by one-way ANOVA and Tukey's test (α=0.05). The obtained contraction forces were: Grandio = 12.18 ± 0.428N; Filtek Z 250 = 11.80 ± 0.760N; Filtek Supreme = 11.80 ± 0.707 N; and Admira = 11.89 ± 0.647 N. The gaps obtained between composites and Teflon molds were: Filtek Z 250 = 0.51 ± 0.0357%; Filtek Supreme = 0.36 ± 0.0438%; Admira = 0.25 ± 0.0346% and Grandio = 0.16 ± 0.008%. The gaps obtained in wall-to-wall contraction were: Filtek Z 250 = 11.33 ± 2.160 μm; Filtek Supreme = 10.66 ± 1.211μm; Admira = 11.16 ± 2.041 μm and Grandio = 10.50 ± 1.224 μm. There were no significant differences among the composite resins obtained with the first (shrinkage stress generated during polymerization) and third method (wall-to-wall shrinkage). The composite resins obtained with the second method (Teflon method) differed significantly regarding gap formation. PMID:19089286

  11. Modeling crack growth during Li insertion in storage particles using a fracture phase field approach

    NASA Astrophysics Data System (ADS)

    Klinsmann, Markus; Rosato, Daniele; Kamlah, Marc; McMeeking, Robert M.

    2016-07-01

    Fracture of storage particles is considered to be one of the major reasons for capacity fade and increasing power loss in many commercial lithium ion batteries. The appearance of fracture and cracks in the particles is commonly ascribed to mechanical stress, which evolves from inhomogeneous swelling and shrinkage of the material when lithium is inserted or extracted. Here, a coupled model of lithium diffusion, mechanical stress and crack growth using a phase field method is applied to investigate how the formation of cracks depends on the size of the particle and the presence or absence of an initial crack, as well as the applied flux at the boundary. The model shows great versatility in that it is free of constraints with respect to particle geometry, dimension or crack path and allows simultaneous observation of the evolution of lithium diffusion and crack growth. In this work, we focus on the insertion process. In particular, we demonstrate the presence of intricate fracture phenomena, such as, crack branching or complete breakage of storage particles within just a single half cycle of lithium insertion, a phenomenon that was only speculated about before.

  12. Crack Driving Forces in a Multilayered Coating System for Ceramic Matrix Composite Substrates

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Zhu, Dongming; Miller, Robert A.

    2005-01-01

    The effects of the top coating thickness, modulus and shrinkage strains on the crack driving forces for a baseline multilayer Yttria-Stabilized-Zirconia/Mullite/Si thermal and environment barrier coating (TEBC) system for SiC/SiC ceramic matrix composite substrates are determined for gas turbine applications. The crack driving forces increase with increasing modulus, and a low modulus thermal barrier coating material (below 10 GPa) will have no cracking issues under the thermal gradient condition analyzed. Since top coating sintering increases the crack driving forces with time, highly sintering resistant coatings are desirable to maintain a low tensile modulus and maintain a low crack driving force with time. Finite element results demonstrated that an advanced TEBC system, such as ZrO2/HfO2, which possesses improved sintering resistance and high temperature stability, exhibited excellent durability. A multi-vertical cracked structure with fine columnar spacing is an ideal strain tolerant coating capable of reducing the crack driving forces to an acceptable level even with a high modulus of 50 GPa.

  13. Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation

    PubMed Central

    ROSNER, SABINE; KARLSSON, BO; KONNERTH, JOHANNES; HANSMANN, CHRISTIAN

    2011-01-01

    Summary The aim of this study was to observe the radial shrinkage of Norway spruce [Picea abies (L. Karst.)] trunkwood specimens with different hydraulic vulnerability to cavitation from the fully saturated state until the overall shrinkage reaches a stable value, and to relate wood shrinkage and recovery from shrinkage to cavitations of the water column inside the tracheids. Radial shrinkage processes in standard-size sapwood specimens (6 mm × 6 mm × 100 mm; radial, tangential and longitudinal) obtained at different positions within the trunk, representing different ages of the cambium, were compared. Cavitation events were assessed by acoustic emission (AE) testing, hydraulic vulnerability by the AE feature analysis and shrinkage was calculated from the changes in contact pressure between the 150 kHz AE transducer and the wood specimen. Two shrinkage processes were observed in both juvenile (annual rings 1 and 2) and mature wood (annual rings 17–19), the first one termed tension shrinkage and the second one cell wall shrinkage process, which started when most of the tracheids reached relative water contents below fiber saturation. Maximum tension shrinkage coincided with high-energy AEs, and the periods of shrinkage recovery could be traced to tension release due to cavitation. Juvenile wood, which was less sensitive to cavitation, had lower earlywood tracheid diameters and was less prone to deformation due to tensile strain than mature wood, showed a lower cell wall shrinkage, and thus total shrinkage. Earlywood lumen diameters and maximum tension shrinkage were strongly positively related to each other, meaning that bigger tracheids are more prone to deformation at the same water tension than the smaller tracheids. PMID:19797244

  14. Shrinkage regression-based methods for microarray missing value imputation

    PubMed Central

    2013-01-01

    Background Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. Results To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Conclusions Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods. PMID:24565159

  15. Arthroscopic Thermal Capsular Shrinkage for Palmar Midcarpal Instability

    PubMed Central

    Hargreaves, David G.

    2014-01-01

    Background Arthroscopic capsular shrinkage has been previously used to stabilize major joints. This is the first series of its use in the wrist for palmar midcarpal instability (PMCI). Materials and Methods This is a medium-term retrospective review of 13 patients (15 wrists) at an average follow-up of 48 months postoperative. All patients were assessed with a functional questionnaire for instability and a Disabilities of the Arm, Shoulder, and Hand (DASH) score, as well as clinical examination. Description of Technique Arthroscopic capsular shrinkage was performed to the palmar and dorsal capsules of the radiocarpal and midcarpal joints using a bipolar thermal probe. All wrists were immobilized for 6 weeks post operation. Results 100% follow-up was achieved . All cases had an improvement in the frequency and severity of instability symptoms. The average DASH score was significantly reduced. There were no complications. The average loss of movement following the procedure was 15%. Conclusions The medium-term results show that wrist instability due to PMCI can be improved significantly by thermal capsular shrinkage with only a minimal amount of secondary stiffness. PMID:25097808

  16. Morphometric study of cardiac muscle: the problem of tissue shrinkage

    SciTech Connect

    Gerdes, A.M.; Kriseman, J.; Bishop, S.P.

    1982-03-01

    Comparison of data from morphometric studies dealing with the heart is complicated by the fact that little information dealing with cell size changes during tissue processing is available. To investigate these changes, isolated cardiac myocytes were adhered to glass cover slips of Sykes Moore chambers and photographed after each step of processing for transmission electron microscopy. Six different experiments with a minimum of 10 cells each were followed through the entire procedure after fixation with isoosmolar glutaraldehyde. Cellular dimension changes were determined by tracing individual isolated myocytes after each step of the procedure with a sonic digitizer. Significant cell volume changes occurred after osmium (16 per cent swelling), postosmium wash (10 per cent swelling), and uranyl acetate (25 per cent shrinkage). Hypertonic aldehyde solutions resulted in cellular shrinkage during fixation not found with isotonic solutions. Changes in cell cross-sectional area rather than length were largely responsible for altered cell volumes during any given phase of processing. The results indicate that, although cell volume changes occur during processing, final cell dimensions of embedded cells were not different from unfixed cells. In whole tissue blocks, inclusion of propylene oxide in the procedure resulted in tissue shrinkage which was not observed in isolated myocytes, suggesting that different tissue components react in a variable manner to propylene oxide. After each of the other steps in processing, tissue blocks reacted in a similar manner to the isolated myocytes.

  17. The Shrinkage Model And Expert System Of Plastic Lens Formation

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng

    1988-06-01

    Shrinkage causes both the appearance & dimension defects of the injected plastic lens. We have built up a model of state equations with the help of finite element analysis program to estimate the volume change (shrinkage and swelling) under the combinations of injection variables such as pressure and temperature etc., then the personal computer expert system has been build up to make that knowledge conveniently available to the user in the model design, process planning, process operation and some other work. The domain knowledge is represented by a R-graph (Relationship-graph) model which states the relationships of variables & equations. This model could be compare with other models in the expert system. If the user has better model to solve the shrinkage problem, the program will evaluate it automatically and a learning file will be trigger by the expert system to teach the user to update their knowledge base and modify the old model by this better model. The Rubin's model and Gilmore's model have been input to the expert system. The conflict has been solved both from the user and the deeper knowledge base. A cube prism and the convex lens examples have been shown in this paper. This program is written by MULISP language in IBM PC-AT. The natural language provides English Explaination of know why and know how and the automatic English translation for the equation rules and the production rules.

  18. Morphometric study of cardiac muscle: the problem of tissue shrinkage.

    PubMed

    Gerdes, A M; Kriseman, J; Bishop, S P

    1982-03-01

    Comparison of data from morphometric studies dealing with the heart is complicated by the fact that little information dealing with cell size changes during tissue processing is available. To investigate these changes, isolated cardiac myocytes were adhered to glass cover slips of Sykes Moore chambers and photographed after each step of processing for transmission electron microscopy. Six different experiments with a minimum of 10 cells each were followed through the entire procedure after fixation with isoosmolar glutaraldehyde. Cellular dimension changes were determined by tracing individual isolated myocytes after each step of the procedure with a sonic digitizer. Significant cell volume changes occurred after osmium (16 per cent swelling), postosmium wash (10 per cent swelling), and uranyl acetate (25 per cent shrinkage). Hypertonic aldehyde solutions resulted in cellular shrinkage during fixation not found with isotonic solutions. Changes in cell cross-sectional area rather than length were largely responsible for altered cell volumes during any given phase of processing. The results indicate that, although cell volume changes occur during processing, final cell dimensions of embedded cells were not different from unfixed cells. In whole tissue blocks, inclusion of propylene oxide in the procedure resulted in tissue shrinkage which was not observed in isolated myocytes, suggesting that different tissue components react in a variable manner to propylene oxide. After each of the other steps in processing, tissue blocks reacted in a similar manner to the isolated myocytes.

  19. Cracked cue ball

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    The latest images sent by the Galileo spacecraft reveal that the surface of Jupiter's moon Europa may have contained a layer of “warm ice” or even liquid water. In fact, planetologists are wondering if perhaps it still does.Photos taken earlier this summer show Europa to have a crust of smooth white and brown-tinted ice scarred by long, jagged cracks; some scientists have said the moon looks like a cracked cue ball. “The scale of fracture patterns—extending a distance equivalent to the width of the western United States—dwarf the San Andreas fault in length and width,” said Ronald Greeley, a geologist from Arizona State University and a member of the Galileo imaging team. The cracks are believed to have been caused by the stress of tidal forces created by Jupiter's gravity. Warmth generated by tidal heating also may have been sufficient to soften or liquefy some of the ice.

  20. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  1. Pure orbital blowout fractures reconstructed with autogenous bone grafts: functional and aesthetic outcomes.

    PubMed

    Kronig, S A J; van der Mooren, R J G; Strabbing, E M; Stam, L H M; Tan, J A S L; de Jongh, E; van der Wal, K G H; Paridaens, D; Koudstaal, M J

    2016-04-01

    The purpose of this study was to investigate the ophthalmic clinical findings following surgical reconstruction with autogenous bone grafts of pure blowout fractures. A retrospective review of 211 patients who underwent surgical repair of an orbital fracture between October 1996 and December 2013 was performed. Following data analysis, 60 patients who were followed up over a period of 1 year were included. A solitary floor fracture was present in 38 patients and a floor and a medial wall fracture in 22 patients. Comparing preoperative findings between these two groups, preoperative diplopia and enophthalmos were almost twice as frequent in the group with additional medial wall fractures: diplopia 8% and 14% and enophthalmos 18% and 55%, respectively. One year following surgery there was no diplopia present in either group. In the solitary floor fracture group, 3% still had enophthalmos. It can be concluded that at 1 year following the repair of pure orbital floor fractures using autogenous bone, good functional and aesthetic results can be obtained. In the group with both floor and medial wall fractures, no enophthalmos was found when both walls were reconstructed. When the medial wall was left unoperated, 29% of patients still suffered from enophthalmos after 1 year.

  2. Hard color-shrinkage for color-image processing of a digital color camera

    NASA Astrophysics Data System (ADS)

    Saito, Takahiro; Ueda, Yasutaka; Fujii, Nobuhiro; Komatsu, Takashi

    2010-01-01

    The classic shrinkage works well for monochrome-image denoising. To utilize inter-channel color correlations, a noisy image undergoes the color-transformation from the RGB to the luminance-and-chrominance color space, and the luminance and the chrominance components are separately denoised. However, this approach cannot cope with signaldependent noise of a digital color camera. To utilize the noise's signal-dependencies, previously we have proposed the soft color-shrinkage where the inter-channel color correlations are directly utilized in the RGB color space. The soft color-shrinkage works well; but involves a large amount of computations. To alleviate the drawback, taking up the l0-l2 optimization problem whose solution yields the hard shrinkage, we introduce the l0 norms of color differences and the l0 norms of color sums into the model, and derive hard color-shrinkage as its solution. For each triplet of three primary colors, the hard color-shrinkage has 24 feasible solutions, and from among them selects the optimal feasible solution giving the minimal energy. We propose a method to control its shrinkage parameters spatially-adaptively according to both the local image statistics and the noise's signal-dependencies, and apply the spatially-adaptive hard color-shrinkage to removal of signal-dependent noise in a shift-invariant wavelet transform domain. The hard color-shrinkage performs mostly better than the soft color-shrinkage, from objective and subjective viewpoints.

  3. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites.

    PubMed

    Tauböck, Tobias T; Feilzer, Albert J; Buchalla, Wolfgang; Kleverlaan, Cornelis J; Krejci, Ivo; Attin, Thomas

    2014-08-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Rebilda DC) were subjected to different irradiation protocols with identical energy density (27 J cm(-2) ): high-intensity continuous light (HIC), low-intensity continuous light (LIC), soft-start (SS), and pulse-delay curing (PD). Axial shrinkage and shrinkage force of 1.5-mm-thick specimens were recorded in real time for 15 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Statistical analysis revealed no significant differences among the curing protocols for both Knoop hardness and axial shrinkage, irrespective of the composite material. Pulse-delay curing generated the significantly lowest shrinkage forces within the three light-curing materials SDR bulk-fill, Esthet X flow, and Esthet X HD. High-intensity continuous light created the significantly highest shrinkage forces within Esthet X HD and Rebilda DC, and caused significantly higher forces than LIC within Esthet X flow. In conclusion, both the composite material and the applied curing protocol control shrinkage force formation. Pulse-delay curing decreases shrinkage forces compared with high-intensity continuous irradiation without affecting hardening and axial polymerization shrinkage. PMID:25039287

  4. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites.

    PubMed

    Tauböck, Tobias T; Feilzer, Albert J; Buchalla, Wolfgang; Kleverlaan, Cornelis J; Krejci, Ivo; Attin, Thomas

    2014-08-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Rebilda DC) were subjected to different irradiation protocols with identical energy density (27 J cm(-2) ): high-intensity continuous light (HIC), low-intensity continuous light (LIC), soft-start (SS), and pulse-delay curing (PD). Axial shrinkage and shrinkage force of 1.5-mm-thick specimens were recorded in real time for 15 min using custom-made devices. Knoop hardness was determined at the end of the observation period. Statistical analysis revealed no significant differences among the curing protocols for both Knoop hardness and axial shrinkage, irrespective of the composite material. Pulse-delay curing generated the significantly lowest shrinkage forces within the three light-curing materials SDR bulk-fill, Esthet X flow, and Esthet X HD. High-intensity continuous light created the significantly highest shrinkage forces within Esthet X HD and Rebilda DC, and caused significantly higher forces than LIC within Esthet X flow. In conclusion, both the composite material and the applied curing protocol control shrinkage force formation. Pulse-delay curing decreases shrinkage forces compared with high-intensity continuous irradiation without affecting hardening and axial polymerization shrinkage.

  5. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  6. Passivating metals on cracking catalysts

    SciTech Connect

    Mckay, D.L.

    1980-01-15

    Metals such as nickel, vanadium and iron contaminating a cracking catalyst are passivated by contacting the cracking catalyst under elevated temperature conditions with antimony selenide, antimony sulfide, antimony sulfate, bismuth selenide, bismuth sulfide, or bismuth phosphate.

  7. Cracking the Credit Hour

    ERIC Educational Resources Information Center

    Laitinen, Amy

    2012-01-01

    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit hour. If…

  8. NUMERICAL ANALYSIS OF CRACK AND STRAIN BEHAVIOR OF RC SLAB IN STEEL-CONCRETE COMPOSITE GIRDER UNDER NEGATIVE BENDING

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Junichi; Nakajima, Akinori; Suzuki, Yasuo

    The sophisticated numerical analysis method is required to simulate the strain behavior of the reinforcement and the crack width of the RC slab, although many researches are conducted on the cracking behavior of the RC slab in the composite girder under the negative bending. In this paper, the numerical analysis method is constructed to evaluate the strain behavior of the reinforcement and the crack width of the RC slab in the steel-concrete composite girder subjected to the negative bending. The analysis method using the rigid body spring model takes into account the imperfect composite action between the steel girder and the RC slab, the bond between the reinforcement and the concrete, and the shrinkage of the concrete. As a result, it is confirmed that the analysis method can simulate the crack and the strain behavior of RC slab quantitatively in the steel-concrete composite girder under the negative bending.

  9. Crack patterns over uneven substrates.

    PubMed

    Nandakishore, Pawan; Goehring, Lucas

    2016-02-28

    Cracks in thin layers are influenced by what lies beneath them. From buried craters to crocodile skin, crack patterns are found over an enormous range of length scales. Regardless of absolute size, their substrates can dramatically influence how cracks form, guiding them in some cases, or shielding regions from them in others. Here we investigate how a substrate's shape affects the appearance of cracks above it, by preparing mud cracks over sinusoidally varying surfaces. We find that as the thickness of the cracking layer increases, the observed crack patterns change from wavy to ladder-like to isotropic. Two order parameters are introduced to measure the relative alignment of these crack networks, and, along with Fourier methods, are used to characterise the transitions between crack pattern types. Finally, we explain these results with a model, based on the Griffith criteria of fracture, that identifies the conditions for which straight or wavy cracks will be seen, and predicts how well-ordered the cracks will be. Our metrics and results can be applied to any situation where connected networks of cracks are expected, or found. PMID:26762761

  10. Reconstruction of alveolar bone defect with autogenous bone particles and osseointegrated implants: Histologic analysis and 10 years monitoring

    PubMed Central

    de Carvalho, Paulo Sérgio Perri; de Carvalho, Mariliza Comar Astolphi; Ponzoni, Daniela

    2015-01-01

    Maintaining the volume of the alveolar process after extraction can be achieved by immediate implant placement and guided bone regeneration, with or without the use of biomaterials. The authors present a case report with a 10 years follow-up, rehabilitation using osseointegrated implants in the extraction area and maintenance of the volume of the alveolar process with autogenous cortical bone shavings. PMID:26389054

  11. Comparison of autogenic and allogenic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits.

    PubMed

    Udehiya, Rahul Kumar; Amarpal; Aithal, H P; Kinjavdekar, P; Pawde, A M; Singh, Rajendra; Taru Sharma, G

    2013-06-01

    Autogenic and allogenic bone marrow derived mesenchymal stem cells (BM-MSCs) were compared for repair of bone gap defect in rabbits. BM-MSCs were isolated from bone marrow aspirates and cultured in vitro for allogenic and autogenic transplantation. A 5mm segmental defect was created in mid-diaphysis of the radius bone. The defect was filled with hydroxyapatite alone, hydroxyapatite with autogeneic BM-MSCs and hydroxyapatite with allogenic BM-MSCs in groups A, B and C, respectively. On an average 3.45×10(6) cells were implanted at each defect site. Complete bridging of bone gap with newly formed bone was faster in both treatment groups as compared to control group. Histologically, increased osteogenesis, early and better reorganization of cancellous bone and more bone marrow formation were discernible in treatment groups as compared to control group. It was concluded that in vitro culture expanded allogenic and autogenic BM-MSCs induce similar, but faster and better healing as compared to control.

  12. Alternative autogenous bone graft donor sites in brachymetatarsia reconstruction: a review of the literature with clinical presentations.

    PubMed

    Kashuk, K B; Hanft, J R; Schabler, J A; Kopelman, J

    1991-01-01

    The authors present a literature review on the surgical treatment of brachymetatarsia. They discuss the identification of donor sites for autogenous bone graft harvesting from the foot. Three case reports of brachymetatarsia, one of iatrogenic, and two of congenital origin are presented. PMID:1874999

  13. Shrinkage and microstructural development during drying of organically modified silica xerogels

    SciTech Connect

    Raman, N.K.; Wallace, S.; Brinker, C.J. |

    1996-07-01

    We have studied the different driving forces behind syneresis in MTES/TEOS gels by aging them in different H{sub 2}O/EtOH pore fluids. We show using shrinkage, density, contact angle, and N{sub 2} sorption measurements, the influence of gel/solvent interactions on the microstructural evolution during drying. Competing effects of syneresis (that occurs during aging) and drying shrinkage resulted in the overall linear shrinkage of the organically modified gels to be constant at {approximately}50%. Increasing the hydrophobicity of the gels caused the driving force for syneresis to change from primarily condensation reactions to a combination of condensation and solid/liquid interfacial energy. In addition the condensation driven shrinkage was observed to be irreversible, whereas the interfacial free energy driven shrinkage was observed to be partially reversible. Nitrogen sorption experiments show that xerogels with the same overall extent of shrinkage can have vastly different microstructures due to the effects of microphase separation.

  14. Exploiting tumor shrinkage through temporal optimization of radiotherapy

    NASA Astrophysics Data System (ADS)

    Unkelbach, Jan; Craft, David; Hong, Theodore; Papp, Dávid; Ramakrishnan, Jagdish; Salari, Ehsan; Wolfgang, John; Bortfeld, Thomas

    2014-06-01

    In multi-stage radiotherapy, a patient is treated in several stages separated by weeks or months. This regimen has been motivated mostly by radiobiological considerations, but also provides an approach to reduce normal tissue dose by exploiting tumor shrinkage. The paper considers the optimal design of multi-stage treatments, motivated by the clinical management of large liver tumors for which normal liver dose constraints prohibit the administration of an ablative radiation dose in a single treatment. We introduce a dynamic tumor model that incorporates three factors: radiation induced cell kill, tumor shrinkage, and tumor cell repopulation. The design of multi-stage radiotherapy is formulated as a mathematical optimization problem in which the total dose to the normal tissue is minimized, subject to delivering the prescribed dose to the tumor. Based on the model, we gain insight into the optimal administration of radiation over time, i.e. the optimal treatment gaps and dose levels. We analyze treatments consisting of two stages in detail. The analysis confirms the intuition that the second stage should be delivered just before the tumor size reaches a minimum and repopulation overcompensates shrinking. Furthermore, it was found that, for a large range of model parameters, approximately one-third of the dose should be delivered in the first stage. The projected benefit of multi-stage treatments in terms of normal tissue sparing depends on model assumptions. However, the model predicts large dose reductions by more than a factor of 2 for plausible model parameters. The analysis of the tumor model suggests that substantial reduction in normal tissue dose can be achieved by exploiting tumor shrinkage via an optimal design of multi-stage treatments. This suggests taking a fresh look at multi-stage radiotherapy for selected disease sites where substantial tumor regression translates into reduced target volumes.

  15. Soft Shrinkage Thresholding Algorithm for Nonlinear Microwave Imaging

    NASA Astrophysics Data System (ADS)

    Zaimaga, Hidayet; Lambert, Marc

    2016-10-01

    In this paper, we analyze a sparse nonlinear inverse scattering problem arising in microwave imaging and numerically solved it for retrieving dielectric contrast from measured fields. In sparsity reconstruction, contrast profiles are a priori assumed to be sparse with respect to a certain base. We proposed an approach which is motivated by a Tikhonov functional incorporating a sparsity promoting l 1-penalty term. The proposed iterative algorithm of soft shrinkage type enforces the sparsity constraint at each nonlinear iteration. The scheme produces sharp and good reconstruction of dielectric profiles in sparse domains by adapting Barzilai and Borwein (BB) step size selection criteria and positivity by maintaining its convergence during the reconstruction.

  16. Dynamic Void Growth and Shrinkage in Mg under Electron Irradiation

    SciTech Connect

    Xu, W. Z.; Zhang, Y. F.; Cheng, G. M.; Jian, W. W.; Millett, P. C.; Koch, C. C.; Mathaudhu, S. N.; Zhu, Y. T.

    2014-04-30

    We report in-situ atomic-scale investigation of void evolution, including growth, coalescence and shrinkage, under electron irradiation. With increasing irradiation dose, the total volume of voids increased linearly, while nucleation rate of new voids decreased slightly, and the total number of voids decreased. Some voids continued to grow while others shrank to disappear, depending on the nature of their interactions with nearby self-interstitial loops. For the first time, surface diffusion of adatoms was observed largely responsible for the void coalescence and thickening. These findings provide fundamental understanding to help with the design and modeling of irradiation-resistant materials.

  17. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection.

  18. Autogenous gas tungsten arc weldability of cast alloy Ti-48Al-2Cr-2Nb (Atomic percent) versus extruded alloy Ti-46Al-2Cr-2Nb-0.9Mo (Atomic percent)

    NASA Astrophysics Data System (ADS)

    Bharani, D. J.; Acoff, V. L.

    1998-03-01

    This study examines procedures for consistently producing sound (crack and void free) welds using the autogenous (without filler metal) gas tungsten arc (GTA) welding process. Cast alloy Ti-48Al-2Cr-2Nb (at. pct) and extruded alloy Ti-46Al-2Cr-2Nb-0.9Mo (at. pct) have been examined to determine if sound welds can be produced using autogenous GTA welding without any preheat. Experimentation consisted of GTA spot welding samples of gamma titanium aluminide at weld current levels of 45, 55, 65, and 75 A for a duration of 3 seconds. For the cast alloy, current levels of 45, 55, and 65 A for 3 seconds produced similar fusion zone microstructures, which consisted of a dendritic solidification structure. The fusion zone microstructure of the 75A for 3 seconds current level differed significantly from the lower current levels. It also consisted of a dendritic solidification structure; however, the morphology was quite different. For the extruded alloy, current levels of 45 and 55 A for 3 seconds produced fusion zone microstructures similar to the lower current level samples of the cast γ-TiAl, which consisted of a dendritic solidification structure. The fusion zone microstructures of the 65 and 75 A samples were similar to each other, but they had a dendritic solidification structure of a different morphology than that of the 45 and 55 A samples. For both alloys at all current levels, microhardness profiles showed an increase in hardness from the base metal to the fusion zone. There were no significant differences in the average fusion zone hardness as a function of increasing current level. However, nanoindentation testing did show that certain phases and microconstituents in the fusion zone did have significant variations in hardness in relation to the enrichment and depletion of chromium.

  19. Aneurysm sac shrinkage after endovascular treatment of the aorta: beyond sac pressure and endoleaks.

    PubMed

    Georgakarakos, Efstratios; Georgiadis, George S; Ioannou, Christos V; Kapoulas, Konstantinos C; Trellopoulos, George; Lazarides, Miltos

    2012-06-01

    The isolation of the aneurysm sac from systemic pressure and its consequent shrinkage are considered criteria of success after endovascular repair (EVAR). However, the process of shrinkage does not solely depend on the intrasac pressure, the predictive role of which remains ambiguous. This brief review summarizes the additional pathophysiological mechanisms that regulate the biomechanical properties of the aneurysm wall and may interfere with the process of aneurysm sac shrinkage. PMID:22402935

  20. A new method to measure the polymerization shrinkage kinetics of light cured composites.

    PubMed

    Lee, I B; Cho, B H; Son, H H; Um, C M

    2005-04-01

    This study was undertaken to develop a new measurement method to determine the initial dynamic volumetric shrinkage of composite resins during polymerization, and to investigate the effect of curing light intensity on the polymerization shrinkage kinetics. The instrument was basically an electromagnetic balance that was constructed with a force transducer using a position sensitive photo detector (PSPD) and a negative feedback servo amplifier. The volumetric change of composites during polymerization was detected continuously as a buoyancy change in distilled water by means of the Archimedes' principle. Using this new instrument, the dynamic patterns of the polymerization shrinkage of seven commercial composite resins were measured. The polymerization shrinkage of the composites was 1.92 approximately 4.05 volume %. The shrinkage of a packable composite was the lowest, and that of a flowable composite was the highest. The maximum rate of polymerization shrinkage increased with increasing light intensity but the peak shrinkage rate time decreased with increasing light intensity. A strong positive relationship was observed between the square root of the light intensity and the maximum shrinkage rate. The shrinkage rate per unit time, dVol%/dt, showed that the instrument can be a valuable research method for investigating the polymerization reaction kinetics. This new shrinkage-measuring instrument has some advantages that it was insensitive to temperature changes and could measure the dynamic volumetric shrinkage in real time without complicated processes. Therefore, it can be used to characterize the shrinkage kinetics in a wide range of commercial and experimental visible-light-cure materials in relation to their composition and chemistry. PMID:15790386

  1. Captures, Cutoffs, and Autogenic Drainage Basin Reorganization from Bedrock River Meandering in the Oregon Coast Range

    NASA Astrophysics Data System (ADS)

    Johnson, K. N.; Finnegan, N. J.

    2015-12-01

    Meandering bedrock channels in the Oregon Coast Range (OCR), USA, have lateral migration rates far in excess of vertical incision rates. Consequently, the sweeping of trunk streams through this landscape can locally exert a much stronger influence on tributary channel long profiles than far-field tectonic forcing of base-level. Here, we use LiDAR-data to explore the influence of lateral channel mobility on the evolution of tributaries to the Smith River, in the OCR. We focus on two processes that dramatically and instantaneously change tributary long profiles: 1) Capture of tributaries by growing meander bends, and 2) Meander bend neck cutoffs on the main-stem that leave tributaries disconnected from base-level lowering. We focus on these two types of events because they provide clear examples of autogenic drivers of landscape disequilibrium at the sub-watershed scale in a landscape that is commonly argued to reflect steady tectonic forcing of base-level. We show that tributary streams are significantly more likely to flow into the leading edge of meander bends, testifying to the repeated capture of tributaries by growing bends. Examples of eminent captures by migrating bends, and examples with large knick points along recently captured tributaries suggest that the autogenic capture of tributaries by growing bends is a fundamental cause of transience in tributary channels in this landscape. To demonstrate the influence of the process of meander bend neck cutoff on tributary long profile evolution, we compare the long profiles of 34 tributaries that were hung above the main-stem of the Smith River following neck cutoff events. These stagnated tributary channels typically exhibit large convexities that record ongoing lowering of the trunk stream. Measured heights of these hanging tributaries implies that the timescale of adjustment for tributaries following cutoff events is ~ 105-106 years. The timescale of adjustment of tributary channels following meander cutoff

  2. Total Upper Eyelid Reconstruction with Modified Cutler-Beard Procedure Using Autogenous Auricular Cartilage

    PubMed Central

    Fleming, James Christian; Reddy, Shilpa Gillella; Fowler, Brian T.

