Sample records for autoimmune encephalomyelitis mediated

  1. Increased KPI containing amyloid precursor protein in experimental autoimmune encephalomyelitis brains.

    PubMed

    Beilin, Orit; Karussis, Dimitrios M; Korczyn, Amos D; Gurwitz, David; Aronovich, Ramona; Mizrachi-Kol, Rachel; Chapman, Joab

    2007-04-16

    Amyloid precursor protein can be translated from three alternatively spliced mRNAs. We measured levels of amyloid precursor protein isoforms containing the Kunitz protease inhibitor domain (KPIAPP), and amyloid precursor protein without the Kunitz protease inhibitor domain (KPIAPP) in brain homogenates of acute experimental autoimmune encephalomyelitis mice. At the preclinical phase of the disease, both KPIAPP and KPIAPP levels were significantly higher in homogenates from brains of autoimmune encephalomyelitis mice, whereas at the acute phase of the disease only KPIAPP remained significantly elevated compared with controls. At the recovery phase, no differences were observed between the groups. The early and isoform-specific elevation of KPIAPP in autoimmune encephalomyelitis mice suggests a possible role for amyloid precursor protein in the immune response mediating the disease.

  2. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  3. Antibody-Mediated Autoimmune Encephalitis in Childhood.

    PubMed

    Brenton, J Nicholas; Goodkin, Howard P

    2016-07-01

    The differential diagnosis of encephalitis in childhood is vast, and evaluation for an etiology is often unrevealing. Encephalitis by way of autoimmunity has long been suspected, as in cases of acute disseminated encephalomyelitis; however, researchers have only recently reported evidence of antibody-mediated immune dysregulation resulting in clinical encephalitis. These pathologic autoantibodies, aimed at specific neuronal targets, can result in a broad spectrum of symptoms including psychosis, catatonia, behavioral changes, memory loss, autonomic dysregulation, seizures, and abnormal movements. Autoimmune encephalitis in childhood is often quite different from adult-onset autoimmune encephalitis in clinical presentation, frequency of tumor association, and ultimate prognosis. As many of the autoimmune encephalitides are sensitive to immunotherapy, prompt diagnosis and initiation of appropriate treatment are paramount. Here we review the currently recognized antibody-mediated encephalitides of childhood and will provide a framework for diagnosis and treatment considerations. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis

    PubMed Central

    Yeste, Ada; Nadeau, Meghan; Burns, Evan J.; Weiner, Howard L.; Quintana, Francisco J.

    2012-01-01

    The immune response is normally controlled by regulatory T cells (Tregs). However, Treg deficits are found in autoimmune diseases, and therefore the induction of functional Tregs is considered a potential therapeutic approach for autoimmune disorders. The activation of the ligand-activated transcription factor aryl hydrocarbon receptor by 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) or other ligands induces dendritic cells (DCs) that promote FoxP3+ Treg differentiation. Here we report the use of nanoparticles (NPs) to coadminister ITE and a T-cell epitope from myelin oligodendrocyte glycoprotein (MOG)35–55 to promote the generation of Tregs by DCs. NP-treated DCs displayed a tolerogenic phenotype and promoted the differentiation of Tregs in vitro. Moreover, NPs carrying ITE and MOG35–55 expanded the FoxP3+ Treg compartment and suppressed the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis. Thus, NPs are potential new tools to induce functional Tregs in autoimmune disorders. PMID:22745170

  5. The Brain Proteome of the Ubiquitin Ligase Peli1 Knock-Out Mouse during Experimental Autoimmune Encephalomyelitis.

    PubMed

    Lereim, Ragnhild Reehorst; Oveland, Eystein; Xiao, Yichuan; Torkildsen, Øivind; Wergeland, Stig; Myhr, Kjell-Morten; Sun, Shao-Cong; Berven, Frode S

    2016-09-01

    The ubiquitin ligase Peli1 has previously been suggested as a potential treatment target in multiple sclerosis. In the multiple sclerosis disease model, experimental autoimmune encephalomyelitis, Peli1 knock-out led to less activated microglia and less inflammation in the central nervous system. Despite being important in microglia, Peli1 expression has also been detected in glial and neuronal cells. In the present study the overall brain proteomes of Peli1 knock-out mice and wild-type mice were compared prior to experimental autoimmune encephalomyelitis induction, at onset of the disease and at disease peak. Brain samples from the frontal hemisphere, peripheral from the extensive inflammatory foci, were analyzed using TMT-labeling of sample pools, and the discovered proteins were verified in individual mice using label-free proteomics. The greatest proteomic differences between Peli1 knock-out and wild-type mice were observed at the disease peak. In Peli1 knock-out a higher degree of antigen presentation, increased activity of adaptive and innate immune cells and alterations to proteins involved in iron metabolism were observed during experimental autoimmune encephalomyelitis. These results unravel global effects to the brain proteome when abrogating Peli1 expression, underlining the importance of Peli1 as a regulator of the immune response also peripheral to inflammatory foci during experimental autoimmune encephalomyelitis. The proteomics data is available in PRIDE with accession PXD003710.

