Sample records for autoimmune diabetic nod

  1. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes

    PubMed Central

    Pearson, James A; Wong, F. Susan; Wen, Li

    2016-01-01

    Type 1 Diabetes (T1D) is an autoimmune disease characterized by the pancreatic infiltration of immune cells resulting in T cell-mediated destruction of the insulin-producing beta cells. The successes of the Non Obese Diabetic (NOD) mouse model have come in multiple forms including identifying key genetic and environmental risk factors e.g. Idd loci and effects of microorganisms including the gut microbiota, respectively, and how they may contribute to disease susceptibility and pathogenesis. Furthermore, the NOD model also provides insights into the roles of the innate immune cells as well as the B cells in contributing to the T cell-mediated disease. Unlike many autoimmune disease models, the NOD mouse develops spontaneous disease and has many similarities to human T1D. Through exploiting these similarities many targets have been identified for immune-intervention strategies. Although many of these immunotherapies did not have a significant impact on human T1D, they have been shown to be effective in the NOD mouse in early stage disease, which is not equivalent to trials in newly-diagnosed patients with diabetes. However, the continued development of humanized NOD mice would enable further clinical developments, bringing T1D research to a new translational level. Therefore, it is the aim of this review to discuss the importance of the NOD model in identifying the roles of the innate immune system and the interaction with the gut microbiota in modifying diabetes susceptibility. In addition, the role of the B cells will also be discussed with new insights gained through B cell depletion experiments and the impact on translational developments. Finally, this review will also discuss the future of the NOD mice and the development of humanized NOD mice, providing novel insights into human T1D. PMID:26403950

  2. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice

    PubMed Central

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-01-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4+ T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4+ T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation. PMID:27686408

  3. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice.

    PubMed

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-03-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4 + T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4 + T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation.

  4. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.; Kim, D.; Lee, E.K.

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA onmore » the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of

  5. Nonobese Diabetic (NOD) Mice Congenic for a Targeted Deletion of 12/15-Lipoxygenase Are Protected From Autoimmune Diabetes

    PubMed Central

    McDuffie, Marcia; Maybee, Nelly A.; Keller, Susanna R.; Stevens, Brian K.; Garmey, James C.; Morris, Margaret A.; Kropf, Elizabeth; Rival, Claudia; Ma, Kaiwen; Carter, Jeffrey D.; Tersey, Sarah A.; Nunemaker, Craig S.; Nadler, Jerry L.

    2010-01-01

    OBJECTIVE 12/15-lipoxygenase (12/15-LO), one of a family of fatty acid oxidoreductase enzymes, reacts with polyenoic fatty acids to produce proinflammatory lipids. 12/15-LO is expressed in macrophages and pancreatic β-cells. It enhances interleukin 12 production by macrophages, and several of its products induce apoptosis of β-cells at nanomolar concentrations in vitro. We had previously demonstrated a role for 12/15-LO in β-cell damage in the streptozotocin model of diabetes. Since the gene encoding 12/15-LO (gene designation Alox15) lies within the Idd4 diabetes susceptibility interval in NOD mice, we hypothesized that 12/15-LO is also a key regulator of diabetes susceptibility in the NOD mouse. RESEARCH DESIGN AND METHODS We developed NOD mice carrying an inactivated 12/15-LO locus (NOD-Alox15null) using a “speed congenic” protocol, and the mice were monitored for development of insulitis and diabetes. RESULTS NOD mice deficient in 12/15-LO develop diabetes at a markedly reduced rate compared with NOD mice (2.5 vs. >60% in females by 30 weeks). Nondiabetic female NOD-Alox15null mice demonstrate improved glucose tolerance, as well as significantly reduced severity of insulitis and improved β-cell mass, when compared with age-matched nondiabetic NOD females. Disease resistance is associated with decreased numbers of islet-infiltrating activated macrophages at 4 weeks of age in NOD-Alox15null mice, preceding the development of insulitis. Subsequently, islet-associated infiltrates are characterized by decreased numbers of CD4+ T cells and increased Foxp3+ cells. CONCLUSIONS These results suggest an important role for 12/15-LO in conferring susceptibility to autoimmune diabetes in NOD mice through its effects on macrophage recruitment or activation. PMID:17940120

  6. A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice

    PubMed Central

    Vergani, Andrea; D'Addio, Francesca; Jurewicz, Mollie; Petrelli, Alessandra; Watanabe, Toshihiko; Liu, Kaifeng; Law, Kenneth; Schuetz, Christian; Carvello, Michele; Orsenigo, Elena; Deng, Shaoping; Rodig, Scott J.; Ansari, Javeed M.; Staudacher, Carlo; Abdi, Reza; Williams, John; Markmann, James; Atkinson, Mark; Sayegh, Mohamed H.; Fiorina, Paolo

    2010-01-01

    OBJECTIVE To investigate a new clinically relevant immunoregulatory strategy based on treatment with murine Thymoglobulin mATG Genzyme and CTLA4-Ig in NOD mice to prevent allo- and autoimmune activation using a stringent model of islet transplantation and diabetes reversal. RESEARCH DESIGN AND METHODS Using allogeneic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, we addressed the therapeutic efficacy and immunomodulatory mechanisms associated with a new immunoregulatory protocol based on prolonged low-dose mATG plus CTLA4-Ig. RESULTS BALB/c islets transplanted into hyperglycemic NOD mice under prolonged mATG+CTLA4-Ig treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time: 54 vs. 8 days, P < 0.0001). Immunologic analysis of mice receiving transplants revealed a complete abrogation of autoimmune responses and severe downregulation of alloimmunity in response to treatment. The striking effect on autoimmunity was confirmed by 100% diabetes reversal in newly hyperglycemic NOD mice and 100% indefinite survival of syngeneic islet transplantation (NOD.SCID into NOD mice). CONCLUSIONS The capacity to regulate alloimmunity and to abrogate the autoimmune response in NOD mice in different settings confirmed that prolonged mATG+CTLA4-Ig treatment is a clinically relevant strategy to translate to humans with type 1 diabetes. PMID:20805386

  7. Prevention of Autoimmune Diabetes and Induction of β-Cell Proliferation in NOD Mice by Hyperbaric Oxygen Therapy

    PubMed Central

    Faleo, Gaetano; Fotino, Carmen; Bocca, Nicola; Molano, R. Damaris; Zahr-Akrawi, Elsie; Molina, Judith; Villate, Susana; Umland, Oliver; Skyler, Jay S.; Bayer, Allison L.; Ricordi, Camillo; Pileggi, Antonello

    2012-01-01

    We evaluated the effects of hyperbaric oxygen therapy (HOT) on autoimmune diabetes development in nonobese diabetic (NOD) mice. Animals received no treatment or daily 60-min HOT 100% oxygen (HOT-100%) at 2.0 atmospheres absolute and were monitored for diabetes onset, insulitis, infiltrating cells, immune cell function, and β-cell apoptosis and proliferation. Cyclophosphamide-induced diabetes onset was reduced from 85.3% in controls to 48% after HOT-100% (P < 0.005) and paralleled by lower insulitis. Spontaneous diabetes incidence reduced from 85% in controls to 65% in HOT-100% (P = 0.01). Prediabetic mice receiving HOT-100% showed lower insulitis scores, reduced T-cell proliferation upon stimulation in vitro (P < 0.03), increased CD62L expression in T cells (P < 0.04), reduced costimulation markers (CD40, DC80, and CD86), and reduced major histocompatibility complex class II expression in dendritic cells (DCs) (P < 0.025), compared with controls. After autoimmunity was established, HOT was less effective. HOT-100% yielded reduced apoptosis (transferase-mediated dUTP nick-end labeling-positive insulin-positive cells; P < 0.01) and increased proliferation (bromodeoxyuridine incorporation; P < 0.001) of insulin-positive cells compared with controls. HOT reduces autoimmune diabetes incidence in NOD mice via increased resting T cells and reduced activation of DCs with preservation of β-cell mass resulting from decreased apoptosis and increased proliferation. The safety profile and noninvasiveness makes HOT an appealing adjuvant therapy for diabetes prevention and intervention trials. PMID:22566533

  8. Cutting Edge: Nonobese Diabetic Mice Deficient in Chromogranin A Are Protected from Autoimmune Diabetes.

    PubMed

    Baker, Rocky L; Bradley, Brenda; Wiles, Timothy A; Lindsay, Robin S; Barbour, Gene; Delong, Thomas; Friedman, Rachel S; Haskins, Kathryn

    2016-01-01

    T cells reactive to β cell Ags are critical players in the development of autoimmune type 1 diabetes. Using a panel of diabetogenic CD4 T cell clones derived from the NOD mouse, we recently identified the β cell secretory granule protein, chromogranin A (ChgA), as a new autoantigen in type 1 diabetes. CD4 T cells reactive to ChgA are pathogenic and rapidly transfer diabetes into young NOD recipients. We report in this article that NOD.ChgA(-/-) mice do not develop diabetes and show little evidence of autoimmunity in the pancreatic islets. Using tetramer analysis, we demonstrate that ChgA-reactive T cells are present in these mice but remain naive. In contrast, in NOD.ChgA(+/+) mice, a majority of the ChgA-reactive T cells are Ag experienced. Our results suggest that the presence of ChgA and subsequent activation of ChgA-reactive T cells are essential for the initiation and development of autoimmune diabetes in NOD mice. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. Repurposed JAK1/JAK2 Inhibitor Reverses Established Autoimmune Insulitis in NOD Mice.

    PubMed

    Trivedi, Prerak M; Graham, Kate L; Scott, Nicholas A; Jenkins, Misty R; Majaw, Suktilang; Sutherland, Robyn M; Fynch, Stacey; Lew, Andrew M; Burns, Christopher J; Krishnamurthy, Balasubramanian; Brodnicki, Thomas C; Mannering, Stuart I; Kay, Thomas W; Thomas, Helen E

    2017-06-01

    Recent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis. There is good evidence for activation of the JAK1/JAK2 and signal transducer and activator of transcription (STAT) 1 pathway in human type 1 diabetes and in mouse models, especially in β-cells. We tested the hypothesis that using these drugs to block the JAK-STAT pathway would prevent autoimmune diabetes. The JAK1/JAK2 inhibitor AZD1480 blocked the effect of cytokines on mouse and human β-cells by inhibiting MHC class I upregulation. This prevented the direct interaction between CD8 + T cells and β-cells, and reduced immune cell infiltration into islets. NOD mice treated with AZD1480 were protected from autoimmune diabetes, and diabetes was reversed in newly diagnosed NOD mice. This provides mechanistic groundwork for repurposing clinically approved JAK1/JAK2 inhibitors for type 1 diabetes. © 2017 by the American Diabetes Association.

  10. Cannabidiol Arrests Onset of Autoimmune Diabetes in NOD Mice

    PubMed Central

    Weiss, Lola; Zeira, Michael; Reich, Shoshana; Slavin, Shimon; Raz, Itamar; Mechoulam, Raphael; Gallily, Ruth

    2008-01-01

    We have previously reported that cannabidiol (CBD) lowers the incidence of diabetes in young non-obese diabetes-prone (NOD) female mice. In the present study we show that administration of CBD to 11–14 week old female NOD mice, which are either in a latent diabetes stage or with initial symptoms of diabetes, ameliorates the manifestations of the disease. Diabetes was diagnosed in only 32% of the mice in the CBD-treated group, compared to 86% and 100% in the emulsifier-treated and untreated groups, respectively. In addition, the level of the proinflammatory cytokine IL-12 produced by splenocytes was significantly reduced, whereas the level of the anti-inflammatory IL-10 was significantly elevated following CBD-treatment. Histological examination of the pancreata of CBD-treated mice revealed more intact islets than in the controls. Our data strengthen our previous assumption that CBD, known to be safe in man, can possibly be used as a therapeutic agent for treatment of type 1 diabetes. PMID:17714746

  11. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    PubMed

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  12. Type 1 diabetes in NOD mice unaffected by mast cell deficiency.

    PubMed

    Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer

    2014-11-01

    Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Restoration of the type I IFN–IL-1 balance through targeted blockade of PTGER4 inhibits autoimmunity in NOD mice

    PubMed Central

    Rahman, M. Jubayer; Quiel, Juan A.; Liu, Yi; Bhargava, Vipul; Zhao, Yongge; Hotta-Iwamura, Chie; Lau-Kilby, Annie W.; Malloy, Allison M.W.; Thoner, Timothy W.; Tarbell, Kristin V.

    2018-01-01

    Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1–associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity. PMID:29415894

  14. Restoration of the type I IFN-IL-1 balance through targeted blockade of PTGER4 inhibits autoimmunity in NOD mice.

    PubMed

    Rahman, M Jubayer; Rodrigues, Kameron B; Quiel, Juan A; Liu, Yi; Bhargava, Vipul; Zhao, Yongge; Hotta-Iwamura, Chie; Shih, Han-Yu; Lau-Kilby, Annie W; Malloy, Allison Mw; Thoner, Timothy W; Tarbell, Kristin V

    2018-02-08

    Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1-associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity.

  15. Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked?

    PubMed Central

    O’Kell, Allison L.; Wasserfall, Clive; Catchpole, Brian; Davison, Lucy J.; Hess, Rebecka S.; Kushner, Jake A.

    2017-01-01

    Despite decades of research in humans and mouse models of disease, substantial gaps remain in our understanding of pathogenic mechanisms underlying the development of type 1 diabetes. Furthermore, translation of therapies from preclinical efforts capable of delaying or halting β-cell destruction has been limited. Hence, a pressing need exists to identify alternative animal models that reflect human disease. Canine insulin deficiency diabetes is, in some cases, considered to follow autoimmune pathogenesis, similar to NOD mice and humans, characterized by hyperglycemia requiring lifelong exogenous insulin therapy. Also similar to human type 1 diabetes, the canonical canine disorder appears to be increasing in prevalence. Whereas islet architecture in rodents is distinctly different from humans, canine pancreatic endocrine cell distribution is more similar. Differences in breed susceptibility alongside associations with MHC and other canine immune response genes parallel that of different ethnic groups within the human population, a potential benefit over NOD mice. The impact of environment on disease development also favors canine over rodent models. Herein, we consider the potential for canine diabetes to provide valuable insights for human type 1 diabetes in terms of pancreatic histopathology, impairment of β-cell function and mass, islet inflammation (i.e., insulitis), and autoantibodies specific for β-cell antigens. PMID:28533295

  16. Upregulating CD4+CD25+FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy.

    PubMed

    Tian, Bole; Hao, Jianqiang; Zhang, Yu; Tian, Lei; Yi, Huimin; O'Brien, Timothy D; Sutherland, David E R; Hering, Bernhard J; Guo, Zhiguang

    2009-01-27

    Immunotherapy with Complete Freund's adjuvant (CFA) is effective in ameliorating autoimmunity in diabetic nonobese diabetic (NOD) mice. We investigated whether CFA treatment up-regulates CD4+CD25+Foxp3+ regulatory T cells and increases transforming growth factor (TGF)-beta1 production in diabetic NOD mice. New-onset diabetic NOD mice were treated with CFA and exendin-4, a potent analog of glucagon-like peptide-1. Reversal of diabetes was determined by monitoring blood glucose level. Ameliorating autoimmunity through immunoregulation was assessed by adoptive transfer. Regulatory T cells in the peripheral blood, spleen, thymus, and pancreatic nodes were measured. TGF-beta1 in plasma and the insulin content in the pancreas were also measured. Immunostainings for insulin and BrdU were performed. New-onset diabetes could be reversed in 38% of NOD mice treated with CFA alone and in 86% of NOD mice treated with both CFA and exendin-4. Diabetes adoptive transfer by splenocytes from CFA-treated NOD mice was delayed. The percentage of CD4+CD25+Foxp3+ regulatory T cells in the pancreatic lymph nodes of CFA-treated NOD mice was significantly increased at 1, 5, and 15 to 17 weeks after treatment. TGF-beta1 in the plasma of CFA-treated NOD mice was also significantly increased. Combining CFA with exendin-4 treatment significantly increased the insulin content and the numbers of insulin and BrdU double-labeled beta cells in the islets. Our results demonstrated that CFA treatment ameliorates autoimmunity in diabetic NOD mice by up-regulating CD4=CD25+Foxp3+ regulatory T cells and increasing TGF-beta1 production. Exendin-4 enhanced the effect of CFA on reversing diabetes in NOD mice by stimulating beta-cell replication.

  17. Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    PubMed Central

    Yamada, Akiko; Ishimaru, Naozumi; Arakaki, Rieko; Katunuma, Nobuhiko; Hayashi, Yoshio

    2010-01-01

    Background Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes. PMID:20877570

  18. Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development.

    PubMed

    Mori, Yoshiko; Kodaka, Tetsuro; Kato, Takako; Kanagawa, Edith M; Kanagawa, Osami

    2009-11-01

    IFN-gamma signaling-deficient non-obese diabetic (NOD) mice develop diabetes with similar kinetics to those of wild-type NOD mice. However, the immunization of IFN-gamma signaling-deficient NOD mice with CFA failed to induce long-term protection, whereas wild-type NOD mice receiving CFA remained diabetes-free. CFA also failed to protect IFN-gamma receptor-deficient (IFN-gammaR(-/-)) NOD mice from the autoimmune rejection of transplanted islets, as it does in diabetic NOD mice, and from disease transfer by spleen cells from diabetic NOD mice. These data clearly show that the pro-inflammatory cytokine IFN-gamma is necessary for the CFA-mediated protection of NOD mice from diabetes. There is no difference in the T(h)1/T(h)17 balance between IFN-gammaR(-/-) NOD and wild-type NOD mice. There is also no difference in the total numbers and percentages of regulatory T (Treg) cells in the lymph node CD4(+) T-cell populations between IFN-gammaR(-/-) NOD and wild-type NOD mice. However, pathogenic T cells lacking IFN-gammaR are resistant to the suppressive effect of Treg cells, both in vivo and in vitro. Therefore, it is likely that CFA-mediated protection against diabetes development depends on a change in the balance between Treg cells and pathogenic T cells, and IFN-gamma signaling seems to control the susceptibility of pathogenic T cells to the inhibitory activity of Treg cells.

  19. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes

    PubMed Central

    Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J

    2014-01-01

    Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID

  20. Granzyme A Deficiency Breaks Immune Tolerance and Promotes Autoimmune Diabetes Through a Type I Interferon-Dependent Pathway.

    PubMed

    Mollah, Zia U A; Quah, Hong Sheng; Graham, Kate L; Jhala, Gaurang; Krishnamurthy, Balasubramanian; Dharma, Joanna Francisca M; Chee, Jonathan; Trivedi, Prerak M; Pappas, Evan G; Mackin, Leanne; Chu, Edward P F; Akazawa, Satoru; Fynch, Stacey; Hodson, Charlotte; Deans, Andrew J; Trapani, Joseph A; Chong, Mark M W; Bird, Phillip I; Brodnicki, Thomas C; Thomas, Helen E; Kay, Thomas W H

    2017-12-01

    Granzyme A is a protease implicated in the degradation of intracellular DNA. Nucleotide complexes are known triggers of systemic autoimmunity, but a role in organ-specific autoimmune disease has not been demonstrated. To investigate whether such a mechanism could be an endogenous trigger for autoimmunity, we examined the impact of granzyme A deficiency in the NOD mouse model of autoimmune diabetes. Granzyme A deficiency resulted in an increased incidence in diabetes associated with accumulation of ssDNA in immune cells and induction of an interferon response in pancreatic islets. Central tolerance to proinsulin in transgenic NOD mice was broken on a granzyme A-deficient background. We have identified a novel endogenous trigger for autoimmune diabetes and an in vivo role for granzyme A in maintaining immune tolerance. © 2017 by the American Diabetes Association.

  1. Emv30null NOD-scid mice. An improved host for adoptive transfer of autoimmune diabetes and growth of human lymphohematopoietic cells.

    PubMed

    Serreze, D V; Leiter, E H; Hanson, M S; Christianson, S W; Shultz, L D; Hesselton, R M; Greiner, D L

    1995-12-01

    When used as hosts in passive transfer experiments, a stock of NOD/Lt mice congenic for the severe combined immunodeficiency (scid) mutation have provided great insight to the contributions of various T-cell populations in the pathogenesis of autoimmune insulin-dependent diabetes mellitus (IDDM). Moreover, NOD-scid mice support higher levels of human lymphohematopoietic cell growth than the C.B-17-scid strain in which the mutation originated. However, the ability to perform long-term lymphohematopoietic repopulation studies in the NOD-scid stock has been limited by the fact that most of these mice develop lethal thymic lymphomas beginning at 20 weeks of age. These thymic lymphomas are characterized by activation and subsequent genomic reintegrations of Emv30, an endogenous murine ecotropic retrovirus unique to the NOD genome. To test the role of this endogenous retrovirus in thymomagenesis, we produced a stock of Emv30null NOD-scid mice by congenic replacement of the proximal end of chromosome 11 with genetic material derived from the closely related NOR/Lt strain. Thymic lymphomas still initiate in Emv30null NOD-scid females, but their rate of progression is significantly retarded since the frequency of tumors weighing between 170 and 910 mg at 25 weeks of age was reduced to 20.8% vs. 76.2% in Emv30% segregants. The thymic lymphomas that did develop in Emv30null NOD-scid mice were not characterized by a compensatory increase in mink cell focus-forming proviral integrations, which initiate thymomagenesis in other susceptible mouse strains. Significantly, the ability of standard NOD T-cells to transfer IDDM to the Emv30null NOD-scid stock was not impaired.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future.

    PubMed

    Chen, Yi-Guang; Mathews, Clayton E; Driver, John P

    2018-01-01

    For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk.

  3. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future

    PubMed Central

    Chen, Yi-Guang; Mathews, Clayton E.; Driver, John P.

    2018-01-01

    For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk. PMID:29527189

  4. Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity.

    PubMed

    Szczepanik, Marian; Majewska-Szczepanik, Monika; Wong, Florence S; Kowalczyk, Paulina; Pasare, Chandrashekhar; Wen, Li

    2018-06-25

    Genetic background influences allergic immune responses to environmental stimuli. Non-obese diabetic (NOD) mice are highly susceptible to environmental stimuli. Little is known about the interaction of autoimmune genetic factors with innate immunity in allergies, especially skin hypersensitivity. To study the interplay of innate immunity and autoimmune genetic factors in contact hypersensitivity (CHS) by using various innate immunity-deficient NOD mice. Toll-like receptor (TLR) 2-deficient, TLR9-deficient and MyD88-deficient NOD mice were used to investigate CHS. The cellular mechanism was determined by flow cytometry in vitro and adoptive cell transfer in vivo. To investigate the role of MyD88 in dendritic cells (DCs) in CHS, we also used CD11c MyD88+  MyD88 -/- NOD mice, in which MyD88 is expressed only in CD11c + cells. We found that innate immunity negatively regulates CHS, as innate immunity-deficient NOD mice developed exacerbated CHS accompanied by increased numbers of skin-migrating CD11c + DCs expressing higher levels of major histocompatibility complex II and CD80. Moreover, MyD88 -/- NOD mice had increased numbers of CD11c +  CD207 -  CD103 + DCs and activated T effector cells in the skin-draining lymph nodes. Strikingly, re-expression of MyD88 in CD11c + DCs (CD11c MyD88+  MyD88 -/- NOD mice) restored hyper-CHS to a normal level in MyD88 -/- NOD mice. Our results suggest that the autoimmune-prone NOD genetic background aggravates CHS regulated by innate immunity, through DCs and T effector cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice.

    PubMed

    Hänninen, Arno; Toivonen, Raine; Pöysti, Sakari; Belzer, Clara; Plovier, Hubert; Ouwerkerk, Janneke P; Emani, Rohini; Cani, Patrice D; De Vos, Willem M

    2017-12-21

    Intestinal microbiota is implicated in the pathogenesis of autoimmune type 1 diabetes in humans and in non-obese diabetic (NOD) mice, but evidence on its causality and on the role of individual microbiota members is limited. We investigated if different diabetes incidence in two NOD colonies was due to microbiota differences and aimed to identify individual microbiota members with potential significance. We profiled intestinal microbiota between two NOD mouse colonies showing high or low diabetes incidence by 16S ribosomal RNA gene sequencing and colonised the high-incidence colony with the microbiota of the low-incidence colony. Based on unaltered incidence, we identified a few taxa which were not effectively transferred and thereafter, transferred experimentally one of these to test its potential significance. Although the high-incidence colony adopted most microbial taxa present in the low-incidence colony, diabetes incidence remained unaltered. Among the few taxa which were not transferred, Akkermansia muciniphila was identified. As A. muciniphila abundancy is inversely correlated to the risk of developing type 1 diabetes-related autoantibodies, we transferred A. muciniphila experimentally to the high-incidence colony. A. muciniphila transfer promoted mucus production and increased expression of antimicrobial peptide Reg3γ , outcompeted Ruminococcus torques from the microbiota, lowered serum endotoxin levels and islet toll-like receptor expression, promoted regulatory immunity and delayed diabetes development. Transfer of the whole microbiota may not reduce diabetes incidence despite a major change in gut microbiota, but single symbionts such as A. muciniphila with beneficial metabolic and immune signalling effects may reduce diabetes incidence when administered as a probiotic. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly

  6. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    PubMed

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF

  7. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets

    PubMed Central

    Naumov, Yuri N.; Bahjat, Keith S.; Gausling, Rudolph; Abraham, Roshini; Exley, Mark A.; Koezuka, Yasuhiko; Balk, Steven B.; Strominger, Jack L.; Clare-Salzer, Michael; Wilson, S. Brian

    2001-01-01

    CD1d-restricted invariant NKT (iNKT) cells are immunoregulatory cells whose loss exacerbates diabetes in nonobese diabetic (NOD) female mice. Here, we show that the relative numbers of iNKT cells from the pancreatic islets of NOD mice decrease at the time of conversion from peri-insulitis to invasive insulitis and diabetes. Conversely, NOD male mice who have a low incidence of diabetes showed an increased frequency of iNKT cells. Moreover, administration of α-galactosylceramide, a potent activating ligand presented by CD1d, ameliorated the development of diabetes in NOD female mice and resulted in the accumulation of iNKT cells and myeloid dendritic cells (DC) in pancreatic lymph nodes (PLN), but not in inguinal lymph nodes. Strikingly, injection of NOD female mice with myeloid DC isolated from the PLN, but not those from the inguinal lymph nodes, completely prevented diabetes. Thus, the immunoregulatory role of iNKT cells is manifested by the recruitment of tolerogenic myeloid DC to the PLN and the inhibition of ongoing autoimmune inflammation. PMID:11707602

  8. Anti-FcεR1 antibody injections activate basophils and mast cells and delay Type I diabetes onset in NOD mice

    PubMed Central

    Larson, David; Torrero, Marina N.; Mueller, Ellen; Shi, Yinghui; Killoran, Kristin

    2012-01-01

    Mounting evidence suggests that helminth infections protect against autoimmune diseases. As helminths cause chronic IgE-mediated activation of basophils and mast cells we hypothesized that continuous activation of these cells could prevents diabetes onset in nonobese diabetic (NOD) mice in the absence of infection. Anti-FcεR1 activated basophils and mast cells and resulted in the release of IL-4 and histamine into the bloodstream. Anti-FcεR1-treated NOD mice showed a type 2 shift in insulin-specific antibody production and exhibited significant delays in diabetes onset. IL-4 responses played a partial role as the protective effect of anti-FcεR1 therapy was diminished in IL-4-deficient NOD mice. In contrast, histamine signaling was not required as anti-FcεR1-mediated protection was not reduced in mice treated with histamine receptor blockers. These results demonstrate that anti-FcεR1 therapy delays diabetes onset in NOD mice and suggest that chronic basophil and mast cell activation may represent a new avenue of therapy for Th1-associated autoimmune diseases. PMID:21920822

  9. Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant.

    PubMed

    Serreze, D V; Leiter, E H; Christianson, G J; Greiner, D; Roopenian, D C

    1994-03-01

    Specific allelic combinations within the class II region of the major histocompatibility complex (MHC) represent a major genetic component for susceptibility to autoimmune insulin-dependent diabetes mellitus (IDDM) in humans. We produced and used a stock of NOD/Lt mice congenic for a functionally inactivated beta 2-microglobulin (B2mnull) locus to assess whether there was an absolute requirement for MHC class I expression and/or CD8+ T-cells in diabetogenesis. These NOD-B2mnull mice do not express cell surface MHC class I molecules or produce detectable levels of CD8+ T-cells and are diabetes and insulitis resistant. Previous results from transgenic mouse models indicated that intracellular accumulation of MHC class I molecules negatively affects pancreatic beta-cell function and can result in the development of nonautoimmune insulin-dependent diabetes mellitus (IDDM). MHC class I molecules have been shown to accumulate intracellularly in the presence of a disrupted B2m locus, but this mutation does not negatively affect plasma insulin levels in either NOD/Lt mice or in those of a mixed 129 and C57BL/6 genetic background. Interestingly, 14% of the male mice in this mixed background did develop hyperinsulinemia (> 1,500 pM) independent of the disrupted B2m locus, suggesting that these mice could conceivably develop insulin-resistant diabetes. However, none of these mice became diabetic at up to 22 months of age. Thus, elimination of cell surface MHC class I expression with a disrupted B2m gene blocks autoimmune diabetes in NOD/Lt mice, without engendering a separate, distinct form of glucose intolerance.

  10. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes.

    PubMed

    Driver, John P; Chen, Yi-Guang; Mathews, Clayton E

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.

  11. Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice.

    PubMed

    Koh, J J; Ko, K S; Lee, M; Han, S; Park, J S; Kim, S W

    2000-12-01

    Recently, we have reported that biodegradable poly [alpha-(4-aminobutyl)-L-glycolic acid] (PAGA) can condense and protect plasmid DNA from DNase I. In this study, we investigated whether the systemic administration of pCAGGS mouse IL-10 (mIL-10) expression plasmid complexed with PAGA can reduce the development of insulitis in non-obese diabetic (NOD) mice. PAGA/mIL-10 plasmid complexes were stable for more than 60 min, but the naked DNA was destroyed within 10 min by DNase I. The PAGA/DNA complexes were injected into the tail vein of 3-week-old NOD mice. Serum mIL-10 level peaked at 5 days after injection, and could be detected for more than 9 weeks. The prevalence of severe insulitis on 12-week-old NOD mice was markedly reduced by the intravenous injection of PAGA/DNA complex (15.7%) compared with that of naked DNA injection (34.5%) and non-treated controls (90.9%). In conclusion, systemic administration of pCAGGS mIL-10 plasmid/PAGA complexes can reduce the severity of insulitis in NOD mice. This study shows that the PAGA/DNA complex has the potential for the prevention of autoimmune diabetes mellitus. Gene Therapy (2000) 7, 2099-2104.

  12. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy.

    PubMed

    Lupia, E; Elliot, S J; Lenz, O; Zheng, F; Hattori, M; Striker, G E; Striker, L J

    1999-08-01

    Nonobese diabetic (NOD) mice develop glomerulosclerosis shortly after the onset of diabetes. We showed that mesangial cells (MCs) from diabetic mice exhibited a stable phenotypic switch, consisting of both increased IGF-1 synthesis and proliferation (Elliot SJ, Striker LJ, Hattori M, Yang CW, He CJ, Peten EP, Striker GE: Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocrinology 133:1783-1788, 1993). Because the extracellular matrix (ECM) accumulation in diabetic glomerulosclerosis may be partly due to decreased degradation, we examined the effect of excess IGF-1 on collagen turnover and the activity of metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) in diabetic and nondiabetic NOD-MC. Total collagen degradation was reduced by 58 +/- 18% in diabetic NOD-MCs, which correlated with a constitutive decrease in MMP-2 activity and mRNA levels, and nearly undetectable MMP-9 activity and mRNA. TIMP levels were slightly decreased in diabetic NOD-MC. The addition of recombinant IGF-1 to nondiabetic NOD-MC resulted in a decrease in MMP-2 and TIMP activity. Furthermore, treatment of diabetic NOD-MC with a neutralizing antibody against IGF-1 increased the latent form, and restored the active form, of MMP-2. In conclusion, the excessive production of IGF-1 contributes to the altered ECM turnover in diabetic NOD-MC, largely through a reduction of MMP-2 activity. These data suggest that IGF-1 could be a major contributor to the development of diabetic glomerulosclerosis.

  13. Use of Autoantigen-Loaded Phosphatidylserine-Liposomes to Arrest Autoimmunity in Type 1 Diabetes

    PubMed Central

    Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M.; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta

    2015-01-01

    Introduction The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. Objective To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. Methods A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. Results We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. Conclusions We conclude that this innovative immunotherapy based on the use of liposomes

  14. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes.

    PubMed

    Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta

    2015-01-01

    The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. We conclude that this innovative immunotherapy based on the use of liposomes constitutes a promising strategy for autoimmune

  15. The effect of regulatory T-cell depletion on the spectrum of organ-specific autoimmune diseases in nonobese diabetic mice at different ages.

    PubMed

    Nakahara, Mami; Nagayama, Yuji; Ichikawa, Tatsuki; Yu, Liping; Eisenbarth, George S; Abiru, Norio

    2011-09-01

    The nonobese diabetic (NOD) mouse spontaneously develops several autoimmune diseases, including type 1 diabetes and to a lesser extent thyroiditis and sialitis. Imbalance between effector T cells (Teffs) and regulatory T cells (Tregs) has recently been proposed as a mechanism for the disease pathogenesis in NOD mice, but previous studies have shown the various outcomes by different timing and methods of Treg-depletion. This study was, therefore, designed to compare the consequences of Treg-depletion by the same method (anti-CD25 antibody) on the spectrum of organ-specific autoimmune diseases in NOD mice of different ages. Treg-depletion by anti-CD25 antibody at 10 days of age accelerated development of all three diseases we examined (insulitis/diabetes, thyroiditis, and sialitis); Treg-depletion at 4 weeks of age accelerated only diabetes but not thyroiditis or sialitis; and Treg-depletion at 12 weeks of age hastened only development of thyroiditis and exhibited little influence on diabetes or sialitis. Increased levels of insulin autoantibodies (IAA) were, however, observed in mice depleted of Tregs at 10 days of age, not in those at 4 weeks. Thus, the consequences of Treg-depletion on the spectrum of organ-specific autoimmune diseases depend on the timing of anti-CD25 antibody injection in NOD mice. Aging gradually tips balance between Teffs and Tregs toward Teff-dominance for diabetes, but this balance for thyroiditis and sialitis likely alters more intricately. Our data also suggest that the levels of IAA are not necessarily correlated with diabetes development.

  16. PD-L1–Driven Tolerance Protects Neurogenin3-Induced Islet Neogenesis to Reverse Established Type 1 Diabetes in NOD Mice

    PubMed Central

    Li, Rongying; Lee, Jeongkyung; Kim, Mi-sun; Liu, Victoria; Moulik, Mousumi; Li, Haiyan; Yi, Qing; Xie, Aini; Chen, Wenhao; Yang, Lina; Li, Yimin; Tsai, Tsung Huang; Oka, Kazuhiro

    2015-01-01

    A breakdown in self-tolerance underlies autoimmune destruction of β-cells and type 1 diabetes. A cure by restoring β-cell mass is limited by the availability of transplantable β-cells and the need for chronic immunosuppression. Evidence indicates that inhibiting costimulation through the PD-1/PD-L1 pathway is central to immune tolerance. We therefore tested whether induction of islet neogenesis in the liver, protected by PD-L1–driven tolerance, reverses diabetes in NOD mice. We demonstrated a robust induction of neo-islets in the liver of diabetic NOD mice by gene transfer of Neurogenin3, the islet-defining factor, along with betacellulin, an islet growth factor. These neo-islets expressed all the major pancreatic hormones and transcription factors. However, an enduring restoration of glucose-stimulated insulin secretion and euglycemia occurs only when tolerance is also induced by the targeted overexpression of PD-L1 in the neo-islets, which results in inhibition of proliferation and increased apoptosis of infiltrating CD4+ T cells. Further analysis revealed an inhibition of cytokine production from lymphocytes isolated from the liver but not from the spleen of treated mice, indicating that treatment did not result in generalized immunosuppression. This treatment strategy leads to persistence of functional neo-islets that resist autoimmune destruction and consequently an enduring reversal of diabetes in NOD mice. PMID:25332429

  17. Inhibition of autoimmune diabetes in NOD mice with serum from streptococcal preparation (OK-432)-injected mice.

    PubMed Central

    Seino, H; Satoh, J; Shintani, S; Takahashi, K; Zhu, X P; Masuda, T; Nobunaga, T; Saito, M; Terano, Y; Toyota, T

    1991-01-01

    We have recently reported that systemic and chronic administration of recombinant tumour necrosis factor alpha (TNF-alpha), as well as streptococcal preparation (OK-432), inhibits development of insulin-dependent diabetes mellitus (IDDM) in NOD mice and BB rats, models of IDDM. In this study we examined whether serum containing endogenous TNF induced by OK-432 injection could inhibit IDDM in NOD mice. Treatment twice a week from 4 weeks of age with OK-432-injected mouse serum, which contained endogenous TNF (75U), but not IL-1, IL-2 and interferon-gamma (IFN-gamma) activity, reduced the intensity of insulitis and significantly inhibited the cumulative incidence of diabetes by 28 weeks of age in NOD mice, as compared with the incidence in non-treated mice (P less than 0.01) and in mice treated with control serum (P less than 0.02). This inhibitory effect of the serum was diminished, although not significantly, by neutralization of serum TNF activity with anti-mouse TNF antibody. In the mice treated with the serum from OK-432-injected mice, Thy-1.2+ or CD8+ spleen cells decreased (P less than 0.01) and surface-Ig+ (S-Ig+) cells increased (P less than 0.05), whereas the proliferative response of spleen cells to concanavalin A (P less than 0.01) and lipopolysaccharide (P less than 0.05) increased. The results indicate that the inhibition by OK-432 treatment of IDDM in NOD mice was partially mediated by serum factors including endogenous TNF. PMID:1747949

  18. Reduction of T cell receptor diversity in NOD mice prevents development of type 1 diabetes but not Sjögren's syndrome.

    PubMed

    Kern, Joanna; Drutel, Robert; Leanhart, Silvia; Bogacz, Marek; Pacholczyk, Rafal

    2014-01-01

    Non-obese diabetic (NOD) mice are well-established models of independently developing spontaneous autoimmune diseases, Sjögren's syndrome (SS) and type 1 diabetes (T1D). The key determining factor for T1D is the strong association with particular MHCII molecule and recognition by diabetogenic T cell receptor (TCR) of an insulin peptide presented in the context of I-Ag7 molecule. For SS the association with MHCII polymorphism is weaker and TCR diversity involved in the onset of the autoimmune phase of SS remains poorly understood. To compare the impact of TCR diversity reduction on the development of both diseases we generated two lines of TCR transgenic NOD mice. One line expresses transgenic TCRβ chain originated from a pathogenically irrelevant TCR, and the second line additionally expresses transgenic TCRαmini locus. Analysis of TCR sequences on NOD background reveals lower TCR diversity on Treg cells not only in the thymus, but also in the periphery. This reduction in diversity does not affect conventional CD4+ T cells, as compared to the TCRmini repertoire on B6 background. Interestingly, neither transgenic TCRβ nor TCRmini mice develop diabetes, which we show is due to lack of insulin B:9-23 specific T cells in the periphery. Conversely SS develops in both lines, with full glandular infiltration, production of autoantibodies and hyposalivation. It shows that SS development is not as sensitive to limited availability of TCR specificities as T1D, which suggests wider range of possible TCR/peptide/MHC interactions driving autoimmunity in SS.

  19. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO inmore » the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. - Highlights: • We report a therapeutic potential of DMSO in autoimmune diabetes. • DMSO exhibits an immune modulatory effect. • DMSO treatment increases regulatory T cell differentiation. • The increase in STAT5 signaling pathway explains the effect of DMSO in Tregs.« less

  20. Circulatory and Renal Consequences of Pregnancy in Diabetic NOD Mice

    PubMed Central

    Burke, S.D.; Barrette, V.F.; David, S.; Khankin, E. V.; Adams, M.A.; Croy, B.A.

    2011-01-01

    Objectives Women with diabetes have elevated gestational risks for severe hemodynamic complications, including preeclampsia in mid- to late pregnancy. This study employed continuous, chronic radiotelemetry to compare the hemodynamic patterns in non-obese diabetic (NOD) mice who were overtly diabetic or normoglycemic throughout gestation. We hypothesized that overtly diabetic, pregnant NOD mice would develop gestational hypertension and provide understanding of mechanisms in progression of this pathology. Study Design Telemeter-implanted, age-matched NOD females with and without diabetes were assessed for six hemodynamic parameters (mean, systolic, diastolic, pulse pressures, heart rate and activity) prior to mating, over pregnancy and over a 72 hr post-partum interval. Urinalysis, serum biochemistry and renal histopathology were also conducted. Results Pregnant, normoglycemic NOD mice had a hemodynamic profile similar to other inbred strains, despite insulitis. This pattern was characterized by an interval of pre-implantation stability, post implantation decline in arterial pressure to mid gestation, and then a rebound to pre-pregnancy baseline during later gestation. Overtly diabetic NOD mice had a blood pressure profile that was normal until mid-gestation then become mildly hypotensive (−7mmHg, P<0.05), severely bradycardic (−80bpm, P<0.01) and showed signs of acute kidney injury. Pups born to diabetic dams were viable but growth restricted, despite their mothers’ failing health, which did not rebound post-partum (−10% pre-pregnancy pressure and HR, P<0.05). Conclusions Pregnancy accelerates circulatory and renal pathologies in overtly diabetic NOD mice and is characterized by depressed arterial pressure from mid-gestation and birth of growth 45 restricted offspring. PMID:22014504

  1. β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.

    PubMed

    Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland

    2013-11-01

    Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.

  2. Dimethyl sulfoxide inhibits spontaneous diabetes and autoimmune recurrence in non-obese diabetic mice by inducing differentiation of regulatory T cells.

    PubMed

    Lin, Gu-Jiun; Sytwu, Huey-Kang; Yu, Jyh-Cherng; Chen, Yuan-Wu; Kuo, Yu-Liang; Yu, Chiao-Chi; Chang, Hao-Ming; Chan, De-Chuan; Huang, Shing-Hwa

    2015-01-15

    Type 1 diabetes mellitus (T1D) is caused by the destruction of insulin-producing β cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective therapeutic strategy for T1D. However, the survival of islet grafts can be disrupted by recurrent autoimmunity. Dimethyl sulfoxide (DMSO) is a solvent for organic and inorganic substances and an organ-conserving agent used in solid organ transplantations. DMSO also exerts anti-inflammatory, reactive oxygen species scavenger and immunomodulatory effects and therefore exhibits therapeutic potential for the treatment of several human inflammatory diseases. In this study, we investigated the therapeutic potential of DMSO in the inhibition of autoimmunity. We treated an animal model of islet transplantation (NOD mice) with DMSO. The survival of the syngeneic islet grafts was significantly prolonged. The population numbers of CD8, DC and Th1 cells were decreased, and regulatory T (Treg) cell numbers were increased in recipients. The expression levels of IFN-γ and proliferation of T cells were also reduced following DMSO treatment. Furthermore, the differentiation of Treg cells from naive CD4 T cells was significantly increased in the in vitro study. Our results demonstrate for the first time that in vivo DMSO treatment suppresses spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Treg cells. Copyright © 2014. Published by Elsevier Inc.

  3. Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice

    PubMed Central

    Haddad, Christine S.; Bhattacharya, Palash; Alharshawi, Khaled; Marinelarena, Alejandra; Kumar, Prabhakaran; El-Sayed, Osama; Elshabrawy, Hatem A.; Epstein, Alan L.; Prabhakar, Bellur S.

    2016-01-01

    Earlier, we have shown that GM-CSF derived bone marrow dendritic cells (G-BMDCs) can expand Foxp3+ regulatory T-cells (Tregs) through a TCR-independent, but IL-2 dependent mechanism that required OX40L/OX40 interaction. While some reports have shown suppression of autoimmunity upon treatment with an OX40 agonist, others have shown exacerbation of autoimmune disease instead. To better understand the basis for these differing outcomes, we compared the effects of OX40L treatment in 6-week-old pre-diabetic and 12-week-old near diabetic NOD mice. Upon treatment with OX40L, 6-week-old NOD mice remained normoglycemic and showed a significant increase in Tregs in their spleen and lymph nodes, while 12-week-old NOD mice very rapidly developed hyperglycemia and failed to show Treg increase in spleen or LN. Interestingly, OX40L treatment increased Tregs in the thymus of both age groups. However, it induced Foxp3+CD103+CD38− stable-phenotype Tregs in the thymus and reduced the frequency of autoreactive Teff cells in 6-week-old mice; while it induced Foxp3+CD103−CD38+ labile-phenotype Tregs in the thymus and increased autoreactive CD4+ T cells in the periphery of 12-week-old mice. This increase in autoreactive CD4+ T cells was likely due to either a poor suppressive function or conversion of labile Tregs into Teff cells. Using ex vivo cultures, we found that the reduction in Treg numbers in 12-week-old mice was likely due to IL-2 deficit, and their numbers could be increased upon addition of exogenous IL-2. The observed divergent effects of OX40L treatment were likely due to differences in the ability of 6- and 12-week-old NOD mice to produce IL-2. PMID:27245356

  4. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice.

    PubMed

    Bodin, Johanna; Kocbach Bølling, Anette; Wendt, Anna; Eliasson, Lena; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA) accelerates the spontaneous development of diabetes in non-obese diabetic (NOD) mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l), a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l) or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4) from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  5. Development of the Nonobese Diabetic Mouse and Contribution of Animal Models for Understanding Type 1 Diabetes.

    PubMed

    Mullen, Yoko

    2017-04-01

    In 1974, the discovery of a mouse and a rat that spontaneously developed hyperglycemia led to the development of 2 autoimmune diabetes models: nonobese diabetic (NOD) mouse and Bio-Breeding rat. These models have contributed to our understanding of autoimmune diabetes, provided tools to dissect autoimmune islet damage, and facilitated development of early detection, prevention, and treatment of type 1 diabetes. The genetic characterization, monoclonal antibodies, and congenic strains have made NOD mice especially useful.Although the establishment of the inbred NOD mouse strain was documented by Makino et al (Jikken Dobutsu. 1980;29:1-13), this review will focus on the not-as-well-known history leading to the discovery of a glycosuric female mouse by Yoshihiro Tochino. This discovery was spearheaded by years of effort by Japanese scientists from different disciplines and dedicated animal care personnel and by the support of the Shionogi Pharmaceutical Company, Osaka, Japan. The history is based on the early literature, mostly written in Japanese, and personal communications especially with Dr Tochino, who was involved in diabetes animal model development and who contributed to the release of NOD mice to the international scientific community. This article also reviews the scientific contributions made by the Bio-Breeding rat to autoimmune diabetes.

  6. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy.

    PubMed

    Du, Pengchao; Fan, Baoxia; Han, Huirong; Zhen, Junhui; Shang, Jin; Wang, Xiaojie; Li, Xiang; Shi, Weichen; Tang, Wei; Bao, Chanchan; Wang, Ziying; Zhang, Yan; Zhang, Bin; Wei, Xinbing; Yi, Fan

    2013-08-01

    An increasing number of clinical and animal model studies indicate that activation of the innate immune system and inflammatory mechanisms are important in the pathogenesis of diabetic nephropathy. Nucleotide-binding oligomerization domain containing 2 (NOD2), a member of the NOD-like receptor family, plays an important role in innate immune response. Here we explore the contribution of NOD2 to the pathogenesis of diabetic nephropathy and found that it was upregulated in kidney biopsies from diabetic patients and high-fat diet/streptozotocin-induced diabetic mice. Further, NOD2 deficiency ameliorated renal injury in diabetic mice. In vitro, NOD2 induced proinflammatory response and impaired insulin signaling and insulin-induced glucose uptake in podocytes. Moreover, podocytes treated with high glucose, advanced glycation end-products, tumor necrosis factor-α, or transforming growth factor-β (common detrimental factors in diabetic nephropathy) significantly increased NOD2 expression. NOD2 knockout diabetic mice were protected from the hyperglycemia-induced reduction in nephrin expression. Further, knockdown of NOD2 expression attenuated high glucose-induced nephrin downregulation in vitro, supporting an essential role of NOD2 in mediating hyperglycemia-induced podocyte dysfunction. Thus, NOD2 is one of the critical components of a signal transduction pathway that links renal injury to inflammation and podocyte insulin resistance in diabetic nephropathy.

  7. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice.

    PubMed

    Bodin, Johanna; Bølling, Anette Kocbach; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2014-02-01

    Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this study, BPA was found to increase the severity of insulitis and the incidence of diabetes in female non obese diabetic (NOD) mice offspring after transmaternal exposure through the dams' drinking water (0, 0.1, 1, and 10mg/l). Both the severity of insulitis in the pancreatic islets at 11 weeks of age and the diabetes prevalence at 20 weeks were significantly increased for female offspring in the highest exposure group compared to the control group. Increased numbers of apoptotic cells, a reduction in tissue resident macrophages and an increase in regulatory T cells were observed in islets prior to insulitis development in transmaternally exposed offspring. The detectable apoptotic cells were identified as mostly glucagon producing alpha-cells but also tissue resident macrophages and beta-cells. In the local (pancreatic) lymph node neither regulatory T cell nor NKT cell populations were affected by maternal BPA exposure. Maternal BPA exposure may have induced systemic immune changes in offspring, as evidenced by alterations in LPS- and ConA-induced cytokine secretion in splenocytes. In conclusion, transmaternal BPA exposure, in utero and through lactation, accelerated the spontaneous diabetes development in NOD mice. This acceleration appeared to be related to early life modulatory effects on the immune system, resulting in adverse effects later in life.

  8. Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10+ phenotype.

    PubMed

    Betto, Elena; Usuelli, Vera; Mandelli, Alessandra; Badami, Ester; Sorini, Chiara; Capolla, Sara; Danelli, Luca; Frossi, Barbara; Guarnotta, Carla; Ingrao, Sabrina; Tripodo, Claudio; Pucillo, Carlo; Gri, Giorgia; Falcone, Marika

    2017-05-01

    Mast cells (MCs) are innate immune cells that exert positive and negative immune modulatory functions capable to enhance or limit the intensity and/or duration of adaptive immune responses. Although MCs are crucial to regulate T cell immunity, their action in the pathogenesis of autoimmune diseases is still debated. Here we demonstrate that MCs play a crucial role in T1D pathogenesis so that their selective depletion in conditional MC knockout NOD mice protects them from the disease. MCs of diabetic NOD mice are overly inflammatory and secrete large amounts of IL-6 that favors differentiation of IL-17-secreting T cells at the site of autoimmunity. Moreover, while MCs of control mice acquire an IL-10+ phenotype upon interaction with FoxP3+ Treg cells, MCs of NOD mice do not undergo this tolerogenic differentiation. Our data indicate that overly inflammatory MCs unable to acquire a tolerogenic IL-10+ phenotype contribute to the pathogenesis of autoimmune T1D. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Genetic analysis of autoimmune sialadenitis in nonobese diabetic mice: a major susceptibility region on chromosome 1.

    PubMed

    Boulard, Olivier; Fluteau, Guy; Eloy, Laure; Damotte, Diane; Bedossa, Pierre; Garchon, Henri-Jean

    2002-04-15

    The nonobese diabetic (NOD) mouse strain provides a good study model for Sjögren's syndrome (SS). The genetic control of SS was investigated in this model using different matings, including a (NOD x C57BL/6 (B6))F(2) cross, a (NOD x NZW)F(2) cross, and ((NOD x B6) x NOD) backcross. Multiple and different loci were detected depending on parent strain combination and sex. Despite significant complexity, two main features were prominent. First, the middle region of chromosome 1 (chr.1) was detected in all crosses. Its effect was most visible in the (NOD x B6)F(2) cross and dominated over that of other loci, including those mapping on chr.8, 9, 10, and 16; the effect of these minor loci was observed only in the absence of the NOD haplotype on chr.1. Most critically, the chr.1 region was sufficient to trigger an SS-like inflammatory infiltrate of salivary glands as shown by the study of a new C57BL/6 congenic strain carrying a restricted segment derived from NOD chr.1. Second, several chromosomal regions were previously associated with NOD autoimmune phenotypes, including Iddm (chr.1, 2, 3, 9, and 17, corresponding to Idd5, Idd13, Idd3, Idd2, and Idd1, respectively), accounting for the strong linkage previously reported between insulitis and sialitis, and autoantibody production (chr.10 and 16, corresponding to Bana2 and Bah2, respectively). Interestingly, only two loci were detected in the (NOD x NZW)F(2) cross, on chr.1 in females and on chr.7 in males, probably because of the latent autoimmune predisposition of the NZW strain. Altogether these findings reflect the complexity and heterogeneity of human SS.

  10. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice.

    PubMed

    Homs, Judit; Ariza, Lorena; Pagès, Gemma; Verdú, Enrique; Casals, Laura; Udina, Esther; Chillón, Miguel; Bosch, Assumpció; Navarro, Xavier

    2011-09-01

    The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice. © 2011 Peripheral Nerve Society.

  11. Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice

    PubMed Central

    Thuma, Jean R.; Courreges, Maria C.; Benencia, Fabian; James, Calvin B.L.; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L.

    2015-01-01

    Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3+/+) and TLR3 knockout (TLR3−/−) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice. PMID:25422874

  12. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice.

    PubMed

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-02-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome.

  13. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yan-Ying, E-mail: biozyy@163.com; Huang, Xin-Yuan; Chen, Zheng-Wang

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In themore » present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.« less

  14. Impaired vascular function in normoglycemic mice prone to autoimmune diabetes: role of nitric oxide.

    PubMed

    Traupe, Tobias; Nett, Philipp C; Frank, Beat; Tornillo, Luigi; Hofmann-Lehmann, Regina; Terracciano, Luigi M; Barton, Matthias

    2007-02-28

    Type 1 diabetes is an immuno-inflammatory condition which increases the risk of cardiovascular disease, particularly in young adults. This study investigated whether vascular function is altered in mice prone to autoimmune diabetes and whether the nitric oxide (NO)-cyclic GMP axis is involved. Aortic rings suspended in organ chambers and precontracted with phenylephrine were exposed to cumulative concentrations of acetylcholine. To investigate the role of NO, some experiments were performed in the presence of either 1400W (N-(3-aminomethyl)benzyl-acetamidine hydrochloride), a selective inhibitor of the iNOS-isoform, L-NAME (N(G)-nitro-L-arginine methyl ester hydrochloride), an inhibitor of all three NOS-isoforms, or ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), a selective inhibitor of guanylate cyclase. Moreover, contractility to phenylephrine, big endothelin-1, and endothelin-1 was assessed and histological analysis and iNOS immunohistochemistry were performed. Endothelium-dependent relaxation was reduced in prediabetic NOD mice (78+/-4 vs. 88+/-2%, respectively, P<0.05 vs. control) despite normal plasma glucose levels (n.s. vs. control). Preincubation with 1400W further attenuated responses in prediabetic (P<0.05 vs. untreated) but not in diabetic or in control mice. In contrast, basal NO bioactivity remained unaffected until the onset of diabetes in NOD mice. Contractile responses to big endothelin-1 and endothelin-1 were reduced in prediabetic animals (P<0.05 vs. control), whereas in diabetic mice only responses to big endothelin-1 were decreased (P<0.05 vs. control). These data demonstrate that endothelium-dependent and -independent vascular function in NOD mice is abnormal already in prediabetes in the absence of structural injury. Early proinflammatory activation due to iNOS in diabetes-prone NOD mice appears to be one of the mechanisms contributing to impaired vasoreactivity.

  15. Diabetes Associated Metabolomic Perturbations in NOD Mice

    PubMed Central

    Hwang, Jessica; Poudel, Ananta; Jo, Junghyo; Periwal, Vipul; Fiehn, Oliver; Hara, Manami

    2014-01-01

    Non-obese diabetic (NOD) mice are a widely-used model oftype1 diabetes (T1D). However, not all animals develop overt diabetes. This study examined the circulating metabolomic profiles of NOD mice progressing or not progressing to T1D. Total beta-cell mass was quantified in the intact pancreas using transgenic NOD mice expressinggreen fluorescent protein under the control of mouse insulin I promoter.While both progressor and non-progressor animals displayed lymphocyte infiltration and endoplasmic reticulum stress in the pancreas tissue;overt T1D did not develop until animals lost ~70% of the total beta-cell mass.Gas chromatography time of flight mass spectrometry (GC-TOF) was used to measure >470 circulating metabolites in male and female progressor and non-progressor animals (n=76) across a wide range of ages (neonates to >40-wk).Statistical and multivariate analyses were used to identify age and sex independent metabolic markers which best differentiated progressor and non-progressor animals’ metabolic profiles. Key T1D-associated perturbations were related with: (1) increased plasma glucose and reduced 1,5-anhydroglucitol markers of glycemic control; (2) increased allantoin, gluconic acid and nitric oxide-derived saccharic acid markers of oxidative stress; (3) reduced lysine, an insulin secretagogue; (4) increased branched-chain amino acids, isoleucine and valine; (5) reduced unsaturated fatty acids including arachidonic acid; and (6)perturbations in urea cycle intermediates suggesting increased arginine-dependent NO synthesis. Together these findings highlight the strength of the unique approach of comparing progressor and non-progressor NOD mice to identify metabolic perturbations involved in T1D progression. PMID:25755629

  16. Treatment with Cordyceps sinensis enriches Treg population in peripheral lymph nodes and delays type I diabetes development in NOD mice.

    PubMed

    Wang, Mei-Fen; Zhu, Qing-Hua; He, Yu-Gong

    2013-09-01

    Cordyceps sinensis is a widely used Chinese traditional herb with a long history. In China C. sinensis is usually applied in the treatment of respiratory diseases, however, the efficacy of C. sinensis still lacks experimental evidence. Type I diabetes is a multi-factor related autoimmune disease caused by cellular-mediated destruction of insulin-producing pancreatic beta cells in the islets in human. We tested C. sinensis for its ability to work as an immune modulator in NOD mice, an animal model which mimicks the progression of type I diabetes in humans and found that treatment with C. sinensis extract could slow down disease development in NOD mice. Further research also suggested that treatment with C. sinensis extract increased the frequency of Treg cells and IFN-gama producing Th1 cells in peripheral lymph nodes. However, C. sinensis has no effect on the natural Treg cell differentiation in thymus.

  17. B-Lymphocytes Expressing an Ig Specificity Recognizing the Pancreatic β-Cell Autoantigen Peripherin Are Potent Contributors to Type 1 Diabetes Development in NOD Mice

    PubMed Central

    Leeth, Caroline M.; Racine, Jeremy; Chapman, Harold D.; Arpa, Berta; Carrillo, Jorge; Carrascal, Jorge; Wang, Qiming; Ratiu, Jeremy; Egia-Mendikute, Leire; Rosell-Mases, Estela; Stratmann, Thomas

    2016-01-01

    Although the autoimmune destruction of pancreatic β-cells underlying type 1 diabetes (T1D) development is ultimately mediated by T cells in NOD mice and also likely in humans, B cells play an additional key pathogenic role. It appears that the expression of plasma membrane–bound Ig molecules that efficiently capture β-cell antigens allows autoreactive B cells that bypass normal tolerance induction processes to be the subset of antigen-presenting cells most efficiently activating diabetogenic T cells. NOD mice transgenically expressing Ig molecules recognizing antigens that are (insulin) or are not (hen egg lysozyme [HEL]) expressed by β-cells have proven useful in dissecting the developmental basis of diabetogenic B cells. However, these transgenic Ig specificities were originally selected for their ability to recognize insulin or HEL as foreign, rather than autoantigens. Thus, we generated and characterized NOD mice transgenically expressing an Ig molecule representative of a large proportion of naturally occurring islet-infiltrating B cells in NOD mice recognizing the neuronal antigen peripherin. Transgenic peripherin-autoreactive B cells infiltrate NOD pancreatic islets, acquire an activated proliferative phenotype, and potently support accelerated T1D development. These results support the concept of neuronal autoimmunity as a pathogenic feature of T1D, and targeting such responses could ultimately provide an effective disease intervention approach. PMID:26961115

  18. Germline TRAV5D-4 T-Cell Receptor Sequence Targets a Primary Insulin Peptide of NOD Mice

    PubMed Central

    Nakayama, Maki; Castoe, Todd; Sosinowski, Tomasz; He, XiangLing; Johnson, Kelly; Haskins, Kathryn; Vignali, Dario A.A.; Gapin, Laurent; Pollock, David; Eisenbarth, George S.

    2012-01-01

    There is accumulating evidence that autoimmunity to insulin B chain peptide, amino acids 9–23 (insulin B:9–23), is central to development of autoimmune diabetes of the NOD mouse model. We hypothesized that enhanced susceptibility to autoimmune diabetes is the result of targeting of insulin by a T-cell receptor (TCR) sequence commonly encoded in the germline. In this study, we aimed to demonstrate that a particular Vα gene TRAV5D-4 with multiple junction sequences is sufficient to induce anti-islet autoimmunity by studying retrogenic mouse lines expressing α-chains with different Vα TRAV genes. Retrogenic NOD strains expressing Vα TRAV5D-4 α-chains with many different complementarity determining region (CDR) 3 sequences, even those derived from TCRs recognizing islet-irrelevant molecules, developed anti-insulin autoimmunity. Induction of insulin autoantibodies by TRAV5D-4 α-chains was abrogated by the mutation of insulin peptide B:9–23 or that of two amino acid residues in CDR1 and 2 of the TRAV5D-4. TRAV13–1, the human ortholog of murine TRAV5D-4, was also capable of inducing in vivo anti-insulin autoimmunity when combined with different murine CDR3 sequences. Targeting primary autoantigenic peptides by simple germline-encoded TCR motifs may underlie enhanced susceptibility to the development of autoimmune diabetes. PMID:22315318

  19. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1.

    PubMed

    Rahman, M Jubayer; Rahir, Gwendoline; Dong, Matthew B; Zhao, Yongge; Rodrigues, Kameron B; Hotta-Iwamura, Chie; Chen, Ye; Guerrero, Alan; Tarbell, Kristin V

    2016-03-01

    Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response.

  20. Hematopoietic stem cells from NOD mice exhibit autonomous behavior and a competitive advantage in allogeneic recipients.

    PubMed

    Chilton, Paula M; Rezzoug, Francine; Ratajczak, Mariusz Z; Fugier-Vivier, Isabelle; Ratajczak, Janina; Kucia, Magda; Huang, Yiming; Tanner, Michael K; Ildstad, Suzanne T

    2005-03-01

    Type 1 diabetes is a systemic autoimmune disease that can be cured by transplantation of hematopoietic stem cells (HSCs) from disease-resistant donors. Nonobese diabetic (NOD) mice have a number of features that distinguish them as bone marrow transplant recipients that must be understood prior to the clinical application of chimerism to induce tolerance. In the present studies, we characterized NOD HSCs, comparing their engraftment characteristics to HSCs from disease-resistant strains. Strikingly, NOD HSCs are significantly enhanced in engraftment potential compared with HSCs from disease-resistant donors. Unlike HSCs from disease-resistant strains, they do not require graft-facilitating cells to engraft in allogeneic recipients. Additionally, they exhibit a competitive advantage when coadministered with increasing numbers of syngeneic HSCs, produce significantly more spleen colony-forming units (CFU-Ss) in vivo in allogeneic recipients, and more granulocyte macrophage-colony-forming units (CFU-GMs) in vitro compared with HSCs from disease-resistant controls. NOD HSCs also exhibit significantly enhanced chemotaxis to a stromal cell-derived factor 1 (SDF-1) gradient and adhere significantly better on primary stroma. This enhanced engraftment potential maps to the insulin-dependent diabetes locus 9 (Idd9) locus, and as such the tumor necrosis factor (TNF) receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSCs. These findings may have important implications to understand the evolution of autoimmune disease and impact on potential strategies for cure.

  1. Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice.

    PubMed

    Rui, Jinxiu; Deng, Songyan; Lebastchi, Jasmin; Clark, Pamela L; Usmani-Brown, Sahar; Herold, Kevan C

    2016-05-01

    Type 1 diabetes is caused by the immunological destruction of pancreatic beta cells. Preclinical and clinical data indicate that there are changes in beta cell function at different stages of the disease, but the fate of beta cells has not been closely studied. We studied how immune factors affect the function and epigenetics of beta cells during disease progression and identified possible triggers of these changes. We studied FACS sorted beta cells and infiltrating lymphocytes from NOD mouse and human islets. Gene expression was measured by quantitative real-time RT-PCR (qRT-PCR) and methylation of the insulin genes was investigated by high-throughput and Sanger sequencing. To understand the role of DNA methyltransferases, Dnmt3a was knocked down with small interfering RNA (siRNA). The effects of cytokines on methylation and expression of the insulin gene were studied in humans and mice. During disease progression in NOD mice, there was an inverse relationship between the proportion of infiltrating lymphocytes and the beta cell mass. In beta cells, methylation marks in the Ins1 and Ins2 genes changed over time. Insulin gene expression appears to be most closely regulated by the methylation of Ins1 exon 2 and Ins2 exon 1. Cytokine transcription increased with age in NOD mice, and these cytokines could induce methylation marks in the insulin DNA by inducing methyltransferases. Similar changes were induced by cytokines in human beta cells in vitro. Epigenetic modification of DNA by methylation in response to immunological stressors may be a mechanism that affects insulin gene expression during the progression of type 1 diabetes.

  2. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes.

    PubMed

    Funda, David P; Kaas, Anne; Tlaskalová-Hogenová, Helena; Buschard, Karsten

    2008-01-01

    Environmental factors such as nutrition or exposure to infections play a substantial role in the pathogenesis of type 1 diabetes (T1D). We have previously shown that gluten-free, non-purified diet largely prevented diabetes in non-obese diabetic (NOD) mice. In this study we tested hypothesis that early introduction of gluten-enriched (gluten+) diet may increase diabetes incidence in NOD mice. Standard, gluten-free, gluten+ modified Altromin diets and hydrolysed-casein-based Pregestimil diet were fed to NOD females and diabetes incidence was followed for 310 days. Insulitis score and numbers of gut mucosal lymphocytes were determined in non-diabetic animals. A significantly lower diabetes incidence (p < 0.0001) was observed in NOD mice fed gluten-free diet (5.9%, n = 34) and Pregestimil diet (10%, n = 30) compared to mice on the standard Altromin diet (60.6%, n = 33). Surprisingly, gluten+ diet also prevented diabetes incidence, even at the level found with the gluten-free diet (p < 0.0001, 5.9%, n = 34). The minority of mice, which developed diabetes on all the three diabetes-protective (gluten+, gluten-free, Pregestimil) diets, did that slightly later compared to those on the standard diet. Lower insulitis score compared to control mice was found in non-diabetic NOD mice on the gluten-free, and to a lesser extent also gluten+ and Pregestimil diets. No substantial differences in the number of CD3(+), TCR-gammadelta(+), and IgA(+) cells in the small intestine were documented. Gluten+ diet prevents diabetes in NOD mice at the level found with the non-purified gluten-free diet. Possible mechanisms of the enigmatic, dual effect of dietary gluten on the development of T1D are discussed. 2007 John Wiley & Sons, Ltd

  3. Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes.

    PubMed

    Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes.

  4. Downregulation of cathepsin G reduces the activation of CD4+ T cells in murine autoimmune diabetes

    PubMed Central

    Zou, Fang; Lai, Xiaoyang; Li, Jing; Lei, Shuihong; Hu, Lei

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease due to progressive injury of islet cells mediated by T lymphocytes (T cells). Our previous studies have shown that only cathepsin G (CatG), not other proteases, is involved in the antigen presentation of proinsulin, and if the presentation is inhibited, the activation of CD4+ T cells induced by proinsulin is alleviated in T1DM patients, and CatG-specific inhibitor reduces the activation of CD4+ cells induced by proinsulin in T1DM patients. Therefore, we hypothesize that CatG may play an important role in the activation of CD4+ T cells in T1DM. To this end, mouse studies were conducted to demonstrate that CatG impacts the activation of CD4+ T cells in non-obese diabetic (NOD) mice. CatG gene expression and the activation of CD4+ T cells were examined in NOD mice. The effect of CatG inhibitor was investigated in NOD mice on the activation of CD4+ T cells, islet β cell function, islet inflammation and β-cell apoptosis. Furthermore, NOD mice were injected with CatG siRNA in early stage to observe the effect of CatG knockdown on the activation status of CD4+ T cells and the progression of diabetes. During the pathogenesis of diabetes, the expression level of CatG in NOD mice gradually increased and the CD4+ T cells were gradually activated, resulting in more TH1 cells and less TH2 and Treg cells. Treatment with CatG-specific inhibitor reduced the blood glucose level, improved the function of islet β cells and reduced the activation of CD4+ T cells. Early application of CatG siRNA improved the function of islet β cells, reduced islet inflammation and β cell apoptosis, and lowered the activation level of CD4+ T cells, thus slowing down the progression of diabetes. PMID:29218110

  5. ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity

    PubMed Central

    Bi, Xinyun; Li, Fanghong; Liu, Shanshan; Jin, Yan; Zhang, Xin; Yang, Tao; Dai, Yifan; Li, Xiaoxi; Zhao, Allan Zijian

    2017-01-01

    Despite the benefit of insulin, blockade of autoimmune attack and regeneration of pancreatic islets are ultimate goals for the complete cure of type 1 diabetes (T1D). Long-term consumption of ω-3 polyunsaturated fatty acids (PUFAs) is known to suppress inflammatory processes, making these fatty acids candidates for the prevention and amelioration of autoimmune diseases. Here, we explored the preventative and therapeutic effects of ω-3 PUFAs on T1D. In NOD mice, dietary intervention with ω-3 PUFAs sharply reduced the incidence of T1D, modulated the differentiation of Th cells and Tregs, and decreased the levels of IFN-γ, IL-17, IL-6, and TNF-α. ω-3 PUFAs exerted similar effects on the differentiation of CD4+ T cells isolated from human peripheral blood mononuclear cells. The regulation of CD4+ T cell differentiation was mediated at least in part through ω-3 PUFA eicosanoid derivatives and by mTOR complex 1 (mTORC1) inhibition. Importantly, therapeutic intervention in NOD mice through nutritional supplementation or lentivirus-mediated expression of an ω-3 fatty acid desaturase, mfat-1, normalized blood glucose and insulin levels for at least 182 days, blocked the development of autoimmunity, prevented lymphocyte infiltration into regenerated islets, and sharply elevated the expression of the β cell markers pancreatic and duodenal homeobox 1 (Pdx1) and paired box 4 (Pax4). The findings suggest that ω-3 PUFAs could potentially serve as a therapeutic modality for T1D. PMID:28375156

  6. Antibiotics in early life alter the gut microbiome and increase disease incidence in a spontaneous mouse model of autoimmune insulin-dependent diabetes.

    PubMed

    Candon, Sophie; Perez-Arroyo, Alicia; Marquet, Cindy; Valette, Fabrice; Foray, Anne-Perrine; Pelletier, Benjamin; Milani, Christian; Milani, Cristian; Ventura, Marco; Bach, Jean-François; Chatenoud, Lucienne

    2015-01-01

    Insulin-dependent or type 1 diabetes is a prototypic autoimmune disease whose incidence steadily increased over the past decades in industrialized countries. Recent evidence suggests the importance of the gut microbiota to explain this trend. Here, non-obese diabetic (NOD) mice that spontaneously develop autoimmune type 1 diabetes were treated with different antibiotics to explore the influence of a targeted intestinal dysbiosis in the progression of the disease. A mixture of wide spectrum antibiotics (i.e. streptomycin, colistin and ampicillin) or vancomycin alone were administered orally from the moment of conception, treating breeding pairs, and during the postnatal and adult life until the end of follow-up at 40 weeks. Diabetes incidence significantly and similarly increased in male mice following treatment with these two antibiotic regimens. In NOD females a slight yet not significant trend towards an increase in disease incidence was observed. Changes in gut microbiota composition were assessed by sequencing the V3 region of bacterial 16S rRNA genes. Administration of the antibiotic mixture resulted in near complete ablation of the gut microbiota. Vancomycin treatment led to increased Escherichia, Lactobacillus and Sutterella genera and decreased members of the Clostridiales order and Lachnospiraceae, Prevotellaceae and Rikenellaceae families, as compared to control mice. Massive elimination of IL-17-producing cells, both CD4+TCRαβ+ and TCRγδ+ T cells was observed in the lamina propria of the ileum and the colon of vancomycin-treated mice. These results show that a directed even partial ablation of the gut microbiota, as induced by vancomycin, significantly increases type 1 diabetes incidence in male NOD mice thus prompting for caution in the use of antibiotics in pregnant women and newborns.

  7. Reevaluation of the major histocompatibility complex genes of the NOD-progenitor CTS/Shi strain.

    PubMed

    Mathews, C E; Graser, R T; Serreze, D V; Leiter, E H

    2000-01-01

    The common Kd and/or Db alleles of NOD mice contribute to the development of autoimmune diabetes, but their respective contributions are unresolved. The major histocompatibility complex (MHC) of the CTS/Shi mouse, originally designated as H2ct, shares MHC class II region identity with the H2g7 haplotype of NOD mice. However, CTS mice were reported to express distinct but undefined MHC class I gene products. Because diabetes frequency was reduced 56% in females of a NOD stock congenic for H2ct, this partial resistance may have derived from the MHC class I allelic differences. In the present report, we use a combination of serologic analysis and sequencing of MHC class I cDNAs to establish that NOD/Lt and CTS/Shi share a common H2-Kd allele but differ at the H2-D end of the MHC complex. The H2-D allele of CTS/Shi was identified as the rare H2-Ddx recently described in ALR/Lt, another NOD-related strain. These results in mouse model systems show that multiple MHC genes confer diabetes resistance and suggest that at least one of the protective MHC or MHC-linked genes in CTS mice may be at the H2-D end of the complex.

  8. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes.

    PubMed

    Mariño, Eliana; Richards, James L; McLeod, Keiran H; Stanley, Dragana; Yap, Yu Anne; Knight, Jacinta; McKenzie, Craig; Kranich, Jan; Oliveira, Ana Carolina; Rossello, Fernando J; Krishnamurthy, Balasubramanian; Nefzger, Christian M; Macia, Laurence; Thorburn, Alison; Baxter, Alan G; Morahan, Grant; Wong, Lee H; Polo, Jose M; Moore, Robert J; Lockett, Trevor J; Clarke, Julie M; Topping, David L; Harrison, Leonard C; Mackay, Charles R

    2017-05-01

    Gut dysbiosis might underlie the pathogenesis of type 1 diabetes. In mice of the non-obese diabetic (NOD) strain, we found that key features of disease correlated inversely with blood and fecal concentrations of the microbial metabolites acetate and butyrate. We therefore fed NOD mice specialized diets designed to release large amounts of acetate or butyrate after bacterial fermentation in the colon. Each diet provided a high degree of protection from diabetes, even when administered after breakdown of immunotolerance. Feeding mice a combined acetate- and butyrate-yielding diet provided complete protection, which suggested that acetate and butyrate might operate through distinct mechanisms. Acetate markedly decreased the frequency of autoreactive T cells in lymphoid tissues, through effects on B cells and their ability to expand populations of autoreactive T cells. A diet containing butyrate boosted the number and function of regulatory T cells, whereas acetate- and butyrate-yielding diets enhanced gut integrity and decreased serum concentration of diabetogenic cytokines such as IL-21. Medicinal foods or metabolites might represent an effective and natural approach for countering the numerous immunological defects that contribute to T cell-dependent autoimmune diseases.

  9. CCR7 directs the recruitment of T cells into inflamed pancreatic islets of nonobese diabetic (NOD) mice.

    PubMed

    Shan, Zhongyan; Xu, Baohui; Mikulowska-Mennis, Anna; Michie, Sara A

    2014-05-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease characterized by the destruction of insulin-producing β cells in the pancreatic islets. The migration of T cells from blood vessels into pancreas is critical for the development of islet inflammation and β cell destruction in T1D. To define the roles of C-C chemokine receptor type 7 (CCR7) in recruitment of T cells into islets, we used laser capture microdissection to isolate tissue from inflamed islets of nonobese diabetic (NOD) mice and uninflamed islets of BALB/c and young NOD mice. RT-PCR analyses detected mRNAs for CCR7 and its chemokine ligands CCL19 (ELC; MIP-3β) and CCL21 (SLC) in captures from inflamed, but not from uninflamed, islets. Immunohistology studies revealed that high endothelial venules in inflamed islets co-express CCL21 protein and MAdCAM-1 (an adhesion molecule that recruits lymphocytes into islets). Desensitization of lymphocyte CCR7 blocked about 75 % of T cell migration from the bloodstream into inflamed islets, but had no effect on B cell migration into islets. These results indicate that CCR7 and its ligands are important in the recruitment of T cells into inflamed islets and thus in the pathogenesis of T1D.