    2016-01-01

    Introduction Malignant tumour in upper lid is a surgical challenge to oculoplastic surgeon. Full thickness defect created after removal of large tumour promptly treated with modified cutler beard procedure using autogenous auricular cartilage. Surgical procedure is two staged: In first stage, removal of the tumour followed by full thickness flap repaired; In second stage, opening the closed lid with lid margin repair. Post-operatively, there is good anatomical, functional and cosmetic restoration of the eyelid similar to the other eye. Aim To evaluate the efficacy of the modified Cutler-Beard procedure using autogenous ear cartilage for tarsal plate reconstruction in the repair of 70-100% upper eyelid defects. Materials and Methods This is a prospective, interventional case series of 16 patients over a period of three years. Patients with upper eyelid defects, secondary to removal of tumour, greater than or equal to 70% were included. Of these patients, those with lymph node involvement, distant metastasis, lower eyelid involvement, corneal infiltration or intra-orbital extension were excluded. FNAC was done in all the cases. Created defect was measured in mm (length and width) and later expressed in percentage. Pre and Post-operative measurement of Levator Palpebrae Superioris (LPS) was done. Pre and Post-operative measurement of Margin to Reflex Distance (MRD1) were also noted. Results Upper eyelid recreation was successful in all patients without complications. Pre-operative LPS action ranged from 0-4 mm, while post-operative LPS action was 12-14 mm. Pre-operative MRD1 ranged from -4 millimeters to -1 mm, while post-operative MRD1 was +3 to +4 millimeters. The follow-up period ranged from six months to two years. Every patient had a successful upper eyelid reconstruction. Conclusion The modified Cutler-Beard procedure using an autogenous auricular cartilage graft is an effective procedure for repair of large upper eyelid defects, with acceptable functional and

  3. Ankle morbidity after autogenous Achilles tendon harvesting for anterior cruciate ligament reconstruction.

    PubMed

    Seo, Jai Gon; Yoo, Jae Chul; Moon, Young Wan; Chang, Moon Jong; Kwon, Jong Won; Kim, Jong Hyun; Kim, Mu Hyun

    2009-06-01

    Although several alternative autografts with reduced morbidity of harvest site have been introduced, no donor site is free of morbidity concerns. The authors report on ankle status after autogenous Achilles tendon harvesting with a minimum 10-year follow-up. From October 1994 to October 1996, a consecutive series of 47 ankles underwent harvesting of the medial third or half of the ipsilateral autogenous Achilles tendon for primary anterior cruciate ligament reconstruction. Donor site statuses were evaluated using a modified Thermann's scale. Postoperative isokinetic muscle strength testing was performed, and magnetic resonance images of donor sites were available for selected patients. Thirty-three ankles in the 32 patients were followed for more than 10 years. There were 27 men (84%) and 5 women (16%) with a mean age of 31 years (range 16-52 years) at the time of surgery. The mean duration of follow-up was 12 years and 1 month (range 10 years and 5 months to 13 years and 4 months). Mean postoperative modified Thermann's scale score was 87 (range 45-95; SD 14.3). Twenty-five (76%) ankles achieved very good or good results. A slight decrease in calf circumference <1 cm was seen in the ten ankles, 1-2 cm in the four ankles. Nine ankles were mildly hypersensitive to meteorological changes. Peak torque of ankle plantar flexion was slightly lower on the index limb at both velocities in nine selected patients who carried out performance tests. However, there were no significant differences (5.2% at 30 degrees /s and 2.7% at 120 degrees /s, P = n.s. and P = n.s.). Of the 12 available follow-up magnetic resonance images, the average cross-sectional area of the remaining tendon was 82.01 mm(2) (range 69.05-107.35; SD 10.3), and their average thickness was 7.4 mm (range 6-10.35; SD 1.1). After a minimum 10-year follow-up, the harvesting of autogenous Achilles tendons was not found to significantly jeopardize ankle status. However, it also could not be independent of donor

  4. Effects of low-level laser therapy on autogenous bone graft stabilized with a new heterologous fibrin sealant.

    PubMed

    de Oliveira Gonçalves, Jéssica Barbosa; Buchaim, Daniela Vieira; de Souza Bueno, Cleuber Rodrigo; Pomini, Karina Torres; Barraviera, Benedito; Júnior, Rui Seabra Ferreira; Andreo, Jesus Carlos; de Castro Rodrigues, Antonio; Cestari, Tania Mary; Buchaim, Rogério Leone

    2016-09-01

    Autogenous bone grafts are used to repair bone defects, and the stabilization is needed for bone regeneration. Laser photobiomodulation is a modality of treatment in clinical practice for tissue regeneration, and it has therapeutic effects as an anti-inflammatory, analgesic and modulating cellular activity. The aim of the present study was to evaluate the effects of low-level laser therapy (LLLT) on an autogenous bone graft integration process stabilized with a new heterologous fibrin sealant. Forty rats were divided into two groups: Autogenous Fibrin Graft (AFG, n=20), in which a 5mm dome osteotomy was conducted in the right parietal bone and the graft was adhered to the left side using fibrin sealant; and Autogenous Fibrin Graft Laser (AFGL, n=20), which was subjected to the same procedures as AFG with the addition of LLLT. The treatment was performed immediately following surgery and then three times a week until euthanasia, using an 830nm laser (30mW, 6J/cm(2), 0.116cm(2), 258.6mW/cm(2), 2.9J). Five animals from each group were euthanized at 10, 20, 30 and 40days postoperative, and the samples were submitted to histomorphological and histomorphometric analysis. Partial bone regeneration occurred, with new bone tissue integrating the graft to the recipient bed and small areas of connective tissue. Comparative analysis of the groups at the same intervals revealed minor interfaces in group AFGL, with statistically significant differences (p<0.05) at all of the analyzed intervals (10days p=0.0087, 20days p=0.0012, 30days p<0.0001, 40days p=0.0142). In conclusion, low-level laser therapy stimulated bone regeneration and accelerated the process of integration of autogenous bone grafts. PMID:27497370

  5. A physical resist shrinkage model for full-chip lithography simulations

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zheng, Leiwu; Ma, Maggie; Zhao, Qian; Fan, Yongfa; Zhang, Qiang; Feng, Mu; Guo, Xin; Wallow, Tom; Gronlund, Keith; Goossens, Ronald; Zhang, Gary; Lu, Yenwen

    2016-03-01

    Strong resist shrinkage effects have been widely observed in resist profiles after negative tone development (NTD) and therefore must be taken into account in computational lithography applications. However, existing lithography simulation tools, especially those designed for full-chip applications, lack resist shrinkage modeling capabilities because they are not needed until only recently when NTD processes begin to replace the conventional positive tone development (PTD) processes where resist shrinkage effects are negligible. In this work we describe the development of a physical resist shrinkage (PRS) model for full-chip lithography simulations and present its accuracy evaluation against experimental data.

  6. Sudden bending of cracked laminates

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.

  7. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  8. Statistical crack mechanics

    SciTech Connect

    Dienes, J.K.

    1983-01-01

    An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).

  9. Cracked and Pitted Plain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-536, 6 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view--at 1.5 meters (5 feet) per pixel--of surfaces in far western Utopia Planitia. In this region, the plains have developed cracks and pit chains arranged in a polygonal pattern. The pits form by collapse along the trend of a previously-formed crack. This picture is located near 45.0oN, 275.4oW. This April 2003 image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  10. Upgrading of cracking gasoline

    SciTech Connect

    Harandi, M.N.; Owen, H.; Ragonese, F.P.; Yurchak, S.

    1990-08-21

    This patent describes an integrated catalytic cracking and gasoline upgrading process. It comprises: withdrawing a product stream from the riser reactor of a catalytic cracking process unit; charging the product stream to a primary fractionation zone; withdrawing an intermediate gasoline stream from the primary fractionation zone, the intermediate gasoline stream comprising olefinic gasoline having an ASTM D86 boiling range from about 90{degrees} to about 170{degrees} C.; contacting a first portion of the intermediate gasoline stream and a C{sub 2}{minus}C{sub 5} olefinic stream with a catalyst under conversion conditions to form an upgraded gasoline stream; and charging a second portion of the intermediate gasoline stream together with the upgraded gasoline stream to a gasoline product storage facility.

  11. Impaired decision-making and brain shrinkage in alcoholism.

    PubMed

    Le Berre, A-P; Rauchs, G; La Joie, R; Mézenge, F; Boudehent, C; Vabret, F; Segobin, S; Viader, F; Allain, P; Eustache, F; Pitel, A-L; Beaunieux, H

    2014-03-01

    Alcohol-dependent individuals usually favor instant gratification of alcohol use and ignore its long-term negative consequences, reflecting impaired decision-making. According to the somatic marker hypothesis, decision-making abilities are subtended by an extended brain network. As chronic alcohol consumption is known to be associated with brain shrinkage in this network, the present study investigated relationships between brain shrinkage and decision-making impairments in alcohol-dependent individuals early in abstinence using voxel-based morphometry. Thirty patients performed the Iowa Gambling Task and underwent a magnetic resonance imaging investigation (1.5T). Decision-making performances and brain data were compared with those of age-matched healthy controls. In the alcoholic group, a multiple regression analysis was conducted with two predictors (gray matter [GM] volume and decision-making measure) and two covariates (number of withdrawals and duration of alcoholism). Compared with controls, alcoholics had impaired decision-making and widespread reduced gray matter volume, especially in regions involved in decision-making. The regression analysis revealed links between high GM volume in the ventromedial prefrontal cortex, dorsal anterior cingulate cortex and right hippocampal formation, and high decision-making scores (P<0.001, uncorrected). Decision-making deficits in alcoholism may result from impairment of both emotional and cognitive networks.

  12. Shrinkage Estimation of Varying Covariate Effects Based On Quantile Regression

    PubMed Central

    Peng, Limin; Xu, Jinfeng; Kutner, Nancy

    2013-01-01

    Varying covariate effects often manifest meaningful heterogeneity in covariate-response associations. In this paper, we adopt a quantile regression model that assumes linearity at a continuous range of quantile levels as a tool to explore such data dynamics. The consideration of potential non-constancy of covariate effects necessitates a new perspective for variable selection, which, under the assumed quantile regression model, is to retain variables that have effects on all quantiles of interest as well as those that influence only part of quantiles considered. Current work on l1-penalized quantile regression either does not concern varying covariate effects or may not produce consistent variable selection in the presence of covariates with partial effects, a practical scenario of interest. In this work, we propose a shrinkage approach by adopting a novel uniform adaptive LASSO penalty. The new approach enjoys easy implementation without requiring smoothing. Moreover, it can consistently identify the true model (uniformly across quantiles) and achieve the oracle estimation efficiency. We further extend the proposed shrinkage method to the case where responses are subject to random right censoring. Numerical studies confirm the theoretical results and support the utility of our proposals. PMID:25332515

  13. Response Predicting LTCC Firing Shrinkage: A Response Surface Analysis Study

    SciTech Connect

    Girardi, Michael; Barner, Gregg; Lopez, Cristie; Duncan, Brent; Zawicki, Larry

    2009-02-25

    The Low Temperature Cofired Ceramic (LTCC) technology is used in a variety of applications including military/space electronics, wireless communication, MEMS, medical and automotive electronics. The use of LTCC is growing due to the low cost of investment, short development time, good electrical and mechanical properties, high reliability, and flexibility in design integration (3 dimensional (3D) microstructures with cavities are possible)). The dimensional accuracy of the resulting x/y shrinkage of LTCC substrates is responsible for component assembly problems with the tolerance effect that increases in relation to the substrate size. Response Surface Analysis was used to predict product shrinkage based on specific process inputs (metal loading, layer count, lamination pressure, and tape thickness) with the ultimate goal to optimize manufacturing outputs (NC files, stencils, and screens) in achieving the final product design the first time. Three (3) regression models were developed for the DuPont 951 tape system with DuPont 5734 gold metallization based on green tape thickness.

  14. Replica-based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.

    2007-01-01

    A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.

  15. Utopia Cracks and Polygons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-339, 23 April 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.

  16. Subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Nishida, Yuki; Toshinori, Ii; Harui, Tomoki; Tanaka, Mayu; Kashiwaya, Koki

    2016-04-01

    It is essential to study time-dependent deformation and fracturing in various rock materials to prevent natural hazards related to the failure of a rock mass. In addition, information of time-dependent fracturing is essential to ensure the long-term stability of a rock mass surrounding various structures. Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. It is known that subcritical crack growth is influenced by not only stress but also surrounding environment. Studies of subcritical crack growth have been widely conducted for silicate rocks such as igneous rocks and sandstones. By contrast, information of subcritical crack growth in carbonate rocks is not enough. Specifically, influence of surrounding environment on subcritical crack growth in carbonate rock should be clarified to ensure the long-term stability of a rock mass. In this study, subcritical crack growth in marble was investigated. Especially, the influence of the temperature, relative humidity and water on subcritical crack growth in marble is investigated. As rock samples, marbles obtained in Skopje-City in Macedonia and Carrara-City in Italy were used. To measure subcritical crack growth, we used the load relaxation method of the double-torsion (DT) test. All measurements by DT test were conducted under controlled temperature and relative humidity. For both marbles, it was shown that the crack velocity in marble in air increased with increasing relative humidity at a constant temperature. Additionally, the crack velocity in water was much higher than that in air. It was also found that the crack velocity increased with increasing temperature. It is considered that temperature and water have significant influences on subcritical crack growth in marble. For Carrara marble in air, it was recognized that the value of subcritical crack growth index became low when the crack velocity was higher than 10-4 m/s. This is similar to Region II of subcritical crack growth

  17. Adaptive changes in autogenous vein grafts for arterial reconstruction: Clinical Implications

    PubMed Central

    Owens, Christopher D.

    2009-01-01

    For patients with the most severe manifestations of lower extremity arterial occlusive disease, bypass surgery using autogenous vein has been the most durable reconstruction. However the incidence of bypass graft stenosis and graft failure remains substantial and wholesale improvements in patency are lacking. One potential explanation is that stenosis arises not only from over exuberant intimal hyperplasia but also due to insufficient adaptation or remodeling of the vein to the arterial environment. Although in vivo human studies are difficult to conduct, recent advances in imaging technology have made possible a more comprehensive structural examination of vein bypass maturation. This review summarizes recent translational efforts to understand the structural and functional properties of human vein grafts and places it within the context of the rich existing literature of vein graft failure. PMID:19837532

  18. Autogenous wisdom tooth transplantation: A case series with 6-9 months follow-up

    PubMed Central

    Nimčenko, Tatjana; Omerca, Gražvydas; Bramanti, Ennio; Cervino, Gabriele; Laino, Luigi; Cicciù, Marco

    2014-01-01

    Tooth transplantation can be considered a valid and predictable treatment option for rehabilitating young patients with permanent teeth loss. This study presents several cases of successful autogenous tooth transplantation with a 6-9 months follow-up. Tooth auto-transplantation can be considered a reasonable option for replacing missing teeth when a donor tooth is available. The auto-transplantation of a right mandibular third molar with compromised function and esthetics to replace the residual roots resulting from coronal destruction due to extensive carious lesion of the second molar in the same quadrant as shown in the presented cases can result a viable treatment alternative especially in a young patient that cannot undergo dental implant therapy. Transplantation of mature third molar seems to be a promising method for replacing a lost permanent molar tooth and restoring esthetics and function. This clinical procedure showed excellent functional and esthetical long-term results in the analyzed cases. PMID:25540668

  19. Autogenic feedback training experiment: A preventative method for space motion sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.

    1993-01-01

    Space motion sickness is a disorder which produces symptoms similar to those of motion sickness on Earth. This syndrome has affected approximately 50 percent of all astronauts and cosmonauts exposed to microgravity in space, but it differs from what is commonly known as motion sickness in a number of critical ways. There is currently no ground-based method for predicting susceptibility to motion sickness in space. Antimotion sickness drugs have had limited success in preventing or counteracting symptoms in space, and frequently caused debilitating side effects. The objectives were: (1) to evaluate the effectiveness of Autogenic-Feedback Training as a countermeasure for space motion sickness; (2) to compare physiological data and in-flight symptom reports to ground-based motion sickness data; and (3) to predict susceptibility to space motion sickness based on pre-flight data of each treatment group crew member.

  20. Gingival recession coverage: 
Do we still need autogenous grafts?

    PubMed

    Kasaj, Adrian

    2016-01-01

    A variety of periodontal plastic surgical techniques have been proposed to obtain root coverage of gingival recession defects. All of the available root coverage procedures are able to provide significant root coverage for Miller Class I and II recession-type defects. However, only the subepithelial connective tissue graft in conjunction with a coronally advanced flap appears consistently effective across all clinical parameters, and is therefore currently considered the gold standard for gingival recession therapy. The major shortcomings of connective tissue graft procedures include patient morbidity associated with the second surgical site and limited availability of palatal donor tissue. More recently, 3D collagen matrices of human and porcine origin have been introduced as possible alternatives to autogenous connective tissue grafts in recession coverage procedures. This paper aims to give an overview on the possible use of collagen matrices as soft tissue substitutes and a possible alternative to connective tissue grafts in the surgical treatment of gingival recession defects. PMID:27660847

  1. Autogenic-Feedback Training for the Control of Space Motion Sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, W. B.

    1994-01-01

    This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human physiological responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and "test-only" controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.

  2. Psychosomatic aspects in idiopathic infertility: effects of treatment with autogenic training.

    PubMed

    O'Moore, A M; O'Moore, R R; Harrison, R F; Murphy, G; Carruthers, M E

    1983-01-01

    It has long been recognised that there is a relationship between emotional stress and some forms of infertility. We have endeavoured to estimate "stress' levels before and after Autogenic Training in 15 couples with infertility of at least two years' duration. Potential stress markers were: plasma prolactin, total urinary free cortisol and catecholamines, and four psychological tests: Spielberger State-Trait anxiety scale, Taylor Manifest Anxiety Scale, the Cattell 16 personality factor questionnaire, and the Eysenck Personality Questionnaire. A control group of ten normal couples was included for comparison. The biochemical finding of higher mean prolactin levels in the female patients vs their controls was of particular interest. The significant reduction of the prolactin level, in parallel with decreased anxiety scores following treatment, supports the hypothesis that the elevated prolactin levels in these patients are indeed linked with emotional stress.

  3. Autogenic-feedback training: A preventive method for space adaptation syndrome

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Sharp, Joseph C.; Toscano, William B.; Kamiya, Joe; Miller, Neal E.

    1987-01-01

    The progress made to date on the reduction of data for Spacelab 3 Shuttle experiment, No. 3AFT23 is reported. Four astronauts participated as subjects in this experiment. Crewmen A and B served as treatment subjects (i.e., received preflight training for control of their own motion sickness symptoms) and Crewmen C and D served as control (i.e., did not receive training). A preliminary evaluation of Autogenic Feedback Training (AFT) was made from visual inspections of graphs that were generated from the preflight and inflight and inflight physiological data which included: (1) Baseline rotating chair tests for all crewmen; (2) Posttraining rotating chair tests of treatment groups subjects; (3) Preflight data from Joint Integrated Simulations for all crewmen; and (4) Flight data for all crewmen during mission days 0 through 4, and mission day 6 for treatment subjects only. A summary of the findings suggested by these data is outlined.

  4. Autogenous bone grafting in a patient on long-term oral bisphosphonate therapy: case report.

    PubMed

    El-Halaby, Ahmed; Becker, Jeffery; Bissada, Nabil F

    2009-12-01

    A 66-year-old patient was referred to the Periodontal Clinic at Case Western Reserve University for implant placement in the mandibular left first molar area. The patient reported a history of oral bisphosphonate intake for the last 7 years for the treatment of osteoporosis. Autogenous bone block grafting was planned to augment the ridge before implant placement. The surgery was performed under local anesthesia, and the implant was successfully placed 8 months after ridge augmentation. Healing was uneventful postoperatively, and the buccolingual width of the ridge increased significantly, allowing placement of a 5-mm-diameter dental implant. The patient showed proper healing of both the donor site and the recipient site, in spite of the long-term oral bisphosphonate therapy, with no resulting osteonecrosis of the jawbone.

  5. Treatment of unstable osteochondritis dissecans in adults with autogenous osteochondral grafts (Mosaicplasty): long-term results

    PubMed Central

    RONGA, MARIO; STISSI, PLACIDO; LA BARBERA, GIUSEPPE; VALOROSO, MARCO; ANGERETTI, GLORIA; GENOVESE, EUGENIO; CHERUBINO, PAOLO

    2015-01-01

    Purpose the unstable osteochondritis dissecans (OCD-type II and III according to the ICRS classification) of the knee largher than > 2.5 cm2 in adults are uncommon lesions and there is no consensus on how to treat them. Medium-term studies have reported good results using autogenous osteochondral plugs (mosaicplasty). The aim of this study is to analyze the long-term results of this technique for the treatment of unstable OCD in a selected group of adult patients. Methods four patients with OCD at either one of the femoral condyles were included in this prospective study. The average age was 21.2 years (range, 18–24 years). The OCD lesions were classified as type II in three patients and type III in one patient and the average size was 3.8 cm2 (range, 2.55–5.1 cm2). The lesions were treated in situ with a variable number of autogenous osteochondral plugs (Ø 4.5 mm2). The Modified Cincinnati, Lysholm II and Tegner scores were used for clinical and functional evaluation. Magnetic resonance arthrography (MRA) was performed before surgery and at 2, 5 and 10 years after surgery. A modified MOCART score was used to evaluate MRA findings. Results the average follow-up duration was ten years and 6 months (range, 10–11 years). No complications occurred. At the final follow-up, all scores (clinical, functional and MOCART) improved. In all but one of the patients MRA showed complete osteochondral repair. Conclusions the fixation of large and unstable OCD lesions with mosaicplasty may be a good option for treating type II or III OCD lesions in adults. The advantages of this technique include stable fixation, promotion of blood supply to the base of the OCD fragment, and grafting of autologous cancellous bone that stimulates healing with preservation of the articular surface. Level of evidence Level IV, therapeutic case series. PMID:26904522

  6. Endovascular Treatment of Autogenous Radiocephalic Fistulas with the 'Eighth Note' Deformity for Hemodialysis

    SciTech Connect

    Weng Meijui; Chen, Matt Chiung-Yu; Chi Wenche; Liu Yichun; Chien Kofen; Liang Hueilung; Pan, Huay-Ben

    2010-02-15

    The purpose of this paper is to describe a unique 'eighth note' deformity of the autogenous radiocephalic fistula for hemodialysis and to retrospectively evaluate the efficacy and safety of its endovascular treatment. Over 3 years, a total of 808 patients and 558 autogenous radiocephalic fistulas were treated for vascular access dysfunction or thrombosis. These included 14 fistulas in 14 patients (9 men, 5 women; mean age, 58.2 {+-} 2.8 years; range 27-79 years) whose fistulograms before treatment resembled a musical note, the eighth note. Endovascular treatment sought to remodel the deformed vascular access to a classic radiocephalic fistula and increase the number of cannulation sites available for hemodialysis. The technical and clinical success rates were each 92.8% (13/14). Fistula remodeling was successful in 13 patients. The postintervention primary patency was 100% at 90 days, 91.7 {+-} 0.8% at 120 days, 78.6 {+-} 13.9% at 180 days, 62.9 {+-} 17.9% at 360 days, 31.4 {+-} 24.0% at 540 days, and 0% at 720 days. The postintervention secondary patency was 100% at 90 days, 100% at 120 days, 100% at 180 days, 85.7 {+-} 13.2% at 360 days, and 85.7 {+-} 13.2% at 720 days. No major complications were noted. Minor complications were found in 71.4% of patients, all of which resolved spontaneously. In conclusion, endovascular treatment of fistulas with the eighth note deformity can effectively increase the number of available cannulation sites, facilitate fistula maturation, and facilitate thromboaspiration after fistula thrombosis.

  7. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  8. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  9. Modeling dental composite shrinkage by digital image correlation and finite element methods

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Huang, Pin-Sheng; Chuang, Shu-Fen

    2014-10-01

    Dental composites are light-curable resin-based materials with an inherent defect of polymerization shrinkage which may cause tooth deflection and debonding of restorations. This study aimed to combine digital image correlation (DIC) and finite element analysis (FEA) to model the shrinkage behaviors under different light curing regimens. Extracted human molars were prepared with proximal cavities for composite restorations, and then divided into three groups to receive different light curing protocols: regular intensity, low intensity, and step-curing consisting of low and high intensities. For each tooth, the composite fillings were consecutively placed under both unbonded and bonded conditions. At first, the shrinkage of the unbonded restorations was analyzed by DIC and adopted as the setting of FEA. The simulated shrinkage behaviors obtained from FEA were further validated by the measurements in the bonded cases. The results showed that different light curing regimens affected the shrinkage in unbonded restorations, with regular intensity showing the greatest shrinkage strain on the top surface. The shrinkage centers in the bonded cases were located closer to the cavity floor than those in the unbonded cases, and were less affected by curing regimens. The FEA results showed that the stress was modulated by the accumulated light energy density, while step-curing may alleviate the tensile stress along the cavity walls. In this study, DIC provides a complete description of the polymerization shrinkage behaviors of dental composites, which may facilitate the stress analysis in the numerical investigation.

  10. Microstructurally based mechanisms for modeling shrinkage of cement paste at multiple levels

    SciTech Connect

    Jennings, H.M.; Xi, Yunping

    1993-07-15

    Shrinkage of cement paste is controlled by a number of mechanisms that operate in various parts of the microstructure and at various length scales. A model for creep and shrinkage can be developed by combining several models that describe phenomena at each of several length scales, ranging from the nanometer to the meter. This model is described and preliminary results are discussed.

  11. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  12. Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, Hiba; Glisic, Branko

    2015-04-01

    Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.

  13. Shuttle Fuel Feedliner Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Turner, Jim (Technical Monitor)

    2002-01-01

    This presentation provides an overview of material covered during 'Space Shuttle Fuel Feedliner Cracking Investigation MSFC Fluids Workshop' held November 19-21, 2002. Topics covered include: cracks on fuel feed lines of Orbiter space shuttles, fluid driven cracking analysis, liner structural modes, structural motion in a fluid, fluid borne drivers, three dimensional computational fluid dynamics models, fluid borne drivers from pumps, amplification mechanisms, flow parameter mapping, and flight engine flow map.

  14. Crosslink-induced shrinkage of grafted Gaussian chains

    NASA Astrophysics Data System (ADS)

    Benetatos, Panayotis

    2014-04-01

    The statistical mechanics of polymers grafted on surfaces has been the subject of intense research activity because of many potential applications. In this paper, we analytically investigate the conformational changes caused by a single crosslink on two ideal (Gaussian) chains grafted onto a rigid planar surface. Both the crosslink and the surface reduce the number of allowed configurations. In the absence of the hard substrate, the sole effect of the crosslink is a reduction in the effective Kuhn length of a tethered chain. The crosslink-induced shrinkage (collapse) of the grafted chains (mushrooms) turns out to be a reduction in the variance of the distribution of the height of the chain rather than a reduction of the height itself.

  15. Random effects and shrinkage estimation in capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Link, W.A.

    2002-01-01

    We discuss the analysis of random effects in capture-recapture models, and outline Bayesian and frequentists approaches to their analysis. Under a normal model, random effects estimators derived from Bayesian or frequentist considerations have a common form as shrinkage estimators. We discuss some of the difficulties of analysing random effects using traditional methods, and argue that a Bayesian formulation provides a rigorous framework for dealing with these difficulties. In capture-recapture models, random effects may provide a parsimonious compromise between constant and completely time-dependent models for the parameters (e.g. survival probability). We consider application of random effects to band-recovery models, although the principles apply to more general situations, such as Cormack-Jolly-Seber models. We illustrate these ideas using a commonly analysed band recovery data set.

  16. BAYESIAN SHRINKAGE METHODS FOR PARTIALLY OBSERVED DATA WITH MANY PREDICTORS*

    PubMed Central

    Boonstra, Philip S.; Mukherjee, Bhramar; Taylor, Jeremy MG

    2013-01-01

    Motivated by the increasing use of and rapid changes in array technologies, we consider the prediction problem of fitting a linear regression relating a continuous outcome Y to a large number of covariates X, eg measurements from current, state-of-the-art technology. For most of the samples, only the outcome Y and surrogate covariates, W, are available. These surrogates may be data from prior studies using older technologies. Owing to the dimension of the problem and the large fraction of missing information, a critical issue is appropriate shrinkage of model parameters for an optimal bias-variance tradeoff. We discuss a variety of fully Bayesian and Empirical Bayes algorithms which account for uncertainty in the missing data and adaptively shrink parameter estimates for superior prediction. These methods are evaluated via a comprehensive simulation study. In addition, we apply our methods to a lung cancer dataset, predicting survival time (Y) using qRT-PCR (X) and microarray (W) measurements. PMID:24436727

  17. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection. PMID:24437766

  18. Catalyst for cracking kerosene

    SciTech Connect

    Hsie, C. H.

    1985-06-04

    A catalyst capable of cracking kerosene under lower pressure and temperature comprising kerosene; metal powder mixture of chromium powder, copper powder, lead powder, zinc powder, nickel powder, manganese powder in an amount of 12 to 13 parts by weight per 100 parts by weight of said kerosene; sulfuric acid in an amount of 15 to 30 parts by weight per 100 parts by weight of said kerosene; inorganic powder mixture of aluminum oxide powder, serpentine powder, alum powder, magnesium oxide powder, limestone powder, slake lime powder, silica powder, and granite powder in an amount of 150 to 170 parts by weight per 100 parts by weight of said kerosene.

  19. Analysis of the status of pre-release cracks in prestressed concrete structures using long-gauge sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, H.; Glisic, B.