  6. Increased spontaneous apoptosis of rat primary neurospheres in vitro after experimental autoimmune encephalomyelitis.

    PubMed

    Sajad, Mir; Zargan, Jamil; Sharma, Jyoti; Chawla, Raman; Arora, Rajesh; Umar, Sadiq; Khan, Haider A

    2011-06-01

    Survival of neuronal progenitors (NPCs) is a critical determinant of the regenerative capacity of brain following cellular loss. Herein, we report for the first time, the increased spontaneous apoptosis of the first acute phase of Experimental Autoimmune Encephalomyelitis (EAE) derived neurospheres in vitro. Neuronal as well as oligodendroglial loss occurs during experimental autoimmune encephalomyelitis (EAE). This loss is replenished spontaneously by the concomitant increase in the NPC proliferation evidenced by the presence of thin myelin sheaths in the remodeled lesions. However, remyelination depends upon the survival of NPCs and their lineage specific differentiation. We observed significant increase (P < 0.001) in number of BrdU (+) cells in ependymal subventricular zone (SVZ) in EAE rats. EAE derived NPCs showed remarkable increase in S-phase population which was indeed due to the decrease in G-phase progeny suggesting activation of neuronal progenitor cells (NPCs) from quiescence. However, EAE derived neurospheres showed limited survival in vitro which was mediated by the significantly (P < 0.01) depolarized mitochondria, elevated Caspase-3 (P < 0.001) and fragmentation of nuclear DNA evidenced by single cell gel electrophoresis. Our results suggest EAE induced spontaneous apoptosis of NPCs in vitro which may increase the possibility of early stage cell death in the negative regulation of the proliferative cell number and may explain the failure of regeneration in human multiple sclerosis.

  7. Modulation of Multiple Sclerosis and Its Animal Model Experimental Autoimmune Encephalomyelitis by Food and Gut Microbiota

    PubMed Central

    van den Hoogen, Ward J.; Laman, Jon D.; ’t Hart, Bert A.

    2017-01-01

    Multiple sclerosis (MS) is an autoimmune neurological disease characterized by chronic inflammation of the central nervous system (CNS), leading to demyelination, axonal damage, and symptoms such as fatigue and disability. Although the cause of MS is not known, the infiltration of peripherally activated immune cells into the CNS has a key pathogenic role. Accumulating evidence supports an important role of diet and gut microbiota in immune-mediated diseases. Preclinical as well as clinical studies suggest a role for gut microbiota and dietary components in MS. Here, we review these recent studies on gut microbiota and dietary interventions in MS and its animal model experimental autoimmune encephalomyelitis. We also propose directions for future research. PMID:28928747

  8. Huperzine A ameliorates experimental autoimmune encephalomyelitis via the suppression of T cell-mediated neuronal inflammation in mice.

    PubMed

    Wang, Jun; Chen, Fu; Zheng, Peng; Deng, Weijuan; Yuan, Jia; Peng, Bo; Wang, Ruochen; Liu, Wenjun; Zhao, Hui; Wang, Yanqing; Wu, Gencheng

    2012-07-01

    Huperzine A (HupA), a sesquiterpene alkaloid and a potent and reversible inhibitor of acetylcholinesterase, possesses potential anti-inflammatory properties and is used for the treatment of certain neurodegenerative diseases such as Alzheimer's disease. However, it is still unknown whether this chemical is beneficial in the treatment of multiple sclerosis, a progressive inflammatory disease of the central nervous system. In this study, we examined the immunomodulatory properties of HupA in experimental autoimmune encephalomyelitis (EAE), a T-cell mediated murine model of multiple sclerosis. The following results were obtained: (1) intraperitoneal injections of HupA significantly attenuate the neurological severity of EAE in mice. (2) HupA decreases the accumulation of inflammatory cells, autoimmune-related demyelination and axonal injury in the spinal cords of EAE mice. (3) HupA down-regulates mRNA levels of the pro-inflammatory cytokines (IFN-γ and IL-17) and chemokines (MCP-1, RANTES, and TWEAK) while enhancing levels of anti-inflammatory cytokines (IL-4 and IL-10) in the spinal cords of EAE mice. (4) HupA inhibits MOG(35-55) stimulation-induced T-cell proliferation and IFN-γ and IL-17 secretion in cultured splenocytes. (5) HupA inhibition of T-cell proliferation is reversed by the nicotinic acetylcholinergic receptor antagonist mecamylamine. We conclude that HupA can ameliorate EAE by suppressing autoimmune responses, inflammatory reactions, subsequent demyelination and axonal injury in the spinal cord. Therefore, HupA may have a potential therapeutic value for the treatment of multiple sclerosis and as a neuroimmunomodulatory drug to control human CNS pathology. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis

    PubMed Central

    Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin

    2014-01-01

    CD1d-restricted NKT cells can be divided into two groups: type I NKT cells utilize a semi-invariant TCR whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the central nervous system tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. Here we have addressed the mechanism of regulation as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of PLP139-151/I-As–tetramer+ cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells in the periphery as well as CNS-resident microglia are inactivated following sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not αGalCer, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Since CD1 molecules are non-polymorphic, the sulfatide-mediated immune regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. PMID:24973441

  10. Protein kinase Cβ as a therapeutic target stabilizing blood–brain barrier disruption in experimental autoimmune encephalomyelitis

    PubMed Central

    Lanz, Tobias V.; Becker, Simon; Osswald, Matthias; Bittner, Stefan; Schuhmann, Michael K.; Opitz, Christiane A.; Gaikwad, Sadanand; Wiestler, Benedikt; Litzenburger, Ulrike M.; Sahm, Felix; Ott, Martina; Iwantscheff, Simeon; Grabitz, Carl; Mittelbronn, Michel; von Deimling, Andreas; Winkler, Frank; Meuth, Sven G.; Wick, Wolfgang; Platten, Michael