  10. Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions.

    PubMed

    Graser, R T; DiLorenzo, T P; Wang, F; Christianson, G J; Chapman, H D; Roopenian, D C; Nathenson, S G; Serreze, D V

    2000-04-01

    Previous work has indicated that an important component for the initiation of autoimmune insulin-dependent diabetes mellitus (IDDM) in the NOD mouse model entails MHC class I-restricted CD8 T cell responses against pancreatic beta cell Ags. However, unless previously activated in vitro, such CD8 T cells have previously been thought to require helper functions provided by MHC class II-restricted CD4 T cells to exert their full diabetogenic effects. In this study, we show that IDDM development is greatly accelerated in a stock of NOD mice expressing TCR transgenes derived from a MHC class I-restricted CD8 T cell clone (designated AI4) previously found to contribute to the earliest preclinical stages of pancreatic beta cell destruction. Importantly, these TCR transgenic NOD mice (designated NOD.AI4alphabeta Tg) continued to develop IDDM at a greatly accelerated rate when residual CD4 helper T cells were eliminated by introduction of the scid mutation or a functionally inactivated CD4 allele. In a previously described stock of NOD mice expressing TCR transgenes derived from another MHC class I-restricted beta cell autoreactive T cell clone, IDDM development was retarded by elimination of residual CD4 T cells. Hence, there is variability in the helper dependence of CD8 T cells contributing to the development of autoimmune IDDM. The AI4 clonotype represents the first CD8 T cell with a demonstrated ability to progress from a naive to functionally activated state and rapidly mediate autoimmune IDDM development in the complete absence of CD4 T cell helper functions.

  11. Prevention of Diabetes in NOD Mice by Repeated Exposures to a Contact Allergen Inducing a Sub-Clinical Dermatitis

    PubMed Central

    Engkilde, Kaare; Buschard, Karsten; Hansen, Axel Kornerup; Menné, Torkil; Johansen, Jeanne Duus

    2010-01-01

    Background Type 1 diabetes is an autoimmune disease, while allergic contact dermatitis although immune mediated, is considered an exposure driven disease that develops due to epicutanous contact with reactive low-molecular chemicals. The objective of the present study was to experimentally study the effect of contact allergens on the development of diabetes in NOD mice. As the link between contact allergy and diabetes is yet unexplained we also examined the effect of provocation with allergens on Natural Killer T (NKT) cells, since involvement of NKT cells could suggest an innate connection between the two diseases. Method NOD mice 4 weeks of age were exposed, on the ears, to two allergens, p-phenylenediamine and 2,4-dinitrochlorobenzene respectively, to investigate the diabetes development. The mice were followed for a maximum of 32 weeks, and they were either repeatedly exposed to the allergens or only sensitized a week after arrival. The stimulation of NKT cells by the two allergens were additionally studied in C57BL/6 mice. The mice were sensitized and two weeks later provocated with the allergens. The mice were subsequently euthanized at different time points after the provocation. Results It was found that repeated application of p-phenylenediamine reduced the incidence of diabetes compared to application with water (47% vs. 93%, P = 0.004). Moreover it was shown that in C57BL/6 mice both allergens resulted in a slight increment in the quantity of NKT cells in the liver. Application of the allergens at the same time resulted in an increased number of NKT cells in the draining auricular lymph node, and the increase appeared to be somewhat allergen specific as the accumulation was stronger for p-phenylenediamine. Conclusion The study showed that repeated topical application on the ears with a contact allergen could prevent the development of diabetes in NOD mice. The contact allergens gave a non-visible, sub-clinical dermatitis on the application site. The

  12. MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice

    PubMed Central

    Zhang, Mingfeng; Racine, Jeremy J.; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D.; Zeng, Defu

    2018-01-01

    Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. PMID:29463744

  13. A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes-prone (NOD) mice.

    PubMed

    Marée, Athanasius F M; Komba, Mitsuhiro; Finegood, Diane T; Edelstein-Keshet, Leah

    2008-01-01

    Macrophages play an important role in clearing apoptotic debris from tissue. Defective or reduced clearance, seen, for instance, in non-obese diabetic (NOD) mice, has been correlated with initiation of autoimmune (Type 1) diabetes (T1D) (O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Diabetes 51: 2481-2488, 2002). To validate such a link, it is essential to quantify the reduced clearance (for example, by comparison to BALB/c control mice) and to determine which elements of that clearance are impaired. Recently, we fit data for the time course of in vitro macrophage feeding experiments to basic models of macrophage clearance dynamics, thus quantifying kinetics of uptake and digestion of apoptotic cells in both mouse strains (Marée AFM, Komba M, Dyck C, Łabeçki M, Finegood DT, Edelstein-Keshet L. J Theor Biol 233: 533-551, 2005). In the cycle of modeling and experimental investigation, we identified the importance of 1) measuring short-, intermediate-, and long-time data (to increase the accuracy of parameter fits), and 2) designing experiments with distinct observable regimes, including engulfment-only and digestion-only phases. Here, we report on new results from experiments so designed. In comparing macrophages from the two strains, we find that NOD macrophage engulfment of apoptotic cells is 5.5 times slower than BALB/c controls. Significantly, our new data demonstrate that digestion is at least two times slower in NOD, in contrast with previous conclusions. Moreover, new data enable us to detect an acceleration in engulfment (after the first engulfment) in both strains, but much smaller in NOD macrophages.

  14. Patterns of hemopoietic reconstitution in nonobese diabetic mice: dichotomy of allogeneic resistance versus competitive advantage of disease-resistant marrow.

    PubMed

    Kaufman, C L; Li, H; Ildstad, S T

    1997-03-01

    Complete replacement of the immune system via allogeneic bone marrow transplantation is sufficient to prevent diabetes in the nonobese diabetic (NOD) mouse model. In the present study we examined whether mixed allogeneic reconstitution would be sufficient to interrupt the autoimmune process with respect to occurrence of overt diabetes, as well as preexisting autoimmune insulitis. NOD mice were lethally irradiated and reconstituted with a mixture of NOD and B10.BR marrow. A relative resistance to allogeneic bone marrow engraftment was noted in NOD recipients of the mixed bone marrow inoculum, compared with disease-resistant controls. Moreover, unlike disease-resistant controls, all animals that initially repopulated as mixed donor/host chimeras became predominantly allogeneic by 4 mo, suggesting a competitive advantage for long term engraftment for disease-resistant marrow. All but one mouse in the group that engrafted with allogeneic marrow remained free of diabetes for the entire follow-up period (n = 22). Moreover, in all animals examined, virtually all islets were free of insulitis. In contrast, 74% of NOD mice that received similar conditioning and failed to engraft with donor marrow developed acute diabetes and intra-islet insulitis was present in all animals examined. These data suggest that NOD mice exhibit a relative resistance to engraftment compared with disease-resistant recipients. Conversely, animals that initially repopulated as a mixture of syngeneic and donor marrow become converted to virtually all donor by 4 mo. These data provide additional support that a defective stem cell is responsible for autoimmune diabetes in this experimental model.

  15. Systemic alterations in the metabolome of diabetic NOD mice delineate increased oxidative stress accompanied by reduced inflammation and hypertriglyceremia

    PubMed Central

    Fahrmann, Johannes; Grapov, Dmitry; Yang, Jun; Hammock, Bruce; Fiehn, Oliver; Bell, Graeme I.

    2015-01-01

    Nonobese diabetic (NOD) mice are a commonly used model of type 1 diabetes (T1D). However, not all animals will develop overt diabetes despite undergoing similar autoimmune insult. In this study, a comprehensive metabolomic approach, consisting of gas chromatography time-of-flight (GC-TOF) mass spectrometry (MS), ultra-high-performance liquid chromatography-accurate mass quadruple time-of-flight (UHPLC-qTOF) MS and targeted UHPLC-tandem mass spectrometry-based methodologies, was used to capture metabolic alterations in the metabolome and lipidome of plasma from NOD mice progressing or not progressing to T1D. Using this multi-platform approach, we identified >1,000 circulating lipids and metabolites in male and female progressor and nonprogressor animals (n = 71). Statistical and multivariate analyses were used to identify age- and sex-independent metabolic markers, which best differentiated metabolic profiles of progressors and nonprogressors. Key T1D-associated perturbations were related with 1) increases in oxidation products glucono-δ-lactone and galactonic acid and reductions in cysteine, methionine and threonic acid, suggesting increased oxidative stress; 2) reductions in circulating polyunsaturated fatty acids and lipid signaling mediators, most notably arachidonic acid (AA) and AA-derived eicosanoids, implying impaired states of systemic inflammation; 3) elevations in circulating triacylglyercides reflective of hypertriglyceridemia; and 4) reductions in major structural lipids, most notably lysophosphatidylcholines and phosphatidylcholines. Taken together, our results highlight the systemic perturbations that accompany a loss of glycemic control and development of overt T1D. PMID:25852003

  16. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice.

    PubMed

    Shultz, L D; Schweitzer, P A; Christianson, S W; Gott, B; Schweitzer, I B; Tennent, B; McKenna, S; Mobraaten, L; Rajan, T V; Greiner, D L

    1995-01-01

    The scid mutation was backcrossed ten generations onto the NOD/Lt strain background, resulting in an immunodeficient stock (NOD/LtSz-scid/scid) with multiple defects in adaptive as well as nonadaptive immunologic function. NOD/LtSz-scid/scid mice lack functional lymphoid cells and show little or no serum Ig with age. Although NOD/(Lt-)+/+ mice develop T cell-mediated autoimmune, insulin-dependent diabetes mellitus, NOD/LtSz-scid/scid mice are both insulitis- and diabetes-free throughout life. However, because of a high incidence of thymic lymphomas, the mean lifespan of this congenic stock is only 8.5 mo under specific pathogen-free conditions. After i.v. injection of human CEM T-lymphoblastoid cells, splenic engraftment of these cells was fourfold greater in NOD/LtSz-scid/scid mice than in C.B17/Sz-scid/scid mice. Although C.B-17Sz-scid/scid mice exhibit robust NK cell activity, this activity is markedly reduced in both NOD/(Lt-)+/+ and NOD/LtSz-scid/scid mice. Presence of a functionally less mature macrophage population in NOD/LtSz-scid/scid vs C.B-17Sz-scid/scid mice is indicated by persistence in the former of the NOD/Lt strain-specific defect in LPS-stimulated IL-1 secretion by marrow-derived macrophages. Although C.B-17Sz-scid/scid and C57BL/6Sz-scid/scid mice have elevated serum hemolytic complement activity compared with their respective +/+ controls, both NOD/(LtSz-)+/+ and NOD/LtSz-scid/scid mice lack this activity. Age-dependent increases in serum Ig levels (> 1 micrograms/ml) were observed in only 2 of 30 NOD/LtSz-scid/scid mice vs 21 of 29 C.B-17/Sz-scid/scid animals. The multiple defects in innate and adaptive immunity unique to the NOD/LtSz-scid/scid mouse provide an excellent in vivo environment for reconstitution with human hematopoietic cells.

  17. CD28 co-stimulation restores T cell responsiveness in NOD mice by overcoming deficiencies in Rac-1/p38 mitogen-activated protein kinase signaling and IL-2 and IL-4 gene transcription.

    PubMed

    Zhang, J; Salojin, K V; Delovitch, T L

    2001-03-01

    Previously, we reported that T cell hyporesponsiveness induced by TCR ligation is causal to autoimmune diabetes in NOD mice. Neonatal CD28 co-stimulation reverses T cell hyporesponsiveness and protects NOD mice from diabetes by an IL-4-mediated mechanism, indicating that a deficiency in TCR signaling may be overcome by CD28/B7-2 co-stimulation in NOD T cells. To investigate which co-stimulation-induced signaling events mediate this protection, we analyzed the activity of Ras, Rac-1, mitogen-activated protein kinases (MAPK) and several transcription factors in TCR-activated NOD T cells in the presence or absence of CD28 co-stimulation. We show that CD28 co-stimulation restores normal TCR-induced activation of Rac-1 and p38 MAPK in NOD T cells. Deficiencies in TCR-induced nuclear expression of activating protein (AP)-1 binding proteins as well as activation of AP-1 and NF-AT in the IL-2 and IL-4 P1 promoters are also corrected by CD28 co-stimulation. Thus, CD28 co-stimulation reverses NOD T cell hyporesponsiveness by restoring TCR signaling leading to the activation of AP-1 and NF-AT during IL-2 and IL-4 gene transcription. Our findings provide additional evidence that CD28 co-stimulation amplifies signals delivered by the TCR and further explain the mechanism by which CD28 co-stimulation may protect against autoimmune diabetes.

  18. B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model.

    PubMed

    Da Rosa, Larissa C; Boldison, Joanne; De Leenheer, Evy; Davies, Joanne; Wen, Li; Wong, F Susan

    2018-06-01

    Type 1 diabetes is a T cell-mediated autoimmune disease characterised by the destruction of beta cells in the islets of Langerhans, resulting in deficient insulin production. B cell depletion therapy has proved successful in preventing diabetes and restoring euglycaemia in animal models of diabetes, as well as in preserving beta cell function in clinical trials in the short term. We aimed to report a full characterisation of B cell kinetics post B cell depletion, with a focus on pancreatic islets. Transgenic NOD mice with a human CD20 transgene expressed on B cells were injected with an anti-CD20 depleting antibody. B cells were analysed using multivariable flow cytometry. There was a 10 week delay in the onset of diabetes when comparing control and experimental groups, although the final difference in the diabetes incidence, following prolonged observation, was not statistically significant (p = 0.07). The co-stimulatory molecules CD80 and CD86 were reduced on stimulation of B cells during B cell depletion and repopulation. IL-10-producing regulatory B cells were not induced in repopulated B cells in the periphery, post anti-CD20 depletion. However, the early depletion of B cells had a marked effect on T cells in the local islet infiltrate. We demonstrated a lack of T cell activation, specifically with reduced CD44 expression and effector function, including IFN-γ production from both CD4 + and CD8 + T cells. These CD8 + T cells remained altered in the pancreatic islets long after B cell depletion and repopulation. Our findings suggest that B cell depletion can have an impact on T cell regulation, inducing a durable effect that is present long after repopulation. We suggest that this local effect of reducing autoimmune T cell activity contributes to delay in the onset of autoimmune diabetes.

  19. Prevention of autoimmune diabetes and islet allograft rejection by beta cell expression of XIAP: Insight into possible mechanisms of local immunomodulation.

    PubMed

    Obach, Mercè; Hosseini-Tabatabaei, Azadeh; Montane, Joel; Wind, Katarina; Soukhatcheva, Galina; Dai, Derek; Priatel, John J; Orban, Paul C; Verchere, C Bruce

    2018-06-05

    Overexpression of the X-linked inhibitor of apoptosis (XIAP) prevents islet allograft rejection. We constructed an adeno-associated virus expressing XIAP driven by the rat insulin promoter (dsAAV8-RIP-XIAP) for long-term beta-cell gene expression in vivo. Pancreatic delivery of dsAAV8-RIP-XIAP prevented autoimmune diabetes in 70% of non-obese diabetic (NOD) mice, associated with decreased insulitis. Islets from Balb/c mice transduced with dsAAV8-RIP-XIAP were protected following transplantation into streptozotocin (STZ)-diabetic Bl/6 recipients, associated with decreased graft infiltration. Interestingly, dsAAV8-RIP-XIAP transduction induced expression of lactate dehydrogenase (LDHA) and monocarboxylate transporter 1 (MCT1), two genes normally suppressed in beta cells and involved in production and release of lactate, a metabolite known to suppress local immune responses. Transduction of Balb/c islets with AAV8-RIP-LDHA-MCT1 tended to prolong allograft survival following transplant into STZ-diabetic Bl/6 recipients. These findings suggest that XIAP has therapeutic potential in autoimmune diabetes and raise the possibility that local lactate production may play a role in XIAP-mediated immunomodulation. Copyright © 2018. Published by Elsevier B.V.

  20. CD4+CD25+ T-Cells Control Autoimmunity in the Absence of B-Cells

    PubMed Central

    Mariño, Eliana; Villanueva, Jeanette; Walters, Stacey; Liuwantara, David; Mackay, Fabienne; Grey, Shane T.

    2009-01-01

    OBJECTIVE Tumor necrosis factor ligand family members B-cell–activating factor (BAFF) and a proliferation-inducing ligand (APRIL) can exert powerful effects on B-cell activation and development, type 1 T-helper cell (Th1) immune responses, and autoimmunity. We examined the effect of blocking BAFF and APRIL on the development of autoimmune diabetes. RESEARCH DESIGN AND METHODS Female NOD mice were administered B-cell maturation antigen (BCMA)-Fc from 9 to 15 weeks of age. Diabetes incidence, islet pathology, and T- and B-cell populations were examined. RESULTS BCMA-Fc treatment reduced the severity of insulitis and prevented diabetes development in NOD mice. BCMA-Fc–treated mice showed reduced follicular, marginal-zone, and T2MZ B-cells. B-cell reduction was accompanied by decreased frequencies of pathogenic CD4+CD40+ T-cells and reduced Th1 cytokines IL-7, IL-15, and IL-17. Thus, T-cell activation was blunted with reduced B-cells. However, BCMA-Fc–treated mice still harbored detectable diabetogenic T-cells, suggesting that regulatory mechanisms contributed to diabetes prevention. Indeed, BCMA-Fc–treated mice accumulated increased CD4+CD25+ regulatory T-cells (Tregs) with age. CD4+CD25+ cells were essential for maintaining euglycemia because their depletion abrogated BCMA-Fc–mediated protection. BCMA-Fc did not directly affect Treg homeostasis given that CD4+CD25+Foxp3+ T-cells did not express TACI or BR3 receptors and that CD4+CD25+Foxp3+ T-cell frequencies were equivalent in wild-type, BAFF−/−, TACI−/−, BCMA−/−, and BR3−/− mice. Rather, B-cell depletion resulted in CD4+CD25+ T-cell–mediated protection from diabetes because anti-CD25 monoclonal antibody treatment precipitated diabetes in both diabetes-resistant NOD.μMT−/− and BCMA-Fc–treated mice. CONCLUSIONS BAFF/APRIL blockade prevents diabetes. BCMA-Fc reduces B-cells, subsequently blunting autoimmune activity and allowing endogenous regulatory mechanisms to preserve a

  1. Pathogenesis of NOD Diabetes is Initiated by Reactivity to the Insulin B Chain 9–23 Epitope and Involves Functional Epitope Spreading1

    PubMed Central

    Prasad, Suchitra; Kohm, Adam P.; McMahon, Jeffrey S.; Luo, Xunrong; Miller, Stephen D.

    2012-01-01

    Type 1 diabetes (T1D) is mediated by destruction of pancreatic β cells by CD4 and CD8 T cells specific for epitopes on numerous diabetogenic autoantigens resulting in loss of glucose homeostasis. Employing antigen-specific tolerance induced by i.v. administration of syngeneic splenocytes ECDI cross-linked to various diabetogenic antigens/epitopes (Ag-SP), we show that epitope spreading plays a functional role in the pathogenesis of T1D in NOD mice. Specifically, Ag-SP coupled with intact insulin, Ins B9–23 or Ins B15–23, but not GAD65509–528, GAD65524–543 or IGRP206–214, protected 4–6 week-old NOD mice from the eventual development of clinical disease; infiltration of immune cells to the pancreatic islets; and blocked the induction of DTH responses in a Treg-dependent, antigen-specific manner. However, tolerance induction in 19–21 week-old NOD mice was effectively accomplished only by Ins-SP, suggesting Ins B9–23 is a dominant initiating epitope, but autoimmune responses to insulin epitope(s) distinct from Ins B9–23 emerge during disease progression. PMID:22647732

  2. Antibiotic-associated Manipulation of the Gut Microbiota and Phenotypic Restoration in NOD Mice

    PubMed Central

    Fahey, James R; Lyons, Bonnie L; Olekszak, Haiyan L; Mourino, Anthony J; Ratiu, Jeremy J; Racine, Jeremy J; Chapman, Harold D; Serreze, David V; Baker, Dina L; Hendrix, N Ken

    2017-01-01

    Segmented filamentous bacterium (SFB) a gram-positive, anaerobic, and intestinal commensal organism directly influences the development of Th17 helper cells in the small intestine of mice. In NOD mice, SFB colonization interferes with the development of type 1 diabetes (T1D), a T-cell–mediated autoimmune disease, suggesting that SFB may influence Th17 cells to inhibit Th1 populations associated with the anti-β-cell immune response. This effect is a serious concern for investigators who use NOD mice for diabetes research because the expected incidence of disease decreases markedly when they are colonized by SFB. A room housing mice for T1D studies at The Jackson Laboratory was determined by fecal PCR testing to have widespread SFB colonization of multiple NOD strains after a steady decline in the incidence of T1D was noted. Rederivation of all NOD-related mouse strains was not feasible; therefore an alternative treatment using antibiotics to eliminate SFB from colonized mice was undertaken. After antibiotic treatment, soiled bedding from NOD mouse strains housed in SFB-free high-health–status production barrier rooms was used to reintroduce the gastrointestinal microbiota. Over the past 16 mo since treating the mice and disinfecting the mouse room, regular PCR testing has shown that no additional SFB colonization of mice has occurred, and the expected incidence of T1D has been reestablished in the offspring of treated mice. PMID:28830580

  3. Insulin sensitizer prevents and ameliorates experimental type 1 diabetes.

    PubMed

    Valitsky, Michael; Hoffman, Amnon; Unterman, Terry; Bar-Tana, Jacob

    2017-12-01

    Insulin-dependent type-1 diabetes (T1D) is driven by autoimmune β-cell failure, whereas systemic resistance to insulin is considered the hallmark of insulin-independent type-2 diabetes (T2D). In contrast to this canonical dichotomy, insulin resistance appears to precede the overt diabetic stage of T1D and predict its progression, implying that insulin sensitizers may change the course of T1D. However, previous attempts to ameliorate T1D in animal models or patients by insulin sensitizers have largely failed. Sensitization to insulin by MEthyl-substituted long-chain DICArboxylic acid (MEDICA) analogs in T2D animal models surpasses that of current insulin sensitizers, thus prompting our interest in probing MEDICA in the T1D context. MEDICA efficacy in modulating the course of T1D was verified in streptozotocin (STZ) diabetic rats and autoimmune nonobese diabetic (NOD) mice. MEDICA treatment normalizes overt diabetes in STZ diabetic rats when added on to subtherapeutic insulin, and prevents/delays autoimmune T1D in NOD mice. MEDICA treatment does not improve β-cell insulin content or insulitis score, but its efficacy is accounted for by pronounced total body sensitization to insulin. In conclusion, potent insulin sensitizers may counteract genetic predisposition to autoimmune T1D and amplify subtherapeutic insulin into an effective therapeutic measure for the treatment of overt T1D. Copyright © 2017 the American Physiological Society.

  4. Chinese medicine Ginseng and Astragalus granules ameliorate autoimmune diabetes by upregulating both CD4+FoxP3+ and CD8+CD122+PD1+ regulatory T cells.

    PubMed

    Wang, Yeshu; Xie, Qingfeng; Liang, Chun-Ling; Zeng, Qiaohuang; Dai, Zhenhua

    2017-09-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease mainly mediated by effector T cells that are activated by autoantigen, thereby resulting in the destruction of pancreatic islets and deficiency of insulin. Cyclosporine is widely used as an immunosuppressant that suppresses autoimmunity in clinic. However, continuous treatments with conventional immunosuppressive drugs may cause severe side effects. Therefore it is important to seek alternative medicine. Chinese medicine Ginseng and Astragalus granule (GAG) was used to successfully treat type 2 diabetes mellitus in clinic in China. Here we found that GAG ameliorated T1DM in autoimmune NOD mice by increasing the level of insulin and reducing the level of blood glucose. Treatments with both GAG and CsA further decreased the blood glucose level. Moreover, GAG increased both CD4+FoxP3+ and CD8+CD122+PD-1+ Treg numbers in both spleens and lymph nodes of NOD mice. In particular, GAG could reverse a decline in CD4+FoxP3+ Tregs resulted from CsA treatments. The percentage of effector/memory CD8+ T cells (CD44 high CD62L low ) was significantly reduced by GAG, especially in the presence of low-doses of CsA. Histopathology also showed that GAG attenuated cellular infiltration and lowered CD3+ T cell numbers around and in islets. Thus, we demonstrated that GAG ameliorated autoimmune T1DM by upregulating both CD4+FoxP3+ and CD8+CD122+PD-1+ Tregs while GAG synergized with CsA to further suppress autoimmunity and T1DM by reversing the decline in CD4+FoxP3+ Tregs resulted from CsA treatments. This study may have important clinical implications for the treatment of T1DM using traditional Chinese medicine.

  5. NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn's Disease

    PubMed Central

    Strober, Warren; Watanabe, Tomohiro

    2013-01-01

    Nucleotide binding oligomerization domain 2 (NOD2) is an intracellular sensor for small peptides derived from the bacterial cell wall component, peptidoglycan. Recent studies have uncovered unexpected functions of NOD2 in innate immune responses such as induction of type I IFN and facilitation of autophagy; moreover, they have disclosed extensive cross-talk between NOD2 and Toll-like receptors which plays an indispensable role both in host defense against microbial infection and in the development of autoimmunity. Of particular interest, polymorphisms of CARD15 encoding NOD2 are associated with Crohn's disease and other autoimmune states such as graft versus host disease. In this review, we summarize recent findings regarding normal functions of NOD2 and discuss the mechanisms by which NOD2 polymorphisms associated with Crohn's disease lead to intestinal inflammation. PMID:21750585

  6. [Coexistence of autoimmune polyglandular syndrome type 3 with diabetes insipidus].

    PubMed

    Krysiak, Robert; Okopień, Bogusław

    2015-01-01

    Autoimmune polyglandular syndromes are conditions characterized by the combination of two or more organ-specific disorders. The underestimation oftheir real frequency probable results from physicians' inadequate knowledge of these clinical entities and sometimes their atypical clinical presentation. Because they comprise a wide spectrum of autoimmune disorders, autoimmune polyglandular syndromes are divided into four types, among which type-3 is the most common one. In this article, we report the case of a young female, initially diagnosed with diabetes mellitus who several years later developed full-blown autoimmune polyglandular syndrome type 3 consisting of autoimmune thyroid disorder and latent autoimmune diabetes in adults.The discussed case suggests that in selected patients diabetes insipidus may coexist with autoimmune endocrinopathies and nonendocrine autoimmunopathies, as well as that in some patients idiopathic diabetes insipidus may be secondary to lymphocytic infiltration and destruction of the hypothalamic supraoptic and paraventricular nuclei and/or the supraoptic-hypophyseal tract

  7. Diabetic peripheral neuropathy, is it an autoimmune disease?

    PubMed

    Janahi, Noor M; Santos, Derek; Blyth, Christine; Bakhiet, Moiz; Ellis, Mairghread

    2015-11-01

    Autoimmunity has been identified in a significant number of neuropathies, such as, proximal neuropathies, and autonomic neuropathies associated with diabetes mellitus. However, possible correlations between diabetic peripheral neuropathy and autoimmunity have not yet been fully investigated. This study was conducted to investigate whether autoimmunity is associated with the pathogenesis of human diabetic peripheral neuropathy. A case-control analysis included three groups: 30 patients with diabetic peripheral neuropathy, 30 diabetic control patients without neuropathy, and 30 healthy controls. Blood analysis was conducted to compare the percentages of positive antinuclear antibodies (ANA) between the three groups. Secondary analysis investigated the correlations between the presence of autoimmune antibodies and sample demographics and neurological manifestations. This research was considered as a pilot study encouraging further investigations to take place in the near future. Antinuclear antibodies were significantly present in the blood serum of patients with diabetic peripheral neuropathy in comparison to the control groups (p<0.001). The odds of positive values of ANA in the neuropathy group were 50 times higher when compared to control groups. Secondary analysis showed a significant correlation between the presence of ANA and the neurological manifestation of neuropathy (Neuropathy symptom score, Neuropathy disability score and Vibration Perception Threshold). The study demonstrated for the first time that human peripheral diabetic neuropathy may have an autoimmune aetiology. The new pathogenic factors may lead to the consideration of new management plans involving new therapeutic approaches and disease markers. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Do we really need to differentiate mesenchymal stem cells into insulin-producing cells for attenuation of the autoimmune responses in type 1 diabetes: immunoprophylactic effects of precursors to insulin-producing cells.

    PubMed

    Sharma, Anshu; Rani, Rajni

    2017-07-12

    Type 1 diabetes (T1D) is a multifactorial autoimmune disorder where pancreatic beta cells are lost before the clinical manifestations of the disease. Administration of mesenchymal stem cells (MSCs) or MSCs differentiated into insulin-producing cells (IPCs) have yielded limited success when used therapeutically. We have evaluated the immunoprophylactic potentials of precursors to insulin-producing cells (pIPCs) and IPCs in nonobese diabetic (NOD) mice to ask a basic question: do we need to differentiate MSCs into IPCs or will pIPCs suffice to attenuate autoimmune responses in T1D? Bone marrow-derived MSCs from Balb/c mice were characterized following the International Society for Cellular Therapy (ISCT) guidelines. MSCs cultured in high-glucose media for 11 to 13 passages were characterized for the expression of pancreatic lineage genes using real-time polymerase chain reaction. Expression of the PDX1 gene in pIPCs was assessed using Western blot and fluorescence-activated cell sorting (FACS). Triple-positive MSCs were differentiated into IPCs using a three-step protocol after sorting them for cell surface markers, i.e. CD29, CD44, and SCA-1. Nonobese diabetic mice were administered pIPCs, IPCs, or phosphate-buffered saline (PBS) into the tail vein at weeks 9 or 10 and followed-up for 29-30 weeks for fasting blood glucose levels. Two consecutive blood sugar levels of more than 250 mg/dl were considered diabetic. MSCs grown in high-glucose media for 11 to 13 passages expressed genes of the pancreatic lineage such as PDX1, beta2, neurogenin, PAX4, Insulin, and glucagon. Furthermore, Western blot and FACS analysis for PDX-1, a transcription factor necessary for beta cell maturation, confirmed that these cells were precursors of insulin-producing cells (pIPCs). NOD mice administered with pIPCs were better protected from developing diabetes with a protective efficacy of 78.4% (p < 0.009); however, administration of IPCs gave protective efficacy of 55% at the end of

  9. Clinical Recommendations for the Use of Islet Cell Autoantibodies to Distinguish Autoimmune and Non-Autoimmune Gestational Diabetes.

    PubMed

    Haller-Kikkatalo, Kadri; Uibo, Raivo

    2016-02-01

    Gestational diabetes mellitus (GDM) is defined as carbohydrate intolerance that begins or is first recognized during pregnancy. The prevalence of GDM is highly variable, depending on the population studied, and reflects the underlying pattern of diabetes in the population. GDM manifests by the second half of pregnancy and disappears following delivery in most cases, but is associated with the risk of subsequent diabetes development. Normal pregnancy induces carbohydrate intolerance to favor the availability of nutrients for the fetus, which is compensated by increased insulin secretion from the maternal pancreas. Pregnancy shares similarities with adiposity in metabolism to save energy, and both conditions favor the development of insulin resistance (IR) and low-grade inflammation. A highly complicated network of modified regulatory mechanisms may primarily affect carbohydrate metabolism by promoting autoimmune reactions to pancreatic β cells and affecting insulin function. As a result, diabetes development during pregnancy is facilitated. Depending on a pregnant woman's genetic susceptibility to diabetes, autoimmune mechanisms or IR are fundamental to the development autoimmune or non-autoimmune GDM, respectively. Pregnancy may facilitate the identification of women at risk of developing diabetes later in life; autoimmune and non-autoimmune GDM may be early markers of the risk of future type 1 and type 2 diabetes, respectively. The most convenient and efficient way to discriminate GDM types is to assess pancreatic β-cell autoantibodies along with diagnosing diabetes in pregnancy.

  10. Latent autoimmune diabetes of the adult: current knowledge and uncertainty

    PubMed Central

    Laugesen, E; Østergaard, J A; Leslie, R D G

    2015-01-01

    Patients with adult-onset autoimmune diabetes have less Human Leucocyte Antigen (HLA)-associated genetic risk and fewer diabetes-associated autoantibodies compared with patients with childhood-onset Type 1 diabetes. Metabolic changes at diagnosis reflect a broad clinical phenotype ranging from diabetic ketoacidosis to mild non-insulin-requiring diabetes, also known as latent autoimmune diabetes of the adult (LADA). This latter phenotype is the most prevalent form of adult-onset autoimmune diabetes and probably the most prevalent form of autoimmune diabetes in general. Although LADA is associated with the same genetic and immunological features as childhood-onset Type 1 diabetes, it also shares some genetic features with Type 2 diabetes, which raises the question of genetic heterogeneity predisposing to this form of the disease. The potential value of screening patients with adult-onset diabetes for diabetes-associated autoantibodies to identify those with LADA is emphasized by their lack of clinically distinct features, their different natural history compared with Type 2 diabetes and their potential need for a dedicated management strategy. The fact that, in some studies, patients with LADA show worse glucose control than patients with Type 2 diabetes, highlights the need for further therapeutic studies. Challenges regarding classification, epidemiology, genetics, metabolism, immunology, clinical presentation and treatment of LADA were discussed at a 2014 workshop arranged by the Danish Diabetes Academy. The presentations and discussions are summarized in this review, which sets out the current ideas and controversies surrounding this form of diabetes. What’s new? Latent autoimmune diabetes of the adult (LADA) is an autoimmune diabetes defined by adult-onset, presence of diabetes associated autoantibodies, and no insulin treatment requirement for a period after diagnosis. Immunologically, glutamic acid decarboxylase 65 autoantibodies are by far the most

  11. Identification of Cd101 as a susceptibility gene for Novosphingobium aromaticivorans - induced liver autoimmunity

    PubMed Central

    Mohammed, Javid P.; Fusakio, Michael E.; Rainbow, Daniel B.; Moule, Carolyn; Fraser, Heather I.; Clark, Jan; Todd, John A.; Peterson, Laurence B.; Savage, Paul B.; Wills-Karp, Marsha; Ridgway, William M.; Wicker, Linda S.; Mattner, Jochen

    2011-01-01

    Environmental and genetic factors define the susceptibility of an individual to autoimmune disease. Although common genetic pathways affect general immunological tolerance mechanisms in autoimmunity, the effects of such genes could vary under distinct immune challenges within different tissues. Here we demonstrate this by observing that autoimmune type 1 diabetes (T1D) protective haplotypes at the susceptibility region 10 (Idd10) introgressed from chromosome 3 of B6 and A/J mice onto the NOD background increase the severity of autoimmune primary biliary cirrhosis (PBC) induced by infection with Novosphingobium aromaticivorans (N. aro), an ubiquitous alphaproteobacterium, when compared to mice having the NOD and NOD.CAST Idd10 T1D susceptible haplotypes. Substantially increased liver pathology in mice having the B6 and A/J Idd10 haplotypes correlates with reduced expression of CD101 on dendritic cells (DCs), macrophages and granulocytes following infection, delayed clearance of N. aro and the promotion of overzealous, IFN-γ- and IL-17-dominated T cell responses essential for the adoptive transfer of liver lesions. CD101-knockout mice generated on the B6 background also exhibit substantially more severe N.aro-induced liver disease correlating with increased IFN-γ and IL-17 responses compared to wild type mice. These data strongly support the hypothesis that allelic variation of the Cd101 gene, located in the Idd10 region, alters the severity of liver autoimmunity induced by N. aro. PMID:21613619

  12. Evidence for a primary autoimmune type of diabetes mellitus.

    PubMed

    Bottazzo, G F; Cudworth, A G; Moul, D J; Doniach, D; Festenstein, H

    1978-11-04

    Sixty-eight patients with longstanding diabetes and persistent islet-cell antibody and 35 with coexistent diabetes and Graves's disease or primary myxoedema were studied with particular reference to the HLA system and autoantibody patterns. A higher incidence of HLA-B8 than normal was observed in the two groups. An additive relative risk exists when type I diabetes and autoimmune thyroid disease coexist, indicating that different HLA-linked genes may confer susceptibility to the pancreatic and thyroid disorders. Other characteristics, including female predominance, a later onset of diabetes, and a strong family history of autoimmune endocrinopathy, provide further evidence that this form of diabetes is aetiologically distinct from that generally seen in children. These results support the hypothesis of a primary autoimmune type of diabetes mellitus.

  13. Dendritic cell subsets in type 1 diabetes: friend or foe?

    PubMed

    Morel, Penelope A

    2013-12-06

    Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.

  14. Autoantigen-specific B-cell depletion overcomes failed immune tolerance in type 1 diabetes.

    PubMed

    Henry, Rachel A; Kendall, Peggy L; Thomas, James W

    2012-08-01

    Eliminating autoantigen-specific B cells is an attractive alternative to global B-cell depletion for autoimmune disease treatment. To identify the potential for targeting a key autoimmune B-cell specificity in type 1 diabetes, insulin-binding B cells were tracked within a polyclonal repertoire using heavy chain B-cell receptor (BCR) transgenic (VH125Tg) mice. Insulin-specific B cells are rare in the periphery of nonautoimmune VH125Tg/C57BL/6 mice and WT/NOD autoimmune mice, whereas they clearly populate 1% of mature B-cell subsets in VH125Tg/NOD mice. Autoantigen upregulates CD86 in anti-insulin B cells, suggesting they are competent to interact with T cells. Endogenous insulin occupies anti-insulin BCR beginning with antigen commitment in bone marrow parenchyma, as identified by a second anti-insulin monoclonal antibody. Administration of this monoclonal antibody selectively eliminates insulin-reactive B cells in vivo and prevents disease in WT/NOD mice. Unexpectedly, developing B cells are less amenable to depletion, despite increased BCR sensitivity. These findings exemplify how a critical type 1 diabetes B-cell specificity escapes immune tolerance checkpoints. Disease liability is corrected by eliminating this B-cell specificity, providing proof of concept for a novel therapeutic approach for autoimmune disease.

  15. Consumption of Acidic Water Alters the Gut Microbiome and Decreases the Risk of Diabetes in NOD Mice

    PubMed Central

    Wolf, Kyle J.; Daft, Joseph G.; Tanner, Scott M.; Hartmann, Riley; Khafipour, Ehsan

    2014-01-01

    Infant formula and breastfeeding are environmental factors that influence the incidence of Type 1 Diabetes (T1D) as well as the acidity of newborn diets. To determine if altering the intestinal microbiome is one mechanism through which an acidic liquid plays a role in T1D, we placed non-obese diabetic (NOD)/ShiLtJt mice on neutral (N) or acidified H2O and monitored the impact on microbial composition and diabetes incidence. NOD-N mice showed an increased development of diabetes, while exhibiting a decrease in Firmicutes and an increase in Bacteroidetes, Actinobacteria, and Proteobacteria from as early as 2 weeks of age. NOD-N mice had a decrease in the levels of Foxp3 expression in CD4+Foxp3+ cells, as well as decreased CD4+IL17+ cells, and a lower ratio of IL17/IFNγ CD4+ T-cells. Our data clearly indicates that a change in the acidity of liquids consumed dramatically alters the intestinal microbiome, the presence of protective Th17 and Treg cells, and the incidence of diabetes. This data suggests that early dietary manipulation of intestinal microbiota may be a novel mechanism to delay T1D onset in genetically pre-disposed individuals. PMID:24453191

  16. Consumption of acidic water alters the gut microbiome and decreases the risk of diabetes in NOD mice.

    PubMed

    Wolf, Kyle J; Daft, Joseph G; Tanner, Scott M; Hartmann, Riley; Khafipour, Ehsan; Lorenz, Robin G

    2014-04-01

    Infant formula and breastfeeding are environmental factors that influence the incidence of Type 1 Diabetes (T1D) as well as the acidity of newborn diets. To determine if altering the intestinal microbiome is one mechanism through which an acidic liquid plays a role in T1D, we placed non-obese diabetic (NOD)/ShiLtJt mice on neutral (N) or acidified H2O and monitored the impact on microbial composition and diabetes incidence. NOD-N mice showed an increased development of diabetes, while exhibiting a decrease in Firmicutes and an increase in Bacteroidetes, Actinobacteria, and Proteobacteria from as early as 2 weeks of age. NOD-N mice had a decrease in the levels of Foxp3 expression in CD4(+)Foxp3(+) cells, as well as decreased CD4(+)IL17(+) cells, and a lower ratio of IL17/IFNγ CD4+ T-cells. Our data clearly indicates that a change in the acidity of liquids consumed dramatically alters the intestinal microbiome, the presence of protective Th17 and Treg cells, and the incidence of diabetes. This data suggests that early dietary manipulation of intestinal microbiota may be a novel mechanism to delay T1D onset in genetically pre-disposed individuals.

  17. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice.

    PubMed

    Fornari, Thais A; Donate, Paula B; Assis, Amanda F; Macedo, Claudia; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.

  18. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice

    PubMed Central

    Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs. PMID:26606254

  19. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yulan; Purohit, Sharad; Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b inmore » diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.« less

  20. Exaggerated Increases in Microglia Proliferation, Brain Inflammatory Response and Sickness Behaviour upon Lipopolysaccharide Stimulation in Non-Obese Diabetic Mice.

    PubMed

    McGuiness, Barry; Gibney, Sinead M; Beumer, Wouter; Versnel, Marjan A; Sillaber, Inge; Harkin, Andrew; Drexhage, Hemmo A

    2016-01-01

    The non-obese diabetic (NOD) mouse, an established model for autoimmune diabetes, shows an exaggerated reaction of pancreas macrophages to inflammatory stimuli. NOD mice also display anxiety when immune-stimulated. Chronic mild brain inflammation and a pro-inflammatory microglial activation is critical in psychiatric behaviour. To explore brain/microglial activation and behaviour in NOD mice at steady state and after systemic lipopolysaccharide (LPS) injection. Affymetrix analysis on purified microglia of pre-diabetic NOD mice (8-10 weeks) and control mice (C57BL/6 and CD1 mice, the parental non-autoimmune strain) at steady state and after systemic LPS (100 μg/kg) administration. Quantitative PCR was performed on the hypothalamus for immune activation markers (IL-1β, IFNγ and TNFα) and growth factors (BDNF and PDGF). Behavioural profiling of NOD, CD1, BALB/c and C57BL/6 mice at steady state was conducted and sickness behaviour/anxiety in NOD and CD1 mice was monitored before and after LPS injection. Genome analysis revealed cell cycle/cell death and survival aberrancies of NOD microglia, substantiated as higher proliferation on BrdU staining. Inflammation signs were absent. NOD mice had a hyper-reactive response to novel environments with some signs of anxiety. LPS injection induced a higher expression of microglial activation markers, a higher brain pro-inflammatory set point (IFNγ, IDO) and a reduced expression of BDNF and PDGF after immune stimulation in NOD mice. NOD mice displayed exaggerated and prolonged sickness behaviour after LPS administration. After stimulation with LPS, NOD mice display an increased microglial proliferation and an exaggerated inflammatory brain response with reduced BDNF and PDGF expression and increased sickness behaviour as compared to controls. © 2016 S. Karger AG, Basel.

  1. High salt intake does not exacerbate murine autoimmune thyroiditis

    PubMed Central

    Kolypetri, P; Randell, E; Van Vliet, B N; Carayanniotis, G

    2014-01-01

    Recent studies have shown that high salt (HS) intake exacerbates experimental autoimmune encephalomyelitis and have raised the possibility that a HS diet may comprise a risk factor for autoimmune diseases in general. In this report, we have examined whether a HS diet regimen could exacerbate murine autoimmune thyroiditis, including spontaneous autoimmune thyroiditis (SAT) in non-obese diabetic (NOD.H2h4) mice, experimental autoimmune thyroiditis (EAT) in C57BL/6J mice challenged with thyroglobulin (Tg) and EAT in CBA/J mice challenged with the Tg peptide (2549–2560). The physiological impact of HS intake was confirmed by enhanced water consumption and suppressed aldosterone levels in all strains. However, the HS treatment failed to significantly affect the incidence and severity of SAT or EAT or Tg-specific immunoglobulin (Ig)G levels, relative to control mice maintained on a normal salt diet. In three experimental models, these data demonstrate that HS intake does not exacerbate autoimmune thyroiditis, indicating that a HS diet is not a risk factor for all autoimmune diseases. PMID:24528002

  2. Abnormal islet sphingolipid metabolism in type 1 diabetes.

    PubMed

    Holm, Laurits J; Krogvold, Lars; Hasselby, Jane P; Kaur, Simranjeet; Claessens, Laura A; Russell, Mark A; Mathews, Clayton E; Hanssen, Kristian F; Morgan, Noel G; Koeleman, Bobby P C; Roep, Bart O; Gerling, Ivan C; Pociot, Flemming; Dahl-Jørgensen, Knut; Buschard, Karsten

    2018-07-01

    Sphingolipids play important roles in beta cell physiology, by regulating proinsulin folding and insulin secretion and in controlling apoptosis, as studied in animal models and cell cultures. Here we investigate whether sphingolipid metabolism may contribute to the pathogenesis of human type 1 diabetes and whether increasing the levels of the sphingolipid sulfatide would prevent models of diabetes in NOD mice. We examined the amount and distribution of sulfatide in human pancreatic islets by immunohistochemistry, immunofluorescence and electron microscopy. Transcriptional analysis was used to evaluate expression of sphingolipid-related genes in isolated human islets. Genome-wide association studies (GWAS) and a T cell proliferation assay were used to identify type 1 diabetes related polymorphisms and test how these affect cellular islet autoimmunity. Finally, we treated NOD mice with fenofibrate, a known activator of sulfatide biosynthesis, to evaluate the effect on experimental autoimmune diabetes development. We found reduced amounts of sulfatide, 23% of the levels in control participants, in pancreatic islets of individuals with newly diagnosed type 1 diabetes, which were associated with reduced expression of enzymes involved in sphingolipid metabolism. Next, we discovered eight gene polymorphisms (ORMDL3, SPHK2, B4GALNT1, SLC1A5, GALC, PPARD, PPARG and B4GALT1) involved in sphingolipid metabolism that contribute to the genetic predisposition to type 1 diabetes. These gene polymorphisms correlated with the degree of cellular islet autoimmunity in a cohort of individuals with type 1 diabetes. Finally, using fenofibrate, which activates sulfatide biosynthesis, we completely prevented diabetes in NOD mice and even reversed the disease in half of otherwise diabetic animals. These results indicate that islet sphingolipid metabolism is abnormal in type 1 diabetes and suggest that modulation may represent a novel therapeutic approach. The RNA expression data is

  3. Contrasting Roles of Islet Resident Immunoregulatory Macrophages and Dendritic Cells in Experimental Autoimmune Type 1 Diabetes

    PubMed Central

    Thornley, Thomas B.; Ma, Lingzhi; Chipashvili, Vaja; Aker, Jonathan E.; Korniotis, Sarantis; Csizmadia, Eva; Strom, Terry B.; Koulmanda, Maria

    2016-01-01

    The innate immune system critically shapes diabetogenic adaptive immunity during type 1 diabetes (T1D) pathogenesis. While the role of tissue-infiltrating monocyte-derived macrophages in T1D is well established, the role of their tissue-resident counterparts remains undefined. We now demonstrate that islet resident macrophages (IRMs) from non-autoimmune mice have an immunoregulatory phenotype and powerfully induce FoxP3+ Tregs in vitro. The immunoregulatory phenotype and function of IRMs is compromised by TLR4 activation in vitro. Moreover, as T1D approaches in NOD mice, the immunoregulatory phenotype of IRMs is diminished as is their relative abundance compared to immunostimulatory DCs. Our findings suggest that maintenance of IRM abundance and their immunoregulatory phenotype may constitute a novel therapeutic strategy to prevent and/or cure T1D. PMID:26943809

  4. An intravital microscopy model to study early pancreatic inflammation in type 1 diabetes in NOD mice

    PubMed Central

    Lehmann, Christian; Fisher, Nicholas B.; Tugwell, Barna; Zhou, Juan

    2016-01-01

    ABSTRACT Intravital microscopy (IVM) of the pancreas has been proven to be an invaluable tool in pancreatitis, transplantation and ischemia/reperfusion research. Also in type 1 diabetes (T1D) pancreatic IVM offers unique advantages for the elucidation of the disease process. Female non-obese diabetic (NOD) mice develop T1D spontaneously by 40 weeks of age. Our goal was to establish an IVM-based method to study early pancreatic inflammation in NOD mice, which can be used to screen novel medications to prevent or delay T1D in future studies. This included evaluation of leukocyte-endothelial interactions as well as disturbances of capillary perfusion in the pancreatic microcirculation. PMID:28243521

  5. Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes.

    PubMed

    Nikoopour, Enayat; Schwartz, Jordan A; Huszarik, Katrina; Sandrock, Christian; Krougly, Olga; Lee-Chan, Edwin; Singh, Bhagirath

    2010-05-01

    IL-17-producing T cells are regarded as potential pathogenic T cells in the induction of autoimmune diseases. Previously, we have shown that injection of adjuvants containing Mycobacterium, such as CFA or bacillus Calmette-Guérin, can prevent type 1 diabetes in NOD mice. We injected NOD mice with mycobacterial products s.c. and analyzed the IL-17-producing cells from the draining lymph nodes and spleen by restimulating whole-cell populations or CD4(+) T cells in vitro with or without IL-17-polarizing cytokines. Mice receiving CFA had a concomitant rise in the level of IL-17, IL-22, IL-10, and IFN-gamma in the draining lymph node and spleen. Adoptive transfer of splenocytes from CFA-injected NOD mice polarized with TGF-beta plus IL-6 or IL-23 delayed the development of diabetes in recipient mice. IL-17-producing cells induced by CFA maintained their IL-17-producing ability in the recipient mice. Injection of CFA also changed the cytokine profile of cells in pancreatic tissue by increasing IL-17, IL-10, and IFN-gamma cytokine gene expression. We suggest that the rise in the level of IL-17 after adjuvant therapy in NOD mice has a protective effect on type 1 diabetes development.

  6. Evidence that MHC I-E dampens thyroid autoantibodies and prevents spreading to a second thyroid autoantigen in I-Ak NOD mice

    PubMed Central

    Pelletier, Adam-Nicolas; Aliesky, Holly A.; Banuelos, Bianca; Chabot-Roy, Geneviève; Rapoport, Basil; Lesage, Sylvie; McLachlan, Sandra M

    2015-01-01

    NOD.H2k and NOD.H2h4 mice carry the MHC class II molecule I-Ak associated with susceptibility to experimentally-induced thyroiditis. Dietary iodine enhanced spontaneous thyroid autoimmunity, well known in NOD.H2h4 mice, has not been investigated in NOD.H2k mice. We compared NOD.H2h4 and NOD.H2k strains for thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) without or with dietary sodium iodide (NaI) for up to 32 weeks. TgAb levels were significantly higher in NOD.H2h4 than NOD.H2k mice on NaI and TPOAb developed in NOD.H2h4 but not NOD.H2k mice. DNA exome analysis revealed, in addition to the differences in the chromosome (Chr) 17 MHC regions, that NOD.H2k and particularly NOD.H2h4 mice have substantial non-MHC parental DNA. KEGG pathway-analysis highlighted thyroid autoimmunity and immune-response genes on Chr 17 but not on Chr 7 and 15 parental B10.A4R DNA. Studies of parental strains provided no evidence for non-MHC gene contributions. The exon 10 thyroglobulin haplotype, associated with experimentally-induced thyroiditis, is absent in NOD.H2h4 and NOD.H2k mice and is not a marker for spontaneous murine thyroid autoimmunity. In conclusion, the absence of I-E is a likely explanation for the difference between NOD.H2h4 and NOD.H2k mice in TgAb levels and, as in humans, autoantibody spreading to TPO. PMID:25811933

  7. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice

    PubMed Central

    Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A.; Rapoport, Basil

    2017-01-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease–like phenotype of NOD.H2h4 mice. PMID:28323998

  8. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice.

    PubMed

    McLachlan, Sandra M; Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A; Rapoport, Basil

    2017-04-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease-like phenotype of NOD.H2h4 mice. Copyright © 2017 Endocrine Society.

  9. Gut microbial markers are associated with diabetes onset, regulatory imbalance, and IFN-γ level in NOD mice.

    PubMed

    Krych, Ł; Nielsen, D S; Hansen, A K; Hansen, C H F

    2015-01-01

    Gut microbiota regulated imbalances in the host's immune profile seem to be an important factor in the etiology of type 1 diabetes (T1D), and identifying bacterial markers for T1D may therefore be useful in diagnosis and prevention of T1D. The aim of the present study was to investigate the link between the early gut microbiota and immune parameters of non-obese diabetic (NOD) mice in order to select alleged bacterial markers of T1D. Gut microbial composition in feces was analyzed with 454/FLX Titanium (Roche) pyro-sequencing and correlated with diabetes onset age and immune cell populations measured in diabetic and non-diabetic mice at 30 weeks of age. The early gut microbiota composition was found to be different between NOD mice that later in life were classified as diabetic or non-diabetic. Those differences were further associated with changes in FoxP3(+) regulatory T cells, CD11b(+) dendritic cells, and IFN-γ production. The model proposed in this work suggests that operational taxonomic units classified to S24-7, Prevotella, and an unknown Bacteriodales (all Bacteroidetes) act in favor of diabetes protection whereas members of Lachnospiraceae, Ruminococcus, and Oscillospira (all Firmicutes) promote pathogenesis.

  10. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant

    PubMed Central

    Piston, David W.

    2015-01-01

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  11. Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM).

    PubMed

    Kakleas, Kostas; Soldatou, Alexandra; Karachaliou, Feneli; Karavanaki, Kyriaki

    2015-09-01

    Type 1 diabetes (T1DM) is an autoimmune disease with aberrant immune responses to specific β-cell autoantigens, resulting in insulin deficiency. Children and adolescents with T1DM may also develop organ-specific multiple autoimmunity in the context of APS (autoimmune polyendocrine syndrome) type 1, 2 or 3. The most frequently encountered associated autoimmune disorders in T1DM are autoimmune thyroid, followed by celiac, autoimmune gastric disease and other rare autoimmune conditions. There are limited previous studies on the prevalence of associated autoimmunity, especially multiple, in children with T1DM. The present review reports on the classification of autoimmune diabetes, and on the prevalence, pathogenesis, predictive factors and clinical presentation of pancreatic autoimmunity and of all associated autoimmune disorders in children with T1DM. The impact of associated autoimmunity on diabetes control and general health is also discussed, along with suggestions regarding screening strategies and follow-up for early detection and management of the autoimmunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Toxicogenomic analysis reveals profibrogenic effects of trichloroethylene in autoimmune-mediated cholangitis in mice.

    PubMed

    Kopec, Anna K; Sullivan, Bradley P; Kassel, Karen M; Joshi, Nikita; Luyendyk, James P

    2014-10-01

    Epidemiological studies suggest that exposure to environmental chemicals increases the risk of developing autoimmune liver disease. However, the identity of specific chemical perpetrators and the mechanisms whereby environmental chemicals modify liver disease is unclear. Previous studies link exposure to trichloroethylene (TCE) with the development of autoimmune liver disease and exacerbation of autoimmunity in lupus-prone MRL mice. In this study, we utilized NOD.c3c4 mice, which spontaneously develop autoimmune cholangitis bearing resemblance to some features of primary biliary cirrhosis. Nine-week-old female NOD.c3c4 mice were given TCE (0.5 mg/ml) or its vehicle (1% Cremophor-EL) in drinking water for 4 weeks. TCE had little effect on clinical chemistry, biliary cyst formation, or hepatic CD3+ T-cell accumulation. Hepatic microarray profiling revealed a dramatic suppression of early growth response 1 (EGR1) mRNA in livers of TCE-treated mice, which was verified by qPCR and immunohistochemical staining. Consistent with a reported link between reduced EGR1 expression and liver fibrosis, TCE increased hepatic type I collagen (COL1A1) mRNA and protein levels in livers of NOD.c3c4 mice. In contrast, TCE did not increase COL1A1 expression in NOD.ShiLtJ mice, which do not develop autoimmune cholangitis. These results suggest that in the context of concurrent autoimmune liver disease with a genetic basis, modification of hepatic gene expression by TCE may increase profibrogenic signaling in the liver. Moreover, these studies suggest that NOD.c3c4 mice may be a novel model to study gene-environment interactions critical for the development of autoimmune liver disease. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. The induction of autoimmune hepatitis in the human leucocyte antigen‐DR4 non‐obese diabetic mice autoimmune hepatitis mouse model

    PubMed Central

    Yuksel, M.; Xiao, X.; Tai, N.; Vijay, G. M.; Gülden, E.; Beland, K.; Lapierre, P.; Alvarez, F.; Hu, Z.; Colle, I.; Ma, Y.

    2016-01-01

    Summary Autoimmune hepatitis (AIH) is a chronic liver disease characterized by progressive inflammation, female preponderance and seropositivity for autoantibodies such as anti‐smooth muscle actin and/or anti‐nuclear, anti‐liver kidney microsomal type 1 (anti‐LKM1) and anti‐liver cytosol type 1 (anti‐LC1) in more than 80% of cases. AIH is linked strongly to several major histocompatibility complex (MHC) alleles, including human leucocyte antigen (HLA)‐DR3, ‐DR7 and ‐DR13. HLA‐DR4 has the second strongest association with adult AIH, after HLA‐DR3. We investigated the role of HLA‐DR4 in the development of AIH by immunization of HLA‐DR4 (DR4) transgenic non‐obese diabetic (NOD) mice with DNA coding for human CYP2D6/FTCD fusion autoantigen. Immunization of DR4 mice leads to sustained mild liver injury, as assessed biochemically by elevated alanine aminotransferase, histologically by interface hepatitis, plasma cell infiltration and mild fibrosis and immunologically by the development of anti‐LKM1/anti‐LC1 antibodies. In addition, livers from DR4 mice had fewer regulatory T cells (Tregs), which had decreased programmed death (PD)‐1 expression. Splenic Tregs from these mice also showed impaired inhibitory capacity. Furthermore, DR4 expression enhanced the activation status of CD8+ T cells, macrophages and dendritic cells in naive DR4 mice compared to naive wild‐type (WT) NOD mice. Our results demonstrate that HLA‐DR4 is a susceptibility factor for the development of AIH. Impaired suppressive function of Tregs and reduced PD‐1 expression may result in spontaneous activation of key immune cell subsets, such as antigen‐presenting cells and CD8+ T effectors, facilitating the induction of AIH and persistent liver damage. PMID:27414259

  14. The induction of autoimmune hepatitis in the human leucocyte antigen-DR4 non-obese diabetic mice autoimmune hepatitis mouse model.

    PubMed

    Yuksel, M; Xiao, X; Tai, N; Vijay, G M; Gülden, E; Beland, K; Lapierre, P; Alvarez, F; Hu, Z; Colle, I; Ma, Y; Wen, L

    2016-11-01

    Autoimmune hepatitis (AIH) is a chronic liver disease characterized by progressive inflammation, female preponderance and seropositivity for autoantibodies such as anti-smooth muscle actin and/or anti-nuclear, anti-liver kidney microsomal type 1 (anti-LKM1) and anti-liver cytosol type 1 (anti-LC1) in more than 80% of cases. AIH is linked strongly to several major histocompatibility complex (MHC) alleles, including human leucocyte antigen (HLA)-DR3, -DR7 and -DR13. HLA-DR4 has the second strongest association with adult AIH, after HLA-DR3. We investigated the role of HLA-DR4 in the development of AIH by immunization of HLA-DR4 (DR4) transgenic non-obese diabetic (NOD) mice with DNA coding for human CYP2D6/FTCD fusion autoantigen. Immunization of DR4 mice leads to sustained mild liver injury, as assessed biochemically by elevated alanine aminotransferase, histologically by interface hepatitis, plasma cell infiltration and mild fibrosis and immunologically by the development of anti-LKM1/anti-LC1 antibodies. In addition, livers from DR4 mice had fewer regulatory T cells (T regs ), which had decreased programmed death (PD)-1 expression. Splenic T regs from these mice also showed impaired inhibitory capacity. Furthermore, DR4 expression enhanced the activation status of CD8 + T cells, macrophages and dendritic cells in naive DR4 mice compared to naive wild-type (WT) NOD mice. Our results demonstrate that HLA-DR4 is a susceptibility factor for the development of AIH. Impaired suppressive function of T regs and reduced PD-1 expression may result in spontaneous activation of key immune cell subsets, such as antigen-presenting cells and CD8 + T effectors, facilitating the induction of AIH and persistent liver damage. © 2016 British Society for Immunology.

  15. Adverse effect on syngeneic islet transplantation by transgenic coexpression of decoy receptor 3 and heme oxygenase-1 in the islet of NOD mice.

    PubMed

    Huang, S-H; Lin, G-J; Chien, M-W; Chu, C-H; Yu, J-C; Chen, T-W; Hueng, D-Y; Liu, Y-L; Sytwu, H-K

    2013-03-01

    Decoy receptor 3 (DcR3) blocks both Fas ligand- and LIGHT-induced pancreatic β-cell damage in autoimmune diabetes. Heme oxygenase 1 (HO-1) possesses antiapoptotic, anti-inflammatory, and antioxidative effects that protect cells against various forms of attack by the immune system. Previously, we have demonstrated that transgenic islets overexpressing DcR3 or murine HO-1 (mHO-1) exhibit longer survival times than nontransgenic islets in syngeneic islet transplantation. In this study, we evaluated whether DcR3 and mHO-1 double-transgenic islets of NOD mice could provide better protective effects and achieve longer islet graft survival than DcR3 or mHO-1 single-transgenic islets after islet transplantation. We generated DcR3 and mHO-1 double-transgenic NOD mice that specifically overexpress DcR3 and HO-1 in islets. Seven hundred islets isolated from double-transgenic, single-transgenic, or nontransgenic NOD mice were syngeneically transplanted into the kidney capsules of newly diabetic female recipients. Unexpectedly, there was no significant difference in the survival time between double-transgenic or nontransgenic NOD islet grafts, and the survival times of double-transgenic NOD islet grafts were even shorter than those of DcR3 or mHO-1 single-transgenic islets. Our data indicate that transplantation of double-transgenic islets that coexpress HO-1 and DcR3 did not result in a better outcome. On the contrary, this strategy even caused an adverse effect in syngeneic islet transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Common autoimmune biomarkers, thyroid hormonal abnormalities, and beta cells dysfunction in patients with latent autoimmune diabetes in adults with type II diabetes mellitus.

    PubMed

    Yousefzadeh, Gholamreza; Gozashti, Mohammadhossein; Najafipour, Hamid; Gholamhosseinian, Najar Ahmad; Bahramnejad, Abbas; Shokouhi, Mostafa

    2016-01-01

    Latent autoimmune diabetes in adults (LADA) is autoimmune diabetes with a slow progression characterized by the presence of antibodies associated with Type I diabetes. The present study aimed to assess autoimmune characteristics in patients with LADA in Iran. We attempted to obtain a clear view of autoimmune conditions in LADA among our population. This study was sourced from the population-based survey of KERCARDS aiming assessment of cardiovascular risk factors among a great sample of Iranian population who were resident in Kerman, a great province in southern Iran. Among all diabetic patients who were negative for Anti Glutamic Acid Decarboxylase (GAD) antibody test, 120 were selected as the controls and among 80 patients who were positive for this test diagnosed as LADA, the recorded files of 57 patients were complete considered as the cases. The level of thyroxin is significantly lower in patients with LADA compared with the controls so 73.7% and 45% of patients had normal level of thyroxin, respectively. Also, those with LADA had considerably lower levels of both thyroid peroxydaseantibody (TPO-Ab) and C-peptide when compared with non-LADA group. Using multivariate analyses and with the presence of baseline variables including gender, age, and duration of disease, the diagnosis of LADA was associated with lower serum levels of Anti-TPO, C-peptide, and thyroxin, but not associated with the level of Anti-TTG in serum. LADA patients may face with lower serum levels of C-peptide and thyroid-specific antibodies indicating insulin therapy requirement and authoimmune fundaments of the disease, respectively. Copyright © 2016. Published by Elsevier Ltd.

  17. Racial and ethnic differences among children with new-onset autoimmune type 1 diabetes

    USDA-ARS?s Scientific Manuscript database

    To compare demographic and clinical characteristics among children from ethnic minorities and non-Hispanic white children with new-onset autoimmune Type 1 diabetes. We analyzed a single-center series of 712 children with new-onset autoimmune Type 1 diabetes between January 2008 and March 2011. The m...

  18. Obesity, islet cell autoimmunity, and cardiovascular risk factors in youth at onset of type 1 autoimmune diabetes.

    PubMed

    Cedillo, Maribel; Libman, Ingrid M; Arena, Vincent C; Zhou, Lei; Trucco, Massimo; Ize-Ludlow, Diego; Pietropaolo, Massimo; Becker, Dorothy J

    2015-01-01

    The current increase in childhood type 1 diabetes (T1D) and obesity has led to two conflicting hypotheses and conflicting reports regarding the effects of overweight on initiation and spreading of islet cell autoimmunity vs earlier clinical manifestation of preexisting autoimmune β-cell damage driven by excess weight. The objective of the study was to address the question of whether the degree of β-cell autoimmunity and age are related to overweight at diabetes onset in a large cohort of T1D youth. This was a prospective cross-sectional study of youth with autoimmune T1D consecutively recruited at diabetes onset. The study was conducted at a regional academic pediatric diabetes center. Two hundred sixty-three consecutive children younger than 19 years at onset of T1D participated in the study. Relationships between body mass index and central obesity (waist circumference and waist to height ratio) and antigen spreading (islet cell autoantibody number), age, and cardiovascular (CVD) risk factors examined at onset and/or 3 months after the diagnosis were measured. There were no significant associations between number of autoantibodies with measures of adiposity. Age relationships revealed that a greater proportion of those with central obesity (21%) were in the youngest age group (0-4 y) compared with those without central obesity (6%) (P = .001). PATIENTS with central obesity had increased CVD risk factors and higher onset C-peptide levels (P < .05). No evidence was found to support the concept that obesity accelerates progression of autoantibody spreading once autoimmunity, marked by standard islet cell autoantibody assays, is present. Central obesity was present in almost one-third of the subjects and was associated with early CVD risk markers already at onset.

  19. Thyroid autoimmunity and function among Ugandan children and adolescents with type-1 diabetes mellitus.

    PubMed

    Muhame, Rugambwa Michael; Mworozi, Edison Arwanire; McAssey, Karen; Lubega, Irene

    2014-01-01

    Up to 30% of type-1 diabetes mellitus (T1DM) patients have co-existent thyroid autoimmunity with up to 50% of them having associated thyroid dysfunction. Routine screening for thyroid autoimmunity and dysfunction is recommended in all T1DM patients. However, this was not currently practiced in Ugandan paediatric diabetes clinics. There was also paucity of data regarding thyroid autoimmunity and dysfunction in African children and adolescents with diabetes mellitus. The objective of this study was to quantify the magnitude of thyroid autoimmunity and dysfunction in Ugandan children with TIDM. This was a cross sectional descriptive study to determine the prevalence of thyroid autoantibodies and describe thyroid function among children and adolescents aged 1-19 years with diabetes mellitus attending the paediatric diabetes clinic at Mulago National Referral Hospital, Kampala, Uganda. Following enrollment, we obtained details of clinical history and performed physical examination. Blood (plasma) was assayed to determine levels of antibodies to thyroid peroxidase (antiTPO), free thyroxine (FT4) and thyrotropin (TSH). The prevalence of thyroid autoimmunity was 7.3% (5/69). All antiTPO positive subjects were post pubertal, aged between 13-17 years with females comprising 3/5 of the antiTPO positive subjects. All study subjects were clinically euthyroid; however, 7.3% (5/69) of the study subjects had subclinical hypothyroidism. These data strengthen the argument for routine screening of all diabetic children and adolescents for thyroid autoimmunity (particularly anti-TPO) as recommended by international guidelines. We also recommend evaluation of thyroid function in diabetic children and adolescents to minimize the risk of undiagnosed thyroid dysfunction.

  20. Ptpn22 and Cd2 Variations Are Associated with Altered Protein Expression and Susceptibility to Type 1 Diabetes in Nonobese Diabetic Mice

    PubMed Central

    Fraser, Heather I.; Howlett, Sarah; Clark, Jan; Rainbow, Daniel B.; Stanford, Stephanie M.; Wu, Dennis J.; Hsieh, Yi-Wen; Maine, Christian J.; Christensen, Mikkel; Kuchroo, Vijay; Sherman, Linda A.; Podolin, Patricia L.; Todd, John A.; Steward, Charles A.; Peterson, Laurence B.; Bottini, Nunzio

    2015-01-01

    By congenic strain mapping using autoimmune NOD.C57BL/6J congenic mice, we demonstrated previously that the type 1 diabetes (T1D) protection associated with the insulin-dependent diabetes (Idd)10 locus on chromosome 3, originally identified by linkage analysis, was in fact due to three closely linked Idd loci: Idd10, Idd18.1, and Idd18.3. In this study, we define two additional Idd loci—Idd18.2 and Idd18.4—within the boundaries of this cluster of disease-associated genes. Idd18.2 is 1.31 Mb and contains 18 genes, including Ptpn22, which encodes a phosphatase that negatively regulates T and B cell signaling. The human ortholog of Ptpn22, PTPN22, is associated with numerous autoimmune diseases, including T1D. We, therefore, assessed Ptpn22 as a candidate for Idd18.2; resequencing of the NOD Ptpn22 allele revealed 183 single nucleotide polymorphisms with the C57BL/6J (B6) allele—6 exonic and 177 intronic. Functional studies showed higher expression of full-length Ptpn22 RNA and protein, and decreased TCR signaling in congenic strains with B6-derived Idd18.2 susceptibility alleles. The 953-kb Idd18.4 locus contains eight genes, including the candidate Cd2. The CD2 pathway is associated with the human autoimmune disease, multiple sclerosis, and mice with NOD-derived susceptibility alleles at Idd18.4 have lower CD2 expression on B cells. Furthermore, we observed that susceptibility alleles at Idd18.2 can mask the protection provided by Idd10/Cd101 or Idd18.1/Vav3 and Idd18.3. In summary, we describe two new T1D loci, Idd18.2 and Idd18.4, candidate genes within each region, and demonstrate the complex nature of genetic interactions underlying the development of T1D in the NOD mouse model. PMID:26438525

  1. A Preclinical Consortium Approach for Assessing the Efficacy of Combined Anti-CD3 Plus IL-1 Blockade in Reversing New-Onset Autoimmune Diabetes in NOD Mice

    PubMed Central

    Gill, Ronald G.; Pagni, Philippe P.; Kupfer, Tinalyn; Wasserfall, Clive H.; Deng, Songyan; Posgai, Amanda; Manenkova, Yulia; Bel Hani, Amira; Straub, Laura; Bernstein, Philip; Atkinson, Mark A.; Herold, Kevan C.; von Herrath, Matthias; Staeva, Teodora; Ehlers, Mario R.; Nepom, Gerald T.

    2016-01-01

    There is an ongoing need to develop strategic combinations of therapeutic agents to prevent type 1 diabetes (T1D) or to preserve islet β-cell mass in new-onset disease. Although clinical trials using candidate therapeutics are commonly based on preclinical studies, concern is growing regarding the reproducibility as well as the potential clinical translation of reported results using animal models of human disorders. In response, the National Institutes of Health Immune Tolerance Network and JDRF established a multicenter consortium of academic institutions designed to assess the efficacy and intergroup reproducibility of clinically applicable immunotherapies for reversing new-onset disease in the NOD mouse model of T1D. Predicated on prior studies, this consortium conducted coordinated, prospective studies, using joint standard operating procedures, fixed criteria for study entry, and common reagents, to optimize combined anti-CD3 treatment plus interleukin-1 (IL-1) blockade to reverse new-onset disease in NOD mice. We did not find that IL-1 blockade with anti–IL-1β monoclonal antibody or IL-1trap provided additional benefit for reversing new-onset disease compared with anti-CD3 treatment alone. These results demonstrate the value of larger, multicenter preclinical studies for vetting and prioritizing therapeutics for future clinical use. PMID:26718498

  2. Rotavirus Activates Lymphocytes from Non-Obese Diabetic Mice by Triggering Toll-Like Receptor 7 Signaling and Interferon Production in Plasmacytoid Dendritic Cells

    PubMed Central

    Pane, Jessica A.; Webster, Nicole L.; Coulson, Barbara S.

    2014-01-01

    It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon

  3. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota.

    PubMed

    Mullaney, Jane A; Stephens, Juliette E; Costello, Mary-Ellen; Fong, Cai; Geeling, Brooke E; Gavin, Patrick G; Wright, Casey M; Spector, Timothy D; Brown, Matthew A; Hamilton-Williams, Emma E

    2018-02-17

    Dysbiosis of the gut microbiota has been implicated in the pathogenesis of many autoimmune conditions including type 1 diabetes (T1D). It is unknown whether changes in the gut microbiota observed in T1D are due to environmental drivers, genetic risk factors, or both. Here, we have performed an analysis of associations between the gut microbiota and T1D genetic risk using the non-obese diabetic (NOD) mouse model of T1D and the TwinsUK cohort. Through the analysis of five separate colonies of T1D susceptible NOD mice, we identified similarities in NOD microbiome that were independent of animal facility. Introduction of disease protective alleles at the Idd3 and Idd5 loci (IL2, Ctla4, Slc11a1, and Acadl) resulted in significant alterations in the NOD microbiome. Disease-protected strains exhibited a restoration of immune regulatory pathways within the gut which could also be reestablished using IL-2 therapy. Increased T1D disease risk from IL-2 pathway loci in the TwinsUK cohort of human subjects resulted in some similar microbiota changes to those observed in the NOD mouse. These findings demonstrate for the first time that type 1 diabetes-associated genetic variants that restore immune tolerance to islet antigens also result in functional changes in the gut immune system and resultant changes in the microbiota.

  4. Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young

    PubMed Central

    Lamb, Molly M.; Frederiksen, Brittni; Seifert, Jennifer A.; Kroehl, Miranda; Rewers, Marian; Norris, Jill M.

    2015-01-01

    Aims/hypothesis Dietary sugar intake may increase insulin production, stress the beta cells and increase the risk for islet autoimmunity (IA) and subsequent type 1 diabetes. Methods Since 1993, the Diabetes Autoimmunity Study in the Young (DAISY) has followed children at increased genetic risk for type 1 diabetes for the development of IA (autoantibodies to insulin, GAD or protein tyrosine phosphatase-like protein [IA2] twice or more in succession) and progression to type 1 diabetes. Information on intake of fructose, sucrose, total sugars, sugar-sweetened beverages, beverages with non-nutritive sweetener and juice was collected prospectively throughout childhood via food frequency questionnaires (FFQs). We examined diet records for 1,893 children (mean age at last follow-up 10.2 years); 142 developed IA and 42 progressed to type 1 diabetes. HLA genotype was dichotomised as high risk (HLA-DR3/4,DQB1*0302) or not. All Cox regression models were adjusted for total energy, FFQ type, type 1 diabetes family history, HLA genotype and ethnicity. Results In children with IA, progression to type 1 diabetes was significantly associated with intake of total sugars (HR 1.75, 95% CI 1.07–2.85). Progression to type 1 diabetes was also associated with increased intake of sugar-sweetened beverages in those with the high-risk HLA genotype (HR 1.84, 95% CI 1.25–2.71), but not in children without it (interaction p value = 0.02). No sugar variables were associated with IA risk. Conclusions/interpretation Sugar intake may exacerbate the later stage of type 1 diabetes development; sugar-sweetened beverages may be especially detrimental to children with the highest genetic risk of developing type 1 diabetes. PMID:26048237

  5. Guillain Barré Syndrome is induced in Non-Obese Diabetic (NOD) mice following Campylobacter jejuni infection and is exacerbated by antibiotics.