    2015-02-01

    Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.

  20. Ensemble Kalman filter implementations based on shrinkage covariance matrix estimation

    NASA Astrophysics Data System (ADS)

    Nino-Ruiz, Elias D.; Sandu, Adrian

    2015-11-01

    This paper develops efficient ensemble Kalman filter (EnKF) implementations based on shrinkage covariance estimation. The forecast ensemble members at each step are used to estimate the background error covariance matrix via the Rao-Blackwell Ledoit and Wolf estimator, which has been specifically developed to approximate high-dimensional covariance matrices using a small number of samples. Two implementations are considered: in the EnKF full-space (EnKF-FS) approach, the assimilation process is performed in the model space, while the EnKF reduce-space (EnKF-RS) formulation performs the analysis in the subspace spanned by the ensemble members. In the context of EnKF-RS, additional samples are taken from the normal distribution described by the background ensemble mean and the estimated background covariance matrix, in order to increase the size of the ensemble and reduce the sampling error of the filter. This increase in the size of the ensemble is obtained without running the forward model. After the assimilation step, the additional samples are discarded and only the model-based ensemble members are propagated further. Methodologies to reduce the impact of spurious correlations and under-estimation of sample variances in the context of the EnKF-FS and EnKF-RS implementations are discussed. An adjoint-free four-dimensional extension of EnKF-RS is also discussed. Numerical experiments carried out with the Lorenz-96 model and a quasi-geostrophic model show that the use of shrinkage covariance matrix estimation can mitigate the impact of spurious correlations during the assimilation process.

  1. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  2. [Influence of transplantation of autogenic mezenhymal stem cells from the fatty tissues on osseogenic process (experimental research)].

    PubMed

    Orlov, A A; Saburina, I N; Sisoev, S D; Grigorian, A D

    2014-01-01

    In experiments on 48 rats of line Wistar, divided at 2 groups (first--basic group and 2-d group--group of comparison) through the use of morphological method was researched influence of mesenchymal stem cells (MSC) inoculated in the area of autogenic bone graft from tibia fixed at the surface of the jaw. The animals of group of comparison didn't get MSC. Time frames of watching: 21, 60, 120 and 180 days, 6 rats on the point of experiment in either of the two of the group. Data of this research had shown the intensification of bone formation process in the basic group of experiment under the action of the inoculation of autogenic MSC from adipose tissue, and as consequence of it, in eventual, merge of bone formations in a single entity.

  3. Hard and Soft Tissue Management of a Localized Alveolar Ridge Atrophy with Autogenous Sources and Biomaterials: A Challenging Clinical Case

    PubMed Central

    Andreoni, D.

    2016-01-01

    Particularly in the premaxillary area, the stability of hard and soft tissues plays a pivotal role in the success of the rehabilitation from both a functional and aesthetic aspect. The present case report describes the clinical management of a localized alveolar ridge atrophy in the area of the upper right canine associated with a thin gingival biotype with a lack of keratinized tissue. An autogenous bone block harvested from the chin associated with heterologous bone particles was used to replace the missing bone, allowing for a prosthetic driven implant placement. Soft tissues deficiency was corrected by means of a combined epithelialized and subepithelial connective tissue graft. The 3-year clinical and radiological follow-up demonstrated symmetric gingival levels of the upper canines, with physiological peri-implant probing depths and bone loss. Thus, the use of autogenous tissues combined with biomaterials might be considered a reliable technique in case of highly aesthetic demanding cases. PMID:27738534

  4. Comparative results of autogenous ignition temperature measurements by ASTM G 72 and pressurized scanning calorimetry in gaseous oxygen

    NASA Technical Reports Server (NTRS)

    Bryan, C. J.; Lowrie, R.

    1986-01-01

    The autogenous ignition temperature of four materials was determined by ASTM (G 72) and pressurized differential scanning calorimetry at 0.68-, 3.4-, and 6.8-MPa oxygen pressure. All four materials were found to ignite at lower temperatures in the ASTM method. The four materials evaluated in this program were Neoprene, Vespel SP-21, Fluorel E-2160, and nylon 6/6.

  5. Hemi-metatarsal transposition: the use of autogenous bone grafting to treat brachymetatarsia--a unique approach.

    PubMed

    Beaupied, J P; Carrozza, L P; Brynes, M F; Morreale, P F

    1991-01-01

    Many surgical procedures have been developed for relieving symptoms and improving cosmesis for brachymetatarsia. The etiology, clinical consequences, various surgical alternatives, and a unique case report are discussed. Surgical correction, demonstrating the use of autogenous bone grafts in hemimetatarsal transpositions, was performed. The authors believe that this procedure is unique and efficient. It reestablishes the metatarsal parabola, restores function, relieves symptoms, and provides an excellent cosmetic result. PMID:1770206

  6. Microstructure Characterization and Stress Corrosion Evaluation of Autogenous and Hybrid Friction Stir Welded Al-Cu-Li 2195 Alloy

    NASA Technical Reports Server (NTRS)

    Li, Zhixian; Arbegast, William J.; Meletis, Efstathios I.

    1997-01-01

    Friction stir welding process is being evaluated for application on the Al-Cu-Li 2195 Super-Light Weight External Tank of the Space Transportation System. In the present investigation Al-Cu-Li 2195 plates were joined by autogenous friction stir welding (FSW) and hybrid FSW (friction stir welding over existing variable polarity plasma arc weld). Optical microscopy and transmission electron microscopy (TEM) were utilized to characterize microstructures of the weldments processed by both welding methods. TEM observations of autogenous FSW coupons in the center section of the dynamically-recrystallized zone showed an equiaxed recrystallized microstructure with an average grain size of approx. 3.8 microns. No T(sub 1), precipitates were present in the above-mentioned zone. Instead, T(sub B) and alpha precipitates were found in this zone with a lower population. Alternate immersion, anodic polarization, constant load, and slow strain tests were carried out to evaluate the general corrosion and stress-corrosion properties of autogenous and hybrid FSW prepared coupons. The experimental results will be discussed.

  7. Success rate of implants placed in autogenous bone blocks versus allogenic bone blocks: A systematic literature review.

    PubMed

    Motamedian, Saeed Reza; Khojaste, Moein; Khojasteh, Arash

    2016-01-01

    The aim of this study is to review and compare survival/success rate of dental implants inserted in autogenous and allogenic bone blocks (ALBs). A PubMed search was performed from January 1990 to June 2014 limited to English language and human studies. Studies that reported treatment outcome of implants inserted in augmented alveolar ridges with autogenous or ALBs were included. Primary search identified 470 studies. For autogenous bone block (ABB) 36 articles and for ALB 23 articles met the inclusion criteria. Evidence on implant survival/success rate of both techniques was limited to observational studies with relatively small sample sizes. Study design, treatment methods, follow-ups, defect location, and morphology varied among studies. The range of implant survival and success rates in ABB was from 73.8% to 100% and 72.8% to 100%, respectively. The corresponding numbers for ALB were 95.3-100% and 93.7-100%, respectively. A definite conclusion could not be reached. Future studies with long-term follow-ups are required to further elucidate this issue. PMID:27563613

  8. Success rate of implants placed in autogenous bone blocks versus allogenic bone blocks: A systematic literature review

    PubMed Central

    Motamedian, Saeed Reza; Khojaste, Moein; Khojasteh, Arash

    2016-01-01

    The aim of this study is to review and compare survival/success rate of dental implants inserted in autogenous and allogenic bone blocks (ALBs). A PubMed search was performed from January 1990 to June 2014 limited to English language and human studies. Studies that reported treatment outcome of implants inserted in augmented alveolar ridges with autogenous or ALBs were included. Primary search identified 470 studies. For autogenous bone block (ABB) 36 articles and for ALB 23 articles met the inclusion criteria. Evidence on implant survival/success rate of both techniques was limited to observational studies with relatively small sample sizes. Study design, treatment methods, follow-ups, defect location, and morphology varied among studies. The range of implant survival and success rates in ABB was from 73.8% to 100% and 72.8% to 100%, respectively. The corresponding numbers for ALB were 95.3–100% and 93.7–100%, respectively. A definite conclusion could not be reached. Future studies with long-term follow-ups are required to further elucidate this issue. PMID:27563613

  9. Autogenic terraces and non-linear river incision rates under steady external forcing

    NASA Astrophysics Data System (ADS)

    Malatesta, Luca C.; Prancevic, Jeffrey P.; Avouac, Jean-Philippe

    2015-04-01

    Fluvial terraces are among the most commonly cited records of hydraulic changes and tectonic events, and researchers often use the timing of their abandonment to constrain regional climatic and tectonic forcings. However, it can be challenging to identify the cause of terrace abandonment, as the same first order signature results from multiple drivers: external forcings of tectonics and climate, and internal autogenic feedbacks. Misinterpretation of the origin of fluvial terraces carries important consequences, as they often are key evidences for geomorphological and tectonic studies. Using a numerical model we identify an autogenic mechanism in transport-limited rivers that produces accelerated incision rates and the abandonment of significant terraces under steady forcing conditions. We show that a 'bank-feedback' process controls the cross-sectional geometry of channel entrenchment through the rising cost of eroding higher banks. During a phase of incision under the forcing of regular discharges (e.g. bankfull floods), an incising alluvial river migrates in a floodplain bound by progressively higher banks. Consequently, the volume of sediment produced by a unit of lateral migration grows larger and eventually forms a talus that may persist for multiple flood events. The talus shields the toe of the bank and prevents lateral erosion while vertical erosion can continue unhindered. This bank-shielding mechanism becomes more effective as vertical erosion creates even higher banks, initiating a feedback that promotes dramatic vertical entrenchment and abandonment of wide terraces. We propose that such a 'bank-feedback' process also plays a large role in determining the source of bedload material by forcing the river to tap into deeper and older sedimentary strata. We compare the 'bank-feedback' mechanism with a well-studied case of the northern piedmont of the East Tian Shan. There, terrace ages documenting >200 m of Holocene river incision, record a fourfold

  10. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  11. Interface cracks in piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Govorukha, V.; Kamlah, M.; Loboda, V.; Lapusta, Y.

    2016-02-01

    Due to their intrinsic electromechanical coupling behavior, piezoelectric materials are widely used in sensors, actuators and other modern technologies. It is well known that piezoelectric ceramics are very brittle and susceptible to fracture. In many cases, fracture occurs at interfaces as debonding and cracks. This leads to an undesired degradation of electrical and mechanical performance. Because of the practical and fundamental importance of the problem, interface cracks in piezoelectric materials have been actively studied in the last few decades. This review provides a comprehensive survey of recent works on cracks situated at the interface of two materials, at least one of which has piezoelectric or piezoelectromagnetic properties. Different electric boundary conditions along the crack faces are discussed. The oscillating and contact zone models for in-plane straight interface cracks between two dissimilar piezoelectric materials or between piezoelectric and non-piezoelectric ones are reviewed. Different peculiarities related to the investigation of interface cracks in piezoelectric materials for the anti-plane case, for functionally graded and thermopiezoelectric materials are presented. Papers related to magnetoelectroelastic bimaterials, to steady state motion of interface cracks in piezoelectric bimaterials and to circular arc-cracks at the interface of piezoelectric materials are reviewed, and various methods used to address these problems are discussed. The review concludes with an outlook on future research directions.

  12. Bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1979-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. The problem of cracks fully imbedded into the homogeneous strips is considered. The singular behavior of the stresses for two special crack geometries is studied. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. An interesting result found from the analysis of the latter is that for certain orthotropic material combinations the stress state at the point of intersection of a crack and an interface may be bounded whereas in isotropic materials at this point stresses are always singular. A number of numerical examples are worked out to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.

  13. Replica-Based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2008-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  14. Effect of light intensity on linear shrinkage of photo-activated composite resins during setting.

    PubMed

    Inoue, K; Howashi, G; Kanetou, T; Masumi, S; Ueno, O; Fujii, K

    2005-01-01

    The purpose of this investigation was to examine the effects of light intensity on linear shrinkage of photo-activated composite resins during setting. The materials used were four commercially available photo-activated composite resins. Three light-irradiation instruments were selected and prepared so as to obtain four light intensities (200, 480, 800 and 1600 mW cm(-2)). The linear shrinkage during setting was examined 10 min after light irradiation using a trial balance plastometer, and the specimen thickness was 2.0 mm for all materials. The depth of cure was examined according to the test method described in the International Organization for Standardization (ISO/FDIS 4049: 2000(E)). In measuring the linear shrinkage 60 s from the start of light irradiation for 10 s, there was a significant correlation (r = 0.89-0.94) between the amount of linear shrinkage and the light intensity: an increase in light intensity produced a greater linear shrinkage. Furthermore, there was a significant correlation (r = 0.92-1.0) between the linear shrinkage and the irradiation time: an increase in irradiation time resulted in a greater linear shrinkage. Values of the depth of cure ranged from 1.69 to 3.75 mm. PMID:15634297

  15. Cure shrinkage measurement of nonconductive adhesives by means of a thermomechanical analyzer

    NASA Astrophysics Data System (ADS)

    Yu, H.; Mhaisalkar, S. G.; Wong, E. H.

    2005-08-01

    The conductivity of a nonconductive adhesive (NCA) flip chip interconnect is completely dependent on the direct mechanical contact between the integrated circuit (IC) bump and substrate pad. Cure shrinkage of NCA is critical for the formation of the final contact force in the contacts. However, measurement of the cure shrinkage during cross-linking reaction is fairly difficult. This paper introduces a new, yet simple, approach to measure cure shrinkage of adhesives using a thermo-mechanical analyzer. Isothermal studies of shrinkage change as a function of curing show four distinct regions. First, the thickness of the epoxy decreases due to decreasing viscosity and applied load, followed by a stage where the dimension change is constant as the cross-linking reaction is yet to set in. Once cross-linking begins, the shrinkage reaches a maximum followed by a plateau where the cross-linking reaction has completed. Sharp changes of the slope of cure shrinkage versus degree of cure were observed to coincide with gelation and vitrification. After gelation, a linear relationship between the cure shrinkage and degree of cure was observed to extend until the occurrence of vitrification, which quenches the cross-linking reaction. Applied load in the range of 0.05 N was found to be optimal to minimize measurement errors.

  16. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  17. Impact of hydraulic suction history on crack growth mechanics in soil

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hallett, P. D.

    2008-05-01

    The mechanics of crack formation and the influence of soil stress history were described using the crack tip opening angle (CTOA) measured with fractography. Two soils were studied: a model soil consisting of 40% Ca-bentonite and 60% fine silica sand and a remolded paddy soil with similar clay content and mineralogy. Fracture testing used deep-notch bend specimens formed by molding soils at the liquid limit into rectangular bars, equilibrating to soil water suction ranging from 5 kPa to 50 kPa (with some 50 kPa specimens wetted to 5 kPa), and inserting a crack 0.4× specimen thickness. Bend tests at a constant displacement rate of 1 mm min-1 provided data on applied force and load point displacement. The growth and geometry of the cracks were quantified from a series of images to determine the CTOA. Modulus of rupture, evaluated from the peak force, increased as water suction increased. However, rewetting did not alter the peak stress from the 50 kPa value, indicating that shrinkage-induced consolidation was more important than the soil water suction at the onset of testing. CTOA measured during stable crack growth decreased with drying. CTOA decreased even further when specimens equilibrated initially to 50 kPa were rewetted to 5 kPa. These results suggested that CTOA was primarily governed by the stiffness, although rewetting probably altered the capillary stresses in advance of the crack tip. Our future work will combine CTOA with a model that couples hydrological and mechanical processes to take into account the dependency of CTOA on the soil water regime so that crack propagation in soil can be predicted.

  18. Effects of drying conditions, admixtures and specimen size on shrinkage strains

    SciTech Connect

    Al-Saleh, Saleh A. . E-mail: alsaleh@dr.com; Al-Zaid, Rajeh Z.

    2006-10-15

    The paper presents the results of an experimental investigation on the effects of drying conditions, specimen size and presence of plasticizing admixture on the development of shrinkage strains. The measurements are taken in a harsh (50 deg. C and 5% R.H.) and a moderate environment (28 deg. C and 50% R.H.). The results include strain development at various levels of cross sections of concrete prisms. The drying conditions are found to be the dominant parameter affecting the shrinkage strain development particularly in specimens of smaller sizes. The effect of plasticizing admixture on shrinkage strains is negligible.

  19. Thermomechanical simulation of the selective laser melting process for PA12 including volumetric shrinkage

    NASA Astrophysics Data System (ADS)

    Riedlbauer, D.; Steinmann, P.; Mergheim, J.

    2015-05-01

    The present contribution is concerned with the finite element simulation of the thermomechanical material behavior in the selective laser melting process for PA12. In the process shrinkage of the powder material is observed when becoming melt, as the porous character of the powder vanishes due to the phase transition. A nonlinear thermomechanical finite element model is developed, which captures the shrinkage of the material and includes temperature dependent material parameters. The model is used to simulate the shrinkage of the material in the process, where an adaptive mesh refinement is applied for increasing the accuracy of the simulation. The results are qualitatively compared with experimental data and show a good agreement.

  20. Cephalic Arch Stenosis in Autogenous Haemodialysis Fistulas: Treatment With the Viabahn Stent-Graft

    SciTech Connect

    Shawyer, Andrew; Fotiadis, Nicos I.; Namagondlu, Girish; Iyer, Arun; Blunden, Mark Raftery, Martin Yaqoob, Magdi

    2013-02-15

    Cephalic arch stenosis (CAS) is an important and common cause of dysfunction in autogenous haemodialysis fistulas that requires multiple reinterventions and aggressive surveillance. We evaluated the safety and efficacy of the Viabahn stent-graft for the management of CAS. Between April 2005 and October 2011, 11 consecutive patients [four men and seven women (mean age 56.7 years)] with CAS and dysfunctional fistulas were treated with insertion of 11 Viabahn stent-grafts. Six stent-grafts were inserted due to residual stenosis after angioplasty and five for fistuloplasty-induced rupture. No patient was lost to follow-up. The technical and clinical success rate was 100 %. Primary access patency rates were 81.8 % [95 % confidence interval (CI) 0.482-0.977] at 6 months and 72.7 % (95 % CI 0.390-0.939) at 12 months. Secondary access patency rates were 90.9 % at 6 months (95 % CI 0.587-0.997). There were no procedure-related complications. Mean follow-up was 543.8 days (range 156-2,282). The use of the Viabahn stent-graft in the management of CAS is technically feasible and, in this small series, showed patency rates that compare favorably with historical data of angioplasty and bare stents.

  1. Autogenic EMG-controlled functional electrical stimulation for ankle dorsiflexion control.

    PubMed

    Yeom, Hojun; Chang, Young-Hui

    2010-10-30

    Our objectives were to develop and test a new system for the potential for stable, real-time cancellation of residual stimulation artefacts (RSA) using surface electrode autogenic electromyography-controlled functional electrical stimulator (aEMGcFES). This type of closed-loop FES could be used to provide more natural, continuous control of lower extremity paretic muscles. We built upon work that has been done in the field of FES with one major technological innovation, an adaptive Gram-Schmidt filtering algorithm, which allowed us to digitally cancel RSA in real-time. This filtering algorithm resulted in a stable real-time estimation of the volitional intent of the stimulated muscle, which then acted as the direct signal for continuously controlling homonymous muscle stimulation. As a first step toward clinical application, we tested the viability of our aEMGcFES system to continuously control ankle dorsiflexion in a healthy subject. Our results indicate positively that an aEMGcFES device with adaptive filtering can respond proportionally to voluntary EMG and activate forceful movements to assist dorsiflexion during controlled isometric activation at the ankle. We also verified that normal ankle joint range of movement could be maintained while using the aEMGcFES system. We suggest that real-time cancellation of both primary and RSA is possible with surface electrode aEMGcFES in healthy subjects and shows promising potential for future clinical application to gait pathologies such as drop foot related to hemiparetic stroke.

  2. Silicate minerals for CO2 scavenging from biogas in Autogenerative High Pressure Digestion.

    PubMed

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-07-01

    Autogenerative High Pressure Digestion (AHPD) is a novel concept that integrates gas upgrading with anaerobic digestion by selective dissolution of CO2 at elevated biogas pressure. However, accumulation of CO2 and fatty acids after anaerobic digestion of glucose resulted in pH 3-5, which is incompatible with the commonly applied high-rate methanogenic processes. Therefore, we studied the use of wollastonite, olivine and anorthosite, with measured composition of CaSi1.05O3.4, Mg2Fe0.2Ni0.01Si1.2O5.3 and Na0.7Ca1K0.1Mg0.1Fe0.15Al3.1Si4O24, respectively, to scavenge CO2 during batch AHPD of glucose. Depending on the glucose to mineral ratio the pH increased to 6.0-7.5. Experiments with wollastonite showed that Ca(2+)-leaching was caused by volatile fatty acid (VFA) production during glucose digestion. At 1, 3 and 9 bar, the CH4 content reached 74%, 86% and 88%, respectively, indicating CO2 scavenging. Fixation of produced CO2 by CaCO3 precipitation in the sludge was confirmed by Fourier Transferred-InfraRed, Combined Field emission Scanning Electron Microscopy-Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis-Mass Spectroscopy. PMID:23726711

  3. Biological and physical properties of autogenous vascularized fibular grafts in dogs

    SciTech Connect

    Goldberg, V.M.; Stevenson, S.; Shaffer, J.W.; Davy, D.; Klein, L.; Zika, J.; Field, G. )

    1990-07-01

    The biological and biomechanical properties of normal fibulae, fibulae that had had a sham operation, and both vascularized and non-vascularized autogenous grafts were studied in dogs at three months after the operation. The study was designed to quantify and correlate changes in these properties in orthotopic, stably fixed, weight-bearing grafts and to provide a baseline for additional studies of allografts. The grafts were eight centimeters long and internally fixed. The mechanical properties of the grafts were studied by torsional testing. Metabolic turnover of the grafts was evaluated by preoperative labeling of the dogs with 3H-tetracycline for resorption of bone mineral and with 3H-proline for turnover of collagen. Cortical bone area and porosity were measured. Postoperative formation of bone was evaluated by sequential labeling with fluorochrome. The vascularized grafts resembled the fibulae that had had a sham operation and those that had not had an operation with regard to the total number of osteons and the remodeling process, as measured both morphometrically and metabolically. The vascularized grafts were stronger and stiffer than the non-vascularized grafts and were not different from the bones that had had a sham operation. In contrast, the non-vascularized grafts were smaller, weaker, less stiff, and more porotic, had fewer osteons, and demonstrated increased turnover and resorption compared with the vascularized grafts, the bones that had had a sham operation, and the bones that had not been operated on.

  4. Autogenic-feedback training: A potential treatment for post-flight orthostatic intolerance in aerospace crews

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.; Miller, Neil E.; Pickering, Thomas G.; Shapiro, David

    1993-01-01

    Postflight orthostatic intolerance was identified as a serious biomedical problem associated with long duration exposure to microgravity in space. High priority was given to the development of countermeasures for this disorder which are both effective and practical. A considerable body of clinical research demonstrated that people can be taught to increase their own blood pressure voluntarily and that this is an effective treatment for chronic orthostatic intolerance in paralyzed patients. The present pilot study was designed to examine the feasibility of adding training in control of blood pressure to an existing preflight training program designed to facilitate astronaut adaptation to microgravity. Using an operant conditioning procedure, Autogenic-Feedback Training (AFT), three men and two women participated in four to nine (15-30 training sessions). At the end of training, the average increase in systolic and diastolic pressure, as well as mean arterial pressures that the subjects made, ranged between 20 and 5O mmHg under both supine and 45 deg head-up tilt conditions. These findings suggest that AFT may be a useful alternative treatment or supplement to existing approaches for preventing postflight orthostatic intolerance. Further, the use of operant conditioning methods for training cardiovascular responses may contribute to the general understanding of the mechanisms of orthostatic intolerance.

  5. Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats

    PubMed Central

    Puricelli, Edela; Dutra, Nardier B; Ponzoni, Deise

    2009-01-01

    Background Bone grafts are widely used in oral and maxillofacial reconstruction. The influence of electromagnetic fields and magnets on the endogenous stimulation of target tissues has been investigated. This work aimed to assess the quality of bone healing in surgical cavities filled with autogenous bone grafts, under the influence of a permanent magnetic field produced by in vivo buried devices. Methods Metal devices consisting of commercially pure martensitic stainless steel washers and titanium screws were employed. Thirty male Wistar rats were divided into 3 experimental and 3 control groups. A surgical bone cavity was produced on the right femur, and a bone graft was collected and placed in each hole. Two metallic washers, magnetized in the experimental group but not in the control group, were attached on the borders of the cavity. Results The animals were sacrificed on postoperative days 15, 45 and 60. The histological analysis of control and experimental samples showed adequate integration of the bone grafts, with intense bone neoformation. On days 45 and 60, a continued influence of the magnetic field on the surgical cavity and on the bone graft was observed in samples from the experimental group. Conclusion The results showed intense bone neoformation in the experimental group as compared to control animals. The intense extra-cortical bone neoformation observed suggests that the osteoconductor condition of the graft may be more susceptible to stimulation, when submitted to a magnetic field. PMID:19134221

  6. The role of autogenic inhibition in the reduction of muscle splinting

    PubMed Central

    Miller, Herbert

    1982-01-01

    Muscle ‘splinting’ (acute hypertonicity) is the clinical entity commonly featured as a result of somatic or visceral trauma. One of the implicit objectives of manipulative therapy is to stretch hypertonic muscles. The mechanical parameters of the manipulative thrust are reviewed in relation to the physiology of the muscle afferents which are activated by changes in length, tension and momentum. During muscular contraction, autogenic inhibition is initiated in parallel (with the motor excitation), via the interneurons that are activated by the Golgi tendon organs. It appears that when an excessive force is applied to or exerted by a muscle at varying lengths (extensions), the Golgi tendon organ inhibition regulates not only the frequency of discharge, but also the range of firing of the motoneurons. This relaxation (the inhibition of gamma, as well as alpha motoneurons) is one of the desired end results of manual therapy in most conditions. The role of other muscle afferents (groups Ia and II) and the “gamma loop” are also discussed in relation to the muscle ‘splinting’ phenomenon.

  7. Autogenic-feedback training improves pilot performance during emergency flying conditions

    NASA Technical Reports Server (NTRS)

    Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.

    1994-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised three pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight, physiological data were recorded for each crew member and individual crew performance was rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  8. Autogenic-feedback training improves pilot performance during emergency flying conditions

    NASA Technical Reports Server (NTRS)

    Kellar, Michael A.; Folen, Raymond A.; Cowings, Patricia S.; Toscano, William B.; Hisert, Glen L.

    1993-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. The effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance was examined. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group comprised four pilots of HC-130 Hercules aircraft and four HH-65 Dolphin helicopter pilots; the control group comprised three pilots of HC-130's and six Dolphin helicopter pilots. During an initial flight physiological data were recorded for each crewmember and individual crew performance and rated by an instructor pilot. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training (AFT). The remaining subjects received no training. During a second flight, treatment subjects showed significant improvement in performance, while controls did not improve. The results indicate that AFT management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  9. Autogenous suppression of an opal mutation in the gene encoding peptide chain release factor 2.

    PubMed Central

    Kawakami, K; Nakamura, Y

    1990-01-01

    The peptide chain release factor 2 (RF2) gene, prfB, was cloned from Salmonella typhimurium by DNA hybridization using the Escherichia coli prfB probe. The nucleotide and amino acid sequences of prfB are 87.0% and 95.6% homologous between E. coli and S. typhimurium, respectively, including an in-frame premature UGA stop codon at position 26, the site of +1 frameshift for mature RF2 synthesis. The supK584 mutation, which had been isolated as a recessive UGA suppressor in S. typhimurium, caused an opal (UGA) substitution at amino acid position 144 in the prfB gene. Complementation, reversion, and gene fusion analyses led to the conclusion that supK is a S. typhimurium RF2 mutation and this opal RF2 mutation generates a UGA suppressor activity, presumably because of inefficient translation termination due to the reduced cellular level of RF2. In fact, suppression of the supK opal mutation results from a form of autogenous control of RF2 synthesis. Images PMID:2236050

  10. Silicate minerals for CO2 scavenging from biogas in Autogenerative High Pressure Digestion.

    PubMed

    Lindeboom, Ralph E F; Ferrer, Ivet; Weijma, Jan; van Lier, Jules B

    2013-07-01

    Autogenerative High Pressure Digestion (AHPD) is a novel concept that integrates gas upgrading with anaerobic digestion by selective dissolution of CO2 at elevated biogas pressure. However, accumulation of CO2 and fatty acids after anaerobic digestion of glucose resulted in pH 3-5, which is incompatible with the commonly applied high-rate methanogenic processes. Therefore, we studied the use of wollastonite, olivine and anorthosite, with measured composition of CaSi1.05O3.4, Mg2Fe0.2Ni0.01Si1.2O5.3 and Na0.7Ca1K0.1Mg0.1Fe0.15Al3.1Si4O24, respectively, to scavenge CO2 during batch AHPD of glucose. Depending on the glucose to mineral ratio the pH increased to 6.0-7.5. Experiments with wollastonite showed that Ca(2+)-leaching was caused by volatile fatty acid (VFA) production during glucose digestion. At 1, 3 and 9 bar, the CH4 content reached 74%, 86% and 88%, respectively, indicating CO2 scavenging. Fixation of produced CO2 by CaCO3 precipitation in the sludge was confirmed by Fourier Transferred-InfraRed, Combined Field emission Scanning Electron Microscopy-Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis-Mass Spectroscopy.

  11. Autogenous Regulation of the Rega Gene of Bacteriophage T4: Derepression of Translation

    PubMed Central

    Liang, Y.; Wei, R.; Hsu, T.; Alford, C.; Dawson, M.; Karam, J.

    1988-01-01

    The regA gene of phage T4 encodes a translational repressor that inhibits utilization of its own mRNA as well as the translation of a number of other phage-induced mRNAs. In recombinant plasmids, autogenous translational repression limits production of the RegA protein when the cloned structural gene is expressed under control of a strong, plasmid-borne promoter (lambda P(L)). We have found that a genetic fusion which places the regA ribosome binding domain in proximity to active translation leads to partial derepression of wild-type RegA protein synthesis. The derepression is not due to increased synthesis of regA RNA, suggesting that it occurs at the translational level. Derepressed clones of the wild-type regA gene were used to overproduce and purify the repressor. In an in vitro assay the wild-type target was sensitive and a mutant target was resistant to inhibition by the added protein. The results suggest that the sensitivity of a regA-regulated cistron to translational repression may depend on the competition between ribosomes and RegA protein for overlapping recognition sequences in the translation initiation domain of the mRNA. PMID:3410302

  12. Reconstruction of severely resorbed edentulous maxillae using osseointegrated fixtures in immediate autogenous bone grafts.