    2013-01-01

    Disruption of the blood–brain barrier (BBB) is a hallmark of acute inflammatory lesions in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. This disruption may precede and facilitate the infiltration of encephalitogenic T cells. The signaling events that lead to this BBB disruption are incompletely understood but appear to involve dysregulation of tight-junction proteins such as claudins. Pharmacological interventions aiming at stabilizing the BBB in MS might have therapeutic potential. Here, we show that the orally available small molecule LY-317615, a synthetic bisindolylmaleimide and inhibitor of protein kinase Cβ, which is clinically under investigation for the treatment of cancer, suppresses the transmigration of activated T cells through an inflamed endothelial cell barrier, where it leads to the induction of the tight-junction molecules zona occludens-1, claudin 3, and claudin 5 and other pathways critically involved in transendothelial leukocyte migration. Treatment of mice with ongoing experimental autoimmune encephalomyelitis with LY-317615 ameliorates inflammation, demyelination, axonal damage, and clinical symptoms. Although LY-317615 dose-dependently suppresses T-cell proliferation and cytokine production independent of antigen specificity, its therapeutic effect is abrogated in a mouse model requiring pertussis toxin. This abrogation indicates that the anti-inflammatory and clinical efficacy is mainly mediated by stabilization of the BBB, thus suppressing the transmigration of encephalitogenic T cells. Collectively, our data suggest the involvement of endothelial protein kinase Cβ in stabilizing the BBB in autoimmune neuroinflammation and imply a therapeutic potential of BBB-targeting agents such as LY-317615 as therapeutic approaches for MS. PMID:23959874

  11. Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281

  12. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity.

    PubMed

    Feyerabend, Thorsten B; Weiser, Anne; Tietz, Annette; Stassen, Michael; Harris, Nicola; Kopf, Manfred; Radermacher, Peter; Möller, Peter; Benoist, Christophe; Mathis, Diane; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2011-11-23

    Immunological functions of mast cells remain poorly understood. Studies in Kit mutant mice suggest key roles for mast cells in certain antibody- and T cell-mediated autoimmune diseases. However, Kit mutations affect multiple cell types of both immune and nonimmune origin. Here, we show that targeted insertion of Cre-recombinase into the mast cell carboxypeptidase A3 locus deleted mast cells in connective and mucosal tissues by a genotoxic Trp53-dependent mechanism. Cre-mediated mast cell eradication (Cre-Master) mice had, with the exception of a lack of mast cells and reduced basophils, a normal immune system. Cre-Master mice were refractory to IgE-mediated anaphylaxis, and this defect was rescued by mast cell reconstitution. This mast cell-deficient strain was fully susceptible to antibody-induced autoimmune arthritis and to experimental autoimmune encephalomyelitis. Differences comparing Kit mutant mast cell deficiency models to selectively mast cell-deficient mice call for a systematic re-evaluation of immunological functions of mast cells beyond allergy. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Novel function of Extracellular matrix protein 1 in suppressing Th17 cell development in experimental autoimmune encephalomyelitis

    PubMed Central

    Su, Pan; Chen, Sheng; Zheng, Yu Han; Zhou, Hai Yan; Yan, Cheng Hua; Yu, Fang; Zhang, Ya Guang; He, Lan; Zhang, Yuan; Wang, Yanming; Wu, Lei; Wu, Xiaoai; Yu, Bingke; Ma, Li Yan; Yang, Zhiru; Wang, Jianhua; Zhao, Guixian; Zhu, Jinfang; Wu, Zhi-Ying; Sun, Bing

    2016-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. While Th17 cells are important for the disease induction, Th2 cells are inhibitory in this process. Here, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of experimental autoimmune encephalomyelitis (EAE). Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further mechanism study revealed that ECM1 could interact with αv integrin on DC cells and block the αv integrin-mediated activation of latent TGF-β, resulting in an inhibition of Th17 differentiation at early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited Th17 cell response and EAE induction in ECM1 transgenic mouse. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 differentiation in the EAE model, suggesting that ECM1 may have a potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis. PMID:27316685

  14. Transplantation of autoimmune regulator-encoding bone marrow cells delays the onset of experimental autoimmune encephalomyelitis.

    PubMed

    Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank

    2010-12-01

    The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Salate derivatives found in sunscreens block experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Wang, Yanping; Marling, Steven J.; Plum, Lori A.; DeLuca, Hector F.

    2017-01-01

    UV light suppresses experimental autoimmune encephalomyelitis (EAE), a widely used animal model of MS, in mice and may be responsible for the decreased incidence of MS in equatorial regions. To test this concept further, we applied commercially available sunblock preparations to mice before exposing them to UV radiation. Surprisingly, some of the sunblock preparations blocked EAE without UV radiation. Furthermore, various sunblock preparations had variable ability to suppress EAE. By examining the components of the most effective agents, we identified homosalate and octisalate as the components responsible for suppressing EAE. Thus, salates may be useful in stopping the progression of MS, and may provide new insight into mechanisms of controlling autoimmune disease. PMID:28739922

  16. Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Mansilla, M. José; Costa, Carme; Eixarch, Herena; Tepavcevic, Vanja; Castillo, Mireia; Martin, Roland; Lubetzki, Catherine; Aigrot, Marie-Stéphane; Montalban, Xavier; Espejo, Carmen

    2014-01-01

    Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients. PMID:25153885

  17. Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.

    PubMed

    Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence

    2017-12-15

    In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. IgM-mediated autoimmune responses directed against anchorage epitopes are greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in major depression.

    PubMed

    Maes, Michael; Mihaylova, Ivana; Kubera, Marta; Leunis, Jean-Claude; Twisk, Frank N M; Geffard, Michel