    PubMed

    St Charles, J L; Bell, J A; Gadsden, B J; Malik, A; Cooke, H; Van de Grift, L K; Kim, H Y; Smith, E J; Mansfield, L S

    2017-02-01

    Campylobacter jejuni is a leading cause of bacterial gastroenteritis linked to several serious autoimmune sequelae such as the peripheral neuropathies Guillain Barré syndrome (GBS) and Miller Fisher syndrome (MFS). We hypothesized that GBS and MFS can result in NOD wild type (WT) mice or their congenic interleukin (IL)-10 or B7-2 knockouts secondary to C. jejuni infection. Mice were gavaged orally with C. jejuni strains HB93-13 and 260.94 from patients with GBS or CF93-6 from a patient with MFS and assessed for clinical neurological signs and phenotypes, anti-ganglioside antibodies, and cellular infiltrates and lesions in gut and peripheral nerve tissues. Significant increases in autoantibodies against single gangliosides (GM1, GQ1b, GD1a) occurred in infected NOD mice of all genotypes, although the isotypes varied (NOD WT had IgG1, IgG3; NOD B7-2 -/- had IgG3; NOD IL-10 -/- had IgG1, IgG3, IgG2a). Infected NOD WT and NOD IL-10 -/- mice also produced anti-ganglioside antibodies of the IgG1 isotype directed against a mixture of GM1/GQ1b gangliosides. Phenotypic tests showed significant differences between treatment groups of all mouse genotypes. Peripheral nerve lesions with macrophage infiltrates were significantly increased in infected mice of NOD WT and IL-10 -/- genotypes compared to sham-inoculated controls, while lesions with T cell infiltrates were significantly increased in infected mice of the NOD B7-2 -/- genotype compared to sham-inoculated controls. In both infected and sham inoculated NOD IL-10 -/- mice, antibiotic treatment exacerbated neurological signs, lesions and the amount and number of different isotypes of antiganglioside autoantibodies produced. Thus, inducible mouse models of post-C. jejuni GBS are feasible and can be characterized based on evaluation of three factors-onset of GBS clinical signs/phenotypes, anti-ganglioside autoantibodies and nerve lesions. Based on these factors we characterized 1) NOD B-7 -/- mice as an acute

  6. Sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA) and type 2 diabetes.

    PubMed

    Löfvenborg, Josefin E; Andersson, Tomas; Carlsson, Per-Ola; Dorkhan, Mozhgan; Groop, Leif; Martinell, Mats; Tuomi, Tiinamaija; Wolk, Alicja; Carlsson, Sofia

    2016-12-01

    Sweetened beverage intake is associated with increased risk of type 2 diabetes, but its association with autoimmune diabetes is unclear. We aimed to investigate sweetened beverage intake and risk of latent autoimmune diabetes in adults (LADA); autoimmune diabetes with features of type 2 diabetes. Data from a Swedish population-based study was used, including incident cases of LADA (n = 357) and type 2 diabetes (n = 1136) and randomly selected controls (n = 1371). Diabetes classification was based on onset age (≥35), glutamic acid decarboxylase autoantibodies (GADA) and C-peptide. Sweetened beverage intake information was derived from a validated food frequency questionnaire. ORs adjusted for age, sex, family history of diabetes, education, lifestyle, diet, energy intake and BMI were estimated using logistic regression. Daily intake of >2 servings of sweetened beverages (consumed by 6% of participants) was associated with increased risk of LADA (OR: 1.99, 95% CI: 1.11-3.56), and for each 200 mL daily serving, OR was 1.15 (95% CI: 1.02-1.29). Findings were similar for sugar-sweetened (OR: 1.18, 95% CI: 1.00-1.39) and artificially sweetened beverages (OR: 1.12, 95% CI: 0.95-1.32). Similarly, each daily serving increment in total sweetened beverage conferred 20% higher type 2 diabetes risk (95% CI: 1.07-1.34). In type 2 diabetes patients, high consumers displayed higher HOMA-IR levels (4.5 vs 3.5, P = 0.0002), but lower HOMA-B levels (55 vs 70, P = 0.0378) than non-consumers. Similar tendencies were seen in LADA. High intake of sweetened beverages was associated with increased risk of LADA. The observed relationship resembled that with type 2 diabetes, suggesting common pathways possibly involving insulin resistance. © 2016 European Society of Endocrinology.

  7. Durable Control of Autoimmune Diabetes in Mice Achieved by Intraperitoneal Transplantation of “Neo‐Islets,” Three‐Dimensional Aggregates of Allogeneic Islet and “Mesenchymal Stem Cells”

    PubMed Central

    Gooch, Anna; Hu, Zhuma; Ahlstrom, Jon; Zhang, Ping

    2017-01-01

    Abstract Novel interventions that reestablish endogenous insulin secretion and thereby halt progressive end‐organ damage and prolong survival of patients with autoimmune Type 1 diabetes mellitus (T1DM) are urgently needed. While this is currently accomplished with allogeneic pancreas or islet transplants, their utility is significantly limited by both the scarcity of organ donors and life‐long need for often‐toxic antirejection drugs. Coadministering islets with bone marrow‐derived mesenchymal stem cells (MSCs) that exert robust immune‐modulating, anti‐inflammatory, anti‐apoptotic, and angiogenic actions, improves intrahepatic islet survival and function. Encapsulation of insulin‐producing cells to prevent immune destruction has shown both promise and failures. Recently, stem cell‐derived insulin secreting β‐like cells induced euglycemia in diabetic animals, although their clinical use would still require encapsulation or anti‐rejection drugs. Instead of focusing on further improvements in islet transplantation, we demonstrate here that the intraperitoneal administration of islet‐sized “Neo‐Islets” (NIs), generated by in vitro coaggregation of allogeneic, culture‐expanded islet cells with high numbers of immuno‐protective and cyto‐protective MSCs, resulted in their omental engraftment in immune‐competent, spontaneously diabetic nonobese diabetic (NOD) mice. This achieved long‐term glycemic control without immunosuppression and without hypoglycemia. In preparation for an Food and Drug Administration‐approved clinical trial in dogs with T1DM, we show that treatment of streptozotocin‐diabetic NOD/severe combined immunodeficiency mice with identically formed canine NIs produced durable euglycemia, exclusively mediated by dog‐specific insulin. We conclude that this novel technology has significant translational relevance for canine and potentially clinical T1DM as it effectively addresses both the organ donor scarcity (>80

  8. Antigen recognition in the islets changes with progression of autoimmune islet infiltration

    PubMed Central

    Lindsay, Robin S.; Corbin, Kaitlin; Mahne, Ashley; Levitt, Bonnie E.; Gebert, Matthew J.; Wigton, Eric J.; Bradley, Brenda J.; Haskins, Kathryn; Jacobelli, Jordan; Tang, Qizhi; Krummel, Matthew F.; Friedman, Rachel S.

    2014-01-01

    In type 1 diabetes, the pancreatic islets are an important site for therapeutic intervention since immune infiltration of the islets is well established at diagnosis. Therefore, understanding the events that underlie the continued progression of the autoimmune response and islet destruction is critical. Islet infiltration and destruction is an asynchronous process, making it important to analyze the disease process on a single islet basis. To understand how T cell stimulation evolves through the process of islet infiltration we analyzed the dynamics of T cell movement and interactions within individual islets of spontaneously autoimmune non-obese diabetic (NOD) mice. Using both intra-vital and explanted 2-photon islet imaging, we defined a correlation between increased islet infiltration and increased T cell motility. Early T cell arrest was antigen dependent and due, at least in part, to antigen recognition through sustained interactions with CD11c+ antigen presenting cells (APCs). As islet infiltration progressed, T cell motility became antigen-independent, with a loss of T cell arrest and sustained interactions with CD11c+ APCs. These studies suggest that the autoimmune T cell response in the islets may be temporarily dampened during the course of islet infiltration and disease progression. PMID:25505281

  9. Insulinotropic and Anti-Inflammatory Effects of Rosiglitazone in Experimental Autoimmune Diabetes

    PubMed Central

    Awara, Wageh M.; El-Sisi, Alaa E.; El-Refaei, Mohamed; El-Naa, Mona M.; El-Desoky, Karima

    2005-01-01

    Cytokines and nitric oxide (NO) are involved in the pathogenesis of autoimmune diabetes mellitus (DM). Rosiglitazone is an insulin-sensitizing drug that is a ligand for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ). The anti-inflammatory and immunomodulating properties of PPAR-γ have been documented. The aim of this study is to investigate the effectiveness of rosiglitazone in autoimmune DM and to clarify the possible mechanism(s) involved. Autoimmune DM was induced in adult male Balb/c mice by co-administration of cyclosporin A and multiple low doses of streptozotocin. Diabetic mice were treated daily with rosiglitazone (7 mg/kg, p.o.) for 21 days. Blood glucose level (BGL), serum insulin level and pancreatic levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and NO were measured. Histopathological examination and immunohistochemical determination of CD4 and CD8 T lymphocytes in the pancreatic islets were performed. In addition, analysis of pancreatic protein expression was carried out. The results showed that rosiglitazone treatment resulted in a significant decrease in the BGL and the pancreatic levels of TNF-α, IFN-γ and NO compared to diabetic mice. The serum insulin level was significantly increased after rosiglitazone treatment compared to diabetic mice. The destroyed pancreatic islets were regenerated and became free from both CD4 and CD8 T cells after treatment. Furthermore, many changes in pancreatic protein expression were observed. These results suggest that rosiglitazone has a beneficial effect in the treatment of autoimmune diabetes, an effect that seemed to be a secondary consequence of its anti-inflammatory and immunomodulating properties and might be reflected at the level of protein expression. PMID:17491689

  10. The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice.

    PubMed

    Fenske, Rachel J; Cadena, Mark T; Harenda, Quincy E; Wienkes, Haley N; Carbajal, Kathryn; Schaid, Michael D; Laundre, Erin; Brill, Allison L; Truchan, Nathan A; Brar, Harpreet; Wisinski, Jaclyn; Cai, Jinjin; Graham, Timothy E; Engin, Feyza; Kimple, Michelle E

    2017-06-01

    The α-subunit of the heterotrimeric Gz protein, Gαz, promotes β-cell death and inhibits β-cell replication when pancreatic islets are challenged by stressors. Thus, we hypothesized that loss of Gαz protein would preserve functional β-cell mass in the nonobese diabetic (NOD) model, protecting from overt diabetes. We saw that protection from diabetes was robust and durable up to 35 weeks of age in Gαz knockout mice. By 17 weeks of age, Gαz-null NOD mice had significantly higher diabetes-free survival than wild-type littermates. Islets from these mice had reduced markers of proinflammatory immune cell infiltration on both the histological and transcript levels and secreted more insulin in response to glucose. Further analyses of pancreas sections revealed significantly fewer terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive β-cells in Gαz-null islets despite similar immune infiltration in control mice. Islets from Gαz-null mice also exhibited a higher percentage of Ki-67-positive β-cells, a measure of proliferation, even in the presence of immune infiltration. Finally, β-cell-specific Gαz-null mice phenocopy whole-body Gαz-null mice in their protection from developing hyperglycemia after streptozotocin administration, supporting a β-cell-centric role for Gαz in diabetes pathophysiology. We propose that Gαz plays a key role in β-cell signaling that becomes dysfunctional in the type 1 diabetes setting, accelerating the death of β-cells, which promotes further accumulation of immune cells in the pancreatic islets, and inhibiting a restorative proliferative response. Copyright © 2017 Endocrine Society.

  11. Frequency and determinants of thyroid autoimmunity in Ghanaian type 2 diabetes patients: a case-control study.

    PubMed

    Sarfo-Kantanka, Osei; Sarfo, Fred Stephen; Ansah, Eunice Oparebea; Yorke, Ernest; Akpalu, Josephine; Nkum, Bernard C; Eghan, Benjamin

    2017-01-17

    The link between type 1 diabetes and thyroid autoimmunity is well described. The same cannot be said for type 2 diabetes where results have been mixed so far. We investigated the prevalence and determinants of thyroid autoimmunity among Ghanaian type 2 diabetes patients. This was a case-control study involving 302 type 2 diabetes patients and 310 non - diabetic controls aged 40-80 years. Anthropometric and blood pressure measurements were obtained. Fasting samples were analyzed for glucose, thyroid function, and antibodies to thyroglobulin and thyroid peroxidase. The prevalence of thyroid autoimmunity was significantly higher among T2DM subjects (12.2% vs. 3.9%, p = 0.0004). Among T2DM subjects, 44 (14.7%) tested positive for TPOAb, 5 (1.7%) tested positive for TGAb and 15 (5.0%) tested positive for both autoantibodies. Females T2DM subjects showed a 3-fold increased risk of thyroid autoimmunity compared to males (OR:3.16, p =0.004), T2DM subjects with hyperthyroidism had a 41% increased risk of thyroid autoimmunity (OR: 1.41, p < 0.001), sub-clinical hyperthyroidism increased the risk of thyroid autoimmunity by 2 fold, (OR:2.19, p < 0.001), subclinical hypothyroidism increased the risk of autoimmunity by 4-fold, (OR:3.57 95% p < 0.0001), and hypothyroidism was associated with a 61% increased risk of thyroid autoimmunity (OR: 1.61,1.35-2.23). Dyslipidaemia was associated with a 44% increased risk of thyroid autoimmunity (OR: 1.44, p = 0.01) and a percentage increase in HbA1c was associated with 46% increased risk of thyroid autoimmunity (OR:1.46, p < 0.0001). We observed a high prevalence of thyroid autoimmunity in Ghanaian T2DM subjects compared to the general population. Thyroid autoimmunity in T2DM subjects was significantly associated with female gender, thyroid dysfunction, dyslipidaemia and poor glycemic control.

  12. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes

    PubMed Central

    Itoh, Arata; Ridgway, William M

    2017-01-01

    Type 1 diabetes (T1D) is characterized by specific destruction of pancreatic insulin-producing beta cells accompanied by evidence of beta-cell-directed autoimmunity such as autoreactive T cells and islet autoantibodies (IAAs). Currently, T1D cannot be prevented or reversed in humans. T1D is easy to prevent in the nonobese diabetic (NOD) spontaneous mouse model but reversing new-onset T1D in mice is more difficult. Since the discovery of the T-cell receptor in the 1980s and the subsequent identification of autoreactive T cells directed toward beta-cell antigens (eg, insulin, glutamic acid decarboxylase), the dream of antigen-specific immunotherapy has dominated the field with its promise of specificity and limited side effects. While such approaches have worked in the NOD mouse, however, dozens of human trials have failed. Broader immunosuppressive approaches (originally cyclosporine, subsequently anti-CD3 antibody) have shown partial successes (e.g., prolonged C peptide preservation) but no major therapeutic efficacy or disease reversal. Human prevention trials have failed, despite the ease of such approaches in the NOD mouse. In the past 50 years, the incidence of T1D has increased dramatically, and one explanation is the “hygiene hypothesis”, which suggests that decreased exposure of the innate immune system to environmental immune stimulants (e.g., bacterial products such as Toll-like receptor (TLR) 4-stimulating lipopolysaccharide [LPS]) dramatically affects the adaptive immune system and increases subsequent autoimmunity. We have tested the role of innate immunity in autoimmune T1D by treating acute-onset T1D in NOD mice with anti-TLR4/MD-2 agonistic antibodies and have shown a high rate of disease reversal. The TLR4 antibodies do not directly stimulate T cells but induce tolerogenic antigen-presenting cells (APCs) that mediate decreased adaptive T-cell responses. Here, we review our current knowledge and suggest future prospects for targeting innate

  13. Autoimmunity-Associated PTPN22 Polymorphisms in Latent Autoimmune Diabetes of the Adult Differ from Those of Type 1 Diabetes Patients.

    PubMed

    Heneberg, Petr; Kocková, Lucie; Čecháková, Marie; Daňková, Pavlína; Černá, Marie

    2018-06-12

    A portion of adults with humoral immune changes have clinical diabetes that is initially not insulin-requiring (latent autoimmune diabetes of the adult, LADA). One of the genes strongly associated with autoimmune diabetes is PTPN22. We hypothesized that the manifestation and clinical features of LADA are linked to functional variants of PTPN22. We genotyped allelic frequencies of 1 protective and 3 risk-associated PTPN22 variants in 156 Czech LADA patients, 194 type 2 diabetes mellitus patients with LADA-like progression to insulinotherapy and 324 type 1 diabetes mellitus patients, and subsequently examined the associations of PTPN22 variants with the expression of autoantibodies and other clinical features of LADA. We challenged the paradigm that stated that the PTPN22 c.1858T allele serves as a risk allele for LADA, although we confirmed its risk status in the geographically matched T1DM cohort. In contrast, the frequencies of other PTPN22 alleles (c.-1123C, c.788A and c.1970-852C) differed significantly from the healthy controls. We confirmed gender-related differences in the frequency of some PTPN22 polymorphisms (but not c.1858C>T) in LADA. The particular PTPN22 alleles and genotypes were associated with specific clinical features of the examined patients (autoantibodies, HbA1c and age at diagnosis of diabetes). The variability in PTPN22 haplotypes suggests that the genetic signature of LADA is independent and should not be considered a hybrid form of T1DM and T2DM. Further studies should elucidate the associations with clinical characteristics of the LADA patients and focus on the newly emerging types of diabetes with the disease onset in early to mid-adulthood. © 2018 S. Karger AG, Basel.

  14. Humanized in vivo Model for Autoimmune Diabetes

    DTIC Science & Technology

    2008-02-01

    206 223 8813x67785; fax: þ1 206 223 7638. E-mail address: jgebe@benaroyaresearch.org (J.A. Gebe). 0896-8411/$ - see front matter 2007 Elsevier Ltd... Danke NA, Yang J, Greenbaum C, Kwok WW. Comparative study of GAD65-specific CD4þ T cells in healthy and type 1 diabetic subjects. J Autoimmun 2005;25

  15. Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes

    PubMed Central

    Michels, Aaron W.; Landry, Laurie G.; McDaniel, Kristen A.; Yu, Liping; Campbell-Thompson, Martha; Kwok, William W.; Jones, Kenneth L.; Gottlieb, Peter A.; Kappler, John W.; Tang, Qizhi; Roep, Bart O.; Atkinson, Mark A.; Mathews, Clayton E.

    2017-01-01

    Type 1 diabetes results from chronic autoimmune destruction of insulin-producing β-cells within pancreatic islets. Although insulin is a critical self-antigen in animal models of autoimmune diabetes, due to extremely limited access to pancreas samples, little is known about human antigenic targets for islet-infiltrating T cells. Here we show that proinsulin peptides are targeted by islet-infiltrating T cells from patients with type 1 diabetes. We identified hundreds of T cells from inflamed pancreatic islets of three young organ donors with type 1 diabetes with a short disease duration with high-risk HLA genes using a direct T-cell receptor (TCR) sequencing approach without long-term cell culture. Among 85 selected CD4 TCRs tested for reactivity to preproinsulin peptides presented by diabetes-susceptible HLA-DQ and HLA-DR molecules, one T cell recognized C-peptide amino acids 19–35, and two clones from separate donors responded to insulin B-chain amino acids 9–23 (B:9–23), which are known to be a critical self-antigen–driving disease progress in animal models of autoimmune diabetes. These B:9–23–specific T cells from islets responded to whole proinsulin and islets, whereas previously identified B:9–23 responsive clones from peripheral blood did not, highlighting the importance of proinsulin-specific T cells in the islet microenvironment. PMID:27920090

  16. Anterior hypopituitarism is rare and autoimmune disease is common in adults with idiopathic central diabetes insipidus.

    PubMed

    Hannon, M J; Orr, C; Moran, C; Behan, L A; Agha, A; Ball, S G; Thompson, C J

    2012-05-01

    Central diabetes insipidus is a rare clinical condition with a heterogenous aetiology. Up to 40% of cases are classified as idiopathic, although many of these are thought to have an autoimmune basis. Published data have suggested that anterior hypopituitarism is common in childhood-onset idiopathic diabetes insipidus. We aimed to assess the incidence of anterior hypopituitarism in a cohort of adult patients with idiopathic diabetes insipidus. We performed a retrospective review of the databases of two pituitary investigation units. This identified 39 patients with idiopathic diabetes insipidus. All had undergone magnetic resonance imaging scanning and dynamic pituitary testing (either insulin tolerance testing or GHRH/arginine and short synacthen testing) to assess anterior pituitary function. One patient had partial growth hormone deficiency; no other anterior pituitary hormonal deficits were found. Thirty-three percent had at least one autoimmune disease in addition to central diabetes insipidus. Our data suggest that anterior hypopituitarism is rare in adult idiopathic diabetes insipidus. Routine screening of these patients for anterior hypopituitarism may not, therefore, be indicated. The significant prevalence of autoimmune disease in this cohort supports the hypothesis that idiopathic diabetes insipidus may have an autoimmune aetiology. © 2012 Blackwell Publishing Ltd.

  17. Long Term Effect of Gut Microbiota Transfer on Diabetes Development

    PubMed Central

    Peng, Jian; Narasimhan, Sukanya; Marchesi, Julian R.; Benson, Andrew; Wong, F. Susan; Wen, Li

    2015-01-01

    The composition of the gut microbiome represents a very important environmental factor that influences the development of type 1 diabetes (T1D). We have previously shown that MyD88-deficient non-obese diabetic (MyD88−/−NOD) mice, that were protected from T1D development, had a different composition of gut microbiota compared to wild type NOD mice. The aim of our study was to investigate whether this protection could be transferred. We demonstrate that transfer of gut microbiota from diabetes-protected MyD88-deficient NOD mice, reduced insulitis and significantly delayed the onset of diabetes. Gut bacteria from MyD88-deficient mice, administered over a 3-week period, starting at 4 weeks of age, stably altered the family composition of the gut microbiome, with principally Lachnospiraceae and Clostridiaceae increased and Lactobacillaceae decreased. The transferred mice had a higher concentration of IgA and TGFβ in the lumen that was accompanied by an increase in CD8+CD103+ and CD8αβ T cells in the lamina propria of the large intestine. These data indicate not only that gut bacterial composition can be altered after the neonatal/weaning period, but that the composition of the microbiome affects the mucosal immune system and can delay the development of autoimmune diabetes. This result has important implications for the development of probiotic treatment for T1D. PMID:24767831

  18. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes

    PubMed Central

    Tai, Ningwen; Wong, F. Susan; Wen, Li

    2016-01-01

    Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cells mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or NOD-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease. PMID:27021275

  19. Insulin Transactivator MafA Regulates Intrathymic Expression of Insulin and Affects Susceptibility to Type 1 Diabetes

    PubMed Central

    Noso, Shinsuke; Kataoka, Kohsuke; Kawabata, Yumiko; Babaya, Naru; Hiromine, Yoshihisa; Yamaji, Kaori; Fujisawa, Tomomi; Aramata, Shinsaku; Kudo, Takashi; Takahashi, Satoru; Ikegami, Hiroshi

    2010-01-01

    OBJECTIVE Tissue-specific self-antigens are ectopically expressed within the thymus and play an important role in the induction of central tolerance. Insulin is expressed in both pancreatic islets and the thymus and is considered to be the primary antigen for type 1 diabetes. Here, we report the role of the insulin transactivator MafA in the expression of insulin in the thymus and susceptibility to type 1 diabetes. RESEARCH DESIGN AND METHODS The expression profiles of transcriptional factors (Pdx1, NeuroD, Mafa, and Aire) in pancreatic islets and the thymus were examined in nonobese diabetic (NOD) and control mice. Thymic Ins2 expression and serum autoantibodies were examined in Mafa knockout mice. Luciferase reporter assay was performed for newly identified polymorphisms of mouse Mafa and human MAFA. A case-control study was applied for human MAFA polymorphisms. RESULTS Mafa, Ins2, and Aire expression was detected in the thymus. Mafa expression was lower in NOD thymus than in the control and was correlated with Ins2 expression. Targeted disruption of MafA reduced thymic Ins2 expression and induced autoantibodies against pancreatic islets. Functional polymorphisms of MafA were newly identified in NOD mice and humans, and polymorphisms of human MAFA were associated with susceptibility to type 1 diabetes but not to autoimmune thyroid disease. CONCLUSIONS These data indicate that functional polymorphisms of MafA are associated with reduced expression of insulin in the thymus and susceptibility to type 1 diabetes in the NOD mouse as well as human type 1 diabetes. PMID:20682694

  20. Nondepleting anti-CD4 monoclonal antibody prevents diabetes and blocks induction of insulin autoantibodies following insulin peptide B:9-23 immunization in the NOD mouse.

    PubMed

    Liu, Edwin; Moriyama, Hiroaki; Paronen, Johanna; Abiru, Norio; Miao, Dongmei; Yu, Liping; Taylor, Robert M; Eisenbarth, George S

    2003-11-01

    Insulin peptide B:9-23 is a major autoantigen in type 1 diabetes that induces insulin autoantibodies and prevents diabetes in the NOD. However, immunization with peptide without adjuvant may be insufficient to reverse disease or induce long-term tolerance. Furthermore, recent experience has demonstrated the potential dangers of disease exacerbation or anaphylaxis with peptide immunotherapy. Combination therapy of B:9-23 with a nondepleting anti-CD4 monoclonal antibody (YTS 177.9) was studied in female NOD mice from 4 through 6 weeks of age. Injections of either B:9-23 in saline, YTS 177.9 antibody, or both peptide and antibody were given to mice. By 52 weeks follow-up, 40% of B:9-23-treated, 100% of YTS177.9-treated, and 70% of B:9-23 and YTS177.9 combination-treated mice remained diabetes-free. IAA, both spontaneous and induced by B:9-23, was almost completely suppressed in mice receiving YTS 177.9. In addition to suppression of IAA expression, anti-B:9-23 peptide antibodies are also suppressed in mice receiving B:9-23 with YTS 177.9, compared to B:9-23 alone. A brief course of the nondepleting anti-CD4 monoclonal antibody (YTS 177.9) in NOD mice confers long-term protection from diabetes and insulitis and profoundly blocks spontaneous and B:9-23 peptide-induced insulin autoantibodies.

  1. Autoimmune diabetes recurrence should be routinely monitored after pancreas transplantation.

    PubMed

    Martins, La Salete

    2014-09-24

    Autoimmune type 1 diabetes recurrence in pancreas grafts was first described 30 years ago, but it is not yet completely understood. In fact, the number of transplants affected and possibly lost due to this disease may be falsely low. There may be insufficient awareness to this entity by clinicians, leading to underdiagnosis. Some authors estimate that half of the immunological losses in pancreas transplantation are due to autoimmunity. Pancreas biopsy is the gold standard for the definitive diagnosis. However, as an invasive procedure, it is not the ideal approach to screen the disease. Pancreatic autoantibodies which may be detected early before graft dysfunction, when searched for, are probably the best initial tool to establish the diagnosis. The purpose of this review is to revisit the autoimmune aspects of type 1 diabetes and to analyse data about the identified autoantibodies, as serological markers of the disease. Therapeutic strategies used to control the disease, though with unsatisfactory results, are also addressed. In addition, the author's own experience with the prospective monitoring of pancreatic autoantibodies after transplantation and its correlation with graft outcome will be discussed.

  2. Direct assessment of the role of NK cells in autoimmune diabetes.

    PubMed

    Shachner, M S; Markmann, J F; Bassiri, H; Kim, J I; Naji, A; Barker, C F

    1992-06-01

    Considerable indirect evidence implicates participation of natural killer cells (NK) in the pathogenesis of diabetes in BB rats. The most convincing evidence derives from studies showing that anti-CD8 antibody effectively prevents both primary disease onset and autoimmune damage to transplanted islets. However, anti-CD8 treatment depletes both NK and cytotoxic T cells (CTL) since both cell types express the CD8 marker. To study directly the role of NK in diabetic BB rats we used MCA 3.2.3, a monoclonal antibody which selectively depletes normal Lewis rats of NK cells but not CTL. A regimen of ip injected antibody achieved rapid reduction of NK cells in diabetic and nondiabetic BB rats by FACS analysis. NK cell activity remained low in rats treated weekly as evidenced by YAC tumor cell killing. We next studied the effect of NK depletion on disease incidence in diabetes-prone BB rats of which about one half are expected to develop diabetes. Onset and incidence of diabetes in 3.2.3-treated and control antibody-treated aged matched litter mates were equal. These studies suggest that NK cells are not necessary for autoimmune islet destruction in spontaneously diabetic BB rats and support a role for CTL in pathogenesis of the disease.

  3. Gastrointestinal transit in nonobese diabetic mouse: an animal model of human diabetes type 1.

    PubMed

    El-Salhy, M

    2001-01-01

    Gastrointestinal transit (GI) in the nonobese diabetic (NOD) mouse, an animal model of human diabetes type 1, was examined in animals with short- (duration 1-5 days) and long-term (duration 28-35 days) diabetes. Blood glucose level, serum insulin concentration, and gut neuroendocrine peptide content were also measured. GI was significantly rapid in NOD mice with long-term diabetes (LTD), but was not correlated with blood glucose level, serum insulin concentration, or pancreatic insulin content. GI was correlated with duodenal secretin content, but not with the content of other neuroendocrine peptides in the different segments investigated. Whereas antral vasoactive intestinal peptide (VIP) content in NOD mice with LTD was significantly higher, colonic VIP was lower in NOD mice with short-term diabetes (STD). In the duodenum, whereas the concentration of secretin in NOD mice with both STD and LTD was lower, the gastrin content was higher. Duodenal somatostatin content in NOD mice with LTD was lower. In colon, the content of galanin in NOD mice with LTD was higher than in controls. The decreased content of secretin may be among the factors that cause rapid GI in NOD mice with LTD. Changes in the antral content of VIP, duodenal somatostatin, and colonic galanin in NOD mice with LTD may cause low intestinal secretion and, together with rapid GI, give rise to diarrhoea, which is a common symptom in diabetes.

  4. T cells to a dominant epitope of GAD65 express a public CDR3 motif.

    PubMed

    Quinn, Anthony; McInerney, Marcia; Huffman, Donald; McInerney, Brigid; Mayo, Stella; Haskins, Kathryn; Sercarz, Eli

    2006-06-01

    Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes, and serve as a model for type 1 diabetes (T1D) and natural autoimmunity. T cell responses to the pancreatic islet antigen glutamic acid decarboxylase 65 (GAD65) can be detected in the spleens of young prediabetic NOD mice, which display a unique MHC class II molecule. Here, we report that a distinct TcR beta chain and CDR3 motif are utilized by all NOD mice in response to a dominant determinant on GAD65, establishing a public repertoire in the spontaneous autoimmunity to an important islet cell antigen. GAD65 530-543 (p530)-reactive T cells preferentially utilize the Vbeta4, Dbeta2.1 and Jbeta2.7 gene segments, with a CDR3 that is characterized by a triad of amino acids, DWG, preceded by a polar residue. In addition, we used CDR3 length spectratyping, CDR3-specific reverse transcriptase-PCR and direct TcR sequencing to show that the TcR beta chain structural patterns associated with p530-specific T cells consistently appeared in the islets of young NOD mice with insulitis, but not in the inflamed islets of streptozotocin-treated C57BL/6 mice, or in inflamed NOD salivary glands. To our knowledge, this is the first report to demonstrate that a public T cell repertoire is used in spontaneous autoimmunity to a dominant self-determinant. These findings suggest that defined clonotypes and repertoires may be preferentially selected in haplotypes predisposed to spontaneous autoimmunity.

  5. Myocardial infarction triggers chronic cardiac autoimmunity in type 1 diabetes.

    PubMed

    Gottumukkala, Raju V S R K; Lv, HuiJuan; Cornivelli, Lizbeth; Wagers, Amy J; Kwong, Raymond Y; Bronson, Roderick; Stewart, Garrick C; Schulze, P Christian; Chutkow, William; Wolpert, Howard A; Lee, Richard T; Lipes, Myra A

    2012-06-13

    Patients with type 1 diabetes (T1D) suffer excessive morbidity and mortality after myocardial infarction (MI) that is not fully explained by the metabolic effects of diabetes. Acute MI is known to trigger a profound innate inflammatory response with influx of mononuclear cells and production of proinflammatory cytokines that are crucial for cardiac repair. We hypothesized that these same pathways might exert "adjuvant effects" and induce pathological responses in autoimmune-prone T1D hosts. Here, we show that experimental MI in nonobese diabetic mice, but not in control C57BL/6 mice, results in a severe post-infarction autoimmune (PIA) syndrome characterized by destructive lymphocytic infiltrates in the myocardium, infarct expansion, sustained cardiac autoantibody production, and T helper type 1 effector cell responses against cardiac (α-)myosin. PIA was prevented by inducing tolerance to α-myosin, demonstrating that immune responses to cardiac myosin are essential for this disease process. Extending these findings to humans, we developed a panel of immunoassays for cardiac autoantibody detection and found autoantibody positivity in 83% post-MI T1D patients. We further identified shared cardiac myosin autoantibody signatures between post-MI T1D patients and nondiabetic patients with myocarditis, which were absent in post-MI type 2 diabetic patients, and confirmed the presence of myocarditis in T1D by cardiac magnetic resonance imaging techniques. These data provide experimental and clinical evidence for a distinct post-MI autoimmune syndrome in T1D. Our findings suggest that PIA may contribute to worsened post-MI outcomes in T1D and highlight a role for antigen-specific immunointervention to selectively block this pathway.

  6. Allelic Variation of Ets1 Does Not Contribute to NK and NKT Cell Deficiencies in Type 1 Diabetes Susceptible NOD Mice

    PubMed Central

    Jordan, Margaret A.; Poulton, Lynn D.; Fletcher, Julie M.; Baxter, Alan G.

    2009-01-01

    The NOD mouse is a well characterized model of type 1 diabetes that shares several of the characteristics of Ets1-deficient targeted mutant mice, viz: defects in TCR allelic exclusion, susceptibility to a lupus like disease characterized by IgM and IgG autoantibodies and immune complex-mediated glomerulonephritis, and deficiencies of NK and NKT cells. Here, we sought evidence for allelic variation of Ets1 in mice contributing to the NK and NKT cell phenotypes of the NOD strain. ETS1 expression in NK and NKT cells was reduced in NOD mice, compared to C57BL/6 mice. Although NKT cells numbers were significantly correlated with ETS1 expression in both strains, NKT cell numbers were not linked to the Ets1 gene in a first backcross from NOD to C57BL/6 mice. These results indicate that allelic variation of Ets1 did not contribute to variation in NKT cell numbers in these mice. It remains possible that a third factor not linked to the Ets1 locus controls both ETS1 expression and subsequently NK and NKT cell phenotypes. PMID:19806240

  7. Effect of Associated Autoimmune Diseases on Type 1 Diabetes Mellitus Incidence and Metabolic Control in Children and Adolescents.

    PubMed

    Krzewska, Aleksandra; Ben-Skowronek, Iwona

    2016-01-01

    Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases developing in childhood. The incidence of the disease in children increases for unknown reasons at a rate from 3 to 5% every year worldwide. The background of T1DM is associated with the autoimmune process of pancreatic beta cell destruction, which leads to absolute insulin deficiency and organ damage. Complex interactions between environmental and genetic factors contribute to the development of T1DM in genetically predisposed patients. The T1DM-inducing autoimmune process can also affect other organs, resulting in development of additional autoimmune diseases in the patient, thereby impeding diabetes control. The most common T1DM comorbidities include autoimmune thyroid diseases, celiac disease, and autoimmune gastritis; additionally, diabetes can be a component of PAS (Polyglandular Autoimmune Syndrome). The aim of this review is to assess the prevalence of T1DM-associated autoimmune diseases in children and adolescents and their impact on the course of T1DM. We also present suggestions concerning screening tests.

  8. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice.

    PubMed

    Weiss, L; Zeira, M; Reich, S; Har-Noy, M; Mechoulam, R; Slavin, S; Gallily, R

    2006-03-01

    Cannabidinoids are components of the Cannabis sativa (marijuana) plant that have been shown capable of suppressing inflammation and various aspects of cell-mediated immunity. Cannabidiol (CBD), a non-psychoactive cannabidinoid has been previously shown by us to suppress cell-mediated autoimmune joint destruction in an animal model of rheumatoid arthritis. We now report that CBD treatment significantly reduces the incidence of diabetes in NOD mice from an incidence of 86% in non-treated control mice to an incidence of 30% in CBD-treated mice. CBD treatment also resulted in the significant reduction of plasma levels of the pro-inflammatory cytokines, IFN-gamma and TNF-alpha. Th1-associated cytokine production of in vitro activated T-cells and peritoneal macrophages was also significantly reduced in CBD-treated mice, whereas production of the Th2-associated cytokines, IL-4 and IL-10, was increased when compared to untreated control mice. Histological examination of the pancreatic islets of CBD-treated mice revealed significantly reduced insulitis. Our results indicate that CBD can inhibit and delay destructive insulitis and inflammatory Th1-associated cytokine production in NOD mice resulting in a decreased incidence of diabetes possibly through an immunomodulatory mechanism shifting the immune response from Th1 to Th2 dominance.

  9. B lymphocytes not required for progression from insulitis to diabetes in non-obese diabetic mice.

    PubMed

    Charlton, B; Zhang, M D; Slattery, R M

    2001-12-01

    Previous studies have implicated B lymphocytes in the pathogenesis of diabetes in the non-obese diabetic (NOD) mouse. While it is clear that B lymphocytes are necessary, it has not been clear at which stage of disease they play a role; early, late or both. To clarify when B lymphocytes are needed, T lymphocytes were transferred from 5-week-old NOD female mice to age-matched NOD/severe combined immunodeficiency (SCID) recipient mice. NOD/SCID mice, which lack functionally mature T and B lymphocytes, do not normally develop insulitis or insulin-dependent diabetes melitus (IDDM). The NOD/SCID mice that received purified T lymphocytes from 5-week-old NOD mice subsequently developed insulitis and diabetes even though they did not have detectable B lymphocytes. This suggests that while B lymphocytes may be essential for an initial priming event they are not requisite for disease progression in the NOD mouse.

  10. Long-term reversal of diabetes in non-obese diabetic mice by liver-directed gene therapy.

    PubMed

    Ren, Binhai; O'Brien, Bronwyn A; Byrne, Michelle R; Ch'ng, Edwin; Gatt, Prudence N; Swan, M Anne; Nassif, Najah T; Wei, Ming Q; Gijsbers, Rik; Debyser, Zeger; Simpson, Ann M

    2013-01-01

    Type 1 diabetes (T1D) results from an autoimmune attack against the insulin-producing β-cells of the pancreas. The present study aimed to reverse T1D by gene therapy. We used a novel surgical technique, which involves isolating the liver from the circulation before the delivery of a lentiviral vector carrying furin-cleavable human insulin (INS-FUR) or empty vector to the livers of diabetic non-obese diabetic mice (NOD). This was compared with the direct injection of the vector into the portal circulation. Mice were monitored for body weight and blood glucose. Intravenous glucose tolerance tests were performed. Expression of insulin and pancreatic transcription factors was determined by the reverse transcriptase-polymerase chain reaction and immunohistochemistry and immunoelectron microscopy was used to localise insulin. Using the novel surgical technique, we achieved long-term transduction (42% efficiency) of hepatocytes, restored normoglycaemia for 150 days (experimental endpoint) and re-established normal glucose tolerance. We showed the expression of β-cell transcription factors, murine insulin, glucagon and somatostatin, and hepatic storage of insulin in granules. The expression of hepatic markers, C/EBP-β, G6PC, AAT and GLUI was down-regulated in INS-FUR-treated livers. Liver function tests remained normal, with no evidence of intrahepatic inflammation or autoimmune destruction of the insulin-secreting liver tissue. By comparison, direct injection of INS-FUR reduced blood glucose levels, and no pancreatic transdifferentiation or normal glucose tolerance was observed. This gene therapy protocol has, for the first time, permanently reversed T1D with normal glucose tolerance in NOD mice and, as such, represents a novel therapeutic strategy for the treatment of T1D. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Non-autoimmune primary hypothyroidism in diabetic and non-diabetic chronic renal dysfunction.

    PubMed

    Bando, Y; Ushiogi, Y; Okafuji, K; Toya, D; Tanaka, N; Miura, S

    2002-11-01

    significant weight reduction. In conclusion, we found a significantly high prevalence of non-autoimmune primary hypothyroidism in patients with advanced diabetic nephropathy compared to those with non-diabetic chronic renal dysfunction, which may partly relate to earlier development of oedematous status. Clinical and laboratory findings suggest that impaired renal handling of iodine resulting in an elevation of serum iodine levels, rather than autoimmune mechanism or urinary hormone loss, may play a principal role in the development of these conditions, probably through a prolongation of the Wolff-Chaikoff effect. The mechanisms by which this phenomenon develops more frequently in diabetic than in non-diabetic renal dysfunction remain to be elucidated.

  12. Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette.

    PubMed

    Driver, John P; Scheuplein, Felix; Chen, Yi-Guang; Grier, Alexandra E; Wilson, S Brian; Serreze, David V

    2010-02-01

    In part, activation of invariant natural killer T (iNKT)-cells with the superagonist alpha-galactosylceramide (alpha-GalCer) inhibits the development of T-cell-mediated autoimmune type 1 diabetes in NOD mice by inducing the downstream differentiation of antigen-presenting dendritic cells (DCs) to an immunotolerogenic state. However, in other systems iNKT-cell activation has an adjuvant-like effect that enhances rather than suppresses various immunological responses. Thus, we tested whether in some circumstances genetic variation would enable activated iNKT-cells to support rather than inhibit type 1 diabetes development. We tested whether iNKT-conditioned DCs in NOD mice and a major histocompatibility complex-matched C57BL/6 (B6) background congenic stock differed in capacity to inhibit type 1 diabetes induced by the adoptive transfer of pathogenic AI4 CD8 T-cells. Unlike those of NOD origin, iNKT-conditioned DCs in the B6 background stock matured to a state that actually supported rather than inhibited AI4 T-cell-induced type 1 diabetes. The induction of a differing activity pattern of T-cell costimulatory molecules varying in capacity to override programmed death-ligand-1 inhibitory effects contributes to the respective ability of iNKT-conditioned DCs in NOD and B6 background mice to inhibit or support type 1 diabetes development. Genetic differences inherent to both iNKT-cells and DCs contribute to their varying interactions in NOD and B6.H2(g7) mice. This great variability in the interactions between iNKT-cells and DCs in two inbred mouse strains should raise a cautionary note about considering manipulation of this axis as a potential type 1 diabetes prevention therapy in genetically heterogeneous humans.

  13. [TNF-α, diabetes type 1 and regulatory T cells].

    PubMed

    Ryba, Monika; Myśliwska, Jolanta

    2010-01-01

    Recent studies on animal models of diabetes as well as human regulatory T cells have shown that α impairs the ability of these cells to prevent the disease. NOD mice treated with α had decreased frequency of regulatory T cells, whereas anti-TNF administration induced the increase in the number of these cells and disease prevention. The action of α also influenced the suppressive potential of Tregs. Increased susceptibility of Tregs to the modulatory effects of α involves signaling through TNFR2 that is expressed on the surface of this cell population. It seems that α neutralization may rescue regulatory T cells and restore their function in several autoimmune and inflammatory diseases. This review describes recent data concerning regulatory T cells in the context of inflammation that is present during diabetes type 1. It describes how TNF contributes to the pathogenesis of type 1 diabetes, what is the impact of this cytokine on regulatory T cell population and therapeutic effects that result from its neutralization in several inflammatory and autoimmune diseases.

  14. A cluster of coregulated genes determines TGF-beta-induced regulatory T-cell (Treg) dysfunction in NOD mice.

    PubMed

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A; Mathis, Diane; Benoist, Christophe

    2011-05-24

    Foxp3(+) regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4(+) T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility.

  15. Paricalcitol modulates ACE2 shedding and renal ADAM17 in NOD mice beyond proteinuria.

    PubMed

    Riera, Marta; Anguiano, Lidia; Clotet, Sergi; Roca-Ho, Heleia; Rebull, Marta; Pascual, Julio; Soler, Maria Jose

    2016-03-15

    Circulating and renal activity of angiotensin-converting enzyme 2 (ACE2) is increased in non-obese diabetic (NOD) mice. Because paricalcitol has been reported to protect against diabetic nephropathy, we investigated the role of paricalcitol in modulating ACE2 in these mice. In addition, renal ADAM17, a metalloprotease implied in ACE2 shedding, was assessed. NOD female and non-diabetic control mice were studied for 21 days after diabetes onset and divided into various treatment groups. Diabetic animals received either vehicle; 0.4 or 0.8 μg/kg paricalcitol, aliskiren, or a combination of paricalcitol and aliskiren. We then studied the effect of paricalcitol on ACE2 expression in proximal tubular epithelial cells. Paricalcitol alone or in combination with aliskiren resulted in significantly reduced circulating ACE2 activity in NOD mice but there were no changes in urinary albumin excretion. Serum renin activity was significantly decreased in mice that received aliskiren but no effect was found when paricalcitol was used alone. Renal content of ADAM17 was significantly decreased in animals that received a high dose of paricalcitol. Renal and circulating oxidative stress (quantified by plasma H2O2 levels and immunolocalization of nitrotyrosine) were reduced in high-dose paricalcitol-treated mice compared with non-treated diabetic mice. In culture, paricalcitol incubation resulted in a significant increase in ACE2 expression compared with nontreated cells. In NOD mice with type 1 diabetes, paricalcitol modulates ACE2 activity, ADAM17, and oxidative stress renal content independently from the glycemic profile and urinary albumin excretion. In tubular cells, paricalcitol may modulate ACE2 by blocking its shedding. In the early stage of diabetic nephropathy, paricalcitol treatment counterbalances the effect of diabetes on circulating ACE2 activity. Our results suggest that additional use of paricalcitol may be beneficial in treating patients with diabetes under standard

  16. Inotuzumab Ozogamicin Murine Analog–Mediated B-Cell Depletion Reduces Anti-islet Allo- and Autoimmune Responses

    PubMed Central

    Carvello, Michele; Petrelli, Alessandra; Vergani, Andrea; Lee, Kang Mi; Tezza, Sara; Chin, Melissa; Orsenigo, Elena; Staudacher, Carlo; Secchi, Antonio; Dunussi-Joannopoulos, Kyri; Sayegh, Mohamed H.; Markmann, James F.; Fiorina, Paolo

    2012-01-01

    B cells participate in the priming of the allo- and autoimmune responses, and their depletion can thus be advantageous for islet transplantation. Herein, we provide an extensive study of the effect of B-cell depletion in murine models of islet transplantation. Islet transplantation was performed in hyperglycemic B-cell–deficient(μMT) mice, in a purely alloimmune setting (BALB/c into hyperglycemic C57BL/6), in a purely autoimmune setting (NOD.SCID into hyperglycemic NOD), and in a mixed allo-/autoimmune setting (BALB/c into hyperglycemic NOD). Inotuzumab ozogamicin murine analog (anti-CD22 monoclonal antibody conjugated with calicheamicin [anti-CD22/cal]) efficiently depleted B cells in all three models of islet transplantation examined. Islet graft survival was significantly prolonged in B-cell–depleted mice compared with control groups in transplants of islets from BALB/c into C57BL/6 (mean survival time [MST]: 16.5 vs. 12.0 days; P = 0.004), from NOD.SCID into NOD (MST: 23.5 vs. 14.0 days; P = 0.03), and from BALB/c into NOD (MST: 12.0 vs. 5.5 days; P = 0.003). In the BALB/c into B-cell–deficient mice model, islet survival was prolonged as well (MST: μMT = 32.5 vs. WT = 14 days; P = 0.002). Pathology revealed reduced CD3+ cell islet infiltration and confirmed the absence of B cells in treated mice. Mechanistically, effector T cells were reduced in number, concomitant with a peripheral Th2 profile skewing and ex vivo recipient hyporesponsiveness toward donor-derived antigen as well as islet autoantigens. Finally, an anti-CD22/cal and CTLA4-Ig–based combination therapy displayed remarkable prolongation of graft survival in the stringent model of islet transplantation (BALB/c into NOD). Anti-CD22/cal–mediated B-cell depletion promotes the reduction of the anti-islet immune response in various models of islet transplantation. PMID:22076927

  17. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    PubMed

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  18. Strain-Specific Induction of Experimental Autoimmune Prostatitis (EAP) in Mice

    PubMed Central

    Jackson, Christopher M.; Flies, Dallas B.; Mosse, Claudio A.; Parwani, Anil; Hipkiss, Edward L.; Drake, Charles G.

    2013-01-01

    BACKGROUND Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. METHODS Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. RESULTS In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. CONCLUSIONS These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. PMID:23129407

  19. Thyroid epithelial cell hyperplasia in IFN-gamma deficient NOD.H-2h4 mice.

    PubMed

    Yu, Shiguang; Sharp, Gordon C; Braley-Mullen, Helen

    2006-01-01

    The role of inflammatory cells in thyroid epithelial cell (thyrocyte) hyperplasia is unknown. Here, we demonstrate that thyrocyte hyperplasia in IFN-gamma-/- NOD.H-2h4 mice has an autoimmune basis. After chronic exposure to increased dietary iodine, 60% of IFN-gamma-/- mice had severe thyrocyte hyperplasia with minimal or moderate lymphocyte infiltration, and thyroid dysfunction with reduced serum T4. All mice produced anti-thyroglobulin autoantibody. Some wild-type NOD.H-2h4 mice had isolated areas of thyrocyte hyperplasia with predominantly lymphocytic infiltration, whereas IL-4-/- and 50% of wild-type NOD.H-2h4 mice developed lymphocytic thyroiditis but no thyrocyte hyperplasia. Both thyroid infiltrating inflammatory cells and environmental factors (iodine) were required to induce thyrocyte hyperplasia. Splenocytes from IFN-gamma-/- mice with thyrocyte hyperplasia, but not splenocytes from naïve IFN-gamma-/- mice, induced hyperplasia in IFN-gamma-/- NOD.H-2h4.SCID mice. These results may provide clues for understanding the mechanisms underlying development of epithelial cell hyperplasia not only in thyroids but also in other tissues and organs.

  20. Thymic B Cell-Mediated Attack of Thymic Stroma Precedes Type 1 Diabetes Development

    PubMed Central

    Pinto, Ana Isabel; Smith, Jennifer; Kissack, Miriam R.; Hogg, Karen G.; Green, E. Allison

    2018-01-01

    Type 1 diabetes (T1D) results from a coordinated autoimmune attack of insulin producing beta cells in the pancreas by the innate and adaptive immune systems, beta cell death being predominantly T cell-mediated. In addition to T cells, peripheral B cells are important in T1D progression. The thymus of mice and man also contains B cells, and lately they have been linked to central tolerance of T cells. The role of thymic B cells in T1D is undefined. Here, we show there are abnormalities in the thymic B cell compartment before beta cell destruction and T1D manifestation. Using non-obese diabetic (NOD) mice, we document that preceding T1D development, there is significant accumulation of thymic B cells-partly through in situ development- and the putative formation of ectopic germinal centers. In addition, in NOD mice we quantify thymic plasma cells and observe in situ binding of immunoglobulins to undefined antigens on a proportion of medullary thymic epithelial cells (mTECs). By contrast, no ectopic germinal centers or pronounced intrathymic autoantibodies are detectable in animals not genetically predisposed to developing T1D. Binding of autoantibodies to thymic stroma correlates with apoptosis of mTECs, including insulin-expressing cells. By contrast, apoptosis of mTECs was decreased by 50% in B cell-deficient NOD mice suggesting intrathymic autoantibodies may selectively target certain mTECs for destruction. Furthermore, we observe that these thymic B cell-associated events correlated with an increased prevalence of premature thymic emigration of T cells. Together, our data suggest that the thymus may be a principal autoimmune target in T1D and contributes to disease progression.

  1. Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration

    PubMed Central

    Sidenius, Ulrik; Heegaard, Niels H.

    2016-01-01

    Gluten promotes type 1 diabetes in nonobese diabetic (NOD) mice and likely also in humans. In NOD mice and in non-diabetes-prone mice, it induces inflammation in the pancreatic lymph nodes, suggesting that gluten can initiate inflammation locally. Further, gliadin fragments stimulate insulin secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally and intravenously administered 33-mer and 19-mer gliadin peptide to NOD, BALB/c, and C57BL/6 mice and found that the peptides readily crossed the intestinal barrier in all strains. Several degradation products were found in the pancreas by mass spectroscopy. Notably, the exocrine pancreas incorporated large amounts of radioactive label shortly after administration of the peptides. The study demonstrates that, even in normal animals, large gliadin fragments can reach the pancreas. If applicable to humans, the increased gut permeability in prediabetes and type 1 diabetes patients could expose beta cells directly to gliadin fragments. Here they could initiate inflammation and induce beta cell stress and thus contribute to the development of type 1 diabetes. PMID:27795959

  2. A cluster of coregulated genes determines TGF-β–induced regulatory T-cell (Treg) dysfunction in NOD mice

    PubMed Central

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A.; Mathis, Diane; Benoist, Christophe

    2011-01-01

    Foxp3+ regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4+ T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility. PMID:21543717

  3. Impairment of organ-specific T cell negative selection by diabetes susceptibility genes: genomic analysis by mRNA profiling.

    PubMed

    Liston, Adrian; Hardy, Kristine; Pittelkow, Yvonne; Wilson, Susan R; Makaroff, Lydia E; Fahrer, Aude M; Goodnow, Christopher C

    2007-01-01

    T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection underlie organ-specific autoimmune disease in AIRE-deficient people and the non-obese diabetic (NOD) mouse strain Here we use homogeneous populations of T cells undergoing either positive or negative selection in vivo together with genome-wide transcription profiling on microarrays to identify the gene expression differences underlying negative selection to an Aire-dependent organ-specific antigen, including the upregulation of a genomic cluster in the cytogenetic band 2F. Analysis of defective negative selection in the autoimmune-prone NOD strain demonstrates a global impairment in the induction of the negative selection response gene set, but little difference in positive selection response genes. Combining expression differences with genetic linkage data, we identify differentially expressed candidate genes, including Bim, Bnip3, Smox, Pdrg1, Id1, Pdcd1, Ly6c, Pdia3, Trim30 and Trim12. The data provide a molecular map of the negative selection response in vivo and, by analysis of deviations from this pathway in the autoimmune susceptible NOD strain, suggest that susceptibility arises from small expression differences in genes acting at multiple points in the pathway between the TCR and cell death.

  4. Impairment of organ-specific T cell negative selection by diabetes susceptibility genes: genomic analysis by mRNA profiling

    PubMed Central

    Liston, Adrian; Hardy, Kristine; Pittelkow, Yvonne; Wilson, Susan R; Makaroff, Lydia E; Fahrer, Aude M; Goodnow, Christopher C

    2007-01-01

    Background T cells in the thymus undergo opposing positive and negative selection processes so that the only T cells entering circulation are those bearing a T cell receptor (TCR) with a low affinity for self. The mechanism differentiating negative from positive selection is poorly understood, despite the fact that inherited defects in negative selection underlie organ-specific autoimmune disease in AIRE-deficient people and the non-obese diabetic (NOD) mouse strain Results Here we use homogeneous populations of T cells undergoing either positive or negative selection in vivo together with genome-wide transcription profiling on microarrays to identify the gene expression differences underlying negative selection to an Aire-dependent organ-specific antigen, including the upregulation of a genomic cluster in the cytogenetic band 2F. Analysis of defective negative selection in the autoimmune-prone NOD strain demonstrates a global impairment in the induction of the negative selection response gene set, but little difference in positive selection response genes. Combining expression differences with genetic linkage data, we identify differentially expressed candidate genes, including Bim, Bnip3, Smox, Pdrg1, Id1, Pdcd1, Ly6c, Pdia3, Trim30 and Trim12. Conclusion The data provide a molecular map of the negative selection response in vivo and, by analysis of deviations from this pathway in the autoimmune susceptible NOD strain, suggest that susceptibility arises from small expression differences in genes acting at multiple points in the pathway between the TCR and cell death. PMID:17239257

  5. Smad4 in T cells plays a protective role in the development of autoimmune Sjögren's syndrome in the nonobese diabetic mouse.

    PubMed

    Kim, Donghee; Kim, Jae Young; Jun, Hee-Sook

    2016-12-06

    We investigated the role of Smad4, a signaling molecule of the TGF-beta pathway, in T cells on the pathology of Sjögren's syndrome (SS) in nonobese diabetic (NOD) mice, an animal model of SS. T cell-specific Smad4-deleted (Smad4fl/fl,CD4-Cre; Smad4 tKO) NOD mice had accelerated development of SS compared with wild-type (Smad4+/+,CD4-Cre; WT) NOD mice, including increased lymphocyte infiltration into exocrine glands, decreased tear and saliva production, and increased levels of autoantibodies at 12 weeks of age. Activated/memory T cells and cytokine (IFN-γ, IL-17)-producing T cells were increased in Smad4 tKO NOD mice, however the proportion and function of regulatory T (Treg) cells were not different between Smad4 tKO and WT NOD mice. Effector T (Teff) cells from Smad4 tKO NOD mice were less sensitive than WT Teff cells to suppression by Treg cells. Th17 differentiation capability of Teff cells was similar between Smad4 tKO and WT NOD mice, but IL-17 expression was increased under inducible Treg skewing conditions in T cells from Smad4 tKO NOD mice. Our results demonstrate that disruption of the Smad4 pathway in T cells of NOD mice increases Teff cell activation resulting in upregulation of Th17 cells, indicating that Smad4 in T cells has a protective role in the development of SS in NOD mice.

  6. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: The Diabetes Autoimmunity Study in the Young

    PubMed Central

    Norris, Jill M.; Kroehl, Miranda; Fingerlin, Tasha E.; Frederiksen, Brittni N.; Seifert, Jennifer; Wong, Randall; Clare-Salzler, Michael; Rewers, Marian

    2013-01-01

    Aims/hypotheses We previously reported that lower n-3 fatty acid intake and levels in erythrocyte membranes were associated with increased risk of islet autoimmunity (IA) but not progression to type 1 diabetes in children at increased risk for diabetes. We hypothesise that specific n-3 fatty acids and genetic markers contribute synergistically to this increased risk of IA in the Diabetes Autoimmunity Study in the Young (DAISY). Methods DAISY is following 2547 children at increased risk for type 1 diabetes for the development of IA, defined as being positive for glutamic acid decarboxylase (GAD)65, IA-2 or insulin autoantibodies on two consecutive visits. Using a case-cohort design, erythrocyte membrane fatty acids and dietary intake were measured prospectively in 58 IA-positive children and 299 IA-negative children. Results Lower membrane levels of the n-3 fatty acid, docosapentaenoic acid (DPA), were predictive of IA (HR 0.23; 95% CI 0.09,0.55), while alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were not, adjusting for HLA and diabetes family history. We examined whether the effect of dietary intake of the n-3 fatty acid ALA on IA risk was modified by fatty acid elongation and desaturation genes. Adjusting for HLA, diabetes family history, ethnicity, energy intake and questionnaire type, ALA intake was significantly more protective for IA in the presence of an increasing number of minor alleles at FADS1 rs174556 (pinteraction=0.017), at FADS2 rs174570 (pinteraction=0.016) and at FADS2 rs174583 (pinteraction=0.045). Conclusions/interpretation The putative protective effect of n-3 fatty acids on IA may result from a complex interaction between intake and genetically-controlled fatty acid desaturation. PMID:24240437

  7. Erythropoietin and its Carbamylated Derivative Prevent the Development of Experimental Diabetic Autonomic Neuropathy in STZ-Induced Diabetic NOD-SCID Mice

    PubMed Central

    Schmidt, Robert E.; Green, Karen G.; Feng, Dongyan; Dorsey, Denise A.; Parvin, Curtis A.; Lee, Jin-Moo; Xiao, Qinlgi; Brines, Michael

    2008-01-01

    Autonomic neuropathy is a significant diabetic complication resulting in increased morbidity and mortality. Studies of autopsied diabetic patients and several rodent models demonstrate that the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in prevertebral ganglia is the occurrence of synaptic pathology resulting in distinctive dystrophic neurites (“neuritic dystrophy”). Our prior studies show that neuritic dystrophy is reversed by exogenous IGF-I administration without altering the metabolic severity of diabetes, i.e. functioning as a neurotrophic substance. The description of erythropoietin (EPO) synergy with IGF-I function and the recent discovery of EPO’s multifaceted neuroprotective role suggested it might substitute for IGF-I in treatment of diabetic autonomic neuropathy. Our current studies demonstrate EPO receptor (EPO-R) mRNA in a cDNA set prepared from NGF-maintained rat sympathetic neuron cultures which decreased with NGF deprivation, a result which demonstrates clearly that sympathetic neurons express EPO-R, a result confirmed by immunohistochemistry. Treatment of STZ-diabetic NOD-SCID mice have demonstrated a dramatic preventative effect of EPO and carbamylated EPO (CEPO, which is neuroprotective but not hematopoietic) on the development of neuritic dystrophy. Neither EPO nor CEPO had a demonstrable effect on the metabolic severity of diabetes. Our results coupled with reported salutary effects of EPO on postural hypotension in a few clinical studies of EPO-treated anemic diabetic and non-diabetic patients may reflect a primary neurotrophic effect of EPO on the sympathetic autonomic nervous system, rather than a primary hematopoietic effect. These findings may represent a major clinical advance since EPO has been widely and safely used in anemic patients due to a variety of clinical conditions. PMID:17967455

  8. Hepatocytes express functional NOD1 and NOD2 receptors: A role for NOD1 in hepatocyte CC and CXC chemokine production

    PubMed Central

    Scott, Melanie J.; Chen, Christine; Sun, Qian; Billiar, Timothy R.

    2010-01-01

    Background & Aims NOD-like receptors are recently described cytosolic pattern recognition receptors. NOD1 and NOD2 are members of this family that recognize bacterial cell wall components, diaminopimelic acid and muramyl dipeptide, respectively. Both NOD1 and NOD2 have been associated with many inflammatory diseases, although their role in liver inflammation and infection has not been well studied. Materials and Methods We investigated the role of NOD receptors in mouse liver by assessing expression and activation of NOD1 and NOD2 in liver and primary isolated hepatocytes from C57BL/6 mice. Results Both NOD1 and NOD2 mRNA and protein were highly expressed in hepatocytes and liver. RIP2, the main signaling partner for NODs, was also expressed. Stimulation of hepatocytes with NOD1 ligand (C12-iEDAP) induced NFκB activation, activation of MAP kinases and expression of chemokines CCL5 (RANTES) and CXCL1 (KC). C12-iEDAP also synergized with interferon (IFN)γ to increase iNOS expression and production of nitric oxide. Despite activating NFκB, NOD1 ligand did not upregulate hepatocyte production of the acute phase proteins lipopolysaccharide binding protein, serum amyloid A, or soluble CD14 in cell culture supernatants, or upregulate mRNA expression of lipopolysaccharide binding protein, serum amyloid A, C-reactive protein, or serum amyloid P. NOD2 ligand (MDP) did not activate hepatocytes when given alone, but did synergize with Toll-like receptor ligands, lipopolysaccharide (LPS), and polyI:C to activate NFκB and MAPK. Conclusions All together these data suggest an important role for hepatocyte NOD1 in attracting leukocytes to the liver during infection and for hepatic NLRs to augment innate immune responses to pathogens. PMID:20615568

  9. Mothers' experiences of serious life events increase the risk of diabetes-related autoimmunity in their children.

    PubMed

    Sepa, Anneli; Frodi, Ann; Ludvigsson, Johnny

    2005-10-01

    Stressful life events have been shown to constitute a risk factor for type 1 diabetes during childhood. Our aim was to investigate in the general child population (i.e., irrespective of genetic risk for type 1 diabetes) whether mothers' experiences of serious life events, such as divorce and violence, were associated with diabetes-related autoimmunity in their children at age 2.5 years. The study cohort was comprised of the first 5,986 consecutive children and their families from the prospective population-based All Babies in Southeast Sweden project for whom 2.5-year study data were available. Data were drawn from parental questionnaires that included questions about experiences of serious life events and the blood samples taken from the children when the children were age 2.5 years. The blood samples were analyzed for diabetes-related autoantibodies against tyrosine phosphatase and GAD. Mothers' experiences of divorce (odds ratio 3.6, 95% CI 1.4-9.6, P < 0.05) and violence (2.9, 1.0-7.8, P < 0.05) were associated with diabetes-related autoimmunity in the children, independent of a family history of type 1 diabetes. The results support the beta-cell stress hypothesis and suggest that maternal experiences of serious life events such as divorce and violence seem to be involved in the induction or progression of diabetes-related autoimmunity in children at age 2.5 years, independent of family history of type 1 diabetes.

  10. Exposure to sequestered self-antigens in vivo is not sufficient for the induction of autoimmune diabetes

    PubMed Central

    Chan, Olivia; Hall, Håkan; Elford, Alisha R.; Yen, Patty; Calzascia, Thomas; Spencer, David M.; Ohashi, Pamela S.

    2017-01-01

    Although the role of T cells in autoimmunity has been explored for many years, the mechanisms leading to the initial priming of an autoimmune T cell response remain enigmatic. The ‘hit and run’ model suggests that self-antigens released upon cell death can provide the initial signal for a self-sustaining autoimmune response. Using a novel transgenic mouse model where we could induce the release of self-antigens via caspase-dependent apoptosis. We tracked the fate of CD8+ T cells specific for the self-antigen. Our studies demonstrated that antigens released from apoptotic cells were cross-presented by CD11c+ cells in the draining lymph node. This cross-presentation led to proliferation of self-antigen specific T cells, followed by a transient ability to produce IFN-γ, but did not lead to the development of autoimmune diabetes. Using this model we examined the consequences on T cell immunity when apoptosis was combined with dendritic cell maturation signals, an autoimmune susceptible genetic background, and the deletion of Tregs. The results of our study demonstrate that autoimmune diabetes cannot be initiated by the presentation of antigens released from apoptotic cells in vivo even in the presence of factors known to promote autoimmunity. PMID:28257518

  11. Infant feeding in relation to islet autoimmunity and type 1 diabetes in genetically susceptible children: the MIDIA Study.

    PubMed

    Lund-Blix, Nicolai A; Stene, Lars C; Rasmussen, Trond; Torjesen, Peter A; Andersen, Lene F; Rønningen, Kjersti S

    2015-02-01

    We aimed to study the association of breast-feeding duration and age at the introduction of solid foods with the risk of islet autoimmunity and type 1 diabetes in genetically susceptible children. Newborns were recruited from the Norwegian general population during 2001-2007. After genetic screening of nearly 50,000 newborns, 908 children with the high-risk HLA genotype were followed up with blood samples and questionnaires at age 3, 6, 9, and 12 months and then annually. Complete infant diet data were available for 726 children. Any breast-feeding for 12 months or longer predicted a decreased risk of developing type 1 diabetes compared with any breast-feeding for less than 12 months before and after adjusting for having a first-degree relative with type 1 diabetes, vitamin D supplementation, maternal education, sex, and delivery type (hazard ratio 0.37 [95% CI 0.15-0.93]). Any breast-feeding for 12 months or longer was not associated with islet autoimmunity but predicted a lower risk of progression from islet autoimmunity to type 1 diabetes (hazard ratio 0.35 [95% CI 0.13-0.94]). Duration of full breast-feeding was not significantly associated with the risk of islet autoimmunity or type 1 diabetes nor was age at introduction of solid foods or breast-feeding at the time of introduction of any solid foods. These results suggest that breast-feeding for 12 months or longer predict a lower risk of progression from islet autoimmunity to type 1 diabetes among genetically predisposed children. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  12. Coexistence of autoimmune polyglandular syndrome type 2 and diabetes insipidus in pregnancy.

    PubMed

    Krysiak, Robert; Samborek, Malgorzata

    2011-11-01

    Autoimmune polyglandular syndromes are rarely diagnosed conditions characterized by the association of at least 2 organ-specific autoimmune disorders. Very few cases of these syndromes have been described during pregnancy. The authors report a case of a patient diagnosed with autoimmune thyroiditis and a history of HELLP (hemolysis, elevated liver enzymes and low platelet) syndrome in a prior pregnancy. After increasing the levothyroxine dose, she developed Addisonian crisis. Normalization of adrenal cortex function resulted in the appearance of diabetes insipidus. This report shows that pregnancy may influence the course of preexisting endocrine disorders and lead to their unmasking. Although the risk of the development of autoimmune polyglandular syndromes during pregnancy is small, they may pose a serious health problem. The possible presence of these clinical entities should be considered in every woman with 1 or more endocrine disturbances.

  13. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  14. Polyinosine-polycytidylic acid promotes excessive iodine intake induced thyroiditis in non-obese diabetic mice via Toll-like receptor 3 mediated inflammation.

    PubMed

    Shi, Ya-nan; Liu, Feng-hua; Yu, Xiu-jie; Liu, Ze-bing; Li, Qing-xin; Yuan, Ji-hong; Zang, Xiao-yi; Li, Lan-ying

    2013-02-01

    Excessive iodine intake and viral infection are recognized as both critical factors associated with autoimmune thyroid diseases. Toll-like receptors (TLRs) have been reported to play an important role in autoimmune and inflammatory disorders. In this study, we aimed to clarify the possible mechanism of TLR3 involved in polyinosine-polycytidylic acid (poly(I:C)) promoting excessive iodine intake induced thyroiditis in non-obese diabetic (NOD) mice. Both NOD and BALB/c mice were randomly assigned to four groups: control group (n = 5), high iodine intake (HI) group (n = 7), poly(I:C) group (n = 7) and combination of excessive iodine and poly(I:C) injection (HIP) group (n = 7). After 8 weeks, mice were weighed and blood samples were collected. All the mice were sacrificed before dissection of spleen and thyroid gland. Then, thyroid histology, thyroid secreted hormone, expression of CD3(+) cells and TLR3 as well as inflammatory mRNA level were evaluated. Both NOD and BALB/c mice from HI and HIP group represented goiter and increasing thyroid relative weight. Thyroid histology evidence indicated that only HIP group of NOD mice showed severe thyroiditis with lymphocytes infiltration in majority of thyroid tissue, severe damage of follicles and general fibrosis. Immunofluorescence staining results displayed a large number of CD3(+) cells in HIP NOD mice. Real-time polymerase chain reaction (PCR) results suggested interferon (IFN)-α increased over 30 folds and IFN-γ expression was doubled compared with control group, but interleukin (IL)-4 remained unchanged in HIP group of NOD mice thyroid. Meanwhile, over one third decrease of blood total thyroxine (TT4) and increased thyroid-stimulating hormone (TSH) was observed in HIP group of NOD mice. Only HIP group of NOD mice represented significantly elevation of TLR3 expression. Poly(I:C) enhanced excessive dietary iodine induced thyroiditis in NOD mice through increasing TLR3 mediated inflammation.

  15. Smad4 in T cells plays a protective role in the development of autoimmune Sjögren's syndrome in the nonobese diabetic mouse

    PubMed Central

    Kim, Donghee; Kim, Jae Young; Jun, Hee-Sook

    2016-01-01

    We investigated the role of Smad4, a signaling molecule of the TGF-beta pathway, in T cells on the pathology of Sjögren's syndrome (SS) in nonobese diabetic (NOD) mice, an animal model of SS. T cell-specific Smad4-deleted (Smad4fl/fl,CD4-Cre; Smad4 tKO) NOD mice had accelerated development of SS compared with wild-type (Smad4+/+,CD4-Cre; WT) NOD mice, including increased lymphocyte infiltration into exocrine glands, decreased tear and saliva production, and increased levels of autoantibodies at 12 weeks of age. Activated/memory T cells and cytokine (IFN-γ, IL-17)-producing T cells were increased in Smad4 tKO NOD mice, however the proportion and function of regulatory T (Treg) cells were not different between Smad4 tKO and WT NOD mice. Effector T (Teff) cells from Smad4 tKO NOD mice were less sensitive than WT Teff cells to suppression by Treg cells. Th17 differentiation capability of Teff cells was similar between Smad4 tKO and WT NOD mice, but IL-17 expression was increased under inducible Treg skewing conditions in T cells from Smad4 tKO NOD mice. Our results demonstrate that disruption of the Smad4 pathway in T cells of NOD mice increases Teff cell activation resulting in upregulation of Th17 cells, indicating that Smad4 in T cells has a protective role in the development of SS in NOD mice. PMID:27880731

  16. [Myasthenia gravis, Graves-Basedow disease and other autoimmune diseases in patient with diabetes type 1 - APS-3 case report, therapeutic complications].

    PubMed

    Klenczar, Karolina; Deja, Grażyna; Kalina-Faska, Barbara; Jarosz-Chobot, Przemysława

    2017-01-01

    Diabetes type 1(T1D) is the most frequent form of diabetes in children and young people, which essence is autoimmune destruction of pancreatic B cells islet. Co-occurrence of other autoimmune diseases is observed in children with T1D, the most often are: Hashimoto disease or coeliac disease. We report the case of the patient, who presents coincidence of T1D with other rare autoimmune diseases such as: Graves - Basedow disease, myasthenia gravis, vitiligo and IgA deficiency. All mentioned diseases significantly complicated both endocrine and diabetic treatment of our patient and they negatively contributed her quality of life. The clinical picture of the case allows to recognize one of the autoimmune polyendocrine syndromes: APS-3 and is associated with still high risk of developing another autoimmune disease. © Polish Society for Pediatric Endocrinology and Diabetology.

  17. Increased seroreactivity to proinsulin and homologous mycobacterial peptides in latent autoimmune diabetes in adults

    PubMed Central

    Niegowska, Magdalena; Delitala, Alessandro; Pes, Giovanni Mario; Delitala, Giuseppe

    2017-01-01

    Latent Autoimmune Diabetes in Adults (LADA) is a slowly progressing form of immune-mediated diabetes that combines phenotypical features of type 2 diabetes (T2D) with the presence of islet cell antigens detected in type 1 diabetes (T1D). Heterogeneous clinical picture have led to the classification of patients based on the levels of antibodies against glutamic acid decarboxylase 65 (GADA) that correlate with clinical phenotypes closer to T1D or T2D when GADA titers are high or low, respectively. To date, LADA etiology remains elusive despite numerous studies investigating on genetic predisposition and environmental risk factors. To our knowledge, this is the first study aimed at evaluation of a putative role played by Mycobacterium avium subsp. paratuberculosis (MAP) as an infective agent in LADA pathogenesis. MAP is known to cause chronic enteritis in ruminants and has been associated with autoimmune disorders in humans. We analyzed seroreactivity of 223 Sardinian LADA subjects and 182 healthy volunteers against MAP-derived peptides and their human homologs of proinsulin and zinc transporter 8 protein. A significantly elevated positivity for MAP/proinsulin was detected among patients, with the highest prevalence in the 32-41-year-old T1D-like LADA subgroup, supporting our hypothesis of a possible MAP contribution in the development of autoimmunity. PMID:28472070

  18. Alcohol consumption is associated with reduced risk of Type 2 diabetes and autoimmune diabetes in adults: results from the Nord-Trøndelag health study.

    PubMed

    Rasouli, B; Ahlbom, A; Andersson, T; Grill, V; Midthjell, K; Olsson, L; Carlsson, S

    2013-01-01

    We investigated the influence of different aspects of alcohol consumption on the risk of Type 2 diabetes and autoimmune diabetes in adults. We used data from the Nord-Trøndelag Health Survey (HUNT) study, in which all adults aged ≥ 20 years from Nord-Trondelag County were invited to participate in three surveys in 1984-1986, 1995-1997 and 2006-2008. Patients with diabetes were identified using self-reports, and participants with onset age ≥ 35 years were classified as having Type 2 diabetes if they were negative for anti-glutamic acid decarboxylase (n = 1841) and as having autoimmune diabetes if they were positive for anti-glutamic acid decarboxylase (n = 140). Hazard ratios of amount and frequency of alcohol use, alcoholic beverage choice, and binge drinking and alcohol use disorders were estimated. Moderate alcohol consumption (adjusted for confounders) was associated with a reduced risk of Type 2 diabetes in men, but not in women (hazard ratio for men 10-15 g/day 0.48, 95% CI 0.28-0.77; hazard ratio for women ≥ 10 g/day 0.81, 95% CI 0.33-1.96). The reduced risk was primarily linked to consumption of wine [hazard ratio 0.93, 95% CI 0.87-0.99 (per g/day)]. No increased risk was seen in participants reporting binge drinking or in problem drinkers. The results were also compatible with a reduced risk of autoimmune diabetes associated with alcohol consumption [hazard ratio 0.70, 95% CI 0.45-1.08 (frequent consumption) and hazard ratio 0.36, 95% CI 0.13-0.97 (2-7 g/day)]. Moderate alcohol consumption associates with reduced risk of both Type 2 diabetes and autoimmune diabetes. A protective effect of alcohol intake may be limited to men. High alcohol consumption does not seem to carry an increased risk of diabetes. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  19. Alkaptonuria in a boy with type 1 diabetes mellitus, vitiligo, autoimmune thyroiditis and immunoglobulin A deficiency - a case report.