    PubMed

    Adell, R; Lekholm, U; Gröndahl, K; Brånemark, P I; Lindström, J; Jacobsson, M

    1990-01-01

    A surgical technique for rehabilitation of severely resorbed edentulous maxillae using fixed prostheses or overdentures supported by osseointegrated fixtures in immediate autogenous corticocancellous bone grafts from the ilium is described. The results of the first 23 consecutively treated patients are reviewed. The mean observation time was 4.2 years (range 1 to 10 years). A total of 124 fixtures was originally placed into the grafts, supplemented with 16 fixtures inserted later into seven of the jaws. Throughout their observation period, 17 of the patients had continuously stable prostheses. The remaining five had overdentures, and one patient had resorted to a conventional complete denture. After 4 years, 12 of 16 patients had continuously stable prostheses. Corresponding values at 5 years were 7 of 8 patients. Calculated from the date of abutment connection, 82.1% and 81.6% of the original fixtures were clinically stable and radiographically osseointegrated after 4 and 5 years in function, respectively. From the date of fixture placement, the corresponding figures were 75.3% and 73.8%, respectively. The mean marginal bone loss after the first year of prosthesis function was 1.49 mm. The annual marginal bone loss thereafter was about 0.1 mm. The results indicate that this technique is worthwhile for patients with extreme maxillary atrophy and who cannot wear conventional complete dentures.

  13. Autogenic-Feedback Training: A Potential Treatment for Orthostatic Intolerance in Aerospace Crews

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.; Miller, N. E.; Pickering, T. G.; Shapiro, D.; Stevenson, J.; Maloney, S.; Knapp, J.

    1994-01-01

    Postflight orthostatic intolerance has been identified as a serious biomedical problem associated with long-duration exposure to microgravity in space. High priority has been given to the development of countermeasures for this disorder that are both effective and practical. A considerable body of clinical research has demonstrated that people can be taught to increase their own blood pressure voluntarily, and that this is an effective treatment for chronic orthostatic intolerance in paralyzed patients. The current pilot study was designed to examine the feasibility of adding training in control of blood pressure to an existing preflight training program designed to facilitate astronaut adaptation to microgravity. Using an operant conditioning procedure, autogenic-feedback training (AFT), three men and two women participated in four to nine training (15-30-minute) sessions. At the end of training, the average increase in systolic and diastolic pressure, as well as mean arterial pressures, that the subjects made ranged between 20 and 50 mm Hg under both supine and 45 deg head-up tilt conditions. These findings indicate that AFT may be a useful alternative treatment or supplement to existing approaches for preventing postflight orthostatic intolerance. Furthermore, the use of operant conditioning methods for training cardiovascular responses may contribute to the general understanding of the mechanisms of orthostatic intolerance.

  14. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    NASA Astrophysics Data System (ADS)

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  15. Histomorphometric analysis of the repair process of autogenous bone grafts fixed at rat calvaria with cyanoacrylate

    PubMed Central

    ESTEVES, Jônatas Caldeira; BORRASCA, Albanir Gabriel; ARANEGA, Alessandra Marcondes; GARCIA JUNIOR, Idelmo Rangel; MAGRO FILHO, Osvaldo

    2011-01-01

    Objective The purpose of this study was to perform histological and histometric analyses of the repair process of autogenous bone grafts fixed at rat calvaria with ethyl-cyanoacrylate adhesive. Material and Methods Thirty-two rats were divided into two groups (n=16), Group I - Control and Group II - Adhesive. Osteotomies were made at the right parietal bone for graft obtainment using a 4-mm-diameter trephine drill. Then, the bone segments were fixed with the adhesive in the parietal region of the opposite side to the donor site. After 10 and 30 days, 8 animals of each group were euthanized and the calvarias were laboratorially processed for obtaining hematoxylin and eosin-stained slides for histological and histometric analyses. Results An intense inflammatory reaction was observed at the 10-day period. At 30 days, this reaction was less intense, despite the presence of adhesive at the recipient-site/graft interface. Graft incorporation to the recipient site was observed only at the control group, which maintained the highest graft size at 10 and 30 days. Conclusions Although the fragment was stable, the presence of adhesive in Group II did not allow graft incorporation to the recipient site, determining a localized, discrete and persistent inflammatory reaction. PMID:21986659

  16. [The origin of the eukaryotic cell. IV. The general hypothesis of the autogenous origin of eukaryotes].

    PubMed

    Seravin, L N

    1986-09-01

    The general hypothesis of autogenous (non-symbiotic) origin of the eukaryotic cell summarises some hypotheses explaining possible ways of the origin of main components and organelles of such a cell (the primary unicellular protist). Six hypothesises are suggested. Arising of the eukaryotic surface membrane of protist (cell) as a result of modification of its lipidoacidic composition, when most of synblocks and ensembles of eukaryotic enzymes sink into the cytoplasm (due to membrane vesiculation). Establishment of eukaryotic cytoplasm on the basis of successive formation of two locomotory-supporting apparates: the primary one (microtrabecular system), and the second one (cytoskeleton). Arising of the nucleus from a polyheteronomous nucleoid of proeukaryotes. A combinatorical hypothesis of mitosis formation. Polyheteronucleoid hypothesis of the origin of the mitochondria and chloroplasts. Arising of the flagellum from the contractile tentacle-like organelle, whose axoneme is made of single microtubules. A close interrelation and interaction in the process of evolution is noted between surface membranes, the cytoplasm and the nucleus. In accord a principles of block-construction and heterochrony (see: Seravin, 1986r), the author explains the preservation of prokaryotic signs of organization in some components (and organelles) of eukaryotic cell (and protists).

  17. Autogenic Feedback Training Exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Kellar, M. A.; Folen, R. A.; Toscano, W. B.; Burge, J. D.

    2001-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  18. Autogenic Feedback Training Exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions.

    PubMed

    Cowings, P S; Kellar, M A; Folen, R A; Toscano, W B; Burge, J D

    2001-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions.

  19. Autogenic Feedback Training Exercise and pilot performance: enhanced functioning under search-and-rescue flying conditions.

    PubMed

    Cowings, P S; Kellar, M A; Folen, R A; Toscano, W B; Burge, J D

    2001-01-01

    Studies have shown that autonomous mode behavior is one cause of aircraft fatalities due to pilot error. In such cases, the pilot is in a high state of psychological and physiological arousal and tends to focus on one problem, while ignoring more critical information. This study examined the effect of training in physiological self-recognition and regulation, as a means of improving crew cockpit performance. Seventeen pilots were assigned to the treatment and control groups matched for accumulated flight hours. The treatment group contained 4 pilots from HC-130 Hercules aircraft and 4 HH-65 Dolphin helicopter pilots; the control group contained 3 pilots of HC-130s and 6 helicopter pilots. During an initial flight, physiological data were recorded on each crewmember and an instructor pilot rated individual crew performance. Eight crewmembers were then taught to regulate their own physiological response levels using Autogenic-Feedback Training Exercise (AFTE). The remaining participants received no training. During a second flight, treatment participants showed significant improvement in performance (rated by the same instructor pilot as in pretests) while controls did not improve. The results indicate that AFTE management of high states of physiological arousal may improve pilot performance during emergency flying conditions. PMID:12033232

  20. Autogenic EMG-Controlled Functional Electrical Stimulation for Ankle Dorsiflexion Control

    PubMed Central

    Yeom, Hojun; Chang, Young-Hui

    2010-01-01

    Our objectives were to develop and test a new system for the potential for stable, real-time cancellation of residual stimulation artefacts (RSA) using surface electrode autogenic electromyography-controlled functional electrical stimulator (aEMGcFES). This type of closed-loop FES could be used to provide more natural, continuous control of lower extremity paretic muscles. We built upon work that has been done in the field of FES with one major technological innovation, an adaptive Gram-Schmidt filtering algorithm, which allowed us to digitally cancel RSA in real-time. This filtering algorithm resulted in a stable real-time estimation of the volitional intent of the stimulated muscle, which then acted as the direct signal for continuously controlling homonymous muscle stimulation. As a first step toward clinical application, we tested the viability of our aEMGcFES system to continuously control ankle dorsiflexion in a healthy subject. Our results indicate positively that an aEMGcFES device with adaptive filtering can respond proportionally to voluntary EMG and activate forceful movements to assist dorsiflexion during controlled isometric activation at the ankle. We also verified that normal ankle joint range of movement could be maintained while using the aEMGcFES system. We suggest that real-time cancellation of both primary and RSA is possible with surface electrode aEMGcFES in healthy subjects and shows promising potential for future clinical application to gait pathologies such as drop foot related to hemiparetic stroke. PMID:20713086

  1. Data-adaptive Shrinkage via the Hyperpenalized EM Algorithm

    PubMed Central

    Boonstra, Philip S.; Taylor, Jeremy M. G.; Mukherjee, Bhramar

    2015-01-01

    We propose an extension of the expectation-maximization (EM) algorithm, called the hyperpenalized EM (HEM) algorithm, that maximizes a penalized log-likelihood, for which some data are missing or unavailable, using a data-adaptive estimate of the penalty parameter. This is potentially useful in applications for which the analyst is unable or unwilling to choose a single value of a penalty parameter but instead can posit a plausible range of values. The HEM algorithm is conceptually straightforward and also very effective, and we demonstrate its utility in the analysis of a genomic data set. Gene expression measurements and clinical covariates were used to predict survival time. However, many survival times are censored, and some observations only contain expression measurements derived from a different assay, which together constitute a difficult missing data problem. It is desired to shrink the genomic contribution in a data-adaptive way. The HEM algorithm successfully handles both the missing data and shrinkage aspects of the problem. PMID:26834856

  2. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  3. INTER-GROUP IMAGE REGISTRATION BY HIERARCHICAL GRAPH SHRINKAGE.

    PubMed

    Ying, Shihui; Wu, Guorong; Liao, Shu; Shen, Dinggang

    2013-12-31

    In this paper, we propose a novel inter-group image registration method to register different groups of images (e.g., young and elderly brains) simultaneously. Specifically, we use a hierarchical two-level graph to model the distribution of entire images on the manifold, with intra-graph representing the image distribution in each group and the inter-graph describing the relationship between two groups. Then the procedure of inter-group registration is formulated as a dynamic evolution of graph shrinkage. The advantage of our method is that the topology of entire image distribution is explored to guide the image registration. In this way, each image coordinates with its neighboring images on the manifold to deform towards the population center, by following the deformation pathway simultaneously optimized within the graph. Our proposed method has been also compared with other state-of-the-art inter-group registration methods, where our method achieves better registration results in terms of registration accuracy and robustness.

  4. INTER-GROUP IMAGE REGISTRATION BY HIERARCHICAL GRAPH SHRINKAGE

    PubMed Central

    Ying, Shihui; Wu, Guorong; Liao, Shu; Shen, Dinggang

    2013-01-01

    In this paper, we propose a novel inter-group image registration method to register different groups of images (e.g., young and elderly brains) simultaneously. Specifically, we use a hierarchical two-level graph to model the distribution of entire images on the manifold, with intra-graph representing the image distribution in each group and the inter-graph describing the relationship between two groups. Then the procedure of inter-group registration is formulated as a dynamic evolution of graph shrinkage. The advantage of our method is that the topology of entire image distribution is explored to guide the image registration. In this way, each image coordinates with its neighboring images on the manifold to deform towards the population center, by following the deformation pathway simultaneously optimized within the graph. Our proposed method has been also compared with other state-of-the-art inter-group registration methods, where our method achieves better registration results in terms of registration accuracy and robustness. PMID:24443692

  5. Super-resolution optical telescopes with local light diffraction shrinkage

    PubMed Central

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-01-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems. PMID:26677820

  6. Super-resolution optical telescopes with local light diffraction shrinkage

    NASA Astrophysics Data System (ADS)

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-01

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  7. Shrinkage/swelling of compacted clayey loose and dense soils

    NASA Astrophysics Data System (ADS)

    Nowamooz, Hossein; Masrouri, Farimah

    2009-11-01

    This Note presents an experimental study performed on expansive compacted loose and dense samples using osmotic oedometers. Several successive wetting and drying cycles were applied in a suction range between 0 and 8 MPa under different values of constant net vertical stress (15, 30, and 60 kPa). During the suction cycles, the dense samples showed cumulative swelling strains, while the loose samples showed volumetric shrinkage accumulation. At the end of the suction cycles, the volumetric strains converged to an equilibrium stage that indicated elastic behavior of the swelling soil for any further hydraulic variations. At this stage, the compression curves for the studied soil at the different imposed suctions (0, 2, and 8 MPa) converged towards the saturated state curve for the high applied vertical stresses. We defined this pressure as the saturation stress(P). The compression curves provided sufficient data to examine the soil mechanical behavior at the equilibrium stage. To cite this article: H. Nowamooz, F. Masrouri, C. R. Mecanique 337 (2009).

  8. Super-resolution optical telescopes with local light diffraction shrinkage.

    PubMed

    Wang, Changtao; Tang, Dongliang; Wang, Yanqin; Zhao, Zeyu; Wang, Jiong; Pu, Mingbo; Zhang, Yudong; Yan, Wei; Gao, Ping; Luo, Xiangang

    2015-12-18

    Suffering from giant size of objective lenses and infeasible manipulations of distant targets, telescopes could not seek helps from present super-resolution imaging, such as scanning near-field optical microscopy, perfect lens and stimulated emission depletion microscopy. In this paper, local light diffraction shrinkage associated with optical super-oscillatory phenomenon is proposed for real-time and optically restoring super-resolution imaging information in a telescope system. It is found that fine target features concealed in diffraction-limited optical images of a telescope could be observed in a small local field of view, benefiting from a relayed metasurface-based super-oscillatory imaging optics in which some local Fourier components beyond the cut-off frequency of telescope could be restored. As experimental examples, a minimal resolution to 0.55 of Rayleigh criterion is obtained, and imaging complex targets and large targets by superimposing multiple local fields of views are demonstrated as well. This investigation provides an access for real-time, incoherent and super-resolution telescopes without the manipulation of distant targets. More importantly, it gives counterintuitive evidence to the common knowledge that relayed optics could not deliver more imaging details than objective systems.

  9. Cell shrinkage and monovalent cation fluxes: role in apoptosis.

    PubMed

    Bortner, Carl D; Cidlowski, John A

    2007-06-15

    The loss of cell volume or cell shrinkage has been a morphological hallmark of the programmed cell death process known as apoptosis. This isotonic loss of cell volume has recently been term apoptotic volume decrease or AVD to distinguish it from inherent volume regulatory responses that occurs in cells under anisotonic conditions. Recent studies examining the intracellular signaling pathways that result in this unique cellular characteristic have determined that a fundamental movement of ions, particularly monovalent ions, underlie the AVD process and plays an important role on controlling the cell death process. An efflux of intracellular potassium was shown to be a critical aspect of the AVD process, as preventing this ion loss could protect cells from apoptosis. However, potassium plays a complex role as a loss of intracellular potassium has also been shown to be beneficial to the health of the cell. Additionally, the mechanisms that a cell employs to achieve this loss of intracellular potassium vary depending on the cell type and stimulus used to induce apoptosis, suggesting multiple ways exist to accomplish the same goal of AVD. Additionally, sodium and chloride have been shown to play a vital role during cell death in both the signaling and control of AVD in various apoptotic model systems. This review examines the relationship between this morphological change and intracellular monovalent ions during apoptosis. PMID:17321483

  10. Password Cracking Using Sony Playstations

    NASA Astrophysics Data System (ADS)

    Kleinhans, Hugo; Butts, Jonathan; Shenoi, Sujeet

    Law enforcement agencies frequently encounter encrypted digital evidence for which the cryptographic keys are unknown or unavailable. Password cracking - whether it employs brute force or sophisticated cryptanalytic techniques - requires massive computational resources. This paper evaluates the benefits of using the Sony PlayStation 3 (PS3) to crack passwords. The PS3 offers massive computational power at relatively low cost. Moreover, multiple PS3 systems can be introduced easily to expand parallel processing when additional power is needed. This paper also describes a distributed framework designed to enable law enforcement agents to crack encrypted archives and applications in an efficient and cost-effective manner.

  11. Numerical Simulation on Open Wellbore Shrinkage and Casing Equivalent Stress in Bedded Salt Rock Stratum

    PubMed Central

    Liu, Jianjun

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength. PMID:24198726

  12. Numerical simulation on open wellbore shrinkage and casing equivalent stress in bedded salt rock stratum.

    PubMed

    Liu, Jianjun; Zhang, Linzhi; Zhao, Jinzhou

    2013-01-01

    Most salt rock has interbed of mudstone in China. Owing to the enormous difference of mechanical properties between the mudstone interbed and salt rock, the stress-strain and creep behaviors of salt rock are significantly influenced by neighboring mudstone interbed. In order to identify the rules of wellbore shrinkage and casings equivalent stress in bedded salt rock stratum, three-dimensional finite difference models were established. The effects of thickness and elasticity modulus of mudstone interbed on the open wellbore shrinkage and equivalent stress of casing after cementing operation were studied, respectively. The results indicate that the shrinkage of open wellbore and equivalent stress of casings decreases with the increase of mudstone interbed thickness. The increasing of elasticity modulus will reduce the shrinkage of open wellbore and casing equivalent stress. Research results can provide the scientific basis for the design of mud density and casing strength.

  13. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    The mechanical properties, volumetric shrinkage and depth of cure of a short fiber-reinforced resin composite (SFRC) were investigated in this study and compared to both a bulk fill resin composite (BFRC) and conventional glass/ceramic-filled resin composite (CGRC). Fracture toughness, flexural properties, volumetric shrinkage and depth of cure of the SFRC, BFRC and CGRC were measured. SFRC had significantly higher fracture toughness than BFRCs and CGRCs. The flexural properties of SFRC were comparable with BFRCs and CGRCs. SFRC showed significantly lower volumetric shrinkage than the other tested resin composites. The depth of cure of the SFRC was similar to BFRCs and higher than CGRCs. The data from this laboratory investigation suggests that SFRC exhibits improvements in fracture toughness, volumetric shrinkage and depth of cure when compared with CGRC, but depth of cure of SFRC was similar to BFRC. PMID:27251997

  14. Increasing Item Complexity: A Possible Cause of Scale Shrinkage for Unidimensional Item Response Theory.

    ERIC Educational Resources Information Center

    Yen, Wendy M.

    1985-01-01

    An approximate relationship is devised between the unidimensional model used in data analysis and a multidimensional model hypothesized to be generating the item responses. Scale shrinkage is successfully predicted for several sets of simulated data. (Author/LMO)

  15. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    The mechanical properties, volumetric shrinkage and depth of cure of a short fiber-reinforced resin composite (SFRC) were investigated in this study and compared to both a bulk fill resin composite (BFRC) and conventional glass/ceramic-filled resin composite (CGRC). Fracture toughness, flexural properties, volumetric shrinkage and depth of cure of the SFRC, BFRC and CGRC were measured. SFRC had significantly higher fracture toughness than BFRCs and CGRCs. The flexural properties of SFRC were comparable with BFRCs and CGRCs. SFRC showed significantly lower volumetric shrinkage than the other tested resin composites. The depth of cure of the SFRC was similar to BFRCs and higher than CGRCs. The data from this laboratory investigation suggests that SFRC exhibits improvements in fracture toughness, volumetric shrinkage and depth of cure when compared with CGRC, but depth of cure of SFRC was similar to BFRC.

  16. A computational algorithm for crack determination: The multiple crack case

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Vogelius, Michael

    1992-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is developed. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. The method also adaptively changes the applied current flux at each iteration to maintain maximum sensitivity to the estimated locations of the cracks.

  17. Stress intensity and crack displacement for small edge cracks

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1988-01-01

    The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.

  18. Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash

    SciTech Connect

    Kayali, O.; Haque, M.N.; Zhu, B.

    1999-11-01

    Lightweight aggregate concretes containing fly ash with a compressive strength between 61 to 67 NPa were produced. The lightweight aggregate used was sintered fly ash. The concretes were reinforced with either polypropylene or steel fibres. The fibres did not affect the compressive strength, but did increase the tensile strength of these concretes. The modulus of elasticity of all the lightweight concretes tested was about 21 GPa, compared to 35 GPa for the normal-weight concrete. Fibre reinforcement did not affect the value of the elastic modulus. This type of lightweight concrete, containing fly ash as 23% of the total cementitious content, resulted in long-term shrinkage that is nearly twice as large as normal-weight concrete of somewhat similar strength. Polypropylene fibre reinforcement did not reduce drying shrinkage, while steel fibres did. Early shrinkage behavior of this type of lightweight concrete was similar to normal-weight concrete. However, the rate of shrinkage of the lightweight concrete remained constant until nearly 100 days of drying. This is different from normal-weight concrete that showed appreciably after 56 days. Shrinkage of normal-weight concrete stabilized after 400 days, which shrinkage of lightweight concrete did not appear to stabilize after a similar period of continuous drying.

  19. Development of a rapid cure polydimethylsiloxane replication process with near-zero shrinkage

    NASA Astrophysics Data System (ADS)

    Badshah, Mohsin Ali; Jang, Hyungjun; Kim, Young Kyu; Kim, Tae-Hyoung; Kim, Seok-min

    2014-07-01

    Replicated polydimethylsiloxane (PDMS) micro/nanostructures are widely used in various research fields due to their inexpensiveness, flexibility, low surface energy, good optical properties, biocompatibility, chemical inertness, high durability, and easy fabrication process. However, the application of PDMS micro/nanostructures is limited when an accurate pattern shape or position is required because of the shrinkage that occurs during the PDMS curing process. In this study, we analyzed the effects of processing parameters in the PDMS replication process on the shrinkage of the final structure. Although the shrinkage can be decreased by decreasing the curing temperature, this reduction also increases the unnecessary curing time. To minimize the inherent shrinkage in the PDMS replica without an accompanying curing time increase, we propose a PDMS replication process on a high modulus substrate (glass and polymer films) with compression pressure, in which the adhesion force between the substrate and the PDMS, and the compression pressure prevent shrinkage during the curing process. Using the proposed method, a PDMS replica with less than 0.1% in-plane and vertical shrinkage was obtained at a curing temperature of 150°C and a curing time of 10 min.

  20. Peridynamic model for fatigue cracking.

    SciTech Connect

    Silling, Stewart Andrew; Abe Askari

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  1. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  2. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  3. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  4. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  5. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  6. Cocaine/Crack: The Big Lie.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This pamphlet focuses on cocaine and crack use and the addictive nature of cocaine/crack. It contains a set of 21 questions about crack and cocaine, each accompanied by a clear and complete response. Interspersed throughout the booklet are photographs and quotes from former cocaine or crack users/addicts. Questions and answers focus on what…

  7. Cracking behavior of cored structures

    SciTech Connect

    Wahid, A.; Olson, D.L.; Matlock, D.K. . Center for Welding and Joining Research); Kelly, T.J. )

    1991-01-01

    The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a composition gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Data on stress corrosion cracking and fatigue crack growth in selected FCC alloys are used to illustrate the significance of microsegregation on mechanical properties.

  8. Cracking behavior of cored structures

    SciTech Connect

    Wahid, A.; Olson, D.L.; Matlock, D.K.; Kelly, T.J.

    1991-12-31

    The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a composition gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Data on stress corrosion cracking and fatigue crack growth in selected FCC alloys are used to illustrate the significance of microsegregation on mechanical properties.

  9. In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation.

    PubMed Central

    Yates, J L; Arfsten, A E; Nomura, M

    1980-01-01

    Escherichia coli ribosomal protein L1 (0.5 micro M) was found to inhibit the synthesis of both proteins of the L11 operon, L11 and L1, but not the synthesis of other proteins directed by lambda rifd 18 DNA. Similarly, S4 (1 micro M) selectively inhibited the synthesis of three proteins of the alpha operon, S13, S11, and S4, directed by lambda spcI DNA or a restriction enzyme fragment obtained from this DNA. S8 (3.6 micro M) also showed preferential inhibitory effects on the synthesis of some proteins encoded in the spc operon, L24 and L5 (and probably S14 and S8), directed by lambda spcl DNA or a restriction enzyme fragment carrying the genes for these proteins. The inhibitory effect of L1 was observed only with L1 and not with other proteins examined, including S4 and S8. Similarly, the effect of S4 was not observed with L1 or S8, and that of S8 was not seen with L1 or S4. Inhibition was shown to take place at the level of translation rather than transcription. Thus, at least some ribosomal proteins (L1 S4, and S8) have the ability to cause selective translational inhibition of the synthesis of certain ribosomal proteins whose genes are in the same operon as their own. These results support the hypothesis that certain free ribosomal proteins not assembled into ribosomes act as "autogenous" feedback inhibitors to regulate the synthesis of ribosomal proteins. Images PMID:6445562

  10. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms.

    PubMed

    Cowings, P S; Toscano, W B

    2000-10-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  11. NASA-Navy Telemedicine: Autogenic Feedback Training Exercises for Motion Sickness

    NASA Technical Reports Server (NTRS)

    Acromite, Michael T.; Cowings, Patricia; Toscano, William; Davis, Carl; Porter, Henry O.

    2010-01-01

    Airsickness is the most significant medical condition affecting naval aviation training. A 2001 study showed that airsickness was reported in 81% of naval aviation students and was associated with 82% of below average flight scores. The cost to a single training air-wing was over $150,000 annually for fuel and maintenance costs alone. Resistent cases are sent to the Naval Aerospace Medical Institute (NAMI) for evaluation and desensitization in the self-paced airsickness desensitization (SPAD) program. This approach is 75% successful, but can take up to 8 weeks at a significant travel cost. NASA Ames Research Center's Autogenic Feedback Training Exercises (AFTE) uses physiological and biofeedback training for motion sickness prevention. It has a remote capability that has been used from Moffett Field, CA to Atlanta, GA . AFTE is administered in twelve (30-minute) training sessions. The success rate for the NASA AFTE program has been over 85%. Methods: Implementation Phases: Phase I: Transfer NASA AFTE to NAMI; NASA will remotely train aviation students at NAMI. Phase II: NAMI-centered AFTE application with NASA oversight. Phase III: NAMI-centered AFTE to remotely train at various Navy sites. Phase IV: NAMI to offer Tri-service application and examine research opportunities. Results: 1. Use available telemedicine connectivity between NAMI and NASA. 2. Save over $2,000 per student trained. 3. Reduce aviation training attrition. 4. Provide standardization of multi-location motion sickness training. 5. Future tri-service initiatives. 6. Data to NASA and Navy for QA and research opportunities.

  12. Autogenous cortical bone and bioactive glass grafting for treatment of intraosseous periodontal defects

    PubMed Central

    Sumer, Mahmut; Keles, Gonca Cayir; Cetinkaya, Burcu Ozkan; Balli, Umut; Pamuk, Ferda; Uckan, Sina

    2013-01-01

    Objective: The aim of this 6-month prospective randomized clinical study was to compare the effectiveness of autogenous cortical bone (ACB) and bioactive glass (BG) grafting for the regenerative treatment of intraosseous periodontal defects. Methods: Via a split-mouth design, 15 chronic periodontitis patients (7 men, 8 women; mean age, 43.47 ± 1.45 years) who had probing pocket depths (PPDs) of ⩾6 mm following initial periodontal therapy were randomly assigned to receive 2 treatments in contralateral areas of the dentition: ACB grafting and BG grafting. The parameters compared in the patients were preoperative and 6-month postoperative PPDs, clinical attachment levels (CALs), and radiographic alveolar bone heights. Results: Both treatment modalities resulted in significant changes in postoperative measurements when compared to preoperative values (p < 0.01). PPDs were decreased, CALs were increased, and radiographic alveolar bone heights were increased by 5.00 ± 0.28, 4.60 ± 0.21, and 5.80 ± 0.43 mm in patients treated with ACB grafting and 5.13 ± 0.32, 4.67 ± 0.27, and 5.33 ± 0.36 mm in patients treated with BG grafting, respectively. Differences between the treatments were not statistically significant (P>.05). Conclusions: Within the limitations of this study, both ACB and BG grafting led to significant improvements in clinical and radiographic parameters 6 months postoperatively. These results suggest that either an ACB graft, which is completely safe with no associated concerns about disease transmission and immunogenic reactions, or a BG graft, which has an unlimited supply, can be selected for regenerative periodontal treatment. PMID:23408239

  13. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.

    2000-01-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p < 0.00003) or 50 mg (p < 0.00001) of promethazine. The control and promethazine groups did not differ. AFTE subjects reported fewer or no symptoms at higher rotational velocities than subjects in the control or promethazine groups. The primary physiological effect of promethazine was an inhibition of skin conductance level. The AFTE group showed significantly less heart rate and skin conductance variability during motion sickness tests

  14. Adequacy and survival of autogenous arteriovenous fistula in African American hemodialysis patients.

    PubMed

    Obialo, Chamberlain I; Tagoe, Albert T; Martin, Phyllis C; Asche-Crowe, Pearl E

    2003-01-01

    In African American hemodialysis patients, the prevalence of autogenous arteriovenous fistula (AVF) use is lower yet AVF complications are higher. However, the adequacy and survival rates of AVF in African American patients have not been clarified. These rates were evaluated in this study. A prospective surveillance of AVF was conducted at the Morehouse School of Medicine affiliated dialysis units. A database was generated to adequately document the dates of AVF creation, cannulation, and failure; anatomic fistula sites; and demographic and pertinent clinical information. A total of 167 AVF were created in 140 African American patients between 1997 and 2001. The mean age of the patients was 56 +/- 14 (21-83) years, and the mean duration of follow-up was 40 +/- 3 (1-200) weeks. Only 92 of 167 (55%) AVF were adequate for cannulation; 12% (20 of 167) failed to mature and 33% (55 of 167) developed early failure. Unassisted primary patency rates at 6 and 12 months were 85% and 61%, respectively. Both fistula adequacy and survival were greater in younger (aged < 65 years), male patients and in nondiabetic patients, but the differences were not significant. Logistic regression analysis showed that advanced age (> or = 65 years), female gender, and diabetic state did not significantly alter AVF adequacy. However, the presence of peripheral vascular disease adversely affected AVF adequacy [Odds Ratio 0.4 (confidence interval 0.2-1.0), p = 0.048]. The adequacy and survival rates of AVF in African Americans are comparable with those reported in other populations. Fistula adequacy and survival appear to be independent of ethnicity but dependent on individual comorbid conditions and the integrity of the vasculature. Discriminant AVF site selection and adequate preoperative assessment of the vasculature remain crucial to AVF survival.