    2012-12-01

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and depression are considered to be neuro-immune disorders (Maes and Twisk, BMC Medicine 8:35, 2010). There is also evidence that depression and ME/CFS are accompanied by oxidative and nitrosative stress (O&NS) and by increased autoantibodies to a number of self-epitopes some of which have become immunogenic due to damage by O&NS. The aim of this study is to examine IgM-mediated autoimmune responses to different self-epitopes in ME/CFS versus depression. We examined serum IgM antibodies to three anchorage molecules (palmitic and myristic acid and S-farnesyl-L-cysteine); acetylcholine; and conjugated NO-modified adducts in 26 patients with major depression; 16 patients with ME/CFS, 15 with chronic fatigue; and 17 normal controls. Severity of fatigue and physio-somatic (F&S) symptoms was measured with the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale. Serum IgM antibodies to the three anchorage molecules and NO-phenylalanine were significantly higher in ME/CFS than in depression. The autoimmune responses to oxidatively, but not nitrosatively, modified self-epitopes were significantly higher in ME/CFS than in depression and were associated with F&S symptoms. The autoimmune activity directed against conjugated acetylcholine did not differ significantly between ME/CFS and depression, but was greater in the patients than controls. Partially overlapping pathways, i.e. increased IgM antibodies to a multitude of neo-epitopes, underpin both ME/CFS and depression, while greater autoimmune responses directed against anchorage molecules and oxidatively modified neo-epitopes discriminate patients with ME/CFS from those with depression. These autoimmune responses directed against neoantigenic determinants may play a role in the dysregulation of key cellular functions in both disorders, e.g. intracellular signal transduction, cellular differentiation and apoptosis, but their impact may be more important in ME

  19. Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Kaplan, Barbara L F

    2018-02-21

    Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one's ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  20. Oral testosterone in male rats and the development of experimental autoimmune encephalomyelitis.

    PubMed

    Macció, Daniela R; Calfa, Gastón; Roth, German A

    2005-01-01

    Considering that sex steroids can influence the immune system, we studied the development of experimental autoimmune encephalomyelitis (EAE), a T-cell-mediated autoimmune disease of the central nervous system, and the concomitant cell-mediated immunity in gonadally intact and gonadectomized male Wistar rats given testosterone supplementation. Sham-operated rats and surgically castrated animals were orally self-administered with vehicle or testosterone added in the water bottle for 20 days before EAE induction. The androgenic effect of oral testosterone self-administration was evidenced by changes in body weight, and in the weights of androgen-dependent testes and seminal vesicles. Testosterone administration reduced the incidence of clinical signs of EAE in sham-operated animals and reversed the clinical symptoms of the disease associated with castrated EAE animals. The clinical signs observed in the different groups correlated with changes in delayed-type hypersensitivity and mononuclear cell-proliferative responses to the encephalitogenic myelin basic protein. Moreover, testosterone but not cholesterol supplementation in vitro suppressed the proliferative response of mononuclear cells to myelin basic protein suggesting that testosterone may affect specific immune functions through direct actions on immune cells. Finally, self-administration of testosterone induced also elevated corticosterone levels that in sham-operated rats correlated with the low incidence of the disease and in gonadectomized animals could be involved in the remission of clinical symptoms of EAE. These results suggest that orally self-administered testosterone can modulate specific cellular immune responses and serum corticosterone levels leading to changes in the development of EAE. Copyright 2005 S. Karger AG, Basel.

  1. The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Birkner, Katharina; Wasser, Beatrice; Loos, Julia; Plotnikov, Alexander; Seger, Rony; Zipp, Frauke; Witsch, Esther; Bittner, Stefan

    2017-01-01

    Extracellular signal-regulated kinase (ERK) signaling plays a crucial role in regulating immune cell function and has been implicated in autoimmune disorders. To date, all commercially available inhibitors of ERK target upstream components, such as mitogen-activated protein (MAP) kinase/ERK kinase (MEKs), but not ERK itself. Here, we directly inhibit nuclear ERK translocation by a novel pharmacological approach (Glu-Pro-Glu (EPE) peptide), leading to an increase in cytosolic ERK phosphorylation during T helper (Th)17 cell differentiation. This was accompanied by diminished secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine influencing the encephalitogenicity of Th17 cells. Neither the production of the cytokine interleukin (IL)-17 nor the proliferation rate of T cells was affected by the EPE peptide. The in vivo effects of ERK inhibition were challenged in two independent variants of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Overall, ERK inhibition had only a very minor impact on the clinical disease course of EAE. This indicates that while ERK translocation might promote encephalitogenicity in T cells in vitro by facilitating GM-CSF production, this effect is overcome in more complex in vivo animal models of central nervous system (CNS) autoimmunity. PMID:28914804

  2. Improvement of preclinical animal models for autoimmune-mediated disorders via reverse translation of failed therapies.

    PubMed

    't Hart, Bert A; Jagessar, S Anwar; Kap, Yolanda S; Haanstra, Krista G; Philippens, Ingrid H C H M; Serguera, Che; Langermans, Jan; Vierboom, Michel

    2014-09-01

    The poor translational validity of autoimmune-mediated inflammatory disease (AIMID) models in inbred and specific pathogen-free (SPF) rodents underlies the high attrition of new treatments for the corresponding human disease. Experimental autoimmune encephalomyelitis (EAE) is a frequently used preclinical AIMID model. We discuss here how crucial information needed for the innovation of current preclinical models can be obtained from postclinical analysis of the nonhuman primate EAE model, highlighting the mechanistic reasons why some therapies fail and others succeed. These new insights can also help identify new targets for treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Experimental Autoimmune Encephalomyelitis (EAE) as Animal Models of Multiple Sclerosis (MS).

    PubMed

    Glatigny, Simon; Bettelli, Estelle

    2018-01-08

    Multiple sclerosis (MS) is a multifocal demyelinating disease of the central nervous system (CNS) leading to the progressive destruction of the myelin sheath surrounding axons. It can present with variable clinical and pathological manifestations, which might reflect the involvement of distinct pathogenic processes. Although the mechanisms leading to the development of the disease are not fully understood, numerous evidences indicate that MS is an autoimmune disease, the initiation and progression of which are dependent on an autoimmune response against myelin antigens. In addition, genetic susceptibility and environmental triggers likely contribute to the initiation of the disease. At this time, there is no cure for MS, but several disease-modifying therapies (DMTs) are available to control and slow down disease progression. A good number of these DMTs were identified and tested using animal models of MS referred to as experimental autoimmune encephalomyelitis (EAE). In this review, we will recapitulate the characteristics of EAE models and discuss how they help shed light on MS pathogenesis and help test new treatments for MS patients. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. The calcitonin/calcitonin gene related peptide-alpha gene is not required for 1alpha,25-dihydroxyvitamin D3-mediated suppression of experimental autoimmune encephalomyelitis.