    PubMed

    Hogendorf, Anna; Pietrzak, Iwona; Antosik, Karolina; Borowiec, Maciej; Młynarski, Wojciech

    2016-01-01

    We present a 15-year-old Caucasian boy with an exceptional coincidence of a rare monogenic metabolic disease - alkaptonuria (AKU) and a cluster of autoimmune disorders: type 1 diabetes (T1DM), autoimmune thyroiditis (AIT), vitiligo, insulin infusion induced lipoatrophy and immunoglobulin A deficiency (IgAD) Alkaptonuria and type 1 diabetes in a child, especially in such an interesting coincidence with other autoimmune conditions, has not been reported so far. Our investigation, including comprehensive genetic evaluation using next generation sequencing technology, shows that alkaptonuria and T1DM were independently inherited. We also show that alkaptonuria in its pre-ochronotic phase seems to have no effect on the course of diabetes. © Polish Society for Pediatric Endocrinology and Diabetology.

  20. Is autoimmune thyroid dysfunction a risk factor for gestational diabetes?

    PubMed

    Pascual Corrales, Eider; Andrada, Patricia; Aubá, María; Ruiz Zambrana, Alvaro; Guillén Grima, Francisco; Salvador, Javier; Escalada, Javier; Galofré, Juan C

    2014-01-01

    Some recent studies have related autoimmune thyroid dysfunction and gestational diabetes (GD). The common factor for both conditions could be the existence of pro-inflammatory homeostasis. The study objective was therefore to assess whether the presence of antithyroid antibodies is related to the occurrence of GD. Fifty-six pregnant women with serum TSH levels ≥ 2.5 mU/mL during the first trimester were retrospectively studied. Antithyroid antibodies were measured, and an O'Sullivan test was performed. GD was diagnosed based on the criteria of the Spanish Group on Diabetes and Pregnancy. Positive antithyroid antibodies were found in 21 (37.50%) women. GD was diagnosed in 15 patients, 6 of whom (10.71%) had positive antibodies, while 9 (16.07%) had negative antibodies. Data were analyzed using exact logistic regression by LogXact-8 Cytel; no statistically significant differences were found between GD patients with positive and negative autoimmunity (OR = 1.15 [95%CI = 0.28-4.51]; P=1.00). The presence of thyroid autoimmunity in women with TSH above the recommended values at the beginning of pregnancy is not associated to development of GD. However, GD prevalence was higher in these patients as compared to the Spanish general population, suggesting the need for closer monitoring in pregnant women with TSH levels ≥ 2.5 mU/mL. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Specific destruction of islet transplants in NOD<-->C57BL/6 and NOD<-->C3H/Tif embryo aggregation chimeras irrespective of allelic differences in beta-cell antigens.

    PubMed

    Leijon, K; Hillörn, V; Bergqvist, I; Holmberg, D

    1995-06-01

    We have tested the hypothesis that allelic differences in the antigens expressed by the beta-cells of the islets of Langerhans influence the development of insulitis in the non-obese diabetic (NOD) mouse. Islets of Langerhans from NOD, C57BL/6 and C3H/Tif mice were transplanted under the kidney capsule of NOD<-->C57BL/6 and NOD<-->C3H/Tif embryo aggregation (EA) chimeras and the infiltration was scored 5-7 weeks later. Mononuclear cell infiltration of pancreatic islets was observed in 60% of the NOD<-->C57BL/6 and in 55% of the NOD<-->C3H/Tif EA chimeras. All transplanted EA chimeras that developed insulitis also displayed mononuclear cell infiltrates in the transplants, irrespective of the origin of the transplanted islets. In contrast, no infiltration of transplants was detected in EA chimeras scoring negative for insulitis. These results demonstrate that the specific destruction of islet transplants does not require the expression of NOD specific antigens by the islets. Moreover, the beta-cell destruction appears not to be restricted to NOD-MHC. The correlation between insulitis and transplant beta-cell destruction suggests the possibility that the development of insulitis is a prerequisite for transplant specific destruction. MHC restricted destruction may, therefore, precede the beta-cell destruction of transplanted islets. The chimerism among the mononuclear cells infiltrating the islet transplants was found to correlate with the overall haematopoetic chimerism in each of the individual EA chimeras. This observation suggests that NOD bone marrow, as well as non-NOD bone marrow, generates cells contributing to the beta-cell destruction process.

  2. Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells

    PubMed Central

    Monti, Paolo; Scirpoli, Miriam; Maffi, Paola; Ghidoli, Nadia; De Taddeo, Francesca; Bertuzzi, Federico; Piemonti, Lorenzo; Falcone, Marika; Secchi, Antonio; Bonifacio, Ezio

    2008-01-01

    Successful transplantation requires the prevention of allograft rejection and, in the case of transplantation to treat autoimmune disease, the suppression of autoimmune responses. The standard immunosuppressive treatment regimen given to patients with autoimmune type 1 diabetes who have received an islet transplant results in the loss of T cells. In many other situations, the immune system responds to T cell loss through cytokine-dependant homeostatic proliferation of any remaining T cells. Here we show that T cell loss after islet transplantation in patients with autoimmune type 1 diabetes was associated with both increased serum concentrations of IL-7 and IL-15 and in vivo proliferation of memory CD45RO+ T cells, highly enriched in autoreactive glutamic acid decarboxylase 65–specific T cell clones. Immunosuppression with FK506 and rapamycin after transplantation resulted in a chronic homeostatic expansion of T cells, which acquired effector function after immunosuppression was removed. In contrast, the cytostatic drug mycophenolate mofetil efficiently blocked homeostatic T cell expansion. We propose that the increased production of cytokines that induce homeostatic expansion could contribute to recurrent autoimmunity in transplanted patients with autoimmune disease and that therapy that prevents the expansion of autoreactive T cells will improve the outcome of islet transplantation. PMID:18431516

  3. Alcohol and the risk for latent autoimmune diabetes in adults: results based on Swedish ESTRID study.

    PubMed

    Rasouli, Bahareh; Andersson, Tomas; Carlsson, Per-Ola; Dorkhan, Mozhgan; Grill, Valdemar; Groop, Leif; Martinell, Mats; Tuomi, Tiinamaja; Carlsson, Sofia

    2014-11-01

    Moderate alcohol consumption is associated with a reduced risk of type 2 diabetes. Our aim was to investigate whether alcohol consumption is associated with the risk of latent autoimmune diabetes in adults (LADA), an autoimmune form of diabetes with features of type 2 diabetes. A population-based case-control study was carried out to investigate the association of alcohol consumption and the risk of LADA. We used data from the ESTRID case-control study carried out between 2010 and 2013, including 250 incident cases of LADA (glutamic acid decarboxylase antibodies (GADAs) positive) and 764 cases of type 2 diabetes (GADA negative), and 1012 randomly selected controls aged ≥35. Logistic regression was used to estimate the odds ratios (ORs) of diabetes in relation to alcohol intake, adjusted for age, sex, BMI, family history of diabetes, smoking, and education. Alcohol consumption was inversely associated with the risk of type 2 diabetes (OR 0.95, 95% CI 0.92-0.99 for every 5-g increment in daily intake). Similar results were observed for LADA, but stratification by median GADA levels revealed that the results only pertained to LADA with low GADA levels (OR 0.85, 95% CI 0.76-0.94/5 g alcohol per day), whereas no association was observed with LADA having high GADA levels (OR 1.00, 95% CI 0.94-1.06/5 g per day). Every 5-g increment of daily alcohol intake was associated with a 10% increase in GADA levels (P=0.0312), and a 10% reduction in homeostasis model assessment of insulin resistance (P=0.0418). Our findings indicate that alcohol intake may reduce the risk of type 2 diabetes and type 2-like LADA, but has no beneficial effects on diabetes-related autoimmunity. © 2014 The authors.

  4. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan; Cao, Hui

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effectivemore » than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.« less

  5. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children

    PubMed Central

    Vatanen, Tommi; Droit, Lindsay; Kostic, Aleksandar D.; Poon, Tiffany W.; Vlamakis, Hera; Siljander, Heli; Härkönen, Taina; Hämäläinen, Anu-Maaria; Peet, Aleksandr; Tillmann, Vallo; Ilonen, Jorma; Wang, David; Knip, Mikael; Xavier, Ramnik J.

    2017-01-01

    Viruses have long been considered potential triggers of autoimmune diseases. Here we defined the intestinal virome from birth to the development of autoimmunity in children at risk for type 1 diabetes (T1D). A total of 220 virus-enriched preparations from serially collected fecal samples from 11 children (cases) who developed serum autoantibodies associated with T1D (of whom five developed clinical T1D) were compared with samples from controls. Intestinal viromes of case subjects were less diverse than those of controls. Among eukaryotic viruses, we identified significant enrichment of Circoviridae-related sequences in samples from controls in comparison with cases. Enterovirus, kobuvirus, parechovirus, parvovirus, and rotavirus sequences were frequently detected but were not associated with autoimmunity. For bacteriophages, we found higher Shannon diversity and richness in controls compared with cases and observed that changes in the intestinal virome over time differed between cases and controls. Using Random Forests analysis, we identified disease-associated viral bacteriophage contigs after subtraction of age-associated contigs. These disease-associated contigs were statistically linked to specific components of the bacterial microbiome. Thus, changes in the intestinal virome preceded autoimmunity in this cohort. Specific components of the virome were both directly and inversely associated with the development of human autoimmune disease. PMID:28696303

  6. Immunological Applications of Stem Cells in Type 1 Diabetes

    PubMed Central

    Voltarelli, Julio; Zavazava, Nicholas

    2011-01-01

    Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs. PMID:21862682

  7. CD44 gene vaccination for insulin-dependent diabetes mellitus in non-obese diabetic mice.

    PubMed

    Weiss, Lola; Botero-Anug, Ana Maria; Hand, Carla; Slavin, Shimon; Naor, David

    2008-01-01

    Standard CD44 and its alternatively spliced variants were found to be associated with the metastatic potential of tumor cells and with cell migration of autoimmune inflammatory cells, including cells involved in experimental insulin-dependent diabetes mellitus. To investigate whether induction of anti-CD44 immune reactivity, through cDNA vaccination, could attenuate IDDM in a transfer model of NOD mice. Our vaccination technique involved the insertion of CD44s or CD44v cDNA into a silicone tube filled with a 2.5 cm long segment of hydroxylated-polyvinyl acetate wound dressing sponge (forming a virtual lymph node) which was implanted under the skin of male NOD recipients reconstituted with diabetogenic spleen cells of female NOD donors. The VLN were implanted 20 days before and 3 days after cell transfer. In contrast to control groups of recipient mice, recipients vaccinated with VLN loaded with CD44v or CD44s cDNAs developed resistance to IDDM almost to the same extent. Our results suggest that the gene vaccination effect was mediated by anti-CD44 antibody rather than by cellular immunity. Histopathological examinations revealed a significant protection of pancreatic islets in the DNA-vaccinated recipients, whereas the islets of control recipients of diabetogenic cells were almost totally destroyed. These findings may open new opportunities for IDDM therapy in the future.

  8. Metastable Pluripotent States in NOD Mouse Derived ES Cells

    PubMed Central

    Hanna, Jacob; Markoulaki, Styliani; Mitalipova, Maisam; Cheng, Albert W.; Cassady, John P.; Staerk, Judith; Carey, Bryce W.; Lengner, Christopher J.; Foreman, Ruth; Love, Jennifer; Gao, Qing; Kim, Jongpil; Jaenisch, Rudolf

    2009-01-01

    Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and display a restricted developmental potential. Here we characterize pluripotent states in the non-obese diabetic (NOD) mouse strain, which prior to this study was considered “non-permissive” for ES cell derivation. We find that NOD stem cells can be stabilized by providing constitutive expression of Klf4 or c-Myc or small molecules that can replace these factors during in vitro reprogramming. The NOD ES and iPS cells appear “metastable”, as they acquire an alternative EpiSC-like identity after removal of the exogenous factors, while their reintroduction converts the cells back to ICM-like pluripotency. Our findings suggest that stem cells from different genetic backgrounds can assume distinct states of pluripotency in vitro, the stability of which is regulated by endogenous genetic determinants and can be modified by exogenous factors. PMID:19427283

  9. Organ specificity in autoimmune diseases: thyroid and islet autoimmunity in alopecia areata.

    PubMed

    Noso, Shinsuke; Park, Choongyong; Babaya, Naru; Hiromine, Yoshihisa; Harada, Takeshi; Ito, Hiroyuki; Taketomo, Yasunori; Kanto, Kousei; Oiso, Naoki; Kawada, Akira; Suzuki, Tamio; Kawabata, Yumiko; Ikegami, Hiroshi

    2015-05-01

    Multiple autoimmune diseases, such as autoimmunity against the thyroid gland and pancreatic islets, are often observed in a single patient. Although alopecia areata (AA) is one of the most frequent organ-specific autoimmune diseases, the association of AA with other autoimmune diseases and the genetic basis of the association remain to be analyzed. The aim of this study was to clarify the similarities and differences in HLA and clinical characteristics of thyroid and islet autoimmunity in patients with AA. A total of 126 patients with AA were newly recruited. Anti-islet and antithyroid autoantibodies were tested, and genotypes of HLA genes were determined. Among the autoimmune diseases associated with AA, autoimmune thyroid disease was most frequent (10.0%), followed by vitiligo (2.7%) and rheumatoid arthritis (0.9%) but not type 1 diabetes (0.0%). The prevalence of thyroid-related autoantibodies in patients with AA was significantly higher than that in controls (TSH receptor antibody [TRAb]: 42.7% vs 1.2%, P = 1.6 × 10(-46); thyroid peroxidase antibody: 29.1% vs 11.6%; P = 1.7 × 10(-6)), whereas the prevalence of islet-related autoantibodies was comparable between patients with AA and control subjects. The frequency of DRB1*15:01-DQB1*06:02, a protective haplotype for type 1 diabetes, was significantly higher in TRAb-positive (12.8%, P = .0028, corrected P value [Pc] = .02) but not TRAb-negative (7.1%, not significant) patients with AA than in control subjects (4.5%). The frequency of DRB1*04:05-DQB1*04:01, a susceptible haplotype for type 1 diabetes, was significantly lower in patients with AA (TRAb-positive: 8.5%; TRAb-negative: 11.9%) than in those with type 1 diabetes (29.5%, Pc < .0003 and Pc < .0008, respectively). AA was associated with thyroid autoimmunity but not islet autoimmunity, which correlated with class II HLA haplotypes susceptible or resistant to each autoimmune disease.

  10. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. pH of drinking water influences the composition of gut microbiome and type 1 diabetes incidence.

    PubMed

    Sofi, M Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M; Vasu, Chenthamarakshan

    2014-02-01

    Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA-targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice.

  12. pH of Drinking Water Influences the Composition of Gut Microbiome and Type 1 Diabetes Incidence

    PubMed Central

    Sofi, M. Hanief; Gudi, Radhika; Karumuthil-Melethil, Subha; Perez, Nicolas; Johnson, Benjamin M.; Vasu, Chenthamarakshan

    2014-01-01

    Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA–targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice. PMID:24194504

  13. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice1, 2, 3

    PubMed Central

    Bonami, Rachel H.; Thomas, James W.

    2015-01-01

    Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or if this process is dysregulated in related autoimmunity. To resolve these issues, an editing-competent model was developed in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a non-autoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, as selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen-targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab’)2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy. PMID:26432895

  14. Altered monocyte cyclo-oxygenase response in non-obese diabetic mice.

    PubMed

    Beyan, H; Buckley, L R; Bustin, S A; Yousaf, N; Pozzilli, P; Leslie, R D

    2009-02-01

    Monocytes infiltrate islets in non-obese diabetic (NOD) mice. Activated monocyte/macrophages express cyclo-oxygenase-2 (COX-2) promoting prostaglandin-E(2) (PGE(2)) secretion, while COX-1 expression is constitutive. We investigated in female NOD mice: (i) natural history of monocyte COX expression basally and following lipopolysaccharide (LPS) stimulation; (ii) impact of COX-2 specific inhibitor (Vioxx) on PGE(2), insulitis and diabetes. CD11b(+) monocytes were analysed for COX mRNA expression from NOD (n = 48) and C57BL/6 control (n = 18) mice. NOD mice were treated with either Vioxx (total dose 80 mg/kg) (n = 29) or methylcellulose as control (n = 29) administered by gavage at 4 weeks until diabetes developed or age 30 weeks. In all groups, basal monocyte COX mRNA and PGE(2) secretion were normal, while following LPS, after 5 weeks of age monocyte/macrophage COX-1 mRNA decreased (P < 0.01) and COX-2 mRNA increased (P < 0.01). However, diabetic NOD mice had reduced COX mRNA response (P = 0.03). Vioxx administration influenced neither PGE(2), insulitis nor diabetes. We demonstrate an isoform switch in monocyte/macrophage COX mRNA expression following LPS, which is altered in diabetic NOD mice as in human diabetes. However, Vioxx failed to affect insulitis or diabetes. We conclude that monocyte responses are altered in diabetic NOD mice but COX-2 expression is unlikely to be critical to disease risk.

  15. B lymphocyte "original sin" in the bone marrow enhances islet autoreactivity in type 1 diabetes-prone nonobese diabetic mice.

    PubMed

    Henry-Bonami, Rachel A; Williams, Jonathan M; Rachakonda, Amita B; Karamali, Mariam; Kendall, Peggy L; Thomas, James W

    2013-06-15

    Effective central tolerance is required to control the large extent of autoreactivity normally present in the developing B cell repertoire. Insulin-reactive B cells are required for type 1 diabetes in the NOD mouse, because engineered mice lacking this population are protected from disease. The Cg-Tg(Igh-6/Igh-V125)2Jwt/JwtJ (VH125Tg) model is used to define this population, which is found with increased frequency in the periphery of NOD mice versus nonautoimmune C57BL/6 VH125Tg mice; however, the ontogeny of this disparity is unknown. To better understand the origins of these pernicious B cells, anti-insulin B cells were tracked during development in the polyclonal repertoire of VH125Tg mice. An increased proportion of insulin-binding B cells is apparent in NOD mice at the earliest point of Ag commitment in the bone marrow. Two predominant L chains were identified in B cells that bind heterologous insulin. Interestingly, Vκ4-57-1 polymorphisms that confer a CDR3 Pro-Pro motif enhance self-reactivity in VH125Tg/NOD mice. Despite binding circulating autoantigen in vivo, anti-insulin B cells transition from the parenchyma to the sinusoids in the bone marrow of NOD mice and enter the periphery unimpeded. Anti-insulin B cells expand at the site of autoimmune attack in the pancreas and correlate with increased numbers of IFN-γ-producing cells in the repertoire. These data identify the failure to cull autoreactive B cells in the bone marrow as the primary source of anti-insulin B cells in NOD mice and suggest that dysregulation of central tolerance permits their escape into the periphery to promote disease.

  16. Easily obtainable clinical features increase the diagnostic accuracy for latent autoimmune diabetes in adults: an evidence-based report.

    PubMed

    Lutgens, Maurice W M D; Meijer, Melanie; Peeters, Babette; Poulsen, Marie-Louise N F; Rutten, Marjet J; Bots, Michiel L; van der Heijden, Geert J M G; Soedamah-Muthu, Sabita S

    2008-12-01

    Latent autoimmune diabetes in adults (LADA) represents a subgroup of diabetes mellitus. LADA is characterised by adult-onset diabetes and circulating autoimmune antibodies. LADA patients may need a different therapeutic approach than the usual type 2 diabetes mellitus. When LADA is inadequately diagnosed as type 2 diabetes mellitus, LADA patients will mistakenly be exposed to a high dose of oral glucose lowering drugs and their possible side effects. To assess which clinical features predict the presence or absence of LADA in patients older than 25 years presenting with hyperglycemia. A structured Medline and Embase search was conducted. Titles and abstracts were screened using predetermined selection criteria. Critical appraisal was based on standardized validity criteria for diagnostic research. One-hundred and eighty-four papers were retrieved of which after assessment of relevance and validity 2 studies remained for further analysis. One study reported a probability of LADA of 0.99 with one or two out of the following five clinical features: age at onset <50 years; acute symptoms; BMI<25 kg/m(2); a history of autoimmune disease; a family history positive for diabetes mellitus. The other study reported a probability of LADA of zero with none of the following clinical features and of 0.32 with one out of three: fasting blood glucose> or =15 mmol/l and/or HbA(1c)> or =10%; 10% reduction in body weight in the previous 3 months; BMI<25 kg/m(2). Further testing for LADA by measurement of autoimmune antibodies appears to be unnecessary in the absence of a specific set of clinical features. Before initiating therapy applying the above criteria may help to separate LADA from usual type 2 diabetes.

  17. Lack of Evidence for a Role of Islet Autoimmunity in the Aetiology of Canine Diabetes Mellitus

    PubMed Central

    Landegren, Nils; Grimelius, Lars; von Euler, Henrik; Sundberg, Katarina; Lindblad-Toh, Kerstin; Lobell, Anna; Hedhammar, Åke; Andersson, Göran; Hansson-Hamlin, Helene; Lernmark, Åke; Kämpe, Olle

    2014-01-01

    Aims/Hypothesis Diabetes mellitus is one of the most common endocrine disorders in dogs and is commonly proposed to be of autoimmune origin. Although the clinical presentation of human type 1 diabetes (T1D) and canine diabetes are similar, the aetiologies may differ. The aim of this study was to investigate if autoimmune aetiology resembling human T1D is as prevalent in dogs as previously reported. Methods Sera from 121 diabetic dogs representing 40 different breeds were tested for islet cell antibodies (ICA) and GAD65 autoantibodies (GADA) and compared with sera from 133 healthy dogs. ICA was detected by indirect immunofluorescence using both canine and human frozen sections. GADA was detected by in vitro transcription and translation (ITT) of human and canine GAD65, followed by immune precipitation. Sections of pancreata from five diabetic dogs and two control dogs were examined histopathologically including immunostaining for insulin, glucagon, somatostatin and pancreas polypeptide. Results None of the canine sera analysed tested positive for ICA on sections of frozen canine or human ICA pancreas. However, serum from one diabetic dog was weakly positive in the canine GADA assay and serum from one healthy dog was weakly positive in the human GADA assay. Histopathology showed marked degenerative changes in endocrine islets, including vacuolisation and variable loss of immune-staining for insulin. No sign of inflammation was noted. Conclusions/Interpretations Contrary to previous observations, based on results from tests for humoral autoreactivity towards islet proteins using four different assays, and histopathological examinations, we do not find any support for an islet autoimmune aetiology in canine diabetes mellitus. PMID:25153886

  18. LEW.1WR1 RATS DEVELOP AUTOIMMUNE DIABETES SPONTANEOUSLY AND IN RESPONSE TO ENVIRONMENTAL PERTURBATION

    PubMed Central

    Mordes, John P.; Leif, Jean H.; Woda, Bruce A.; Flanagan, Joan F.; Greiner, Dale L.; Kislauskis, Edward H.; Tirabassi, Rebecca S.

    2005-01-01

    We describe a new rat model of autoimmune diabetes that arose in a major histocompatibility complex (MHC) congenic LEW rat. Spontaneous diabetes in LEW.1WR1 rats (RT1u/u/a) occurs with a cumulative frequency of ∼2% at a median age of 59 days. The disease is characterized by hyperglycemia, glycosuria, ketonuria and polyuria. Both sexes are affected, and islets of acutely diabetic rats are devoid of beta cells whereas alpha and delta cell populations are spared. The peripheral lymphoid phenotype is normal, including the fraction of ART2+ regulatory T cells (Tregs). We tested the hypothesis that the expression of diabetes would be increased by immunological perturbation of innate or adaptive immunity. Treatment of young rats with depleting anti-ART2.1 mAb increased the frequency of diabetes to 50%. Treatment with the toll-like receptor 3 (TLR3) ligand polyinosinic:polycytidylic acid increased the frequency of diabetes to 100%. All diabetic rats exhibited end-stage islets. The LEW.1WR1 rat is also susceptible to collagen-induced arthritis but is free of spontaneous thyroiditis. The LEW.1WR1 rat provides a new model for studying autoimmune diabetes and arthritis in an animal with a genetic predisposition to both disorders that can be amplified by environmental perturbation. PMID:16123363

  19. Autoimmune central diabetes insipidus in a patient with ureaplasma urealyticum infection and review on new triggers of immune response.

    PubMed

    Murdaca, Giuseppe; Russo, Rodolfo; Spanò, Francesca; Ferone, Diego; Albertelli, Manuela; Schenone, Angelo; Contatore, Miriam; Guastalla, Andrea; De Bellis, Annamaria; Garibotto, Giacomo; Puppo, Francesco

    2015-12-01

    Diabetes insipidus is a disease in which large volumes of dilute urine (polyuria) are excreted due to vasopressin (AVP) deficiency [central diabetes insipidus (CDI)] or to AVP resistance (nephrogenic diabetes insipidus). In the majority of patients, the occurrence of CDI is related to the destruction or degeneration of neurons of the hypothalamic supraoptic and paraventricular nuclei. The most common and well recognized causes include local inflammatory or autoimmune diseases, vascular disorders, Langerhans cell histiocytosis (LCH), sarcoidosis, tumors such as germinoma/craniopharyngioma or metastases, traumatic brain injuries, intracranial surgery, and midline cerebral and cranial malformations. Here we have the opportunity to describe an unusual case of female patient who developed autoimmune CDI following ureaplasma urealyticum infection and to review the literature on this uncommon feature. Moreover, we also discussed the potential mechanisms by which ureaplasma urealyticum might favor the development of autoimmune CDI.

  20. Early prediction of autoimmune (type 1) diabetes.

    PubMed

    Regnell, Simon E; Lernmark, Åke

    2017-08-01

    Underlying type 1 diabetes is a genetic aetiology dominated by the influence of specific HLA haplotypes involving primarily the class II DR-DQ region. In genetically predisposed children with the DR4-DQ8 haplotype, exogenous factors, yet to be identified, are thought to trigger an autoimmune reaction against insulin, signalled by insulin autoantibodies as the first autoantibody to appear. In children with the DR3-DQ2 haplotype, the triggering reaction is primarily against GAD signalled by GAD autoantibodies (GADA) as the first-appearing autoantibody. The incidence rate of insulin autoantibodies as the first-appearing autoantibody peaks during the first years of life and declines thereafter. The incidence rate of GADA as the first-appearing autoantibody peaks later but does not decline. The first autoantibody may variably be followed, in an apparently non-HLA-associated pathogenesis, by a second, third or fourth autoantibody. Although not all persons with a single type of autoantibody progress to diabetes, the presence of multiple autoantibodies seems invariably to be followed by loss of functional beta cell mass and eventually by dysglycaemia and symptoms. Infiltration of mononuclear cells in and around the islets appears to be a late phenomenon appearing in the multiple-autoantibody-positive with dysglycaemia. As our understanding of the aetiology and pathogenesis of type 1 diabetes advances, the improved capability for early prediction should guide new strategies for the prevention of type 1 diabetes.

  1. Autoimmune hepatitis related autoantibodies in children with type 1 diabetes

    PubMed Central

    2014-01-01

    Background and objectives The frequency of Type 1 diabetes (T1D)-related autoantibodies was determined in children with autoimmune hepatitis. However, the incidence of autoimmune hepatitis related autoantibodies in children with T1D has been poorly investigated. The aim of the present cross sectional prospective study was to determine the occurrence of autoimmune hepatitis-related autoantibodies in children with T1D. Methods Children with T1D following in diabetic clinic in our center were screened for existence of liver related autoantibodies from November 2010 to November 2011. The patients’ sera were analyzed for the existence of autoantibodies such as anti-nuclear antibody, anti-smooth muscle antibody, and anti-Liver Kidney microsomal antibody, using enzyme linked immunoassay and indirect immunofluorescence methods. A titer of anti-nuclear antibody ≥1/40 was considered positive and titer of < 1/40 was considered negative. Anti-liver kidney microsomal antibody titer of < 3 U/ml was considered negative, 3 – 5 U/ml borderlines, and > 5 U/ml was considered positive. Results 106 children with T1D have been examined over a one-year period: age ranges between 8 months to 15.5 years, sixty two patients were females. Autoantibody screen revealed a girl with positive anti-liver kidney microsomal antibody (1%) and 8 children had positive anti-nuclear antibody (7.5%), without clinical, biochemical or radiologic evidence of liver disease. None of the patients had positive smooth muscle antibody. In conclusion Anti-liver kidney microsomal antibody is rarely found in sera of children with T1D; the clinical significance of which is unknown. PMID:24636465

  2. Stability of Chimerism in Non-Obese Diabetic Mice Achieved By Rapid T Cell Depletion Is Associated With High Levels of Donor Cells Very Early After Transplant.

    PubMed

    Lin, Jiaxin; Chan, William F N; Boon, Louis; Anderson, Colin C

    2018-01-01

    Stable mixed hematopoietic chimerism is a robust method for inducing donor-specific tolerance with the potential to prevent rejection of donor islets in recipients with autoimmune type-1 diabetes. However, with reduced intensity conditioning, fully allogeneic chimerism in a tolerance resistant autoimmune-prone non-obese diabetic (NOD) recipient has rarely been successful. In this setting, successful multilineage chimerism has required either partial major histocompatability complex matching, mega doses of bone marrow, or conditioning approaches that are not currently clinically feasible. Irradiation free protocols with moderate bone marrow doses have not generated full tolerance; donor skin grafts were rejected. We tested whether more efficient recipient T cell depletion would generate a more robust tolerance. We show that a combination of donor-specific transfusion-cyclophosphamide and multiple T cell depleting antibodies could induce stable high levels of fully allogeneic chimerism in NOD recipients. Less effective T cell depletion was associated with instability of chimerism. Stable chimeras appeared fully donor-specific tolerant, with clonal deletion of allospecific T cells and acceptance of donor skin grafts, while recovering substantial immunocompetence. The loss of chimerism months after transplant was significantly associated with a lower level of chimerism and donor T cells within the first 2 weeks after transplant. Thus, rapid and robust recipient T cell depletion allows for stable high levels of fully allogeneic chimerism and robust donor-specific tolerance in the stringent NOD model while using a clinically feasible protocol. In addition, these findings open the possibility of identifying recipients whose chimerism will later fail, stratifying patients for early intervention.

  3. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yong, E-mail: yongzhao@uic.edu; Guo, Chengshan; Hwang, David

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model inmore » NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.« less

  4. The Gene Expression Profile of CD11c+CD8α− Dendritic Cells in the Pre-Diabetic Pancreas of the NOD Mouse

    PubMed Central

    Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2014-01-01

    Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904

  5. Interleukin 6 -174(G>C) gene polymorphism is related to celiac disease and autoimmune thyroiditis coincidence in diabetes type 1 children.

    PubMed

    Myśliwiec, Małgorzata; Myśliwska, Jolanta; Zorena, Katarzyna; Balcerska, Anna; Malinowska, Ewa; Wiśniewski, Piotr

    2008-10-01

    The aim of the study was to assess the relationship between IL-6 gene polymorphism at -174(G>C) and the coincidence of celiac and autoimmune thyroid diseases with type 1 diabetes mellitus (DM1) in children. 200 children with DM1 aged 13.23+/-3.54 years and 172 healthy controls were analyzed. The IL-6 gene -174(G>C) polymorphism at the promoter region of the gene was analyzed by the PCR-RFLP method. The genotype distribution was significantly different in diabetic children as compared to the healthy controls (p=0.01). In DM1 patients GC heterozygotes were the most common (52.5%), while CC homozygotes accuted for 29% and GG homozygotes only for 18% of cases. In contrast, GG homozygotes were much more frequent among healthy children (31%). Besides, the GG homozygotes were significantly more frequent among diabetic children with celiac disease (p=0.04) in relation to those without autoimmune complications. In children with autoimmune thyroiditis, the distribution of the IL-6 genotypes was similar to that seen in diabetic patients without autoimmune complications (p=0.24). The results of our study suggest that the diabetic children, who have IL-6 gene -174GG genotype may have an increased risk for celiac disease development.

  6. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice

    PubMed Central

    Hanes, William M; Olofsson, Peder S; Kwan, Kevin; Hudson, LaQueta K; Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J

    2015-01-01

    Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic β-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach. PMID:26322849

  7. Serum adiposity-induced biomarkers in obese and lean children with recently diagnosed autoimmune type 1 diabetes.

    PubMed

    Redondo, M J; Rodriguez, L M; Haymond, M W; Hampe, C S; Smith, E O; Balasubramanyam, A; Devaraj, S

    2014-12-01

    Obesity increases the risk of cardiovascular disease and diabetic complications in type 1 diabetes. Adipokines, which regulate obesity-induced inflammation, may contribute to this association. We compared serum adipokines and inflammatory cytokines in obese and lean children with new-onset autoimmune type 1 diabetes. We prospectively studied 32 lean and 18 obese children (age range: 2-18 yr) with new-onset autoimmune type 1 diabetes and followed them for up to 2 yr. Serum adipokines [leptin, total and high molecular weight (HMW) adiponectin, omentin, resistin, chemerin, visfatin], cytokines [interferon (IFN)-gamma, interleukin (IL)-10, IL-12, IL-6, IL-8, and tumor necrosis factor (TNF)-alpha] and C-reactive protein (CRP) were measured at a median of 7 wk after diagnosis (range: 3-16 wk). Lean children were 71.9% non-Hispanic White, 21.9% Hispanic, and 6.3% African-American, compared with 27.8, 55.6, and 16.7%, respectively, for obese children (p = 0.01). Compared with lean children, obese children had significantly higher serum leptin, visfatin, chemerin, TNF-alpha and CRP, and lower total adiponectin and omentin after adjustment for race/ethnicity and Tanner stage. African-American race was independently associated with higher leptin among youth ≥10 yr (p = 0.007). Leptin levels at onset positively correlated with hemoglobin A1c after 1-2 yr (p = 0.0001) independently of body mass index, race/ethnicity, and diabetes duration. Higher TNF-alpha was associated with obesity and female gender, after adjustment for race/ethnicity (p = 0.0003). Obese children with new-onset autoimmune type 1 diabetes have a proinflammatory profile of circulating adipokines and cytokines that may contribute to the development of cardiovascular disease and diabetic complications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Experimental transmission of systemic AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice.

    PubMed

    Maeda, Mayuko; Murakami, Tomoaki; Muhammad, Naeem; Inoshima, Yasuo; Ishiguro, Naotaka

    2016-11-01

    AA amyloidosis is a protein misfolding disease characterized by extracellular deposition of amyloid A (AA) fibrils. AA amyloidosis has been identified in food animals, and it has been postulated that AA amyloidosis may be transmissible to different animal species. Since the precursor protein of AA fibrils is serum amyloid A (SAA), which is an inflammatory acute phase protein, AA amyloidosis is considered to be associated with inflammatory diseases such as rheumatoid arthritis. Chronic diseases such as autoimmune disease and type 2 diabetes mellitus could be potential factors for AA amyloidosis. In this study, to examine the relationship between the induction of AA amyloidosis and chromic abnormalities such as autoimmune disease or type 2 diabetes mellitus, amyloid fibrils from mice, cattle, or chickens were experimentally injected into disease model mice. Wild-type mice were used as controls. The concentrations of SAA, IL-6, and IL-10 in autoimmune disease model mice were higher than those of control mice. However, induction of AA amyloidosis in autoimmune disease and type 2 diabetes mellitus model mice was lower than that in control mice, and the amount of amyloid deposits in the spleens of both mouse models was lower than that of control mice according to Congo red staining and immunohistochemistry. These results suggest that factors other than SAA levels, such as an inflammatory or anti-inflammatory environment in the immune response, may be involved in amyloid deposition.

  9. Racial and ethnic differences among children with new-onset autoimmune Type 1 diabetes.

    PubMed

    Gandhi, K; Tosur, M; Schaub, R; Haymond, M W; Redondo, M J

    2017-10-01

    To compare demographic and clinical characteristics among children from ethnic minorities and non-Hispanic white children with new-onset autoimmune Type 1 diabetes. We analysed a single-centre series of 712 children with new-onset autoimmune Type 1 diabetes between January 2008 and March 2011. The median (range) age was 9.7 (0.3-18.1) years, the mean (sd) BMI percentile was 69.7 (25.4) and 48.3% of the cohort were girls. The cohort comprised 57.3% non-Hispanic white, 20.5% Hispanic and 14.8% African-American children, and 7.4% were of other, mixed or unknown race. The Hispanic subgroup, compared with non-Hispanic white subgroup, had a higher mean (sd) C-peptide level [0.82 (1.62) vs 0.55 (0.47) ng/ml; P=0.004), and a greater proportion of children with elevated BMI (overweight or obesity; 49.6% vs 32.5%; P<0.001) and diabetic ketoacidosis (51.8% vs 38.2%; P=0.006). The African-American group had a higher mean (sd) glucose level [24.4 (12.8) vs 21.4 (10.7) mmol/l; P=0.017], a greater proportion of children with ketoacidosis (56.7% vs 38.2%; P=0.001), a greater proportion with elevated BMI (52.9% vs 32.5%; P<0.001), and a lower proportion of children at pre-pubertal stage (49.0% vs 61.6%; P=0.01), and tended to have higher C-peptide levels [0.65 (0.59) vs 0.55 [0.47] ng/ml; P=0.079) compared with the non-Hispanic white children. The differences in C-peptide levels compared with non-Hispanic white children persisted for Hispanic (P=0.01) but not African-American children (P=0.29) after adjustment for age, sex, BMI, ketoacidosis, glucose, Tanner stage and autoantibody number. At the onset of paediatric autoimmune Type 1 diabetes, Hispanic, but not African-American children had higher C-peptide levels, after adjustment for potential confounders, compared with non-Hispanic white children. These findings suggest that ethnicity may contribute to the heterogeneity of Type 1 diabetes pathogenesis, with possible implications for intervention. © 2017 Diabetes UK.

  10. Anti-PD-L1 atezolizumab-Induced Autoimmune Diabetes: a Case Report and Review of the Literature.

    PubMed

    Hickmott, Laura; De La Peña, Hugo; Turner, Helen; Ahmed, Fathelrahman; Protheroe, Andrew; Grossman, Ashley; Gupta, Avinash

    2017-04-01

    Programmed cell death-1 and programmed death ligand 1 (PD-1/PD-L1) inhibitors trigger an immune-mediated anti-tumour response by promoting the activation of cytotoxic T lymphocytes. Although proven to be highly effective in the treatment of several malignancies they can induce significant immune-related adverse events (irAEs) including endocrinopathies, most commonly hypophysitis and thyroid dysfunction, and rarely autoimmune diabetes. Here we present the first case report of a patient with a primary diagnosis of urothelial cancer developing PD-L1 inhibitor-induced autoimmune diabetes. A euglycemic 57 year old male presented to clinic with dehydration after the fifth cycle of treatment with the novel PD-L1 inhibitor atezolizumab. Blood tests demonstrated rapid onset hyperglycaemia (BM 24 mmol/L), ketosis and a low C-peptide level (0.65 ng/mL) confirming the diagnosis of type 1 diabetes. He responded well to insulin therapy and was discharged with stable blood glucose levels. Due to the widening use of PD-1/PD-L1 inhibitors in cancer treatment clinicians need to be aware of this rare yet treatable irAE. Given the morbidity and mortality associated with undiagnosed autoimmune diabetes we recommend routine HbA1c and plasma glucose testing in all patients prior to and during treatment with PD-1/PD-L1 inhibitors until more evidence has accumulated on identifying those patients with a pre-treatment risk of such irAEs.

  11. [Prevalence of autoimmune diseases and microangiopathy in children with diabetes type 1 over the years 2000-2010].

    PubMed

    Głowińska-Olszewska, Barbara; Ordowska, Urszula; Golonko, Magdalena; Tobiaszewska, Monika; Florys, Bożena; Jabłońska, Jolanta; Otocka, Agnieszka; Łuczyński, Włodzimierz; Zasim, Aneta; Jakubowska, Ewa; Michalak, Justyna; Bossowski, Artur

    2013-01-01

    In the past decade the number of patients with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII) has increased rapidly. Treatment of the disease is focused on proper physical development and the prevention of complications. Aim of the study was to analyze changes in the treatment and clinical picture of type 1 diabetes in children over the years 2000 to 2010 with particular emphasis on the presence of autoimmune diseases and microangiopathy. The study included 567 children diagnosed with type 1 diabetes under the care of outpatient diabetes clinic. We compared 251 children, diabetes outpatient clinic patients in 2000, with 316 children in 2010. Data were obtained from the outpatient and hospital records. We compared baseline demographic, anthropometric data, treatment regimen, type of insulin, metabolic control, prevalence of autoimmune diseases and microangipathy. In 2010 there was a reduction in the age of diagnosis of diabetes from 10 to 8 years (p=0.039). Significantly increased the proportion of children treated with CSII (up to 60.1%) and decreased the percentage of children using conventional insulin for the benefit of insulin analogs. The increase in HbA1c from 7.4 to 8.0% (p<0.001) has been shown and increase in proportion of patients with HbA1c >7.5% in 2010. The percentage of children with obesity increased from 5.2 to 13.7% (p=0.004) and there was a significant increase in SDS-BMI. The percentage of children with autoimmune diseases such as celiac (from 0,4 to 7,3%, p<0,001) and thyroid (from 6.9 to 21.3%, p<0.001) has increased. The incidence of retinopathy decreased from 6 to 1% (p=0.04), and albuminuria decreased insignificantly. Over the last decade, a significant change in the method of treatment in children diagnosed with type 1 diabetes has occurred. The deterioration of metabolic control, despite the frequent use in the treatment of CSII, may be due to increased frequency of obesity and additional autoimmune diseases

  12. Prophylactic fenbendazole therapy does not affect the incidence and onset of type 1 diabetes in non-obese diabetic mice.

    PubMed

    Franke, Deanna D H; Shirwan, Haval

    2006-03-01

    Fenbendazole (FBZ) is a common, highly efficacious broad-spectrum anthelmintic drug used to treat and limit rodent pinworm infections. However, the effect of its prophylactic use on the immune response of rodents is largely undefined. The non-obese diabetic (NOD) mouse is a model commonly used to study type 1 diabetes (T1D). Parasitic infections will inhibit diabetes development in NOD mice; thus, in the presence of contamination, prophylactic treatment with anthelmintics must be considered to maintain experimental research. Herein, we investigated the prophylactic use of FBZ in NOD mice to determine its effect on the incidence and onset of diabetes, lymphocyte sub-populations and T cell proliferative responses. NOD mice were separated into control and treatment groups. The treatment group received a diet containing FBZ. Animals were monitored for the incidence and onset of T1D. At matched time points, diabetic and non-diabetic mice were killed and splenic lymphocytes analyzed for various cell sub-populations and mitogen-induced proliferative responses using flow cytometry. Treated and control mice were monitored >23 weeks with no detectable effects on the incidence or onset of diabetes. Moreover, no significant differences were detected in lymphocyte sub-populations and mitogen-induced CD4(+) and CD8(+) proliferative responses between control and treatment groups. These results suggest that prophylactic FBZ treatment does not significantly alter the incidence or onset of diabetes in NOD mice. The prophylactic use of FBZ, therefore, presents a viable approach for the prevention of pinworm infection in precious experimental animals with substantial scientific and economic benefits.

  13. A novel “humanized mouse” model for autoimmune hepatitis and the association of gut microbiota with liver inflammation

    PubMed Central

    Yuksel, Muhammed; Wang, Yipeng; Tai, Ningwen; Peng, Jian; Guo, Junhua; Beland, Kathie; Lapierre, Pascal; David, Chella; Alvarez, Fernando; Colle, Isabelle; Yan, Huiping; Mieli-Vergani, Giorgina; Vergani, Diego; Ma, Yun; Wen, Li

    2016-01-01

    Background Autoimmune hepatitis (AIH) in humans is a severe inflammatory liver disease, characterized by interface hepatitis, the presence of circulating autoantibodies and hyper-gammaglobulinemia. There are two types of AIH, type-1 (AIH-1) and type-2 (AIH-2) characterized by distinct autoimmune serology. Patients with AIH-1 are positive for anti-smooth muscle and/or anti-nuclear (SMA/ANA) autoantibodies whereas patients with AIH-2 have anti-liver kidney microsomal type 1 (anti-LKM1) and/or anti-liver cytosol type 1 (anti-LC1) autoantibodies. Cytochrome P4502D6 (CYP2D6) is the antigenic target of anti-LKM1 and formiminotransferase cyclodeaminase (FTCD) is the antigenic target of anti-LC1. It is known that AIH, both type-1 and type-2, is strongly linked to the Human Leukocyte Antigen (HLA) alleles -DR3, -DR4 and -DR7. However, the direct evidence of the association of HLA with AIH is lacking. Methods We developed a novel mouse model of AIH using the HLA-DR3 transgenic mouse on the non-obese diabetic (NOD) background (HLA-DR3 NOD) by immunization of HLA-DR3− and HLA-DR3+ NOD mice with a DNA plasmid, coding for human CYP2D6/FTCD fusion protein. Results Immunization with CYP2D6/FTCD leads to a sustained elevation of alanine aminotransferase (ALT), development of ANA and anti-LKM1/anti-LC1 autoantibodies, chronic immune cell infiltration and parenchymal fibrosis on liver histology in HLA-DR3+ mice. Immunized mice also showed an enhanced Th1 immune response and paucity of the frequency of regulatory T-cell (Treg) in the liver. Moreover, HLA-DR3+ mice with exacerbated AIH showed reduced diversity and total load of gut bacteria. Conclusion Our humanized animal model has provided a novel experimental tool to further elucidate the pathogenesis of AIH and to evaluate the efficacy and safety of immunoregulatory therapeutic interventions in vivo. PMID:26185095

  14. Immunologic "vaccination" for the prevention of autoimmune diabetes (type 1A).

    PubMed

    Simone, E A; Wegmann, D R; Eisenbarth, G S

    1999-03-01

    Diabetes type 1A is an autoimmune condition characterized by lymphocytic infiltration of islets and selective destruction of insulin-secreting beta-cells. Numerous investigators have prevented diabetes in animal models with a variety of antigens and routes of administration. It is also now possible to identify high-risk individuals even before the appearance of autoantibodies. These advances have created the opportunity to design and begin human prevention trials. This review focuses on a variety of immunomodulatory approaches (including administration of adjuvants, autoantigens, T-cells, T-cell receptors, and DNA) that we have collectively termed immunologic "vaccination." In addition, we discuss the potential benefits and dangers of these approaches and issues relating to the design of human trials.

  15. Chronic Pelvic Pain Development and Prostate Inflammation in Strains of Mice With Different Susceptibility to Experimental Autoimmune Prostatitis.

    PubMed

    Breser, Maria L; Motrich, Ruben D; Sanchez, Leonardo R; Rivero, Virginia E

    2017-01-01

    Experimental autoimmune prostatitis (EAP) is an autoimmune inflammatory disease of the prostate characterized by peripheral prostate-specific autoimmune responses associated with prostate inflammation. EAP is induced in rodents upon immunization with prostate antigens (PAg) plus adjuvants and shares important clinical and immunological features with the human disease chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). EAP was induced in young NOD, C57BL/6, and BALB/c male mice by immunization with PAg plus complete Freund́s adjuvant. Tactile allodynia was assessed using Von Frey fibers as a measure of pelvic pain at baseline and at different time points after immunization. Using conventional histology, immunohistochemistry, FACS analysis, and protein arrays, an interstrain comparative study of prostate cell infiltration and inflammation was performed. Chronic pelvic pain development was similar between immunized NOD and C57BL/6 mice, although the severity of leukocyte infiltration was greater in the first case. Coversely, minimal prostate cell infiltration was observed in immunized BALB/c mice, who showed no pelvic pain development. Increased numbers of mast cells, mostly degranulated, were detected in prostate samples from NOD and C57BL/6 mice, while lower total counts and resting were observed in BALB/c mice. Prostate tissue from NOD mice revealed markedly increased expression levels of inflammatory cytokines, chemokines, adhesion molecules, vascular endothelial growth factor, and metalloproteinases. Similar results, but to a lesser extent, were observed when analyzing prostate tissue from C57BL/6 mice. On the contrary, the expression of the above mediators was very low in prostate tissue from immunized BALB/c mice, showing significantly slight increments only for CXCL1 and IL4. Our results provide new evidence indicating that NOD, C57BL/6, and BALB/c mice develop different degrees of chronic pelvic pain, type, and amount of prostate cell infiltration

  16. Age-related alterations in IL-1beta, TNF-alpha, and IL-6 concentrations in parotid acinar cells from BALB/c and non-obese diabetic mice.

    PubMed

    Yamakawa, M; Weinstein, R; Tsuji, T; McBride, J; Wong, D T; Login, G R

    2000-08-01

    IL-1beta, TNF-alpha, and IL-6 have been implicated in the destruction of parotid gland acinar cells (but not duct cells) in autoimmune sialoadenitis. Here we report the temporal alterations of these cytokines in parotid acinar cells that may lead to this specificity in cell death in the non-obese diabetic (NOD) mouse model for Sjögren's syndrome. Immunohistochemistry on paraffin sections of parotid gland from 5- and 10-week-old BALB/c and NOD mice confirmed the presence of many peri-acinar lymphoid nodules but few T-cells and macrophages between acinar cells. RT-PCR on enzymatically dispersed mouse parotid acinar cells (MPACs) showed no bands for CD3varepsilon, CD20, or F4/80 regardless of mouse strain or age. By ELISA, MPACs from 10-week-old NODs showed a small but highly significant (p<0.003) increase in IL-1beta and a large significant decrease (p<0.008) in IL-6 compared to 5-week-old NODs. Norepinephrine-stimulated amylase release from MPACs was not different regardless of mouse strain or age. These data show that alterations in acinar cell production of IL-1beta and IL-6 in aging NODs precede periductal lymphoid aggregates and acinar cell secretory dysfunction. (J Histochem Cytochem 48:1033-1041,2000)

  17. Regulatory CD8{sup +} T cells induced by exposure to all-trans retinoic acid and TGF-{beta} suppress autoimmune diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishi, Minoru; Yasuda, Hisafumi, E-mail: yasuda@med.kobe-u.ac.jp; Abe, Yasuhisa

    Antigen-specific regulatory CD4{sup +} T cells have been described but there are few reports on regulatory CD8{sup +} T cells. We generated islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific regulatory CD8{sup +} T cells from 8.3-NOD transgenic mice. CD8{sup +} T cells from 8.3-NOD splenocytes were cultured with IGRP, splenic dendritic cells (SpDCs), TGF-{beta}, and all-trans retinoic acid (ATRA) for 5 days. CD8{sup +} T cells cultured with either IGRP alone or IGRP and SpDCs in the absence of TGF-{beta} and ATRA had low Foxp3{sup +} expression (1.7 {+-} 0.9% and 3.2 {+-} 4.5%, respectively). In contrast, CD8{sup +} T cellsmore » induced by exposure to IGRP, SpDCs, TGF-{beta}, and ATRA showed the highest expression of Foxp3{sup +} in IGRP-reactive CD8{sup +} T cells (36.1 {+-} 10.6%), which was approximately 40-fold increase compared with that before induction culture. CD25 expression on CD8{sup +} T cells cultured with IGRP, SpDCs, TGF-{beta}, and ATRA was only 7.42%, whereas CD103 expression was greater than 90%. These CD8{sup +} T cells suppressed the proliferation of diabetogenic CD8{sup +} T cells from 8.3-NOD splenocytes in vitro and completely prevented diabetes onset in NOD-scid mice in cotransfer experiments with diabetogenic splenocytes from NOD mice in vivo. Here we show that exposure to ATRA and TGF-{beta} induces CD8{sup +}Foxp3{sup +} T cells ex vivo, which suppress diabetogenic T cells in vitro and in vivo.« less

  18. CP-25 Alleviates Experimental Sjögren's Syndrome Features in NOD/Ltj Mice and Modulates T Lymphocyte Subsets.

    PubMed

    Gu, Fang; Xu, Shixia; Zhang, Pengying; Chen, Xiaoyun; Wu, Yujing; Wang, Chun; Gao, Mei; Si, Min; Wang, Xinming; Heinrich, Korner; Wu, Huaxun; Wei, Wei

    2018-04-17

    Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune illness of the moisture-producing glands such as salivary glands that is characterized by various immune abnormalities. The aetiology of pSS remains unclear and there is no curative agent. In this study, we investigated the putative therapeutic effects on a NOD/Ltj mouse model of Sjögren's syndrome-like disorders of an ester derivative of paeoniflorin, paeoniflorin-6'O-benzene (termed CP-25). Our study showed that CP-25 alleviated effectively clinical manifestations in NOD/Ltj mice resulting, for example, in increased salivary flow and reduced histopathological scores. Furthermore, CP-25 decreased lymphocyte viability in NOD/Ltj mice and attenuated the infiltration of Th1 cells and Th2 cells into the salivary glands of NOD/Ltj mice. In the spleen on NOD/Ltj mice, CP-25 skewed the ratio of Th17 and regulatory T cells towards regulatory T cells. After treatment, concentrations of anti-La/SSB and IgG antibodies were reduced and the titre of the inflammatory cytokines IFN-γ, IL-4, IL-6 and IL-17A in the serum on NOD/Ltj mice was alleviated. Thus, we define CP-25 as a novel compound that is a potent therapeutic agent for pSS by modulating T lymphocyte subsets. Future studies will validate the use of CP-25 as a therapeutic strategy for the treatment of pSS. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  19. Autoimmune diseases in asthma.

    PubMed

    Tirosh, Amir; Mandel, Dror; Mimouni, Francis B; Zimlichman, Eyal; Shochat, Tzippora; Kochba, Ilan

    2006-06-20

    Previous research has suggested an inverse relationship between T-helper 2-related atopic disorders, such as asthma, and T-helper 1-related autoimmune diseases. One controversial hypothesis postulates that asthma provides a protective effect for the development of autoimmune-related disorders. To assess the rate of newly diagnosed autoimmune disorders in a large cohort of young adults. Using cross-sectional data from the Israeli Defense Force database, the authors analyzed the prevalence of autoimmune disorders in asthmatic and nonasthmatic military personnel between 1980 and 2003. A follow-up study traced newly diagnosed autoimmune disorders among asthmatic and nonasthmatic individuals from the time of enrollment in military service until discharge (22 and 36 months for women and men, respectively). General community. 307,367 male and 181,474 female soldiers in compulsory military service who were between 18 and 21 years of age. Cases of type 1 diabetes mellitus, vasculitis, immune thrombocytopenic purpura, inflammatory bowel disease, rheumatoid arthritis, and the antiphospholipid syndrome. Of 488,841 participants at enrollment, significantly more women than men had autoimmune disorders. Compared with asthmatic women, nonasthmatic women had a significantly higher prevalence of all autoimmune disorders except for the antiphospholipid syndrome. Type 1 diabetes mellitus, vasculitis, and rheumatoid arthritis were less prevalent in men with asthma than in those without. During the follow-up period, vasculitis and rheumatoid arthritis were more frequently diagnosed in nonasthmatic persons of both sexes. There was a significantly higher incidence of immune thrombocytopenic purpura, inflammatory bowel disease, and the antiphospholipid syndrome in nonasthmatic women and a statistically significantly higher incidence of type 1 diabetes mellitus in nonasthmatic men. The study was limited to a population of young military recruits; therefore, its findings are not necessarily

  20. Development of Type 1 Diabetes Mellitus in Nonobese Diabetic Mice Follows Changes in Thymocyte and Peripheral T Lymphocyte Transcriptional Activity

    PubMed Central

    Fornari, Thais A.; Donate, Paula B.; Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.

    2011-01-01

    As early as one month of age, nonobese diabetic (NOD) mice feature pancreatic infiltration of autoreactive T lymphocytes, which destruct insulin-producing beta cells, producing autoimmune diabetes mellitus (T1D) within eight months. Thus, we hypothesized that during the development of T1D, the transcriptional modulation of immune reactivity genes may occur as thymocytes mature into peripheral T lymphocytes. The transcriptome of thymocytes and peripheral CD3+ T lymphocytes from prediabetic or diabetic mice analyzed through microarray hybridizations identified 2,771 differentially expressed genes. Hierarchical clustering grouped mice according to age/T1D onset and genes according to their transcription profiling. The transcriptional activity of thymocytes developing into peripheral T lymphocytes revealed sequential participation of genes involved with CD4+/CD8+ T-cell differentiation (Themis), tolerance induction by Tregs (Foxp3), and apoptosis (Fasl) soon after T-cell activation (IL4), while the emergence of T1D coincided with the expression of cytotoxicity (Crtam) and inflammatory response genes (Tlr) by peripheral T lymphocytes. PMID:21765850

  1. Clostridium butyricum CGMCC0313.1 Protects against Autoimmune Diabetes by Modulating Intestinal Immune Homeostasis and Inducing Pancreatic Regulatory T Cells.

    PubMed

    Jia, Lingling; Shan, Kai; Pan, Li-Long; Feng, Ninghan; Lv, Zhuwu; Sun, Yajun; Li, Jiahong; Wu, Chengfei; Zhang, Hao; Chen, Wei; Diana, Julien; Sun, Jia; Chen, Yong Q

    2017-01-01

    Recent evidence indicates that indigenous Clostridium species induce colonic regulatory T cells (Tregs), and gut lymphocytes are able to migrate to pancreatic islets in an inflammatory environment. Thus, we speculate that supplementation with the well-characterized probiotics Clostridium butyricum CGMCC0313.1 (CB0313.1) may induce pancreatic Tregs and consequently inhibit the diabetes incidence in non-obese diabetic (NOD) mice. CB0313.1 was administered daily to female NOD mice from 3 to 45 weeks of age. The control group received an equal volume of sterile water. Fasting glucose was measured twice a week. Pyrosequencing of the gut microbiota and flow cytometry of mesenteric lymph node (MLN), pancreatic lymph node (PLN), pancreatic and splenic immune cells were performed to investigate the effect of CB0313.1 treatment. Early oral administration of CB0313.1 mitigated insulitis, delayed the onset of diabetes, and improved energy metabolic dysfunction. Protection may involve increased Tregs, rebalanced Th1/Th2/Th17 cells and changes to a less proinflammatory immunological milieu in the gut, PLN, and pancreas. An increase of α4β7 + (the gut homing receptor) Tregs in the PLN suggests that the mechanism may involve increased migration of gut-primed Tregs to the pancreas. Furthermore, 16S rRNA gene sequencing revealed that CB0313.1 enhanced the Firmicutes/Bacteroidetes ratio, enriched Clostridium -subgroups and butyrate-producing bacteria subgroups. Our results provide the basis for future clinical investigations in preventing type 1 diabetes by oral CB0313.1 administration.

  2. Expression of immunoregulatory molecules by thyrocytes protects nonobese diabetic-H2h4 mice from developing autoimmune thyroiditis.

    PubMed

    Nakahara, Mami; Nagayama, Yuji; Saitoh, Ohki; Sogawa, Rintaro; Tone, Shigenobu; Abiru, Norio

    2009-03-01

    One approach to prevent tissue destruction by autoimmune attack in organ-specific autoimmune diseases is to protect the target tissue from autoimmune reaction, regardless of its persistent activity. To provide proof-of-principle for the feasibility of this approach, the immunoregulatory molecules, TNF-related apoptosis-inducing ligand (TRAIL) and indoleamine 2, 3-dioxygenase, were expressed in the thyroid glands using adenovirus vector in nonobese diabetic-H2(h4) mice that spontaneously develop thyroiditis. Mice were anesthetized, and the thyroid glands were exposed by neck dissection, followed by in situ infection with adenovirus vector (5 x 10(10) particles per mouse) twice or thrice, starting 1 d or 4 wk before mice were supplied with sodium iodine (NaI) water. After 8 wk NaI provision, the extent of thyroiditis, serum titers of antithyroglobulin antibodies, and cytokine expression in the spleen were examined. In situ infection of adenovirus expressing TRAIL or indoleamine 2, 3-dioxygenase, but not green fluorescent protein, significantly suppressed thyroiditis scores. However, antithyroglobulin antibody titers and expression levels of cytokines (interferon-gamma and IL-4) in the spleen remained unaltered. Importantly, adenovirus infection 4 wk after NaI provision was also effective at suppressing thyroiditis. The suppressive effect of TRAIL appears to be mediated at least partly by accumulation of CD4(+)Foxp3(+) regulatory T cells into the thyroid glands. Thus, localized expression of immunoregulatory molecules efficiently protected the thyroid glands from autoimmune attack without changing the systemic autoimmunity in nonobese diabetic-H2(h4) mice. This kind of immunological intervention, although it does not suppress autoimmune reactivity, may have a potential for treating organ-specific autoimmune diseases.

  3. Role of the gastrointestinal ecosystem in the development of Type 1 Diabetes

    PubMed Central

    Daft, Joseph G.; Lorenz, Robin G.

    2015-01-01

    A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared to healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation. PMID:25952017

  4. Ubiquitin Regulates Caspase Recruitment Domain-mediated Signaling by Nucleotide-binding Oligomerization Domain-containing Proteins NOD1 and NOD2*

    PubMed Central

    Ver Heul, Aaron M.; Fowler, C. Andrew; Ramaswamy, S.; Piper, Robert C.

    2013-01-01

    NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2. PMID:23300079

  5. Thyroid function and autoimmunity in children and adolescents with Type 1 Diabetes Mellitus.

    PubMed

    Riquetto, Aline Dantas Costa; de Noronha, Renata Maria; Matsuo, Eliza Mayumi; Ishida, Edson Jun; Vaidergorn, Rafael Eliahu; Soares Filho, Marcelo Dias; Calliari, Luis Eduardo Procópio

    2015-10-01

    We evaluated 233 children and adolescents with T1 Diabetes to analyze the prevalence and characteristics of Autoimmune Thyroid Disease. AITD was found in 23%, the majority being female and patients older than 5 years of age. Screening is mandatory, and the best approach could be guided by gender and age. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Autoimmune Diabetes Associated With Pembrolizumab: A Review of Published Case Reports.

    PubMed

    Cheema, Anmol; Makadia, Bhaktidevi; Karwadia, Tejas; Bajwa, Ravneet; Hossain, Mohammad

    2018-02-01

    The utility of immunotherapy, such as pembrolizumab, is becoming essential in the treatment of certain cancers. Pembrolizumab works through binding of programmed cell death 1 receptor that blocks the binding of the programmed cell death ligand 1 and is commonly used in non-small cell lung cancer and melanoma. Pembrolizumab has been reported to be associated with multiple adverse reactions such as pneumonitis, colitis, hepatitis, hypophysitis, hyperthyroidism, hypothyroidism, nephritis, and type 1 diabetes; however, pembrolizumab causing type 1 diabetes was only reported in 0.1% of the patients in clinical trials. A review of the literature generated 1,001 unique citations of which six reported cases of autoimmune diabetes associated with pembrolizumab were selected and compared. Review of the cases showed no sexual predilection and the average age of onset was 58 years old. The majority of the patients were treated for melanoma (5/6 cases), initially presented with diabetic ketoacidosis (4/6 cases), and had at one point taken ipilimumab (4/6 cases). There was no association found between the number of treatments received and the development of diabetes. With the increasing use of pembrolizumab in cancer treatment regular blood glucose monitoring during treatment, especially in patients who had also taken ipilimumab, may prevent the onset of this life-threatening complication.

  7. Autoimmune Diabetes Associated With Pembrolizumab: A Review of Published Case Reports

    PubMed Central

    Cheema, Anmol; Makadia, Bhaktidevi; Karwadia, Tejas; Bajwa, Ravneet; Hossain, Mohammad

    2018-01-01

    The utility of immunotherapy, such as pembrolizumab, is becoming essential in the treatment of certain cancers. Pembrolizumab works through binding of programmed cell death 1 receptor that blocks the binding of the programmed cell death ligand 1 and is commonly used in non-small cell lung cancer and melanoma. Pembrolizumab has been reported to be associated with multiple adverse reactions such as pneumonitis, colitis, hepatitis, hypophysitis, hyperthyroidism, hypothyroidism, nephritis, and type 1 diabetes; however, pembrolizumab causing type 1 diabetes was only reported in 0.1% of the patients in clinical trials. A review of the literature generated 1,001 unique citations of which six reported cases of autoimmune diabetes associated with pembrolizumab were selected and compared. Review of the cases showed no sexual predilection and the average age of onset was 58 years old. The majority of the patients were treated for melanoma (5/6 cases), initially presented with diabetic ketoacidosis (4/6 cases), and had at one point taken ipilimumab (4/6 cases). There was no association found between the number of treatments received and the development of diabetes. With the increasing use of pembrolizumab in cancer treatment regular blood glucose monitoring during treatment, especially in patients who had also taken ipilimumab, may prevent the onset of this life-threatening complication. PMID:29581809

  8. Resistin increases the expression of NOD2 in mouse monocytes.

    PubMed

    Ren, Yi; Wan, Taomei; Zuo, Zhicai; Cui, Hengmin; Peng, Xi; Fang, Jing; Deng, Junliang; Hu, Yanchun; Yu, Shuming; Shen, Liuhong; Ma, Xiaoping; Wang, Ya; Ren, Zhihua

    2017-05-01

    Previous studies have indicated that resistin, a type of adipokine, contributes to the development of insulin resistance and type 2 diabetes mellitus, and mediates inflammatory reactions. However, a specific receptor for resistin has not yet been identified. In this study, the relationship between resistin and nucleotide-binding oligomerization domain-like receptors, as well as resistin signal transduction, was examined through transfection, quantitative polymerase chain reaction, western blot analysis and ELISA. The mRNA expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD2), a key immune receptor related to insulin resistance, was significantly increased by resistin treatment at concentrations of 100, 150 and 200 ng/ml (P<0.05, P<0.01 and P<0.01, respectively). The mRNA expression of downstream signaling molecules in the NOD2 signaling pathway, receptor-interacting serine/threonine-protein kinase 2 (RIP2; P<0.01 at 6, 12 and 24 h) and inhibitor of NF-κB kinase subunit beta (P<0.01 at 3, 6, 12 and 24 h) were significantly increased by resistin treatment compared with the control. The mRNA expression of key proinflammatory cytokines, tumor necrosis factor α, IL (interleukin)-6 and IL-1β, were also significantly increased by resistin treatment compared with the control (P<0.01). NOD2 knockdown by small interfering RNA (siRNA) significantly decreased the expression of NOD2 and RIP2 (P<0.01), and there was no significant increase in the levels of cytokines, as compared with treatment with control siRNA. These findings indicate that the inflammatory reaction induced by resistin involves the NOD2-nuclear factor (NF)-κB signaling pathway. The inhibition of NF-κB significantly decreased the secretion of key inflammatory cytokines (P<0.01), suggesting that NF-κB signaling mechanisms are essential to the resistin-induced inflammatory response.

  9. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18.

    PubMed

    Dacou-Voutetakis, C; Sertedaki, A; Maniatis-Christidis, M; Sarri, C; Karadima, G; Petersen, M B; Xaidara, A; Kanariou, M; Nicolaidou, P

    1999-02-01

    A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimmune process by itself or in concert with other IDDM loci.

  10. Role of major histocompatibility complex class II in the development of autoimmune type 1 diabetes and thyroiditis in rats

    PubMed Central

    Yokoi, N; Hidaka, S; Tanabe, S; Ohya, M; Ishima, M; Takagi, Y; Masui, N; Seino, S

    2012-01-01

    Although the MHC class II ‘u' haplotype is strongly associated with type 1 diabetes (T1D) in rats, the role of MHC class II in the development of tissue-specific autoimmune diseases including T1D and autoimmune thyroiditis remains unclear. To clarify this, we produced a congenic strain carrying MHC class II ‘a' and ‘u' haplotypes on the Komeda diabetes-prone (KDP) genetic background. The u/u homozygous animals developed T1D similar to the original KDP rat; a/u heterozygous animals did develop T1D but with delayed onset and low frequency. In contrast, none of the a/a homozygous animals developed T1D; about half of the animals with a/u heterozygous or a/a homozygous genotypes showed autoimmune thyroiditis. To investigate the role of genetic background in the development of thyroiditis, we also produced a congenic strain carrying Cblb mutation of the KDP rat on the PVG.R23 genetic background (MHC class II ‘a' haplotype). The congenic rats with homozygous Cblb mutation showed autoimmune thyroiditis without T1D and slight to severe alopecia, a clinical symptom of hypothyroidism such as Hashimoto's thyroiditis. These data indicate that MHC class II is involved in the tissue-specific development of autoimmune diseases, including T1D and thyroiditis. PMID:21918539

  11. Ethnic differences in progression of islet autoimmunity and type 1 diabetes in relatives at risk.

    PubMed

    Tosur, Mustafa; Geyer, Susan M; Rodriguez, Henry; Libman, Ingrid; Baidal, David A; Redondo, Maria J

    2018-06-21

    We hypothesised that progression of islet autoimmunity and type 1 diabetes mellitus differs among races/ethnicities in at-risk individuals. In this study, we analysed the data from the Type 1 Diabetes TrialNet Pathway to Prevention Study. We studied 4873 non-diabetic, autoantibody-positive relatives of individuals with type 1 diabetes followed prospectively (11% Hispanic, 80.9% non-Hispanic white [NHW], 2.9% non-Hispanic black [NHB] and 5.2% non-Hispanic other [NHO]). Primary outcomes were time from single autoantibody positivity confirmation to multiple autoantibody positivity, and time from multiple autoantibody positivity to type 1 diabetes mellitus diagnosis. Conversion from single to multiple autoantibody positivity was less common in Hispanic individuals than in NHW individuals (HR 0.66 [95% CI 0.46, 0.96], p = 0.028) adjusting for autoantibody type, age, sex, Diabetes Prevention Trial Type 1 Risk Score and HLA-DR3-DQ2/DR4-DQ8 genotype. In participants who screened positive for multiple autoantibodies (n = 2834), time to type 1 diabetes did not differ by race/ethnicity overall (p = 0.91). In children who were <12 years old when multiple autoantibody positivity was determined, being overweight/obese had differential effects by ethnicity: type 1 diabetes risk was increased by 36% in NHW children (HR 1.36 [95% CI 1.04, 1.77], p = 0.024) and was nearly quadrupled in Hispanic children (HR 3.8 [95% CI 1.6, 9.1], p = 0.0026). We did not observe this interaction in participants who were ≥12 years old at determination of autoantibody positivity, although this group size was limited. No significant differential risks were observed between individuals of NHB and NHW ethnicity. The risk and rate of progression of islet autoimmunity were lower in Hispanic compared with NHW at-risk individuals, while significant differences in the development of type 1 diabetes were limited to children <12 years old and were modified by BMI.

  12. Identification of Unique Antigenic Determinants in the Amino Terminus of IA-2 (ICA512) in Childhood and Adult Autoimmune Diabetes: New Biomarker Development.

    PubMed

    Acevedo-Calado, Maria; James, Eddie A; Morran, Michael P; Pietropaolo, Susan L; Ouyang, Qin; Arribas-Layton, David; Songini, Marco; Liguori, Marco; Casu, Anna; Auchus, Richard J; Huang, Shuai; Yu, Liping; Michels, Aaron; Gianani, Roberto; Pietropaolo, Massimo

    2017-04-01

    The characterization of diverse subtypes of diabetes is a dynamic field of clinical research and an active area of discussion. The objective of this study was to identify new antigenic determinants in the neuroendocrine autoantigen IA-2 (ICA512) and assess whether circulating autoantibodies directed to new IA-2 epitopes identify autoimmune diabetes in young and adult populations with diabetes. Clinically diagnosed patients with type 2 diabetes ( n = 258; diabetes duration: 0.01-31 years) were evaluated using a new biomarker detecting autoantibodies directed to the extracellular domain of the neuroendocrine autoantigen IA-2 (IA-2ec). The proportion of IA-2ec autoantibodies was also evaluated in newly diagnosed patients with type 1 diabetes ( n = 150; diabetes duration: 0.04-0.49 years). In addition, IA-2 (intracellular domain), GAD65, and zinc transporter 8 autoantibodies were assayed. IA-2ec autoantibodies were detected in patients with type 1 diabetes and, surprisingly, in 5% of patients with type 2 diabetes without serologic responses to other IA-2 antigenic epitopes or other islet autoantigens. We also assessed the ability of IA-2ec-derived peptides to elicit CD4 + T-cell responses by stimulating peripheral blood mononuclear cells from patients with type 1 diabetes ( n = 18) and HLA-matched healthy subjects ( n = 13) with peptides and staining with the peptide/DQ8-specific tetramers, observing disease-associated responses to previously unreported epitopes within IA-2ec. We developed a new antibody biomarker identifying novel antigenic determinants within the N terminus of IA-2. IA-2ec autoantibodies can be detected in patients with type 1 diabetes and in a subgroup of adult autoimmune patients with type 2 diabetes phenotype negative for conventional islet autoantibody testing. These observations suggest that islet autoimmunity may be more common in clinically diagnosed type 2 diabetes than previously observed. © 2017 by the American Diabetes Association.

  13. Insulin resistance is associated with larger thyroid volume in adults with type 1 diabetes independently from presence of thyroid autoimmunity.

    PubMed

    Rogowicz-Frontczak, Anita; Pilacinski, Stanislaw; Chwialkowska, Anna Teresa; Naskret, Dariusz; Zozulinska-Ziolkiewicz, Dorota

    2018-04-19

    To investigate the effect of insulin resistance (IR) on thyroid function, thyroid autoimmunity (AIT) and thyroid volume in type 1 diabetes (T1DM). 100 consecutive patients with T1DM aged 29 (±6) years with diabetes duration 13 (±6) years were included. Exclusion criteria were: history of thyroid disease, current treatment with L-thyroxin or anti-thyroid drugs. Evaluation of thyroid stimulating hormone (TSH), free thyroid hormones and anti-thyroid antibodies was performed. Thyroid volume was measured by ultrasonography. IR was assessed using the estimated glucose disposal rate (eGDR) formula. In the study group 22% of subjects had insulin resistance defined as eGDR lower or equal to 7.5 mg/kg/min. The prevalence of thyroid autoimmunity (positivity for ATPO or ATg or TRAb) in the study group was 37%. There were no significant differences in the concentration of TSH, FT3, FT4, the prevalence of AIT and hypothyroidism between IR and insulin sensitive (IS) group. Mean (±SD) thyroid volume was 15.6 (±6.2) mL in patients with IR and 11.7 (±4.7) mL in IS subjects (p = .002). Thyroid volume correlated inversely with eGDR (r = -0.35, p < .001). In a multivariate linear regression model the association between thyroid volume and eGDR was independent of sex, age, duration of diabetes, daily insulin dose, BMI, cigarette smoking, TSH value and presence of thyroid autoimmunity (beta: -0.29, p = .012). Insulin resisance is associated with larger thyroid volume in patients with type 1 diabetes independently of sex, body mass index, TSH value and presence of autoimmune thyroid disease.

  14. Autoimmune thyroiditis in children and adolescents with type 1 diabetes mellitus is associated with elevated IgG4 but not with low vitamin D.

    PubMed

    Demir, Korcan; Keskin, Mehmet; Kör, Yilmaz; Karaoğlan, Murat; Bülbül, Özlem Gümüştekin

    2014-01-01

    To assess levels of vitamin D and of immunoglobulin G subclasses in children and adolescents with type 1 Diabetes Mellitus with or without autoimmune thyroiditis. Among 213 patients with type 1 diabetes, the cases with thyroid-specific autoantibodies formed Group 1 [n=19, M/F: 7/12, median age 13 years (10.1-14.7)]. Nineteen age-, gender-, and diabetes duration-matched cases with type 1 diabetes without any other systemic disease were designated as controls [Group 2, M/F: 7/12, median age 12.9 years (10.5-14.9)]. Levels of thyroid hormones, vitamin D, total IgG and IgG subclasses, as well as IgG subclasses/total IgG ratios were similar between the groups. Five cases (26%) in Group 1 had IgG4 levels > + 2 SDS, whereas there were no such cases in Group 2 (p=0.046). These five patients had similar clinical features but higher median IgG4 levels and IgG4/Total IgG ratios compared to the subjects with IgG4 levels < + 2 SDS in Group 1 and Group 2. There was no difference of vitamin D levels between the groups. Only a small percentage of patients with type 1 diabetes also having autoimmune thyroiditis had elevated serum IgG4 levels, revealing the heterogeneity of autoimmune thyroiditis and existence of IgG4 thyroiditis in the pediatric age group. Total IgG, the other IgG subclasses, and vitamin D levels did not differ in patients with autoimmune thyroiditis and type 1 diabetes compared to those suffering only from type 1 diabetes.