  15. Initiation and propagation of small corner cracks

    NASA Technical Reports Server (NTRS)

    Ellyin, Ferdnand; Kujawski, Daniel; Craig, David F.

    1994-01-01

    The behaviour of small corner cracks, inclined or perpendicular to loading direction, is presented. There are two aspects to this investigation: initiation of small cracks and monitoring their subsequent growth. An initial pre-cracking procedure under cyclic compression is adopted to minimize the residual damage at the tip of the growing and self-arresting crack under cyclic compression. A final fatigue specimen, cut from the larger pre-cracked specimen, has two corner flaws. The opening load of corner flaw is monitored using a novel strain gauge approach. The behaviour of small corner cracks is described in terms of growth rate relative to the size of the crack and its shape.

  16. Mitigation of Crack Damage in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.

    2014-01-01

    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.

  17. Microcirculatory Response In Vivo on Local Intraarterial Infusion of Autogenic Adipose-derived Stem Cells or Stromal Vascular Fraction

    PubMed Central

    2016-01-01

    Background: Both adipose-derived stem cells (ASCs) and stromal vascular fraction (SVF) have been demonstrated to have regenerative properties with therapeutic potential for numerous diseases through local or topical applications. However, it is unclear whether ASC or SVF can be delivered systemically through an intra-arterial infusion. The purpose of this study was to examine the microcirculatory response in vivo on local intraarterial infusion of autogenic ASCs or SVF in a vascular pedicle isolated rat cremaster microcirculation model. Materials and Methods: Fat tissue was surgically harvested from the flanks of male Sprague–Dawley rats (n = 12) and processed for SVF isolation. Some SVF samples were cultured for 24 hours for ASC purification. The autogenic SVF (1 × 105) cells (n = 6) or purified ASC (1 × 105) cells (n = 6) cells were infused into the microcirculation of cremaster muscle at a speed of 0.05 mL/min through the cannulation of femoral artery. As this is a vascular pedicle isolated preparation, the infused SVF or ASC cells went nowhere but the cremaster muscle. The video image of the microcirculation was monitored in real time during infusion. Results: Arteriole diameter was measured as A1 (100–160 µm), A2 (40–80 µm), and A3/A4 (10–30 µm). Capillary perfusion was quantified in 18 capillary fields of each muscle. There was a significant increase in the diameter of terminal arterioles (P = 0.049) and the capillary density (P = 0.02) after ASC intraarterial infusion. However, a significant cell aggregation, embolisms, and arterial obstruction were observed in the microcirculation in every case during SVF infusion. Conclusions: Intraarterial infusion is an appropriate route for the delivery of autogenic ASCs, but not of SVF. SVF-induced microembolisms were the reason for narrowing or blocking the lumen of terminal arterioles, resulting in no flow in the corresponding capillaries. PMID:27757364

  18. Self-organization in irregular landscapes: Detecting autogenic interactions from field data using descriptive statistics and dynamical systems theory

    NASA Astrophysics Data System (ADS)

    Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.

    2015-12-01

    The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not

  19. Modified Weaver-Dunn Procedure Versus The Use of Semitendinosus Autogenous Tendon Graft for Acromioclavicular Joint Reconstruction

    PubMed Central

    Hegazy, Galal; Safwat, Hesham; Seddik, Mahmoud; Al-shal, Ehab A.; Al-Sebai, Ibrahim; Negm, Mohame

    2016-01-01

    Background: The optimal operative method for acromioclavicular joint reconstruction remains controversial. The modified Weaver-Dunn method is one of the most popular methods. Anatomic reconstruction of coracoclavicular ligaments with autogenous tendon grafts, widely used in treating chronic acromioclavicular joint instability, reportedly diminishes pain, eliminates sequelae, and improves function as well as strength. Objective: To compare clinical and radiologic outcomes between a modified Weaver-Dunn procedure and an anatomic coracoclavicular ligaments reconstruction technique using autogenous semitendinosus tendon graft. Methods: Twenty patients (mean age, 39 years) with painful, chronic Rockwood type III acromioclavicular joint dislocations were subjected to surgical reconstruction. In ten patients, a modified Weaver-Dunn procedure was performed, in the other ten patients; autogenous semitendinosus tendon graft was used. The mean time between injury and the index procedure was 18 month (range from 9 – 28). Clinical evaluation was performed using the Oxford Shoulder Score and Nottingham Clavicle Score after a mean follow-up time of 27.8 months. Preoperative and postoperative radiographs were compared. Results: In the Weaver-Dunn group the Oxford Shoulder Score improved from 25±4 to 40±2 points. While the Nottingham Clavicle Score increased from 48±7 to 84±11. In semitendinosus tendon graft group, the Oxford Shoulder Score improved from 25±3 points to 50±2 points and the Nottingham Clavicle Score from 48±8 points to 95±8, respectively. Conclusion: Acromioclavicular joint reconstruction using the semitendinosus tendon graft achieved better Oxford Shoulder Score and Nottingham Clavicle Score compared to the modified Weaver-Dunn procedure. PMID:27347245

  20. Cracks in Utopia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.

    The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. Autogenic incision and terrace formation resulting from abrupt late-glacial base-level fall, lower Chippewa River, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Faulkner, Douglas J.; Larson, Phillip H.; Jol, Harry M.; Running, Garry L.; Loope, Henry M.; Goble, Ronald J.

    2016-08-01

    A paucity of research exists regarding the millennial-scale response of inland alluvial streams to abrupt base-level fall. Studies of modern systems indicate that, over short time scales, the response is a diffusion-like process of upstream-propagating incision. In contrast, evidence from the lower Chippewa River (LCR), located in the upper Midwest of the USA, suggests that autogenic controls operating over time scales of several millennia can overwhelm diffusion, resulting in incision that is prolonged and episodic. During the Last Glacial Maximum, the LCR drained the Chippewa Lobe of the Laurentide Ice Sheet to the glacial upper Mississippi River (UMR). As a meltwater stream, it aggraded and filled its valley with glacial outwash, as did its largest tributaries, which were also meltwater streams. Its nonglacial tributaries aggraded, too, filling their valleys with locally derived sediment. During deglaciation, the UMR incised at least twice, abruptly lowering the LCR's base level - ~ 15 m at 16 ka or earlier and an additional 40 m at ca. 13.4 ka. Each of these base-level falls initiated incision of the LCR, led by upstream migrating knickpoints. The propagation of incision has, however, been a lengthy process. The optically stimulated luminescence (OSL) ages of terrace alluvium indicate that, by 13.5 ka, incision had advanced up the LCR only 15 km, and by 9 ka, only 55 km. The process has also been episodic, resulting in the formation of fill-cut terraces (inferred from GPR surveys and exposures of terrace alluvium) that are younger and more numerous in the upstream direction. Autogenic increases in sediment load and autogenic bed armoring, the result of periodic tributary-stream rejuvenation and preferential winnowing of fines by the incising river, may have periodically caused knickpoint migration and incision to slow and possibly stop, allowing lateral erosion and floodplain formation to dominate. A decline in sediment flux from stabilizing incised tributary

  2. Management of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow.

    PubMed

    Datta, N K; Das, K P; Alam, M S; Kaiser, M S

    2014-07-01

    Unicameral bone cyst is a common benign bone tumor and most frequent cause of the pathological fracture in children. We have started a prospective study for that treatment of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow in the department of Orthopaedics, Bangabandhu Sheikh Mujib Medical University (BSMMU) during May 1999 to April 2012. Aim of this study was to see Freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow a satisfactory graft material in the treatment of unicameral bone cyst as well as factors such as patients age, sex, cyst size and site of lesion influence on cyst healing. A total 35 patients of unicameral bone cyst were operated. In this study out of 35 patients, male were 22(62.86%) and female were 13(37.14). Male Female ratio 22:13(1.70:1) Age of the patients ranging from 2 years 6 month to 20 years, mean age 12.18 years more common 11 years to 20 years 29(82.86%) patients. Common bones sites involvements are proximal end of Humerus 20(57.14%), proximal end of Femur 7(20 %), proximal end of Tibia 3(8.57%), Calcanium 2(5.71%), proximal end of Ulna 1(2.86%), shaft of Radius 1(2.86%) and Phalanx 1(2.86%). Final clinical outcome of unicameral bone cyst treated by thorough curettage of cavity and tightly filled with freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow in which healed (success rate) 88.57% (31) and recurrence rate is 11.43% (4). P value is <0.001. Follow up period was 6 month to 11 years. From our study it was realized that freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow is useful graft material for healing of the lesional area as well as restoring structural integrity for the treatment of unicameral bone cyst.

  3. Autogeneous Laser and Hybrid Laser Arc Welding of T-joint Low Alloy Steel with Fiber Laser Systems

    NASA Astrophysics Data System (ADS)

    Unt, A.; Lappalainen, E.; Salminen, A.

    This paper is focused on the welding of low alloy steels S355 and AH36 in thicknesses 6, 8 and 10 mm in T-joint configuration using either autogeneous laser welding or laser-arc hybrid welding (HLAW) with high power fiber lasers. The aim was to obtain understanding of the factors influencing the size of the fillet and weld geometry through methodologically studying effects of laser power, welding speed, beam alignment relative to surface, air gap, focal point position and order of processes (in case of HLAW) and to get a B quality class welds in all thicknesses after parameter optimization.

  4. Team management of atrophic edentulism with autogenous inlay, veneer, and split grafts and endosseous implants: case reports.

    PubMed

    Collins, T A; Brown, G K; Johnson, N; Massey, J A; Nunn, B D

    1995-02-01

    Predictable success of autogenous graft and implant reconstructions is critically dependent on preoperative alignment and prosthetic considerations planned by the surgeon and the restorative dentist in a team approach. In such cases the surgeon has an opportunity to place accurate bone grafts that allow implants to be secured in both the correct position and correct axis for good prosthetic restoration. With careful thought, the restorative dentist and surgeon can plan the location, shape, and volume of an implant-graft reconstruction. Nine requirements for successful onlay grating with implants and five case reports illustrating the team approach are presented.

  5. Early sac shrinkage predicts a low risk of late complications after endovascular aortic aneurysm repair

    PubMed Central

    Bastos Gonçalves, F; Baderkhan, H; Verhagen, H J M; Wanhainen, A; Björck, M; Stolker, R J; Hoeks, S E; Mani, K

    2014-01-01

    Background Aneurysm shrinkage has been proposed as a marker of successful endovascular aneurysm repair (EVAR). Patients with early postoperative shrinkage may experience fewer subsequent complications, and consequently require less intensive surveillance. Methods Patients undergoing EVAR from 2000 to 2011 at three vascular centres (in 2 countries), who had two imaging examinations (postoperative and after 6–18 months), were included. Maximum diameter, complications and secondary interventions during follow-up were registered. Patients were categorized according to early sac dynamics. The primary endpoint was freedom from late complications. Secondary endpoints were freedom from secondary intervention, postimplant rupture and direct (type I/III) endoleaks. Results Some 597 EVARs (71·1 per cent of all EVARs) were included. No shrinkage was observed in 284 patients (47·6 per cent), moderate shrinkage (5–9 mm) in 142 (23·8 per cent) and major shrinkage (at least 10 mm) in 171 patients (28·6 per cent). Four years after the index imaging, the rate of freedom from complications was 84·3 (95 per cent confidence interval 78·7 to 89·8), 88·1 (80·6 to 95·5) and 94·4 (90·1 to 98·7) per cent respectively. No shrinkage was an independent risk factor for late complications compared with major shrinkage (hazard ratio (HR) 3·11; P < 0·001). Moderate compared with major shrinkage (HR 2·10; P = 0·022), early postoperative complications (HR 3·34; P < 0·001) and increasing abdominal aortic aneurysm baseline diameter (HR 1·02; P = 0·001) were also risk factors for late complications. Freedom from secondary interventions and direct endoleaks was greater for patients with major sac shrinkage. Conclusion Early change in aneurysm sac diameter is a strong predictor of late complications after EVAR. Patients with major sac shrinkage have a very low risk of complications for up to 5 years. This parameter may be used to tailor postoperative surveillance. PMID:24752772

  6. Formation and interpretation of dilatant echelon cracks.

    USGS Publications Warehouse

    Pollard, D.D.; Segall, P.; Delaney, P.T.

    1982-01-01

    The relative displacements of the walls of many veins, joints, and dikes demonstrate that these structures are dilatant cracks. We infer that dilatant cracks propagate in a principal stress plane, normal to the maximum tensile or least compressive stress. Arrays of echelon crack segments appear to emerge from the peripheries of some dilatant cracks. Breakdown of a parent crack into an echelon array may be initiated by a spatial or temporal rotation of the remote principal stresses about an axis parallel to the crack propagation direction. Near the parent-crack tip, a rotation of the local principal stresses is induced in the same sense, but not necessarily through the same angle. Incipient echelon cracks form at the parent-crack tip normal to the local maximum tensile stress. Further longitudinal growth along surfaces that twist about axes parallel to the propagation direction realigns each echelon crack into a remote principal stress plane. The walls of these twisted cracks may be idealized as helicoidal surfaces. An array of helicoidal cracks sweeps out less surface area than one parent crack twisting through the same angle. Thus, many echelon cracks grow from a single parent because the work done in creating the array, as measured by its surface area decreases as the number of cracks increases. -from Authors

  7. Coalescence, Cracking, and Crack Healing in Drying Dispersion Droplets.

    PubMed

    van der Kooij, Hanne M; de Kool, Marleen; van der Gucht, Jasper; Sprakel, Joris

    2015-04-21

    The formation of a uniform film from a polymer dispersion is a complex phenomenon involving the interplay of many processes: evaporation and resulting fluid flows through confined geometries, particle packing and deformation, coalescence, and cracking. Understanding this multidimensional problem has proven challenging, precluding a clear understanding of film formation to date. This is especially true for drying dispersion droplets, where the particular geometry introduces additional complexity such as lateral flow toward the droplet periphery. We study the drying of these droplets using a simplified approach in which we systematically vary a single parameter: the glass transition temperature (Tg) of the polymer. We combine optical with scanning electron microscopy to elucidate these processes from the macroscopic down to the single-particle level, both qualitatively and quantitatively, over times ranging from seconds to days. Our results indicate that the polymer Tg has a marked influence on the time evolution of particle deformation and coalescence, giving rise to a distinct and sudden cracking transition. Moreover, in cracked droplets it affects the frequently overlooked time scale of crack healing, giving rise to a second transition from self-healing to permanently cracked droplets. These findings are in line with the classical Routh-Russel model for film formation yet extend its scope from particle-level dynamics to long-range polymer flow.

  8. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  9. BWR pipe crack remedies evaluation

    SciTech Connect

    Shack, W.J.; Kassner, T.F.; Maiya, P.S.; Park, J.Y.; Ruther, W.E.

    1986-10-01

    This paper presents results on: (a) the influence of simulated BWR environments on the stress-corrosion-craking (SCC) susceptibility of Types 304, 316NG, and 347 stainless (SS); (b) fracture-mechanics crack-growth-rate measurements on these materials and weld overlay specimens in different environments; and (c) residual stress measurements and metallographic evaluations of conventional pipe weldments treated by a mechanical-stress-improvement process (MSIP) as well as those produced by a narrow-gap welding procedure. Crack initiation studies on Types 304 and 316NG SS under crevice and non-crevice conditions in 289/sup 0/C water containing 0.25 ppM dissolved oxygen with low sulfate concentrations indicate that SCC initiates at very low strains (<3%) in the nuclear grade material. Crack growth measurements on fracture-mechanics-type specimens, under low-frequency cyclic loading, show that the Type 316NG steel cracks at a somewhat lower rate (approx.40%) than sensitized Type 304 SS in an impurity environment with 0.25 ppM dissolved-oxygen; however, the latter material stops cracking when sulfate is removed from the water. Crack growth in both materials ceases under simulated hydrogen-water chemistry conditions (<5 ppB oxygen) even with 100 ppB sulfate present in the water. An unexpected result was obtained in the test on a weld overlay specimen in the impurity environment, viz., the crack grew to the overlay interface at a nominal rate, branched at 90/sup 0/ in both directions, and then grew at high rate (parallel to the nominal applied load). Residual stress measurements on MSIP-treated weldments and those produced by a narrow-gap welding procedure indicate that these techniques produce compressive stresses over most of the inner surface near the weld and heat-affected zones.

  10. Formation of shrinkage porosity during solidification of steel: Numerical simulation and experimental validation

    NASA Astrophysics Data System (ADS)

    Riedler, M.; Michelic, S.; Bernhard, C.

    2016-07-01

    The phase transformations in solidification of steel are accompanied by shrinkage and sudden changes in the solubility of alloying elements, resulting in negative side effects as micro- and macrosegregation and the formation of gas and shrinkage porosities. This paper deals with the numerical and experimental simulation of the formation of shrinkage porosity during the solidification of steel. First the physical basics for the mechanism of shrinkage pore formation will be discussed. The main reason for this type of porosity is the restraint of fluid flow in the mushy zone which leads to a pressure drop. The pressure decreases from the dendrite tip to the root. When the pressure falls below a critical value, a pore can form. The second part of the paper deals with different approaches for the prediction of the formation of shrinkage porosity. The most common one according to these models is the usage of a simple criterion function, like the Niyama criterion. For the computation of the porosity criterion the thermal gradient, cooling rate and solidification rate must be known, easily to determine from numerical simulation. More complex simulation tools like ProCAST include higher sophisticated models, which allow further calculations of the shrinkage cavity. Finally, the different approaches will be applied to a benchmark laboratory experiment. The presented results deal with an ingot casting experiment under variation of taper. The dominant influence of mould taper on the formation of shrinkage porosities can both be demonstrated by the lab experiment as well as numerical simulations. These results serve for the optimization of all ingot layouts for lab castings at the Chair of Ferrous Metallurgy.

  11. Tool-to-tool matching issues due to photoresist shrinkage effects

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Cordes, Aaron; Hartig, Carsten; Allgair, John; Vaid, Alok; Solecky, Eric; Rana, Narender

    2011-03-01

    Photoresist shrinkage is an important systematic uncertainty source in critical dimension-scanning electron microscope (CD-SEM) metrology of lithographic features. In terms of metrology gauge metrics, it influences both the precision and the accuracy of CD-SEM measurements, while locally damaging the sample. Minimization or elimination of shrinkage is desirable, yet elusive. Because this error source will furthermore be a factor in CD-SEM metrology on polymer materials, learning to work around this issue is necessary. Tool-to-tool matching is another important component of measurement uncertainty that metrologists must control in high volume manufacturing, and photoresist samples are a most difficult case due to shrinkage effects, as tool-to-tool biases can vary based on the sample or other parameters. In this work, we explore different shrinkage effects and their influence on matching. This will include an investigation of how the photoresist shrinkage rate varies with time from the chemical development of the photoresists, which necessitates that measurements on different tools within a group be performed in rapid succession to avoid additional error. The differences in shrinkage rates between static and dynamic load/unload cases will also be addressed, as these effects also influence matching. The results of these dynamic effect experiments will be shown to have far-reaching implications for the shrinkage phenomenon in general. Finally, various sampling schemes for matching will be explored, through both simulation and experiment, for use with shrinking materials. Included is a method whereby various fleet tools measure different locations, once per tool, within a uniform line/space grating. Finally, we will assess how well matching can be achieved using these techniques.

  12. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.

    PubMed

    Mejia, Amanda F; Nebel, Mary Beth; Shou, Haochang; Crainiceanu, Ciprian M; Pekar, James J; Mostofsky, Stewart; Caffo, Brian; Lindquist, Martin A

    2015-05-15

    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to "borrow strength" in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets - a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects - we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor cortex by

  13. Improving Reliability of Subject-Level Resting-State fMRI Parcellation with Shrinkage Estimators

    PubMed Central

    Mejia, Amanda F.; Nebel, Mary Beth; Shou, Haochang; Crainiceanu, Ciprian M.; Pekar, James J.; Mostofsky, Stewart; Caffo, Brian; Lindquist, Martin A.

    2015-01-01

    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to “borrow strength” in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets – a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects – we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor

  14. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN

    PubMed Central

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-01-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532

  15. Temperature-dependent biphasic shrinkage of lipid-coated bubbles in ultrasound.

    PubMed

    Cox, Debra J; Thomas, James L

    2013-04-01

    Lipid-coated microbubbles and emulsions are of interest as possible ultrasound-mediated drug delivery vehicles and for their interesting behaviors and fundamental properties. We and others have noted that bubbles coated with the long chain saturated phospholipid distearoylphosphatidylcholine (DSPC) rapidly shrink to a quasistable size when repeatedly insonated with short ultrasound pulses; such stability may adversely affect the bubble's subsequent ability to deliver its pharmacological cargo. Bubbles coated with the unsaturated lipid dioleoylphosphatidylcholine (DOPC) did not show stability but did undergo an abrupt change from rapid initial shrinkage to a slow persistent shrinkage, leading ultimately to dissolution or dispersion. As DOPC and DSPC differ not only in chain saturation but also phase behavior, we performed additional studies using dimyristoyl PC (DMPC) as a coat lipid and controlled the solution temperature to study bubble behavior on exposure to repeated ultrasound pulses for the same coat, in both fluid and gel phases. We find, first, that essentially all bubbles show an initially rapid shrinkage, in which gas loss exceeds the limit imposed by gas diffusion into the surrounding medium; this rapid shrinkage may be evidence of nanoscopic bubble fragmentation. Second, upon reaching a fraction of their initial size, bubbles begin a slower shrinkage with a shrinkage rate that depends on the resting phase state of the coat lipid: fluid DMPC monolayers give a more rapid shrinkage than gel phase. DOPC-coated bubbles showed no temperature-dependent responses in the same temperature range. The results are especially interesting in that bubble compression during the pulse is likely to adiabatically heat the bubble and fluidize the coat, regardless of its initial phase state; thus, some structural feature of the resting coat, such as defect lines in the gel phase, may be important in the subsequent response to the ~3 μs ultrasound pulse.

  16. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

    PubMed

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-04-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.

  17. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.

    PubMed

    Mejia, Amanda F; Nebel, Mary Beth; Shou, Haochang; Crainiceanu, Ciprian M; Pekar, James J; Mostofsky, Stewart; Caffo, Brian; Lindquist, Martin A

    2015-05-15

    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to "borrow strength" in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets - a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects - we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor cortex by

  18. Fatigue reliability of cracked engineering structures

    NASA Astrophysics Data System (ADS)

    Lanning, David Bruce, Jr.

    1997-12-01

    This study investigates the reliability of engineering structures containing fatigue cracks. Stress concentrations and welded joints are probable locations for the initiation and propagation of fatigue cracks. Due to the many unknowns of loading, materials properties, crack sizes and crack shapes present at these locations, a statistics-based reliability analysis is valuable in the careful consideration of these many different random factors involved in a fatigue life analysis, several of which are expanded upon in this study. The basic problem of a crack near a stress concentration is first considered. A formulation for the aspect ratio (a/c) of a propagating semi-elliptical fatigue crack located at the toe of a welded T-joint is developed using Newman and Raju's stress intensity factor for a cracked flat plate with a weld magnification factor and compared to that of a cracked flat plate, and the reliability in terms of fatigue lifetime is calculated with the aid of Paris' crack propagation equation for membrane and bending loadings. Crack closure effects are then introduced in the consideration of short crack effects, where crack growth rates typically may exceed those found using traditional linear elastic fracture mechanics solutions for long cracks. The probability of a very small, microstructurally influenced crack growing to a size influenced by local plastic conditions is calculated utilizing the probability of a crack continuing to grow past an obstacle, such as a grain boundary. The result is then combined with the probability for failure defined using the crack closure-modified Paris equation to find an overall reliability for the structure. Last, the probability of fracture is determined when a crack front encounters regions of non-uniform toughness, such as typical in the heat affected zone of a welded joint. An expression for the effective crack lengths of the dissimilar regions is derived, and used in a weakest-link fracture model in the evaluation

  19. Distributed coaxial cable crack sensors for crack mapping in RC

    NASA Astrophysics Data System (ADS)

    Greene, Gary G.; Belarbi, Abdeldjelil; Chen, Genda; McDaniel, Ryan

    2005-05-01

    New type of distributed coaxial cable sensors for health monitoring of large-scale civil infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to twenty cycles of combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, crack mapping, and yielding. The effect of multiple adjacent cracks, and signal loss was also investigated.

  20. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  1. Effects of Autogenic Drainage on Sputum Recovery and Pulmonary Function in People with Cystic Fibrosis: A Systematic Review

    PubMed Central

    Osterling, Kristin; Gilbert, Robert; Dechman, Gail

    2015-01-01

    ABSTRACT Purpose: To determine the effects of short- and long-term use of autogenic drainage (AD) on pulmonary function and sputum recovery in people with cystic fibrosis (CF). Methods: The authors conducted a systematic review of randomized and quasi-randomized clinical trials in which participants were people with CF who use AD as their sole airway clearance technique. Results: Searches in 4 databases and secondary sources using 5 key terms yielded 735 articles, of which 58 contained the terms autogenic drainage and cystic fibrosis. Ultimately, 4 studies, 2 of which were long term, were included. All measured forced expiratory volume in 1 second (FEV1) and found no change. The long-term studies were underpowered to detect change in FEV1; however, the short-term studies found a clinically significant sputum yield (≥4 g). Conclusion: AD has been shown to produce clinically significant sputum yields in a limited number of investigations. The effect of AD on the function of the pulmonary system remains uncertain, and questions have emerged regarding the appropriateness of FEV1 as a valid measure of airway clearance from peripheral lung regions. Further consideration should be given to the use of FEV1 as a primary measure of the effect of AD. PMID:27504031

  2. Bacterial contamination of autogenous bone collected by rongeur compared with that collected by bone filter during implant surgery.

    PubMed

    Hashemi, Hamid Mahmood; Beshkar, Majid

    2011-09-01

    The aim was to compare the degree of microbial contamination of autogenous bone collected by a bone filter with that of autogenous bone harvested by a rongeur during implant surgery. Thirty healthy patients had dental implants inserted. A strict aspiration protocol was used during the operation to collect particulate bone with minimal risk of contamination by oral flora. A fragment of bone (mainly from the tuberosity) was also harvested with a rongeur. Samples from both groups were sent to the laboratory for the microbes to be counted. All samples yielded viable micro-organisms. There was no significant difference between the number of aerobes in the bone filter and those in the bone fragment group (p=0.9). However, there were significantly more anaerobes in the bone filter group than in the bone fragment group. There were significantly more micro-organisms (both aerobes and anaerobes) in the bone filter group than the bone fragment group (p=0.0001). Even with the use of a stringent aspiration protocol the degree of bacterial contamination was significantly higher in collected bone debris than in bone harvested by rongeur during implant surgery.

  3. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage

    PubMed Central

    Stein, Ivar S.; Gray, John A.

    2015-01-01

    The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca2+ transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca2+ influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. SIGNIFICANCE STATEMENT Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca2+ influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long

  4. Autogenic variability and dynamic steady-state in sand-bedded rivers

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; McElroy, B.; Mohrig, D.

    2004-12-01

    In sand-bedded rivers, the local physics of sediment transport produces spatially varying topography that evolves unpredictably in time, even when the structure of the stream-bed varies little in a statistical sense. Understanding autogenic adjustments within trains of bedforms under conditions of steady and uniform flow is necessary before we can predict the response of channel morphology to changes in flow conditions, e.g. the stage-discharge relationship. Also, dunes may coalesce to form bars, which are capable of laterally deflecting flow and ultimately modifying the path and shape of a channel. Bedforms are the link between sediment transport and channel morphology in sandy rivers, and their collective interactions maintain a dynamic steady-state on the river bottom. We document the evolution of fields of dunes under steady flow in the N. Loup River, NE, using topographic maps generated from low-altitude aerial photography. The distributions of bedform height, length and migration rate are broad (coefficient of variation 0.5 for each), but remain stationary in time. Individual bedforms, however, undergo substantial deformation during migration, through interactions with neighboring bedforms and the associated spatially varying sediment flux. Cross-correlation techniques show that the spatial/temporal correlation coefficient of the sediment-fluid interface decays exponentially with migration distance and time. Hence, the dunes themselves are inherently unstable objects and become unrecognizable from their original form after migrating a few wavelengths, corresponding here to a distance of 2 m and a time of 1 hour. If bedload is the dominant style of sediment transport, then sediment flux may be treated as responding instantaneously to the flow field. We build a simple mathematical model in which instantaneous sediment flux is computed locally from a combination of bed elevation and slope, and we deduce the general form of a surface evolution equation for

  5. Concentration-dependent specimen shrinkage in iodine-enhanced microCT

    PubMed Central

    Vickerton, Paula; Jarvis, Jonathan; Jeffery, Nathan

    2013-01-01

    Iodine potassium iodide (I2KI) solution can be employed as a contrast agent for the visualisation of soft tissue structures in micro-computed tomography studies. This technique provides high resolution images of soft tissue non-destructively but initial studies suggest that the stain can cause substantial specimen shrinkage. The degree of specimen shrinkage, and potential deformation, is an important consideration when using the data for morphological studies. Here we quantify the macroscopic volume changes in mouse skeletal muscle, cardiac muscle and cerebellum as a result of immersion in the common fixatives 10% phosphate-buffered formal saline, 70% ethanol and 3% glutaraldehyde, compared with I2KI staining solution at concentrations of 2, 6, 10 and 20%. Immersion in the I2KI solution resulted in dramatic changes of tissue volume, which were far larger than the shrinkage from formalin fixation alone. The degree of macroscopic change was most dependent upon the I2KI concentration, with severe shrinkage of 70% seen in solutions of 20% I2KI after 14 days' incubation. When using this technique care needs to be taken to use the lowest concentration that will give adequate contrast to minimise artefacts due to shrinkage. PMID:23721431

  6. Effects of prepolymerized particle size and polymerization kinetics on volumetric shrinkage of dental modeling resins.

    PubMed

    Kwon, Tae-Yub; Ha, Jung-Yun; Chun, Ju-Na; Son, Jun Sik; Kim, Kyo-Han

    2014-01-01

    Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA) resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control). The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes) were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P > 0.05) or significantly larger (P < 0.05) than that of the control resin and were related to the polymerization kinetics (P < 0.05) rather than the PMMA bead size (P = 0.335). Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins.