    PubMed

    Becklund, Bryan R; James, Bradley J; Gagel, Robert F; DeLuca, Hector F

    2009-08-15

    The active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), can suppress disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Calcium appears to be a critical component of 1,25(OH)(2)D(3)-mediated suppression of EAE, as complete disease prevention only occurs with a concomitant increase in serum calcium levels. Calcitonin (CT) is a peptide hormone released in response to acute increases in serum calcium, which led us to explore its importance in 1,25(OH)(2)D(3)-mediated suppression of EAE. Previously, we discovered that co-administration of pharmacological doses of CT enhanced the suppressive effect of 1,25(OH)(2)D(3) on EAE, suggesting CT may play a role in 1,25(OH)(2)D(3)-mediated suppression of EAE. To determine the importance of CT in EAE we have utilized a mouse strain in which the gene encoding CT and its alternative splice product, calcitonin gene related peptide-alpha (CGRP), have been deleted. Deletion of the CT/CGRP gene had no effect on EAE progression. Furthermore, treatment with 1,25(OH)(2)D(3) suppressed EAE in CT/CGRP knock-out mice equal to that in wild type mice. Therefore, we conclude that CT is not necessary for 1,25(OH)(2)D(3)-mediated suppression of EAE.

  5. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis.

    PubMed

    Berard, Jennifer L; Zarruk, Juan G; Arbour, Nathalie; Prat, Alexandre; Yong, V Wee; Jacques, Francois H; Akira, Shizuo; David, Samuel

    2012-07-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS). EAE pathogenesis involves various cell types, cytokines, chemokines, and adhesion molecules. Given the complexity of the inflammatory response in EAE, it is likely that many immune mediators still remain to be discovered. To identify novel immune mediators of EAE pathogenesis, we performed an Affymetrix gene array screen on the spinal cords of mice at the onset stage of disease. This screening identified the gene encoding lipocalin 2 (Lcn2) as being significantly upregulated. Lcn2 is a multi-functional protein that plays a role in glial activation, matrix metalloproteinase (MMP) stabilization, and cellular iron flux. As many of these processes have been implicated in EAE, we characterized the expression and role of Lcn2 in this disease in C57BL/6 mice. We show that Lcn2 is significantly upregulated in the spinal cord throughout EAE and is expressed predominantly by monocytes and reactive astrocytes. The Lcn2 receptor, 24p3R, is also expressed on monocytes, macrophages/microglia, and astrocytes in EAE. In addition, we show that EAE severity is increased in Lcn2(-/-) mice as compared with wild-type controls. Finally, we demonstrate that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid (CSF) in MS and in immune cells in CNS lesions in MS tissue sections. These data indicate that Lcn2 is a modulator of EAE pathogenesis and suggest that it may also play a role in MS. Copyright © 2012 Wiley Periodicals, Inc.

  6. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis

    PubMed Central

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P.; Voskuhl, Rhonda R.

    2014-01-01

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease. PMID:24550311

  7. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    PubMed

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  8. Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

    PubMed

    Pryce, Gareth; Riddall, Dieter R; Selwood, David L; Giovannoni, Gavin; Baker, David

    2015-06-01

    Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS.

  9. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin

    NASA Astrophysics Data System (ADS)

    Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan

    1992-03-01

    EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.

  10. Loss of β-arrestin 2 exacerbates experimental autoimmune encephalomyelitis with reduced number of Foxp3+ CD4+ regulatory T cells

    PubMed Central

    Zhang, Yu; Liu, Chang; Wei, Bin; Pei, Gang

    2013-01-01

    β-Arrestins are well-known regulators and mediators of G protein-coupled receptor signalling, and accumulating evidence reveals that they are functionally involved in inflammation and autoimmune diseases. Of the two β-arrestins, β-arrestin 1 is documented to play regulatory roles in an animal model of multiple sclerosis (MS), whereas the role of β-arrestin 2 is less clear. Here, we show that β-arrestin 2-deficient mice displayed the exacerbated and sustained symptoms of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. At the cellular level, deficiency of β-arrestin 2 led to a decreased number of Foxp3+ CD4+ regulatory T (Treg) cells in peripheral lymphoid organs of EAE mice. Consistently, our in vitro observations also revealed that loss of β-arrestin 2 impaired the conversion of Foxp3− CD4+ T cells into Foxp3+ CD4+ inducible Treg cells. Taken together, our data suggest that β-arrestin 2 plays a regulatory role in MS, that is opposite to that of β-arrestin 1, in autoimmune diseases such as MS, which is at least partially through regulation of iTreg cell differentiation. PMID:23859136

  11. Plumbagin suppresses dendritic cell functions and alleviates experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Kai; Ge, Zhenzhen; Da, Yurong; Wang, Dong; Liu, Ying; Xue, Zhenyi; Li, Yan; Li, Wen; Zhang, Lijuan; Wang, Huafeng; Zhang, Huan; Peng, Meiyu; Hao, Junwei; Yao, Zhi; Zhang, Rongxin