  15. The nodC, nodG, and glgX genes of Rhizobium tropici strain PRF 81.

    PubMed

    Oliveira, Luciana Ruano; Marcelino, Francismar Corrêa; Barcellos, Fernando Gomes; Rodrigues, Elisete Pains; Megías, Manuel; Hungria, Mariangela

    2010-08-01

    Rhizobium tropici is a diazotrophic microsymbiont of common bean (Phaseolus vulgaris L.) that encompasses important but still poorly studied tropical strains, and a recent significant contribution to the knowledge of the species was the publication of a genomic draft of strain PRF 81, which revealed several novel genes [Pinto et al. Funct Int Gen 9:263-270, 2009]. In this study, we investigated the transcription of nodC, nodG, and glgX genes, located in the nod operon of PRF 81 strain, by reverse-transcription quantitative PCR. All three genes showed low levels of transcription when the cells were grown until exponential growth phase in the presence of common-bean-seed exudates or of the root nod-gene inducer naringenin. However, when cells at the exponential phase of growth were incubated with seed exudates, transcription occurred after only 5 min, and nodC, nodG, and glgX were transcribed 121.97-, 14.86-, and 50.29-fold more than the control, respectively, followed by a rapid decrease in gene transcription. Much lower levels of transcription were observed in the presence of naringenin; furthermore, maximum transcription required 8 h of incubation for all three genes. In light of these results, the mechanisms of induction of the nodulation genes by flavonoids are discussed.

  16. CCR5-Δ32 gene polymorphism is related to celiac disease and autoimmune thyroiditis coincidence in patients with type 1 diabetes.

    PubMed

    Słomiński, Bartosz; Ławrynowicz, Urszula; Myśliwska, Jolanta; Ryba-Stanisławowska, Monika; Skrzypkowska, Maria; Myśliwiec, Małgorzata; Brandt, Agnieszka

    2017-03-01

    The aim of the study was to assess the relationship between CCR5-Δ32 polymorphism and the coincidence of celiac and autoimmune thyroid diseases with type 1 diabetes mellitus (T1D) in children. 420 children with T1D aged 15.5±3.0years and 350 healthy controls were studied. Characterization of CCR5-Δ32 genotypes (rs333) was analyzed by polymerase chain reaction (PCR). The allele frequency was significantly different in diabetic children as compared to the healthy controls (p<0.0001). We found negative association between T1D and Δ32 allele (OR=0.383; 95% CI=0.268-0.549). Besides, we observed alterations in the frequencies of CCR5-Δ32 genotypes due to celiac and autoimmune thyroid diseases. The risk of celiac disease for patient carriers of the 32-bp deletion was more than threefold higher than for noncarriers (OR=3.490; 95% CI=1.357-8.859; p=0.009). Similar results were obtained in the case of autoimmune thyroiditis. The risk of autoimmune thyroiditis for patient carriers of the 32-bp deletion was also more than threefold higher than for noncarriers (OR=3.466; 95% CI=1.754-6.849; p=0.0004). The findings of our studies suggest that the CCR5-Δ32 polymorphism is associated with type 1 diabetes mellitus and the Δ32 allele increases the risk of celiac disease and autoimmune thyroid disorders in patients with T1D. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Characterization of Diabetogenic CD8+ T Cells

    PubMed Central

    Garyu, Justin W.; Uduman, Mohamed; Stewart, Alex; Rui, Jinxiu; Deng, Songyan; Shenson, Jared; Staron, Matt M.; Kleinstein, Steven H.

    2016-01-01

    Type 1 diabetes mellitus is caused by the killing of insulin-producing β cells by CD8+T cells. The disease progression, which is chronic, does not follow a course like responses to conventional antigens such as viruses, but accelerates as glucose tolerance deteriorates. To identify the unique features of the autoimmune effectors that may explain this behavior, we analyzed diabetogenic CD8+ T cells that recognize a peptide from the diabetes antigen IGRP (NRP-V7-reactive) in prediabetic NOD mice and compared them to others that shared their phenotype (CD44+CD62LloPD-1+CXCR3+) but negative for diabetes antigen tetramers and to LCMV (lymphocytic choriomeningitis)-reactive CD8+ T cells. There was an increase in the frequency of the NRP-V7-reactive cells coinciding with the time of glucose intolerance. The T cells persisted in hyperglycemic NOD mice maintained with an insulin pellet despite destruction of β cells. We compared gene expression in the three groups of cells compared with the other two subsets of cells, and the NRP-V7-reactive cells exhibited gene expression of memory precursor effector cells. They had reduced cellular proliferation and were less dependent on oxidative phosphorylation. When prediabetic NOD mice were treated with 2-deoxyglucose to block aerobic glycolysis, there was a reduction in the diabetes antigen versus other cells of similar phenotype and loss of lymphoid cells infiltrating the islets. In addition, treatment of NOD mice with 2-deoxyglucose resulted in improved β cell granularity. These findings identify a link between metabolic disturbances and autoreactive T cells that promotes development of autoimmune diabetes. PMID:26994137

  18. Glycyrrhizin, a Direct HMGB1 Antagonist, Ameliorates Inflammatory Infiltration in a Model of Autoimmune Thyroiditis via Inhibition of TLR2-HMGB1 Signaling.

    PubMed

    Li, Chenyan; Peng, Shiqiao; Liu, Xin; Han, Cheng; Wang, Xinyi; Jin, Ting; Liu, Shanshan; Wang, Weiwei; Xie, Xiaochen; He, Xue; Zhang, Hanyi; Shan, Ling; Fan, Chenling; Shan, Zhongyan; Teng, Weiping

    2017-05-01

    High mobility group box-1 (HMGB1), a non-histone protein, plays an important role in autoimmune diseases. However, the significance of HMGB1 in the pathogenesis of autoimmune thyroiditis has not been reported. The purpose of this study was to explore whether HMGB1 participates in the pathogenesis of autoimmune thyroiditis, and whether glycyrrhizin (GL), a direct inhibitor of HMGB1, attenuates the severity of thyroid inflammatory infiltration in a murine model of autoimmune thyroiditis. A total of 80 male NOD.H-2 h4 mice were randomly divided into a control or iodine supplement (NaI) group at four weeks of age, and the control group was fed with regular water, whereas the NaI group was supplied with 0.005% sodium iodine water. Another 24 male NOD.H-2 h4 mice were also randomized into three groups (eight mice per group) as follows: control, NaI, and GL treatment after iodine supplementation (NaI + GL). The NOD.H-2 h4 mice were fed with 0.005% sodium iodide water for eight weeks to enhance autoimmune thyroiditis. After iodine treatment, the mice received intraperitoneal injections of GL for four weeks. The severity of lymphocytic infiltration in the thyroid gland was measured by histopathological studies. The serum levels of HMGB1, tumor necrosis factor alpha, interleukin (IL)-6, IL-1β, and thyroglobulin antibody titers were measured using an enzyme-linked immunosorbent assay. HMGB1 expression was measured by immunohistochemical staining and real-time polymerase chain reaction. TLR2, HMGB1, MyD88, and nuclear transcription factor κB were measured by Western blot. The mRNA expression of HMGB1 was significantly higher at 8 and 16 weeks in the NaI group than it was in the control group. Serum levels of thyroglobulin antibodies, HMGB1, tumor necrosis factor alpha, IL-6, and IL-1β were significantly increased in the NaI group, but they were dramatically attenuated with GL injection. The prevalence of thyroiditis and the infiltration of lymphocytes were significantly

  19. Fungal β-glucan, a Dectin-1 ligand, promotes protection from Type 1 Diabetes by inducing regulatory innate immune response1

    PubMed Central

    Karumuthil-Melethil, Subha; Gudi, Radhika; Johnson, Benjamin M.; Perez, Nicolas; Vasu, Chenthamarakshan

    2014-01-01

    Beta-glucans (β-glucans) are naturally occurring polysaccharides in cereal grains, mushrooms, algae, or microbes including bacteria, fungi, and yeast. Immune cells recognize these β-glucans through a cell surface pathogen recognition receptor (PRR) called Dectin-1. Studies using β-glucans and other Dectin-1 binding components have demonstrated the potential of these agents in activating the immune cells for cancer treatment and controlling infections. Here, we show that the β-glucan from Saccharomyces cerevisiae induces the expression of immune regulatory cytokines (IL-10, TGF-β1 and IL-2) and a tolerogenic enzyme (Indoleamine 2, 3-dioxygenase; IDO) in bone marrow derived DCs (BM DCs) as well as spleen cells. These properties can be exploited to modulate autoimmunity in non-obese diabetic (NOD) mouse model of type 1 diabetes (T1D). Treatment of pre-diabetic NOD mice with low dose β-glucan resulted in a profound delay in hyperglycemia and this protection was associated with increase in the frequencies of Foxp3-, LAP-, and GARP-positive T cells. Upon antigen presentation, β-glucan-exposed DCs induced a significant increase in Foxp3− and LAP− positive T cells in in vitro cultures. Further, systemic co-administration of β-glucan plus pancreatic β-cell-Ag resulted in an enhanced protection of NOD mice from T1D as compared to treatment with β-glucan alone. These observations demonstrate that the innate immune response induced by low dose β-glucan is regulatory in nature and can be exploited to modulate T cell response to β-cell-Ag for inducing an effective protection from T1D. PMID:25143443

  20. The association between Helicobacter pylori infection, type 1 diabetes mellitus, and autoimmune thyroiditis.

    PubMed

    Zekry, Osama A; Abd Elwahid, Hassan A

    2013-12-01

    Type 1 diabetes mellitus (T1DM) can be associated with an increased prevalence of Helicobacter pylori infection, which could contribute to the pathogenesis of autoimmune thyroiditis observed in this disease. The aim of this study was to assess the relationship between H. pylori infection and T1DM and to identify of the interconnection between H. pylori infection and autoimmune thyroiditis in patients with T1DM. A case-control design was used. The study group included 60 children and adolescents with T1DM who were selected from the pediatric outpatient clinic of Suez Canal University Hospital by a systematic random sampling method. The control group included 60 healthy children and adolescents matched for age and sex and selected from among relatives (brothers or cousins) of the patients with T1DM. The study participants were subjected to several investigations including estimation of levels of HbA1c, thyroid stimulating hormone (TSH), T3, T4, anti-thyroglobulin (anti-Tg), and anti-thyroid peroxidase (anti-TPO). The mean age of the patients with T1DM was 12.53±2.35 years, whereas that of the control group was 12.30±1.98 years, with no statistically significant difference between the two groups. The patients with diabetes had significantly higher levels of H. pylori IgG, TSH, anti-TPO, and anti-Tg (20.43±14.84  μ/ml, 4.03±1.53 mIu/l, 14.98 ±5.04 Iu/ml, and 5.66±3.37 Iu/ml, respectively) and significantly lower levels of T3 and T4 (120±15.86 μg/dl and 4.93±0.93 μg/dl, respectively) compared with the control group. In addition, the seroprevalence rate of H. pylori, anti-Tg, and anti-TPO was significantly higher in diabetic patients, and the duration of diabetes was significantly longer in H. pylori-positive patients with higher levels of HbA1c, insulin requirement, TSH, anti-TPO, and anti-Tg. The association between H. pylori infection and autoimmune thyroiditis in patients with T1DM was revealed in this study. Hence, screening and treatment of

  1. Predictors of associated autoimmune diseases in families with type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium.

    PubMed

    Wägner, Ana M; Santana, Angelo; Herńndez, Marta; Wiebe, Julia C; Nóvoa, Javier; Mauricio, Dídac

    2011-07-01

    Type 1 diabetes (T1D) is a clinically heterogeneous disease. The presence of associated autoimmune diseases (AAIDs) may represent a distinct form of autoimmune diabetes, with involvement of specific mechanisms. The aim of this study was to find predictors of AAIDs in the Type 1 Diabetes Genetics Consortium data set. Three thousand two hundred and sixty-three families with at least two siblings with T1D were included. Clinical information was obtained using questionnaires, anti-GAD (glutamic acid decarboxylase) and anti-protein tyrosine phosphatase (IA-2) were measured and human leukocyte antigen (HLA) genotyping was performed. Siblings with T1D with and without AAIDs were compared and a multivariate regression analysis was performed to find predictors of AAIDs. T1D-associated HLA haplotypes were defined as the four most susceptible and protective, respectively. One or more AAIDs were present in 14.4% of the T1D affected siblings. Age of diabetes onset, current age and time since diagnosis were higher, there was a female predominance and more family history of AAIDs in the group with AAIDs, as well as more frequent anti-GAD and less frequent anti-IA-2 antibodies. Risk and protective HLA haplotype distributions were similar, though DRB1*0301-DQA1*0501-DQB1*0201 was more frequent in the group with AAIDs. In the multivariate analysis, female gender, age of onset, family history of AAID, time since diagnosis and anti-GAD positivity were significantly associated with AAIDs. In patients with T1D, the presence of AAIDs is associated with female predominance, more frequent family history of AAIDs, later onset of T1D and more anti-GAD antibodies, despite longer duration of the disease. The predominance of certain HLA haplotypes suggests that specific mechanisms of disease may be involved. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine.

    PubMed

    Drescher, Kristen M; von Herrath, Matthias; Tracy, Steven

    2015-01-01

    Enteroviruses and humans have long co-existed. Although recognized in ancient times, poliomyelitis and type 1 diabetes (T1D) were exceptionally rare and not epidemic, due in large part to poor sanitation and personal hygiene which resulted in repeated exposure to fecal-oral transmitted viruses and other infectious agents and viruses and the generation of a broad protective immunity. As a function of a growing acceptance of the benefits of hygienic practices and microbiologically clean(er) water supplies, the likelihood of exposure to diverse infectious agents and viruses declined. The effort to vaccinate against poliomyelitis demonstrated that enteroviral diseases are preventable by vaccination and led to understanding how to successfully attenuate enteroviruses. Type 1 diabetes onset has been convincingly linked to infection by numerous enteroviruses including the group B coxsackieviruses (CVB), while studies of CVB infections in NOD mice have demonstrated not only a clear link between disease onset but an ability to reduce the incidence of T1D as well: CVB infections can suppress naturally occurring autoimmune T1D. We propose here that if we can harness and develop the capacity to use attenuated enteroviral strains to induce regulatory T cell populations in the host through vaccination, then a vaccine could be considered that should function to protect against both autoimmune as well as virus-triggered T1D. Such a vaccine would not only specifically protect from certain enterovirus types but more importantly, also reset the organism's regulatory rheostat making the further development of pathogenic autoimmunity less likely. Copyright © 2014 John Wiley & Sons, Ltd.

  3. High-Throughput Sequencing of Islet-Infiltrating Memory CD4+ T Cells Reveals a Similar Pattern of TCR Vβ Usage in Prediabetic and Diabetic NOD Mice

    PubMed Central

    Marrero, Idania; Hamm, David E.; Davies, Joanna D.

    2013-01-01

    Autoreactive memory CD4+ T cells play a critical role in the development of type 1 diabetes, but it is not yet known how the clonotypic composition and TCRβ repertoire of the memory CD4+ T cell compartment changes during the transition from prediabetes to diabetes. In this study, we used high-throughput sequencing to analyze the TCRβ repertoire of sorted islet-infiltrating memory CD4+CD44high T cells in 10-week-old prediabetic and recently diabetic NOD mice. We show that most clonotypes of islet-infiltrating CD4+CD44high T cells were rare, but high-frequency clonotypes were significantly more common in diabetic than in prediabetic mice. Moreover, although the CD4+CD44high TCRβ repertoires were highly diverse at both stages of disease development, dominant use of TRBV1 (Vβ2), TRBV13-3 (Vβ8.1), and TRBV19 (Vβ6) was evident in both prediabetic and diabetic mice. Our findings strongly suggest that therapeutic targeting of cells specifically expressing the dominant TCRβ might reduce pancreatic infiltration in prediabetic mice and attenuate the progression to diabetes. PMID:24146886

  4. Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis.

    PubMed

    Chandawarkar, Rajiv Y; Wagh, Mihir S; Kovalchin, Joseph T; Srivastava, Pramod

    2004-04-01

    Immunization with heat-shock protein (HSP) gp96 elicits protective immunity to the cancer or virus-infected cells from which it is derived. Low doses of gp96 generate immunity, while doses 10 times the immunizing dose do not. We show here that injection of high doses of gp96 generates CD4(+) T cells that down-regulate a variety of ongoing immune responses. Immunization with high doses of gp96 prevents myelin basic protein- or proteolipid protein-induced autoimmune encephalomyelitis in SJL mice and the onset of diabetes in non-obese diabetic mice. The suppression of immune response can be adoptively transferred with CD4(+) cells and does not partition with the CD25 phenotype. The immunomodulatory properties of gp96 (and possibly other HSP) may be used for antigen-specific activation or suppression of cellular immune responses. The latter may form the basis for novel immunotherapies for autoimmune diseases.

  5. Role of the gastrointestinal ecosystem in the development of type 1 diabetes.

    PubMed

    Daft, Joseph G; Lorenz, Robin G

    2015-09-01

    A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared with healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. New-onset diabetes mellitus after heart transplantation in children - Incidence and risk factors.

    PubMed

    Sehgal, Swati; Bock, Matthew J; Louks Palac, Hannah; Brickman, Wendy J; Gossett, Jeffrey G; Marino, Bradley S; Backer, Carl L; Pahl, Elfriede

    2016-11-01

    Diabetes mellitus is a recognized complication of SOT in adults and is associated with decreased graft and patient survival. Little is known about NOD in pediatric HT recipients. We aimed to characterize the incidence and describe risk factors for development of NOD after HT in children. Children who developed diabetes after HT were identified from the OPTN database. Demographic and clinical data before and after transplant were compared between patients with and without NOD. A total of 2056 children were included, 56% were male, 54% were Caucasian, and 62% had cardiomyopathy prior to HT. NOD developed in 219 children (11%) after HT. The incidence of NOD was 2.4, 9.0, and 10.4% at one, five, and 10 yr after HT, respectively. Obesity (HR: 4.32), dialysis prior to transplant (HR: 2.38), African American race (HR: 1.86), transplant before year 2000 (HR: 1.82), female gender (HR: 1.68), and older age at transplant (HR: 1.28) were independent predictors of NOD. The major modifiable risk factor for NOD is obesity, imparting the maximum hazard. Improved surveillance for diabetes in high-risk patients and specific prevention and intervention strategies are imperative in this population. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Insulin dependent diabetes mellitus (IDDM) and autoimmune thyroiditis in a boy with a ring chromosome 18: additional evidence of autoimmunity or IDDM gene(s) on chromosome 18

    PubMed Central

    Dacou-Voutetakis, C; Sertedaki, A; Maniatis-Christid..., M; Sarri, C; Karadima, G; Petersen, M; Xaidara, A; Kanariou, M; Nicolaidou, P

    1999-01-01

    A 4 year 3 month old boy with insulin dependent diabetes mellitus (IDDM), autoimmune thyroiditis, slight mental retardation, facial dysmorphism, and a de novo ring chromosome 18 (deletion 18q22.3-18qter) is described. This unique association of defects could represent a chance association. Alternatively, the clinical features could be the result of the chromosomal aberration. If so, one could speculate that a gene or genes on chromosome 18 might act as a suppressor or activator of the autoimmune process by itself or in concert with other IDDM loci.


Keywords: ring chromosome 18; chromosome 18 deletion; IDDM; hypothyroidism PMID:10051018

  8. First Infant Formula Type and Risk of Islet Autoimmunity in The Environmental Determinants of Diabetes in the Young (TEDDY) Study

    PubMed Central

    Beyerlein, Andreas; Tamura, Roy; Uusitalo, Ulla; Andrén Aronsson, Carin; Yang, Jimin; Riikonen, Anne; Lernmark, Åke; Rewers, Marian J.; Hagopian, William A.; She, Jin-Xiong; Simell, Olli G.; Toppari, Jorma; Ziegler, Anette-G.; Akolkar, Beena; Krischer, Jeffrey P.; Virtanen, Suvi M.; Norris, Jill M.

    2017-01-01

    OBJECTIVE Studies on the introduction of infant formulas and its effect on the risk of islet autoimmunity and type 1 diabetes (T1D) have yielded inconsistent results. We investigated whether the introduction of formula based on hydrolyzed cow’s milk as the first formula is associated with reduced islet autoimmunity risk in a large prospective cohort. RESEARCH DESIGN AND METHODS The Environmental Determinants of Diabetes in the Young (TEDDY) study prospectively monitors 8,676 children at increased genetic risk for T1D. Autoantibodies to insulin, GAD65, and IA2 were measured regularly to define islet autoimmunity. Information on formula feeding was collected by questionnaires at 3 months of age. RESULTS In survival analyses, after adjustment for family history with T1D, HLA genotype, sex, country, delivery mode, breast-feeding ≥3 months, and seasonality of birth, we observed no significant association with islet autoimmunity in infants who received extensively hydrolyzed compared with nonhydrolyzed cow’s milk–based formula as the first formula during the first 3 months (adjusted hazard ratio 1.38 [95% CI 0.95; 2.01]), and a significantly increased risk for extensively hydrolyzed formula introduced during the first 7 days (adjusted hazard ratio 1.57 [1.04; 2.38]). Using a partially hydrolyzed or other formula as the first formula, or no formula, was not associated with islet autoimmunity risk. CONCLUSIONS These results add to the existing evidence that islet autoimmunity risk is not reduced, and may be increased, by using hydrolyzed compared with nonhydrolyzed cow’s milk–based infant formula as the first formula in infants at increased genetic risk for T1D. PMID:28096222

  9. Beta cell function and BMI in ethnically diverse children with newly diagnosed autoimmune type 1 diabetes

    USDA-ARS?s Scientific Manuscript database

    The objective of our study was to examine the relationship between BMI and beta-cell function at diagnosis of autoimmune type 1 diabetes (T1D) in a large group of ethnically diverse children. Cross-sectional analysis of 524 children (60.8% White, 19.5% Hispanic, 14.5% African-American, 5.2% other n...

  10. Exploring the induction of preproinsulin-specific Foxp3+ CD4+ Treg cells that inhibit CD8+ T cell-mediated autoimmune diabetes by DNA vaccination

    PubMed Central

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-01-01

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model. PMID:27406624

  11. NOD2: a potential target for regulating liver injury.

    PubMed

    Body-Malapel, Mathilde; Dharancy, Sébastien; Berrebi, Dominique; Louvet, Alexandre; Hugot, Jean-Pierre; Philpott, Dana J; Giovannini, Marco; Chareyre, Fabrice; Pages, Gilles; Gantier, Emilie; Girardin, Stephen E; Garcia, Irène; Hudault, Sylvie; Conti, Filoména; Sansonetti, Philippe J; Chamaillard, Mathias; Desreumaux, Pierre; Dubuquoy, Laurent; Mathurin, Philippe

    2008-03-01

    The recent discovery of bacterial receptors such as NOD2 that contribute to crosstalk between innate and adaptive immune systems in the digestive tract constitutes an important challenge in our understanding of liver injury mechanisms. The present study focuses on NOD2 functions during liver injury. NOD2, TNF-alpha and IFN-gamma mRNA were quantified using real-time PCR in liver samples from patients and mice with liver injury. We evaluated the susceptibility of concanavalin A (ConA) challenge in NOD2-deficient mice (Nod2-/-) compared to wild-type littermates. We tested the effect of muramyl dipeptide (MDP), the specific activator of NOD2, on ConA-induced liver injury in C57BL/6 mice. We studied the cellular distribution and the role of NOD2 in immune cells and hepatocytes. We demonstrated that NOD2, TNF-alpha and IFN-gamma were upregulated during liver injury in mice and humans. Nod2-/- mice were resistant to ConA-induced hepatitis compared to their wild-type littermates, through reduced IFN-gamma production by immune cells. Conversely, administration of MDP exacerbated ConA-induced liver injury. MDP was a strong inducer of IFN-gamma in freshly isolated human PBMC, splenocytes and hepatocytes. Our study supports the hypothesis that NOD2 contributes to liver injury via a regulatory mechanism affecting immune cells infiltrating the liver and hepatocytes. Taken together, our results indicate that NOD2 may represent a new therapeutic target in liver diseases.

  12. NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome

    PubMed Central

    Asano, Masanao; Li, Yue-Sheng; Núñez, Gabriel

    2017-01-01

    Although B cell development requires expression of the B cell antigen receptor (BCR), it remains unclear whether engagement of self-antigen provides a positive impact for most B cells. Here, we show that BCR engagement by self-ligand during development in vivo results in up-regulation of the Nod-like receptor member Nod1, which recognizes the products of intestinal commensal bacteria. In anti-thymocyte/Thy-1 autoreactive BCR knock-in mice lacking self–Thy-1 ligand, immunoglobulin light chain editing occurred, generating B cells with up-regulated Nod1, including follicular and marginal zone B cells with natural autoreactivity. This BCR editing with increased Nod1 resulted in preferential survival. In normal adult mice, most mature B cells are enriched for Nod1 up-regulated cells, and signaling through Nod1 promotes competitive survival of mature B cells. These findings demonstrate a role for microbial products in promoting survival of mature B cells through up-regulated Nod1, providing a positive effect of BCR engagement on development of most B cells. PMID:28878001

  13. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.

    PubMed

    Marchesan, Julie; Jiao, Yizu; Schaff, Riley A; Hao, Jie; Morelli, Thiago; Kinney, Janet S; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J; Inohara, Naohiro; Giannobile, William V

    2016-06-01

    Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. TLR4, NOD1 and NOD2 Mediate Immune Recognition of Putative Newly-Identified Periodontal Pathogens

    PubMed Central

    Schaff, Riley A.; Hao, Jie; Morelli, Thiago; Kinney, Janet S.; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J.; Inohara, Naohiro; Giannobile, William V.

    2015-01-01

    SUMMARY Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. While the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, 6 being classical pathogens and 4 putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone marrow–derived macrophages (BMDM) from wild-type (WT) and toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. C. concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney (HEK) cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2-stimulatory activity. These studies allowed us to provide important evidence on newly-identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212

  15. Regulatory T cells control strain specific resistance to Experimental Autoimmune Prostatitis

    PubMed Central

    Breser, Maria L.; Lino, Andreia C.; Motrich, Ruben D.; Godoy, Gloria J.; Demengeot, Jocelyne; Rivero, Virginia E.

    2016-01-01

    Susceptibility to autoimmune diseases results from the encounter of a complex and long evolved genetic context with a no less complex and changing environment. Major actors in maintaining health are regulatory T cells (Treg) that primarily dampen a large subset of autoreactive lymphocytes escaping thymic negative selection. Here, we directly asked whether Treg participate in defining susceptibility and resistance to Experimental Autoimmune Prostatitis (EAP). We analyzed three common laboratory strains of mice presenting with different susceptibility to autoimmune prostatitis upon immunization with prostate proteins. The NOD, the C57BL/6 and the BALB/c mice that can be classified along a disease score ranging from severe, mild and to undetectable, respectively. Upon mild and transient depletion of Treg at the induction phase of EAP, each model showed an increment along this score, most remarkably with the BALB/c mice switching from a resistant to a susceptible phenotype. We further show that disease associates with the upregulation of CXCR3 expression on effector T cells, a process requiring IFNγ. Together with recent advances on environmental factors affecting Treg, these findings provide a likely cellular and molecular explanation to the recent rise in autoimmune diseases incidence. PMID:27624792

  16. Minocycline-Induced Drug Hypersensitivity Syndrome Followed by Multiple Autoimmune Sequelae

    PubMed Central

    Brown, Rebecca J.; Rother, Kristina I.; Artman, Henry; Mercurio, Mary Gail; Wang, Roger; Looney, R. John; Cowen, Edward W.

    2010-01-01

    Background Drug hypersensitivity syndrome (DHS) is a severe, multisystem adverse drug reaction that may occur following the use of numerous medications, including anticonvulsants, sulfonamides, and minocycline hydrochloride. Long-term autoimmune sequelae of DHS have been reported, including hypothyroidism. Observations A 15-year-old female adolescent developed DHS 4 weeks after starting minocycline therapy for acne vulgaris. Seven weeks later she developed autoimmune hyperthyroidism (Graves disease), and 7 months after discontinuing minocycline therapy she developed autoimmune type 1 diabetes mellitus. In addition, she developed elevated titers of several markers of systemic autoimmune disease, including antinuclear, anti-Sjögren syndrome A, and anti-Smith antibodies. Conclusions Minocycline-associated DHS may be associated with multiple autoimmune sequelae, including thyroid disease, type 1 diabetes mellitus, and elevated markers of systemic autoimmunity. Long-term follow-up is needed in patients with DHS to determine the natural history of DHS-associated sequelae. PMID:19153345

  17. Transient B-Cell Depletion with Anti-CD20 in Combination with Proinsulin DNA Vaccine or Oral Insulin: Immunologic Effects and Efficacy in NOD Mice

    PubMed Central

    Sarikonda, Ghanashyam; Sachithanantham, Sowbarnika; Manenkova, Yulia; Kupfer, Tinalyn; Posgai, Amanda; Wasserfall, Clive; Bernstein, Philip; Straub, Laura; Pagni, Philippe P.; Schneider, Darius; Calvo, Teresa Rodriguez; Coulombe, Marilyne; Herold, Kevan; Gill, Ronald G.; Atkinson, Mark; Nepom, Gerald; Ehlers, Mario; Staeva, Teodora; Garren, Hideki; Steinman, Lawrence; Chan, Andrew C.; von Herrath, Matthias

    2013-01-01

    A recent type 1 diabetes (T1D) clinical trial of rituximab (a B cell-depleting anti-CD20 antibody) achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin) with anti-CD3 antibody (a T cell-directed immunomodulator) offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine. Anti-CD20 alone, given once or on 4 consecutive days, produced transient B cell depletion but did not prevent or reverse T1D in the NOD mouse. Oral insulin alone (twice weekly for 6 weeks) was also ineffective, while proinsulin DNA (weekly for up to 12 weeks) showed a trend toward modest efficacy. Combination of anti-CD20 with oral insulin was ineffective in reversing diabetes in NOD mice whose glycemia was controlled with SC insulin pellets; these experiments were performed in three independent labs. Combination of anti-CD20 with proinsulin DNA was also ineffective in diabetes reversal, but did show modest efficacy in diabetes prevention (p = 0.04). In the prevention studies, anti-CD20 plus proinsulin resulted in modest increases in Tregs in pancreatic lymph nodes and elevated levels of proinsulin-specific CD4+ T-cells that produced IL-4. Thus, combination therapy with anti-CD20 and either oral insulin or proinsulin does not protect hyperglycemic NOD mice, but the combination with proinsulin offers limited efficacy in T1D prevention, potentially by augmentation of proinsulin-specific IL-4 production. PMID:23405091

  18. Autoimmunity in focus: from mechanisms to treatment.

    PubMed

    Kon, Yujiro

    2012-05-01

    The 5th Asian Congress on Autoimmunity took place in Suntec City, Singapore, on the 17-19 November 2011 under the presidency of Yehuda Shoenfeld (Chaim Sheba Medical Center, Ramat Gan, Israel). Senior investigators from a range of fields--including immunology, autoimmunity, rheumatology, neurology and hepatology--attended the conference. The scientific program placed an emphasis on the pathogenesis, genetic basis and mechanistic aspects of autoimmune diseases, as well as their clinical outcomes and treatment options. Particular focus was placed on systemic lupus erythematosus, rheumatoid arthritis, Type I diabetes, antiphospholipid syndrome and autoimmune hepatitis. Participants from over 50 countries attended the conference.

  19. Evaluation of thyroid dysfunction and autoimmunity in gestational diabetes mellitus and its relationship with postpartum thyroiditis.

    PubMed

    Maleki, N; Tavosi, Z

    2015-02-01

    To evaluate thyroid dysfunction and autoimmunity in women with gestational diabetes and to investigate the frequency of postpartum thyroiditis in women with gestational diabetes. A total of 350 women with gestational diabetes and 350 healthy pregnant women were enrolled in the study. We studied the thyroid hormone profiles of the women in each group during pregnancy (at 24-28 weeks' gestation) and after delivery (at 6 weeks, 3, 6 and 9 months, and 1 year postpartum). A total of 342 women with gestational diabetes and 313 healthy pregnant women completed the follow-up during pregnancy and 1 year after delivery. Of the women with gestational diabetes, 16.6% had thyroid dysfunction, while of the healthy pregnant women, 6.1% had thyroid dysfunction. The prevalence of postpartum thyroiditis was higher in the women with a history of gestational diabetes (19.6%) than in the healthy pregnant women (10.2%), and this difference was statistically significant. According to the results of the present study, the prevalence of postpartum thyroiditis was higher in women with a history of gestational diabetes than in healthy women. We recommend that all women with gestational diabetes and women who have previous thyroid dysfunction should be screened for thyroid hormonal abnormalities during pregnancy and for 1 year after pregnancy. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  20. Ex Vivo Expanded Human Regulatory T Cells Delay Islet Allograft Rejection via Inhibiting Islet-Derived Monocyte Chemoattractant Protein-1 Production in CD34+ Stem Cells-Reconstituted NOD-scid IL2rγnull Mice

    PubMed Central

    Xiao, Fang; Ma, Liang; Zhao, Min; Huang, Guocai; Mirenda, Vincenzo; Dorling, Anthony

    2014-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by immune-mediated destruction of insulin-secreting β cells of the pancreas. Near complete dependence on exogenous insulin makes T1DM very difficult to control, with the result that patients are exposed to high blood glucose and risk of diabetic complications and/or intermittent low blood glucose that can cause unconsciousness, fits and even death. Allograft transplantation of pancreatic islets restores normoglycemia with a low risk of surgical complications. However, although successful immediately after transplantation, islets are progressively lost, with most of the patients requiring exogenous insulin within 2 years post-transplant. Therefore, there is an urgent requirement for the development of new strategies to prevent islet rejection. In this study, we explored the importance of human regulatory T cells in the control of islets allograft rejection. We developed a pre-clinical model of human islet transplantation by reconstituting NOD-scid IL2rγnull mice with cord blood-derived human CD34+ stem cells and demonstrated that although the engrafted human immune system mediated the rejection of human islets, their survival was significantly prolonged following adoptive transfer of ex vivo expanded human Tregs. Mechanistically, Tregs inhibited the infiltration of innate immune cells and CD4+ T cells into the graft by down-regulating the islet graft-derived monocyte chemoattractant protein-1. Our findings might contribute to the development of clinical strategies for Treg therapy to control human islet rejection. We also show for the first time that CD34+ cells-reconstituted NOD-scid IL2rγnull mouse model could be beneficial for investigating human innate immunity in vivo. PMID:24594640

  1. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant

    PubMed Central

    Persson, Tomas; Battenberg, Kai; Demina, Irina V.; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T.; Wilbanks, Elizabeth G.; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M.

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors. PMID:26020781

  2. Primary Dietary Intervention Study to Reduce the Risk of Islet Autoimmunity in Children at Increased Risk for Type 1 Diabetes

    PubMed Central

    Hummel, Sandra; Pflüger, Maren; Hummel, Michael; Bonifacio, Ezio; Ziegler, Anette-G.

    2011-01-01

    OBJECTIVE To determine whether delaying the introduction of gluten in infants with a genetic risk of islet autoimmunity is feasible, safe, and may reduce the risk of type 1 diabetes–associated islet autoimmunity. RESEARCH DESIGN AND METHODS A total of 150 infants with a first-degree family history of type 1 diabetes and a risk HLA genotype were randomly assigned to a first gluten exposure at age 6 months (control group) or 12 months (late-exposure group) and were followed 3 monthly until the age of 3 years and yearly thereafter for safety (for growth and autoantibodies to transglutaminase C [TGCAs]), islet autoantibodies to insulin, GAD, insulinoma-associated protein 2, and type 1 diabetes. RESULTS Adherence to the dietary-intervention protocol was reported from 70% of families. During the first 3 years, weight and height were similar in children in the control and late-exposure groups, as was the probability of developing TGCAs (14 vs. 4%; P = 0.1). Eleven children in the control group and 13 children in the late-exposure group developed islet autoantibodies (3-year risk: 12 vs. 13%; P = 0.6). Seven children developed diabetes, including four in the late-exposure group. No significant differences were observed when children were analyzed as per protocol on the basis of the reported first gluten exposure of the children. CONCLUSIONS Delaying gluten exposure until the age of 12 months is safe but does not substantially reduce the risk for islet autoimmunity in genetically at-risk children. PMID:21515839

  3. A case of polyglandular autoimmune syndrome type III complicated with autoimmune hepatitis.

    PubMed

    Oki, Kenji; Yamane, Kiminori; Koide, Junko; Mandai, Koichi; Nakanishi, Shuhei; Fujikawa, Rumi; Kohno, Nobuoki

    2006-10-01

    A 58-year-old woman complaining of finger tremor was referred to our hospital. The diagnosis of Graves' disease was made based on increased free triiodothyronine (18.88 pg/ml) and free thyroxine (7.47 ng/dl), low TSH (<0.005 microIU/ml) and increased TSH receptor binding antibody activity (70.9%). Serum level of AST (62 U/l) and ALT (93 U/l) were increased and liver biopsy revealed linkage of adjacent portal areas by lymphoplasmacytic infiltrates and fibrosis with piecemeal necrosis. Although antinuclear antibody was negative, these findings indicated that she had autoimmune hepatitis (AIH) according to the criteria of the International Autoimmune Hepatitis Scoring System. Slowly progressive type 1 diabetes mellitus (DM) was confirmed by a diabetic response pattern due to 75 g-oral glucose tolerance test, and seropositivity towards anti-glutamic acid decarboxylase (725 U/ml) and islet cell (80 JDF Units) antibodies. This case exhibited an extremely rare combination of three different autoimmune diseases, including Graves' disease, slowly progressive type 1 DM and AIH, and had no known sensitive human leukocyte antigen (HLA) typing or haplotype for these disorders. Although it is common for patients with Graves' disease to exhibit abnormal liver function, it is important to make an accurate diagnosis of AIH because of this life-threatening disorder.

  4. Muramyl peptides activate innate immunity conjointly via YB1 and NOD2.

    PubMed

    Laman, Alexander G; Lathe, Richard; Shepelyakovskaya, Anna O; Gartseva, Alexandra; Brovko, Feodor A; Guryanova, Svetlana; Alekseeva, Ludmila; Meshcheryakova, Elena A; Ivanov, Vadim T

    2016-11-01

    Bacterial cell wall muramyl dipeptide (MDP) and glucosaminyl-MDP (GMDP) are potent activators of innate immunity. Two receptor targets, NOD2 and YB1, have been reported; we investigated potential overlap of NOD2 and YB1 pathways. Separate knockdown of NOD2 and YB1 demonstrates that both contribute to GMDP induction of NF-κB expression, a marker of innate immunity, although excess YB1 led to induction in the absence of NOD2. YB1 and NOD2 co-migrated on sucrose gradient centrifugation, and GMDP addition led to the formation of higher molecular mass complexes containing both YB1 and NOD2. Co-immunoprecipitation demonstrated a direct interaction between YB1 and NOD2, a major recombinant fragment of NOD2 (NACHT-LRR) bound to YB1, and complex formation was stimulated by GMDP. We also report subcellular colocalization of NOD2 and YB1. Although YB1 may have other binding partners in addition to NOD2, maximal innate immunity activation by muramyl peptides is mediated via an interaction between YB1 and NOD2.

  5. A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes

    PubMed Central

    Serr, Isabelle; Scherm, Martin G.; Zahm, Adam M.; Schug, Jonathan; Flynn, Victoria K.; Hippich, Markus; Kälin, Stefanie; Becker, Maike; Achenbach, Peter; Nikolaev, Alexei; Gerlach, Katharina; Liebsch, Nicole; Loretz, Brigitta; Lehr, Claus-Michael; Kirchner, Benedikt; Spornraft, Melanie; Haase, Bettina; Segars, James; Küper, Christoph; Palmisano, Ralf; Waisman, Ari; Willis, Richard A.; Kim, Wan-Uk; Weigmann, Benno; Kaestner, Klaus H.; Ziegler, Anette-Gabriele; Daniel, Carolin

    2018-01-01

    Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)–mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+ regulatory T cell (Treg) induction in vitro. Accordingly, Treg induction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treg induction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)–mediated NFAT5, which interferes with FoxP3+ Treg induction. Blocking miRNA181a or NFAT5 increases Treg induction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity. PMID:29298866

  6. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model.

    PubMed

    Koopman, F A; Vosters, J L; Roescher, N; Broekstra, N; Tak, P P; Vervoordeldonk, M J

    2015-10-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's syndrome and type 1 diabetes. The alpha-7 nicotinic acetylcholine receptor (α7nAChR) was stimulated with AR-R17779 or nicotine in NOD mice. In a second study, unilateral cervical vagotomy was performed. α7nAChR expression, focus scores, and salivary flow were evaluated in salivary glands (SG) and insulitis score in the pancreas. Cytokines were measured in serum and SG. α7nAChR was expressed on myoepithelial cells in SG. Monocyte chemotactic protein-1 levels were reduced in SG after AR-R17779 treatment and tumor necrosis factor production was increased in the SG of the vagotomy group compared to controls. Focus score and salivary flow were unaffected. NOD mice developed diabetes more rapidly after vagotomy, but at completion of the study there were no statistically significant differences in number of mice that developed diabetes or in insulitis scores. Intervention of the CAP in NOD mice leads to minimal changes in inflammatory cytokines, but did not affect overall inflammation and function of SG or development of diabetes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis.

    PubMed

    Li, Cheuk Wun; Menconi, Francesca; Osman, Roman; Mezei, Mihaly; Jacobson, Eric M; Concepcion, Erlinda; David, Chella S; Kastrinsky, David B; Ohlmeyer, Michael; Tomer, Yaron

    2016-02-19

    We previously showed that an HLA-DR variant containing arginine at position 74 of the DRβ1 chain (DRβ1-Arg74) is the specific HLA class II variant conferring risk for autoimmune thyroid diseases (AITD). We also identified 5 thyroglobulin (Tg) peptides that bound to DRβ1-Arg74. We hypothesized that blocking the binding of these peptides to DRβ1-Arg74 could block the continuous T-cell activation in thyroiditis needed to maintain the autoimmune response to the thyroid. The aim of the current study was to identify small molecules that can block T-cell activation by Tg peptides presented within DRβ1-Arg74 pockets. We screened a large and diverse library of compounds and identified one compound, cepharanthine that was able to block peptide binding to DRβ1-Arg74. We then showed that Tg.2098 is the dominant peptide when inducing experimental autoimmune thyroiditis (EAT) in NOD mice expressing human DRβ1-Arg74. Furthermore, cepharanthine blocked T-cell activation by thyroglobulin peptides, in particular Tg.2098 in mice that were induced with EAT. For the first time we identified a small molecule that can block Tg peptide binding and presentation to T-cells in autoimmune thyroiditis. If confirmed cepharanthine could potentially have a role in treating human AITD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Thyroid-associated orbitopathy is linked to gastrointestinal autoimmunity

    PubMed Central

    Ponto, K A; Schuppan, D; Zwiener, I; Binder, H; Mirshahi, A; Diana, T; Pitz, S; Pfeiffer, N; Kahaly, G J

    2014-01-01

    Common autoimmune disorders tend to co-exist in the same subjects and cluster in families. The objective of this study was to determine the prevalence of autoimmune co-morbidity in patients with autoimmune thyroid disease (AITD) with and without thyroid-associated orbitopathy (TAO). This was a cross-sectional study conducted at an academic tertiary referral centre. Of 1310 patients with AITD [n = 777 or 59% with Graves' disease (GD) and n = 533, 41% with Hashimoto's thyroiditis (HT)] followed at a specialized joint thyroid–eye out-patient clinic, 176 (13·4%) had an adult type of the autoimmune polyglandular syndrome, 129 (9·8%) type 1 diabetes, 111 (8·5%) coeliac disease, 60 (4·6%) type A autoimmune gastritis, 57 (4·4%) vitiligo and 25 (1·9%) Addison's disease. Coeliac disease and autoimmune gastritis were associated positively with GD [odds ratio (OR) = 2·18; P = 0·002 and OR = 6·52; P < 0·001], whereas type 1 diabetes, Addison's disease, autoimmune primary hypogonadism, alopecia areata, rheumatoid arthritis and Sjögren's syndrome were ‘protective’ for GD and thus linked to HT, OR = 0·49 (P < 0·001), 0·06 (P < 0·001), 0·25 (P < 0·001), 0·50 (P = 0·090) and 0·32 (P = 0·003), respectively. Of 610 (46·6%) AITD patients with TAO, 584 (95·7%) and 26 (4·3%) had GD and HT, respectively (P < 0·001). TAO was most prevalent in GD patients with coeliac disease (94%, OR = 1·87, P < 0·001). Multivariate analysis showed high OR for coeliac disease and autoimmune gastritis (3·4 and 4·03, both P < 0·001) pertaining to the association with TAO while type 1 diabetes, Addison's disease and alopecia areata were protective for TAO. In patients with TAO, coeliac disease is the most prevalent co-morbid autoimmune condition and rates are increased compared to GD patients without TAO. PMID:24903731

  9. [Autoimmune insulitis in patients with type 2 diabetes mellitus A randomized clinical trial in hospitalized patients].

    PubMed

    Martinka, Emil; Rončáková, Mariana; Mišániková, Michaela; Davani, Arash

    It is not always easy to classify diabetes (DM) diagnosed in adults, with a significant group of patients initially classified and treated for type 2 diabetes mellitus (DM2T) presenting signs indicating the presence of autoimmune insulitis (AI), which is characteristic of type 1 diabetes mellitus (DM1T), or latent autoimmune diabetes mellitus in adults (LADA). Identify the proportion of patients entered with DM2T who present AI signs, and the number of patients of that proportion, who at the same time present low insulin secretion, and what clinical and laboratory manifestations could be used to differentiate between these patients.Cohort and methods: A randomized clinical trial with a pre-determined set of assessed parameters for n = 625 patients, who were hospitalized during the first 6 months of 2016 at the National Endocrinology and Diabetology Institute (NEDU), Lubochna. Apart from the standard parameters, C-peptide (CP) and autoantibodies to glutamic acid decarboxylase (GADA) were examined for each patient. GADA positive (GADA+) patients were compared to GADA negative (GADA-) patients in the following parameters: gender, age, age at the time of dia-gnosing DM, duration of DM, HbA1c, incidence of hypoglycemia, lipidogram, fasting C-peptide levels, BMI, waist circumference, incidence of hypoglycemias, presence of microvascular and macrovascular complications, treatment of dia-betes and incidence of other endocrinopathies. GADA+ with low CP were subsequently compared to GADA+ patients with normal CP. Of 625 patients originally classified and treated as DM2T, 13 % were GADA+. 31 % of them had low CP (< 0.2 nmol/l) and 28 % had CP levels within the intermediary range (0.2-0.4 nmol/l). Females made up a larger proportion of GADA+ patients, with a lower BMI, smaller waist circumference, lower CP, higher HDL cholesterol levels, a greater incidence of hypoglycemias and lower total daily dose of insulin. GADA+ patients with low CP differed from GADA+ patients with

  10. Protection Against Type 1 Diabetes Upon Coxsackievirus B4 Infection and iNKT-Cell Stimulation

    PubMed Central

    Ghazarian, Liana; Diana, Julien; Beaudoin, Lucie; Larsson, Pär G.; Puri, Raj K.; van Rooijen, Nico; Flodström-Tullberg, Malin; Lehuen, Agnès

    2013-01-01

    Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2–deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes. PMID:23894189

  11. Effect of autoimmunity risk loci on the honeymoon phase in type 1 diabetes.

    PubMed

    Moosavi, Mandana; Séguin, Jade; Polychronakos, Constantin

    2017-09-01

    To analyze the correlation between duration and depth of honeymoon phase in patients with type 1 diabetes (T1DM) and autoimmunity risk loci. From a database of 567 individuals with clinical data, we selected 210 patients for whom we had dense genotyping results of single-nucleotide polymorphisms (SNPs) from our previous genome-wide association studies (GWAS) or targeted genotyping data. Using PLINK software, we analyzed the association between time spent in honeymoon phase as our quantitative trait, and 24 known autoimmunity predisposing SNPs. We found one allele on chromosome 5, rs4613763 mapping to a Prostaglandin Receptor EP4 (PTGER4) to reach statistical significance (P = .0067), in determining a larger proportion of T1DM patients with a detectable honeymoon phase. This polymorphism determines risk for inflammatory bowel disease (IBD) but not T1DM. By showing the role of PTGER4 in autoimmune diseases and its effect on inflammatory responses via its interaction with NF-kB, we hypothesize that PTGER4 modulates honeymoon phase in patients with T1DM without influencing the risk of developing T1DM. We hypothesize that this quantitative trait locus promotes inflammatory suppression of beta cells without directly promoting beta-cell destruction. Understanding SNPs that effect function can provide insight in to pathogenesis of T1DM and the mechanism of the honeymoon phase. Because this is a hypothesis-generating study, it needs to be replicated in an additional larger cohort. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The autoimmune ecology: an update.

    PubMed

    Anaya, Juan-Manuel; Restrepo-Jiménez, Paula; Ramírez-Santana, Carolina

    2018-07-01

    The autoimmune ecology refers to the interactions between individuals and their environment leading to a breakdown in immune tolerance and, therefore, to the development of one or more autoimmune diseases in such an individual. Herein, an update is offered on four specific factors associated with autoimmune diseases, namely, vitamin D, smoking, alcohol and coffee consumption from the perspective of exposome and metabolomics. Smoking is associated with an increased risk for most of the autoimmune diseases. Carbamylation of proteins as well as NETosis have emerged as possible new pathophysiological mechanisms for rheumatoid arthritis. Low-to-moderate alcohol consumption seems to decrease the risk of systemic lupus erythematosus and rheumatoid arthritis, and studies of vitamin have suggested a beneficial effect on these conditions. Coffee intake appears to be a risk factor for type 1 diabetes mellitus and rheumatoid arthritis and a protective factor for multiple sclerosis and primary biliary cholangitis. Recent studies support the previously established positive associations between environmental factors and most of the autoimmune diseases. Nevertheless, further studies from the perspective of metabolomics, proteomics and genomics will help to clarify the effect of environment on autoimmune diseases.

  13. Discovery of native autoantigens via antigen surrogate technology: application to type 1 diabetes.

    PubMed

    Doran, Todd M; Simanski, Scott; Kodadek, Thomas

    2015-02-20

    A fundamental goal in understanding the mechanisms of autoimmune disease is the characterization of autoantigens that are targeted by autoreactive antibodies and T cells. Unfortunately, the identification of autoantigens is a difficult problem. We have begun to explore a novel route to the discovery of autoantibody/autoantigen pairs that involves comparative screening of combinatorial libraries of unnatural, synthetic molecules for compounds that bind antibodies present at much higher levels in the serum of individuals with a given autoimmune disease than in the serum of control individuals. We have shown that this approach can yield "antigen surrogates" capable of capturing disease-specific autoantibodies from serum. In this report, we demonstrate that the synthetic antigen surrogates can be used to affinity purify the autoantibodies from serum and that these antibodies can then be used to identify their cognate autoantigen in an appropriate tissue lysate. Specifically, we report the discovery of a peptoid able to bind autoantibodies present in about one-third of nonobese diabetic (NOD) mice. The peptoid-binding autoantibodies were highly enriched through peptoid affinity chromatography and employed to probe mouse pancreatic and brain lysates. This resulted in identification of murine GAD65 as the native autoantigen. GAD65 is a known humoral autoantigen in human type 1 diabetes mellitus (T1DM), but its existence in mice had been controversial. This study demonstrates the potential of this chemical approach for the unbiased identification of autoantigen/autoantibody complexes.

  14. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes.

    PubMed

    Xue, Meilang; Jackson, Christopher J

    2014-01-01

    Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising. © 2014 Elsevier Inc. All rights reserved.

  15. Caring to Care: Applying Noddings' Philosophy to Medical Education.

    PubMed

    Balmer, Dorene F; Hirsh, David A; Monie, Daphne; Weil, Henry; Richards, Boyd F

    2016-12-01

    The authors argue that Nel Noddings' philosophy, "an ethic of caring," may illuminate how students learn to be caring physicians from their experience of being in a caring, reciprocal relationship with teaching faculty. In her philosophy, Noddings acknowledges two important contextual continuities: duration and space, which the authors speculate exist within longitudinal integrated clerkships. In this Perspective, the authors highlight core features of Noddings' philosophy and explore its applicability to medical education. They apply Noddings' philosophy to a subset of data from a previously published longitudinal case study to explore its "goodness of fit" with the experience of eight students in the 2012 cohort of the Columbia-Bassett longitudinal integrated clerkship. In line with Noddings' philosophy, the authors' supplementary analysis suggests that students (1) recognized caring when they talked about "being known" by teaching faculty who "cared for" and "trusted" them; (2) responded to caring by demonstrating enthusiasm, action, and responsibility toward patients; and (3) acknowledged that duration and space facilitated caring relations with teaching faculty. The authors discuss how Noddings' philosophy provides a useful conceptual framework to apply to medical education design and to future research on caring-oriented clinical training, such as longitudinal integrated clerkships.

  16. Rare variants and autoimmune disease.

    PubMed

    Massey, Jonathan; Eyre, Steve

    2014-09-01

    The study of rare variants in monogenic forms of autoimmune disease has offered insight into the aetiology of more complex pathologies. Research in complex autoimmune disease initially focused on sequencing candidate genes, with some early successes, notably in uncovering low-frequency variation associated with Type 1 diabetes mellitus. However, other early examples have proved difficult to replicate, and a recent study across six autoimmune diseases, re-sequencing 25 autoimmune disease-associated genes in large sample sizes, failed to find any associated rare variants. The study of rare and low-frequency variation in autoimmune diseases has been made accessible by the inclusion of such variants on custom genotyping arrays (e.g. Immunochip and Exome arrays). Whole-exome sequencing approaches are now also being utilised to uncover the contribution of rare coding variants to disease susceptibility, severity and treatment response. Other sequencing strategies are starting to uncover the role of regulatory rare variation. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Structure-guided design of an invariant natural killer T cell agonist for optimum protection from type 1 diabetes in non-obese diabetic mice

    PubMed Central

    Blumenfeld, H J; Tohn, R; Haeryfar, S M M; Liu, Y; Savage, P B; Delovitch, T L

    2011-01-01

    Because invariant natural killer T (iNK T) cells link innate and adaptive immunity, the structure-dependent design of iNK T cell agonists may have therapeutic value as vaccines for many indications, including autoimmune disease. Previously, we showed that treatment of non-obese diabetic (NOD) mice with the iNK T cell activating prototypic glycolipid α-galactosylceramide (α-GalCer) protects them from type 1 diabetes (T1D). However, α-GalCer is a strong agonist that can hyperactivate iNK T cells, elicit several side effects and has shown only limited success in clinical trials. Here, we used a structure-guided design approach to identify an iNK T cell agonist that optimally protects from T1D with minimal side effects. Analyses of the kinetics and function of a panel of synthetic α-GalCer fatty acyl chain derivatives (C8:0-C16:0) were performed in NOD mice. C16:0 elicited the highest protection from insulitis and T1D, which was associated with a higher frequency and survival of iNK T cells and enhanced activity of tolerogenic dendritic cells (DCs) in draining pancreatic lymph nodes (PLN), inability to transactivate NK cells and a more rapid kinetics of induction and recovery of iNK T cells from anergy. We conclude that the length and structure of the acyl chain of α-GalCer regulates the level of protection against T1D in mice, and propose that the extent of this protection depends on the relative capacity of the acyl chain to accommodate an endogenous spacer lipid of appropriate length and structure. Thus, our findings with the α-GalCer C16:0 derivative suggest strongly that it be considered as a lead glycolipid candidate in clinical trials of T1D. PMID:21910729

  18. Monogenic autoimmune diseases of the endocrine system.

    PubMed

    Johnson, Matthew B; Hattersley, Andrew T; Flanagan, Sarah E

    2016-10-01

    The most common endocrine diseases, type 1 diabetes, hyperthyroidism, and hypothyroidism, are the result of autoimmunity. Clustering of autoimmune endocrinopathies can result from polygenic predisposition, or more rarely, may present as part of a wider syndrome due to a mutation within one of seven genes. These monogenic autoimmune diseases show highly variable phenotypes both within and between families with the same mutations. The average age of onset of the monogenic forms of autoimmune endocrine disease is younger than that of the common polygenic forms, and this feature combined with the manifestation of other autoimmune diseases, specific hallmark features, or both, can inform clinicians as to the relevance of genetic testing. A genetic diagnosis can guide medical management, give an insight into prognosis, inform families of recurrence risk, and facilitate prenatal diagnoses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Quantitative analysis of protein and gene expression in salivary glands of Sjogren's-like disease NOD mice treated by bone marrow soup.

    PubMed

    Misuno, Kaori; Tran, Simon D; Khalili, Saeed; Huang, Junwei; Liu, Younan; Hu, Shen

    2014-01-01

    Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Whole BM cells were lysed and soluble intracellular contents ("BM Soup") were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.

  20. [A very elderly case of acute-onset autoimmune type 1 diabetes mellitus].

    PubMed

    Tsuji, Hideyuki

    2010-01-01

    An 80-year-old man had systemic malaise and pollakiuria, which developed about 40 days before admission. He underwent treatment at a urology department, but his symptoms did not improve. Since dry mouth additionally developed, he visited his family doctor. As his casual blood glucose level was 629 mg/dl and HbA1c was 12.4%, the patient was referred to our department and admitted on the same day. Continuous intravenous infusion of fast-acting insulin and saline were initiated after admission, and dietary therapy at 1,520 kcal/day was initiated on the following day. Anti-GAD antibody and anti-IA-2 antibody were positive, confirming that the disease was acute-onset autoimmune type 1 diabetes mellitus. A sliding scale of fast-acting insulin followed by intensified therapy using insulin glargine and insulin aspart was performed in the early phase, but the treatment was switched to twice-daily biphasic insulin aspart 30 injection because no diabetic complication was present, although the patient was already totally blind and required assistance from his family for self-injection and to improve his quality of life (QOL). Blood glucose control was favorable, and the patient was discharged on April 2.

  1. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin

    PubMed Central

    Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.

    2008-01-01

    Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660

  2. Transplantation of micro- and macroencapsulated piglet islets into mice and monkeys.

    PubMed

    Elliott, R B; Escobar, L; Calafiore, R; Basta, G; Garkavenko, O; Vasconcellos, A; Bambra, C

    2005-01-01

    Neonatal porcine islets within alginate microcapsules transplanted intraperitoneally (IP) or within semi-permeable macrocapsules (TheraCyte) and transplanted subcutaneously (SC) survive and reverse diabetes for up to 16 weeks in diabetic autoimmune nonobese diabetic (NOD) mice. The islets in microcapsules transplanted IP into nondiabetic cynomolgus monkeys survived for 8 weeks. Similar results were shown with islets transplanted in TheraCytes. Neither species showed adverse effects or evidence of infection with porcine endogenous retroviruses or other endemic pig viruses. Proof of principle is illustrated for successful xenotransplantation in humans.

  3. Predominant Occupation of the Class I MHC Molecule H-2Kwm7 with a Single Self-peptide Suggests a Mechanism for its Diabetes-protective Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brims, D.; Qian, J; Jarchum, I

    2010-01-01

    Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic {beta} cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD{sup 4+} and CD{sup 8+} T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence ofmore » class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2K{sup wm7}, which exerts a diabetes-protective effect in NOD mice. We have found that H-2K{sup wm7} molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2K{sup wm7} to support T1D development could be due, at least in part, to the failure of peptides from critical {beta}-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD{sup 8+} T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.« less

  4. A Type I Interferon Transcriptional Signature Precedes Autoimmunity in Children Genetically at Risk for Type 1 Diabetes

    PubMed Central

    Ferreira, Ricardo C.; Guo, Hui; Coulson, Richard M.R.; Smyth, Deborah J.; Pekalski, Marcin L.; Burren, Oliver S.; Cutler, Antony J.; Doecke, James D.; Flint, Shaun; McKinney, Eoin F.; Lyons, Paul A.; Smith, Kenneth G.C.; Achenbach, Peter; Beyerlein, Andreas; Dunger, David B.; Clayton, David G.; Wicker, Linda S.; Bonifacio, Ezio

    2014-01-01

    Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and antiviral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-β–inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (n = 25). Using this predefined set of 225 IFN signature genes, we investigated the expression of the signature in cohorts of healthy controls (n = 87), patients with T1D (n = 64), and a large longitudinal birth cohort of children genetically predisposed to T1D (n = 109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically predisposed children before the development of autoantibodies (P = 0.0012) but not in patients with established T1D. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P = 0.0064), and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14+ monocytes. DNA variation in IFN-inducible genes altered T1D risk (P = 0.007), as exemplified by IFIH1, one of the genes in our IFN signature for which increased expression is a known risk factor for disease. These findings identify transient increased expression of type I IFN genes in preclinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D. PMID:24561305

  5. Evolutionarily Conserved nodE, nodO, T1SS, and Hydrogenase System in Rhizobia of Astragalus membranaceus and Caragana intermedia.

    PubMed

    Yan, Hui; Xie, Jian Bo; Ji, Zhao Jun; Yuan, Na; Tian, Chang Fu; Ji, Shou Kun; Wu, Zhong Yu; Zhong, Liang; Chen, Wen Xin; Du, Zheng Lin; Wang, En Tao; Chen, Wen Feng

    2017-01-01

    Mesorhizobium species are the main microsymbionts associated with the medicinal or sand-fixation plants Astragalus membranaceus and Caragana intermedia (AC) in temperate regions of China, while all the Mesorhizobium strains isolated from each of these plants could nodulate both of them. However, Rhizobium yanglingense strain CCBAU01603 could nodulate AC plants and it's a high efficiency symbiotic and competitive strain with Caragana . Therefore, the common features shared by these symbiotic rhizobia in genera of Mesorhizobium and Rhizobium still remained undiscovered. In order to study the genomic background influencing the host preference of these AC symbiotic strains, the whole genomes of two ( M. silamurunense CCBAU01550, M. silamurunense CCBAU45272) and five representative strains ( M. septentrionale CCBAU01583, M. amorphae CCBAU01570, M. caraganae CCBAU01502, M. temperatum CCBAU01399, and R. yanglingense CCBAU01603) originally isolated from AC plants were sequenced, respectively. As results, type III secretion systems (T3SS) of AC rhizobia evolved in an irregular pattern, while an evolutionarily specific region including nodE, nodO , T1SS, and a hydrogenase system was detected to be conserved in all these AC rhizobia. Moreover, nodO was verified to be prevalently distributed in other AC rhizobia and was presumed as a factor affecting the nodule formation process. In conclusion, this research interpreted the multifactorial features of the AC rhizobia that may be associated with their host specificity at cross-nodulation group, including nodE, nodZ , T1SS as the possible main determinants; and nodO , hydrogenase system, and T3SS as factors regulating the bacteroid formation or nitrogen fixation efficiency.

  6. Quantitative Analysis of Protein and Gene Expression in Salivary Glands of Sjogren’s-Like Disease NOD Mice Treated by Bone Marrow Soup

    PubMed Central

    Misuno, Kaori; Khalili, Saeed; Huang, Junwei; Liu, Younan

    2014-01-01

    Background Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Methods Whole BM cells were lysed and soluble intracellular contents (“BM Soup”) were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. Results BM Soup restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. Conclusion BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment. PMID:24489858

  7. Molecular cloning and functional characterization of duck nucleotide-binding oligomerization domain 1 (NOD1).

    PubMed

    Li, Huilin; Jin, Hui; Li, Yaqian; Liu, Dejian; Foda, Mohamed Frahat; Jiang, Yunbo; Luo, Rui

    2017-09-01

    Nucleotide-binding oligomerization domain 1 (NOD1) is an imperative cytoplasmic pattern recognition receptor (PRR) and considered as a key member of the NOD-like receptor (NLR) family which plays a critical role in innate immunity through sensing microbial components derived from bacterial peptidoglycan. In the current study, the full-length of duck NOD1 (duNOD1) cDNA from duck embryo fibroblasts (DEFs) was cloned. Multiple sequence alignment and phylogenetic analysis demonstrated that duNOD1 exhibited a strong evolutionary relationship with chicken and rock pigeon NOD1. Tissue-specific expression analysis showed that duNOD1 was widely distributed in various organs, with the highest expression observed in the liver. Furthermore, duNOD1 overexpression induced NF-κB activation in DEFs and the CARD domain is crucial for duNOD1-mediated NF-κB activation. In addition, silencing the duNOD1 decreased the activity of NF-κB in DEFs stimulated by iE-DAP. Overexpression of duNOD1 significantly increased the expression of TNF-α, IL-6, and RANTES in DEFs. These findings highlight the crucial role of duNOD1 as an intracellular sensor in duck innate immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. NOD2 Receptor is Expressed in Platelets and Enhances Platelet Activation and Thrombosis

    PubMed Central

    Zhang, Si; Zhang, Shenghui; Hu, Liang; Zhai, Lili; Xue, Ruyi; Ye, Jianqin; Chen, Leilei; Cheng, Guanjun; Mruk, Jozef; Kunapuli, Satya P.; Ding, Zhongren

    2015-01-01

    Background Pattern recognition receptor NOD2 (nucleotide binding oligomerization domain 2) is well investigated in immunity, its expression and function in platelets has never been explored. Method and Results Using RT-PCR and Western blot we show that both human and mouse platelets express NOD2, and its agonist MDP induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentration of thrombin or collagen, as well as clot retraction. These potentiating effects of MDP were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2-dependently. Using intravital microscopy, we found that MDP administration accelerated in vivo thrombosis in FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express RIP2 (receptor-interacting protein 2), and provided evidences suggesting that MAPK and NO/sGC/cGMP/PGK pathways downstream of RIP2 mediate the role of NOD2 in platelets. Finally, MDP stimulates proinflammatory cytokine IL-1β maturation and accumulation in human and mouse platelets NOD2-dependently. Conclusions NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets which links thrombotic events to inflammation. PMID:25825396

  9. Monomer/Dimer Transition of the Caspase-Recruitment Domain of Human Nod1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srimathi,T.; Robbins, S.; Dubas, R.

    2008-01-01

    Nod1 is an essential cytoplasmic sensor for bacterial peptidoglycans in the innate immune system. The caspase-recruitment domain of Nod1 (Nod1{_}CARD) is indispensable for recruiting a downstream kinase, receptor-interacting protein 2 (RIP2), that activates nuclear factor-?B (NF-?B). The crystal structure of human Nod1{_}CARD at 1.9 Angstroms resolution reveals a novel homodimeric conformation. Our structural and biochemical analysis shows that the homodimerization of Nod1{_}CARD is achieved by swapping the H6 helices at the carboxy termini and stabilized by forming an interchain disulfide bond between the Cys39 residues of the two monomers in solution and in the crystal. In addition, we present experimentalmore » evidence for a pH-sensitive conformational change of Nod1{_}CARD. Our results suggest that the pH-sensitive monomer/dimer transition is a unique molecular property of Nod1{_}CARD.« less

  10. Predictors of associated autoimmune diseases (AAID) in families with type 1 diabetes (T1D). Results from the Type 1 Diabetes Genetics Consortium (T1DGC)

    PubMed Central

    Wägner, Ana M; Santana, Ángelo; Hernández, Marta; Wiebe, Julia C; Nóvoa, Javier; Mauricio, Didac

    2011-01-01

    Background Type 1 diabetes (T1D) is a clinically heterogeneous disease. The presence of associated autoimmune diseases (AAID) may represent a distinct form of autoimmune diabetes, with involvement of specific mechanisms. The aim of this study was to find predictors of AAID in the Type 1 Diabetes Genetics Consortium (T1DGC) data set. Methods 3263 families with at least 2 siblings with T1D were included. Clinical information was obtained using questionnaires, anti-GAD and anti-IA-2 were measured and HLA-genotyping was performed. Siblings with T1D with and without AAID were compared and a multivariate regression analysis was performed to find predictors of AAID. T1D-associated HLA haplotypes were defined as the 4 most susceptible and protective, respectively. Results AAID was present in 14.4% of the T1D affected siblings. Age of diabetes onset, current age and time since diagnosis were higher, and there was a female predominance and more family history of AAID in the group with AAID, as well as more frequent anti-GAD and less frequent anti-IA2 positivity. Risk and protective HLA haplotype distributions were similar, though DRB1*0301-DQA1*0501-DQB1*0201 was more frequent in the group with AAID. In the multivariate analysis, female gender, age of onset, family history of AAID, time since diagnosis and anti-GAD positivity were significantly associated with AAID. Conclusions In patients with T1D, the presence of AAID is associated with female predominance, more frequent family history of AAID, later onset of T1D and more anti-GAD antibodies, despite longer duration of the disease. The predominance of certain HLA haplotypes suggests that specific mechanisms of disease may be involved. PMID:21744463

  11. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    PubMed

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.

  12. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse

    PubMed Central

    Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose

    2017-01-01

    Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS. PMID:28273875

  13. Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse.

    PubMed

    Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose

    2017-03-05

    Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS.

  14. A Discrete Ubiquitin-Mediated Network Regulates the Strength of NOD2 Signaling

    PubMed Central

    Tigno-Aranjuez, Justine T.; Bai, Xiaodong

    2013-01-01

    Dysregulation of NOD2 signaling is implicated in the pathology of various inflammatory diseases, including Crohn's disease, asthma, and sarcoidosis, making signaling proteins downstream of NOD2 potential therapeutic targets. Inhibitor-of-apoptosis (IAP) proteins, particularly cIAP1, are essential mediators of NOD2 signaling, and in this work, we describe a molecular mechanism for cIAP1's regulation in the NOD2 signaling pathway. While cIAP1 promotes RIP2's tyrosine phosphorylation and subsequent NOD2 signaling, this positive regulation is countered by another E3 ubiquitin ligase, ITCH, through direct ubiquitination of cIAP1. This ITCH-mediated ubiquitination leads to cIAP1's lysosomal degradation. Pharmacologic inhibition of cIAP1 expression in ITCH−/− macrophages attenuates heightened ITCH−/− macrophage muramyl dipeptide-induced responses. Transcriptome analysis, combined with pharmacologic inhibition of cIAP1, further defines specific pathways within the NOD2 signaling pathway that are targeted by cIAP1. This information provides genetic signatures that may be useful in repurposing cIAP1-targeted therapies to correct NOD2-hyperactive states and identifies a ubiquitin-regulated signaling network centered on ITCH and cIAP1 that controls the strength of NOD2 signaling. PMID:23109427

  15. Insulin autoantibody could help to screen latent autoimmune diabetes in adults in phenotypic type 2 diabetes mellitus in Chinese.

    PubMed

    Huang, Gan; Wang, Xia; Li, Zhangwei; Li, Hui; Li, Xia; Zhou, Zhiguang

    2012-10-01

    Latent autoimmune diabetes in adults (LADA) is characterized by a relatively mild diabetes onset, autoantibody positivity, and eventual requirement for insulin therapy. Glutamic acid decarboxylase autoantibodies (GADA) or cytoplasmic islet cell autoantibodies (ICA) play a key role in distinguishing LADA from type 2 diabetes mellitus (T2DM) in clinical practice. The aim of our research was to determine whether insulin autoantibody (IAA) has some additional value in diagnosing LADA. We analyzed IAA, GADA, and IA-2A (antibodies to insulinoma-associated antigen-2) in 1,003 newly diagnosed phenotypic T2DM patients, 110 type 1 diabetes mellitus (T1DM) patients, and 317 normal controls to survey the prevalence of IAA in phenotypic T2DM patients and the overlapping positivity of IAA with other autoantibodies. Sera were drawn within 7 days from the start of insulin therapy. Results showed that 3.39% of the newly diagnosed phenotypic T2DM, 0.95% of normal control (χ(2) = 5.3, P < 0.05), and 21.82% of T1DM (χ(2) = 68.2, P < 0.001) were positive for IAA at diagnosis. The combination frequency of three antibodies was 10.47%, which was higher than any single antibody testing. Combination testing of IAA with GADA and IA-2A could improve LADA diagnose rate by 2.39% than that of GADA and IA-2A. IAA-positive subjects had diabetes family history more common compared to its matched group (67.6% vs. 14.7%, P = 0.000). Postprandial C-peptide in IAA-positive group tended to be lower, but the difference was not statistically significant (P = 0.084). We concluded that IAA can be used to screen LADA in phenotypic T2DM in the Chinese population.

  16. Effects of human interleukin-18 and interleukin-12 treatment on human lymphocyte engraftment in NOD-scid mouse

    PubMed Central

    Senpuku, Hidenobu; Asano, Toshihiko; Matin, Khairul; Salam, M Abdus; Tsuha, Yuzo; Horibata, Shigeo; Shimazu, Yoshihito; Soeno, Yuichi; Aoba, Takaaki; Sata, Tetsutaro; Hanada, Nobuhiro; Honda, Mitsuo

    2002-01-01

    NOD/LtSz-prkdcscid/prkdcscid (non-obese diabetic-severe combine immunodeficiency; NOD-scid) mice grafted with human peripheral blood lymphoid cells have been used as an in vivo humanized mouse model in various studies. However, cytotoxic human T cells are induced in this model during immune responses, which gives misleading results. To assist in grafting of human lymphocytes without the induction of cytotoxic human T cells, we investigated the effects of T helper type 1 (Th1) and Th2 cytokines on human lymphocyte grafting and migration, as well as the production of immunoglobulin deposited in glomeruli and human immunodeficiency virus-1 (HIV-1) infection using NOD-scid mice. Administration of interleukin-18 (IL-18) and IL-12 enhanced the grafting of human CD4+ and CD8+ T cells in the mice, whereas co-administration prevented grafting due to interferon-γ-dependent apoptosis. Immunoglobulin A (IgA) deposits were observed in mice treated with IL-18 alone, but not in those given phosphate-buffered saline, IL-12 alone, or IL-18 + IL-12. A high rate of HIV infection was also observed in the IL-18-treated group. Together, these results indicate that IL-18 may be effective for the grafting and migration of CD4+ and CD8+ T cells, except for the induction of apoptosis and regulation of class-switching IgA. IL-18-administered NOD-scid mice provide a useful small humanized model for the study of HIV infection and IgA nephropathy. PMID:12383203

  17. Homology modeling and in silico prediction of Ulcerative colitis associated polymorphisms of NOD1.

    PubMed

    Majumdar, Ishani; Nagpal, Isha; Paul, Jaishree

    2017-10-01

    Cytosolic pattern recognition receptors play key roles in innate immune response. Nucleotide binding and oligomerisation domain containing protein 1 (NOD1) belonging to the Nod-like receptor C (NLRC) sub-family of Nod-like receptors (NLRs) is important for detection and clearance of intra-cellular Gram negative bacteria. NOD1 is involved in activation of pro-inflammatory pathways. Limited structural data is available for NOD1. Using different templates for each domain of NOD1, we determined the full-length homology model of NOD1. ADP binding amino acids within the nucleotide binding domain (NBD) of NOD1 were also predicted. Key residues in inter-domain interaction were identified by sequence comparison with Oryctolagus cuniculus NOD2, a related protein. Interactions between NBD and winged helix domain (WHD) were found to be conserved in NOD1. Functional and structural effect of single nucleotide polymorphisms within the NOD1 NBD domain associated with susceptibility risk to Ulcerative colitis (UC), an inflammatory disorder of the colon was evaluated by in silico studies. Mutations W219R and L349P were predicted to be damaging and disease associated by prediction programs SIFT, PolyPhen2, PANTHER, SNP&GO, PhD SNP and SNAP2. We further validated the effect of W219R and L349P mutation on NOD1 function in vitro. Elevated mRNA expression of pro-inflammatory cytokines IL8 and IL-1β was seen as compared to the wild type NOD1 in intestinal epithelial cell line HT29 when stimulated with NOD1 ligand. Thus, these mutations may indeed have a bearing on pathogenesis of inflammation during UC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae

    PubMed Central

    Schenk, Mirjam; Mahapatra, Sebabrata; Le, Phuonganh; Kim, Hee Jin; Choi, Aaron W.; Brennan, Patrick J.; Belisle, John T.