  7. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials

    PubMed Central

    Moraes, Rafael R.; Garcia, Jeffrey W.; Barros, Matthew D.; Lewis, Steven H.; Pfeifer, Carmem S.; Liu, JianCheng; Stansbury, Jeffrey W.

    2011-01-01

    Objectives This study demonstrates the effects of nano-scale prepolymer particles as additives to model dental monomer and composite formulations. Methods Discrete nanogel particles were prepared by solution photopolymerization of isobornyl methacrylate and urethane dimethacrylate in the presence of a chain transfer agent, which also provided a means to attach reactive groups to the prepolymer. Nanogel was added to triethylene glycol dimethacrylate (TEGDMA) in increments between 5 and 40 wt% with resin viscosity, reaction kinetics, shrinkage, mechanical properties, stress and optical properties evaluated. Maximum loading of barium glass filler was determined as a function of nanogel content and composites with varied nanogel content but uniform filler loading were compared in terms of consistency, conversion, shrinkage and mechanical properties. Results High conversion, high molecular weight internally crosslinked and cyclized nanogel prepolymer was efficiently prepared and redispersed into TEGDMA with an exponential rise in viscosity accompanying nanogel content. Nanogel addition at any level produced no deleterious effects on reaction kinetics, conversion or mechanical properties, as long as reactive nanogels were used. A reduction in polymerization shrinkage and stress was achieved in proportion to nanogel content. Even at high nanogel concentrations, the maximum loading of glass filler was only marginally reduced relative to the control and high strength composite materials with low shrinkage were obtained. Significance The use of reactive nanogels offers a versatile platform from which resin and composite handling properties can be adjusted while the polymerization shrinkage and stress development that challenge the adhesive bonding of dental restoratives are controllably reduced. PMID:21388669

  8. Effects of Prepolymerized Particle Size and Polymerization Kinetics on Volumetric Shrinkage of Dental Modeling Resins

    PubMed Central

    Ha, Jung-Yun; Chun, Ju-Na; Son, Jun Sik; Kim, Kyo-Han

    2014-01-01

    Dental modeling resins have been developed for use in areas where highly precise resin structures are needed. The manufacturers claim that these polymethyl methacrylate/methyl methacrylate (PMMA/MMA) resins show little or no shrinkage after polymerization. This study examined the polymerization shrinkage of five dental modeling resins as well as one temporary PMMA/MMA resin (control). The morphology and the particle size of the prepolymerized PMMA powders were investigated by scanning electron microscopy and laser diffraction particle size analysis, respectively. Linear polymerization shrinkage strains of the resins were monitored for 20 minutes using a custom-made linometer, and the final values (at 20 minutes) were converted into volumetric shrinkages. The final volumetric shrinkage values for the modeling resins were statistically similar (P > 0.05) or significantly larger (P < 0.05) than that of the control resin and were related to the polymerization kinetics (P < 0.05) rather than the PMMA bead size (P = 0.335). Therefore, the optimal control of the polymerization kinetics seems to be more important for producing high-precision resin structures rather than the use of dental modeling resins. PMID:24779020

  9. Shrinkage and growth compensation in common sunflowers: refining estimates of damage

    USGS Publications Warehouse

    Sedgwick, James A.; Oldemeye, John L.; Swenson, Elizabeth L.

    1986-01-01

    Shrinkage and growth compensation of artificially damaged common sunflowers (Helianthus annuus) were studied in central North Dakota during 1981-1982 in an effort to increase accuracy of estimates of blackbird damage to sunflowers. In both years, as plants matured damaged areas on seedheads shrank at a greater rate than the sunflower heads themselves. This differential shrinkage resulted in an underestimation of the area damaged. Sunflower head and damaged-area shrinkage varied widely by time and degree of damage and by size of the seedhead damaged. Because variation in shrinkage by time of damage was so large, predicting when blackbird damage occurs may be the most important factor in estimating seed loss. Yield'occupied seed area was greater (P < 0.05) for damaged than undamaged heads and tended to increase as degree of damage inflicted increased, indicating growth compensation was occurring in response to lost seeds. Yields of undamaged seeds in seedheads damaged during early seed development were higher than those of heads damaged later. This suggested that there was a period of maximal response to damage when plants were best able to redirect growth to seeds remaining in the head. Sunflowers appear to be able to compensate for damage of ≤ 15% of the total hear area. Estimates of damage can be improved by applying empirical results of differential shrinkage and growth compensations.

  10. A Shrinkage Method for Testing the Hardy-Weinberg Equilibrium in Case-Control Studies

    PubMed Central

    Zang, Yong; Yuan, Ying

    2014-01-01

    Testing for the Hardy-Weinberg equilibrium (HWE) is often used as an initial step for checking the quality of genotyping. When testing the HWE for case-control data, the impact of a potential genetic association between the marker and the disease must be controlled for otherwise the results may be biased. Li and Li (2008) proposed a likelihood ratio test (LRT) that accounts for this potential genetic association and it is more powerful than the commonly used control-only χ2 test. However, the LRT is not efficient when the marker is independent of the disease, and also requires numerical optimization to calculate the test statistic. In this article, we propose a novel shrinkage test for assessing the HWE. The proposed shrinkage test yields higher statistical power than the LRT when the marker is independent of or weakly associated with the disease, and converges to the LRT when the marker is strongly associated with the disease. In addition, the proposed shrinkage test has a closed form and can be easily used to test the HWE for large datasets that result from genome-wide association studies. We compare the performance of the shrinkage test with existing methods using simulation studies, and apply the shrinkage test to a genome-wide association dataset for Alzheimer’s disease. PMID:23934751

  11. Perceptual shrinkage of a one-way motion path with high-speed motion.

    PubMed

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4-100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  12. Epoxy and acrylate stereolithography resins: In-situ measurements of cure shrinkage and stress relaxation

    SciTech Connect

    Guess, T.R.; Chambers, R.S.; Hinnerichs, T.D.; McCarty, G.D.; Shagam, R.N.

    1995-03-01

    Cross-sections of resin strands. Techniques were developed to make in situ measurements of gelled resin to determine linear shrinkage, stress-strain response and stress relaxation of single strands of SL 5170 epoxy and SL 5149 photocurable resins. Epoxy strands shrank approximately 1.4% and the acrylate strands about 1.0% after a single exposure. No forces were measured during cure shrinkage of strands following the first laser exposure. In multiple laser exposures, the acrylate continues to shrink; whereas (University of Dayton data) no additional shrinkage is observed in epoxy strands on a second hit. In force relaxation tests, a strand is drawn and then a 0.5% step strain is applied after different elapsed times. The epoxy initial modulus evolves (increases) with elapsed time following draw of the strand, and this evolution in modulus occurs after linear shrinkage has stopped. On the other hand, acrylates show no evolution of modulus with elapsed time following a single laser draw; i.e., once shrinkage stops after one laser hit, the initial modulus remains stable with elapsed time. Finally, relaxation response times of epoxy strands get larger with increasing elapsed time after laser draw. In acrylate strands there was no evolution in initial modulus with elapsed time after a single draw so relaxation times are not a function of elapsed time after a single hit with the laser.

  13. Physical Shrinkage Relationship in Soils of Dissimilar Lithologies in Central Southeastern Nigeria

    NASA Astrophysics Data System (ADS)

    Onweremadu, E. U.; Akamigbo, F. O. R.; Igwe, C. A.

    This study investigated the relationship between volume shrinkage properties of soils derived from different parent materials in Central Southeastern Nigeria as they related to selected soil physical properties. Using a free survey technique and guided by a geological map of the area, field sampling was conducted in the early months of 2005. Routine analyses were done using collected soil samples. Results showed significant (p<0.05) variation in sand, clay, waterholding capacity, Atterberg limits and Co-efficient Of Linear Extensibility (COLE) among the 6 studied soil groups. Volume shrinkage results indicated severe shrinkage (20-30%) rating for soils derived from Shale, moderate shrinkage (10-20%) for soils formed over Lower Coal Measures and Falsebedded Sandstones and slight shrinkage (0-10%) ratings for the rest. The COLE, used as an index of VS correlated significantly (p<0.05; n = 150) with waterholding capacity (WHC), Liquid Limit (LL), Plastic Limit (PL), Plasticity Index (PI) and clay content. A model was generated which expressed good predictive relationship between COLE and selected physical properties (R = 0.87; R2 = 0.75; 1-R2 = 0.25, RMSE = 0.01 and Bias = +0.00001), indicating high accuracy and little over-estimation by the model. More soil and soil related variables may further improve generated model (s), thus should be included in future studies.

  14. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  15. Perceptual shrinkage of a one-way motion path with high-speed motion.

    PubMed

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-07-28

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4-100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation.

  16. Polymerization shrinkage stress measurement for a UV-curable resist in nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Amirsadeghi, Alborz; Jong Lee, Jae; Park, Sunggook

    2011-11-01

    A simple method was developed to obtain the polymerization shrinkage stress exerted on the sidewalls of resist/stamp interface in ultraviolet nanoimprint lithography. This method is based on the measurements of demolding force which is the sum of adhesion and friction forces. The mean polymerization shrinkage stress on the sidewalls can readily be decoupled from overall demolding force by independently measuring the friction coefficient, adhesion force and geometries of stamp structures. The polymerization shrinkage stress on the sidewalls is overall larger than adhesion and increases by adding more cross-linking agent to the resist composition. This indicates that in addition to lowering the adhesion at the resist/stamp interface, development of resists with low degrees of shrinkage during UV curing is critical to reducing demolding force. It was also found that the shrinkage stress depends not only on the resist composition but also the stamp structure. A pillar structured stamp leads to a larger stress than a stamp with gratings with identical depth and width.

  17. Perceptual shrinkage of a one-way motion path with high-speed motion

    PubMed Central

    Nakajima, Yutaka; Sakaguchi, Yutaka

    2016-01-01

    Back-and-forth motion induces perceptual shrinkage of the motion path, but such shrinkage is hardly perceived for one-way motion. If the shrinkage is caused by temporal averaging of stimulus position around the endpoints, it should also be induced for one-way motion at higher motion speeds. In psychophysical experiments with a high-speed projector, we tested this conjecture for a one-way motion stimulus at various speeds (4–100 deg/s) along a straight path. Results showed that perceptual shrinkage of the motion path was robustly observed in higher-speed motion (faster than 66.7 deg/s). In addition, the amount of the forwards shift at the onset position was larger than that of the backwards shift at the offset position. These results demonstrate that high-speed motion can induce shrinkage, even for a one-way motion path. This can be explained by the view that perceptual position is represented by the integration of the temporal average of instantaneous position and the motion representation. PMID:27464844

  18. In situ investigation of the shrinkage of photopolymerized micro/nanostructures: the effect of the drying process.

    PubMed

    Sun, Quan; Ueno, Kosei; Misawa, Hiroaki

    2012-02-15

    We report on experimental study of the shrinkage of photopolymerized micro/nanostructures fabricated by femtosecond direct laser writing in organic-inorganic resists. Blueshift of the stop-band positions of fabricated photonic crystals during the drying process, which follows the development and rinsing stages, indicates that the drying process plays an important role in the formation of the shrinkage. It is further confirmed that the shrinkage almost completely occurs during the drying process by in situ optical monitoring the structures. These findings will help to better understand, control, and even positively utilize the shrinkage in the applications of the photopolymerization-based direct laser writing technique. PMID:22344156

  19. Three-dimensional X-ray micro-computed tomography analysis of polymerization shrinkage vectors in flowable composite.

    PubMed

    Takemura, Yukihiko; Hanaoka, Koji; Kawamata, Ryota; Sakurai, Takashi; Teranaka, Toshio

    2014-01-01

    The polymerization shrinkage of flowable resin composites was evaluated using air bubbles as traceable markers. Three different surface treatments i.e. an adhesive silane coupling agent, a separating silane coupling agent, and a combination of both, were applied to standard cavities. Before and after polymerization, X-ray micro-computed tomography images were recorded. Their superimposition and comparison allowed position changes of the markers to be visualized as vectors. The movement of the markers in the resin composite was, therefore, quantitatively evaluated from the tomographic images. Adhesion was found to significantly influence shrinkage patterns. The method used here could be employed to visualize shrinkage vectors and shrinkage volume. PMID:24988881

  20. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  1. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  2. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  3. Crack growth resistance in nuclear graphites

    NASA Astrophysics Data System (ADS)

    Ouagne, Pierre; Neighbour, Gareth B.; McEnaney, Brian

    2002-05-01

    Crack growth resistance curves for the non-linear fracture parameters KR, JR and R were measured for unirradiated PGA and IM1-24 graphites that are used as moderators in British Magnox and AGR nuclear reactors respectively. All the curves show an initial rising part, followed by a plateau region where the measured parameter is independent of crack length. JR and R decreased at large crack lengths. The initial rising curves were attributed to development of crack bridges in the wake of the crack front, while, in the plateau region, the crack bridging zone and the frontal process zone, ahead of the crack tip, reached steady state values. The decreases at large crack lengths were attributed to interaction of the frontal zone with the specimen end face. Microscopical evidence for graphite fragments acting as crack bridges showed that they were much smaller than filler particles, indicating that the graphite fragments are broken down during crack propagation. There was also evidence for friction points in the crack wake zone and shear cracking of some larger fragments. Inspection of KR curves showed that crack bridging contributed ~0.4 MPa m0.5 to the fracture toughness of the graphites. An analysis of JR and R curves showed that the development of the crack bridging zone in the rising part of the curves contributed ~20% to the total work of fracture. Energies absorbed during development of crack bridges and steady state crack propagation were greater for PGA than for IM1-24 graphite. These differences reflect the greater extent of irreversible processes occurring during cracking in the coarser microtexture of PGA graphite.

  4. Treatment of ligament laxity by electrothermal shrinkage or surgical plication: a morphologic and mechanical comparison.

    PubMed

    Hill, Adam M; Jones, Ioan T; Hansen, Ulrich; Suri, Amrita; Sandison, Ann; Moss, Jill; Wallace, Andrew L

    2007-01-01

    Capsular plication or thermal shrinkage can be used to enhance surgical joint stabilization. We compared mechanical or morphologic properties of the medial collateral ligament of the rabbit knee treated by either bipolar radiofrequency electrothermal shrinkage or surgical plication. After 12 weeks, the medial collateral ligaments were procured from treated and contralateral knees to undergo viscoelastic (creep) testing, quantitative transmission electron microscopy, and immunohistochemistry. Creep strain in thermal (1.85% +/- 0.32%) and plicated (1.92% +/- 0.36%) ligaments was almost twice that of the control group (1.04% +/- 0.15%), although there was no difference between treatment modalities. The morphologic parameters of all 3 groups were significantly different (P < .001). The thermal ligaments demonstrated predominantly small fibrils, whereas the plicated group displayed an intermediate distribution of heterogeneous fibrils, suggesting a different pattern of remodeling. Viscoelastic properties are similar after thermal shrinkage or plication, though inferior to those of intact ligaments. PMID:17030129

  5. Fast approach to infrared image restoration based on shrinkage functions calibration

    NASA Astrophysics Data System (ADS)

    Zhang, Chengshuo; Shi, Zelin; Xu, Baoshu; Feng, Bin

    2016-05-01

    High-quality image restoration in real time is a challenge for infrared imaging systems. We present a fast approach to infrared image restoration based on shrinkage functions calibration. Rather than directly modeling the prior of sharp images to obtain the shrinkage functions, we calibrate them for restoration directly by using the acquirable sharp and blurred image pairs from the same infrared imaging system. The calibration method is employed to minimize the sum of squared errors between sharp images and restored images from the blurred images. Our restoration algorithm is noniterative and its shrinkage functions are stored in the look-up tables, so an architecture solution of pipeline structure can work in real time. We demonstrate the effectiveness of our approach by testing its quantitative performance from simulation experiments and its qualitative performance from a developed wavefront coding infrared imaging system.

  6. Non-uniform shrinkage of multiple-walled carbon nanotubes under in situ electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Li, Lunxiong; Su, Jiangbin; Zhu, Xianfang

    2016-10-01

    Instability of multiple-walled carbon nanotubes (MWCNTs) was investigated by in situ transmission electron microscopy at room temperature. Specially, the non-uniform shrinkage of tubes was found: The pristine MWCNT shrank preferentially in its axial direction from the most curved free cap end of the tube, but the shrinkage of the tube diameter was offset by the axial shrinkage: For the complex MWCNT, the two inner MWCNTs also preferentially axially shrank from their most curved cap ends and separated from each other. However, for the effect of the radial pressure from the out walls which enveloped the two inner tubes and the tube amorphization, the two inner tubes were extruded to come close to each other and finally touched again. The new "evaporation" and "diffusion" mechanisms of carbon atoms as driven by the nano-curvature of CNT and the electron beam-induced athermal activation were suggested to explain the above phenomena.

  7. Shrinkage of freeze-dried cryosections of cells: Investigations by EFTEM and cryo-CLEM.

    PubMed

    Casanova, G; Nolin, F; Wortham, L; Ploton, D; Banchet, V; Michel, J

    2016-09-01

    Freeze-drying of cryosections of cells or tissues is considered to be the most efficient preparation for microanalysis purpose related to transmission electron microscopy. It allows the measurements of ions and water contents at the ultrastructural level. However an important drawback is associated to freeze-drying: the shrinkage of the cryosections. The aim of this paper is the investigation of this phenomenon by means of three different methods applied to both hydrated and dehydrated cryosections: direct distance measurements on fiducial points, thickness measurements by energy filtered transmission microscopy (EFTEM) and cryo-correlative light electron microscopy (cryo-CLEM). Measurements in our experimental conditions reveal a lateral shrinkage around 10% but the most important result concerns the lack of differential shrinkage between most of the cellular compartments. PMID:27428286

  8. Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials.

    PubMed

    Ovsianikov, Aleksandr; Shizhou, Xiao; Farsari, Maria; Vamvakaki, Maria; Fotakis, Costas; Chichkov, Boris N

    2009-02-16

    An investigation of the shrinking behaviour of a zirconium-based sol-gel composite micro-structured by two-photon polymerization is presented and a simple, straightforward methodology allowing the evaluation of shrinkage is suggested. It is shown that volume reduction is directly related to the average laser power (irradiation dose) used for the microfabrication and becomes a critical issue near the polymerization threshold. It is demonstrated that this shrinkage can be employed beneficially to improve the structural resolution. This is demonstrated by the presence of stopbands in the photonic crystal nanostructures fabricated with controlled volume reduction. Well above the polymerization threshold, the studied material exhibits remarkably low shrinkage. Therefore, no additional effort for the pre-compensation of distortion and for the improvement of structural stability is required. PMID:19219118

  9. Shrinkage of polyurethane molecular stamp fixed on epoxy resin modified glass substrate

    NASA Astrophysics Data System (ADS)

    Liu, Zhengchun; He, Quanguo; Xiao, Pengfeng; Tang, Jianxin; He, Nongyue; Lu, Zuhong

    2003-01-01

    The shrinkage of polyurethane stamps used for the in situ synthesis of DNA microarrays via molecular stamping method was studied with Micron XYZ Scope. It was found that the polyurethane stamp fixed on the epoxy resin modified glass strongly and showed minimum linear shrinkage. The linear shrinkage of the whole polyurethane stamp and that of each feature of polyurethane stamp were controlled within 0.0341% and 0.309%, respectively, which were due to the strong van der Waals forces and hydrogen bonds between polyurethane and epoxy resin. It was also confirmed by scanning electron microscope that the polyurethane stamp fixed on the epoxy resin modified glass replicated the patterns of motherboard with a high fidelity. All these underlay the synthesis of DNA microarray through molecular stamping method.

  10. Shrinkage of freeze-dried cryosections of cells: Investigations by EFTEM and cryo-CLEM.

    PubMed

    Casanova, G; Nolin, F; Wortham, L; Ploton, D; Banchet, V; Michel, J

    2016-09-01

    Freeze-drying of cryosections of cells or tissues is considered to be the most efficient preparation for microanalysis purpose related to transmission electron microscopy. It allows the measurements of ions and water contents at the ultrastructural level. However an important drawback is associated to freeze-drying: the shrinkage of the cryosections. The aim of this paper is the investigation of this phenomenon by means of three different methods applied to both hydrated and dehydrated cryosections: direct distance measurements on fiducial points, thickness measurements by energy filtered transmission microscopy (EFTEM) and cryo-correlative light electron microscopy (cryo-CLEM). Measurements in our experimental conditions reveal a lateral shrinkage around 10% but the most important result concerns the lack of differential shrinkage between most of the cellular compartments.

  11. Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ottevaere, H.; Tabak, M.; Chah, K.; Mégret, P.; Thienpont, H.

    2012-04-01

    Polymerization shrinkage of dental composite materials is recognized as one of the main reasons for the development of marginal leakage between a tooth and filling material. As an alternative to conventional measurement methods, we propose optical fiber Bragg grating (FBG) based sensors to perform real-time strain and shrinkage measurements during the curing process of dental resin cements. We introduce a fully automated set-up to measure the Bragg wavelength shift of the FBG strain sensors and to accurately monitor the linear strain and shrinkage of dental resins during curing. Three different dental resin materials were studied in this work: matrix-filled BisGMA-based resins, glass ionomers and organic modified ceramics.

  12. Shrinkage- and refractive-index shift-corrected volume holograms for optical interconnects

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Heng; Su, Der-Chin; Su, Jung-Chieh

    2002-08-01

    The Bragg mismatching condition for volume holograms occurs because of the changes in the thickness and the refractive index of holographic recording materials during the recording and reconstruction procedures. We propose an improved compensation method to physically correct these effects in the fabrications of volume holograms for optical interconnects. In order to show the validity of this method, Slavich photographic plate VRP-M is used to fabricate optical interconnects. The correction of the Bragg diffraction angle shift of about 2.10deg, which is induced by 6.14% film shrinkage and 0.06 refractive index shift, is successfully demonstrated with the surface-normal configuration. A shrinkage- and refractive-index shift-corrected volume hologram with 23% diffraction efficiency is experimentally confirmed. The methodology proposed is applicable to other phase media when the associated film shrinkage and refractive-index shift data are experimentally determined.

  13. Ultra low-K shrinkage behavior when under electron beam in a scanning electron microscope

    SciTech Connect

    Lorut, F.; Imbert, G.; Roggero, A.

    2013-08-28

    In this paper, we investigate the tendency of porous low-K dielectrics (also named Ultra Low-K, ULK) behavior to shrink when exposed to the electron beam of a scanning electron microscope. Various experimental electron beam conditions have been used for irradiating ULK thin films, and the resulting shrinkage has been measured through use of an atomic force microscope tool. We report the shrinkage to be a fast, cumulative, and dose dependent effect. Correlation of the shrinkage with incident electron beam energy loss has also been evidenced. The chemical modification of the ULK films within the interaction volume has been demonstrated, with a densification of the layer and a loss of carbon and hydrogen elements being observed.

  14. Polymerization shrinkage and contraction force of composite resin restorative inserted with "Megafiller".

    PubMed

    Tani, Y; Nambu, T; Ishikawa, A; Katsuyama, S

    1993-12-01

    This study quantified the contraction force and polymerization shrinkage of composite resins with/without beta-Quartz Glass Ceramic Inserts (BQCI) as "Megafiller". The materials used for the determination included a chemically cured composite and five light-cured composites. The system for measuring contraction force consisted of a transparent teflon tube for preparing the specimen, a small load cell, a dynamic strain gauge and a pen-recorder. After the composite was packed into the teflon mold, a BQCI (Type R3) was inserted through the opening and the specimen was cured. Linear polymerization shrinkage of the composites was measured every 10 seconds from the start of mixing or irradiation to 90 minutes by the mercury bath method. Three pieces each of BQCI (Type T3) were inserted in each specimen. The results suggested that BQCI was markedly effective in reducing polymerization shrinkage, but was not always effective in reducing the contraction force during polymerization.

  15. High‐Resolution Three‐Dimensional Computed Tomography Analysis of the Clinical Efficacy of Cultured Autogenous Periosteal Cells in Sinus Lift Bone Grafting

    PubMed Central

    Ogawa, Shin; Hoshina, Hideyuki; Nakata, Koh; Yamada, Kazuho; Uematsu, Kohya; Kawase, Tomoyuki; Takagi, Ritsuo

    2015-01-01

    Abstract Background and Purpose Sinus lift (SL) using cultured autogenous periosteal cells (CAPCs) combined with autogenous bone and platelet‐rich plasma (PRP) was performed to evaluate the effect of cell administration on bone regeneration, by using high‐resolution three‐dimensional computed tomography (CT). Materials and Methods SL with autogenous bone and PRP plus CAPC [CAPC(+)SL] was performed in 23 patients. A piece of periosteum taken from the mandible was cultured in M199 medium with 10% fetal bovine serum (FBS) for 6 weeks. As control, 16 patients received SL with autogenous bone and PRP [CAPC(−)SL]. Three‐dimensional CT imaging was performed before and 4 months and 1 year after SL, and stratification was performed based on CT numbers (HUs) corresponding to soft tissue and cancellous or cortical bone. Results The augmented bone in CAPC(+)SL revealed an increase in HUs corresponding to cancellous bone as well as a decrease in HUs corresponding to grafted cortical bone. In addition, HUs corresponding to cancellous bone in the graft bed were increased in CAPC(+)SL but were decreased in CAPC(−)SL. Insertion torque during implant placement was significantly higher in CAPC(+)SL. Conclusion By promoting bone anabolic activity both in augmented bone and graft bed, CAPCs are expected to aid primary fixation and osseointegration of implants in clinical applications. PMID:26017402

  16. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    PubMed Central

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  17. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    PubMed Central

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-01-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates. PMID:26159121

  18. Centrifugation-assisted Assembly of Colloidal Silica into Crack-Free and Transferrable Films with Tunable Crystalline Structures

    NASA Astrophysics Data System (ADS)

    Fan, Wen; Chen, Min; Yang, Shu; Wu, Limin

    2015-07-01

    Self-assembly of colloidal particles into colloidal films has many actual and potential applications. While various strategies have been developed to direct the assembly of colloidal particles, fabrication of crack-free and transferrable colloidal film with controllable crystal structures still remains a major challenge. Here we show a centrifugation-assisted assembly of colloidal silica spheres into free-standing colloidal film by using the liquid/liquid interfaces of three immiscible phases. Through independent control of centrifugal force and interparticle electrostatic repulsion, polycrystalline, single-crystalline and quasi-amorphous structures can be readily obtained. More importantly, by dehydration of silica particles during centrifugation, the spontaneous formation of capillary water bridges between particles enables the binding and pre-shrinkage of the assembled array at the fluid interface. Thus the assembled colloidal films are not only crack-free, but also robust and flexible enough to be easily transferred on various planar and curved substrates.

  19. A theoretical and experimental analysis of polymerization shrinkage of bone cement: A potential major source of porosity.

    PubMed

    Gilbert, J L; Hasenwinkel, J M; Wixson, R L; Lautenschlager, E P

    2000-10-01

    A theoretical basis for understanding polymerization shrinkage of bone cement is presented based on density changes in converting monomer to polymer. Also, an experimental method, based on dilatometry and the Archimedes' principle is presented for highly precise and accurate measurement of unconstrained volumetric shrinkage of bone cement. Furthermore, a theoretical and experimental analysis of polymerization shrinkage in a constrained deformational state is presented to demonstrate that porosity can develop due to shrinkage. Six bone-cement conditions (Simplex-Ptrade mark vacuum and hand mixed, Endurancetrade mark vacuum mixed, and three two-solution experimental bone cements with higher initial monomer levels) were tested for volumetric shrinkage. It was found that shrinkage varied statistically (p< or = 0.05) from 5.1% (hand-mixed Simplex-Ptrade mark) to 6.7% (vacuum-mixed Simplex-Ptrade mark) to 10.5% for a 0.6:1 (polymer g/monomer mL) two-solution bone cement. Shrinkage was highly correlated with initial monomer content (R(2) = 0.912) but with a lower than theoretically expected rate. This discrepancy was due to the presence of residual monomer after polymerization. Using previously determined residual monomer levels, the theoretic shrinkage analysis was shown to be predictive of the shrinkage results with some residual monomer left after polymerization. Polymerization of a two-solution bone cement in a constrained state resulted in pores developing with volumes predicted by the theory that they are the result of shrinkage. The results of this study show that shrinkage of bone cement under certain constrained conditions may result in the development of porosity at the implant-bone cement interface and elsewhere in the polymerizing cement mantle. PMID:10906694

  20. Properties evaluation of silorane, low-shrinkage, non-flowable and flowable resin-based composites in dentistry

    PubMed Central

    Reis, Rodrigo S.; Moro, André F.V.; Perez, Cesar R.; Pessôa, Bárbara M.; Dias, Katia R.H.C.

    2015-01-01

    Purpose. This study tested the null hypothesis that different classes of direct restorative dental materials: silorane-based resin, low-shrinkage and conventional (non-flowable and flowable) resin-based composite (RBC) do not differ from each other with regard to polymerization shrinkage, depth of cure or microhardness. Methods. 140 RBC samples were fabricated and tested by one calibrated operator. Polymerization shrinkage was measured using a gas pycnometer both before and immediately after curing with 36 J/cm2 light energy density. Depth of cure was determined, using a penetrometer and the Knoop microhardness was tested from the top surface to a depth of 5 mm. Results. Considering polymerization shrinkage, the authors found significant differences (p < 0.05) between different materials: non-flowable RBCs showed lower values compared to flowable RBCs, with the silorane-based resin presenting the smallest shrinkage. The low shrinkage flowable composite performed similarly to non-flowable with significant statistical differences compared to the two other flowable RBCs. Regarding to depth of cure, low-shrinkage flowable RBC, were most effective compared to other groups. Microhardness was generally higher for the non-flowable vs. flowable RBCs (p < 0.05). However, the values for low-shrinkage flowable did not differ significantly from those of non-flowable, but were significantly higher than those of the other flowable RBCs. Clinical Significance. RBCs have undergone many modifications as they have evolved and represent the most relevant restorative materials in today’s dental practice. This study of low-shrinkage RBCs, conventional RBCs (non-flowable and flowable) and silorane-based composite—by in vitro evaluation of volumetric shrinkage, depth of cure and microhardness—reveals that although filler content is an important determinant of polymerization shrinkage, it is not the only variable that affects properties of materials that were tested in this study

  1. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  2. Crack Formation in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Sprince, A.; Pakrastinsh, L.; Vatin, N.