    2014-08-15

    Plumbagin (PL, 5-hydroxy-2-methyl-1,4-naphthoquinone) is a herbal compound derived from medicinal plants of the Droseraceae, Plumbaginaceae, Dioncophyllaceae, and Ancistrocladaceae families. Reports have shown that PL exerts immunomodulatory activity and may be a novel drug candidate for immune-related disease therapy. However, its effects on dendritic cells (DCs), the most potent antigen-presenting cells (APCs), remain unclear. In this study, we demonstrate that PL inhibits the differentiation, maturation, and function of human monocyte-derived DCs. PL can also restrict the expression of Th1- and Th17-polarizing cytokines in mDC. In addition, PL suppresses DCs both in vitro and in vivo, as demonstrated by its effects on the mouse DC line DC2.4 and mice with experimental autoimmune encephalomyelitis (EAE), respectively. Notably, PL ameliorated the clinical symptoms of EAE, including central nervous system (CNS) inflammation and demyelination. Our results demonstrate the immune suppressive and anti-inflammatory properties of PL via its effects on DCs and suggest that PL could be a potential treatment for DC-related autoimmune and inflammatory diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A Nonsecosteroidal Vitamin D Receptor Modulator Ameliorates Experimental Autoimmune Encephalomyelitis without Causing Hypercalcemia

    PubMed Central

    Na, Songqing; Ma, Yanfei; Zhao, Jingyong; Schmidt, Clint; Zeng, Qing Q.; Chandrasekhar, Srinivasan; Chin, William W.; Nagpal, Sunil

    2011-01-01

    Vitamin D receptor (VDR) agonists are currently the agents of choice for the treatment of psoriasis, a skin inflammatory indication that is believed to involve an autoimmune component. 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the biologically active metabolite of vitamin D, has shown efficacy in animal autoimmune disease models of multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, and type I diabetes. However, the side effect of 1,25-(OH)2D3 and its synthetic secosteroidal analogs is hypercalcemia, which is a major impediment in their clinical development for autoimmune diseases. Hypercalcemia develops as a result of the action of VDR agonists on the intestine. Here, we describe the identification of a VDR modulator (VDRM) compound A that was transcriptionally less active in intestinal cells and as a result exhibited less calcemic activity in vivo than 1,25-(OH)2D3. Cytokine analysis indicated that the VDRM not only modulated the T-helper cell balance from Th1 to Th2 effector function but also inhibited Th17 differentiation. Finally, we demonstrate that the oral administration of compound A inhibited the induction and progress of experimental autoimmune encephalomyelitis in mice without causing hypercalcemia. PMID:21318047

  13. Neuroaxonal ion dyshomeostasis of the normal-appearing corpus callosum in experimental autoimmune encephalomyelitis.

    PubMed

    Chen, Chiao-Chi V; Zechariah, Anil; Hsu, Yi-Hua; Chen, Hsiao-Wen; Yang, Li-Chuan; Chang, Chen

    2008-04-01

    Atrophy of the corpus callosum (CC) is a well-documented observation in clinically definite multiple sclerosis (MS) patients. One recent hypothesis for the neurodegeneration that occurs in MS is that ion dyshomeostasis leads to neuroaxonal damage. To examine whether ion dyshomeostasis occurs in the CC during MS onset, experimental autoimmune encephalomyelitis (EAE) was utilized as an animal MS model to induce autoimmunity-mediated responses. To date, in vivo investigations of neuronal ion homeostasis has not been feasible using traditional neuroscience techniques. Therefore, the current study employed an emerging MRI method, called Mn2+-enhanced MRI (MEMRI). Mn2+ dynamics is closely associated with important neuronal activity events, and is also considered to be a Ca2+ surrogate. Furthermore, when injected intracranially, Mn2+ can be used as a multisynaptic tracer. These features enable MEMRI to detect neuronal ion homeostasis within a multisynaptic circuit that is connected to the injection site. Mn2+ was injected into the visual cortex to trace the CC, and T1-weighted imaging was utilized to observe temporal changes in Mn2+-induced signals in the traced pathways. The results showed that neuroaxonal functional changes associated with ion dyshomeostasis occurred in the CC during an acute EAE attack. In addition, the pathway appeared normal, although EAE-induced immune-cell infiltration was visible around the CC. The findings suggest that ion dyshomeostasis is a major neuronal aberration underlying the deterioration of normal-appearing brain tissues in MS, supporting its involvement in neuroaxonal functioning in MS.

  14. CNS Plasmacytoid Dendritic Cells Regulate the Severity of Relapsing Experimental Autoimmune Encephalomyelitis1

    PubMed Central

    Bailey-Bucktrout, Samantha L.; Caulkins, Sarah C.; Goings, Gwendolyn; Fischer, Jens A. A.; Dzionek, Andrzej; Miller, Stephen D.

    2010-01-01

    Plasmacytoid dendritic cells (pDC) have both stimulatory and regulatory effects on T cells. pDCs are a major CNS-infiltrating DC population during experimental autoimmune encephalomyelitis (EAE), but unlike myeloid DCs (mDC) have a minor role in T cell activation and epitope spreading. We show that depletion of pDCs during either the acute or relapse phases of EAE resulted in exacerbation of disease severity. pDC depletion significantly enhanced CNS but not peripheral CD4+ T cell activation, as well as IL-17 and IFN-γ production. Moreover, CNS pDCs suppressed CNS mDC-driven production of IL-17, IFN-γ and IL-10 in an IDO-independent manner. The data demonstrate that pDCs play a critical regulatory role in negatively regulating pathogenic CNS CD4+ T cell responses highlighting a new role for pDCs in inflammatory autoimmune disease. PMID:18453561

  15. Cutting Edge: Nanogel-Based Delivery of an Inhibitor of CaMK4 to CD4+ T Cells Suppresses Experimental Autoimmune Encephalomyelitis and Lupus-like Disease in Mice.