    2016-01-01

    The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP. PMID:27297389

  19. Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae.

    PubMed

    Schenk, Mirjam; Mahapatra, Sebabrata; Le, Phuonganh; Kim, Hee Jin; Choi, Aaron W; Brennan, Patrick J; Belisle, John T; Modlin, Robert L

    2016-09-01

    The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP. Copyright © 2016 Schenk et al.

  20. [Expression of miR-22 and miR-150 in type 1 diabetes mellitus: Possible relationship with autoimmunity and clinical characteristics].

    PubMed

    Estrella, Santiago; Garcia-Diaz, Diego F; Codner, Ethel; Camacho-Guillén, Patricia; Pérez-Bravo, Francisco

    2016-09-16

    Type 1 diabetes (T1D) is an autoimmune disease of complex aetiology. Several microRNAs (miR) have been linked to the pathogenesis of autoimmune diseases. To analyze the possible association of miR-22 and miR-150 with autoimmunity and clinical severity of T1D. The study was performed in peripheral blood mononuclear cells of 20 patients with T1D and 20 control subjects. The expression of miR-22 and miR-150 was performed in peripheral blood mononuclear cells using TaqMan probes to different glucose concentrations (baseline, 11mm, 25mm). Our results suggest that the expression of miR-22 is increased in T1D patients compared to the controls. This effect was observed in baseline glucose conditions and decreased in 11 and 25mM of glucose. The expression of miR-150 was lower in T1D patients versus the controls. There was no correlation between the autoimmune profile and the two studied miRNAs. miR-22 (baseline condition) and miR-150 (11mM condition) or the ketoacidosis component. miR-22 and 150 were not associated with the autoimmune component present in T1D patients. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  1. Double Negative (CD3+4-8-) TCRalphaBeta Splenic Cells from Young NOD Mice Provide Long-Lasting Protection against Type 1 Diabetes

    DTIC Science & Technology

    2010-07-02

    indicated. Panel B, pancreatic infiltrating lymphocytes from 4 month-old NOD females ( left histogram) and males ( right histogram) (n = 8 mice/group...assay was used to measure the IL-2 secretion in the culture medium. Panel A, DN splenic cell cultures stimulated under Th1 ( left panel) and Th2 ( right ...variance test. The significance (p#0.005) of individual differences in frequency of DNCD3 thymocytes and splenocytes from female and male NOD littermates

  2. Orphan Kinesin NOD Lacks Motile Properties But Does Possess a Microtubule-stimulated ATPase Activity

    PubMed Central

    Matthies, Heinrich J.G.; Baskin, Ronald J.; Hawley, R. Scott

    2001-01-01

    NOD is a Drosophila chromosome-associated kinesin-like protein that does not fall into the chromokinesin subfamily. Although NOD lacks residues known to be critical for kinesin function, we show that microtubules activate the ATPase activity of NOD >2000-fold. Biochemical and genetic analysis of two genetically identified mutations of NOD (NODDTW and NOD“DR2”) demonstrates that this allosteric activation is critical for the function of NOD in vivo. However, several lines of evidence indicate that this ATPase activity is not coupled to vectorial transport, including 1) NOD does not produce microtubule gliding; and 2) the substitution of a single amino acid in the Drosophila kinesin heavy chain with the analogous amino acid in NOD results in a drastic inhibition of motility. We suggest that the microtubule-activated ATPase activity of NOD provides transient attachments of chromosomes to microtubules rather than producing vectorial transport. PMID:11739796

  3. Altered B cell signalling in autoimmunity

    PubMed Central

    Rawlings, David J.; Metzler, Genita; Wray-Dutra, Michelle; Jackson, Shaun W.

    2017-01-01

    Recent work has provided new insights into how altered B cell-intrinsic signals — through the B cell receptor (BCR) and key co-receptors — function together to promote the pathogenesis of autoimmunity. These combined signals affect B cells at two distinct stages: first, in the selection of the naive repertoire; and second, during extrafollicular or germinal centre activation responses. Thus, dysregulated signalling can lead to both an altered naive BCR repertoire and the generation of autoantibody-producing B cells. Strikingly, high-affinity autoantibodies predate and predict disease in several autoimmune disorders, including type 1 diabetes and systemic lupus erythematosus. This Review summarizes how, rather than being a downstream consequence of autoreactive T cell activation, dysregulated B cell signalling can function as a primary driver of many human autoimmune diseases. PMID:28393923

  4. Mechanisms of lymphocyte migration in autoimmune disease.

    PubMed

    Norman, M U; Hickey, M J

    2005-09-01

    The recruitment of leukocytes to inflamed tissues plays an essential role in combating infection and promoting wound healing. However, in autoimmune diseases such as multiple sclerosis and diabetes, leukocytes enter tissues and contribute to inappropriate inflammatory responses, which cause tissue injury and dysfunction. In diseases of this type, lymphocytes play critical roles in initiating and maintaining these aberrant inflammatory responses. The aim of this review is to examine the mechanisms whereby T-lymphocytes enter tissues in autoimmune diseases and to compare these mechanisms between various organs and diseases. An overview of the mechanisms of leukocyte recruitment and the techniques used to study leukocyte trafficking is provided, focusing on the use of intravital microscopy as a tool to assess the functional microvasculature in vivo. We also discuss the series of tissue homing events which allow naïve lymphocytes to first enter lymph nodes and undergo activation, then subsequently to home to the peripheral organ where their cognate antigen is present. Finally, we examine mechanisms of leukocyte recruitment in diseases such as multiple sclerosis, autoimmune diabetes, systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease and asthma.

  5. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus

    PubMed Central

    Barcala Tabarrozzi, A E; Castro, C N; Dewey, R A; Sogayar, M C; Labriola, L; Perone, M J

    2013-01-01

    Type 1 diabetes mellitus (T1DM) results from death of insulin-secreting β cells mediated by self-immune cells, and the consequent inability of the body to maintain insulin levels for appropriate glucose homeostasis. Probably initiated by environmental factors, this disease takes place in genetically predisposed individuals. Given the autoimmune nature of T1DM, therapeutics targeting immune cells involved in disease progress have been explored over the last decade. Several high-cost trials have been attempted to prevent and/or reverse T1DM. Although a definitive solution to cure T1DM is not yet available, a large amount of information about its nature and development has contributed greatly to both the improvement of patient's health care and design of new treatments. In this study, we discuss the role of different types of immune cells involved in T1DM pathogenesis and their therapeutic potential as targets and/or modified tools to treat patients. Recently, encouraging results and new approaches to sustain remnant β cell mass and to increase β cell proliferation by different cell-based means have emerged. Results coming from ongoing clinical trials employing cell therapy designed to arrest T1DM will probably proliferate in the next few years. Strategies under consideration include infusion of several types of stem cells, dendritic cells and regulatory T cells, either manipulated genetically ex vivo or non-manipulated. Their use in combination approaches is another therapeutic alternative. Cell-based interventions, without undesirable side effects, directed to block the uncontrollable autoimmune response may become a clinical reality in the next few years for the treatment of patients with T1DM. PMID:23286940

  6. Curcumin and autoimmune disease.

    PubMed

    Bright, John J

    2007-01-01

    The immune system has evolved to protect the host from microbial infection; nevertheless, a breakdown in the immune system often results in infection, cancer, and autoimmune diseases. Multiple sclerosis, rheumatoid arthritis, type 1 diabetes, inflammatory bowel disease, myocarditis, thyroiditis, uveitis, systemic lupus erythromatosis, and myasthenia gravis are organ-specific autoimmune diseases that afflict more than 5% of the population worldwide. Although the etiology is not known and a cure is still wanting, the use of herbal and dietary supplements is on the rise in patients with autoimmune diseases, mainly because they are effective, inexpensive, and relatively safe. Curcumin is a polyphenolic compound isolated from the rhizome of the plant Curcuma longa that has traditionally been used for pain and wound-healing. Recent studies have shown that curcumin ameliorates multiple sclerosis, rheumatoid arthritis, psoriasis, and inflammatory bowel disease in human or animal models. Curcumin inhibits these autoimmune diseases by regulating inflammatory cytokines such as IL-1beta, IL-6, IL-12, TNF-alpha and IFN-gamma and associated JAK-STAT, AP-1, and NF-kappaB signaling pathways in immune cells. Although the beneficial effects of nutraceuticals are traditionally achieved through dietary consumption at low levels for long periods of time, the use of purified active compounds such as curcumin at higher doses for therapeutic purposes needs extreme caution. A precise understanding of effective dose, safe regiment, and mechanism of action is required for the use of curcumin in the treatment of human autoimmune diseases.

  7. Diabetes-associated dry eye syndrome in a new humanized transgenic model of type 1 diabetes.

    PubMed

    Imam, Shahnawaz; Elagin, Raya B; Jaume, Juan Carlos

    2013-01-01

    Patients with Type 1 Diabetes (T1D) are at high risk of developing lacrimal gland dysfunction. We have developed a new model of human T1D using double-transgenic mice carrying HLA-DQ8 diabetes-susceptibility haplotype instead of mouse MHC-class II and expressing the human beta cell autoantigen Glutamic Acid Decarboxylase in pancreatic beta cells. We report here the development of dry eye syndrome (DES) after diabetes induction in our humanized transgenic model. Double-transgenic mice were immunized with DNA encoding human GAD65, either naked or in adenoviral vectors, to induce T1D. Mice monitored for development of diabetes developed lacrimal gland dysfunction. Animals developed lacrimal gland disease (classically associated with diabetes in Non Obese Diabetic [NOD] mice and with T1D in humans) as they developed glucose intolerance and diabetes. Animals manifested obvious clinical signs of dry eye syndrome (DES), from corneal erosions to severe keratitis. Histological studies of peri-bulbar areas revealed lymphocytic infiltration of glandular structures. Indeed, infiltrative lesions were observed in lacrimal/Harderian glands within weeks following development of glucose intolerance. Lesions ranged from focal lymphocytic infiltration to complete acinar destruction. We observed a correlation between the severity of the pancreatic infiltration and the severity of the ocular disease. Our results demonstrate development of DES in association with antigen-specific insulitis and diabetes following immunization with clinically relevant human autoantigen concomitantly expressed in pancreatic beta cells of diabetes-susceptible mice. As in the NOD mouse model and as in human T1D, our animals developed diabetes-associated DES. This specific finding stresses the relevance of our model for studying these human diseases. We believe our model will facilitate studies to prevent/treat diabetes-associated DES as well as human diabetes.

  8. Transplantation of autoimmune regulator-encoding bone marrow cells delays the onset of experimental autoimmune encephalomyelitis.

    PubMed

    Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank

    2010-12-01

    The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans.

    PubMed

    Vatanen, Tommi; Kostic, Aleksandar D; d'Hennezel, Eva; Siljander, Heli; Franzosa, Eric A; Yassour, Moran; Kolde, Raivo; Vlamakis, Hera; Arthur, Timothy D; Hämäläinen, Anu-Maaria; Peet, Aleksandr; Tillmann, Vallo; Uibo, Raivo; Mokurov, Sergei; Dorshakova, Natalya; Ilonen, Jorma; Virtanen, Suvi M; Szabo, Susanne J; Porter, Jeffrey A; Lähdesmäki, Harri; Huttenhower, Curtis; Gevers, Dirk; Cullen, Thomas W; Knip, Mikael; Xavier, Ramnik J

    2016-05-05

    According to the hygiene hypothesis, the increasing incidence of autoimmune diseases in western countries may be explained by changes in early microbial exposure, leading to altered immune maturation. We followed gut microbiome development from birth until age three in 222 infants in Northern Europe, where early-onset autoimmune diseases are common in Finland and Estonia but are less prevalent in Russia. We found that Bacteroides species are lowly abundant in Russians but dominate in Finnish and Estonian infants. Therefore, their lipopolysaccharide (LPS) exposures arose primarily from Bacteroides rather than from Escherichia coli, which is a potent innate immune activator. We show that Bacteroides LPS is structurally distinct from E. coli LPS and inhibits innate immune signaling and endotoxin tolerance; furthermore, unlike LPS from E. coli, B. dorei LPS does not decrease incidence of autoimmune diabetes in non-obese diabetic mice. Early colonization by immunologically silencing microbiota may thus preclude aspects of immune education. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Nucleotide Synthesis Enzyme CAD Inhibits NOD2 Antibacterial Function in Human Intestinal Epithelial Cells

    PubMed Central

    Richmond, Amy L.; Kabi, Amrita; Homer, Craig R.; García, Noemí Marina; Nickerson, Kourtney P.; NesvizhskiI, Alexey I.; Sreekumar, Arun; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2013-01-01

    BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn’s disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS Carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD. PMID:22387394

  11. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda.

    PubMed

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus ( OV ). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus . Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis , some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with ( OV infection (using positive skin snips), we observe that ( OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda.

  12. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda

    PubMed Central

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus (OV). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus. Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis, some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with (OV infection (using positive skin snips), we observe that (OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda. PMID:29138647

  13. Gamma delta lymphocytes in endocrine autoimmunity: evidence of expansion in Graves' disease but not in type 1 diabetes.

    PubMed Central

    Roura-Mir, I C; Alcalde, L; Vargas, F; Tolosa, E; Obiols, G; Foz, M; Jaraquemada, D; Pujol-Borrell, R

    1993-01-01

    Endocrine autoimmune disorders are mediated by T cell-dependent responses to organ-specific antigens, but the mechanisms initiating the process remain unknown. Lymphocytes which use the gamma delta heterodimer as T cell receptor (TCR) for antigen constitute a distinct subset of T cells whose function remains elusive. In order to investigate their possible involvement in endocrine autoimmunity we have determined the proportion of gamma delta T cells in the peripheral blood of 23 patients with type 1 (insulin-dependent) diabetes mellitus (type-1 DM) and 30 patients with autoimmune thyrotoxicosis (Graves' disease). T lymphocyte TCR expression was assessed by fluorescence-activated flow cytometry on peripheral blood mononuclear cells using MoAbs UCHT1 (CD3), TCR delta 1 (gamma delta TCR), WT31 and beta F1 (alpha beta TCR) and both the percentage of T cells expressing gamma delta and the ratio gamma delta/alpha beta were calculated. In the diabetic patients gamma delta cells were not significantly different from the control group (7.7 +/- 54% versus 8.0 +/- 5.5% of T cells, P NS). There was no relation between the proportion of gamma delta lymphocytes and the presence of islet cell antibodies (ICA) in the sera. The Graves' patients showed a tendency towards a higher proportion of gamma delta T lymphocytes than the controls (gamma delta/alpha beta ratios: 0.095 +/- 0.047 versus 0.063 +/- 0.022, P = 0.03). In 14 Graves' patients the number of gamma delta were measured in paired samples of peripheral and intrathyroidal lymphocytes, demonstrating an expansion of gamma delta within the thyroid glands (0.21 +/- 0.3 versus 0.095 +/- 0.047, P = 0.032). Immunohistochemical studies showed that gamma delta cells were scattered among the predominant alpha beta lymphocytes infiltrating the thyroid gland and that they account for 10% of intraepithelial lymphocytes. No relation was found between the increase of gamma delta lymphocytes and any clinical features. PMID:8485915

  14. Diabetes insipidus is an unfavorable prognostic factor for response to glucocorticoids in patients with autoimmune hypophysitis.

    PubMed

    Lupi, Isabella; Cosottini, Mirco; Caturegli, Patrizio; Manetti, Luca; Urbani, Claudio; Cappellani, Daniele; Scattina, Ilaria; Martino, Enio; Marcocci, Claudio; Bogazzi, Fausto

    2017-08-01

    Autoimmune hypophysitis (AH) has a variable clinical presentation and natural history; likewise, its response to glucocorticoid therapy is often unpredictable. To identify clinical and radiological findings associated with response to glucocorticoids. 12 consecutive patients with AH, evaluated from 2008 to 2016. AH was the exclusion diagnosis after ruling out other pituitary masses and secondary causes of hypophysitis. Mean follow-up time was 30 ± 27 months (range 12-96 months). MRI identified two main patterns of presentation: global enlargement of the pituitary gland or panhypophysitis ( n  = 4, PH), and pituitary stalk abnormality only, or infundibulo-neuro-hypophysitis ( n  = 8, INH). Multiple tropin defects were more common in PH (100%) than those in INH (28% P  = 0.014), whereas diabetes insipidus was more common in INH (100%) than that in PH (50%; P  = 0.028). All 4 PH and 4 out of 8 INH were treated with glucocorticoids. Pituitary volume significantly reduced in all PH patients ( P  = 0.012), defective anterior pituitary function recovered only in the two patients without diabetes insipidus (50%) and panhypopituitarism persisted, along with diabetes insipidus, in the remaining 2 (50%). In all INH patients, either treated or untreated, pituitary stalk diameter reduced ( P  = 0.008) but diabetes insipidus persisted in all. Glucocorticoid therapy may improve anterior pituitary function in a subset of patients but has no effect on restoring posterior pituitary function. Diabetes insipidus appears as a negative prognostic factor for response to glucocorticoids. © 2017 European Society of Endocrinology.

  15. Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩

    PubMed Central

    Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar

    2014-01-01

    In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415

  16. Understanding the molecular differential recognition of muramyl peptide ligands by LRR domains of human NOD receptors.

    PubMed

    Vijayrajratnam, Sukhithasri; Pushkaran, Anju Choorakottayil; Balakrishnan, Aathira; Vasudevan, Anil Kumar; Biswas, Raja; Mohan, Chethampadi Gopi

    2017-07-27

    Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso -diaminopimelic acid ( meso DAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues - G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. GAD-Alum (Diamyd) Administered Into Lymph Nodes in Combination With Vitamin D in Type 1 Diabetes

    ClinicalTrials.gov

    2018-05-02

    Diabetes Mellitus, Type 1; Diabetes Mellitus; Autoimmune Diseases; Metabolic Disease; Glucose Metabolism Disorders; Immune System Diseases; Endocrine System Diseases; Juvenile Diabetes; Insulin Dependent Diabetes; Autoimmune Diabetes; Vitamin D; Physiological Effects of Drugs

  18. Immunogenetics of Type 1 Diabetes Mellitus

    PubMed Central

    Morran, Michael P.; Vonberg, Andrew; Khadra, Anmar; Pietropaolo, Massimo

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease arising through a complex interaction of both genetic and immunologic factors. Similar to the majority of autoimmune diseases, T1DM usually has a relapsing remitting disease course with autoantibody and T cellular responses to islet autoantigens, which precede the clinical onset of the disease process. The immunological diagnosis of autoimmune diseases relies primarily on the detection of autoantibodies in the serum of T1DM patients. Although their pathogenic significance remains uncertain, they have the practical advantage of serving as surrogate biomarkers for predicting the clinical onset of T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects, (i.e. HLA) and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3) or DRB1*04-DQB1*0302 (DR4)]. In addition, HLA alleles such as DQB1*0602 are associated with dominant protection from T1DM in multiple populations. A discordance rate of greater than 50% between monozygotic twins indicates a potential involvement of environmental factors on disease development. Viral infections may play a role in the chain of events leading to disease, albeit conclusive evidence linking infections with T1DM remains to be firmly established. Two syndromes have been described in which an immune-mediated form of diabetes occurs as the result of a single gene defect. These syndromes are termed autoimmune polyglandular syndrome type I (APS-I) or autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), and X-linked poyendocrinopathy, immune dysfunction and diarrhea (XPID). These two syndromes are unique models to understand the mechanisms involved in the loss of tolerance to self-antigens in autoimmune diabetes and its associated organ-specific autoimmune disorders. A growing number of animal models of these diseases have greatly helped

  19. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    PubMed Central

    Gresnigt, Mark S.; Jaeger, Martin; Subbarao Malireddi, R. K.; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J. G.; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L.

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host

  20. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression.

    PubMed

    Gresnigt, Mark S; Jaeger, Martin; Subbarao Malireddi, R K; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J G; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus . When exploring the role of NOD1 in an experimental mouse model, we found that Nod1 -/- mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1 -/- mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus . Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1 -/- mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1 -/- cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus . This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells

  1. Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes.

    PubMed

    Maffeis, Claudio; Martina, Alessia; Corradi, Massimiliano; Quarella, Sara; Nori, Nicole; Torriani, Sandra; Plebani, Mario; Contreas, Giovanna; Felis, Giovanna E

    2016-10-01

    Pancreatic organ-specific autoimmunity in subjects at risk for type 1 diabetes (T1D) is associated with increased intestinal permeability and an aberrant gut microbiota, but these factors have not yet been simultaneously investigated in the same subjects. Thus, the aim of this study was to assess both intestinal permeability and gut microbiota composition in an Italian sample of children at risk for T1D. Ten Italian children with beta cell autoimmunity at risk for T1D and 10 healthy children were involved in a case-control study. The lactulose/mannitol test was used to assess intestinal permeability. Analysis of microbiota composition was performed using polymerase chain reaction followed by denaturing gradient gel electrophoresis, based on the 16S rRNA gene. Intestinal permeability was significantly higher in children at risk for T1D than in healthy controls. Moreover, the gut microbiota of the former differed from that of the latter group: Three microorganisms were detected - Dialister invisus, Gemella sanguinis and Bifidobacterium longum - in association with the pre-pathologic state. The results of this study validated the hypothesis that increased intestinal permeability together with differences in microbiota composition are contemporaneously associated with the pre-pathological condition of T1D in a sample of Italian children. Further studies are necessary to confirm the microbial markers identified in this sample of children as well as to clarify the involvement of microbiota modifications in the mechanisms leading to increased permeability and the autoimmune mechanisms that promote diabetes onset. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Can infections prevent or cure allergy and autoimmunity?

    PubMed

    Kamradt, Thomas

    2005-06-01

    Extract: In western countries the prevalence and incidence of allergic and autoimmune diseases have been increasing dramatically over the last 50 years. In the last two decades, significant progress has been made towards understanding the genetic basis for susceptibility to autoimmunity or allergy. Genetic factors, however, cannot explain abrupt changes in disease incidence. It is therefore likely that environmental factors, specifically environmental factors that have changed over the last two generations, are critical for the increasing incidence of allergies and autoimmune diseases. Traditionally, autoimmune diseases such as multiple sclerosis (MS), type I diabetes, or rheumatoid arthritis (RA) are believed to have resulted from aberrant immune response to pathogens. In contrast, the "hygiene hypothesis," first postulated some 20 years ago, proposes that a lack of infections, especially during early childhood, predisposes one to the aberrant immune responses against harmless foreign antigens that cause allergic diseases such as rhinitis, atopic dermatitis, and allergic asthma. Several lines of epidemiological, clinical and experimental research point to more complex connections, either protective or pathogenic, between infection, allergy and autoimmunity.

  3. Insulin autoantibodies: evidence of autoimmune disease among a group of Puerto Rican children with newly diagnosed type 1 diabetes mellitus.

    PubMed

    González de Pijem, L; Nieves-Rivera, F

    2001-06-01

    Type 1 diabetes is a chronic disease caused by a cell-specific destruction of the insulin producing cells of the pancreas. Although Puerto Rico has the highest incidence of type 1 diabetes among Latin American countries, there is scanty data on the presence of antibodies against insulin producing cells. To this end, 20 children (8 males, 12 females), ages 1-15 years, admitted to the University Pediatric Hospital with type 1 diabetes de novo between November 2000 and April 2001 were prospectively studied to determine the presence of serum antibodies against Islet cells (ICA), glutamic acid decarboxylase (GAD-65) and insulin autoantibodies (IAA). IAA was found to be present in 45% of the subjects with 85% of positive rate in subjects under age 5. GAD-65 was present in 66% and ICA was present in 23% of the subjects. We found evidence of autoimmunity against islet cell surface and intracellular components among a cohort of Puerto Rican children with newly diagnosed type 1 diabetes. These findings compared favorably with reports from other ethnicities.

  4. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival.

    PubMed

    Cruickshank, Sheena-M; Wakenshaw, Louise; Cardone, John; Howdle, Peter-D; Murray, Peter-J; Carding, Simon-R

    2008-10-14

    To investigate the function of NOD2 in colonic epithelial cells (CEC). A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2(-/-) mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation.

  5. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival

    PubMed Central

    Cruickshank, Sheena M; Wakenshaw, Louise; Cardone, John; Howdle, Peter D; Murray, Peter J; Carding, Simon R

    2008-01-01

    AIM: To investigate the function of NOD2 in colonic epithelial cells (CEC). METHODS: A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. RESULTS: In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2-/- mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. CONCLUSION: These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation. PMID:18855982

  6. Autism and Autoimmune Disease: A Family Study

    ERIC Educational Resources Information Center

    Money, John; And Others

    1971-01-01

    Described in a family in which the youngest boy has early infantile autism, Addison's disease, and moniliasis and two older boys have autoimmune disease with hypoparathyroidism, Addison's disease, moniliasis, and either alopecia totalis or diabetes mellitus, while the oldest boy and parents are symptom free. (KW)

  7. Anti-Saccharomyces cerevisiae autoantibodies in autoimmune diseases: from bread baking to autoimmunity.

    PubMed

    Rinaldi, Maurizio; Perricone, Roberto; Blank, Miri; Perricone, Carlo; Shoenfeld, Yehuda

    2013-10-01

    Saccharomyces cerevisiae is best known as the baker's and brewer's yeast, but its residual traces are also frequent excipients in some vaccines. Although anti-S. cerevisiae autoantibodies (ASCAs) are considered specific for Crohn's disease, a growing number of studies have detected high levels of ASCAs in patients affected with autoimmune diseases as compared with healthy controls, including antiphospholipid syndrome, systemic lupus erythematosus, type 1 diabetes mellitus, and rheumatoid arthritis. Commensal microorganisms such as Saccharomyces are required for nutrition, proper development of Peyer's aggregated lymphoid tissue, and tissue healing. However, even the commensal nonclassically pathogenic microbiota can trigger autoimmunity when fine regulation of immune tolerance does not work properly. For our purposes, the protein database of the National Center for Biotechnology Information (NCBI) was consulted, comparing Saccharomyces mannan to several molecules with a pathogenetic role in autoimmune diseases. Thanks to the NCBI bioinformation technology tool, several overlaps in molecular structures (50-100 %) were identified when yeast mannan, and the most common autoantigens were compared. The autoantigen U2 snRNP B″ was found to conserve a superfamily protein domain that shares 83 % of the S. cerevisiae mannan sequence. Furthermore, ASCAs may be present years before the diagnosis of some associated autoimmune diseases as they were retrospectively found in the preserved blood samples of soldiers who became affected by Crohn's disease years later. Our results strongly suggest that ASCAs' role in clinical practice should be better addressed in order to evaluate their predictive or prognostic relevance.

  8. Involvement of hypothalamus autoimmunity in patients with autoimmune hypopituitarism: role of antibodies to hypothalamic cells.

    PubMed

    De Bellis, A; Sinisi, A A; Pane, E; Dello Iacovo, A; Bellastella, G; Di Scala, G; Falorni, A; Giavoli, C; Gasco, V; Giordano, R; Ambrosio, M R; Colao, A; Bizzarro, A; Bellastella, A

    2012-10-01

    Antipituitary antibodies (APA) but not antihypothalamus antibodies (AHA) are usually searched for in autoimmune hypopituitarism. Our objective was to search for AHA and characterize their hypothalamic target in patients with autoimmune hypopituitarism to clarify, on the basis of the cells stained by these antibodies, the occurrence of autoimmune subclinical/clinical central diabetes insipidus (CDI) and/or possible joint hypothalamic contribution to their hypopituitarism. We conducted a cross-sectional cohort study. Ninety-five APA-positive patients with autoimmune hypopituitarism, 60 without (group 1) and 35 with (group 2) lymphocytic hypophysitis, were studied in comparison with 20 patients with postsurgical hypopituitarism and 50 normal subjects. AHA by immunofluorescence and posterior pituitary function were evaluated; then AHA-positive sera were retested by double immunofluorescence to identify the hypothalamic cells targeted by AHA. AHA were detected at high titer in 12 patients in group 1 and in eight patients in group 2. They immunostained arginine vasopressin (AVP)-secreting cells in nine of 12 in group 1 and in four of eight in group 2. All AVP cell antibody-positive patients presented with subclinical/clinical CDI; in contrast, four patients with GH/ACTH deficiency but with APA staining only GH-secreting cells showed AHA targeting CRH- secreting cells. The occurrence of CDI in patients with lymphocytic hypophysitis seems due to an autoimmune hypothalamic involvement rather than an expansion of the pituitary inflammatory process. To search for AVP antibody in these patients may help to identify those of them prone to develop an autoimmune CDI. The detection of AHA targeting CRH-secreting cells in some patients with GH/ACTH deficiency but with APA targeting only GH-secreting cells indicates that an autoimmune aggression to hypothalamus is jointly responsible for their hypopituitarism.

  9. Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway

    PubMed Central

    Catoira, Romy; Galera, Christine; de Billy, Francoise; Penmetsa, R. Varma; Journet, Etienne-Pascal; Maillet, Fabienne; Rosenberg, Charles; Cook, Douglas; Gough, Clare; Dénarié, Jean

    2000-01-01

    Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factor–activated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1, dmi2, and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization. PMID:11006338

  10. Low Incidence of Spontaneous Type 1 Diabetes in Non-Obese Diabetic Mice Raised on Gluten-Free Diets Is Associated with Changes in the Intestinal Microbiome

    PubMed Central

    Marietta, Eric V.; Gomez, Andres M.; Yeoman, Carl; Tilahun, Ashenafi Y.; Clark, Chad R.; Luckey, David H.; Murray, Joseph A.; White, Bryan A.; Kudva, Yogish C.; Rajagopalan, Govindarajan

    2013-01-01

    Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of

  11. Low incidence of spontaneous type 1 diabetes in non-obese diabetic mice raised on gluten-free diets is associated with changes in the intestinal microbiome.

    PubMed

    Marietta, Eric V; Gomez, Andres M; Yeoman, Carl; Tilahun, Ashenafi Y; Clark, Chad R; Luckey, David H; Murray, Joseph A; White, Bryan A; Kudva, Yogish C; Rajagopalan, Govindarajan

    2013-01-01

    Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of

  12. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation.

    PubMed

    Ip, H; D'Aoust, F; Begum, A A; Zhang, H; Smith, D L; Driscoll, B T; Charles, T C

    2001-12-01

    Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.

  13. Autoimmune endocrinopathy associated with diabetes insipidus

    PubMed Central

    Bhan, G. L.; O'Brien, T. D.

    1982-01-01

    A case is described in which diabetes insipidus was associated with hypopituitarism, insulin-independent diabetes mellitus, pernicious anaemia and circulating antibodies to the thyroid gland, adrenal gland and the pancreatic islet cells. PMID:7100039

  14. The NOD2 Single Nucleotide Polymorphism rs72796353 (IVS4+10 A>C) Is a Predictor for Perianal Fistulas in Patients with Crohn's Disease in the Absence of Other NOD2 Mutations.

    PubMed

    Schnitzler, Fabian; Friedrich, Matthias; Wolf, Christiane; Stallhofer, Johannes; Angelberger, Marianne; Diegelmann, Julia; Olszak, Torsten; Tillack, Cornelia; Beigel, Florian; Göke, Burkhard; Glas, Jürgen; Lohse, Peter; Brand, Stephan

    2015-01-01

    A previous study suggested an association of the single nucleotide polymorphism (SNP) rs72796353 (IVS4+10 A>C) in the NOD2 gene with susceptibility to Crohn's disease (CD). However, this finding has not been confirmed. Given that NOD2 variants still represent the most important predictors for CD susceptibility and phenotype, we evaluated the association of rs72796353 with inflammatory bowel disease (IBD) susceptibility and the IBD phenotype. Genomic DNA from 2256 Caucasians, including 1073 CD patients, 464 patients with ulcerative colitis (UC), and 719 healthy controls, was genotyped for the NOD2 SNP rs72796353 and the three main CD-associated NOD2 mutations rs2066844, rs2066845, and rs2066847. Subsequently, IBD association and genotype-phenotype analyses were conducted. In contrast to the strong associations of the NOD2 SNPs rs2066844 (p=3.51 x 10(-3)), rs2066845 (p=1.54 x 10(-2)), and rs2066847 (p=1.61 x 10(-20)) with CD susceptibility, no significant association of rs72796353 with CD or UC susceptibility was found. However, in CD patients without the three main CD-associated NOD2 mutations, rs72796353 was significantly associated with the development of perianal fistulas (p=2.78 x 10(-7), OR 5.27, [95% CI 2.75-10.12] vs. NOD2 wild-type carriers). Currently, this study represents the largest genotype-phenotype analysis of the impact of the NOD2 variant rs72796353 on the disease phenotype in IBD. Our data demonstrate that in CD patients the IVS4+10 A>C variant is strongly associated with the development of perianal fistulas. This association is particularly pronounced in patients who are not carriers of the three main CD-associated NOD2 mutations, suggesting rs72796353 as additional genetic marker for the CD disease behaviour.

  15. Association of sarcopenia with both latent autoimmune diabetes in adults and type 2 diabetes: a cross-sectional study.

    PubMed

    Bouchi, Ryotaro; Fukuda, Tatsuya; Takeuchi, Takato; Nakano, Yujiro; Murakami, Masanori; Minami, Isao; Izumiyama, Hajime; Hashimoto, Koshi; Yoshimoto, Takanobu; Ogawa, Yoshihiro

    2017-06-01

    To investigate the association of both latent autoimmune diabetes in adults (LADA) and type 2 diabetes (T2DM) with muscle mass and function (sarcopenia). Japanese patients with LADA (N=20), T2DM (N=208), and control subjects (N=41) were included in this cross-sectional study. The definition of LADA was based on age of onset (≥30), positive glutamic acid decarboxylase autoantibodies, and insulin requirement within the first 6months after diagnosis. Sarcopenia was diagnosed by the criteria for Asians, using skeletal muscle index (male <7.0 and female <5.4) and grip strength (male <26.0kg and female <18.0kg). The odds ratio (OR) with a 95% confidence interval (CI) was estimated using logistic regression. The prevalence of sarcopenia was higher in LADA (35.0%) than in either T2DM (13.3%) or control subjects (9.8%). LADA was significantly associated with an increased risk for sarcopenia in a multivariate model in which age and body mass index were incorporated (OR: 9.57, 95% CI: 1.86-49.27). In contrast, T2DM tended to be associated with an increased risk for sarcopenia (OR: 2.99, 95% CI: 0.83-10.80). This study provides evidence that patients with LADA are at a high risk for sarcopenia compared to those with T2DM or to control subjects. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis.

    PubMed

    Banday, Viqar Showkat; Lejon, Kristina

    2017-02-01

    Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F 2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2 -/- Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy. © 2016 John Wiley & Sons Ltd.

  17. NOD1 downregulates intestinal serotonin transporter and interacts with other pattern recognition receptors.

    PubMed

    Layunta, Elena; Latorre, Eva; Forcén, Raquel; Grasa, Laura; Plaza, Miguel A; Arias, Maykel; Alcalde, Ana I; Mesonero, José E

    2018-05-01

    Serotonin (5-HT) is an essential gastrointestinal modulator whose effects regulate the intestinal physiology. 5-HT effects depend on extracellular 5-HT bioavailability, which is controlled by the serotonin transporter (SERT) expressed in both the apical and basolateral membranes of enterocytes. SERT is a critical target for regulating 5-HT levels and consequently, modulating the intestinal physiology. The deregulation of innate immune receptors has been extensively studied in inflammatory bowel diseases (IBD), where an exacerbated defense response to commensal microbiota is observed. Interestingly, many innate immune receptors seem to affect the serotonergic system, demonstrating a new way in which microbiota could modulate the intestinal physiology. Therefore, our aim was to analyze the effects of NOD1 activation on SERT function, as well as NOD1's interaction with other immune receptors such as TLR2 and TLR4. Our results showed that NOD1 activation inhibits SERT activity and expression in Caco-2/TC7 cells through the extracellular signal-regulated kinase (ERK) signaling pathway. A negative feedback between 5-HT and NOD1 expression was also described. The results showed that TLR2 and TLR4 activation seems to regulate NOD1 expression in Caco-2/TC7 cells. To assess the extend of cross-talk between NOD1 and TLRs, NOD1 expression was measured in the intestinal tract (ileum and colon) of wild type mice and mice with individual knockouts of TLR2, and TLR4 as well as double knockout TLR2/TLR4 mice. Hence, we demonstrate that NOD1 acts on the serotonergic system decreasing SERT activity and molecular expression. Additionally, NOD1 expression seems to be modulated by 5-HT and other immune receptors as TLR2 and TLR4. This study could clarify the relation between both the intestinal serotonergic system and innate immune system, and their implications in intestinal inflammation. © 2017 Wiley Periodicals, Inc.

  18. Interleukin-35 administration counteracts established murine type 1 diabetes--possible involvement of regulatory T cells.

    PubMed

    Singh, Kailash; Kadesjö, Erik; Lindroos, Julia; Hjort, Marcus; Lundberg, Marcus; Espes, Daniel; Carlsson, Per-Ola; Sandler, Stellan; Thorvaldson, Lina

    2015-07-30

    The anti-inflammatory cytokine IL-35 is produced by regulatory T (Treg) cells to suppress autoimmune and inflammatory responses. The role of IL-35 in type 1 diabetes (T1D) remains to be answered. To elucidate this, we investigated the kinetics of Treg cell response in the multiple low dose streptozotocin induced (MLDSTZ) T1D model and measured the levels of IL-35 in human T1D patients. We found that Treg cells were increased in MLDSTZ mice. However, the Treg cells showed a decreased production of anti-inflammatory (IL-10, IL-35, TGF-β) and increased pro-inflammatory (IFN-γ, IL-2, IL-17) cytokines, indicating a phenotypic shift of Treg cells under T1D condition. IL-35 administration effectively both prevented development of, and counteracted established MLDSTZ T1D, seemingly by induction of Eos expression and IL-35 production in Treg cells, thus reversing the phenotypic shift of the Treg cells. IL-35 administration reversed established hyperglycemia in NOD mouse model of T1D. Moreover, circulating IL-35 levels were decreased in human T1D patients compared to healthy controls. These findings suggest that insufficient IL-35 levels play a pivotal role in the development of T1D and that treatment with IL-35 should be investigated in treatment of T1D and other autoimmune diseases.

  19. Emerging role of IL-35 in inflammatory autoimmune diseases.

    PubMed

    Su, Lin-Chong; Liu, Xiao-Yan; Huang, An-Fang; Xu, Wang-Dong

    2018-05-03

    Interleukin 35 (IL-35) is the recently identified member of the IL-12 family of cytokines and provides the possibility to be a target for new therapies for autoimmune, inflammatory diseases. It is composed of an α chain (p35) and a β chain (EBI3). IL-35 mediates signaling by binding to its receptors, activates subsequent signaling pathways, and therefore, regulates the differentiation, function of T, B cells, macrophages, dendritic cells. Recent findings have shown abnormal expression of IL-35 in inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, type 1 diabetes, psoriasis, multiple sclerosis, autoimmune hepatitis, experimental autoimmune uveitis. In addition, functional analysis suggested that IL-35 is critical in the onset and development of these diseases. Therefore, the present study will systematically review what had been occurred regarding IL-35 in inflammatory autoimmune disease. The information collected will help to understand the biologic role of IL-35 in immune cells, and give information about the therapeutic potential of IL-35 in these diseases. Copyright © 2018. Published by Elsevier B.V.

  20. Symbiotic activity of pea (Pisum sativum) after application of Nod factors under field conditions.

    PubMed

    Siczek, Anna; Lipiec, Jerzy; Wielbo, Jerzy; Kidaj, Dominika; Szarlip, Paweł

    2014-04-29

    Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides). To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10⁻¹¹ M) or water (control) before planting. Symbiotic activity was evaluated by measurements of nitrogenase activity (acetylene reduction assay), nodule number and mass, and top growth by shoot mass, leaf area, and seed and protein yield. Nod factors generally improved pea yield and nitrogenase activity in the relatively dry growing season 2012, but not in the wet growing season in 2013 due to different weather conditions.

  1. The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    PubMed Central

    Fridh, Veronica; Rittinger, Katrin

    2012-01-01

    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs. PMID:22470564

  2. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice.

    PubMed

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-12-25

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.

  3. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice

    PubMed Central

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-01-01

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect. PMID:28029143

  4. The Molecular Chaperone HSP70 Binds to and Stabilizes NOD2, an Important Protein Involved in Crohn Disease*

    PubMed Central

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-01-01

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. PMID:24790089

  5. Vaccinations in early life are not associated with development of islet autoimmunity in type 1 diabetes high-risk children: Results from prospective cohort data.

    PubMed

    Beyerlein, Andreas; Strobl, Andreas N; Winkler, Christiane; Carpus, Michaela; Knopff, Annette; Donnachie, Ewan; Ankerst, Donna P; Ziegler, Anette-G

    2017-03-27

    Vaccinations in early childhood potentially stimulate the immune system and may thus be relevant for the pathogenesis of autoimmune diseases such as type 1 diabetes (T1D). We determined the association of vaccination burden with T1D-associated islet autoimmunity in children with high familial risk followed prospectively from birth. A total of 20,570 certified vaccination records from 1918 children were correlated with time to onset of T1D-associated islet autoimmunity using Cox regression, considering multiple time periods up until age two years and vaccination types, and adjusting for HLA genotype, sex, delivery mode, season of birth, preterm delivery and maternal T1D status. Additionally, prospective claims data of 295,420 subjects were used to validate associations for the tick-borne encephalitis (TBE) vaccination. Most vaccinations were not associated with a significantly increased hazard ratio (HR) for islet autoimmunity (e.g. HR [95% confidence interval]: 1.08 [0.96-1.21] per additional vaccination against measles, mumps and rubella at age 0-24months). TBE vaccinations within the first two years of life were nominally associated with a significantly increased autoimmunity risk (HR: 1.44 [1.06-1.96] per additional vaccination at age 0-24months), but this could not be confirmed with respect to outcome T1D in the validation cohort (HR: 1.02 [0.90-1.16]). We found no evidence that early vaccinations increase the risk of T1D-associated islet autoimmunity development. The potential association with early TBE vaccinations could not be confirmed in an independent cohort and appears to be a false positive finding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase.

    PubMed

    Sharma, Rajni; Di Dalmazi, Giulia; Caturegli, Patrizio

    2016-08-01

    Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. This study

  7. Exacerbation of Autoimmune Thyroiditis by CTLA-4 Blockade: A Role for IFNγ-Induced Indoleamine 2, 3-Dioxygenase

    PubMed Central

    Sharma, Rajni; Di Dalmazi, Giulia

    2016-01-01

    Background: Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2h4 mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. Methods: NOD-H2h4 mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. Results: CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory

  8. Nod2 deficiency protects mice from cholestatic liver disease by increasing renal excretion of bile acids

    PubMed Central

    Wang, Lirui; Hartmann, Phillipp; Haimerl, Michael; Bathena, Sai P.; Sjöwall, Christopher; Almer, Sven; Alnouti, Yazen; Hofmann, Alan F.; Schnabl, Bernd

    2014-01-01

    Background & aims Chronic liver disease is characterized by fibrosis that may progress to cirrhosis. Nucleotide oligomerization domain 2 (Nod2), a member of the Nod-like receptor (NLR) family of intracellular immune receptors, plays an important role in the defense against bacterial infection through binding to the ligand muramyl dipeptide (MDP). Here, we investigated the role of Nod2 in the development of liver fibrosis. Methods We studied experimental cholestatic liver disease induced by bile duct ligation or toxic liver disease induced by carbon tetrachloride in wild type and Nod2−/− mice. Results Nod2 deficiency protected mice from cholestatic but not toxin-induced liver injury and fibrosis. Most notably, the hepatic bile acid concentration was lower in Nod2−/− mice than wild type mice following bile duct ligation for 3 weeks. In contrast to wild type mice, Nod2−/− mice had increased urinary excretion of bile acids, including sulfated bile acids, and an upregulation of the bile acid efflux transporters MRP2 and MRP4 in tubular epithelial cells of the kidney. MRP2 and MRP4 were downregulated by IL-1β in a Nod2 dependent fashion. Conclusions Our findings indicate that Nod2 deficiency protects mice from cholestatic liver injury and fibrosis through enhancing renal excretion of bile acids that in turn contributes to decreased concentration of bile acids in the hepatocyte. PMID:24560660

  9. The Role of HLA Class I Gene Variation in Autoimmune Diabetes

    PubMed Central

    Sia, Charles; Weinem, Michael

    2005-01-01

    The use of DNA-based genetic typing has enabled the identification of type 1 diabetes mellitus (T1DM) susceptible and protective major histocompatibility complex (MHC) class II alleles and haplotypes. The application of this approach has also progressed to locate MHC class I alleles that contribute to the clinicopathology of T1DM. Recent studies have shown a widespread involvement of genes from the MHC class I gene region in the clinicopathology of T1DM. These genes are shown to be involved in contributing to progression from the preclinical stage of the disease, which is characterized by the occurrence of islet-specific antibodies, to clinical disease and also to the occurrence of autoimmunity. They can either contribute directly to disease development or indirectly in concert with other susceptible MHC class II alleles or haplotypes via linkage disequilibrium. Class I alleles may also be negatively associated with T1DM. These findings are useful for the development of future strategies in designing tolerogenic approaches for the prevention or even reversal of T1DM. In this article, the latest evidence for the different kinds of participation of HLA class I genes in the etiology of T1DM is reviewed. A meta-analysis which included existing association studies was also carried out in order to re-assess the relevance of class I genes in diabetes development. The analysis of an enlarged heterogeneous sample confirmed the involvement of previously detected serotypes in the etiology of T1DM, such as A24, B8 and B18, and revealed hitherto unknown associations with B60 and B62. The analysis points out that much of the conflicting results of previous association studies originate from inadequate sample sizes and accentuate the value of future investigations of larger samples for identifying linkage in multigenic diseases. PMID:17491685

  10. Early Childhood Infections and the Risk of Islet Autoimmunity

    PubMed Central

    Snell-Bergeon, Janet K.; Smith, Jennifer; Dong, Fran; Barón, Anna E.; Barriga, Kathy; Norris, Jill M.; Rewers, Marian

    2012-01-01

    OBJECTIVE Type 1 diabetes is a common chronic childhood disease, and the incidence is increasing globally. Childhood infections are considered a potential environmental trigger of type 1 diabetes. Alternatively, improved hygiene and reduced childhood infections could explain the increase in type 1 diabetes in developed countries. The association of reported illnesses during infancy and later development of islet autoimmunity (IA) were examined in the Diabetes Autoimmunity Study in the Young. RESEARCH DESIGN AND METHODS Complete illness interviews through 9 months of age were collected for 1,729 children—1,174 without a family history of type 1 diabetes and 555 with a first-degree relative with type 1 diabetes. Persistent IA was defined as positive antibodies to insulin, glutamic acid decarboxylase, or tyrosine phosphatase on at least two consecutive study visits. RESULTS There were 109 children with persistent IA among the 1,729 children with illness records. A greater number of gastrointestinal illnesses were associated with an increased risk of IA, but only among children who were exposed to gluten-containing grains (wheat or barley) either <4 months of age (hazard ratio 1.37 [95% CI 1.22–1.55]; P < 0.0001) or ≥7 months of age (1.12 [1.05–1.19]; P = 0.0005) compared with 4–6 months of age (P for interaction = 0.02). There were no associations of upper respiratory symptoms, respiratory illnesses, or fevers with IA. CONCLUSIONS Specific pathogens such as enteroviruses or rotavirus may increase the risk of IA in the presence of existing inflammation induced by diet. PMID:23043167

  11. Clinical and metabolic profile of patients with latent autoimmune diabetes in adults in specialized care in Madrid.

    PubMed

    Arranz Martín, Alfonso; Lecumberri Pascual, Edurne; Brito Sanfiel, Miguel Ángel; Andía Melero, Víctor; Nattero Chavez, Lia; Sánchez López, Iván; Cánovas Molina, Gloria; Arrieta Blanco, Francisco; González Perez Del Villar, Noemí

    2017-01-01

    To report the clinical characteristics of patients with latent autoimmune diabetes in adults (LADA), and to ascertain their metabolic control and associated chronic complications. Patients with DM attending specialized medical care in Madrid who met the following criteria: age at diagnosis of DM >30years, initial insulin independence for at least 6months and positive GAD antibodies were enrolled. Clinical profiles, data on LADA diagnosis, associated autoimmunity, C-peptide levels, therapeutic regimen, metabolic control, and presence of chronic complications were analyzed. Number of patients; 193; 56% females. Family history of DM: 62%. Age at DM diagnosis: 49years. Delay in confirmation of LADA: 3.5years. Insulin-independence time: 12months. Baseline serum C-peptide levels: 0.66ng/ml. Basal-bolus regimen: 76.7%. Total daily dose: 35.1U/day, corresponding to 0.51U/Kg. With no associated oral antidiabetic drugs: 33.5%. Other autoimmune diseases: 57%. Fasting plasma glucose: 160.5mg/dL. HbA1c: 7.7%. BMI: 25.4kg/m 2 (overweight, 31.5%; obesity, 8%). Blood pressure: 128/75. HDL cholesterol: 65mg/dL. LDL cholesterol: 96mg/dL. Triglycerides: 89mg/dL. Known chronic complications: 28%. Recognition of LADA may be delayed by several years. There is a heterogeneous pancreatic insulin reserve which is negative related to glycemic parameters. Most patients are poorly controlled despite intensive insulin therapy. They often have overweight, but have adequate control of BP and lipid profile and a low incidence of macrovascular complications. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2.

    PubMed

    Cario, E

    2005-08-01

    Toll-like receptors (TLR) and NOD2 are emerging as key mediators of innate host defence in the intestinal mucosa, crucially involved in maintaining mucosal as well as commensal homeostasis. Recent observations suggest new (patho-) physiological mechanisms of how functional versus dysfunctional TLRx/NOD2 pathways may oppose or favour inflammatory bowel disease (IBD). In health, TLRx signalling protects the intestinal epithelial barrier and confers commensal tolerance whereas NOD2 signalling exerts antimicrobial activity and prevents pathogenic invasion. In disease, aberrant TLRx and/or NOD2 signalling may stimulate diverse inflammatory responses leading to acute and chronic intestinal inflammation with many different clinical phenotypes.

  13. Nucleotide-binding oligomerization domain 2 (NOD2) activation induces apoptosis of human oral squamous cell carcinoma cells.

    PubMed

    Yoon, Hyo-Eun; Ahn, Mee-Young; Kwon, Seong-Min; Kim, Dong-Jae; Lee, Jun; Yoon, Jung-Hoon

    2016-04-01

    Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease.

    PubMed

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-07-04

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. [Pernicious anemia in an adolescent with type 1 diabetes mellitus].

    PubMed

    Carneiro, M; Dumont, C

    2009-04-01

    The most frequent organ-specific autoimmune diseases associated with type 1 diabetes mellitus in children are hypothyroidism and celiac disease. Among adults, other associations exist, notably with pernicious anemia, which is extremely rare in children. We relate the observation of an adolescent with type 1 diabetes mellitus and hypothyroidism, admitted for severe anemia in addition to chronic anemia caused by autoimmune gastritis. Blood cell count showed severe aregenerative anemia with pancytopenia, with signs of non-autoimmune hemolysis. Vitamin B12 levels were low, bone marrow aspiration revealed erythroid hyperplasia, and anti-intrinsic factor antibodies were positive, providing the diagnosis of pernicious anemia. Treatment with intramuscular vitamin B12 produced brisk reticulosis after 6 days, with a subsequent rapid resolution of the anemia. Follow-up of type 1 diabetes mellitus in children requires screening for organ-specific autoimmune diseases; in case of unexplained anemia, autoimmune gastritis must be suggested. It can evolve into pernicious anemia.

  16. Low Frequencies of Autoimmunity-Associated PTPN22 Polymorphisms in MODY Patients, Including Those Transiently Expressing Islet Cell Autoantibodies.

    PubMed

    Heneberg, Petr; Malá, Milena; Yorifuji, Tohru; Gat-Yablonski, Galia; Lebenthal, Yael; Tajima, Toshihiro; Nogaroto, Viviane; Rypáčková, Blanka; Kocková, Lucie; Urbanová, Jana; Anděl, Michal

    2015-01-01

    The protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene encodes lymphoid tyrosine phosphatase (LYP), which is expressed primarily in lymphoid tissues. The functional but geographically highly variable PTPN22 single-nucleotide polymorphisms (SNPs), particularly c.1858C>T, contribute to the onset and progression of autoimmunity-associated diseases and facilitate the expression of disease-associated autoantibodies. In Central Europe, 17-25% of patients with monogenic diabetes (maturity-onset diabetes of the young, MODY) transiently express islet cell autoantibodies. We addressed the links between the functional and geographically variable PTPN22 SNPs with MODY manifestation and the expression of islet cell autoantibodies in 276 MODY patients who originated from four regions (the Czech Republic, Israel, Japan and Brazil). The frequency of PTPN22 polymorphisms in the MODY patients was similar to those in geographically matched healthy populations, with the exception of c.788G>A, the minor allele frequency of which was significantly elevated in the Czech hepatocyte nuclear factor 1-α (HNF1A) MODY patients [odds ratio (OR) 4.8, 95% confidence interval (CI) 2.2-10.7] and the Brazilian MODY patients (OR 8.4, 95% CI 1.8-39.1). A barely significant increase in the c.788G>A minor allele was also detected in the islet cell autoantibody-positive Czech MODY patients. However, c.788A behaves as a loss-of-function mutant in T cells, and thus protects against autoimmunity. MODY patients (including islet cell autoantibody-positive cases) do not display any increase in autoimmunity-associated PTPN22 alleles. The absence of autoimmunity-associated PTPN22 alleles was also demonstrated in latent autoimmune diabetes in adults, which suggests that the slow kinetics of the onset of autoantibodies is subject to a regulation that is different from that experienced in type 1 diabetes and other autoimmune disorders. © 2015 S. Karger AG, Basel.

  17. Human β-cell Precursors Mature Into Functional Insulin-producing Cells in an Immunoisolation Device: Implications for Diabetes Cell Therapies

    PubMed Central

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y.; Geron, Ifat; Strongin, Alex Y.; Itkin-Ansari, Pamela

    2009-01-01

    Background Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human β-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human β-cells and their progenitors and (2) the engraftment of encapsulated murine β-cells in allo- and autoimmune settings. Methods Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Results Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary β-cells ameliorated diabetes without stimulating a detectable T-cell response. Conclusions We demonstrate for the first time that human β-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of β-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells. PMID:19352116

  18. Human beta-cell precursors mature into functional insulin-producing cells in an immunoisolation device: implications for diabetes cell therapies.

    PubMed

    Lee, Seung-Hee; Hao, Ergeng; Savinov, Alexei Y; Geron, Ifat; Strongin, Alex Y; Itkin-Ansari, Pamela

    2009-04-15

    Islet transplantation is limited by the need for chronic immunosuppression and the paucity of donor tissue. As new sources of human beta-cells are developed (e.g., stem cell-derived tissue), transplanting them in a durable device could obviate the need for immunosuppression, while also protecting the patient from any risk of tumorigenicity. Here, we studied (1) the survival and function of encapsulated human beta-cells and their progenitors and (2) the engraftment of encapsulated murine beta-cells in allo- and autoimmune settings. Human islets and human fetal pancreatic islet-like cell clusters were encapsulated in polytetrafluorethylene devices (TheraCyte) and transplanted into immunodeficient mice. Graft survival and function was measured by immunohistochemistry, circulating human C-peptide levels, and blood glucose levels. Bioluminescent imaging was used to monitor encapsulated neonatal murine islets. Encapsulated human islet-like cell clusters survived, replicated, and acquired a level of glucose responsive insulin secretion sufficient to ameliorate hyperglycemia in diabetic mice. Bioluminescent imaging of encapsulated murine neonatal islets revealed a dynamic process of cell death followed by regrowth, resulting in robust long-term allograft survival. Further, in the non-obese diabetic (NOD) mouse model of type I diabetes, encapsulated primary beta-cells ameliorated diabetes without stimulating a detectable T-cell response. We demonstrate for the first time that human beta-cells function is compatible with encapsulation in a durable, immunoprotective device. Moreover, our study suggests that encapsulation of beta-cells before terminal differentiation will be a successful approach for new cell-based therapies for diabetes, such as those derived from stem cells.

  19. Nakalanga Syndrome: Clinical Characteristics, Potential Causes, and Its Relationship with Recently Described Nodding Syndrome

    PubMed Central

    Föger, Kathrin; Gora-Stahlberg, Gina; Sejvar, James; Ovuga, Emilio; Jilek-Aall, Louise; Schmutzhard, Erich

    2017-01-01

    Nakalanga syndrome is a condition that was described in Uganda and various other African countries decades ago. Its features include growth retardation, physical deformities, endocrine dysfunction, mental impairment, and epilepsy, amongst others. Its cause remains obscure. Nodding syndrome is a neurological disorder with some features in common with Nakalanga syndrome, which has been described mainly in Uganda, South Sudan, and Tanzania. It has been considered an encephalopathy affecting children who, besides head nodding attacks, can also present with stunted growth, delayed puberty, and mental impairment, amongst other symptoms. Despite active research over the last years on the pathogenesis of Nodding syndrome, to date, no convincing single cause of Nodding syndrome has been reported. In this review, by means of a thorough literature search, we compare features of both disorders. We conclude that Nakalanga and Nodding syndromes are closely related and may represent the same condition. Our findings may provide new directions in research on the cause underlying this neurological disorder. PMID:28182652

  20. GCN2 and FGF21 are likely mediators of the protection from cancer, autoimmunity, obesity, and diabetes afforded by vegan diets.

    PubMed

    McCarty, Mark F

    2014-09-01

    Third World quasi-vegan cultures have been characterized by low risks for "Western" cancers, autoimmune disorders, obesity, and diabetes. The relatively low essential amino acid contents of many vegan diets may play a role in this regard. It is proposed that such diets modestly activate the kinase GCN2 - a physiological detector of essential amino acid paucity - within the liver, resulting in up-regulated production of fibroblast growth factor 21 (FGF21). FGF21, by opposing the stimulatory effect of growth hormone on hepatic IGF-I production, may be responsible for the down-regulation of plasma IGF-I observed in vegans consuming diets of modest protein content. Decreased IGF-I bioactivity throughout life can be expected to have a favorable impact on cancer risk, as observed in rodents that are calorie restricted or genetically defective in IGF-I activity. Increased FGF21 in vegans might also contribute to their characteristic leanness and low LDL cholesterol by promoting hepatic lipid oxidation while inhibiting lipogenesis. Direct trophic effects of FGF21 on pancreatic beta-cells may help to explain the low risk for diabetes observed in vegans, and the utility of vegan diets in diabetes management. And up-regulation of GCN2 in immune cells, by boosting T regulatory activity, might play some role in the reduced risk for autoimmunity reported in some quasi-vegan cultures. The fact that bone density tends to be no greater in vegans than omnivores, despite consumption of a more "alkaline" diet, might be partially attributable to the fact that FGF21 opposes osteoblastogenesis and decreases IGF-I. If these speculations have merit, it should be possible to demonstrate that adoption of a vegan diet of modest protein content increases plasma FGF21 levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. GAD-alum immunotherapy in Type 1 diabetes mellitus.

    PubMed

    Morales, Alba E; Thrailkill, Kathryn M

    2011-03-01

    Glutamic acid decarboxylase (GAD)-alum (Diamyd(®), Diamyd Medical, Stockholm, Sweden) is an adjuvant-formulated vaccine incorporating recombinant human GAD65, the specific isoform of GAD expressed in human pancreatic β-cells and a major antigen targeted by autoreactive T lymphocytes in Type 1 diabetes mellitus. Intermittent vaccination with this protein is theorized to induce immune tolerance to GAD65, thereby potentially interrupting further β-cell destruction. Hence, clinical trials are ongoing to examine the efficacy and safety of GAD-alum immunotherapy in patients with autoimmune-mediated forms of diabetes, including Type 1 diabetes and latent autoimmune diabetes in adults.

  2. Noddings's caring ethics theory applied in a paediatric setting.

    PubMed

    Lundqvist, Anita; Nilstun, Tore

    2009-04-01

    Since the 1990s, numerous studies on the relationship between parents and their children have been reported on in the literature and implemented as a philosophy of care in most paediatric units. The purpose of this article is to understand the process of nurses' care for children in a paediatric setting by using Noddings's caring ethics theory. Noddings's theory is in part described from a theoretical perspective outlining the basic idea of the theory followed by a critique of her work. Important conceptions in her theory are natural caring (reception, relation, engrossment, motivational displacement, reciprocity) and ethical caring (physical self, ethical self, and ethical ideal). As a nurse one holds a duty of care to patients and, in exercising this duty, the nurse must be able to develop a relationship with the patient including giving the patient total authenticity in a 'feeling with' the patient. Noddings's theory is analysed and described in three examples from the paediatrics. In the first example, the nurse cared for the patient in natural caring while in the second situation, the nurse strived for the ethical caring of the patient. In the third example, the nurse rejected the impulse to care and deliberately turned her back to ethics and abandoned her ethical caring. According to the Noddings's theory, caring for the patient enables the nurse to obtain ethical insights from the specific type of nursing care which forms an important contribution to an overall increase of an ethical consciousness in the nurse.

  3. Crohn's Disease Variants of Nod2 Are Stabilized by the Critical Contact Region of Hsp70.

    PubMed

    Schaefer, Amy K; Wastyk, Hannah C; Mohanan, Vishnu; Hou, Ching-Wen; Lauro, Mackenzie L; Melnyk, James E; Burch, Jason M; Grimes, Catherine L

    2017-08-29

    Nod2 is a cytosolic, innate immune receptor responsible for binding to bacterial cell wall fragments such as muramyl dipeptide (MDP). Upon binding, subsequent downstream activation of the NF-κB pathway leads to an immune response. Nod2 mutations are correlated with an increased susceptibility to Crohn's disease (CD) and ultimately result in a misregulated immune response. Previous work had demonstrated that Nod2 interacts with and is stabilized by the molecular chaperone Hsp70. In this work, it is shown using purified protein and in vitro biochemical assays that the critical Nod2 CD mutations (G908R, R702W, and 1007fs) preserve the ability to bind bacterial ligands. A limited proteolysis assay and luciferase reporter assay reveal regions of Hsp70 that are capable of stabilizing Nod2 and rescuing CD mutant activity. A minimal 71-amino acid subset of Hsp70 that stabilizes the CD-associated variants of Nod2 and restores a proper immune response upon activation with MDP was identified. This work suggests that CD-associated Nod2 variants could be stabilized in vivo with a molecular chaperone.

  4. Novel Humanized mice to test Therapeutics for Human Type 1 Diabetes

    DTIC Science & Technology

    2014-01-06

    performed in non- obese diabetic (NOD) mice, the closest animal model for human T1D, have identified different immune cells involved in pancreatic β-cell...periphery. Each MHC class II chain contributes to the formation of a groove where the peptide is embedded (78). 17 The polygenetic factor underlying...diabetes mellitus in non- obese diabetic mice by transgenes encoding modified I-A beta-chain or normal I-E alpha-chain. Nature 345:727-9 63. Marek

  5. Autoimmune Hypoglycemia in Type 1 Diabetes Mellitus.

    PubMed

    Ambigapathy, Jayakumar; Sahoo, Jayaprakash; Kamalanathan, Sadishkumar

    2017-07-15

    Antibodies against exogenous insulin are common in type 1 diabetes mellitus patients. They can cause hypoglycemia, albeit uncommonly. A 14-year-old girl with type 1 diabetes mellitus presented with recurrent hypoglycemia. High insulin, low C-peptide and raised insulin antibody levels documented during hypoglycemia. Plasmapheresis led to remission of hypoglycemia. Antibodies to exogenous insulin should be considered as a cause of recurrent refractory hypoglycemia in type 1 diabetes mellitus patients.

  6. [MEDICAL CANNABIS - A SOURCE FOR A NEW TREATMENT FOR AUTOIMMUNE DISEASE?].

    PubMed

    Katz, Daphna; Katz, Itay; Golan, Amir

    2016-02-01

    Medical uses of Cannabis sativa have been known for over 6,000 years. Nowadays, cannabis is mostly known for its psychotropic effects and its ability to relieve pain, even though there is evidence of cannabis use for autoimmune diseases like rheumatoid arthritis centuries ago. The pharmacological therapy in autoimmune diseases is mainly based on immunosuppression of diffefent axes of the immune system while many of the drugs have major side effects. In this review we set out to examine the rule of Cannabis sativa as an immunomodulator and its potential as a new treatment option. In order to examine this subject we will focus on some major autoimmune diseases such as diabetes type I and rheumatoid arthritis.

  7. BIM determines the number of merocytic dendritic cells, a cell type that breaks immune tolerance.

    PubMed

    Audiger, Cindy; Lesage, Sylvie

    2018-05-13

    In contrast to conventional dendritic cells (cDC), when merocytic dendritic cells (mcDC) present antigens derived from apoptotic bodies, T-cell anergy is reversed rather than induced, a process that promotes autoimmunity. Interestingly, mcDC are present in higher proportion in type 1 diabetes-prone NOD mice than in autoimmune-resistant B6 and BALB/c mice, and the Insulin-dependent diabetes (Idd)13 locus is linked to mcDC proportion. Therefore, mcDC are notably associated with susceptibility to autoimmune diabetes. To identify which gene determines the proportion and absolute number of mcDC, we undertook a candidate gene approach by selecting relevant candidates within the Idd13 locus. We find that neither β2m nor Sirpa appear to influence the proportion of mcDC. Instead, we show that Bim effectively modulates mcDC number in a hematopoietic-intrinsic manner. We also demonstrate that Bim-deficiency does not impact other cDC subsets and appears to play a specific role in determining the proportion and absolute number of mcDC by promoting their survival. Together, these data demonstrate that Bim specifically modulates the number of mcDC. Identifying factors that facilitate apoptosis of mcDC by increasing BIM activity in a cell type-specific manner may help prevent autoimmunity. © 2018 Australasian Society for Immunology Inc.

  8. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages.

    PubMed

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; Loyola, Elva; Escobedo, Dante; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Torres, Martha; Sada, Eduardo

    2014-09-25

    Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan fragments that localize to the cytosol. NOD1 activation triggers inflammation, antimicrobial mechanisms and autophagy in both epithelial cells and murine macrophages. NOD1 mediates intracellular pathogen clearance in the lungs of mice; however, little is known about NOD1's role in human alveolar macrophages (AMs) or its involvement in Mycobacterium tuberculosis (Mtb) infection. AMs, monocytes (MNs), and monocyte-derived macrophages (MDMs) from healthy subjects were assayed for NOD1 expression. Cells were stimulated with the NOD1 ligand Tri-DAP and cytokine production and autophagy were assessed. Cells were infected with Mtb and treated with Tri-DAP post-infection. CFUs counting determined growth control, and autophagy protein recruitment to pathogen localization sites was analyzed by immunoelectron microscopy. NOD1 was expressed in AMs, MDMs and to a lesser extent MNs. Tri-DAP stimulation induced NOD1 up-regulation and a significant production of IL1β, IL6, IL8, and TNFα in AMs and MDMs; however, the level of NOD1-dependent response in MNs was limited. Autophagy activity determined by expression of proteins Atg9, LC3, IRGM and p62 degradation was induced in a NOD1-dependent manner in AMs and MDMs but not in MNs. Infected AMs could be activated by stimulation with Tri-DAP to control the intracellular growth of Mtb. In addition, recruitment of NOD1 and the autophagy proteins IRGM and LC3 to the Mtb localization site was observed in infected AMs after treatment with Tri-DAP. NOD1 is involved in AM and MDM innate responses, which include proinflammatory cytokines and autophagy, with potential implications in the killing of Mtb in humans.

  9. Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature.

    PubMed

    Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J

    2017-09-01

    Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.

  10. Plant recognition of Bradyrhizobium japonicum nod factors. Final report, September 15, 1992--March 14, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, G.

    1998-01-01

    This grant had three objectives: (1) isolate and identify the unique nod factor metabolites made by different wild-type B. japonicum strains; (2) investigate the biological activity of these unique nod factors, especially as it relates to host range; and (3) initiate studies to define the mechanism of plant recognition of the nod factors. This report summarizes the results of this research.

  11. Serological markers of enterocyte damage and apoptosis in patients with celiac disease, autoimmune diabetes mellitus and diabetes mellitus type 2.

    PubMed

    Hoffmanová, I; Sánchez, D; Hábová, V; Anděl, M; Tučková, L; Tlaskalová-Hogenová, H

    2015-01-01

    Impairment of mucosal barrier integrity of small intestine might be causative in immune-mediated gastrointestinal diseases. We tested the markers of epithelial apoptosis - cytokeratin 18 caspase-cleaved fragment (cCK-18), and enterocyte damage - intestinal fatty acid-binding protein (I-FABP) and soluble CD14 (sCD14) in sera of patients with untreated celiac disease (CLD), those on gluten-free diet (CLD-GFD), patients with autoimmune diabetes mellitus (T1D), T1D with insulitis (T1D/INS), and diabetes mellitus type 2 (T2D). We found elevated levels of cCK-18 (P<0.001), I-FABP (P<0.01) and sCD14 (P<0.05) in CLD when compared to healthy controls. However, the levels of cCK-18 (P<0.01) and I-FABP (P<0.01) in CLD-GFD were higher when compared with controls. Interestingly, elevated levels of cCK-18 and I-FABP were found in T2D and T1D (P<0.001), and T1D/INS (P<0.01, P<0.001). Twenty-two out of 43 CLD patients were seropositive for cCK-18, 19/43 for I-FABP and 11/43 for sCD14; 9/30 of T2D patients were positive for cCK-18 and 5/20 of T1D/INS for sCD14, while in controls only 3/41 were positive for cCK-18, 3/41 for I-FABP and 1/41 for sCD14. We documented for the first time seropositivity for sCD14 in CLD and potential usefulness of serum cCK-18 and I-FABP as markers of gut damage in CLD, CLD-GFD, and diabetes.

  12. Modulation by Melatonin of the Pathogenesis of Inflammatory Autoimmune Diseases

    PubMed Central

    Lin, Gu-Jiun; Huang, Shing-Hwa; Chen, Shyi-Jou; Wang, Chih-Hung; Chang, Deh-Ming; Sytwu, Huey-Kang

    2013-01-01

    Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease. PMID:23727938

  13. ITCH directly K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways

    PubMed Central

    Tao, MingFang; Scacheri, Peter C.; Marinis, Jill M.; Harhaj, Edward W.; Matesic, Lydia E.; Abbott, Derek W.

    2009-01-01

    Background: The inability to coordinate the signaling pathways that lead to proper cytokine responses characterizes the pathogenesis of inflammatory diseases such as Crohn's Disease. The Crohn's Disease susceptibility protein, NOD2, helps coordinate cytokine responses upon intracellular exposure to bacteria, and this signal coordination by NOD2 is accomplished, in part, through K63-linked polyubiquitin chains that create binding surfaces for the scaffolding of signaling complexes. Results: In this work, we show that the NOD2 signaling partner, RIP2, is directly K63 polyubiquitinated by ITCH, an E3 ubiquitin ligase which when lost genetically, causes widespread inflammatory disease at mucosal surfaces. We show that ITCH is responsible for RIP2 polyubiquitination in response to infection with listeria monocytogenes. We further show that NOD2 can bind polyubiquitinated RIP2, and while ITCH E3 ligase activity is required for optimal NOD2:RIP2-induced p38 and JNK activation, ITCH inhibits NOD2:RIP2-induced NFκB activation. This effect can be seen independently at the whole genome level by microarray analysis of MDP-treated Itch−/− primary macrophages. Conclusions: These findings suggest that ITCH helps regulate NOD2-dependent signal transduction pathways and as such, may be involved in the pathogenesis of NOD2-mediated inflammatory disease. PMID:19592251

  14. NOD2/CARD15 mutations and the risk of reoperation in patients with Crohns disease.

    PubMed

    Martínek, L; Kupka, T; Simova, J; Klvaňa, P; Bojková, M; Uvírová, M; Dítě, P; Dvorackova, J; Hoch, J; Zonca, P

    2015-06-01

    Three NOD2/CARD15 gene variants (3020insC, R702W, G908R) have been identified as genetic risk factors for Crohns disease patients. However the diagnostic and therapeutic relevance for clinical practice remains limited. The aim of this study was to evaluate the association between these variants, the risk of reoperation and disease phenotype. In 76 Crohns disease patients (41 female, 35 male) with a minimum 5 year follow-up, three polymorphisms of the NOD2/CARD15 gene (R702W, G908R, 3020insC) were tested. Detailed clinical and medical history including surgical procedures and reoperations were obtained by reviewing the medical charts and completed prospectively. Association between the need for reoperation, disease phenotypes and gene variants were analyzed. 24 patients (32%) showed at least one NOD2/CARD15 mutation. 25 patients (33%) required reoperation, 51 (67%) represented the control group. The expected trend that patients with NOD2/CARD15 variants have a higher frequency of reoperations was not confirmed to a level of statistical significance (p=0.2688). Two of the four patients (50%) with the 3020insC variant required further surgery. We did not confirm any association between NOD2/CARD15 mutations and age at diagnosis (p=0.4356), behavior (p=0.6610), or localization (p=0.4747) according to the Montreal classification. NOD2/CARD15 polymorphisms did not significantly affect the reoperation rate. Homozygosity for the 3020insC variant in the NOD2/CARD15 gene is associated with a high risk of reoperation. NOD2/CARD15 gene variants are not significantly associated with specific disease phenotypes.

  15. Clinical characteristics of non-obese children with type 2 diabetes mellitus without involvement of β-cell autoimmunity.

    PubMed

    Urakami, Tatsuhiko; Kuwabara, Remi; Habu, Masako; Okuno, Misako; Suzuki, Junichi; Takahashi, Shori; Mugishima, Hideo

    2013-02-01

    We examined the clinical characteristics of non-obese Japanese children with type 2 diabetes mellitus (T2DM) not associated with β-cell autoimmunity. Of 218 children who were diagnosed as having T2DM by a school urine glucose screening program in Tokyo, 24 were identified as being non-obese and were enrolled in this study. None of the children had any evidence of β-cell autoimmunity or genetic disorders. The mean ages at diagnosis and at the study were 12.5 ± 1.7 and 22.4 ± 5.7 years, respectively. Females were predominant (M/F ratio: 4/20). Family history of T2DM, mostly of the non-obese type, was present in 62.5% of the cases. In regard to the birth weight, 20.8% had a history of low birth weight, and 8.3% were large for gestational age. The mean fasting insulin level, HOMA-R, HOMA-β, and an insulinogenic index on the OGTT at the time of diagnosis were 11.8 ± 7.8 μU/ml, 5.4 ± 3.8, 96.1 ± 55.0 and 0.16 ± 0.14, respectively. Most patients were treated by either oral hypoglycemic drug (45.8%) or insulin (50.0%) therapy at the study, with the mean interval to the start of pharmacological treatment of 3.1 ± 2.3 years. Non-obese children with T2DM seemed to show lower insulin secretory capacities with mild, but evident, insulin resistance even from the time of diagnosis, and also earlier requirement of pharmacological therapies during the clinical course. Some genetic factors not associated with autoimmunity may play a role in the etiology of T2DM in non-obese children. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. [Autoimmune thyroid disease and other non-endocrine autoimmune diseases].

    PubMed

    Dilas, Ljiljana Todorović; Icin, Tijana; Paro, Jovanka Novaković; Bajkin, Ivana

    2011-01-01

    Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. AUTOIMMNUNE THYROID DISEASE AND OTHER ORGAN SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. AUTOIMMUNE THYROID DISEASE AND OTHER ORGAN NON-SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Otherwise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  17. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    PubMed Central

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  18. [Diabetes mellitus in children: a heterogeneous disease].

    PubMed

    Rubio Cabezas, Oscar; Argente Oliver, Jesús

    2007-04-28

    Diabetes is one of the most common chronic diseases of childhood and adolescence. Type 1, or autoimmune diabetes accounts for more than 95% of cases. Nevertheless, over the past years it has become apparent that not all cases of diabetes presenting in children are autoimmune type 1. In these cases, the diagnosis is facilitated by the fact that many rare etiologies of diabetes are associated with specific clinical syndromes or a characteristic age of onset. In addition, molecular diagnosis is becoming increasingly available for several of these disorders. This review aims to provide the general physician with some important clues to make an accurate diagnosis in these patients and understand its implication in clinical management.