    2016-04-01

    The cracking properties in cement-based composites widely influences mechanical behavior of construction structures. The challenge of present investigation is to evaluate the crack propagation near the crack tip. During experiments the tension strength and crack mouth opening displacement of several types of concrete compositions was determined. For each composition the Compact Tension (CT) specimens were prepared with dimensions 150×150×12 mm. Specimens were subjected to a tensile load. Deformations and crack mouth opening displacement were measured with extensometers. Cracks initiation and propagation were analyzed using a digital image analysis technique. The formation and propagation of the tensile cracks was traced on the surface of the specimens using a high resolution digital camera with 60 mm focal length. Images were captured during testing with a time interval of one second. The obtained experimental curve shows the stages of crack development.

  3. Electrochemical situation in corrosion-mechanical cracks

    SciTech Connect

    Petrov, L.N.; Kalinkov, A.Yu.

    1995-01-01

    It is shown that the electrochemical situation in corrosion cracks is determined by the electromotive force of local galvanic cells at the crack tip and the polarization resistance of anodic processes.

  4. Fiber Bragg grating sensors as a tool to evaluate the influence of filler on shrinkage of geopolymer matrices

    NASA Astrophysics Data System (ADS)

    Campopiano, Stefania; Iadicicco, Agostino; Messina, Francesco; Ferone, Claudio; Cioffi, Raffaele

    2015-05-01

    Geopolymer matrices represent one of the main sustainable alternatives to ordinary Portland cement (OPC) and other clinker-based blended cements. Real scale applications are limited and a relevant amount of data is still needed to assess the early age and long-term behavior of these systems. Particularly, the early-age monitoring of geopolymers represent a key parameter for mix design optimization. Most of the available methods for the measurement of temperature evolution due to polycondensation kinetics and early age deformations are related to laboratory activities. The upscaling to in situ techniques represents a crucial step toward technological assessment. To this aim, authors propose to use Fiber Bragg Gratings (FBGs) embedded in the geopolymer matrices. Starting from a case study by authors related to the design of externally bonded fiber reinforced geopolymers for strengthening of existing structures, the matrix was optimized in terms of quartz filler content. The measurements carried out by means of FBG sensors allowed to reduce filler content respect to the abovementioned work. Particularly, quartz content can be reduced by 50%. The temperature associated to polycondensation was slightly below 65°C for the three studied systems, limiting the use of designed metakaolin geopolymer to non-massive structures, since thermal cracking could occur, unless further research will be able to assess the viability of retardants. The experimental results confirm that FBG represent an accurate method for simultaneous shrinkage and temperature measurements for geopolymers and the application in real scale structures for remote sensing could help to create database on inner temperatures and early age deformations.

  5. Nonparametric bayes shrinkage for assessing exposures to mixtures subject to limits of detection.

    PubMed

    Herring, Amy H

    2010-07-01

    Assessing potential associations between exposures to complex mixtures and health outcomes may be complicated by a lack of knowledge of causal components of the mixture, highly correlated mixture components, potential synergistic effects of mixture components, and difficulties in measurement. We extend recently proposed nonparametric Bayes shrinkage priors for model selection to investigations of complex mixtures by developing a formal hierarchical modeling framework to allow different degrees of shrinkage for main effects and interactions and to handle truncation of exposures at a limit of detection. The methods are used to shed light on data from a study of endometriosis and exposure to environmental polychlorinated biphenyl congeners.

  6. Selected mechanical and physical properties and clinical application of a new low-shrinkage composite restoration.

    PubMed

    Duarte, Sillas; Botta, Ana Carolina; Phark, Jin-Ho; Sadan, Avishai

    2009-09-01

    Polymerization shrinkage is a major concern for bonded direct posterior restorations. Recently, a new low-shrinkage composite resin restorative material was developed. However, few data are available regarding clinical manipulation of this composite. Silorane-based composites represent an alternative to conventional methacrylate-based composites for direct posterior restorations. This article critically discusses the latest peer-reviewed reports related to polymerization, bonding, polishing, and color stability of silorane composite, focusing on its clinical application. Initial evaluation of this new category of composite material shows acceptable mechanical and physical properties.

  7. Compressible cake filtration: monitoring cake formation and shrinkage using synchrotron X-rays

    SciTech Connect

    Bierck, B.R.; Wells, S.A.; Dick, R.I.

    1988-05-01

    High energy, highly collimated X-rays produced at the Cornell High Energy Synchrotron Sources (CHESS) enabled real-time suspended solids concentration measurements each second with 0.5 mm vertical separation in a kaolin filter cake. Suspended solids concentration profiles reflected expected effects of cumulative fluid drag forces. Shrinkage caused a significant increase in average cake suspended solids concentration after expiration of the slurry, and the saturated cake ultimately formed was virtually homogeneous. Shrinkage is consolidation under compressive forces created when capillary menisci form at air/liquid interfaces, and has a significant effect on cake structure in latter stages of compressible cake filtration.

  8. Selected mechanical and physical properties and clinical application of a new low-shrinkage composite restoration.

    PubMed

    Duarte, Sillas; Botta, Ana Carolina; Phark, Jin-Ho; Sadan, Avishai

    2009-09-01

    Polymerization shrinkage is a major concern for bonded direct posterior restorations. Recently, a new low-shrinkage composite resin restorative material was developed. However, few data are available regarding clinical manipulation of this composite. Silorane-based composites represent an alternative to conventional methacrylate-based composites for direct posterior restorations. This article critically discusses the latest peer-reviewed reports related to polymerization, bonding, polishing, and color stability of silorane composite, focusing on its clinical application. Initial evaluation of this new category of composite material shows acceptable mechanical and physical properties. PMID:19639087

  9. OPTIMAL SHRINKAGE ESTIMATION OF MEAN PARAMETERS IN FAMILY OF DISTRIBUTIONS WITH QUADRATIC VARIANCE

    PubMed Central

    Xie, Xianchao; Kou, S. C.; Brown, Lawrence

    2015-01-01

    This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semi-parametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results. PMID:27041778

  10. Sparsity-based shrinkage approach for practicability improvement of H-LBP-based edge extraction

    NASA Astrophysics Data System (ADS)

    Zhao, Chenyi; Qiao, Shuang; Sun, Jianing; Zhao, Ruikun; Wu, Wei

    2016-07-01

    The local binary pattern with H function (H-LBP) technique enables fast and efficient edge extraction in digital radiography. In this paper, we reformulate the model of H-LBP and propose a novel sparsity-based shrinkage approach, in which the threshold can be adapted to the data sparsity. Using this model, we upgrade fast H-LBP framework and apply it to real digital radiography. The experiments show that the method improved using the new shrinkage approach can avoid elaborately artificial modulation of parameters and possess greater robustness in edge extraction compared with the other current methods without increasing processing time.

  11. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  12. TV fatigue crack monitoring system

    NASA Technical Reports Server (NTRS)

    Exton, R. J. (Inventor)

    1977-01-01

    An apparatus is disclosed for monitoring the development and growth of fatigue cracks in a test specimen subjected to a pulsating tensile load. A plurality of television cameras photograph a test specimen which is illuminated at the point of maximum tensile stress. The television cameras have a modified vidicon tube which has an increased persistence time thereby eliminating flicker in the displayed images.

  13. Cracks preserve kimberlite melt composition

    NASA Astrophysics Data System (ADS)

    Brett, R. C.; Vigouroux-Caillibot, N.; Donovan, J. J.; Russell, K.

    2009-12-01

    The chemical composition of kimberlite melts has previously been estimated by measuring aphanitic intrusive rocks (deposit composition) or by partial melting experiments on carbonated lherzolites (source composition). Pervasively altered, degassed and contaminated material preclude the determination of the primitive melt composition. Here we present data on melt compositions trapped in unaltered olivine cracks that have been healed and overgrown prior to shallow level emplacement. During the ascent of kimberlite magma the prograding crack tip samples mantle peridotite xenoliths. Xenoliths rapidly disaggregate over the first few kilometers of transport producing a population of olivine xenocrysts that are released to the fluid-rich melt. Rapid ascent of the kimberlite magma causes depressurization and creates internal elastic stresses in the olivine crystals that can only be alleviated by volumetric expansion or brittle failure. On the time scales operative during kimberlite ascent volume expansion is negligible and brittle failure occurs. Small wetting angles between the fluid-rich melt and olivine allow infiltration of the melt into the crack. These very thin cracks (<5 µm) heal rapidly and preserve primary kimberlitic material en route to the surface. We use the electron microprobe with a focused beam (interaction volume less than 2 µm) to analyze the small volumes of material found in the healed cracks of the olivine. We analyzed for 18 elements including oxygen, which we obtained by utilizing a non-linear time dependent intensity acquisition and empirically determined mass absorption coefficients. By accurately knowing the amount of oxygen in a sample, we assign oxygen molecules to all other analyzed elements (e.g. MgO, Al2O3) and the remaining oxygen is assigned to hydrogen and carbon. The analysis total is used as a constraint on the proportion of each species. Mg/Ca ratios of the cracks vary from 0.6-5 indicating a compositional continuum between alkali

  14. Crack formation during post-treatment of nano- and microfibres prepared by sol-gel technique.

    PubMed

    Tätte, T; Kolesnikova, A L; Hussainov, M; Talviste, R; Lõhmus, R; Romanov, A E; Hussainova, I; Part, M; Lõhmus, A

    2010-09-01

    We report on the method of TiO2 nano- and microfibres preparation and their cracking during processing and post-treatment. Nano- and microfibres were fabricated by drawing from viscous alkoxide based oligomeric concentrate precursors with the following exposure into an atmosphere of 30-50% humidity. The fibres microstructure was analyzed with TEM, solid state NMR, X-ray diffraction tools, and AFM. Experiments on crack formation in TiO2 microfibres proved that fibres with diameter larger than 10 micron are fractured for chosen post-treatment regimes. In theoretical considerations sol-gel produced and thermally treated microfibres are modeled as core/shell structures. It is suggested that the formation of fibres starts via solidification of liquid jet through the appearance of a rigid solid shell, which reveals tensile mechanical stresses because of material shrinkage. The effect of post-treatment is taken into account by additional densification of the fibre surface layer. The stress intensity factor K(I) is calculated for the model core/shell structures and the dependence of K(I) on the fibre diameter is demonstrated. The results of modeling qualitatively confirm experimental data of microfibre cracking above a certain threshold diameter.

  15. Crack/Cocaine: An Overview and Directory.

    ERIC Educational Resources Information Center

    Minisman-Chin, Linda; And Others

    This compilation presents background information and a resource directory concerning the growing dilemma of crack-exposed infants. Information on the incidence of crack use among women of child-bearing age is reviewed. The effects of crack on young children are outlined, and ways in which parents, educators, and other professionals can help these…

  16. The transition from subsonic to supersonic cracks

    PubMed Central

    Behn, Chris; Marder, M.

    2015-01-01

    We present the full analytical solution for steady-state in-plane crack motion in a brittle triangular lattice. This allows quick numerical evaluation of solutions for very large systems, facilitating comparisons with continuum fracture theory. Cracks that propagate faster than the Rayleigh wave speed have been thought to be forbidden in the continuum theory, but clearly exist in lattice systems. Using our analytical methods, we examine in detail the motion of atoms around a crack tip as crack speed changes from subsonic to supersonic. Subsonic cracks feature displacement fields consistent with a stress intensity factor. For supersonic cracks, the stress intensity factor disappears. Subsonic cracks are characterized by small-amplitude, high-frequency oscillations in the vertical displacement of an atom along the crack line, while supersonic cracks have large-amplitude, low-frequency oscillations. Thus, while supersonic cracks are no less physical than subsonic cracks, the connection between microscopic and macroscopic behaviour must be made in a different way. This is one reason supersonic cracks in tension had been thought not to exist. PMID:25713443

  17. Cracked Teeth: A Review of the Literature

    PubMed Central

    Lubisich, Erinne B.; Hilton, Thomas J.; FERRACANE, JACK

    2013-01-01

    Although cracked teeth are a common problem for patients and dentists, there is a dearth of evidence-based guidelines on how to prevent, diagnose, and treat cracks in teeth. The purpose of this article is to review the literature to establish what evidence exists regarding the risk factors for cracked teeth and their prevention, diagnosis, and treatment. PMID:20590967

  18. Evolution of Rock Cracks Under Unloading Condition

    NASA Astrophysics Data System (ADS)

    Huang, R. Q.; Huang, D.

    2014-03-01

    Underground excavation normally causes instability of the mother rock due to the release and redistribution of stress within the affected zone. For gaining deep insight into the characteristics and mechanism of rock crack evolution during underground excavation, laboratory tests are carried out on 36 man-made rock specimens with single or double cracks under two different unloading conditions. The results show that the strength of rock and the evolution of cracks are clearly influenced by both the inclination angle of individual cracks with reference to the unloading direction and the combination geometry of cracks. The peak strength of rock with a single crack becomes smaller with the inclination angle. Crack propagation progresses intermittently, as evidenced by a sudden increase in deformation and repeated fluctuation of measured stress. The rock with a single crack is found to fail in three modes, i.e., shear, tension-shear, and splitting, while the rock bridge between two cracks is normally failed in shear, tension-shear, and tension. The failure mode in which a crack rock or rock bridge behaves is found to be determined by the inclination angle of the original crack, initial stress state, and unloading condition. Another observation is that the secondary cracks are relatively easily created under high initial stress and quick unloading.

  19. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length....

  20. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length....

  1. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length....

  2. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length....

  3. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending... corrugated furnaces may be repaired by welding provided any one crack does not exceed 20 inches in length....

  4. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is

  5. Cracking behavior of structural slab bridge decks

    NASA Astrophysics Data System (ADS)

    Baah, Prince

    Bridge deck cracking is a common problem throughout the United States, and it affects the durability and service life of concrete bridges. Several departments of transportation (DOTs) in the United States prefer using continuous three-span solid structural slab bridges without stringers over typical four-lane highways. Recent inspections of such bridges in Ohio revealed cracks as wide as 0.125 in. These measured crack widths are more than ten times the maximum limit recommended in ACI 224R-01 for bridge decks exposed to de-icing salts. Measurements using digital image correlation revealed that the cracks widened under truck loading, and in some cases, the cracks did not fully close after unloading. This dissertation includes details of an experimental investigation of the cracking behavior of structural concrete. Prism tests revealed that the concrete with epoxy-coated bars (ECB) develops the first crack at smaller loads, and develops larger crack widths compared to the corresponding specimens with uncoated (black) bars. Slab tests revealed that the slabs with longitudinal ECB developed first crack at smaller loads, exhibited wider cracks and a larger number of cracks, and failed at smaller ultimate loads compared to the corresponding test slabs with black bars. To develop a preventive measure, slabs with basalt and polypropylene fiber reinforced concrete were also included in the test program. These test slabs exhibited higher cracking loads, smaller crack widths, and higher ultimate loads at failure compared to the corresponding slab specimens without fibers. Merely satisfying the reinforcement spacing requirements given in AASHTO or ACI 318-11 is not adequate to limit cracking below the ACI 224R-01 recommended maximum limit, even though all the relevant design requirements are otherwise met. Addition of fiber to concrete without changing any steel reinforcing details is expected to reduce the severity and extent of cracking in reinforced concrete bridge decks.

  6. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  7. Autogenic-Feedback Training (AFT) as a preventive method for space motion sickness: Background and experimental design

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Toscano, William B.

    1993-01-01

    Finding an effective treatment for the motion sickness-like symptoms that occur in space has become a high priority for NASA. The background research is reviewed and the experimental design of a formal life sciences shuttle flight experiment designed to prevent space motion sickness in shuttle crew members is presented. This experiment utilizes a behavioral medicine approach to solving this problem. This method, Autogenic-Feedback Training (AFT), involves training subjects to voluntarily control several of their own physiological responses to environmental stressors. AFT has been used reliably to increase tolerance to motion sickness during ground-based tests in over 200 men and women under a variety of conditions that induce motion sickness, and preliminary evidence from space suggests that AFT may be an effective treatment for space motion sickness as well. Proposed changes to this experiment for future manifests are included.

  8. Defect nonunion of a metatarsal bone fracture in a cow: successful management with bone plating and autogenous cancellous bone graft.

    PubMed

    Raghunath, M; Singh, N; Singh, T; Gopinathan, A; Mohindroo, J; Atri, K

    2013-01-01

    A two-and-half-year-old cow was presented with a defect nonunion of the right metatarsal III/IV bone following a severely comminuted open fracture two months previously. The animal underwent open fixation using a 4.5 mm, broad, 10-hole, dynamic compression plate and autogenous cancellous bone graft collected from the contralateral iliac shaft. The animal started partial weight bearing after the third postoperative day and resumed complete weight bearing after the 10th day. Fracture healing was complete and the implants were removed after the 120th postoperative day. Stable fixation by means of a bone plate in conjunction with a cancellous bone graft facilitated complete healing and restoration of the bone column of the defect and the metatarsal fracture. The animal made a complete recovery.

  9. A modified arthroscopic anterior cruciate ligament double-bundle reconstruction technique with autogenous quadriceps tendon graft: remnant-preserving technique.

    PubMed

    Kim, Sung-Jae; Jo, Seung-Bae; Kim, Tai-Won; Chang, Ji-Hoon; Choi, Heon-Sik; Oh, Kyung-Soo

    2009-03-01

    Several techniques of anterior cruciate ligament (ACL) double-bundle reconstruction have been introduced to improve the functional outcome and restore normal kinematics of the knee. Meanwhile, a remnant-preserving technique was developed to preserve the proprioception and to enhance the revascularization of the reconstructed ACL. We developed double-bundle ACL reconstruction technique using autogenous quadriceps tendon graft while preserving the remnant. With this technique, two femoral sockets and one tibial tunnel are made. To preserve the remnant of the ACL, the rotational direction of the reamer was set to counterclockwise just before perforation of the tibial tunnel. To pass the graft more easily without disturbance of the remnant, the graft passage was achieved through the tibial tunnel. We suggest that the remnant-preserving technique could be an effective alternative considering its mechanical stability as well as the proprioception and vascularization recovery in arthroscopic double-bundle ACL reconstruction.

  10. Autogenous radiocephalic hemodialysis access in patients with small caliber cephalic veins after expansion with a Fogarty catheter.

    PubMed

    Li, X; Fan, L H; Liu, J J; Xu, D C

    2014-01-01

    Autogenous arteriovenous fistula (AVF) is the first choice for hemodialysis access in renal failure with uremia. However, AVF cannot be performed in some patients due to small and narrow veins in the forearm. In this study, a Fogarty catheter was used to establish autogenous radiocephalic hemodialysis access in patients with small caliber cephalic veins, and the patency rate and complications of this method were observed. Sixty-seven patients with uremia were divided into a treatment group (40 cases, caliber of cephalic veins<2.5 mm) and a control group (27 cases, caliber of cephalic veins≥2.5 mm). According to ultrasound results, the treatment group received AVF after expansion with a Fogarty catheter, and the control group received traditional AVF. The fistula patency rate and complications were observed during follow-up. All patients were followed up for an average period of 18 months (range=3-36 months). AVF was successfully used in 58 patients for hemodialysis, with primary access failure in 9 cases (5 cases in the treatment group and 4 cases in the control group) due to early thrombosis. The primary and secondary patency rates 12 months after surgery in the treatment group were 64 and 72%, respectively, and those in the control group were 60 and 76%, respectively. Patients with small caliber cephalic veins can be treated with radiocephalic fistula after the caliber of cephalic veins is expanded to more than 2.5 mm with a Fogarty catheter. The long-term patency rate awaits observation in a longer follow-up period. PMID:24634303

  11. A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure

    PubMed Central

    Jun, Sang-Ho; Ahn, Jin-Soo; Lee, Jae-Il; Ahn, Kyo-Jin; Yun, Pil-Young

    2014-01-01

    PURPOSE The purpose of this prospective study was to evaluate the effectiveness of newly developed autogenous tooth bone graft material (AutoBT)application for sinus bone graft procedure. MATERIALS AND METHODS The patients with less than 5.0 mm of residual bone height in maxillary posterior area were enrolled. For the sinus bone graft procedure, Bio-Oss was grafted in control group and AutoBT powder was grafted in experimental group. Clinical and radiographic examination were done for the comparison of grafted materials in sinus cavity between groups. At 4 months after sinus bone graft procedure, biopsy specimens were analyzed by microcomputed tomography and histomorphometric examination for the evaluation of healing state of bone graft site. RESULTS In CT evaluation, there was no difference in bone density, bone height and sinus membrane thickness between groups. In microCT analysis, there was no difference in total bone volume, new bone volume, bone mineral density of new bone between groups. There was significant difference trabecular thickness (0.07 µm in Bio-Oss group Vs. 0.08 µm in AutoBT group) (P=.006). In histomorphometric analysis, there was no difference in new bone formation, residual graft material, bone marrow space between groups. There was significant difference osteoid thickness (8.35 µm in Bio-Oss group Vs. 13.12 µm in AutoBT group) (P=.025). CONCLUSION AutoBT could be considered a viable alternative to the autogenous bone or other bone graft materials in sinus bone graft procedure. PMID:25551014

  12. The effects of the centrifugation speed on the survival of autogenous fat grafts in a rat model.

    PubMed

    Bozkurt, Mehmet; Kapı, Emin; Şirinoğlu, Hakan; Güvercin, Emre; Filinte, Gaye Taylan; Filinte, Deniz

    2016-06-01

    Purpose The most important problem in fat transplantation is the durability, which is closely associated with the applied technique. This study includes the comparison of different centrifugation speeds on the survival of autogenous fat grafts in rats. Materials and methods Forty-nine Sprague-Dawley rats were divided into seven groups and the left inguinal fat pad was extracted and re-implanted under the scalp after performing appropriate preparation processes. In the first group the fatty tissue was re-implanted in en-bloc fashion and in the second group it was re-implanted after trimming. After trimming, centrifugation with a G-force of 111.8 (1000 rpm) was performed in the third group, 447.2 (2000 rpm) in the fourth group, 1006.2 (3000 rpm) in the fifth group, 1788.8 (4000 rpm) in the sixth group, and 2795 (5000 rpm) in the seventh group for 4 minutes. The fat grafts were taken after 3 months and histopathological and statistical evaluations were performed. Results The rate of viable fat grafts was significantly higher in the 4th and 5th groups comparing to the first three groups. Total weight and volume amounts of the 4th and 5th groups were also significantly higher comparing to the first three groups. Conclusion Maximal long-term durability and fat cell viability results were obtained in the groups with 2000 rpm or 447.2 G-force/4 minutes and 3000 rpm or 1006.2 G-force/4 minutes centrifugation speed, indicating that 4 minutes centrifugation with an average G-force of 698.75 or 2500 rpm provides the best results for the survival of autogenous fat grafts. PMID:26898924

  13. Intra-eyebrow frontalis suspension using inverted Y-shaped short autogenous fascia lata for blepharoptosis with poor levator function.

    PubMed

    Shimizu, Yusuke; Nagasao, Tomohisa; Shido, Hirokazu; Fujii, Takako; Kato, Tatsuya; Aoki, Marie; Takada, Keiko; Kishi, Kazuo

    2015-01-01

    Frontalis suspension using autogenous fascia lata is a common procedure for blepharoptosis with poor levator function. However, donor-site morbidity associated with fascia lata harvest cannot be ignored. In conventional procedures, the required length of the fascia lata is usually >5-12 cm with a lateral thigh skin incision of approximately 5 cm or more. The present study introduces a new frontalis suspension procedure in which the required size (length and width) of the fascia lata and length of lateral thigh incision is much smaller. The harvested fascia lata is tailored to an inverted Y shape and the separated caudal legs are fixed to the tarsus while the cephalic end is grafted inside the eyebrow through a suborbital septum tunnel. In the present study, 11 patients who underwent the new procedure with a minimum of 6 months of follow-up were evaluated. The average length and width of the harvested fascia lata in unilateral ptosis cases were 2.85 and 0.89 cm, respectively. The average length of the lateral thigh incision was 1.25 cm. The margin reflex distance improved in all cases at 6 months postoperatively. The cosmetic result was graded as good to excellent in most of the patients. Trichiasis, widened donor scar, and eyebrow notch were noted as complications. The present method is a good alternative for the treatment of blepharoptosis with poor levator function. It potentially reduces donor-site morbidity as compared with conventional frontalis muscle suspension procedures using autogenous fascia lata.

  14. Long-term results of the use of autogenous cortical bone columellas to replace the stapes at stapedectomy.

    PubMed

    Bauer, Miklós; Pytel, József; Vóna, Ida; Gerlinger, Imre

    2011-05-01

    The first author has been using an autogenous cortical bone columella to replace the stapes removed during stapedectomy since 1965. The audiograms of 21 of the 271 patients operated on with this method between 1965 and 1989 (i.e. 7.7% of the possible candidates) were available 20-35 (average 26.8) years postoperatively. The operation could be regarded as successful in 20 and unsuccessful in 1 patient in the long run. The audiological data are presented individually as averages of the values obtained at 0.5, 1, 2 and 3 kHz. The averaged data (n = 21): preoperative air conduction, 58.27; bone conduction, 24.46; and air-bone gap, 33.81 dB. Postoperative best air conduction, 19.07; bone conduction, 14.10; and air-bone gap, 4.97 dB. Postoperative recent air conduction, 45.77; bone conduction, 38.45; and air-bone gap, 7.32 dB. The best values were measured 1-8 (average 1.57) years postoperatively. In relation to the postoperative best value, the recent value of the air-bone gap had deteriorated by 2.35 dB, and that of the bone conduction by 24.35 dB. The small air-bone gap indicates that the deterioration of the hearing is mainly caused by the deterioration of the function of the inner ear and not by that of the conductive apparatus. The progression of the deterioration differs individually (0.3-1.6, average 0.93 dB/year) and accelerates with age. This finding seems to be a problem that does not depend on the operative technique. The data show that the autogenous bone columella ensures the same good and lasting results as the alloplastic solutions; moreover, there is no problem with the incus-prosthesis connection.

  15. Effects of Local Administration of Boric Acid on Posterolateral Spinal Fusion with Autogenous Bone Grafting in a Rodent Model.

    PubMed

    Kömürcü, Erkam; Özyalvaçlı, Gülzade; Kaymaz, Burak; Gölge, Umut Hatay; Göksel, Ferdi; Cevizci, Sibel; Adam, Gürhan; Ozden, Raif

    2015-09-01

    Spinal fusion is among the most frequently applied spinal surgical procedures. The goal of the present study was to evaluate whether the local administration of boric acid (BA) improves spinal fusion in an experimental spinal fusion model in rats. Currently, there is no published data that evaluates the possible positive effects if the local administration of BA on posterolateral spinal fusion. Thirty-two rats were randomly divided into four independent groups: no material was added at the fusion area for group 1; an autogenous morselized corticocancellous bone graft was used for group 2; an autogenous morselized corticocancellous bone graft with boric acid (8.7 mg/kg) for group 3; and only boric acid was placed into the fusion area for group 4. The L4-L6 spinal segments were collected at week 6, and the assessments included radiography, manual palpation, and histomorphometry. A statistically significant difference was determined between the groups with regard to the mean histopathological scores (p = 0.002), and a paired comparison was made with the Mann-Whitney U test to detect the group/groups from which the difference originated. It was determined that only the graft + BA practice increased the histopathological score significantly with regard to the control group (p = 0.002). Whereas, there was no statistically significant difference between the groups in terms of the manual assessment of fusion and radiographic analysis (respectively p = 0.328 and p = 0.196). This preliminary study suggests that BA may clearly be useful as a therapeutic agent in spinal fusion. However, further research is required to show the most effective dosage of BA on spinal fusion, and should indicate whether BA effects spinal fusion in the human body.

  16. Anatomically safe and minimally invasive transcrestal technique for procurement of autogenous cancellous bone graft from the mid-iliac crest

    PubMed Central

    Missiuna, Paul C.; Gandhi, Harjeet S.; Farrokhyar, Forough; Harnett, Barry E.; Dore, Edward M.G.; Roberts, Barbara

    2011-01-01

    Background Open iliac bone harvesting techniques can result in significant complications and residual morbidity. In reconstructive procedures where a small volume of autogenous cancellous bone graft is required, a minimally invasive technique for bone harvesting applied at the mid-iliac crest has been deemed satisfactory. We sought to assess the application of a well-established surgical technique to procure adequate volume of autogenous cancellous iliac bone graft with minimal trauma to adjacent structures. Methods We retrospectively reviewed the cases of patients who underwent a minimally invasive transcrestal mid-iliac bone graft procurement technique between May 2003 and December 2007. The technique was performed using a 3.5-mm Steinmann pin as a trocar and a 4.5-mm AO drill sleeve as a trephine. We administered a questionnaire, either in the clinic or by mail, to assess a number of parameters, including postoperative pain, dysthesia, parasthesia, status of the donor site wound and patient satisfaction. Results Of the 37 consecutive patients who underwent the procedure, data from 26 patients were available for assessment. Donor site pain resolved within a few days of the surgery, and none of the patients experienced symptoms of chronic pain. At the final review, none of the patients reported any unpleasant signs and symptoms related to the residual scar. Conclusion We recommend that the described minimally invasive trephine method be used when a small cancellous bone graft is needed. We found that patient morbidity was significantly lower with the trephine harvest technique than with open bone harvesting methods at the anterior iliac crest. PMID:21933526

  17. Cracks in Flow Liners and Their Resolution

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Raju, I. S.

    2005-01-01

    Cracks were detected in flow liners at the gimbal joints in the LH2 feedlines of the space shuttle's main engines. The cracks initiated at defects in the drainage slots of the flow liners and grew due to high cycle fatigue. Fracture mechanics analyses were conducted to evaluate the life of the liners. These analyses yielded extremely short lives in the presence of small surface or corner cracks. A high fidelity detection method, edge replication, was used to detect the very small cracks. The detected cracks were removed by polishing and the surface quality of the slots was reestablished to improve life of the liners.

  18. Crack modeling of rotating blades with cracked hexahedral finite element method

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  19. Shrinkage of bubbles and drops in the lattice Boltzmann equation method for nonideal gases.