    PubMed

    Otomo, Kotaro; Koga, Tomohiro; Mizui, Masayuki; Yoshida, Nobuya; Kriegel, Christina; Bickerton, Sean; Fahmy, Tarek M; Tsokos, George C

    2015-12-15

    Treatment of autoimmune diseases is still largely based on the use of systemically acting immunosuppressive drugs, which invariably cause severe side effects. Calcium/calmodulin-dependent protein kinase IV is involved in the suppression of IL-2 and the production of IL-17. Its pharmacologic or genetic inhibition limits autoimmune disease in mice. In this study, we demonstrate that KN93, a small-molecule inhibitor of calcium/calmodulin-dependent protein kinase IV, targeted to CD4(+) T cells via a nanolipogel delivery system, markedly reduced experimental autoimmune encephalomyelitis and was 10-fold more potent than the free systemically delivered drug in the lupus mouse models. The targeted delivery of KN93 did not deplete T cells but effectively blocked Th17 cell differentiation and expansion as measured in the spinal cords and kidneys of mice developing experimental autoimmune encephalomyelitis or lupus, respectively. These results highlight the promise of cell-targeted inhibition of molecules involved in the pathogenesis of autoimmunity as a means of advancing the treatment of autoimmune diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. T Lymphocytes Do Not Directly Mediate the Protective Effect of Estrogen on Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Polanczyk, Magdalena J.; Jones, Richard E.; Subramanian, Sandhya; Afentoulis, Michael; Rich, Cathleen; Zakroczymski, Melissa; Cooke, Paul; Vandenbark, Arthur A.; Offner, Halina

    2004-01-01

    Gender influences mediated by 17β-estradiol (E2) have been associated with susceptibility to and severity of autoimmune diseases such as diabetes, arthritis, and multiple sclerosis. In this regard, we have shown that estrogen receptor-α (Esr1) is crucial for the protective effect of 17β-estradiol (E2) in murine experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis. The expression of estrogen receptors among various immune cells (eg, T and B lymphocytes, antigen-presenting cells) suggests that the therapeutic effect of E2 is likely mediated directly through specific receptor binding. However, the target immune cell populations responsive to E2 treatment have not been identified. In the current study, we induced EAE in T-cell-deficient, severe combined immunodeficient mice or in immunocompetent mice with encephalitogenic T cells from wild-type Esr1+/+ or Esr1 knockout (Esr1−/−) donors and compared the protective E2 responses. The results showed that E2-responsive, Esr1+/+ disease-inducing encephalitogenic T cells were neither necessary nor sufficient for E2-mediated protection from EAE. Instead, the therapeutic response appeared to be mediated through direct effects on nonlymphocytic, E2-responsive cells and down-regulation of the inflammatory response in the central nervous system. These results provide the first demonstration that the protective effect of E2 on EAE is not mediated directly through E2-responsive T cells and raise the alternative possibility that nonlymphocytic cells such as macrophages, dendritic cells, or other nonlymphocytic cells are primarily responsive to E2 treatment in EAE. PMID:15579449

  17. The Experimental Autoimmune Encephalomyelitis Disease Course Is Modulated by Nicotine and Other Cigarette Smoke Components

    PubMed Central

    Gao, Zhen; Nissen, Jillian C.; Ji, Kyungmin; Tsirka, Stella E.

    2014-01-01

    Epidemiological studies have reported that cigarette smoking increases the risk of developing multiple sclerosis (MS) and accelerates its progression. However, the molecular mechanisms underlying these effects remain unsettled. We have investigated here the effects of the nicotine and the non-nicotine components in cigarette smoke on MS using the experimental autoimmune encephalomyelitis (EAE) model, and have explored their underlying mechanism of action. Our results show that nicotine ameliorates the severity of EAE, as shown by reduced demyelination, increased body weight, and attenuated microglial activation. Nicotine administration after the development of EAE symptoms prevented further disease exacerbation, suggesting that it might be useful as an EAE/MS therapeutic. In contrast, the remaining components of cigarette smoke, delivered as cigarette smoke condensate (CSC), accelerated and increased adverse clinical symptoms during the early stages of EAE, and we identify a particular cigarette smoke compound, acrolein, as one of the potential mediators. We also show that the mechanisms underlying the opposing effects of nicotine and CSC on EAE are likely due to distinct effects on microglial viability, activation, and function. PMID:25250777

  18. Distinct role of nitric oxide and peroxynitrite in mediating oligodendrocyte toxicity in culture and in experimental autoimmune encephalomyelitis.

    PubMed

    Li, S; Vana, A C; Ribeiro, R; Zhang, Y

    2011-06-16

    Nitric oxide has been implicated in the pathogenesis of multiple sclerosis. However, it is still unclear whether nitric oxide plays a protective role or is deleterious. We have previously shown that peroxynitrite, a reaction product of nitric oxide and superoxide, is toxic to mature oligodendrocytes (OLs). The toxicity is mediated by intracellular zinc release, phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), activation of 12-lipoxygenase (12-LOX) and the formation of reactive oxygen species (ROS). In this study, we found that the donors of nitric oxide, dipropylenetriamine NONOate (DPT NONOate) and diethylenetriamine NONOate (DETA NONOate), protected OLs from peroxynitrite or zinc-induced toxicity. The protective mechanisms appear to be attributable to their inhibition of peroxynitrite- or zinc-induced ERK1/2 phosphorylation and 12-LOX activation. In cultures of mature OLs exposed to lipopolysaccharide (LPS), induction of inducible nitric oxide synthase (iNOS) generated nitric oxide and rendered OLs resistant to peroxynitrite-induced toxicity. The protection was eliminated when 1400W, a specific inhibitor of iNOS, was co-applied with LPS. Using MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, we found that nitrotyrosine immunoreactivity, an indicator of peroxynitrite formation, was increased in the spinal cord white matter, which correlated with the loss of mature OLs. Targeted gene deletion of the NADPH oxidase component gp91phox reduced clinical scores, the formation of nitrotyrosine and the loss of mature OLs. These results suggest that blocking the formation specifically of peroxynitrite, rather than nitric oxide, may be a protective strategy against oxidative stress induced toxicity to OLs. Published by Elsevier Ltd.