  19. Celiac disease and other autoimmune diseases in patients with collagenous colitis.

    PubMed

    Vigren, Lina; Tysk, Curt; Ström, Magnus; Kilander, Anders F; Hjortswang, Henrik; Bohr, Johan; Benoni, Cecilia; Larson, Lasse; Sjöberg, Klas

    2013-08-01

    Collagenous colitis (CC) is associated with autoimmune disorders. The aim of the present study was to investigate the relationship between CC and autoimmune disorders in a Swedish multicenter study. Patients with CC answered questionnaires about demographic data and disease activity. The patient's files were scrutinized for information about autoimmune diseases. A total number of 116 CC patients were included; 92 women, 24 men, median age 62 years (IQR 55-73). In total, 30.2% had one or more autoimmune disorder. Most common were celiac disease (CeD; 12.9%) and autoimmune thyroid disease (ATD, 10.3%), but they also had Sjögren's syndrome (3.4%), diabetes mellitus (1.7%) and conditions in skin and joints (6.0%). Patients with associated autoimmune disease had more often nocturnal stools. The majority of the patients with associated CeD or ATD got these diagnoses before the colitis diagnosis. Autoimmune disorders occurred in one-third of these patients, especially CeD. In classic inflammatory bowel disease (IBD), liver disease is described in contrast to CC where no cases occurred. Instead, CeD was prevalent, a condition not reported in classic IBD. Patients with an associated autoimmune disease had more symptoms. Patients with CC and CeD had an earlier onset of their colitis. The majority of the patients with both CC and CeD were smokers. Associated autoimmune disease should be contemplated in the follow-up of these patients.

  20. Regulatory T-Cells in Chronic Lymphocytic Leukemia and Autoimmune Diseases

    PubMed Central

    D’Arena, Giovanni; Rossi, Giovanni; Vannata, Barbara; Deaglio, Silvia; Mansueto, Giovanna; D’Auria, Fiorella; Statuto, Teodora; Simeon, Vittorio; De Martino, Laura; Marandino, Aurelio; Del Poeta8, Giovanni; De Feo, Vincenzo; Musto, Pellegrino

    2012-01-01

    Regulatory T-cells (Tregs) constitute a small subset of cells that are actively involved in maintaining self-tolerance, in immune homeostasis and in antitumor immunity. They are thought to play a significant role in the progression of cancer and are generally increased in patient with chronic lymphocytic leukemia (CLL). Their number correlates with more aggressive disease status and is predictive of the time to treatment, as well. Moreover, it is now clear that dysregulation in Tregs cell frequency and/or function may result in a plethora of autoimmune diseases, including multiple sclerosis, type 1 diabetes mellitus, myasthenia gravis, systemic lupus erythematosus, autoimmune lymphoproliferative disorders, rheumatoid arthritis, and psoriasis. Efforts are made aiming to develop approaches to deplete Tregs or inhibit their function in cancer and autoimmune disorders, as well. PMID:22973497

  1. Nodding syndrome in Kitgum District, Uganda: association with conflict and internal displacement

    PubMed Central

    Landis, Jesa L; Palmer, Valerie S; Spencer, Peter S

    2014-01-01

    Objectives To test for any temporal association of Nodding syndrome with wartime conflict, casualties and household displacement in Kitgum District, northern Uganda. Methods Data were obtained from publicly available information reported by the Ugandan Ministry of Health (MOH), the Armed Conflict Location & Event Data (ACLED) Project of the University of Sussex in the UK, peer-reviewed publications in professional journals and other sources. Results Reports of Nodding syndrome began to appear in 1997, with the first recorded cases in Kitgum District in 1998. Cases rapidly increased annually beginning in 2001, with peaks in 2003–2005 and 2008, 5–6 years after peaks in the number of wartime conflicts and deaths. Additionally, peaks of Nodding syndrome cases followed peak influxes 5–7 years earlier of households into internal displacement camps. Conclusions Peaks of Nodding syndrome reported by the MOH are associated with, but temporally displaced from, peaks of wartime conflicts, deaths and household internment, where infectious disease was rampant and food insecurity rife. PMID:25371417

  2. Autoimmunity and autoimmune co-morbidities in psoriasis.

    PubMed

    Furue, Kazuhisa; Ito, Takamichi; Tsuji, Gaku; Kadono, Takafumi; Nakahara, Takeshi; Furue, Masutaka

    2018-05-01

    Psoriasis is characterized by widespread scaly erythematous plaques that cause significant physical and psychological burdens for the affected individuals. Accelerated inflammation driven by the tumour necrosis factor-α/interleukin-23/interleukin-17 axis is now known to be the major mechanism in the development of psoriasis. In addition, psoriasis has an autoimmune nature that manifests as autoreactive T cells and is co-morbid with other autoimmune diseases, such as autoimmune bullous diseases, vitiligo, alopecia and thyroiditis. In this article, we review the recent topics on autoimmunity and autoimmune co-morbidities in psoriasis. © 2018 John Wiley & Sons Ltd.

  3. Cutaneous Nod2 Expression Regulates the Skin Microbiome and Wound Healing in a Murine Model.

    PubMed

    Williams, Helen; Crompton, Rachel A; Thomason, Helen A; Campbell, Laura; Singh, Gurdeep; McBain, Andrew J; Cruickshank, Sheena M; Hardman, Matthew J

    2017-11-01

    The skin microbiome exists in dynamic equilibrium with the host, but when the skin is compromised, bacteria can colonize the wound and impair wound healing. Thus, the interplay between normal skin microbial interactions versus pathogenic microbial interactions in wound repair is important. Bacteria are recognized by innate host pattern recognition receptors, and we previously showed an important role for the pattern recognition receptor NOD2 in skin wound repair. NOD2 is implicated in changes in the composition of the intestinal microbiota in Crohn's disease, but its role on skin microbiota is unknown. Nod2-deficient (Nod2 -/- ) mice had an inherently altered skin microbiome compared with wild-type controls. Furthermore, we found that Nod2 -/- skin microbiome dominated and caused impaired healing, shown in cross-fostering experiments of wild-type pups with Nod2 -/- pups, which then acquired altered cutaneous bacteria and delayed healing. High-throughput sequencing and quantitative real-time PCR showed a significant compositional shift, specifically in the genus Pseudomonas in Nod2 -/- mice. To confirm whether Pseudomonas species directly impair wound healing, wild-type mice were infected with Pseudomonas aeruginosa biofilms and, akin to Nod2 -/- mice, were found to exhibit a significant delay in wound repair. Collectively, these studies show the importance of the microbial communities in skin wound healing outcome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Role of autoimmunity in nonviral chronic liver disease.

    PubMed

    Amarapurkar, D N; Amarapurkar, A D

    2000-11-01

    To evaluate the prevalence and clinical profile of autoimmune hepatitis (AIH) in patients with chronic liver disease. Four hundred and thirty five consecutive patient with chronic liver disease seen in our department from January 1997 to December 1998 were studied with detailed history and clinical examination. All the patients underwent liver function tests, ultrasonography, isotope liver scanning, viral markers, autoimmune markers ANA, ASMA, LKM1 and AMA (by immunofluorescence technique) and liver histology whenever permissible. Appropriate work up for Wilson's disease was done whenever suspected clinically. Diagnosis of autoimmune hepatitis was made by the composite scoring system by international autoimmune hepatitis group. Twenty out of the 435 patients met the criteria of definite autoimmune hepatitis and seven patient had probable autoimmune hepatitis. Forty out of 408 patients showed markers of autoimmunity positive but did not qualify diagnosis of AIH on composite scores. Demographic profile of 27 patients with autoimmune hepatitis was as follows; male:female ratio 1:8, mean age 39.8 +/- 13 years (Range 4-65 years); mode of presentation as cirrhosis 11/27 (40.7%), chronic hepatitis 12/27 (44.4%) and acute hepatitis 4/27 (14.8%). Elevated serum bilirubin levels were seen in 12 (44.4%) patients while mean serum aminotransferases levels were 249 +/- 343 and 262 +/- 418 respectively. Other disease associations seen were as follows: diabetes in 4 (14.8%), rheumatoid arthritis in 3 (11%), hypothyroidism in 2 (7.4%) and ulcerative colitis in 1 (3.7%). The pattern of autoimmune markers was ANA +ve 23/27 (85%) (+ve titres of ANA > 1:80 in adults and 1:20 in children), ASMA +ve in 16/27 (59.2%) (+ve titres of ASMA > 1:40) and LKM1 in 3 patients. AMA in tires less than 1:80 was found in 3 patients. Liver histology changes seen were lymphoplasmacytic infiltrates (100%), bridging necrosis (93%), liver cell rossetting (80%) and fibrosis with or without cirrhosis (50

  5. Congenital Head Nodding and Nystagmus with Cerebrocerebellar Degeneration

    ERIC Educational Resources Information Center

    Kalyanaraman, K.; And Others

    1973-01-01

    Reported are three case histories of children with congenital head nodding and nystagmus (rhytmic oscillation of the eyeballs) associated with brain degeneration and motor and mental retardation. (DB)

  6. Inhibition of type 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias.

    PubMed

    Lau, Kenneth; Benitez, Patrick; Ardissone, Alexandria; Wilson, Tenisha D; Collins, Erin L; Lorca, Graciela; Li, Nan; Sankar, Dhyana; Wasserfall, Clive; Neu, Josef; Atkinson, Mark A; Shatz, Desmond; Triplett, Eric W; Larkin, Joseph

    2011-03-15

    Although it is known that resident gut flora contribute to immune system function and homeostasis, their role in the progression of the autoimmune disease type 1 diabetes (T1D) is poorly understood. Comparison of stool samples isolated from Bio-Breeding rats, a classic model of T1D, shows that distinct bacterial populations reside in spontaneous Bio-Breeding diabetes-prone (BBDP) and Bio-Breeding diabetes-resistant animals. We have previously shown that the oral transfer of Lactobacillus johnsonii strain N6.2 (LjN6.2) from Bio-Breeding diabetes-resistant to BBDP rodents conferred T1D resistance to BBDP rodents, whereas Lactobacillus reuteri strain TD1 did not. In this study, we show that diabetes resistance in LjN6.2-fed BBDP rodents was correlated to a Th17 cell bias within the mesenteric lymph nodes. The Th17 bias was not observed in the non-gut-draining axillary lymph nodes, suggesting that the Th17 bias was because of immune system interactions with LjN6.2 within the mesenteric lymph node. LjN6.2 interactions with the immune system were observed in the spleens of diabetes-resistant, LjN6.2-fed BBDP rats, as they also possessed a Th17 bias in comparison with control or Lactobacillus reuteri strain TD1-fed rats. Using C57BL/6 mouse in vitro assays, we show that LjN6.2 directly mediated enhanced Th17 differentiation of lymphocytes in the presence of TCR stimulation, which required APCs. Finally, we show that footpad vaccination of NOD mice with LjN6.2-pulsed dendritic cells was sufficient to mediate a Th17 bias in vivo. Together, these data suggest an interesting paradigm whereby T1D induction can be circumvented by gut flora-mediated Th17 differentiation.

  7. The prevalence of autoimmune disease in patients with esophageal achalasia.

    PubMed

    Booy, J D; Takata, J; Tomlinson, G; Urbach, D R

    2012-04-01

    Achalasia is a rare disease of the esophagus that has an unknown etiology. Genetic, infectious, and autoimmune mechanisms have each been proposed. Autoimmune diseases often occur in association with one another, either within a single individual or in a family. There have been separate case reports of patients with both achalasia and one or more autoimmune diseases, but no study has yet determined the prevalence of autoimmune diseases in the achalasia population. This paper aims to compare the prevalence of autoimmune disease in patients with esophageal achalasia to the general population. We retrospectively reviewed the charts of 193 achalasia patients who received treatment at Toronto's University Health Network between January 2000 and May 2010 to identify other autoimmune diseases and a number of control conditions. We determined the general population prevalence of autoimmune diseases from published epidemiological studies. The achalasia sample was, on average, 10-15 years older and had slightly more men than the control populations. Compared to the general population, patients with achalasia were 5.4 times more likely to have type I diabetes mellitus (95% confidence interval [CI] 1.5-19), 8.5 times as likely to have hypothyroidism (95% CI 5.0-14), 37 times as likely to have Sjögren's syndrome (95% CI 1.9-205), 43 times as likely to have systemic lupus erythematosus (95% CI 12-154), and 259 times as likely to have uveitis (95% CI 13-1438). Overall, patients with achalasia were 3.6 times more likely to suffer from any autoimmune condition (95% CI 2.5-5.3). Our findings are consistent with the impression that achalasia's etiology has an autoimmune component. Further research is needed to more conclusively define achalasia as an autoimmune disease. © 2011 Copyright the Authors. Journal compilation © 2011, Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  8. Targeting Janus tyrosine kinase 3 (JAK3) with an inhibitor induces secretion of TGF-β by CD4+ T cells

    PubMed Central

    Cetkovic-Cvrlje, Marina; Olson, Marin; Ghate, Ketaki

    2012-01-01

    Regulatory T cells (Tregs) are critical for the peripheral maintenance of the autoreactive T cells in autoimmune disorders such as type 1 diabetes (T1D). Pharmacological inhibition of Janus tyrosine kinase 3 (JAK3) has been proposed as a basis for new treatment modalities against autoimmunity and allogeneic responses. Targeting JAK3 with an inhibitor has previously been shown to exhibit protective action against the development of T1D in non-obese diabetic (NOD) mice. As the mechanism of such preventative action has been unknown, we hypothesized that JAK3 inhibition induces generation of Tregs. Here, we show that the JAK3 inhibitor 4-(4′-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P131) suppresses proliferation of short-term cultured NOD CD4+ T cells through induction of apoptosis, while promoting survival of a particular population of long-term cultured cells. It was found that the surviving cells were not of the CD4+CD25+FoxP3+ phenotype. They secreted decreased amounts of IL-10, IL-4 and interferon (IFN)-γ compared to the cells not exposed to the optimal concentrations of JAK3 inhibitor. However, an elevated transforming growth factor (TGF)-β secretion was detected in their supernatants. In vivo treatment of prediabetic NOD mice with WHI-P131 did not affect the frequency and number of splenic and pancreatic lymph node CD4+FoxP3+ Tregs, while generating an elevated numbers of CD4+FoxP3− TGF-β-secreting T cells. In conclusion, our data suggest an induction of TGF-β-secreting CD4+ T cells as the underlying mechanism for antidiabetogenic effects obtained by the treatment with a JAK3 inhibitor. To our knowledge, this is the first report of the JAK3 inhibitor activity in the context of the murine Tregs. PMID:22728763

  9. Prevalences of autoimmune diseases in schizophrenia, bipolar I and II disorder, and controls.

    PubMed

    Cremaschi, Laura; Kardell, Mathias; Johansson, Viktoria; Isgren, Anniella; Sellgren, Carl M; Altamura, A Carlo; Hultman, Christina M; Landén, Mikael

    2017-12-01

    Previous studies on the relationship between autoimmune diseases, schizophrenia, and bipolar disorder are mainly based on hospital discharge registers with insufficient coverage of outpatient data. Furthermore, data is scant on the prevalence of autoimmune diseases in bipolar subgroups. Here we estimate the self-reported prevalences of autoimmune diseases in schizophrenia, bipolar disorder type I and II, and controls. Lifetime prevalence of autoimmune diseases was assessed through a structured interview in a sample of 9076 patients (schizophrenia N = 5278, bipolar disorder type I N = 1952, type II N = 1846) and 6485 controls. Comparative analyses were performed using logistic regressions. The prevalence of diabetes type 1 did not differ between groups. Hyperthyroidism, hypothyroidism regardless of lithium effects, rheumatoid arthritis, and polymyalgia rheumatica were most common in bipolar disorder. Systemic lupus erythematosus was less common in bipolar disorder than in the other groups. The rate of autoimmune diseases did not differ significantly between bipolar subgroups. We conclude that prevalences of autoimmune diseases show clear differences between schizophrenia and bipolar disorder, but not between the bipolar subgroups. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Clinical heterogeneity of type 1 diabetes (T1D) found in Asia.

    PubMed

    Park, Yongsoo; Wintergerst, Kupper A; Zhou, Zhiguang

    2017-10-01

    Diabetes mellitus among young patients in Asia is caused by a complex set of factors. Although type 1 diabetes (T1D) remains the most common form of diabetes in children, the recent unabated increase in obesity has resulted in the emergence of type 2 diabetes (T2D) as a new type of diabetes among adolescents and young adults. In addition to the typical autoimmune type 1 diabetes (T1aD) and T2D patients, there is a variable incidence of cases of non-autoimmune types of T1D associated with insulin deficiency (T1bD). Additional forms have been described, including fulminant T1D (FT1D). Although most diagnoses of T1D are classified as T1aD, fulminant T1D exists as a hyper-acute subtype of T1D that affects older children, without associated autoimmunity. Patient with this rare aetiology of diabetes showed a complete loss of β-cell secretory capacity without evidence of recovery, necessitating long-term treatment with insulin. In addition, latent autoimmune diabetes in adults is a form of autoimmune-mediated diabetes, usually diagnosed during the insulin-dependent stage that follows a non-insulin requiring phase, which can be diagnosed earlier based on anti-islet autoantibody positivity. Some reports discuss T1bD. Others are elaborating on the presence of "atypical T1b diabetes," such as Flatbush diabetes. The prevalence of diabetes mellitus in young adults continues to rise in Asian populations as T2D increases. With improved characterization of patients with diabetes, the range of diabetic subgroups will become even more diverse in the future. Distinguishing T1D, T2D, and other forms of diabetes in young patients is challenging in Asian populations, as the correct diagnosis is clinically important and has implications for prognosis and management. Despite aetiological heterogeneity in the usual clinical setting, early diagnosis and classification of patients with diabetes relying on clinical grounds as well as measuring islet autoantibodies and fasting plasma C

  11. Pregnancy may favour the development of severe autoimmune central diabetes insipidus in women with vasopressin cell antibodies: description of two cases.

    PubMed

    Bellastella, Giuseppe; Bizzarro, Antonio; Aitella, Ernesto; Barrasso, Mariluce; Cozzolino, Domenico; Di Martino, Sergio; Esposito, Katherine; De Bellis, Annamaria

    2015-03-01

    Recently, an increased incidence of central diabetes insipidus (CDI) in pregnancy, and less frequently in the post partum period, has been reported, most probably favoured by some conditions occurring in pregnancy. This study was aimed at investigating the influence of pregnancy on a pre-existing potential/subclinical hypothalamic autoimmunity. We studied the longitudinal behaviour of arginine-vasopressin cell antibodies (AVPcAbs) and post-pituitary function in two young women with a positive history of autoimmune disease and presence of AVPcAbs, but without clinical CDI, and who became pregnant 5 and 7 months after our first observation. The behaviour of post-pituitary function and AVPcAbs (by immunofluorescence) was evaluated at baseline, during pregnancy and for 2 years after delivery. AVPcAbs, present at low/middle titres at baseline in both patients, showed a titre increase during pregnancy in one patient and after delivery in the other patient, with development of clinically overt CDI. Therapy with 1-deamino-8-d-arginine vasopressin (DDAVP) caused a prompt clinical remission. After a first unsuccessful attempt of withdrawal, the therapy was definitively stopped at the 6th and the 7th month of post partum period respectively, when AVPcAbs disappeared, accompanied by post-pituitary function recovery, persisting until the end of the follow-up. The determination of AVPcAbs is advisable in patients with autoimmune diseases planning their pregnancy, because they could be considered good predictive markers of gestational or post partum autoimmune CDI. The monitoring of AVPcAb titres and post-pituitary function during pregnancy in these patients may allow for an early diagnosis and an early replacement therapy, which could induce the disappearance of these antibodies with consequent complete remission of CDI. © 2015 European Society of Endocrinology.

  12. Laser capture microdissection tailored to type 1 diabetes mellitus research.

    PubMed

    Szulawski, Robert; Nakazawa, Masato; McCall, Kelly D; James, Calvin B L; Schwartz, Frank L

    2016-01-01

    RNA isolation from pancreatic islets poses unique challenges. Here, we present a reproducible means of obtaining high-quality RNA from juvenile rodent islets in sufficient quantities for use in ex vivo expression studies. Tissue was extracted from female non-obese diabetic (NOD) toll-like receptor 3 (TLR3)(+/+) and (TLR3)(-/-) mice in the pre-diabetic stage. Samples were frozen in liquid nitrogen, sectioned, fixed in a highly alcoholic solution, and stained with an alcoholic cresyl violet (CV) solution. Rehydration of the fixed sections was minimized. Islets were identified visually and isolated with the Leica LMD6000 laser capture microdissection (LCM) system to yield samples highly enriched in islet RNA. Real time qPCR was performed on the islet cDNA using probes for CXC chemokine ligand 10 (CXCL10), an inflammatory marker that plays a critical role in the pathogenesis of type 1 diabetes mellitus (TIDM). This method represents an improvement over currently described LCM techniques for rodent pancreatic islets and makes feasible expression studies using small amounts of starting tissue without the need for RNA pre-amplification. This has immediate implications for ongoing TIDM studies using the NOD mouse.

  13. Nodding syndrome in Kitgum District, Uganda: association with conflict and internal displacement.

    PubMed

    Landis, Jesa L; Palmer, Valerie S; Spencer, Peter S

    2014-11-04

    To test for any temporal association of Nodding syndrome with wartime conflict, casualties and household displacement in Kitgum District, northern Uganda. Data were obtained from publicly available information reported by the Ugandan Ministry of Health (MOH), the Armed Conflict Location & Event Data (ACLED) Project of the University of Sussex in the UK, peer-reviewed publications in professional journals and other sources. Reports of Nodding syndrome began to appear in 1997, with the first recorded cases in Kitgum District in 1998. Cases rapidly increased annually beginning in 2001, with peaks in 2003-2005 and 2008, 5-6 years after peaks in the number of wartime conflicts and deaths. Additionally, peaks of Nodding syndrome cases followed peak influxes 5-7 years earlier of households into internal displacement camps. Peaks of Nodding syndrome reported by the MOH are associated with, but temporally displaced from, peaks of wartime conflicts, deaths and household internment, where infectious disease was rampant and food insecurity rife. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. [Morphological alterations in nailfold capillaroscopy and the clinical picture of vascular involvement in autoimmune diseases: systemic lupus erythematosus and type 1 diabetes].

    PubMed

    Kuryliszyn-Moskal, Anna; Ciołkiewicz, Mariusz; Dubicki, Artur

    2010-01-01

    Systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (DM) belong to the group of autoimmune diseases presenting with a wide range of organ manifestations. Microvascular abnormalities seem to play a crucial role in the development of persistent multi-organ complications in both diseases. The aim of this study was to determine the relationship between microvascular changes examined with nailfold capillaroscopy and organ involvement. We eurolled 76 SLE patients, 106 patients with type 1 diabetes, and 40 healthy controls. Morphological changes were observed with nailfold capillaroscopy in 86 (81%) diabetics and in 70 (92.1%) SLE patients. Severe capillaroscopic changes were disclosed in 32 out of 54 (59%) diabetic patients with microangiopathy and in only 7 out of 52 (13%) patients without microangiopathy. In the SLE group, severe capillaroscopic abnormalities were found in 18 out of 34 (52.9%) patients with organ involvement and in 9 out of 42 (21.4%) patients without organ involvement. The capillaroscopic score was significantly higher in diabetic patients with microangiopathic complications in comparison to patients without microangiopathy (p < 0.001). Moreover, diabetic patients with advanced microvascular changes had longer disease durations than patients with mild abnormalities. A similar comparison between SLE patients with and without systemic manifestations showed significantly higher capillaroscopic scores in the group with organ involvement (p < 0.001). Furthermore, a positive correlation between capillaroscopic score and disease activity was observed in SLE patients (p < 0.01). Our findings suggest that abnormalities in nailfold capillaroscopy reflect the extent of microvascular involvement and are associated with organ involvement in SLE and diabetes.

  15. The diabetes type 1 locus Idd6 modulates activity of CD4+CD25+ regulatory T-cells.

    PubMed

    Rogner, Ute Christine; Lepault, Françoise; Gagnerault, Marie-Claude; Vallois, David; Morin, Joëlle; Avner, Philip; Boitard, Christian

    2006-01-01

    The genetic locus Idd6 confers susceptibility to the spontaneous development of type 1 diabetes in the NOD mouse. Our studies on disease resistance of the congenic mouse strain NOD.C3H 6.VIII showed that Idd6 influences T-cell activities in the peripheral immune system and suggest that a major mechanism by which the Idd6 locus modifies diabetes development is via modulation of regulatory T-cell activities. Our transfer experiments using total splenocytes and purified T-cells demonstrated that the locus specifically controls the efficiency of disease protection mediated by the regulatory CD4(+)CD25(+) T-cell subset. Our data also implicate the Idd6 locus in controlling the balance between infiltrating lymphocytes and antigen-presenting cells within the pancreatic islet.

  16. A Study of Autoimmune Polyglandular Syndrome (APS) in Patients with Type1 Diabetes Mellitus (T1DM) Followed Up at a Teritiary Care Hospital

    PubMed Central

    Shaikh, Shaheen Banu; Haji, Ismail M.; Doddamani, Parveen; Rahman, M.

    2014-01-01

    Background: Type1 diabetes mellitus (T1DM) results from auto- immune destruction of insulin-producing β cells and is characterized by the presence of insulitis and β-cell autoantibodies. Up to one third of patients develop an autoimmune polyglandular syndrome (APS). Presence of other autoimmune disorders in patients with T1DM has been associated with increased morbidity and mortality. Hypoglycemia resulting from concurrent hypothyroidism or adrenal crisis can be dangerous; starting replacement therapy for hypothyroidism may result in adrenal crisis if background hypocortisolism is not recognized. Early detection of antibodies and latent organ-specific dysfunction is advocated to alert physicians to take appropriate action in order to prevent full-blown disease. Aims: The objectives of this study were to assess the concurrence of various autoimmune disorders in patients with T1DM, to review the concept and detect the overt forms of Autoimmune Thyroid Disease (AITD), Addison’s Disease (AD), Vitamin B 12, vitiligo in T1DM and to find their correlation according to age and sex of the patients. Methods: It is a retrospective study where medical records between January 2007-June 2010 of all the patients diagnosed with T1DM, followed up at Department of Endocrinology were reviewed to find out the presence of (AD), AITD, vitiligo, Vitamin B12 deficiency and Primary Gonadal Failure, which were diagnosed clinically with available investigational procedures. Results: A total of 100 cases of T1DM were evaluated during the present study. The age group of patients ranged from 8 to 40 years, with the average being 21.56 years. 64% of the patients were males and the rest were females. 29 % of T1DM subjects had AITD (Hashimoto’s or Graves’disease), 5% were diagnosed with Vitamin B12 deficiency, 4% had AD, and 6% showed Vitiligo. 28 % had family history of autoimmune endocrinopathy. Conclusion: The commonest autoimmune disorder associated with T1DM found in our study was

  17. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu; Wang, Chengxiao; Liu, Ying

    2013-08-16

    Highlights: •NOD2 is a target gene of miR-122. •miR-122 inhibits LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. •miR-122 reduces the expression of pro-inflammatory cytokines (TNF-α and IFN-γ). •miR-122 promotes the release of anti-inflammatory cytokines (IL-4 and IL-10). •NF-κB signaling pathway is involved in inflammatory response induced by LPS. -- Abstract: Crohn’s disease (CD) is one of the two major types of inflammatory bowel disease (IBD) thought to be caused by genetic and environmental factors. Recently, miR-122 was found to be deregulated in association with CD progression. However, the underlying molecular mechanisms remain unclear. In the present study, the genemore » nucleotide-binding oligomerization domain 2 (NOD2/CARD15), which is strongly associated with susceptibility to CD, was identified as a functional target of miR-122. MiR-122 inhibited LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. NOD2 interaction with LPS initiates signal transduction mechanisms resulting in the activation of nuclear factor κB (NF-κB) and the stimulation of downstream pro-inflammatory events. The activation of NF-κB was inhibited in LPS-stimulated HT-29 cells pretreated with miR-122 precursor or NOD2 shRNA. The expression of the pro-inflammatory cytokines TNF-α and IFN-γ was significantly decreased, whereas therelease of the anti-inflammatory cytokines IL-4 and IL-10 was increased in LPS-stimulated HT-29 cells pretreated with miR-122 precursor, NOD2 shRNA or the NF-κB inhibitor QNZ. Taken together, these results indicate that miR-122 and its target gene NOD2 may play an important role in the injury of intestinal epithelial cells induced by LPS.« less

  18. The relevance of Noddings' ethics of care to the moral education of nurses.

    PubMed

    Crowley, M A

    1994-02-01

    Noddings' ethics of care is proposed as a model for moral education in nursing. A discussion of Noddings' moral theory is followed by a review of significant criticisms of her theory and her response to these criticisms. Finally, the usefulness of her moral theory as a guide to moral education in nursing is explored.

  19. Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance.

    PubMed

    Reutrakul, Sirimon; Hathout, Eba H; Janner, Donald; Hara, Manami; Donfack, Joseph; Bass, Joseph; Refetoff, Samuel

    2004-04-01

    The proband, a 9-year-old Hispanic female, presented with hair loss, strabismus, and weight gain. On magnetic resonance imaging (MRI) she was found to have severe primary hypothyroidism and a large pituitary mass. In addition, acanthosis nigricans, obesity, and hyperinsulinism were observed. Findings were similar in three of four siblings. Thyroid peroxidase antibodies were detected in the father and three of four siblings. Although all family members were obese, and hyperinsulinemia with high proinsulin and C-peptide was found in all except one sibling, only the mother and one child had overt type 2 diabetes mellitus. Because of the unusual association of autoimmune thyroid disease, insulin resistance and obesity rather than insulin deficiency, we searched for possible genetic abnormalities. The HLA haplotypes did not cosegregate with autoimmune thyroid disease or insulin resistance. Mutational analysis of known obesity genes was done. Leptin was not deficient, and sequencing of the proband's DNA showed no mutations in the perixisome proliferator activated receptor (PPAR)-gamma, PPAR-gamma(2), PPAR-alpha or melanocortin 4 receptor genes. Maternally inherited diabetes and deafness was ruled out since no mutations were found in mitochondria DNA. Insulin receptor antibodies were not detected. In conclusion, the remarkably high incidence of childhood autoimmune hypothyroidism, pituitary enlargement, insulin resistance and obesity in this family is not linked to known HLA types or known gene defects.

  20. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans.

    PubMed

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; León-Contreras, Juan C; Hernández-Pando, Rogelio; Escobedo, Dante; Torres, Martha; Sada, Eduardo

    2012-04-01

    A role for the nucleotide-binding oligomerization domain 2 (NOD2) receptor in pulmonary innate immune responses has recently been explored. In the present study, we investigated the role that NOD2 plays in human alveolar macrophage innate responses and determined its involvement in the response to infection with virulent Mycobacterium tuberculosis. Our results showed that NOD2 was expressed in human alveolar macrophages, and significant amounts of IL-1β, IL-6, and TNF-α were produced upon ligand recognition with muramyldipeptide (MDP). NOD2 ligation induced the transcription and protein expression of the antimicrobial peptide LL37 and the autophagy enzyme IRGM in alveolar macrophages, demonstrating a novel function for this receptor in these cells. MDP treatment of alveolar macrophages improved the intracellular growth control of virulent M. tuberculosis; this was associated with a significant release of TNF-α and IL-6 and overexpression of bactericidal LL37. In addition, the autophagy proteins IRGM, LC3 and ATG16L1 were recruited to the bacteria-containing autophagosome after treatment with MDP. In conclusion, our results suggest that NOD2 can modulate the innate immune response of alveolar macrophages and play a role in the initial control of respiratory M. tuberculosis infections. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The role of MIF in type 1 and type 2 diabetes mellitus.

    PubMed

    Sánchez-Zamora, Yuriko I; Rodriguez-Sosa, Miriam

    2014-01-01

    Autoimmunity and chronic low-grade inflammation are hallmarks of diabetes mellitus type one (T1DM) and type two (T2DM), respectively. Both processes are orchestrated by inflammatory cytokines, including the macrophage migration inhibitory factor (MIF). To date, MIF has been implicated in both types of diabetes; therefore, understanding the role of MIF could affect our understanding of the autoimmune or inflammatory responses that influence diabetic pathology. This review highlights our current knowledge about the involvement of MIF in both types of diabetes in the clinical environment and in experimental disease models.

  2. Insulin-secreting non-islet cells are resistant to autoimmune destruction.

    PubMed Central

    Lipes, M A; Cooper, E M; Skelly, R; Rhodes, C J; Boschetti, E; Weir, G C; Davalli, A M

    1996-01-01

    Transgenic nonobese diabetic mice were created in which insulin expression was targeted to proopiomelanocortin-expressing pituitary cells. Proopiomelanocortin-expressing intermediate lobe pituitary cells efficiently secrete fully processed, mature insulin via a regulated secretory pathway, similar to islet beta cells. However, in contrast to the insulin-producing islet beta cells, the insulin-producing intermediate lobe pituitaries are not targeted or destroyed by cells of the immune system. Transplantation of the transgenic intermediate lobe tissues into diabetic nonobese diabetic mice resulted in the restoration of near-normoglycemia and the reversal of diabetic symptoms. The absence of autoimmunity in intermediate lobe pituitary cells engineered to secrete bona fide insulin raises the potential of these cell types for beta-cell replacement therapy for the treatment of insulin-dependent diabetes mellitus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8710916

  3. Clustering of immunological, metabolic and genetic features in latent autoimmune diabetes in adults: evidence from principal component analysis.

    PubMed

    Pes, Giovanni Mario; Delitala, Alessandro Palmerio; Errigo, Alessandra; Delitala, Giuseppe; Dore, Maria Pina

    2016-06-01

    Latent autoimmune diabetes in adults (LADA) which accounts for more than 10 % of all cases of diabetes is characterized by onset after age 30, absence of ketoacidosis, insulin independence for at least 6 months, and presence of circulating islet-cell antibodies. Its marked heterogeneity in clinical features and immunological markers suggests the existence of multiple mechanisms underlying its pathogenesis. The principal component (PC) analysis is a statistical approach used for finding patterns in data of high dimension. In this study the PC analysis was applied to a set of variables from a cohort of Sardinian LADA patients to identify a smaller number of latent patterns. A list of 11 variables including clinical (gender, BMI, lipid profile, systolic and diastolic blood pressure and insulin-free time period), immunological (anti-GAD65, anti-IA-2 and anti-TPO antibody titers) and genetic features (predisposing gene variants previously identified as risk factors for autoimmune diabetes) retrieved from clinical records of 238 LADA patients referred to the Internal Medicine Unit of University of Sassari, Italy, were analyzed by PC analysis. The predictive value of each PC on the further development of insulin dependence was evaluated using Kaplan-Meier curves. Overall 4 clusters were identified by PC analysis. In component PC-1, the dominant variables were: BMI, triglycerides, systolic and diastolic blood pressure and duration of insulin-free time period; in PC-2: genetic variables such as Class II HLA, CTLA-4 as well as anti-GAD65, anti-IA-2 and anti-TPO antibody titers, and the insulin-free time period predominated; in PC-3: gender and triglycerides; and in PC-4: total cholesterol. These components explained 18, 15, 12, and 12 %, respectively, of the total variance in the LADA cohort. The predictive power of insulin dependence of the four components was different. PC-2 (characterized mostly by high antibody titers and presence of predisposing genetic markers

  4. [NOD2 gene mutation in Moroccan patients with Crohn's disease: prevalence, genotypic study and correlation of NOD2 gene mutation with the phenotype of Crohn's disease].

    PubMed

    Tamzaourte, Mouna; Errabih, Ikram; Krami, Hayat; Maha, Fadlouallah; Maria, Lahmiri; Benzzoubeir, Nadia; Ouazzani, Laaziza; Sefiani, Ahmed; Ouazzani, Houria

    2017-01-01

    The aim of this study was to determine the prevalence of NOD2/CARD15 gene mutations in a group of Moroccan patients with Crohn's disease and to study its correlation with genotype-phenotypic expression. We conducted a cross-sectional case-control study over a period of 16 months. 101 patients with Crohn's disease were enrolled between January 2012 and April 2013 as well as a control group of 107 patients. We performed a genetic analysis to identify 3 NOD2 gene variants: p.Arg702Trp, p.Gly908Arg and p.Leu1007fsins. Then we conducted a study of the correlation between genotype and phenotypic expression. The genetic analysis of patients with Crohn's disease highlighted the presence of NOD2 mutation in 14 patients (13.77%) versus 7 patients (6.53%) in the control group. The study of the frequency of different alleles showed p.Gly908Arg mutation in 6.43%, p.Leu1007fsins in 0.99% and p.Arg702Trp in 0.49% versus 2.80%, 0% and 0.46% in the control group respectively. The study of the correlation between genotype and phenotypic expression showed that CARD15 mutation is associated with ileocecal Crohn's disease, with fistulizing and stenosing behavior in Crohn's disease as well as with severe evolution and frequent recourse to surgery and immunosuppressants. The prevalence of NOD2/ CARD15 mutation in our case series is low. This mutation is correlated with severe Crohn's disease.

  5. Intake of antioxidant vitamins and trace elements during pregnancy and risk of advanced beta cell autoimmunity in the child.

    PubMed

    Uusitalo, Liisa; Kenward, Mike G; Virtanen, Suvi M; Uusitalo, Ulla; Nevalainen, Jaakko; Niinistö, Sari; Kronberg-Kippilä, Carina; Ovaskainen, Marja-Leena; Marjamäki, Liisa; Simell, Olli; Ilonen, Jorma; Veijola, Riitta; Knip, Mikael

    2008-08-01

    Type 1 diabetes may have its origins in the fetal period of life. Free radicals were implicated in the cause of type 1 diabetes. It was hypothesized that antioxidant nutrients could protect against type 1 diabetes. We assessed whether high maternal intake of selected dietary antioxidants during pregnancy is associated with a reduced risk of advanced beta cell autoimmunity in the child, defined as repeated positivity for islet cell antibodies plus >/=1 other antibody, overt type 1 diabetes, or both. The study was carried out as part of the population-based birth cohort of the Type 1 Diabetes Prediction and Prevention Project. The data comprised 4297 children with increased genetic susceptibility to type 1 diabetes, born at the University Hospital of Oulu or Tampere, Finland, between October 1997 and December 2002. The children were monitored for diabetes-associated autoantibodies from samples obtained at 3-12-mo intervals. Maternal antioxidant intake during pregnancy was assessed postnatally with a self-administered food-frequency questionnaire, which contained a question about consumption of dietary supplements. Maternal intake of none of the studied antioxidant nutrients showed association with the risk of advanced beta cell autoimmunity in the child. The hazard ratios, indicating the change in risk per a 2-fold increase in the intake of each antioxidant, were nonsignificant and close to 1. High maternal intake of retinol, beta-carotene, vitamin C, vitamin E, selenium, zinc, or manganese does not protect the child from development of advanced beta cell autoimmunity in early childhood.

  6. Auto-antibodies and Autoimmune Disease during Treatment of Children with Chronic Hepatitis C

    PubMed Central

    Molleston, Jean P.; Mellman, William; Narkewicz, Michael R.; Balistreri, William F.; Gonzalez-Peralta, Regino P.; Jonas, Maureen M.; Lobritto, Steven J.; Mohan, Parvathi; Murray, Karen F.; Njoku, Dolores; Rosenthal, Philip; Barton, Bruce A.; Talor, Monica V.; Cheng, Irene; Schwarz, Kathleen B.; Haber, Barbara A.

    2012-01-01

    Objectives Auto-antibodies were studied in a well-characterized cohort of children with chronic hepatitis C (CHC) during treatment with PEG-IFN and ribavirin to assess the relationship to treatment and development of autoimmune disease. Methods 114 children (5–17 years), previously screened for the presence of high titer autoantibodies, were randomized to Peg-IFN with or without ribavirin. Anti-nuclear (ANA), anti-liver-kidney-microsomal (LKM), anti-thyroglobulin (TG), anti-thyroid peroxidase (TPO), insulin (IA2), anti-glutamic acid decarboxylase (GAD) antibodies were measured after trial completion using frozen sera. Results At baseline,19% had auto-antibodies: ANA (8%), LKM (4%), and GAD (4%). At 24 and 72 weeks (24 weeks after treatment completion), 23% and 26% had auto-antibodies (p=0.50, 0.48 compared to baseline). One child developed diabetes and two hypothyroidism during treatment; none developed autoimmune hepatitis. At 24 weeks, the incidence of flu-like symptoms, gastrointestinal symptoms, and headaches were 42%, 8% and 19% in those with auto-antibodies vs. 52%, 17%, and 26% in those without (p=0.18, 0.36, and 0.20, respectively). In children with negative HCV PCR at 24 weeks, there was no difference in the rate of early virologic response /sustained virologic response respectively in those with auto-antibodies 76%/69%, vs 58%/65% in those without (p=0.48). Conclusions Despite screening, we found autoantibodies commonly at baseline, during treatment for CHC and after. The presence of antibodies did not correlate with viral response, side effects, or autoimmune hepatitis. Neither screening nor archived samples assayed for thyroid and diabetes-related antibodies identified the 3 subjects who developed overt autoimmune disease, diabetes (1) and hypothyroidism (2). PMID:23439301

  7. [Seric 21-hydroxilase antibodies in patients with anti-microsomal fraction antibodies. Autoimmune polyendocrine syndrome].

    PubMed

    Botta, Silvia; Roveto, Silvana; Rimoldi, Daniel

    2007-01-01

    Autoimmune polyendocrine syndrome (APS) is the association of autoimmune endocrine diseases, with other autoimmune nonendocrine disorders. APS types 1, 2 and 4 include autoimmune adrenalitis; this suggests the presence of autoantibodies. A specific serological marker for these is the anti 21- hydroxilase autoantibody (a21-OH). APS type 2 is the association of autoimmune adrenalitis, to autoimmune thyroid disease and/or diabetes mellitus, all these are induced by autoantibodies. Alopecia, vitiligo, myasthenia and other manifestations can be minor components. We sought to establish the prevalence of seric a21-OH in patients with positive anti-microsomal fraction autoantibodies, autoimmune thyroid disease and/or non-endocrine autoimmune diseases. We also aimed to diagnose incomplete forms of APS and to follow up patients at risk of progression to complete forms of APS. A population of 72 patients and another of 60 controls with negative anti-microsomal fraction autoantibodies were studied. Elevated seric a21-OH were found in two patients. Patient A with 47 U/ml had autoimmune hypothyroidism and myasthenia; and patient B with 8.75 U/ml had autoimmune hypothyrodism and vitiligo; they both lacked adrenal insufficiency. Seric a21-OH had a prevalence of 2.8%. Regarding the adrenal component, patients A and B had an incomplete and latent APS type 2. Considering a21-OH as markers of latent endocrine autoimmune diseases and taking into account the eventual risk of developing clinical manifestations, periodic biochemical and clinical follow-ups are recommended.

  8. NOD2 Modulates Serotonin Transporter and Interacts with TLR2 and TLR4 in Intestinal Epithelial Cells.

    PubMed

    Layunta, Elena; Latorre, Eva; Forcén, Raquel; Grasa, Laura; Castro, Marta; Arias, Maykel A; Alcalde, Ana I; Mesonero, José Emilio

    2018-06-15

    Serotonin (5-HT) is a chief modulator of intestinal activity. The effects of 5-HT depend on its extracellular availability, which is mainly controlled by serotonin transporter (SERT), expressed in enterocytes. On the other hand, innate immunity, mediated by Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), is known to control intestinal microbiota and maintain intestinal homeostasis. The dysregulation of the intestinal serotonergic system and innate immunity has been observed in inflammatory bowel diseases (IBD), the incidence of which has severely increased all over the world. The aim of the present study, therefore, was to analyze the effect of NOD2 on intestinal SERT activity and expression, as well as to study the crosstalk of NOD2 with TLR2 and TLR4. Intestinal epithelial cell line Caco-2/TC7 was used to analyze SERT activity and SERT, NOD2, TLR2 and TLR4 molecular expression by real-time PCR and western blotting. Moreover, intestinal tract (ileum and colon) from mice deficient in TLR2, TLR4 or TLR2/4 receptors was used to test the interdependence of NOD2 with these TLR receptors. NOD2 activation inhibits SERT activity in Caco-2/TC7 cells, mainly due to the decrement of SERT molecular expression, with RIP2/RICK being the intracellular pathway involved in this effect. This inhibitory effect on SERT would yield an increment of extracellular 5-HT availability. In this sense, 5-HT strongly inhibits NOD2 expression. In addition, NOD2 showed greater interdependence with TLR2 than with TLR4. Indeed, NOD2 expression significantly increased in both cells treated with TLR2 agonists and the intestinal tract of Tlr2-/- mice. It may be inferred from our data that NOD2 could play a role in intestinal pathophysiology not only through its inherent innate immune role but also due to its interaction with other receptors as TLR2 and the modulation of the intestinal serotonergic system decreasing SERT activity and expression. © 2018

  9. Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tae-Joon; Hahn, Ji-Sook

    NOD1 is an intracellular sensor of innate immunity which is related to a number of inflammatory diseases. NOD1 is known to be difficult to express and purify for structural and biochemical studies. Based on the fact that Hsp90 and its cochaperone SGT1 are necessary for the stabilization and activation of NOD1 in mammals, SGT1 was chosen as a fusion partner of the leucine-rich repeat (LRR) domain of NOD1 for its soluble expression in Escherichia coli. Fusion of human SGT1 (hSGT1) to NOD1 LRR significantly enhanced the solubility, and the fusion protein was stabilized by coexpression of mouse Hsp90α. The expressionmore » level of hSGT1-NOD1 LRR was further enhanced by supplementation of rare codon tRNAs and exchange of antibiotic marker genes. - Highlights: • The NOD1 LRR domain was solubilized by SGT1 fusion in E. coli. • The coexpression of HSP90 stabilized the SGT1-NOD1 LRR fusion protein. • Several optimizations could enhance the expression level of the fusion protein.« less

  10. NOD1CARD Might Be Using Multiple Interfaces for RIP2-Mediated CARD-CARD Interaction: Insights from Molecular Dynamics Simulation

    PubMed Central

    Pradhan, Sukanta Kumar; De, Sachinandan

    2017-01-01

    The nucleotide-binding and oligomerization domain (NOD)-containing protein 1 (NOD1) plays the pivotal role in host-pathogen interface of innate immunity and triggers immune signalling pathways for the maturation and release of pro-inflammatory cytokines. Upon the recognition of iE-DAP, NOD1 self-oligomerizes in an ATP-dependent fashion and interacts with adaptor molecule receptor-interacting protein 2 (RIP2) for the propagation of innate immune signalling and initiation of pro-inflammatory immune responses. This interaction (mediated by NOD1 and RIP2) helps in transmitting the downstream signals for the activation of NF-κB signalling pathway, and has been arbitrated by respective caspase-recruitment domains (CARDs). The so-called CARD-CARD interaction still remained contradictory due to inconsistent results. Henceforth, to understand the mode and the nature of the interaction, structural bioinformatics approaches were employed. MD simulation of modelled 1:1 heterodimeric complexes revealed that the type-Ia interface of NOD1CARD and the type-Ib interface of RIP2CARD might be the suitable interfaces for the said interaction. Moreover, we perceived three dynamically stable heterotrimeric complexes with an NOD1:RIP2 ratio of 1:2 (two numbers) and 2:1. Out of which, in the first trimeric complex, a type-I NOD1-RIP2 heterodimer was found interacting with an RIP2CARD using their type-IIa and IIIa interfaces. However, in the second and third heterotrimer, we observed type-I homodimers of NOD1 and RIP2 CARDs were interacting individually with RIP2CARD and NOD1CARD (in type-II and type-III interface), respectively. Overall, this study provides structural and dynamic insights into the NOD1-RIP2 oligomer formation, which will be crucial in understanding the molecular basis of NOD1-mediated CARD-CARD interaction in higher and lower eukaryotes. PMID:28114344

  11. Infant exposures and development of type 1 diabetes mellitus: The Diabetes Autoimmunity Study in the Young (DAISY).

    PubMed

    Frederiksen, Brittni; Kroehl, Miranda; Lamb, Molly M; Seifert, Jennifer; Barriga, Katherine; Eisenbarth, George S; Rewers, Marian; Norris, Jill M

    2013-09-01

    The incidence of type 1 diabetes mellitus (T1DM) is increasing worldwide, with the most rapid increase among children younger than 5 years of age. To examine the associations between perinatal and infant exposures, especially early infant diet, and the development of T1DM. The Diabetes Autoimmunity Study in the Young (DAISY) is a longitudinal, observational study. Newborn screening for human leukocyte antigen (HLA) was done at St. Joseph's Hospital in Denver, Colorado. First-degree relatives of individuals with T1DM were recruited from the Denver metropolitan area. A total of 1835 children at increased genetic risk for T1DM followed up from birth with complete prospective assessment of infant diet. Fifty-three children developed T1DM. Early (<4 months of age) and late (≥6 months of age) first exposure to solid foods compared with first exposures at 4 to 5 months of age (referent). Risk for T1DM diagnosed by a physician. Both early and late first exposure to any solid food predicted development of T1DM (hazard ratio [HR], 1.91; 95% CI, 1.04-3.51, and HR, 3.02; 95% CI, 1.26-7.24, respectively), adjusting for the HLA-DR genotype, first-degree relative with T1DM, maternal education, and delivery type. Specifically, early exposure to fruit and late exposure to rice/oat predicted T1DM (HR, 2.23; 95% CI, 1.14-4.39, and HR, 2.88; 95% CI, 1.36-6.11, respectively), while breastfeeding at the time of introduction to wheat/barley conferred protection (HR, 0.47; 95% CI, 0.26-0.86). Complicated vaginal delivery was also a predictor of T1DM (HR, 1.93; 95% CI, 1.03-3.61). These results suggest the safest age to introduce solid foods in children at increased genetic risk for T1DM is between 4 and 5 months of age. Breastfeeding while introducing new foods may reduce T1DM risk.

  12. NOD2/CARD15: geographic differences in the Spanish population and clinical applications in Crohn's disease.

    PubMed

    Barreiro-de-Acosta, M; Mendoza, J L; Lana, R; Domínguez-Muñoz, J E; Díaz-Rubio, M

    2010-05-01

    Crohn's disease (CD) is a genetically complex disease in which both genetic susceptibility and environmental factors play key roles in the development of the disorder. NOD2/CARD15 mutations are associated with CD. NOD2 encodes for a protein that is an intracellular receptor for a bacterial product (muramyl dipeptide), though the exact functional consequences of these mutations remain the subject of debate. NOD2/CARD15 mutations are associated with ileal CD, with stricturing behavior, and possibly with a more complicated course of CD. NOD2/CARD15 mutations associated with CD have demonstrated heterogeneity across ethnicities and populations throughout the world, with regional variations across Europe and Spain. However, "NOD2/CARD15 testing" is not yet ready for use in the clinical setting. One of the reasons is that we know that these genetic variants increase the risk of disease only marginally, and many healthy individuals carry the risk alleles, at present it is not recommended to screen first-degree relatives, because we do not have the ability to prevent the disease at the present time.

  13. Genetic deletion of the bacterial sensor NOD2 improves murine Crohn’s disease-like ileitis independent of functional dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corridoni, D.; Rodriguez-Palacios, A.; Di Stefano, G.

    Although genetic polymorphisms in NOD2 (nucleotide-binding oligomerization domain-containing 2) have been associated with the pathogenesis of Crohn’s disease (CD), little is known regarding the role of wild-type (WT) NOD2 in the gut. To date, most murine studies addressing the role of WT Nod2 have been conducted using healthy (ileitis/colitis-free) mouse strains. Here, we evaluated the effects of Nod2 deletion in a murine model of spontaneous ileitis, i.e., the SAMP1Yit/Fc (SAMP) strain, which closely resembles CD. Remarkably, Nod2 deletion improved both chronic cobblestone ileitis (by 50% assessed, as the % of abnormal mucosa at 24 wks of age), as well asmore » acute dextran sodium sulfate (DSS) colitis. Mechanistically, Th2 cytokine production and Th2-transcription factor activation (i.e., STAT6 phosphorylation) were reduced. Microbiologically, the effects of Nod2 deletion appeared independent of fecal microbiota composition and function, assessed by 16S rRNA and metatranscriptomics. Our findings indicate that pharmacological blockade of NOD2 signaling in humans could improve health in Th2-driven chronic intestinal inflammation.« less

  14. NOD1 is required for Helicobacter pylori induction of IL-33 responses in gastric epithelial cells.

    PubMed

    Tran, Le Son; Tran, Darren; De Paoli, Amanda; D'Costa, Kimberley; Creed, Sarah J; Ng, Garrett Z; Le, Lena; Sutton, Philip; Silke, J; Nachbur, U; Ferrero, Richard L

    2018-05-01

    Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL-33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL-33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide-Binding Oligomerisation Domain-Containing Protein 1 (NOD1) and its adaptor protein receptor-interacting serine-threonine Kinase 2, to promote production of both full-length and processed IL-33 in gastric epithelial cells. Furthermore, IL-33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1 +/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL-33 and splenic IL-13 responses, but decreased IFN-γ responses, when compared with Nod1 -/- animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL-33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation. © 2018 John Wiley & Sons Ltd.

  15. Epigallocatechin-3-Gallate Prevents Autoimmune-Associated Down-Regulation of p21 in Salivary Gland Cells Through a p53-Independent Pathway

    PubMed Central

    Dickinson, Douglas; Yu, Hongfang; Ohno, Seiji; Thomas, Cristina; DeRossi, Scott; Ma, Yat-Ho; Yates, Nicole; Hahn, Emily; Bisch, Frederick; Yamamoto, Tetsuya; Hsu, Stephen

    2015-01-01

    The submandibular salivary glands of non-obese diabetic (NOD) mice, a model for Sjogren’s syndrome and type-1 diabetes, show an elevated level of proliferating cell nuclear antigen (PCNA), a protein involved in cell proliferation and repair of DNA damage. We reported previously that epigallocatechin-3-gallate (EGCG), the most abundant green tea catechin, normalizes the PCNA level. PCNA’s activity can be regulated by the cyclin-dependent kinase inhibitor p21, which is also important for epithelial cell differentiation. In turn, expression of p21 and PCNA are partially regulated by Rb phosphorylation levels. EGCG was found to modulate p21 expression in epithelial cells, suggesting that EGCG-induced p21 could be associated with down-regulation of PCNA in vivo. The current study examined the protein levels of p21 and p53 (which can up-regulate p21) in NOD mice fed with either water or EGCG, and the effect of EGCG on p21 and p53 in cell line models with either normal or defective Rb. In NOD mice, the p21 level was low, and EGCG normalized it. In contrast to HSG cells with functional Rb, negligible expression of p21 in NS-SV-AC cells that lack Rb was not altered by EGCG treatment. Inhibition of p53 by siRNA demonstrated that p21 and p53 were induced independently in HSG cells by a physiological concentration range of EGCG, suggesting p53 could be an important but not conditional factor associated with p21 expression. In conclusion, PCNA and p21 levels are altered inversely in the NOD model for SS and in HSG cells, and warrant further study as candidate new markers for salivary dysfunction associated with xerostomia. Induction of p21 by EGCG could provide clinically useful normalization of salivary glands by promoting differentiation and reducing PCNA levels. PMID:24329914

  16. Metabolically inactive insulin analog prevents type I diabetes in prediabetic NOD mice.

    PubMed Central

    Karounos, D G; Bryson, J S; Cohen, D A

    1997-01-01

    The purpose of this study was to determine the relative importance of the metabolic effects of insulin for diabetes prevention by administering insulin or an inactive insulin analog by daily subcutaneous injections to prediabetic mice. A recombinant monomeric human insulin analog, which does not bind to the insulin receptor as a consequence of an alteration of a single amino acid at position 25 of the B chain, was shown to be equally effective at diabetes prevention as was intact insulin. In contrast to native insulin, the insulin analog did not cause hypoglycemia after subcutaneous injection. The insulin analog, however, protected young adult mice from diabetes, even when it was initiated after the onset of extensive lymphocytic infiltration of the islets. Thus, preventative therapy by daily subcutaneous injections of insulin does not require the hypoglycemic response, or binding to the insulin receptor to prevent the onset of type I diabetes. PMID:9294099

  17. Is glycated albumin useful for differential diagnosis between fulminant type 1 diabetes mellitus and acute-onset autoimmune type 1 diabetes mellitus?

    PubMed

    Koga, Masafumi; Kanehara, Hideo; Bando, Yukihiro; Morita, Shinya; Kasayama, Soji

    2015-12-07

    Markedly elevated plasma glucose and relatively low HbA1c compared to plasma glucose is one diagnostic criterion for fulminant type 1 diabetes mellitus (FT1DM). Glycated albumin (GA) is a glycemic control marker that reflects glycemic control in shorter period than HbA1c. This study investigated whether GA is useful for differential diagnosis between FT1DM and acute-onset autoimmune type 1 diabetes mellitus (T1ADM) or not. This study included 38 FT1DM patients and 31 T1ADM patients in whom both HbA1c and GA were measured at the time of diagnosis. In FT1DM patients, as compared to T1ADM patients, both HbA1c and GA were significantly lower (HbA1c; 6.6±0.9% vs. 11.7±2.6%, P<0.0001, GA; 22.9±4.8% vs. 44.3±8.3%, P<0.0001). For differential diagnosis between FT1DM and T1ADM, ROC analysis showed that the optimum cut-off value for GA was 33.5% with sensitivity and specificity of 97.4% and 96.8%, respectively, while the optimum cut-off value for HbA1c was 8.7% with sensitivity and specificity of 100% and 83.9%, respectively. GA also may be useful for the differential diagnosis between FT1DM and T1ADM when the cut-off value can be set at 33.5%. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Genetically Engineered Islets and Alternative Sources of Insulin-Producing Cells for Treating Autoimmune Diabetes: Quo Vadis?

    PubMed Central

    Chou, Feng-Cheng; Huang, Shing-Hwa; Sytwu, Huey-Kang

    2012-01-01

    Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1) detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2) inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells. PMID:22690214

  19. [Autoimmune hepatitis].

    PubMed

    Ostojić, Rajko

    2003-01-01

    Autoimmune hepatitis is an unresolving, hepatocellular inflammation of unknown cause that is characterized by the presence of periportal hepatitis on histologic examination, tissue autoantibodies in serum, and hypergammaglobulinemia. By international consensus, the designation autoimmune hepatitis has replaced alternative terms for the condition. Three types of autoimmune hepatitis have been proposed based on immunoserologic findings. Type 1 autoimmune hepatitis is characterized by the presence of antinuclear antibodies (ANA) or smooth muscle antibodies (SMA) (or both) in serum. Seventy percent of patients with type 1 of autoimmune hepatitis are women. This type is the most common form and accounts for at least 80% of cases. Type 2 is characterized by the presence of antibodies to liver-kidney microsome type 1 (anti-LKM1) in serum. Patients with this type of autoimmune hepatitis are predominantly children. Type 3 autoimmune hepatitis is characterized by the presence of antibodies to soluble liver antigen (anti-SLA) in serum. There are no individual features that are pathognomonic of autoimmune hepatitis, and its diagnosis requires the confident exclusion of other conditions. The large majority of patients show satisfactory response to corticosteroid (usually prednisone or prednisolone) therapy. For the past 30 years it has been customary to add azathioprine as a "steroid sparing" agent to allow lower doses of steroids to be used and remission, once achieved, can be sustained in many patients with azathioprine alone after steroid withdrawal. Patients with autoimmune hepatitis who have decompensated during or after corticosteroid therapy are candidates for liver transplantation.

  20. A rare case of autoimmune hypophysitis presenting as temperature dysregulation.

    PubMed

    Jain, Ankur; Dhanwal, Dinesh K

    2015-02-01

    Autoimmune hypophysitis is a rare cause of pan-hypopituitarism. Hypothalamic involvement in autoimmune hypophysitis is rare and usually manifests as central diabetes insipidus due to antibodies against arginine vasopressin. Temperature dysregulation is occasionally seen with suprasellar tumours but has never been reported with hypophysitis. We report a case of a middle aged man who presented to us with the complaints of documented body temperature fluctuations since two months followed gradually by hoarseness of voice, sexual dysfunction and syncope. Examination was remarkable for postural hypotension, dry coarse skin and delayed ankle reflexes. Patient's hormone profile revealed pan-hypopituitarism and elevated titre of anti-TPO antibodies. Patient's work up for secondary causes of hypopituitarism was negative. MRI brain revealed typical findings of hypophysitis. Patient was suspected as a case of autoimmune hypophysitis and was immediately treated with prednisolone along with hormone replacement. Rapid response within 30 days was observed in the form of subsidence of temperature fluctuations, improvement in general well being, sexual function and repeat MRI done after one month which revealed a partial empty sella. Autoimmune hypophysitis as a potentially treatable cause of temperature dysregulation has been highlighted in this case.

  1. A Rare Case of Autoimmune Hypophysitis Presenting as Temperature Dysregulation

    PubMed Central

    Dhanwal, Dinesh K.

    2015-01-01

    Autoimmune hypophysitis is a rare cause of pan-hypopituitarism. Hypothalamic involvement in autoimmune hypophysitis is rare and usually manifests as central diabetes insipidus due to antibodies against arginine vasopressin. Temperature dysregulation is occasionally seen with suprasellar tumours but has never been reported with hypophysitis. We report a case of a middle aged man who presented to us with the complaints of documented body temperature fluctuations since two months followed gradually by hoarseness of voice, sexual dysfunction and syncope. Examination was remarkable for postural hypotension, dry coarse skin and delayed ankle reflexes. Patient’s hormone profile revealed pan-hypopituitarism and elevated titre of anti-TPO antibodies. Patient’s work up for secondary causes of hypopituitarism was negative. MRI brain revealed typical findings of hypophysitis. Patient was suspected as a case of autoimmune hypophysitis and was immediately treated with prednisolone along with hormone replacement. Rapid response within 30 days was observed in the form of subsidence of temperature fluctuations, improvement in general well being, sexual function and repeat MRI done after one month which revealed a partial empty sella. Autoimmune hypophysitis as a potentially treatable cause of temperature dysregulation has been highlighted in this case. PMID:25859485

  2. Identification and functional analysis of CBLB mutations in type 1 diabetes.

    PubMed

    Yokoi, Norihide; Fujiwara, Yuuka; Wang, He-Yao; Kitao, Mai; Hayashi, Chihiro; Someya, Tomohiro; Kanamori, Masao; Oiso, Yutaka; Tajima, Naoko; Yamada, Yuichiro; Seino, Yutaka; Ikegami, Hiroshi; Seino, Susumu

    2008-03-28

    Casitas B-lineage lymphoma b (Cblb) is a negative regulator of T-cell activation and dysfunction of Cblb in rats and mice results in autoimmunity. In particular, a nonsense mutation in Cblb has been identified in a rat model of autoimmune type 1 diabetes. To clarify the possible involvement of CBLB mutation in type 1 diabetes in humans, we performed mutation screening of CBLB and characterized functional properties of the mutations in Japanese subjects. Six missense mutations (A155V, F328L, N466D, K837R, T882A, and R968L) were identified in one diabetic subject each, excepting N466D. Of these mutations, F328L showed impaired suppression of T-cell activation and was a loss-of-function mutation. These data suggest that the F328L mutation is involved in the development of autoimmune diseases including type 1 diabetes, and also provide insight into the structure-function relationship of CBLB protein.

  3. Autoimmune diseases in a Nigerian woman--a case report.

    PubMed

    Talabi, O A; Owolabi, M O; Osotimehin, B O

    2003-12-01

    Autoimmune diseases (AD) are conditions in which there is the development of antibodies against self cells/ organs. AD could either be organ-specific or non-organ specific (systemic) in clinical presentation. Commonly reported ADs includes: Myasthenia gravis, Hashimoto thyroiditis, Guillian-Barre syndrome, vitiligo, type 1 diabetes mellitus, Graves diseases, Goodpastures syndrome, pemphigus, rheumatoid arthritis, systemic lupus erythematosis, Addisons disease, multiple sclerosis, pernicious anaemia, autoimmune haemolytic anaemia, chronic active hepatitis, idiopathic thrombocytopenic purpura. There is paucity of locally documented information on the occurrence of AD in same patient in our environment. We therefore report the case of a 66 year old woman who presented at the University College Hospital (UCH), Ibadan, with a spectrum of the AD, Vitiligo, rheumatoid arthritis, myasthenia gravis, impaired glucose tolerance.

  4. Diabetic Hyperglycemia: Link to Impaired Glucose Transport in Pancreatic β Cells

    NASA Astrophysics Data System (ADS)

    Unger, Roger H.

    1991-03-01

    Glucose uptake into pancreatic β cells by means of the glucose transporter GLUT-2, which has a high Michaelis constant, is essential for the normal insulin secretory response to hyperglycemia. In both autoimmune and nonautoimmune diabetes, this glucose transport is reduced as a consequence of down-regulation of the normal β-cell transporter. In autoimmune diabetes, circulating immunoglobulins can further impair this glucose transport by inhibiting functionally intact transporters. Insights into mechanisms of the unresponsiveness of β cells to hyperglycemia may improve the management and prevention of diabetes.

  5. 'You sit in fear': understanding perceptions of nodding syndrome in post-conflict northern Uganda.

    PubMed

    Buchmann, Kristine

    2014-01-01

    Nodding syndrome, a disabling epidemic epileptic encephalopathy, has affected an estimated 1,834 children in northern Uganda, with reports of as many as 3,000. Etiology is unknown and children are being treated symptomatically but inconsistently with anti-epileptic drugs. This qualitative study comprised 10 semi-structured interviews with caregivers of affected children and five focus group discussions with 23 participants; relatives, teachers, and religious leaders. Data collection and participant observation were carried out from July to September 2012 in Kitgum and Pader districts. The material was coded through inductive thematic analysis. Nodding syndrome has brought signs of discrimination in school admission procedures, founded in a fear of transmission. The suffering and loss caused by nodding syndrome is collective, and participants felt that nodding syndrome was viewed as a threat to the Acholi only, and that interventions had therefore been delayed. Multiple theories of causation exist, most commonly that the disease is caused by chemicals from bombs or that food aid distributed in IDP camps had expired or been poisoned.A feeling of uncertainty was present in all focus group discussions, fueled by the fact that results of investigations were not being shared with the communities. It was especially agonizing that CDC results had been given to the Ugandan government in 2010 but not to the public. The definitive fear is that the disease will be the end of the Acholi. This study provided insight into the perceptions of communities affected by an unknown emerging disease. Families of affected children are grieving not only their child's illness; it is a loss of social value and of lineage. The loss and suffering involved with nodding syndrome should be seen in the context of the wider suffering of a society disrupted by violent conflict. The memory of war is omnipresent and is also how nodding syndrome is understood.

  6. Anti-interferon-gamma antibodies in the treatment of autoimmune diseases.

    PubMed

    Skurkovich, Boris; Skurkovich, Simon

    2003-02-01

    Interferon (IFN)-gamma is an important immune regulator in normal immunity. When IFN gamma production is disturbed, various autoimmune diseases (ADs) can develop, in which we suggest that anti-IFN gamma could have a beneficial effect. Depending on the cell type in which IFN gamma synthesis is disturbed, different clinical manifestations may result. We have also proposed to remove tumor necrosis factor (TNF)-alpha, together with certain types of IFNs, to treat various ADs and AIDS, also an autoimmune condition. Anti-IFN gamma has been tested in several T-helper cell (Th1) ADs, including rheumatoid arthritis (RA), multiple sclerosis (MS), corneal transplant rejection, uveitis, Type I diabetes, schizophrenia (anti-IFN gamma and anti-TNF alpha), and various autoimmune skin diseases (alopecia areata, psoriasis vulgaris, vitiligo, pemphigus vulgaris and epidermolysis bullosa). A strong, sometimes striking, therapeutic response followed administration of anti-IFN gamma, indicating that it may be a promising therapy for Th1 ADs.

  7. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function.

    PubMed

    Long, S Alice; Rieck, Mary; Sanda, Srinath; Bollyky, Jennifer B; Samuels, Peter L; Goland, Robin; Ahmann, Andrew; Rabinovitch, Alex; Aggarwal, Sudeepta; Phippard, Deborah; Turka, Laurence A; Ehlers, Mario R; Bianchine, Peter J; Boyle, Karen D; Adah, Steven A; Bluestone, Jeffrey A; Buckner, Jane H; Greenbaum, Carla J

    2012-09-01

    Rapamycin/interleukin-2 (IL-2) combination treatment of NOD mice effectively treats autoimmune diabetes. We performed a phase 1 clinical trial to test the safety and immunologic effects of rapamycin/IL-2 combination therapy in type 1 diabetic (T1D) patients. Nine T1D subjects were treated with 2-4 mg/day rapamycin orally for 3 months and 4.5 × 10(6) IU IL-2 s.c. three times per week for 1 month. β-Cell function was monitored by measuring C-peptide. Immunologic changes were monitored using flow cytometry and serum analyses. Regulatory T cells (Tregs) increased within the first month of therapy, yet clinical and metabolic data demonstrated a transient worsening in all subjects. The increase in Tregs was transient, paralleling IL-2 treatment, whereas the response of Tregs to IL-2, as measured by STAT5 phosphorylation, increased and persisted after treatment. No differences were observed in effector T-cell subset frequencies, but an increase in natural killer cells and eosinophils occurred with IL-2 therapy. Rapamycin/IL-2 therapy, as given in this phase 1 study, resulted in transient β-cell dysfunction despite an increase in Tregs. Such results highlight the difficulties in translating therapies to the clinic and emphasize the importance of broadly interrogating the immune system to evaluate the effects of therapy.

  8. Coffee and autoimmunity: More than a mere hot beverage!

    PubMed

    Sharif, Kassem; Watad, Abdulla; Bragazzi, Nicola Luigi; Adawi, Mohammad; Amital, Howard; Shoenfeld, Yehuda

    2017-07-01

    Coffee is one of the world's most consumed beverage. In the last decades, coffee consumption has attracted a huge body of research due to its impact on health. Recent scientific evidences showed that coffee intake could be associated with decreased mortality from cardiovascular and neurological diseases, diabetes type II, as well as from endometrial and liver cancer, among others. In this review, on the basis of available data in the literature, we aimed to investigate the association between coffee intake and its influence on the immune system and the insurgence of the most relevant autoimmune diseases. While some studies reported conflicting results, general trends have been identified. Coffee consumption seems to increase the risk of developing rheumatoid arthritis (RA) and type 1 diabetes mellitus (T1DM). By contrast, coffee consumption may exert a protective role against multiple sclerosis, primary sclerosing cholangitis, and ulcerative colitis. Concerning other autoimmune diseases such as systemic lupus erythematosus, psoriasis, primary biliary cholangitis and Crohn's disease, no significant association was found. In other studies, coffee consumption was shown to influence disease course and management options. Coffee intake led to a decrease in insulin sensitivity in T1DM, in methotrexate efficacy in RA, and in levothyroxine absorption in Hashimoto's disease. Further, coffee consumption was associated with cross reactivity with gliadin antibodies in celiac patients. Data on certain autoimmune diseases like systemic sclerosis, Sjögren's syndrome, and Behçet's disease, among others, are lacking in the existent literature. As such, further research is warranted. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The first childhood case with coexisting Hashimoto thyroiditis, vitiligo and autoimmune hepatitis.

    PubMed

    Keskin, Melikşah; Savaş-Erdeve, Şenay; Özbay-Hoşnut, Ferda; Kurnaz, Erdal; Çetinkaya, Semra; Aycan, Zehra

    2016-01-01

    Hashimoto thyroiditis (HT) is the most common pediatric autoimmune endocrine disorder. It results in autoimmune-mediated thyroid gland destruction and is an organ-specific, typical autoimmune disease. The presence of antithyroid antibodies and the typical pattern on ultrasonography indicate the diagnosis. It is also frequently seen together with other autoimmune disorders including type 1 insulin-dependent diabetes, celiac disease, alopecia and vitiligo. Autoimmune hepatitis (AIH) is a chronic type of liver injury with an immune etiology that can frequently cause end-stage liver disease if left untreated. Autoimmune hepatitis patients may present with hepatitis, and the laboratory tests in the absence of other etiology usually reveal a positive immune serology together with elevated immunoglobulins and abnormal liver histology. It is interesting that HT and AIH are rarely seen together although both have an autoimmune etiology. 14-year-old male who was being followed-up for vitiligo presented with symptoms of a swelling at the neck and fatigue. He was diagnosed with HT after the tests and the liver enzymes were found to be high. The patient was also diagnosed with AIH after tests revealed that the liver enzyme elevation had continued for longer than six months. The thyroid functions and liver enzymes returned to normal and the symptoms decreased after sodium L-thyroxine replacement together with steroid and azathioprine treatment. We present this case as we believe it is the first pediatric patient diagnosed with HT, AIH and vitiligo.

  10. New Insights into Disease-Specific Absence of Complement Factor H Related Protein C in Mouse Models of Spontaneous Autoimmune Diseases

    PubMed Central

    Mehta, Gaurav; Ferreira, Viviana P.; Pickering, Matthew C.; Skerka, Christine; Zipfel, Peter F.; Banda, Nirmal K.

    2014-01-01

    Complement factor H (CFH) protein is an inhibitor of the alternative pathway of complement (AP) both in the fluid phase and on the surface of host cells. Mouse and human complement factor H-related (CFHR) proteins also belong to the fH family of plasma glycoproteins. The main goal of the current study was to compare the presence of mRNA for two mCFHR proteins in spontaneously developing autoimmune diseases in mice such as dense deposit disease (DDD), diabetes mellitus (DM), basal laminar deposits (BLD), collagen antibody-induced arthrits (CAIA) and systemic lupus erythematosus (SLE). Here we report for the first time that the CFHR-C mRNA was universally absent in the liver from three strains of lupus-prone mice and in a diabetic-prone mouse strain. The mRNA levels (pg/ng) for CFH and CFHR-B in MRL-lpr/lpr, at 9 wks and 23 wks were 707.2 ± 44.4, 54.5 ± 5.75 and 729 ± 252.9, 74.04 ± 22.76 respectively. The mRNA levels for CFH and CFHR-B in NZB/NZW mice, at 9 wks and 54 wks were 579.9 ± 23.8, 58.8 ± 1.41 and 890.3 ± 135.2, 63.30 ± 9.2 respectively. CFHR-C protein was absent in the circulation of MRL-lpr/lpr and NZB/NZW mice before and after the development of lupus. Similarly, mRNA and protein for CFHR-C was universally absent in liver and other organs and in the circulation of NOD mice before and after the development of DM. In contrast, the mRNAs for CFH, CFHR-B and CFHR-C were universally present in the liver from mice with and without DDD, BLD and CAIA. The levels of mRNA for CFHR-B in mice with and without BLD were ~4 times higher than the mice with lupus. The complete absence of mRNA for CFHR-C in lupus and diabetic-prone strains indicates that polymorphic variation within the mouse CFHR family exists and raises the possibility that such variation contributes to lupus and diabetic phenotypes. PMID:25033230

  11. The HhH(2)/NDD Domain of the Drosophila Nod Chromokinesin-like Protein Is Required for Binding to Chromosomes in the Oocyte Nucleus

    PubMed Central

    Cui, Wei; Hawley, R. Scott

    2005-01-01

    Nod is a chromokinesin-like protein that plays a critical role in segregating achiasmate chromosomes during female meiosis. The C-terminal half of the Nod protein contains two putative DNA-binding domains. The first of these domains, known as the HMGN domain, consists of three tandemly repeated high-mobility group N motifs. This domain was previously shown to be both necessary and sufficient for binding of the C-terminal half of Nod to mitotic chromosomes in embryos. The second putative DNA-binding domain, denoted HhH(2)/NDD, is a helix-hairpin-helix(2)/Nod-like DNA-binding domain. Although the HhH(2)/NDD domain is not required or sufficient for chromosome binding in embryos, several well-characterized nod mutations have been mapped in this domain. To characterize the role of the HhH(2)/NDD domain in mediating Nod function, we created a series of UAS-driven transgene constructs capable of expressing either a wild-type Nod-GFP fusion protein or proteins in which the HhH(2)/NDD domain had been altered by site-directed mutagenesis. Although wild-type Nod-GFP localizes to the oocyte chromosomes and rescues the segregation defect in nod mutant oocytes, two of three proteins carrying mutants in the HhH(2)/NDD domain fail to either rescue the nod mutant phenotype or bind to oocyte chromosomes. However, these mutant proteins do bind to the polytene chromosomes in nurse-cell nuclei and enter the oocyte nucleus. Thus, even though the HhH(2)/NDD domain is not essential for chromosome binding in other cell types, it is required for chromosome binding in the oocyte. These HhH(2)/NDD mutants also block the localization of Nod to the posterior pole of stage 9–10A oocytes, a process that is thought to facilitate the interaction of Nod with the plus ends of microtubules (Cui et al. 2005). This observation suggests that the Nod HhH2/NDD domain may play other roles in addition to binding Nod to meiotic chromosomes. PMID:16143607

  12. No evidence of association between NOD2/CARD15 gene polymorphism and atherosclerotic events after renal transplantation

    PubMed Central

    Courivaud, Cécile; Ferrand, Christophe; Deschamps, Marina; Tiberghien, Pierre; Chalopin, Jean-Marc; Duperrier, Anne; Saas, Philippe; Ducloux, Didier

    2006-01-01

    Stable renal transplant recipients (RTR) display high rates of atherosclerotic events (AE). Innate immunity and especially vascular inflammation play a role in the pathogenesis of atherosclerosis. It is illustrated both by an increased occurrence of post-renal transplant cardiovascular events in patients with elevated levels of C-reactive protein and by a correlation between post-transplant AE and Toll-like receptor-4 Asp299Gly polymorphism. Here, we analyze the influence NOD2/CARD15 gene polymorphism since NOD2 can modulate macrophage pro-inflammatory activity and macrophage is present in early atherosclerotic lesions. The incidence of single nucleotide polymorphism (SNP) in the three major polymorphic region of NOD2 gene (SNP8, SNP12 and SNP13) was assessed in 182 RTR and the correlation between such polymorphism and the development of AE was analyzed. No correlation was observed between NOD2 gene polymorphism and the occurrence of AE after renal transplantation. NOD2 gene polymorphism thus does not appear to influence cardiovascular complications in RTR. PMID:16641610

  13. Mutual Regulation of NOD2 and RIG-I in Zebrafish Provides Insights into the Coordination between Innate Antibacterial and Antiviral Signaling Pathways.