    PubMed

    Zheng, Lin; Lee, Taehun; Guo, Zhaoli; Rumschitzki, David

    2014-03-01

    One characteristic of multiphase lattice Boltzmann equation (LBE) methods is that the interfacial region has a finite (i.e., noninfinitesimal) thickness known as a diffuse interface. In simulations of, e.g., bubble or drop dynamics, for problems involving nonideal gases, one frequently observes that the diffuse interface method produces a spontaneous, nonphysical shrinkage of the bubble or drop radius. In this paper, we analyze in detail a single-fluid two-phase model and use a LBE model for nonideal gases in order to explain this fundamental problem. For simplicity, we only investigate the static bubble or droplet problem. We find that the method indeed produces a density shift, bubble or droplet shrinkage, as well as a critical radius below which the bubble or droplet eventually vanishes. Assuming that the ratio between the interface thickness D and the initial bubble or droplet radius r0 is small, we analytically show the existence of this density shift, bubble or droplet radius shrinkage, and critical bubble or droplet survival radius. Numerical results confirm our analysis. We also consider droplets on a solid surface with different curvatures, contact angles, and initial droplet volumes. Numerical results show that the curvature, contact angle, and the initial droplet volume have an effect on this spontaneous shrinkage process, consistent with the survival criterion.

  20. Post-gel shrinkage with different modes of LED and halogen light curing units.

    PubMed

    Soh, M S; Yap, Adrian U J; Siow, K S

    2004-01-01

    This study compared the post-gel shrinkage of two LED (light-emitting diodes) lights (Elipar FreeLight [FL], 3M ESPE; GC e-Light [EL], GC), a high intensity (Elipar TriLight [TL], 3M ESPE) and a very high intensity (Astralis 10 [AS], Ivoclar Vivadent) halogen light to a conventional (Max [MX] (control), Dentsply-Caulk) halogen light. Ten light curing regimens were investigated. These included continuous (FL1, EL2, MX, TL1 and AS1), soft-start (FL2, EL4, TL2), pulse activation (EL1) and turbo (EL3) modes. A strain-monitoring device and test configuration was used to measure the linear polymerization shrinkage of a composite restorative (Z100, [3M ESPE]) during and post-light polymerization up to 60 minutes when cured with the different modes. Five specimens were made for each cure mode. Results were analyzed using ANOVA/Scheffe's post-hoc test and independent sample t-tests at significance level 0.05. Shrinkage associated with the various modes of EL was significantly lower than MX immediately after light polymerization and at one-minute post-light polymerization. No significant difference between MX and the various lights/cure modes was observed at 10, 30 and 60-minutes post-light polymerization. At all time intervals, post-gel shrinkage associated with continuous light curing mode was significantly higher than the soft-start light curing mode for FL and TL.

  1. Swelling-shrinkage measurements of bentonite using coupled environmental scanning electron microscopy and digital image analysis.

    PubMed

    Montes-H, G

    2005-04-01

    The swelling clays have been proposed as engineered barriers in geological disposal systems for waste because these materials are assumed to build a better impermeable zone around wastes by swelling. However, the swelling potential of soils is also considered a prevalent cause of damage to buildings and constructions. For these reasons, it is fundamental to investigate the physicochemical and mechanical behavior of swelling clays. In the current study, the swelling-shrinkage potential (aggregates scale) was estimated using an environmental scanning electron microscope (ESEM) coupled with a digital image analysis (DIA) program (Visilog). In fact, the isolated aggregates of raw and cation-exchanged bentonite were directly observed at different relative humidities in an ESEM chamber. Then the "Visilog" software was used to estimate the percent augmentation of the aggregate surface as a function of time and as a function of relative humidity. This estimation allows for the calculation of the swelling-shrinkage potential (%) of bentonite. Finally, a kinetic model of first order was tested to fit the kinetic experimental data of swelling-shrinkage potential. The results show that ESEM-DIA coupling can be a powerful method of estimating the swelling-shrinkage potential of expansive clays. In addition, the exponential models fit well with the kinetic experimental data. PMID:15752813

  2. Synthesis of a liquid-crystalline resin monomer with the property of low shrinkage polymerization.

    PubMed

    Liu, Wenwen; Chen, Su; Liu, Yiran; Ma, Yuanping; Wang, Na; Zhang, Zhenting; Yang, Yuzhe

    2013-01-01

    To reduce the polymerization shrinkage of the dental resin composites, a new liquid-crystalline resin monomer was developed. The acrylate liquid crystalline resin monomer (ALCRM), (4-3-(acryloyloxy)-2-hydroxypropoxy) phenyl 4-(3-(acryloyloxy)-2-hydroxypropoxy) benzoate, was synthesized by a three-step method. Using the ALCRM as the main monomer, the degree of conversion (DC) and the volume shrinkage of the resin matrix were compared with the traditional composite resin monomer (Bis-GMA), 2,2-bis[4-(2-hydroxy-3-methacryloyloxy-propoxy)-phenyl] propane. The new monomer showed liquid crystalline characteristics with a mesomorphic phasetransition temperature between 18ºC and 42ºC. When copolymerized with triethylene glycol dimethacrylate (TEGDMA) at a weight ratio of 7:3, the DC of ALCRM was higher and the volume shrinkage was 3.62±0.26%, which was less than that of the Bis-GMA. The ALCRM exhibits promising potential for the development of superior dental resins with low volume shrinkage.

  3. Reducing Shrinkage in Convenience Stores by the Use of the PSI.

    ERIC Educational Resources Information Center

    Terris, William; Jones, John W.

    This bibliography contains over 1,200 behavioral and property is a rapidly growing problem. Successful strategies are needed to reduce employee theft; new loss prevention techniques need to be developed and evaluated. Two loss prevention programs aimed at reducing employees' theft were compared by the measures of shrinkage rates. Initially, a…

  4. Bayes and Empirical Bayes Shrinkage Estimation of Regression Coefficients: A Cross-Validation Study.

    ERIC Educational Resources Information Center

    Nebebe, Fassil; Stroud, T. W. F.

    1988-01-01

    Bayesian and empirical Bayes approaches to shrinkage estimation of regression coefficients and uses of these in prediction (i.e., analyzing intelligence test data of children with learning problems) are investigated. The two methods are consistently better at predicting response variables than are either least squares or least absolute deviations.…

  5. Use of Empirical Estimates of Shrinkage in Multiple Regression: A Caution.

    ERIC Educational Resources Information Center

    Kromrey, Jeffrey D.; Hines, Constance V.

    1995-01-01

    The accuracy of four empirical techniques to estimate shrinkage in multiple regression was studied through Monte Carlo simulation. None of the techniques provided unbiased estimates of the population squared multiple correlation coefficient, but the normalized jackknife and bootstrap techniques demonstrated marginally acceptable performance with…

  6. Estimating R-squared Shrinkage in Multiple Regression: A Comparison of Different Analytical Methods.

    ERIC Educational Resources Information Center

    Yin, Ping; Fan, Xitao

    2001-01-01

    Studied the effectiveness of various analytical formulas for estimating "R" squared shrinkage in multiple regression analysis, focusing on estimators of the squared population multiple correlation coefficient and the squared population cross validity coefficient. Simulation results suggest that the most widely used Wherry (R. Wherry, 1931) formula…

  7. [Shrinkage In the Squared Multiple Correlation Coefficient and Unbiased Estimates of Treatment Effects Using Omega Squared.

    ERIC Educational Resources Information Center

    Dalton, Starrett

    The amount of variance accounted for by treatment can be estimated with omega squared or with the squared multiple correlation coefficient. Monte Carlo methods were employed to compare omega squared, the squared multiple correlation coefficient, and the squared multiple correlation coefficient to which a shrinkage formula had been applied, in…

  8. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism.

    PubMed

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène; Pitel, Anne L

    2016-09-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez's circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and (18)F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez's circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez's circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. PMID:26661206

  9. Differential brain shrinkage over 6 months shows limited association with cognitive practice.

    PubMed

    Raz, Naftali; Schmiedek, Florian; Rodrigue, Karen M; Kennedy, Kristen M; Lindenberger, Ulman; Lövdén, Martin

    2013-07-01

    The brain shrinks with age, but the timing of this process and the extent of its malleability are unclear. We measured changes in regional brain volumes in younger (age 20-31) and older (age 65-80) adults twice over a 6 month period, and examined the association between changes in volume, history of hypertension, and cognitive training. Between two MRI scans, 49 participants underwent intensive practice in three cognitive domains for 100 consecutive days, whereas 23 control group members performed no laboratory cognitive tasks. Regional volumes of seven brain structures were measured manually and adjusted for intracranial volume. We observed significant mean shrinkage in the lateral prefrontal cortex, the hippocampus, the caudate nucleus, and the cerebellum, but no reliable mean change of the prefrontal white matter, orbital-frontal cortex, and the primary visual cortex. Individual differences in change were reliable in all regions. History of hypertension was associated with greater cerebellar shrinkage. The cerebellum was the only region in which significantly reduced shrinkage was apparent in the experimental group after completion of cognitive training. Thus, in healthy adults, differential brain shrinkage can be observed in a narrow time window, vascular risk may aggravate it, and intensive cognitive activity may have a limited effect on it.

  10. Composite resin vs resin cement for luting of indirect restorations: comparison of solubility and shrinkage behavior.

    PubMed

    Bortolotto, Tissiana; Guillarme, Davy; Gutemberg, Daniel; Veuthey, Jean-Luc; Krejci, Ivo

    2013-01-01

    The aim of this study was to evaluate relationship between shrinkage development and early solubility of two commonly used luting materials, a self-adhesive cement (GCem chemical and light cured) and composite resin (Tetric). Linear displacement, shrinkage forces and leaching of UDMA from specimens immersed in 75% ethanol/25% water were measured. The least amount of linear shrinkage (33.0±2.9 µm) and polymerization force (4.1±0.3 kg) was observed in Tetric. UDMA leaching (% µg/mL) was the following: chemically cured GCem (4.2±0.2)>light cured GCem (1.5±0.1)>Tetric (0.1). Shrinkage development in the early stages of polymerization was much slower in the self-cured specimens in respect to light cured ones. With the chemically cured self-adhesive cement, incomplete materials' setting during the initial stages after polymerization favored monomer leaching from the cements' mass. PMID:24088842

  11. Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells.

    PubMed

    Rasmussen, Line Jee Hartmann; Müller, Helene Steenkær Holm; Jørgensen, Bente; Pedersen, Stine Falsig; Hoffmann, Else Kay

    2015-01-15

    The mechanisms linking cell volume sensing to volume regulation in mammalian cells remain incompletely understood. Here, we test the hypothesis that activation of nonreceptor tyrosine kinases Src, focal adhesion kinase (FAK), and Janus kinase-2 (Jak2) occurs after osmotic shrinkage of NIH3T3 fibroblasts and contributes to volume regulation by activation of NKCC1. FAK phosphorylation at Tyr397, Tyr576/577, and Tyr861 was increased rapidly after exposure to hypertonic (575 mOsm) saline, peaking after 10 (Tyr397, Tyr576/577) and 10-30 min (Tyr861). Shrinkage-induced Src family kinase autophosphorylation (pTyr416-Src) was induced after 2-10 min, and immunoprecipitation indicated that this reflected phosphorylation of Src itself, rather than Fyn and Yes. Phosphorylated Src and FAK partly colocalized with vinculin, a focal adhesion marker, after hypertonic shrinkage. The Src inhibitor pyrazolopyrimidine-2 (PP2, 10 μM) essentially abolished shrinkage-induced FAK phosphorylation at Tyr576/577 and Tyr861, yet not at Tyr397, and inhibited shrinkage-induced NKCC1 activity by ∼50%. The FAK inhibitor PF-573,228 augmented shrinkage-induced Src phosphorylation, and inhibited shrinkage-induced NKCC1 activity by ∼15%. The apparent role of Src in NKCC1 activation did not reflect phosphorylation of myosin light chain kinase (MLC), which was unaffected by shrinkage and by PP2, but may involve Jak2, a known target of Src, which was rapidly activated by osmotic shrinkage and inhibited by PP2. Collectively, our findings suggest a major role for Src and possibly the Jak2 axis in shrinkage-activation of NKCC1 in NIH3T3 cells, whereas no evidence was found for major roles for FAK and MLC in this process. PMID:25377086

  12. Microstructural evolution and macroscopic shrinkage in the presence of density gradients and agglomeration

    NASA Astrophysics Data System (ADS)

    Lu, Peizhen

    X-ray computed tomography (CT) can characterize internal density gradients. An in-situ laser dilatometry has been constructed to track dimensional change at different positions of a sample during binder removal and sintering. This combination of tools not only allows us to better understand how microscopic change affects macroscopic dimensions, but also provides guidance for a variety of ceramic processes. Non-uniform agglomerate packing and deformation provide density gradients which drive binder migration during binder removal. Simultaneously, density undergoes a slight decrease accompanied by a 1.0% loss in dimensional tolerance. This and CT difference images suggest that capillary forces generated during binder melting can change the density distribution. During sintering, nonuniformities present in the green state persist into the fired state and become exaggerated. Regions of different initial density can occupy different stages sintering. At ˜88% sintered density, CT clearly showed that open porosity follows the distribution of low density areas. Mercury porosimetry detected three distinct levels of porosity. Microstructural examination correlated the porosity level with the coordination of (i) two to three or (ii) multiple grains around pores. Microstructural packing controls both the observed macroscopic expansion at T ≤ 1000°C and the onset of shrinkage. Neck formation initiates during expansion and not exclusively during shrinkage. Inter- and intra-agglomerate expansion/shrinkage proceed simultaneously but the effective 'transmission' of particle-level behavior to the macroscopic level appears to be controlled by the initial agglomerate bonding and internal agglomerate densities. Discrete element modeling provides corroborating evidence regarding the importance of compact continuity. Following the expansion-shrinkage transition, the higher the zone density the faster the initial shrinkage. The 25% RH sample shrank more rapidly than the same zone in

  13. Environmentally assisted cracking of LWR materials

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1995-12-01

    Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289{degree}C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320{degree}C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections.

  14. Improved imaging algorithm for bridge crack detection

    NASA Astrophysics Data System (ADS)

    Lu, Jingxiao; Song, Pingli; Han, Kaihong

    2012-04-01

    This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.

  15. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  16. Measurement, growth types and shrinkage of newly formed aerosol particles at an urban research platform

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Németh, Zoltán; Weidinger, Tamás; Kovács, Boldizsár; Kristóf, Gergely

    2016-06-01

    Budapest platform for Aerosol Research and Training (BpART) was created for advancing long-term on-line atmospheric measurements and intensive aerosol sample collection campaigns in Budapest. A joint study including atmospheric chemistry or physics, meteorology, and fluid dynamics on several-year-long data sets obtained at the platform confirmed that the location represents a well-mixed, average atmospheric environment for the city centre. The air streamlines indicated that the host and neighbouring buildings together with the natural orography play an important role in the near-field dispersion processes. Details and features of the airflow structure were derived, and they can be readily utilised for further interpretations. An experimental method to determine particle diffusion losses in the differential mobility particle sizer (DMPS) system of the BpART facility was proposed. It is based on CPC-CPC (condensation particle counter) and DMPS-CPC comparisons. Growth types of nucleated particles observed in 4 years of measurements were presented and discussed specifically for cities. Arch-shaped size distribution surface plots consisting of a growth phase followed by a shrinkage phase were characterised separately since they supply information on nucleated particles. They were observed in 4.5 % of quantifiable nucleation events. The shrinkage phase took 1 h 34 min in general, and the mean shrinkage rate with standard deviation was -3.8 ± 1.0 nm h-1. The shrinkage of particles was mostly linked to changes in local atmospheric conditions, especially in global radiation and the gas-phase H2SO4 concentration through its proxy, or to atmospheric mixing in few cases. Some indirect results indicate that variations in the formation and growth rates of nucleated particles during their atmospheric transport could be a driving force of shrinkage for particles of very small sizes and on specific occasions.

  17. Specimen size effect in the volumetric shrinkage of cancellous bone measured at two levels of dehydration.

    PubMed

    Lievers, W Brent; Lee, Victoria; Arsenault, Simon M; Waldman, Stephen D; Pilkey, A Keith

    2007-01-01

    Water is commonly removed from bone to study its effect on mechanical behaviour; however, dehydration also alters the bone structure. To make matters worse, measuring structural changes in cancellous bone is complicated by a number of factors. Therefore, the goals of this study were to address these issues by (1) comparing Archimedes' method and a helium pycnometer as methods for measuring cancellous bone volume; (2) measuring the apparent dimensional and volumetric tissue shrinkage of cancellous bone at two levels of dehydration; and, (3) identifying whether a size effect exists in cancellous bone shrinkage. Cylindrical specimens (3, 5 and 8.3 mm diameters) of cancellous bone were taken from the distal bovine femur. The apparent dimensions of each cylindrical specimen were measured in a fully hydrated state (HYD), after drying at room temperature (AIR), and after oven drying at 105 degrees C (OVEN). Tissue volume measurements for those three hydration states were obtained using both a helium pycnometer and Archimedes' method. Aluminium foams, which mimic the cancellous structure, were used as controls. The results suggest that the helium pycnometer and Archimedes' method yield identical results in the HYD and AIR states, but that Archimedes' method under-predicts the nominal OVEN volume by incorporating the collagen-apatite porosity. A distinct size effect on volumetric shrinkage is observed (p<0.025) using the pycnometer in both AIR and OVEN states. Apparent dimensional shrinkage (2% and 7%) at the two dehydration levels is much smaller than the measured volumetric tissue shrinkage (16% and 29%), which results in a reduced dehydrated bone volume fraction.

  18. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Kruml, T.; Hutař, P.; Náhlík, L.; Seitl, S.; Polák, J.

    2011-05-01

    The fatigue crack growth rate in the Eurofer 97 steel at room temperature was measured by two different methodologies. Small crack growth data were obtained using cylindrical specimens with a shallow notch and no artificial crack starters. The growth of semicircular cracks of length between 10-2000 μm was followed in symmetrical cycling with constant strain amplitude ( R ɛ = -1). Long crack data were measured using standard CT specimen and ASTM methodology, i.e. R = 0.1. The growth of cracks having the length in the range of 10-30 mm was measured. It is shown that the crack growth rates of both types of cracks are in a very good agreement if J-integral representation is used and usual assumptions of the crack closure effects are taken into account.

  19. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.

    2001-01-01

    The corrosion fatigue crack growth characteristics of small (less than 35 microns) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500X) crack length measurements in laboratory air and 1% NaCl environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  20. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    2015-01-01

    The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  1. Stress Corrosion Cracking of Carbon Steel Weldments

    SciTech Connect

    POH-SANG, LAM

    2005-01-13

    An experiment was conducted to investigate the role of weld residual stress on stress corrosion cracking in welded carbon steel plates prototypic to those used for nuclear waste storage tanks. Carbon steel specimen plates were butt-joined with Gas Metal Arc Welding technique. Initial cracks (seed cracks) were machined across the weld and in the heat affected zone. These specimen plates were then submerged in a simulated high level radioactive waste chemistry environment. Stress corrosion cracking occurred in the as-welded plate but not in the stress-relieved duplicate. A detailed finite element analysis to simulate exactly the welding process was carried out, and the resulting temperature history was used to calculate the residual stress distribution in the plate for characterizing the observed stress corrosion cracking. It was shown that the cracking can be predicted for the through-thickness cracks perpendicular to the weld by comparing the experimental KISCC to the calculated stress intensity factors due to the welding residual stress. The predicted crack lengths agree reasonably well with the test data. The final crack lengths appear to be dependent on the details of welding and the sequence of machining the seed cracks, consistent with the prediction.

  2. Crack Turning in Integrally Stiffened Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Pettit, Richard Glen

    2000-01-01

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener--a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation.

  3. Assessment of murine brain tissue shrinkage caused by different histological fixatives using magnetic resonance and computed tomography imaging.

    PubMed

    Wehrl, Hans F; Bezrukov, Ilja; Wiehr, Stefan; Lehnhoff, Mareike; Fuchs, Kerstin; Mannheim, Julia G; Quintanilla-Martinez, Leticia; Kohlhofer, Ursula; Kneilling, Manfred; Pichler, Bernd J; Sauter, Alexander W

    2015-05-01

    Especially for neuroscience and the development of new biomarkers, a direct correlation between in vivo imaging and histology is essential. However, this comparison is hampered by deformation and shrinkage of tissue samples caused by fixation, dehydration and paraffin embedding. We used magnetic resonance (MR) imaging and computed tomography (CT) imaging to analyze the degree of shrinkage on murine brains for various fixatives. After in vivo imaging using 7 T MRI, animals were sacrificed and the brains were dissected and immediately placed in different fixatives, respectively: zinc-based fixative, neutral buffered formalin (NBF), paraformaldehyde (PFA), Bouin-Holland fixative and paraformaldehyde-lysine-periodate (PLP). The degree of shrinkage based on mouse brain volumes, radiodensity in Hounsfield units (HU), as well as non-linear deformations were obtained. The highest degree of shrinkage was observed for PLP (68.1%, P < 0.001), followed by PFA (60.2%, P<0.001) and NBF (58.6%, P<0.001). The zinc-based fixative revealed a low shrinkage with only 33.5% (P<0.001). Compared to NBF, the zinc-based fixative shows a slightly higher degree of deformations, but is still more homogenous than PFA. Tissue shrinkage can be monitored non-invasively with CT and MR. Zinc-based fixative causes the smallest degree of brain shrinkage and only small deformations and is therefore recommended for in vivo ex vivo comparison studies.

  4. Ultrastructural evaluation of shrinkage artefacts induced by fixatives and embedding resins on osteocyte processes and pericellular space dimensions.

    PubMed

    Shah, Furqan A; Johansson, Bengt R; Thomsen, Peter; Palmquist, Anders

    2015-04-01

    The integrity of the interface between the osteocyte (Ot) process and the canalicular wall was investigated in terms of change in the lateral dimensions of the Ot process in relation to the canalicular width, i.e., widening of the pericellular space. This has been interpreted as shrinkage of the Ot process relative to the canalicular wall during sample preparation stages of fixation, dehydration, and resin embedding. Sprague-Dawley rat tibial cross-sections were prepared for transmission electron microscopy (TEM). Four different fixative preparations: paraformaldehyde (PF), modified Karnovsky's (MK), glutaraldehyde (GRR) with ruthenium red (GRR), and zinc formalin (ZF); and two different embedding resins: LR Gold (LRG) and Epon812 (Epon) were evaluated. It was found that for LRG embedding, formalin-only fixatives (PF and ZF) induced lower shrinkage than GRR-containing fixatives (MK and GRR). In contrast, for Epon embedding, MK showed the highest shrinkage, while no differences were found between the remaining fixatives (PF, ZF, and GRR). All formalin-containing fixatives (MK, PF, and ZF) induced similar shrinkage in both embedding media. The most dramatic difference was for GRR fixation, which in combination with LRG embedding showed ∼ 62% more shrinkage than with Epon embedding, suggesting that the combination of GRR fixation and LRG embedding synergistically amplifies Ot shrinkage. These differences likely suggest a role of the resin in secondarily influencing the tissue structure following fixation. Further, the work confirms LRG as a poor embedding medium for bone specimens, as it causes large variations in shrinkage depending on fixation.

  5. Fatigue crack propagation rates in PMMA bone cement cannot be reduced to a single power law.

    PubMed

    Race, Amos; Mann, Kenneth A

    2008-07-01

    Cement mantles around metallic implants have pre-existing flaws (shrinkage induced cracks, laminations, and endosteal surface features) and their fatigue failure is related to the fatigue crack propagation (FCP) rate of bone cement. We estimated the relevant in vivo range of cyclic stress intensity factor (DeltaK) around a generic femoral stem (0-1 MPa square root(m)) and determined that previous FCP data did not adequately cover this range of DeltaK. Vacuum-mixed standard bone cement was machined into ASTM E647 standard compact notched tension specimens. These were subject to sinusoidal loading (R = 0.1) at 5 Hz in 37 degrees C DI water, covering a DeltaK range of 0.25-1.5 MPa square root(m) (including a decreasing DeltaK protocol). FCP-rate data is normally reduced to a power-law fit relating crack growth rate (da/dn) to DeltaK. However, a substantial discontinuity was observed in our data at around DeltaK = 1, so two power-law fits were used. Over the physiologically plausible range of DeltaK, cracks grew at a rate of 2.9 E -8 x DeltaK(2.6) m/cycle. Our data indicated that FCP-rates for 0.5 > DeltaK > 0.3 MPa square root(m) are between 10 E -8 and 10 E -8 m/cycle, 1 or 2 orders of magnitude greater than predicted by extrapolating from previous models based on higher DeltaK data.

  6. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    NASA Astrophysics Data System (ADS)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  7. Online bridge crack monitoring with smart film.

    PubMed

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496

  8. Crack formation and prevention in colloidal drops

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  9. Crack propagation in bamboo's hierarchical cellular structure.

    PubMed

    Habibi, Meisam K; Lu, Yang

    2014-07-07

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well.

  10. Crack formation and prevention in colloidal drops

    PubMed Central

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  11. Meshfree Simulations of Ductile Crack Propagations

    NASA Astrophysics Data System (ADS)

    Li, Shaofan; Simonsen, Cerup B.

    2005-03-01

    In this work, a meshfree method is used to simulate ductile crack growth and propagation under finite deformation and large scale yielding conditions. A so-called parametric visibility condition and its related particle splitting procedure have been developed to automatically adapt the evolving strong continuity or fracture configuration due to an arbitrary crack growth in ductile materials. It is shown that the proposed meshfree crack adaption and re-interpolation procedure is versatile in numerical simulations, and it can capture some essential features of ductile fracture and ductile crack surface morphology, such as the rough zig-zag pattern of crack surface and the ductile crack front damage zone, which have been difficult to capture in previous numerical simulations.

  12. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  13. New unit to thermal crack resid

    SciTech Connect

    Washimi, K. ); Limmer, H. )

    1989-09-01

    Thermal cracking conversion increases with temperature and residence time. Soakers added downstream of the cracking furnaces increase residence time in order to improve conversion at lower furnace outlet temperature, thereby increasing run length between shutdowns for decoking. This paper discusses advanced soaker technology incorporated in High-Conversion Soaker Cracking (HSC), developed by Toyo Engineering Corporation (TEC) and Mitsui Kozan Chemicals Ltd. The technology was demonstrated on a commercial scale. The process features are described.

  14. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  15. Dislocation shielding of a cohesive crack

    NASA Astrophysics Data System (ADS)

    Bhandakkar, Tanmay K.; Chng, Audrey C.; Curtin, W. A.; Gao, Huajian

    2010-04-01

    Dislocation interaction with a cohesive crack is of increasing importance to computational modelling of crack nucleation/growth and related toughening mechanisms in confined structures and under cyclic fatigue conditions. Here, dislocation shielding of a Dugdale cohesive crack described by a rectangular traction-separation law is studied. The shielding is completely characterized by three non-dimensional parameters representing the effective fracture toughness, the cohesive strength, and the distance between the dislocations and the crack tip. A closed form analytical solution shows that, while the classical singular crack model predicts that a dislocation can shield or anti-shield a crack depending on the sign of its Burgers vector, at low cohesive strengths a dislocation always shields the cohesive crack irrespective of the Burgers vector. A numerical study shows the transition in shielding from the classical solution of Lin and Thomson (1986) in the high strength limit to the solution in the low strength limit. An asymptotic analysis yields an approximate analytical model for the shielding over the full range of cohesive strengths. A discrete dislocation (DD) simulation of a large (>10 3) number of edge dislocations interacting with a cohesive crack described by a trapezoidal traction-separation law confirms the transition in shielding, showing that the cohesive crack does behave like a singular crack at very high cohesive strengths (˜7 GPa), but that significant deviations in shielding between singular and cohesive crack predictions arise at cohesive strengths around 1GPa, consistent with the analytic models. Both analytical and numerical studies indicate that an appropriate crack tip model is essential for accurately quantifying dislocation shielding for cohesive strengths in the GPa range.

  16. Crack shapes and stress intensity factors for edge-cracked specimens.

    NASA Technical Reports Server (NTRS)

    Orange, T. W.

    1972-01-01

    A simple stress intensity factor expression is given for a deep edge crack in a plate in tension. The shapes of cracks opened by tension or bending are approximated by conic sections, and the conic section coefficients are related to plate geometry by very simple empirical equations. The magnitude of the crack displacement is a function of applied load, plate geometry, and the elastic constants of the plate material. The shape of a loaded crack in a semiinfinite plate is, approximately, a portion of an ellipse whose semimajor axis is about three times the crack length. As the crack length (relative to the plate width) increases, the crack shape becomes parabolic, then hyperbolic, the acuity of the hyperbola increasing with the relative crack length.

  17. Expansive Soil Crack Depth under Cumulative Damage

    PubMed Central

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  18. Combustion in cracks of PBX 9501

    SciTech Connect

    Berghout, H. L.; Son, S. F.; Bolme, C. A.; Hill, L. G.; Asay, B. W.; Dickson, P. M.; Henson, B. F.; Smilowitz, L. B.

    2002-01-01

    Recent experiments involving the combustion of PBX 9501 explosive under confined conditions reveal the importance of crack and flaws in reaction violence. Experiments on room temperature confined disks of pristine and thermally damaged PBX 9501 reveal that crack ignition depends on hot gases entering existing or pressure induced cracks rather than on energy release at the crack tip. PBX 9501 slot combustion experiments show that the reaction propagation rate in the slot does not depend on the external pressure. We have observed 1500 d s in long slots of highly-confined PBX 9501. We present experiments that examine the combustion of mechanically and thermally damaged samples of PBX 9501.

  19. Crack depth determination with inductive thermography

    NASA Astrophysics Data System (ADS)

    Oswald-Tranta, B.; Schmidt, R.

    2015-05-01

    Castings, forgings and other steel products are nowadays usually tested with magnetic particle inspection, in order to detect surface cracks. An alternative method is active thermography with inductive heating, which is quicker, it can be well automated and as in this paper presented, even the depth of a crack can be estimated. The induced eddy current, due to its very small penetration depth in ferro-magnetic materials, flows around a surface crack, heating this selectively. The surface temperature is recorded during and after the short inductive heating pulse with an infrared camera. Using Fourier transformation the whole IR image sequence is evaluated and the phase image is processed to detect surface cracks. The level and the local distribution of the phase around a crack correspond to its depth. Analytical calculations were used to model the signal distribution around cracks with different depth and a relationship has been derived between the depth of a crack and its phase value. Additionally, also the influence of the heating pulse duration has been investigated. Samples with artificial and with natural cracks have been tested. Results are presented comparing the calculated and measured phase values depending on the crack depth. Keywords: inductive heating, eddy current, infrared

  20. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.