    PubMed

    Nie, Li; Xu, Xiao-Xiao; Xiang, Li-Xin; Shao, Jian-Zhong; Chen, Jiong

    2017-05-27

    Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and retinoic acid-inducible gene I (RIG-I) are two important cytosolic pattern recognition receptors (PRRs) in the recognition of pathogen-associated molecular patterns (PAMPs), initiating innate antibacterial and antiviral signaling pathways. However, the relationship between these PRRs, especially in teleost fish models, is rarely reported. In this article, we describe the mutual regulation of zebrafish NOD2 ( Dr NOD2) and RIG-I ( Dr RIG-I) in innate immune responses. Luciferase assays were conducted to determine the activation of NF-κB and interferon signaling. Morpholino-mediated knockdown and mRNA-mediated rescue were performed to further confirm the regulatory roles between Dr NOD2 and Dr RIG-I. Results showed that Dr NOD2 and Dr RIG-I shared conserved structural hallmarks with their mammalian counterparts, and activated Dr RIG-I signaling can induce Dr NOD2 production. Surprisingly, Dr NOD2-initiated signaling can also induce Dr RIG-I expression, indicating that a mutual regulatory mechanism may exist between them. Studies conducted using HEK293T cells and zebrafish embryos showed that Dr RIG-I could negatively regulate Dr NOD2-activated NF-κB signaling, and Dr NOD2 could inhibit Dr RIG-I-induced IFN signaling. Moreover, knocking down Dr RIG-I expression by morpholino could enhance Dr NOD2-initiated NF-κB activation, and vice versa, which could be rescued by their corresponding mRNAs. Results revealed a mutual feedback regulatory mechanism underlying NOD2 and RIG-I signaling pathways in teleosts. This mechanism reflects the coordination between cytosolic antibacterial and antiviral PRRs in the complex network of innate immunity.

  14. Reply to Noddings, Darwall, Wren, and Fullinwider

    ERIC Educational Resources Information Center

    Slote, Michael

    2010-01-01

    I respond to Noddings with further clarification of the notion of empathy and also argue that previous care ethics has put too much of an exclusive emphasis on relationships. I respond to Darwall by pointing out some implausible implications of his own and Kantian views about respect and by showing how a sentimentalist approach can avoid those…

  15. Screening and Monitoring for Infectious Complications When Immunosuppressive Agents Are Studied in the Treatment of Autoimmune Disorders.

    PubMed

    Loechelt, Brett J; Green, Michael; Gottlieb, Peter A; Blumberg, Emily; Weinberg, Adriana; Quinlan, Scott; Baden, Lindsey R

    2015-09-01

    Significant progress has been made in the development, investigation, and clinical application of immunosuppressive agents to treat a variety of autoimmune disorders. The expansion of clinical applications of these new agents requires the performance of large multicenter clinical trials. These large clinical trials are particularly important as one considers these agents for the treatment of type 1 diabetes, which although autoimmune in its pathogenesis, is not classically treated as an autoimmune disorder. Although these agents hold promise for amelioration or cure of this disease, they have the potential to facilitate infectious complications. There are limited data regarding the prospective assessment of infectious risks with these agents in trials of this nature. Pediatric subjects may be at greater risk due to the higher likelihood of primary infection. A subgroup of experts associated with TrialNet (a National Institutes of Health [NIH]-funded Type 1 diabetes mellitus research network) with expertise in infectious diseases, immunology, and diagnostics developed an approach for screening and monitoring of immunosuppression-associated infections for prospective use in clinical trials. The goals of these recommendations are to provide a structured approach to monitor for infections, to identify specific laboratory testing and surveillance methods, and to consider therapies for treatment of these potential complications. Prospective evaluations of these infectious risks allow for greater scientific rigor in the evaluation of risk, which must be balanced with the potential benefits of these therapies. Our experience supports an important role for investigators with expertise in infections in immunocompromised individuals in protocol development of immunosuppressive trials in type 1diabetes and potentially other autoimmune diseases.

  16. Galectin-3 in autoimmunity and autoimmune diseases

    PubMed Central

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo

    2015-01-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116

  17. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality?

    PubMed Central

    Simoni, Y; Diana, J; Ghazarian, L; Beaudoin, L; Lehuen, A

    2013-01-01

    T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases. PMID:23199318

  18. miR15a and miR16 in Chilean type 1 diabetes patients: possible association with apoptosis, inflammatory, or autoimmunity markers.

    PubMed

    Garcia-Diaz, D F; Camacho-Guillén, P; Codner, E; Pérez-Bravo, F

    2018-01-31

    Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized by the progressive destruction of β cells, mediated by the interaction between T cells and several cytokines. The pathogenesis of T1D has established its possible relationship with miRNAs. In this study, we analyze the expression profile of miR-15a and miR-16 in peripheral blood mononuclear cells (PBMCs) and their possible association with apoptosis, inflammation, or autoimmunity markers. 38 T1D patients and 41 control subjects were recruited. mRNAs were analyzed by means of qPCR and TaqMan probes. PBMCs were treated with different concentrations of glucose (baseline, 11 and 25 mM) with or without an inflammatory stimulus as TNF-α (10 ng/ml). A decrease in the levels of the miR-15a expression in basal conditions is observed in T1D patients compared to healthy control subjects (relative units 0.5 vs. 1.8, p < 0.05). This change in miR-15a and miR-16 is not affected by the addition of TNF-α. No association is observed with inflammatory markers (IL-6, TNF-α, vCAM) or apoptosis (bcl2 expression). The relationship with immunological markers shows an interaction effect between miR16 and IA-2 (p < 0.03). TNF-α does not affect the expression profile of miR-15a and miR16 in PBMCs. A weak correlation is observed between miR-16 and with the autoimmunity profile (IA-2 autoantibody).

  19. miR15a and miR16 in Chilean type 1 diabetes patients: possible association with apoptosis, inflammatory, or autoimmunity markers.

    PubMed

    Garcia-Diaz, D F; Camacho-Guillén, P; Codner, E; Pérez-Bravo, F

    2018-01-30

    Type 1 diabetes mellitus (T1D) is an autoimmune disease characterized by the progressive destruction of β cells, mediated by the interaction between T cells and several cytokines. The pathogenesis of T1D has established its possible relationship with miRNAs. In this study, we analyze the expression profile of miR-15a and miR-16 in peripheral blood mononuclear cells (PBMCs) and their possible association with apoptosis, inflammation, or autoimmunity markers. 38 T1D patients and 41 control subjects were recruited. mRNAs were analyzed by means of qPCR and TaqMan probes. PBMCs were treated with different concentrations of glucose (baseline, 11 and 25 mM) with or without an inflammatory stimulus as TNF-α (10 ng/ml). A decrease in the levels of the miR-15a expression in basal conditions is observed in T1D patients compared to healthy control subjects (relative units 0.5 vs. 1.8, p < 0.05). This change in miR-15a and miR-16 is not affected by the addition of TNF-α. No association is observed with inflammatory markers (IL-6, TNF-α, vCAM) or apoptosis (bcl2 expression). The relationship with immunological markers shows an interaction effect between miR16 and IA-2 (p < 0.03). TNF-α does not affect the expression profile of miR-15a and miR16 in PBMCs. A weak correlation is observed between miR-16 and with the autoimmunity profile (IA-2 autoantibody).

  20. [Diabetes mellitus in children and adolescents: chronic complications and associated diseases].

    PubMed

    Rubio Cabezas, O; Argente Oliver, J

    2007-03-01

    Diabetes is one of the most common chronic diseases. Type 1, or autoimmune, diabetes accounts for more than 95 % of cases in children and adolescents. Chronic hyperglycemia per se is responsible for the development of several microvascular (retinopathy, nephropathy, neuropathy) and macrovascular complications (ischemic heart disease, cerebrovascular disease, and peripheral vascular disease). Other autoimmune diseases are also more frequent in type 1 diabetic patients. The present review aims to provide an update on some recent advances in this field to aid early detection of these complications and prevent or delay their progression through improved metabolic control.

  1. Exocrine pancreatic insufficiency in diabetes mellitus: a complication of diabetic neuropathy or a different type of diabetes?

    PubMed

    Hardt, Philip D; Ewald, Nils

    2011-01-01

    Pancreatic exocrine insufficiency is a frequently observed phenomenon in type 1 and type 2 diabetes mellitus. Alterations of exocrine pancreatic morphology can also be found frequently in diabetic patients. Several hypotheses try to explain these findings, including lack of insulin as a trophic factor for exocrine tissue, changes in secretion and/or action of other islet hormones, and autoimmunity against common endocrine and exocrine antigens. Another explanation might be that diabetes mellitus could also be a consequence of underlying pancreatic diseases (e.g., chronic pancreatitis). Another pathophysiological concept proposes the functional and morphological alterations as a consequence of diabetic neuropathy. This paper discusses the currently available studies on this subject and tries to provide an overview of the current concepts of exocrine pancreatic insufficiency in diabetes mellitus.

  2. sirt1-null mice develop an autoimmune-like condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sequeira, Jedon; Boily, Gino; Bazinet, Stephanie

    2008-10-01

    The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistentmore » with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease.« less

  3. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to proinflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages.

    PubMed

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2015-02-15

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl, and Mer (TAM) receptors in regulating chronic pattern recognition receptor stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and proinflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGF-β-dependent TAM upregulation in human macrophages, which, in turn, upregulated suppressor of cytokine signaling 3 expression. Restoring suppressor of cytokine signaling 3 expression under TAM knockdown conditions restored chronic NOD2-mediated proinflammatory cytokine downregulation. In contrast to the upregulated proinflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, musculoaponeurotic fibrosarcoma oncogene homolog K, and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for

  4. Modification of Helicobacter pylori peptidoglycan enhances NOD1 activation and promotes cancer of the stomach

    DOE PAGES

    Suarez, Giovanni; Romero-Gallo, Judith; Piazuelo, M. Blanca; ...

    2015-03-02

    Helicobacter pylori is the strongest known risk factor for gastric carcinogenesis. One cancer-linked locus is the cag pathogenicity island, which translocates components of peptidoglycan (PGN) into host cells. NOD1 is an intracellular immune receptor that senses PGN from Gram-negative bacteria and responds by inducing autophagy and activating NF-κB, leading to inflammation-mediated bacterial clearance; however chronic pathogens can evade NOD1-mediated clearance by altering PGN structure. We previously demonstrated that the H. pylori cag+ strain 7.13 rapidly induces gastric cancer in Mongolian gerbils. Using 2D-DIGE and mass spectrometry, we identified a novel mutation within the gene encoding the peptidoglycan deacetylase PgdA; therefore,more » we sought to define the role of H. pylori PgdA in NOD1-dependent activation of NF-κB, inflammation, and cancer. Co-culture of H. pylori strain 7.13 or its pgdA$-$ isogenic mutant with AGS gastric epithelial cells or HEK293 epithelial cells expressing a NF-κB reporter revealed that pgdA inactivation significantly decreased NOD1-dependent NF-κB activation and autophagy. Infection of Mongolian gerbils with an H. pylori pgdA$-$ mutant strain led to significantly decreased levels of inflammation and malignant lesions in the stomach; however, pre-activation of NOD1 prior to bacterial challenge reciprocally suppressed inflammation and cancer in response to wild-type H. pylori. Expression of NOD1 differs in human gastric cancer specimens compared to non-cancer samples harvested from the same patients. In conclusion, these results indicate that PGN deacetylation plays an important role in modulating host inflammatory responses to H. pylori, allowing the bacteria to persist and induce carcinogenic consequences in the gastric niche.« less

  5. The Autoimmune Ecology

    PubMed Central

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Alzate, Maria A.; Molano-Gonzalez, Nicolas; Rojas-Villarraga, Adriana

    2016-01-01

    Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures – internal and external – across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied. PMID:27199979

  6. The Autoimmune Ecology.

    PubMed

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Alzate, Maria A; Molano-Gonzalez, Nicolas; Rojas-Villarraga, Adriana

    2016-01-01

    Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures - internal and external - across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied.

  7. GPS-MBA: Computational Analysis of MHC Class II Epitopes in Type 1 Diabetes

    PubMed Central

    Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-Ag7 in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-Ag7 and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-Ag7 and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-Ag7 and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org. PMID:22479466

  8. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    PubMed Central

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  9. G908R NOD2 variant in a family with sarcoidosis.

    PubMed

    Besnard, Valérie; Calender, Alain; Bouvry, Diane; Pacheco, Yves; Chapelon-Abric, Catherine; Jeny, Florence; Nunes, Hilario; Planès, Carole; Valeyre, Dominique

    2018-03-20

    Sarcoidosis is a systemic disease characterized by the formation of immune granulomas in various organs, mainly the lungs and the lymphatic system. Exaggerated granulomatous reaction might be triggered in response to unidentified antigens in individuals with genetic susceptibility. The present study aimed to determine the genetic variants implicated in a familial case of sarcoidosis. Sarcoidosis presentation and history, NOD2 profile, NF-κB and cytokine production in blood monocytes/macrophages were evaluated in individuals from a family with late appearance of sarcoidosis. In the present study, we report a case of familial sarcoidosis with typical thoracic sarcoidosis and carrying the NOD2 2722G > C variant. This variant is associated with the presence of three additional SNPs for the IL17RA, KALRN and EPHA2 genes, which discriminate patients expressing the disease from others. Despite a decrease in NF-κB activity, IL-8 and TNF-A mRNA levels were increased at baseline and in stimulated conditions. Combination of polymorphisms in the NOD2, IL17RA, EPHA2 and KALRN genes could play a significant role in the development of sarcoidosis by maintaining a chronic pro-inflammatory status in macrophages.

  10. Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots. [Medicago sativa L. ; Rhizobium meliloti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, C.A.; Phillips, D.A.

    Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4{prime},7-dihydroxyflavanone, 4{prime},7-dihydroxyflavone, and 4,4{prime}-dihydroxy-2{prime}-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with (U-{sup 14}C)-L-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor L-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained {sup 14}C. In the presence of AOPP, {sup 14}C labeling and releasemore » of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. The release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth.« less

  11. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2.

    PubMed

    Kim, Hyung-Sik; Shin, Tae-Hoon; Lee, Byung-Chul; Yu, Kyung-Rok; Seo, Yoojin; Lee, Seunghee; Seo, Min-Soo; Hong, In-Sun; Choi, Soon Won; Seo, Kwang-Won; Núñez, Gabriel; Park, Jong-Hwan; Kang, Kyung-Sun

    2013-12-01

    Decreased levels or function of nucleotide-binding oligomerization domain 2 (NOD2) are associated with Crohn's disease. NOD2 regulates intestinal inflammation, and also is expressed by human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), to regulate their differentiation. We investigated whether NOD2 is required for the anti-inflammatory activities of MSCs in mice with colitis. Colitis was induced in mice by administration of dextran sulfate sodium or trinitrobenzene sulfonic acid. Mice then were given intraperitoneal injections of NOD2-activated hUCB-MSCs; colon tissues and mesenteric lymph nodes were collected for histologic analyses. A bromodeoxyuridine assay was used to determine the ability of hUCB-MSCs to inhibit proliferation of human mononuclear cells in culture. Administration of hUCB-MSCs reduced the severity of colitis in mice. The anti-inflammatory effects of hUCB-MSCs were greatly increased by activation of NOD2 by its ligand, muramyl dipeptide (MDP). Administration of NOD2-activated hUCB-MSCs increased anti-inflammatory responses in colons of mice, such as production of interleukin (IL)-10 and infiltration by T regulatory cells, and reduced production of inflammatory cytokines. Proliferation of mononuclear cells was inhibited significantly by co-culture with hUCB-MSCs that had been stimulated with MDP. MDP induced prolonged production of prostaglandin (PG)E2 in hUCB-MSCs via the NOD2-RIP2 pathway, which suppressed proliferation of mononuclear cells derived from hUCB. PGE2 produced by hUCB-MSCs in response to MDP increased production of IL-10 and T regulatory cells. In mice, production of PGE2 by MSCs and subsequent production of IL-10 were required to reduce the severity of colitis. Activation of NOD2 is required for the ability of hUCB-MSCs to reduce the severity of colitis in mice. NOD2 signaling increases the ability of these cells to suppress mononuclear cell proliferation by inducing production of PGE2. Copyright © 2013 AGA

  12. Immunomodulatory effects of linomide in animals immunized with immunopathogenic retinal antigens: dissociation between different immune functions.

    PubMed

    Shirkey, B L; Slavin, S; Vistica, B P; Podgor, M J; Gery, I

    1997-06-01

    Linomide (LS-2616, quinoline-3-carboxamide) has been reported to exert a diverse range of effects on the immune system. On one hand, this drug was found to stimulate the immune system and to enhance activities such as DTH or allograft rejection. On the other hand, linomide was shown to inhibit the induction of experimental autoimmune encephalomyelitis and myasthenia gravis, as well as the development of diabetes in non-obese diabetic (NOD) mice. Here we report the effects of linomide in animals immunized with uveitogenic retinal antigens. Treatment with linomide completely inhibited the development of experimental autoimmune uveoretinitis (EAU) in mice immunized with interphotoreceptor retinoid-binding protein and markedly suppressed EAU in rats immunized with S-antigen (S-Ag). In addition, linomide-treated rats exhibited reduced antibody production and lymphocyte proliferative response to S-Ag. In contrast to these suppressive activities, linomide treatment did not affect the development of adoptively transferred EAU in rats and moderately enhanced the DTH reactions to S-Ag in immunized rats in which EAU and other immune responses to this antigen were suppressed.

  13. Analysis of NOD1, NOD2, TLR1, TLR2, TLR4, TLR5, TLR6 and TLR9 genes in anal furunculosis of German shepherd dogs.

    PubMed

    House, A K; Binns, M M; Gregory, S P; Catchpole, B

    2009-03-01

    Anal furunculosis (AF) primarily affects German shepherd dogs (GSD) and is characterised by inflammation and ulceration of the perianal tissues with development of cutaneous sinuses or rectocutaneous fistulae. Investigation of pattern recognition receptor (PRR) function has suggested that defective responses might occur in AF-affected GSD. The aim of the current study was to investigate whether canine PRR genes are involved in determining susceptibility to AF in this breed. Chromosomal location and coding sequences for NOD1, NOD2, TLR1, TLR2, TLR4, TLR5, TLR6 and TLR9 were determined and microsatellite markers identified for each gene. Microsatellite genotyping of 100 control GSD and 47 AF-affected GSD showed restricted allelic variation for AHT H91 (associated with TLR5) and REN216 NO5 (associated with both TLR1 and TLR6) compared with non-GSD dogs. Genotyping of single nucleotide polymorphisms identified in canine TLR1, TLR5, TLR6 and NOD2 genes failed to show any significant associations between PRR polymorphisms and AF. The highly restricted PRR genotypes seen in GSD are likely to have resulted from selective breeding and might influence innate immune responses in this breed.

  14. First description of NOD2 variant associated with defective neutrophil responses in a woman with granulomatous mastitis related to corynebacteria.

    PubMed

    Bercot, Béatrice; Kannengiesser, Caroline; Oudin, Claire; Grandchamp, Bernard; Sanson-le Pors, Marie-José; Mouly, Stéphane; Elbim, Carole

    2009-09-01

    We report the first case of granulomatous mastitis due to Corynebacterium kroppenstedtii linked to strongly impaired neutrophil responses to Nod2 agonist and a single nucleotide polymorphism within the NOD2 gene (SNP13 [Leu1007fsinsC]) in a heterozygous state. These findings provided the first demonstration of impaired Nod2 function associated with corynebacterial infection.

  15. Autoimmune Thyroid Disease in Rheumatoid Arthritis: A Global Perspective

    PubMed Central

    Cárdenas Roldán, Jorge; Amaya-Amaya, Jenny; Castellanos-de la Hoz, Juan; Giraldo-Villamil, Juliana; Montoya-Ortiz, Gladys; Cruz-Tapias, Paola; Rojas-Villarraga, Adriana; Mantilla, Rubén D.; Anaya, Juan-Manuel

    2012-01-01

    Objective. To determine the prevalence and impact of autoimmune thyroid disease (AITD) in patients with rheumatoid arthritis (RA). Methods. Eight-hundred patients were included. The association between AITD and RA was analyzed was analyzed by bivariate and multivariate analysis. In addition, a literature review was done focusing on geographical variations. Results. In our cohort the prevalence of AITD was 9.8% while the presence of antibodies was 37.8% for antithyroperoxidase enzyme (TPOAb) and 20.8% for antithyroglobulin protein (TgAb). The presence of type 2 diabetes, thrombosis, abnormal body mass index, and a high educational level was positively associated with AITD. The literature review disclosed a geographical variation of AITD in RA ranging from 0.5% to 27%. Autoantibody prevalence ranges from 6% to 31% for TgAb, 5% to 37% for TPOAb, and from 11.4% to 32% for the presence of either of the two. Conclusion. AITD is not uncommon in RA and should be systematically assessed since it is a risk factor for developing diabetes and cardiovascular disease. These results may help to further study the common mechanisms of autoimmune diseases, to improve patients' outcome, and to define public health policies. An international consensus to accurately diagnose AITD is warranted. PMID:23209899

  16. Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene.

    PubMed

    Hanin, M; Jabbouri, S; Quesada-Vincens, D; Freiberg, C; Perret, X; Promé, J C; Broughton, W J; Fellay, R

    1997-06-01

    Rhizobia secrete specific lipo-chitooligosaccharide signals (LCOs) called Nod factors that are required for infection and nodulation of legumes. In Rhizobium sp. NGR234, the reducing N-acetyl-D-glucosamine of LCOs is substituted at C6 with 2-O-methyl-L-fucose which can be acetylated or sulphated. We identified a flavonoid-inducible locus on the symbiotic plasmid pNGR234a that contains a new nodulation gene, noeE, which is required for the sulphation of NGR234 Nod factors (NodNGR). noeE was identified by conjugation into the closely related Rhizobium fredii strain USDA257, which produces fucosylated but non-sulphated Nod factors (NodUSDA). R. fredii transconjugants producing sulphated LCOs acquire the capacity to nodulate Calopogonium caeruleum. Furthermore, mutation of noeE (NGRdelta noeE) abolishes the production of sulphated LCOs and prevents nodulation of Pachyrhizus tuberosus. The sulphotransferase activity linked to NoeE is specific for fucose. In contrast, the sulphotransferase NodH of Rhizobium meliloti seems to be less specific than NoeE, because its introduction into NGRdelta noeE leads to the production of a mixture of LCOs that are sulphated on C6 of the reducing terminus and sulphated on the 2-O-methylfucose residue. Together, these findings show that noeE is a host-specificity gene which probably encodes a fucose-specific sulphotransferase.

  17. Viral infection--a cure for type 1 diabetes?

    PubMed

    Hintermann, Edith; Christen, Urs

    2007-01-01

    Autoimmune diseases are thought to arise as a detrimental combination of genetic predisposition and environmental factors. Because of their potential for direct cellular damage and causing extensive inflammation, viruses are one of the major candidates for triggering autoimmunity. Although there is epidemiological evidence, direct proof for viruses as causative agents for autoimmune disease is hard to get since most viruses have been eliminated from the system by the time of diagnosis. However, evidence from various animal models suggests that viruses can indeed initiate or accelerate autoimmune diseases, such as type 1 diabetes or experimental allergic encephalomyelitis. In contrast, viruses have been also demonstrated to abrogate autoimmune disease in animal models. These observations might offer one explanation why increased frequencies of allergies and autoimmune diseases parallel with higher hygienic standards. This review reflects on the epidemiological evidence for the association of viruses with autoimmune diseases, the experimental evidence for viruses to abrogate an ongoing autoimmune destruction and evaluates the possibility for a therapeutic application.

  18. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease.

    PubMed

    Kerr, Jonathan R

    2016-04-01

    Human parvovirus B19 is a single-stranded DNA virus which preferentially targets the erythroblasts in the bone marrow. B19 infection commonly causes erythema infectiosum, arthralgia, fetal death, transient aplastic crisis in patients with shortened red cell survival, and persistent infection in people who are immunocompromised. Less common clinical manifestations include atypical skin rashes, neurological syndromes, cardiac syndromes, and various cytopenias. B19 infection has also been associated with development of a variety of different autoimmune diseases, including rheumatological, neurological, neuromuscular, cardiovascular, haematological, nephrological and metabolic. Production of a variety of autoantibodies has been demonstrated to occur during B19 infection and these have been shown to be key to the pathogenesis of the particular disease process in a significant number of cases, for example, production of rheumatoid factor in cases of B19-associated rheumatoid arthritis and production of anti-glutamic acid decarboxylase (GAD) in patients with B19-associated type 1 diabetes mellitus. B19 infection has also been associated with the development of multiple autoimmune diseases in 12 individuals. Documented mechanisms in B19-associated autoimmunity include molecular mimicry (IgG antibody to B19 proteins has been shown to cross react with a variety of recognised human autoantigens, including collagen II, keratin, angiotensin II type 1 receptor, myelin basic protein, cardiolipin, and platelet membrane glycoprotein IIb/IIIa), B19-induced apoptosis with presentation of self-antigens to T lymphocytes, and the phospholipase activity of the B19 unique VP1 protein. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Screening and Monitoring for Infectious Complications When Immunosuppressive Agents Are Studied in the Treatment of Autoimmune Disorders

    PubMed Central

    Loechelt, Brett J.; Green, Michael; Gottlieb, Peter A.; Blumberg, Emily; Weinberg, Adriana; Quinlan, Scott; Baden, Lindsey R.

    2015-01-01

    Significant progress has been made in the development, investigation, and clinical application of immunosuppressive agents to treat a variety of autoimmune disorders. The expansion of clinical applications of these new agents requires the performance of large multicenter clinical trials. These large clinical trials are particularly important as one considers these agents for the treatment of type 1 diabetes, which although autoimmune in its pathogenesis, is not classically treated as an autoimmune disorder. Although these agents hold promise for amelioration or cure of this disease, they have the potential to facilitate infectious complications. There are limited data regarding the prospective assessment of infectious risks with these agents in trials of this nature. Pediatric subjects may be at greater risk due to the higher likelihood of primary infection. A subgroup of experts associated with TrialNet (a National Institutes of Health [NIH]-funded Type 1 diabetes mellitus research network) with expertise in infectious diseases, immunology, and diagnostics developed an approach for screening and monitoring of immunosuppression-associated infections for prospective use in clinical trials. The goals of these recommendations are to provide a structured approach to monitor for infections, to identify specific laboratory testing and surveillance methods, and to consider therapies for treatment of these potential complications. Prospective evaluations of these infectious risks allow for greater scientific rigor in the evaluation of risk, which must be balanced with the potential benefits of these therapies. Our experience supports an important role for investigators with expertise in infections in immunocompromised individuals in protocol development of immunosuppressive trials in type 1diabetes and potentially other autoimmune diseases. PMID:26336066

  20. Regulatory T Cells in the Control of Autoimmunity: the Essential Role of  Transforming Growth Factor β and Interleukin 4 in the Prevention of Autoimmune Thyroiditis in Rats by Peripheral CD4+CD45RC− Cells and CD4+CD8− Thymocytes

    PubMed Central

    Seddon, Benedict; Mason, Don

    1999-01-01

    Previous studies have shown that induction of autoimmune diabetes by adult thymectomy and split dose irradiation of PVG.RT1u rats can be prevented by their reconstitution with peripheral CD4+CD45RC−TCR-α/β+RT6+ cells and CD4+CD8− thymocytes from normal syngeneic donors. These data provide evidence for the role of regulatory T cells in the prevention of a tissue-specific autoimmune disease but the mode of action of these cells has not been reported previously. In this study, autoimmune thyroiditis was induced in PVG.RT1c rats using a similar protocol of thymectomy and irradiation. Although a cell-mediated mechanism has been implicated in the pathogenesis of diabetes in PVG.RT1u rats, development of thyroiditis is independent of CD8+ T cells and is characterized by high titers of immunoglobulin (Ig)G1 antithyroglobulin antibodies, indicating a major humoral component in the pathogenesis of disease. As with autoimmune diabetes in PVG.RT1u rats, development of thyroiditis was prevented by the transfer of CD4+CD45RC− and CD4+CD8− thymocytes from normal donors but not by CD4+CD45RC+ peripheral T cells. We now show that transforming growth factor (TGF)-β and interleukin (IL)-4 both play essential roles in the mechanism of this protection since administration of monoclonal antibodies that block the biological activity of either of these cytokines abrogates the protective effect of the donor cells in the recipient rats. The prevention of both diabetes and thyroiditis by CD4+CD45RC− peripheral cells and CD4+CD8− thymocytes therefore does not support the view that the mechanism of regulation involves a switch from a T helper cell type 1 (Th1) to a Th2-like response, but rather relies upon a specific suppression of the autoimmune responses involving TGF-β and IL-4. The observation that the same two cytokines were implicated in the protective mechanism, whether thymocytes or peripheral cells were used to prevent autoimmunity, strongly suggests that the

  1. Positive autoantibodies to ZnT8 indicate elevated risk for additional autoimmune conditions in patients with Addison's disease.

    PubMed

    Fichna, Marta; Rogowicz-Frontczak, Anita; Żurawek, Magdalena; Fichna, Piotr; Gryczyńska, Maria; Zozulińska-Ziółkiewicz, Dorota; Ruchała, Marek

    2016-07-01

    Autoimmune Addison's disease (AAD) associates with exceptional susceptibility to develop other autoimmune conditions, including type 1 diabetes (T1D), marked by positive serum autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA) and insulinoma-associated protein 2 (IA-2A). Zinc transporter 8 (ZnT8) is a new T1D autoantigen, encoded by the SLC30A8 gene. Its polymorphic variant rs13266634C/T seems associated with the occurrence of serum ZnT8 antibodies (ZnT8A). This study was designed to determine the prevalence of serum ZnT8A and their clinical implication in 140 AAD patients. Other beta cell and thyroid-specific autoantibodies were also investigated, and ZnT8A results were confronted with the rs13266634 genotype. ZnT8A were detectable in 8.5 %, GADA in 20.7 %, IA-2A in 5.7 %, IAA in 1.6 % and various anti-thyroid antibodies in 7.1-67.8 % individuals. Type 1 diabetes was found in 10 % AAD patients. ZnT8A were positive in 57.1 % of T1D patients and 3.4 % non-diabetic AAD. Analysis of ZnT8A enabled to identify autoimmunity in two (14.3 %) T1D individuals previously classified as autoantibody-negative. ZnT8A-positive patients revealed significantly higher number of autoimmune conditions (p < 0.001), increased prevalence of T1D (p < 0.001) and other beta cell-specific autoantibodies. Carriers of the rs13266634 T-allele displayed increased frequency (p = 0.006) and higher titres of ZnT8A (p = 0.002). Our study demonstrates high incidence of ZnT8A in AAD patients. ZnT8A are associated with coexisting T1D and predictive of T1D in non-diabetic subjects. Moreover, positive ZnT8A in AAD indicate elevated risk for additional autoimmune conditions. Autoantibodies to beta cell antigens, comprising ZnT8, could be included in routine screening panels in AAD.

  2. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody

    PubMed Central

    Weiss, Lola; Slavin, Shimon; Reich, Shoshana; Cohen, Patrizia; Shuster, Svetlana; Stern, Robert; Kaganovsky, Ella; Okon, Elimelech; Rubinstein, Ariel M.; Naor, David

    2000-01-01

    Inflammatory destruction of insulin-producing β cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4–7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44–hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes. PMID:10618410

  3. Discovery of Nanomolar Desmuramylpeptide Agonists of the Innate Immune Receptor Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) Possessing Immunostimulatory Properties.

    PubMed

    Gobec, Martina; Tomašič, Tihomir; Štimac, Adela; Frkanec, Ruža; Trontelj, Jurij; Anderluh, Marko; Mlinarič-Raščan, Irena; Jakopin, Žiga

    2018-04-12

    Muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, has long been known as the smallest fragment possessing adjuvant activity, on the basis of its agonistic action on the nucleotide-binding oligomerization domain-containing protein 2 (NOD2). There is a pressing need for novel adjuvants, and NOD2 agonists provide an untapped source of potential candidates. Here, we report the design, synthesis, and characterization of a series of novel acyl tripeptides. A pivotal structural element for molecular recognition by NOD2 has been identified, culminating in the discovery of compound 9, the most potent desmuramylpeptide NOD2 agonist to date. Compound 9 augmented pro-inflammatory cytokine release from human peripheral blood mononuclear cells in synergy with lipopolysaccharide. Furthermore, it was able to induce ovalbumin-specific IgG titers in a mouse model of adjuvancy. These findings provide deeper insights into the structural requirements of desmuramylpeptides for NOD2-activation and highlight the potential use of NOD2 agonists as adjuvants for vaccines.

  4. Association of Early Exposure of Probiotics and Islet Autoimmunity in the TEDDY Study.

    PubMed

    Uusitalo, Ulla; Liu, Xiang; Yang, Jimin; Aronsson, Carin Andrén; Hummel, Sandra; Butterworth, Martha; Lernmark, Åke; Rewers, Marian; Hagopian, William; She, Jin-Xiong; Simell, Olli; Toppari, Jorma; Ziegler, Anette G; Akolkar, Beena; Krischer, Jeffrey; Norris, Jill M; Virtanen, Suvi M

    2016-01-01

    Probiotics have been hypothesized to affect immunologic responses to environmental exposures by supporting healthy gut microbiota and could therefore theoretically be used to prevent the development of type 1 diabetes mellitus (T1DM)-associated islet autoimmunity. To examine the association between supplemental probiotic use during the first year of life and islet autoimmunity among children at increased genetic risk of T1DM. In this ongoing prospective cohort study that started September 1, 2004, children from 6 clinical centers, 3 in the United States (Colorado, Georgia/Florida, and Washington) and 3 in Europe (Finland, Germany, and Sweden), were followed up for T1DM-related autoantibodies. Blood samples were collected every 3 months between 3 and 48 months of age and every 6 months thereafter to determine persistent islet autoimmunity. Details of infant feeding, including probiotic supplementation and infant formula use, were monitored from birth using questionnaires and diaries. We applied time-to-event analysis to study the association between probiotic use and islet autoimmunity, stratifying by country and adjusting for family history of type 1 diabetes, HLA-DR-DQ genotypes, sex, birth order, mode of delivery, exclusive breastfeeding, birth year, child's antibiotic use, and diarrheal history, as well as maternal age, probiotic use, and smoking. Altogether 8676 infants with an eligible genotype were enrolled in the follow-up study before the age of 4 months. The final sample consisted of 7473 children with the age range of 4 to 10 years (as of October 31, 2014). Early intake of probiotics. Islet autoimmunity revealed by specific islet autoantibodies. Early probiotic supplementation (at the age of 0-27 days) was associated with a decreased risk of islet autoimmunity when compared with probiotic supplementation after 27 days or no probiotic supplementation (hazard ratio [HR], 0.66; 95% CI, 0.46-0.94). The association was accounted for by children with the DR3

  5. Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility.

    PubMed

    Latini, Andrea; Ciccacci, Cinzia; Novelli, Giuseppe; Borgiani, Paola

    2017-08-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate the expression of multiple protein-encoding genes at the post-transcriptional level. MicroRNAs are involved in different pathways, such as cellular proliferation and differentiation, signal transduction and inflammation, and play crucial roles in the development of several diseases, such as cancer, diabetes, and cardiovascular diseases. They have recently been recognized to play a role also in the pathogenesis of autoimmune diseases. Although the majority of studies are focused on miRNA expression profiles investigation, a growing number of studies have been investigating the role of polymorphisms in miRNA genes in the autoimmune diseases development. Indeed, polymorphisms affecting the miRNA genes can modify the set of targets they regulate or the maturation efficiency. This review is aimed to give an overview about the available studies that have investigated the association of miRNA gene polymorphisms with the susceptibility to various autoimmune diseases and to their clinical phenotypes.

  6. ‘You sit in fear’: understanding perceptions of nodding syndrome in post-conflict northern Uganda

    PubMed Central

    Buchmann, Kristine

    2014-01-01

    Background Nodding syndrome, a disabling epidemic epileptic encephalopathy, has affected an estimated 1,834 children in northern Uganda, with reports of as many as 3,000. Etiology is unknown and children are being treated symptomatically but inconsistently with anti-epileptic drugs. Design This qualitative study comprised 10 semi-structured interviews with caregivers of affected children and five focus group discussions with 23 participants; relatives, teachers, and religious leaders. Data collection and participant observation were carried out from July to September 2012 in Kitgum and Pader districts. The material was coded through inductive thematic analysis. Results Nodding syndrome has brought signs of discrimination in school admission procedures, founded in a fear of transmission. The suffering and loss caused by nodding syndrome is collective, and participants felt that nodding syndrome was viewed as a threat to the Acholi only, and that interventions had therefore been delayed. Multiple theories of causation exist, most commonly that the disease is caused by chemicals from bombs or that food aid distributed in IDP camps had expired or been poisoned. A feeling of uncertainty was present in all focus group discussions, fueled by the fact that results of investigations were not being shared with the communities. It was especially agonizing that CDC results had been given to the Ugandan government in 2010 but not to the public. The definitive fear is that the disease will be the end of the Acholi. Conclusions This study provided insight into the perceptions of communities affected by an unknown emerging disease. Families of affected children are grieving not only their child's illness; it is a loss of social value and of lineage. The loss and suffering involved with nodding syndrome should be seen in the context of the wider suffering of a society disrupted by violent conflict. The memory of war is omnipresent and is also how nodding syndrome is understood

  7. Remission in models of type 1 diabetes by gene therapy using a single-chain insulin analogue

    NASA Astrophysics Data System (ADS)

    Lee, Hyun Chul; Kim, Su-Jin; Kim, Kyung-Sup; Shin, Hang-Cheol; Yoon, Ji-Won

    2000-11-01

    A cure for diabetes has long been sought using several different approaches, including islet transplantation, regeneration of β cells and insulin gene therapy. However, permanent remission of type 1 diabetes has not yet been satisfactorily achieved. The development of type 1 diabetes results from the almost total destruction of insulin-producing pancreatic β cells by autoimmune responses specific to β cells. Standard insulin therapy may not maintain blood glucose concentrations within the relatively narrow range that occurs in the presence of normal pancreatic β cells. We used a recombinant adeno-associated virus (rAAV) that expresses a single-chain insulin analogue (SIA), which possesses biologically active insulin activity without enzymatic conversion, under the control of hepatocyte-specific L-type pyruvate kinase (LPK) promoter, which regulates SIA expression in response to blood glucose levels. Here we show that SIA produced from the gene construct rAAV-LPK-SIA caused remission of diabetes in streptozotocin-induced diabetic rats and autoimmune diabetic mice for a prolonged time without any apparent side effects. This new SIA gene therapy may have potential therapeutic value for the cure of autoimmune diabetes in humans.

  8. Physical inactivity and sedentary behavior: Overlooked risk factors in autoimmune rheumatic diseases?

    PubMed

    Pinto, Ana Jéssica; Roschel, Hamilton; de Sá Pinto, Ana Lúcia; Lima, Fernanda Rodrigues; Pereira, Rosa Maria Rodrigues; Silva, Clovis Artur; Bonfá, Eloisa; Gualano, Bruno

    2017-07-01

    This review aims to (1) summarize the estimates of physical inactivity and sedentary behavior in autoimmune rheumatic diseases; (2) describe the relationship between physical (in)activity levels and disease-related outcomes; (3) contextualize the estimates and impact of physical inactivity and sedentary behavior in autoimmune diseases compared to other rheumatic diseases and chronic conditions; and (4) discuss scientific perspectives around this theme and potential clinical interventions to attenuate these preventable risk factors. We compiled evidence to show that estimates of physical inactivity and sedentary behavior in autoimmune rheumatic diseases are generally comparable to other rheumatic diseases as well as to other chronic conditions (e.g., type 2 diabetes, cardiovascular diseases, and obesity), in which a lack of physical activity and excess of sedentary behavior are well-known predictors of morbimortality. In addition, we also showed evidence that both physical inactivity and sedentary behavior may be associated with poor health-related outcomes (e.g., worse disease symptoms and low functionality) in autoimmune rheumatic diseases. Thus, putting into practice interventions to make the patients "sit less and move more", particularly light-intensity activities and/or breaking-up sedentary time, is a simple and prudent therapeutic approach to minimize physical inactivity and sedentary behavior, which are overlooked yet modifiable risk factors in the field of autoimmune rheumatic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Screen-detected gallstone disease and autoimmune diseases - A cohort study.

    PubMed

    Shabanzadeh, Daniel Mønsted; Linneberg, Allan; Skaaby, Tea; Sørensen, Lars Tue; Jørgensen, Torben

    2018-06-01

    Gallstone disease is highly prevalent and is associated with systemic inflammation. To determine whether screen-detected gallstones or cholecystectomy are associated with the occurrence of autoimmune and autoinflammatory diseases and the most common subgroups thereof. A cohort study of three randomly selected general population samples from Copenhagen was performed. Participants (n = 5928) were examined in the period 1982-1992, underwent abdominal ultrasound examination to detect gallstone disease, and followed through national registers until December 2014 (median 24.7 years) for occurrence of immunological diseases. Multivariable Cox regression analyses were performed. Gallstone disease was identified in 10% (591/5928) of participants, of whom 6.8% had gallstones and 3.2% had cholecystectomy at baseline. Gallstone disease was associated with incidence of autoimmune diseases (12.9% versus 7.92%; hazard ratio 1.46; 95% confidence interval [CI], [1.11;1.91]), diabetes mellitus type 1 (5.95% versus 3.67%; 1.53; [1.02;2.30]), and autoimmune thyroid disease (3.70% versus 1.59%; 2.06; [1.26;3.38]). Rheumatoid arthritis, autoinflammatory diseases, or any subgroups thereof were not associated. In a large general population sample, screen-detected gallstone disease was associated with the development of autoimmune diseases during long-term follow-up. Future research efforts are needed to further explore common disease mechanisms. Copyright © 2018 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to pro-inflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages1

    PubMed Central

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2014-01-01

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680

  11. Is disomic homozygosity at the APECED locus the cause of increased autoimmunity in Down's syndrome?

    PubMed Central

    Shield, J.; Wadsworth, E.; Hassold, T.; Judis, L. A.; Jacobs, P.

    1999-01-01

    AIMS—To examine the age of onset of insulin dependent diabetes mellitus (IDDM) in children with Down's syndrome compared with non-trisomic individuals, and to assess whether differences might be related to disomic homozygosity at the autoimmune polyglandular disease type 1 (APECED) gene locus.
METHODS—Children with Down's syndrome and IDDM were identified through the Down's syndrome association newsletter and from paediatricians. DNA was extracted from mouthbrush preparations provided by the parents and patients using standard techniques. Mapping techniques were then used to identify areas of reduction to homozygosity, including a marker that overlaps the locus for APECED. The frequency of disomic homozygosity for all markers (n = 18) was compared with a control group of 99 patients with Down's syndrome and their parents. The families also answered a questionnaire concerning diabetes and related autoimmune conditions in the family. Details were compared with the British Paediatric Surveillance Group 1988diabetes study.
RESULTS—Children with Down's syndrome and IDDM were diagnosed significantly earlier than the general population (6.7 v 8.0 years) with a far higher proportion diagnosed in the first 2 years of life (22% v 7%). There was no evidence of increased disomic homozygosity in the region of the APECED locus in Down's syndrome patients with IDDM compared with simple Down's syndrome.
CONCLUSIONS—The natural history of IDDM in Down's syndrome is different from that of the general population. Although children with Down's syndrome have features similar to cases of APECED, disomic homozygosity in this region does not explain the predilection for autoimmune disease.

 PMID:10490523

  12. Autoimmunity and Gastric Cancer

    PubMed Central

    Bizzaro, Nicola; Antico, Antonio; Villalta, Danilo

    2018-01-01

    Alterations in the immune response of patients with autoimmune diseases may predispose to malignancies, and a link between chronic autoimmune gastritis and gastric cancer has been reported in many studies. Intestinal metaplasia with dysplasia of the gastric corpus-fundus mucosa and hyperplasia of chromaffin cells, which are typical features of late-stage autoimmune gastritis, are considered precursor lesions. Autoimmune gastritis has been associated with the development of two types of gastric neoplasms: intestinal type and type I gastric carcinoid. Here, we review the association of autoimmune gastritis with gastric cancer and other autoimmune features present in gastric neoplasms. PMID:29373557

  13. NOD2 Down-Regulates Colonic Inflammation by IRF4-Mediated Inhibition of K63-Linked Polyubiquitination of RICK and TRAF6

    PubMed Central

    Watanabe, Tomohiro; Asano, Naoki; Meng, Guangxun; Yamashita, Kouhei; Arai, Yasuyuki; Sakurai, Toshiharu; Kudo, Masatoshi; Fuss, Ivan J; Kitani, Atsushi; Shimosegawa, Tooru; Chiba, Tsutomu; Strober, Warren

    2014-01-01

    It is well established that polymorphisms of the nucleotide-binding oligomerization domain 2 (NOD2) gene, a major risk factor in Crohn's disease (CD), lead to loss of NOD2 function. However, a molecular explanation of how such loss of function leads to increased susceptibility to CD has remained unclear. In a previous study exploring this question we reported that activation of NOD2 in human dendritic cells by its ligand, muramyl dipeptide (MDP) negatively regulates Toll-like receptor (TLR)-mediated inflammatory responses. Here we show that NOD2 activation results in increased interferon regulatory factor 4 (IRF4) expression and binding to TNF receptor associated factor 6 (TRAF6) and receptor interacting serine-threonine kinase (RICK). We then show that such binding leads to IRF4-mediated inhibition of Lys63-linked polyubiquitination of TRAF6 and RICK and thus to down-regulation of NF-κB activation. Finally, we demonstrate that protection of mice from the development of experimental colitis by MDP or IRF4 administration is accompanied by similar IRF4-mediated effects on polyubiquitination of TRAF6 and RICK in colonic lamina propria mononuclear cells. These findings thus define a mechanism of NOD2-mediated regulation of innate immune responses to intestinal microflora that could explain the relation of NOD2 polymorphisms and resultant NOD2 dysfunction to CD. PMID:24670424

  14. Divergent Nod-Containing Bradyrhizobium sp. DOA9 with a Megaplasmid and its Host Range

    PubMed Central

    Teamtisong, Kamonluck; Songwattana, Pongpan; Noisangiam, Rujirek; Piromyou, Pongdet; Boonkerd, Nantakorn; Tittabutr, Panlada; Minamisawa, Kiwamu; Nantagij, Achara; Okazaki, Shin; Abe, Mikiko; Uchiumi, Toshiki; Teaumroong, Neung

    2014-01-01

    Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons. PMID:25283477

  15. Vitamin D Actions on CD4+ T Cells in Autoimmune Disease

    PubMed Central

    Hayes, Colleen Elizabeth; Hubler, Shane L.; Moore, Jerott R.; Barta, Lauren E.; Praska, Corinne E.; Nashold, Faye E.

    2015-01-01

    This review summarizes and integrates research on vitamin D and CD4+ T-lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene–environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T-cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data are summarized to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ T-regulatory cell and CD4+ T-regulatory cell type 1 (Tr1) cell functions, and a Th1–Tr1 switch. The proposed Th1–Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell–cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, unanswered questions and potentially informative future research directions are highlighted to speed delivery of etiology-based strategies to reduce autoimmune disease. PMID:25852682

  16. Chronic urticaria and autoimmunity: associations found in a large population study.

    PubMed

    Confino-Cohen, Ronit; Chodick, Gabriel; Shalev, Varda; Leshno, Moshe; Kimhi, Oded; Goldberg, Arnon

    2012-05-01

    Chronic urticaria (CU) is a common disease in which most cases were considered to be idiopathic. Recent evidence indicates that at least a subset of cases of chronic idiopathic urticaria are autoimmune in origin. We aimed to characterize the association between CU, autoimmune diseases, and autoimmune/inflammatory serologic markers in a large unselected population. Data on 12,778 patients given a diagnosis of CU by either allergy or dermatology specialists during 17 years in a large health maintenance organization in Israel were collected. For each patient, we collected information on diagnosis of major, well-defined autoimmune diseases and autoimmunity- and inflammatory-related serologic markers. Similar data were collected for a control group comprised of 10,714 patients who visited dermatologists, family physicians, or allergy specialists and had no indication of CU. Having CU was associated with an increased odds ratio for hypothyroidism, hyperthyroidism, and antithyroid antibodies. Female patients with CU had a significantly higher incidence of rheumatoid arthritis, Sjögren syndrome, celiac disease, type I diabetes mellitus, and systemic lupus erythematosus, mostly diagnosed during the 10 years after the diagnosis of CU. High mean platelet volume, positive rheumatoid factor, and antinuclear antibodies were all significantly more prevalent in patients with CU. A strong association was found between CU and major autoimmune diseases. A common pathogenic mechanism is implied by the high prevalence of autoantibodies and the existence of a chronic inflammatory process expressed by the high mean platelet volume. These findings have implications for the diagnosis, management, and prognosis of patients with CU. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  17. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept.

    PubMed

    Altieri, Barbara; Muscogiuri, Giovanna; Barrea, Luigi; Mathieu, Chantal; Vallone, Carla V; Mascitelli, Luca; Bizzaro, Giorgia; Altieri, Vincenzo M; Tirabassi, Giacomo; Balercia, Giancarlo; Savastano, Silvia; Bizzaro, Nicola; Ronchi, Cristina L; Colao, Annamaria; Pontecorvi, Alfredo; Della Casa, Silvia

    2017-09-01

    In the last few years, more attention has been given to the "non-calcemic" effect of vitamin D. Several observational studies and meta-analyses demonstrated an association between circulating levels of vitamin D and outcome of many common diseases, including endocrine diseases, chronic diseases, cancer progression, and autoimmune diseases. In particular, cells of the immune system (B cells, T cells, and antigen presenting cells), due to the expression of 1α-hydroxylase (CYP27B1), are able to synthesize the active metabolite of vitamin D, which shows immunomodulatory properties. Moreover, the expression of the vitamin D receptor (VDR) in these cells suggests a local action of vitamin D in the immune response. These findings are supported by the correlation between the polymorphisms of the VDR or the CYP27B1 gene and the pathogenesis of several autoimmune diseases. Currently, the optimal plasma 25-hydroxyvitamin D concentration that is necessary to prevent or treat autoimmune diseases is still under debate. However, experimental studies in humans have suggested beneficial effects of vitamin D supplementation in reducing the severity of disease activity. In this review, we summarize the evidence regarding the role of vitamin D in the pathogenesis of autoimmune endocrine diseases, including type 1 diabetes mellitus, Addison's disease, Hashimoto's thyroiditis, Graves' disease and autoimmune polyendocrine syndromes. Furthermore, we discuss the supplementation with vitamin D to prevent or treat autoimmune diseases.

  18. Diabetes mellitus.

    PubMed

    Ahmed, Intekhab; Goldstein, Barry

    2006-01-01

    Dermatologic problems are common in diabetes, with approximately 30% of patients experiencing some cutaneous involvement during the course of their illness. Skin manifestations generally appear during the course of the disease in patients known to have diabetes, but they may also be the first presenting sign of diabetes or even precede the diagnosis by many years. The skin involvement can be autoimmune in nature, such as acanthosis nigricans, necrobiosis lipoidica, diabetic dermopathy, scleredema, and granuloma annulare, or infectious in the form of erythrasma, necrotizing fasciitis, and mucormycosis. Pharmacologic management of diabetes, in addition, can also result in skin changes, such as lipoatrophy and lipohypertrophy, at the site of injection of insulin, and oral antidiabetic agents can cause multiple skin reactions as adverse effects. The management of these cutaneous manifestations is tailored according to the underlying pathophysiology, but a tight control of blood glucose is a prerequisite in all management strategies.

  19. Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems

    PubMed Central

    Bradford, Lauren; Huang, Sichao; Szalay, Anna; Leix, Carmen; Weissbach, Max; Táncsics, András; Drewes, Jörg E.

    2016-01-01

    ABSTRACT It has recently been suggested that oxygenic dismutation of NO into N2 and O2 may occur in the anaerobic methanotrophic “Candidatus Methylomirabilis oxyfera” and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to “Ca. Methylomirabilis oxyfera” and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from “Ca. Methylomirabilis oxyfera” and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 107 to 5.2 × 1010 copies · g−1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. IMPORTANCE NO dismutation into N2 and O2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium “Ca. Methylomirabilis oxyfera” and

  20. Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems.

    PubMed

    Zhu, Baoli; Bradford, Lauren; Huang, Sichao; Szalay, Anna; Leix, Carmen; Weissbach, Max; Táncsics, András; Drewes, Jörg E; Lueders, Tillmann

    2017-02-15

    It has recently been suggested that oxygenic dismutation of NO into N 2 and O 2 may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O 2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 10 7 to 5.2 × 10 10 copies · g -1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. NO dismutation into N 2 and O 2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane

  1. Autoimmune encephalitis.

    PubMed

    Newman, M P; Blum, S; Wong, R C W; Scott, J G; Prain, K; Wilson, R J; Gillis, D

    2016-02-01

    Over the past decade, the clinical spectrum of autoimmune encephalitis has expanded with the emergence of several new clinicopathological entities. In particular, autoimmune encephalitis has recently been described in association with antibodies to surface receptors and ion channels on neurological tissues. Greater clinician awareness has resulted in autoimmune encephalitis being increasingly recognised in patients with unexplained neurological and psychiatric symptoms and signs. The clinical spectrum of presentations, as well as our understanding of disease mechanisms and treatment regimens, is rapidly developing. An understanding of these conditions is important to all subspecialties of Internal Medicine, including neurology and clinical immunology, psychiatry, intensive care and rehabilitation medicine. This review provides a contemporary overview of the aetiology, investigations and treatment of the most recently described autoimmune encephalitides. © 2016 Royal Australasian College of Physicians.

  2. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease.

    PubMed

    Penberthy, W Todd

    2007-04-01

    established mechanisms of necrosis. Chronic elevation of TNFalpha leading to necrotic events by NAD depletion in autoimmune disease likely occurs via combination of persistent IDO activation and iNOS-peroxynitrate activation of PARP1 both of which deplete NAD. Pharmacological doses of NAD precursors repeatedly provide dramatic therapeutic benefit for rheumatoid arthritis, type 1 diabetes, multiple sclerosis, colitis, other autoimmune diseases, and schizophrenia in either the clinic or animal models. Collectively these observations support the idea that autoimmune disease may in part be considered as localized pellagra manifesting symptoms particular to the inflamed target tissues. Thus pharmacological doses of NAD precursors (nicotinic acid/niacin, nicotinamide/niacinamide, or nicotinamide riboside) should be considered as potentially essential to the therapeutic success of any IDO-inducing regimen for treating autoimmune diseases. Distinct among the NAD precursors, nicotinic acid specifically activates the g-protein coupled receptor (GPCR) GPR109a to produce the IDO-inducing tolerogenic prostaglandins PGE(2) and PGD(2). Next, PGD(2) is converted to the anti-inflammatory prostaglandin, 15d-PGJ(2). These prostaglandins exert potent anti-inflammatory activities through endogenous signaling mechanisms involving the GPCRs EP2, EP4, and DP1 along with PPARgamma respectively. Nicotinamide prevents type 1 diabetes and ameliorates multiple sclerosis in animal models, while nothing is known about the therapeutic potential of nicotinamide riboside. Alternatively the direct targeting of the non-redox NAD-dependent proteins using resveratrol to activate SIRT1 or PJ34 in order to inhibit PARP1 and prevent autoimmune pathogenesis are also given consideration.

  3. Beside the point: Mothers' head nodding and shaking gestures during parent-child play.

    PubMed

    Fusaro, Maria; Vallotton, Claire D; Harris, Paul L

    2014-05-01

    Understanding the context for children's social learning and language acquisition requires consideration of caregivers' multi-modal (speech, gesture) messages. Though young children can interpret both manual and head gestures, little research has examined the communicative input that children receive via parents' head gestures. We longitudinally examined the frequency and communicative functions of mothers' head nodding and head shaking gestures during laboratory play sessions for 32 mother-child dyads, when the children were 14, 20, and 30 months of age. The majority of mothers produced head nods more frequently than head shakes. Both gestures contributed to mothers' verbal attempts at behavior regulation and dialog. Mothers' head nods primarily conveyed agreement with, and attentiveness to, children's utterances, and accompanied affirmative statements and yes/no questions. Mothers' head shakes primarily conveyed prohibitions and statements with negations. Changes over time appeared to reflect corresponding developmental changes in social and communicative dimensions of caregiver-child interaction. Directions for future research are discussed regarding the role of head gesture input in socialization and in supporting language development. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Identification of Gambling Problems in Primary Care: Properties of the NODS-CLiP Screening Tool.

    PubMed

    Cowlishaw, Sean; McCambridge, Jim; Kessler, David

    2018-06-25

    There are several brief screening tools for gambling that possess promising psychometric properties, but have uncertain utility in generalist healthcare environments which prioritize prevention and brief interventions. This study describes an examination of the National Opinion Research Centre Diagnostic and Statistical Manual of Mental Disorders Screen for Gambling Problems (NODS-CLiP), in comparison with the Problem Gambling Severity Index (PGSI), when used to operationalize gambling problems across a spectrum of severity. Data were obtained from 1058 primary care attendees recruited from 11 practices in England who completed various measures including the NODS-CLiP and PGSI. The performance of the former was defined by estimates of sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs), when PGSI indicators of problem gambling (5+) and any gambling problems (1+), respectively, were reference standards. The NODS-CLiP demonstrated perfect sensitivity for problem gambling, along with high specificity and a NPV, but a low PPV. There was much lower sensitivity when the indicator of any gambling problems was the reference standard, with capture rates indicating only 20% of patients exhibiting low to moderate severity gambling problems (PGSI 1-4) were identified by the NODS-CLiP. The NODS-CLiP performs well when identifying severe cases of problem gambling, but lacks sensitivity for less severe problems and may be unsuitable for settings which prioritize prevention and brief interventions. There is a need for screening measures which are sensitive across the full spectrum of risk and severity, and can support initiatives for improving identification and responses to gambling problems in healthcare settings such as primary care.

  5. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication

    PubMed Central

    Thepsoonthorn, C.; Yokozuka, T.; Miura, S.; Ogawa, K.; Miyake, Y.

    2016-01-01

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony. PMID:27910902

  6. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication.

    PubMed

    Thepsoonthorn, C; Yokozuka, T; Miura, S; Ogawa, K; Miyake, Y

    2016-12-02

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony.

  7. Triggering through NOD-2 Differentiates Bone Marrow Precursors to Dendritic Cells with Potent Bactericidal activity

    PubMed Central

    Khan, Nargis; Aqdas, Mohammad; Vidyarthi, Aurobind; Negi, Shikha; Pahari, Susanta; Agnihotri, Tapan; Agrewala, Javed N.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in bridging innate and adaptive immunity by activating naïve T cells. The role of pattern recognition receptors like Toll-Like Receptors and Nod-Like Receptors expressed on DCs is well-defined in the recognition of the pathogens. However, nothing is precisely studied regarding the impact of NOD-2 signaling during the differentiation of DCs. Consequently, we explored the role of NOD-2 signaling in the differentiation of DCs and therefore their capability to activate innate and adaptive immunity. Intriguingly, we observed that NOD-2 stimulated DCs (nDCs) acquired highly activated and matured phenotype and exhibited substantially greater bactericidal activity by robust production of nitric oxide. The mechanism involved in improving the functionality of nDCs was dependent on IFN-αβ signaling, leading to the activation of STAT pathways. Furthermore, we also observed that STAT-1 and STAT-4 dependent maturation and activation of DCs was under the feedback mechanism of SOCS-1 and SOCS-3 proteins. nDCs acquired enhanced potential to activate chiefly Th1 and Th17 immunity. Taken together, these results suggest that nDCs can be exploited as an immunotherapeutic agent in bolstering host immunity and imparting protection against the pathogens. PMID:27265209

  8. Th1 and Th17 Immunocompetence in Humanized NOD/SCID/γC-KO mice

    PubMed Central

    Rajesh, Deepika; Zhou, Ying; Jankowska-Gan, Ewa; Ronneburg, Drew Allan; Dart, Melanie M; Torrealba, Jose; Burlingham, William J

    2010-01-01

    We evaluated the immunocompetence of human T cells in humanized NOD-scid IL2r-γ-null (Hu—NSG) mice bearing a human thymic organoid, after multilinegage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of CB17 SCID mice [trans-vivo (tv) DTH]. Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45+ cells, including CD3+ T cells, CD68+ macrophages and murine Ly6G+ neutrophils. We observed a significant correlation between % circulating human CD4+ cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-IFNγ, while the tvDTH response to collagen V was inhibited by anti IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. Hu-NSG mice were also capable of mounting a B cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17 - dependent cellular immune response supports the utility of Hu-NSG mice as a surrogate model of allograft rejection and autoimmunity. PMID:20298731

  9. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate.

    PubMed

    Kape, R; Parniske, M; Brandt, S; Werner, D

    1992-05-01

    Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms.

  10. Autoimmune Thyroid Disorders

    PubMed Central

    Iddah, M. A.; Macharia, B. N.

    2013-01-01

    Purpose of Review. Studies have been published in the field of autoimmune thyroid diseases since January 2005. The review is organized into areas of etiology, autoimmune features, autoantibodies, mechanism of thyroid cell injury, B-cell responses, and T-cell responses. Also it reviews the diagnosis and the relationship between autoimmune thyroid disease, neoplasm, and kidney disorders. Recent Findings. Autoimmune thyroid diseases have been reported in people living in different parts of the world including North America, Europe, Baalkans, Asia, Middle East, South America, and Africa though the reported figures do not fully reflect the number of people infected per year. Cases are unrecognized due to inaccurate diagnosis and hence are treated as other diseases. However, the most recent studies have shown that the human autoimmune thyroid diseases (AITDs) affect up to 5% of the general population and are seen mostly in women between 30 and 50 years. Summary. Autoimmune thyroid disease is the result of a complex interaction between genetic and environmental factors. Overall, this review has expanded our understanding of the mechanism involved in pathogenesis of AITD and the relationship between autoimmune thyroid disease, neoplasm, and kidney disease. It has opened new lines of investigations that will ultimately result in a better clinical practice. PMID:23878745

  11. Diabetes autoantibodies do not predict progression to diabetes in adults: the Diabetes Prevention Program.

    PubMed

    Dabelea, D; Ma, Y; Knowler, W C; Marcovina, S; Saudek, C D; Arakaki, R; White, N H; Kahn, S E; Orchard, T J; Goldberg, R; Palmer, J; Hamman, R F

    2014-09-01

    To determine if the presence of diabetes autoantibodies predicts the development of diabetes among participants in the Diabetes Prevention Program. A total of 3050 participants were randomized into three treatment groups: intensive lifestyle intervention, metformin and placebo. Glutamic acid decarboxylase (GAD) 65 autoantibodies and insulinoma-associated-2 autoantibodies were measured at baseline and participants were followed for 3.2 years for the development of diabetes. The overall prevalence of GAD autoantibodies was 4.0%, and it varied across racial/ethnic groups from 2.4% among Asian-Pacific Islanders to 7.0% among non-Hispanic black people. There were no significant differences in BMI or metabolic variables (glucose, insulin, HbA(1c), estimated insulin resistance, corrected insulin response) stratified by baseline GAD antibody status. GAD autoantibody positivity did not predict diabetes overall (adjusted hazard ratio 0.98; 95% CI 0.56-1.73) or in any of the three treatment groups. Insulinoma-associated-2 autoantibodies were positive in only one participant (0.033%). These data suggest that 'diabetes autoimmunity', as reflected by GAD antibodies and insulinoma-associated-2 autoantibodies, in middle-aged individuals at risk for diabetes is not a clinically relevant risk factor for progression to diabetes. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  12. Autoimmune encephalopathies

    PubMed Central

    Leypoldt, Frank; Armangue, Thaís; Dalmau, Josep

    2014-01-01

    Over the last 10 years the continual discovery of novel forms of encephalitis associated with antibodies to cell-surface or synaptic proteins has changed the paradigms for diagnosing and treating disorders that were previously unknown or mischaracterized. We review here the process of discovery, the symptoms, and the target antigens of twelve autoimmune encephatilic disorders, grouped by syndromes and approached from a clinical perspective. Anti-NMDAR encephalitis, several subtypes of limbic encephalitis, stiff-person spectrum disorders, and other autoimmune encephalitides that result in psychosis, seizures, or abnormal movements are described in detail. We include a novel encephalopathy with prominent sleep dysfunction that provides an intriguing link between chronic neurodegeneration and cell-surface autoimmunity (IgLON5). Some of the caveats of limited serum testing are outlined. In addition, we review the underlying cellular and synaptic mechanisms that for some disorders confirm the antibody pathogenicity. The multidisciplinary impact of autoimmune encephalitis has been expanded recently by the discovery that herpes simplex encephalitis is a robust trigger of synaptic autoimmunity, and that some patients may develop overlapping syndromes, including anti-NMDAR encephalitis and neuromyelitis optica or other demyelinating diseases. PMID:25315420

  13. Long-term human immune system reconstitution in non-obese diabetic (NOD)-Rag (-)-γ chain (-) (NRG) mice is similar but not identical to the original stem cell donor.

    PubMed

    Harris, D T; Badowski, M; Balamurugan, A; Yang, O O

    2013-12-01

    The murine immune system is not necessarily identical to it human counterpart, which has led to the construction of humanized mice. The current study analysed whether or not a human immune system contained within the non-obese diabetic (NOD)-Rag1(null) -γ chain(null) (NRG) mouse model was an accurate representation of the original stem cell donor and if multiple mice constructed from the same donor were similar to one another. To that end, lightly irradiated NRG mice were injected intrahepatically on day 1 of life with purified cord blood-derived CD34(+) stem and progenitor cells. Multiple mice were constructed from each cord blood donor. Mice were analysed quarterly for changes in the immune system, and followed for periods up to 12 months post-transplant. Mice from the same donor were compared directly with each other as well as with the original donor. Analyses were performed for immune reconstitution, including flow cytometry, T cell receptor (TCR) and B cell receptor (BCR) spectratyping. It was observed that NRG mice could be 'humanized' long-term using cord blood stem cells, and that animals constructed from the same cord blood donor were nearly identical to one another, but quite different from the original stem cell donor immune system. © 2013 British Society for Immunology.

  14. Family history of autoimmune diseases and risk of gastric cancer: a national cohort study.

    PubMed

    Ji, Jianguang; Sundquist, Jan; Sundquist, Kristina

    2018-05-01

    A personal history of autoimmune diseases is associated with an increased incidence of gastric cancer, but whether they share familial susceptibility is still unknown. The contribution of shared environmental or genetic factors toward the observed familial aggregation has not been determined. We used a few Swedish registers, including the Swedish Multigeneration Register and the Cancer Register, to examine the familial risk of gastric cancer among individuals with a family history of a set of autoimmune diseases. Standardized incidence ratios were used to calculate the relative risk. The overall risk of gastric cancer was 1.22 (95% confidence interval: 1.14-1.30) among individuals with a sibling affected with any of the 33 autoimmune diseases. For specific disease, siblings of individuals with Crohn's diseases, diabetes type 1, Graves'/hyperthyroidism, myasthenia gravis, psoriasis, rheumatoid arthritis, sarcoidosis, and uncreative colitis showed an association with an increased incidence of gastric cancer, with a standardized incidence ratio ranging between 1.17 and 1.64. Familial aggregation was found only for corpus cancer. No association was observed between spouses. Gastric cancer, mainly corpus cancer, shares familial susceptibility with a few autoimmune diseases, suggesting that shared genetic polymorphisms may contribute toward both Helicobacter pylori infection and autoimmune diseases.

  15. Partial central diabetes insipidus in patient with common variable immunodeficiency.

    PubMed

    Megías, Marta Cano; Matei, Ana Maria; Gonzalez Albarran, Olga; Perez Lopez, Gilberto

    2012-07-03

    Approximately 20% of patients with common variable immunodeficiency (CVID) have any autoimmune disease, as concurrent as prior to diagnosis, even during follow-up. In recent years, cases of CVID associated to endocrine autoimmune diseases have been reported. To our knowledge, no cases of CVID with diabetes insipidus has been reported previously. The authors present the case of a 37-year-old male, diagnosed of CVID, who had thirst, polyuria and nocturia for several years. After a water deprivation test and a complete resolution of patient's symptoms with vasopressin (DDAVP) treatment, diagnosis of partial central diabetes insipidus was finally made. Patients diagnosed of CVID could develop water misbalance due to posterior hypophysis autoimmune disorder. A high index of clinical suspicion, an early diagnosis and treatment of these disease could avoid future complications and improve the quality of life of these patients.

  16. Partial central diabetes insipidus in patient with common variable immunodeficiency

    PubMed Central

    Megías, Marta Cano; Matei, Ana Maria; Gonzalez Albarran, Olga; Perez Lopez, Gilberto

    2012-01-01

    Approximately 20% of patients with common variable immunodeficiency (CVID) have any autoimmune disease, as concurrent as prior to diagnosis, even during follow-up. In recent years, cases of CVID associated to endocrine autoimmune diseases have been reported. To our knowledge, no cases of CVID with diabetes insipidus has been reported previously. The authors present the case of a 37-year-old male, diagnosed of CVID, who had thirst, polyuria and nocturia for several years. After a water deprivation test and a complete resolution of patient’s symptoms with vasopressin (DDAVP) treatment, diagnosis of partial central diabetes insipidus was finally made. Patients diagnosed of CVID could develop water misbalance due to posterior hypophysis autoimmune disorder. A high index of clinical suspicion, an early diagnosis and treatment of these disease could avoid future complications and improve the quality of life of these patients. PMID:22761233

  17. Genetics Home Reference: neurohypophyseal diabetes insipidus

    MedlinePlus

    ... G, Colao A. Central diabetes insipidus and autoimmunity: relationship between the occurrence of antibodies to arginine vasopressin- ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...

  18. The Inositol Phosphatase SHIP-1 Inhibits NOD2-Induced NF-κB Activation by Disturbing the Interaction of XIAP with RIP2

    PubMed Central

    Condé, Claude; Rambout, Xavier; Lebrun, Marielle; Lecat, Aurore; Di Valentin, Emmanuel; Dequiedt, Franck; Piette, Jacques

    2012-01-01

    SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling. PMID:22815893

  19. Psychological distress and type 2 diabetes mellitus: a 4-year policemen cohort study in China

    PubMed Central

    Li, C; Liu, J C; Xiao, X; Chen, X; Yue, S; Yu, H; Tian, F S

    2017-01-01

    Objectives This study investigated whether psychological distress predicts the development of type 2 diabetes mellitus (T2DM) and if the association differs between populations at a high or low diabetes risk level among Chinese police officers. Design Prospective cohort study. Setting Single centre. Participants 6559 participants underwent clinical measurements at the hospital in April 2007. 5811 police officers participated in the follow-up consisting of new-onset diabetes (NOD) events occurring annually between 2008 and 2011. Primary outcome measures Baseline data were collected from policemen who completed the Symptom Checklist 90-Revised (SCL-90-R) questionnaire and a self-designed questionnaire. Psychological distress was measured by the SCL-90-R questionnaire. Hong Kong Chinese Diabetes Risk Score (HKCDRS) was used to evaluate the risk of T2DM, and the participants were divided into low-risk group and high-risk group based on the HKCDRS. Cox proportional hazards regression was used to calculate the HRs of the incidence of T2DM related to psychological distress and further stratified the analysis based on HKCDRS. Results Among 5811 participants, 179 subjects developed NOD during the 4-year follow-up. 54 subjects (1.63%) with a HKCDRS 0–7 vs 125 subjects (4.98%) with a HKCDRS>7 developed NOD (p<0.05). There was a significant association between psychological distress and T2DM (HR=1.46; 95% CI 1.05 to 2.02). Among the participants with a high-risk score (HKCDRS>7), 7.07% of those with psychological distress developed T2DM compared with 4.43% of participants without psychological distress (p<0.05). The corresponding adjusted HR for psychological distress was 1.61 (95% CI 1.10 to 2.37). Conclusions Psychological distress is an independent risk factor for T2DM in this prospective cohort study. Stratification analysis indicated that psychological distress was associated with T2DM in a high-risk level population. PMID:28132015

  20. Physical activity and autoimmune diseases: Get moving and manage the disease.

    PubMed

    Sharif, Kassem; Watad, Abdulla; Bragazzi, Nicola Luigi; Lichtbroun, Micheal; Amital, Howard; Shoenfeld, Yehuda

    2018-01-01

    Physical activity, by definition, is any skeletal muscle body movement that results in energy expenditure. In the last few decades, a plethora of scientific evidences have accumulated and confirmed the beneficial role of physical activity as a modifiable risk factor for a wide variety of chronic diseases including cardiovascular diseases (CVDs), diabetes mellitus and cancer, among others. Autoimmune diseases are a heterogeneous group of chronic diseases, which occur secondary to loss of self-antigen tolerance. With the advent of biological therapies, better outcomes have recently been noted in the management of autoimmune diseases. Nonetheless, recent research highlights the salient role of modifiable behaviors such as physical inactivity on various aspects of the immune system and autoimmune diseases. Physical activity leads to a significant elevation in T-regulatory cells, decreased immunoglobulin secretion and produces a shift in the Th1/Th2 balance to a decreased Th1 cell production. Moreover, physical activity has been proven to promote the release of IL-6 from muscles. IL-6 released from muscles functions as a myokine and has been shown to induce an anti-inflammatory response through IL-10 secretion and IL-1β inhibition. Physical activity has been shown to be safe in most of autoimmune diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), inflammatory bowel diseases (IBD), as well as others. Additionally, the incidence of RA, MS, IBD and psoriasis has been found to be higher in patients less engaged in physical activity. As a general trend, patients with autoimmune diseases tend to be less physically active as compared to the general population. Physically active RA patients were found to have a milder disease course, better cardiovascular disease (CVD) profile, and improved joint mobility. Physical activity decreases fatigue, enhances mood, cognitive abilities and mobility in patients with MS. In SLE