  19. The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs).

    PubMed

    Morris, Gerwyn; Berk, Michael; Galecki, Piotr; Maes, Michael

    2014-04-01

    The World Health Organization classifies myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs) as a nervous system disease. Together with other diseases under the G93 heading, ME/cfs shares a triad of abnormalities involving elevated oxidative and nitrosative stress (O&NS), activation of immuno-inflammatory pathways, and mitochondrial dysfunctions with depleted levels of adenosine triphosphate (ATP) synthesis. There is also abundant evidence that many patients with ME/cfs (up to around 60 %) may suffer from autoimmune responses. A wide range of reported abnormalities in ME/cfs are highly pertinent to the generation of autoimmunity. Here we review the potential sources of autoimmunity which are observed in people with ME/cfs. The increased levels of pro-inflammatory cytokines, e.g., interleukin-1 and tumor necrosis factor-α, and increased levels of nuclear factor-κB predispose to an autoimmune environment. Many cytokine abnormalities conspire to produce a predominance of effector B cells and autoreactive T cells. The common observation of reduced natural killer cell function in ME/cfs is a source of disrupted homeostasis and prolonged effector T cell survival. B cells may be pathogenic by playing a role in autoimmunity independent of their ability to produce antibodies. The chronic or recurrent viral infections seen in many patients with ME/cfs can induce autoimmunity by mechanisms involving molecular mimicry and bystander activation. Increased bacterial translocation, as observed in ME/cfs, is known to induce chronic inflammation and autoimmunity. Low ATP production and mitochondrial dysfunction is a source of autoimmunity by inhibiting apoptosis and stimulating necrotic cell death. Self-epitopes may be damaged by exposure to prolonged O&NS, altering their immunogenic profile and become a target for the host's immune system. Nitric oxide may induce many faces of autoimmunity stemming from elevated mitochondrial membrane hyperpolarization and blockade of the

  20. Endothelial NOS-deficient mice reveal dual roles for nitric oxide during experimental autoimmune encephalomyelitis.

    PubMed

    Wu, Muzhou; Tsirka, Stella E

    2009-08-15

    Multiple sclerosis (MS) is a demyelinating autoimmune disease characterized by infiltration of T cells into the central nervous system (CNS) after compromise of the blood-brain barrier. A model used to mimic the disease in mice is experimental autoimmune encephalomyelitis (EAE). In this report, we examine the clinical and histopathological course of EAE in eNOS-deficient (eNOS-/-) mice to determine the role of nitric oxide (NO) derived from this enzyme in the disease progression. We find that eNOS-/- mice exhibit a delayed onset of EAE that correlates with delayed BBB breakdown, thus suggesting that NO production by eNOS underlies the T cell infiltration into the CNS. However, the eNOS-/- mice also eventually exhibit more severe EAE and delayed recovery, indicating that NO undertakes dual roles in MS/EAE, one proinflammatory that triggers disease onset, and the other neuroprotective that promotes recovery from disease exacerbation events.

  1. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives

    PubMed Central

    Lang, Yue

    2018-01-01

    The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS. PMID:29805314

  2. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis

    PubMed Central

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-01-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy. PMID:24905997

  3. Autophagy regulates the therapeutic potential of mesenchymal stem cells in experimental autoimmune encephalomyelitis.

    PubMed

    Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun

    2014-07-01

    Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.

  4. Mechanisms of action of cannabidiol in adoptively transferred experimental autoimmune encephalomyelitis.

    PubMed

    González-García, Coral; Torres, Irene Moreno; García-Hernández, Ruth; Campos-Ruíz, Lucía; Esparragoza, Luis Rodríguez; Coronado, María José; Grande, Aranzazu García; García-Merino, Antonio; Sánchez López, Antonio J

    2017-12-01

    Cannabidiol (CBD) is one of the most important compounds in Cannabis sativa, lacks psychotropic effects, and possesses a high number of therapeutic properties including the amelioration of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyse the relative efficacy of CBD in adoptively transferred EAE (at-EAE), a model that allows better delineation of the effector phase of EAE. Splenocytes and lymph nodes from mice with actively induced EAE were cultured in the presence of MOG 35-55 and IL-12 and inoculated intraperitoneally in recipient female C57BL/6J mice. The effects of CBD were evaluated using clinical scores and magnetic resonance imaging (MRI). In the central nervous system, the extent of cell infiltration, axonal damage, demyelination, microglial activation and cannabinoid receptors expression was assessed by immunohistochemistry. Lymph cell viability, apoptosis, oxidative stress and IL-6 production were measured in vitro. Preventive intraperitoneal treatment with CBD ameliorated the clinical signs of at-EAE, and this improvement was accompanied by a reduction of the apparent diffusion coefficient in the subiculum area of the brain. Inflammatory infiltration, axonal damage, and demyelination were reduced, and cannabinoid receptor expression was modulated. Incubation with CBD decreased encephalitogenic cell viability, increasing early apoptosis and reactive oxygen species (ROS) and decreasing IL-6 production. The reduction in viability was not mediated by CB 1 , CB 2 or GPR55 receptors. CBD markedly improved the clinical signs of at-EAE and reduced infiltration, demyelination and axonal damage. The CBD-mediated decrease in the viability of encephalitogenic cells involves ROS generation, apoptosis and a decrease in IL-6 production and may contribute to the therapeutic effect of this compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Strain-related effects of fenbendazole treatment on murine experimental autoimmune encephalomyelitis.

    PubMed

    Ramp, A A; Hall, C; Orian, J M

    2010-07-01

    Parasitic infections are a concern in animal facilities, in view of their influence on physiological processes and the immune status of animals. Pinworms are effectively controlled with the anthelminthic fenbendazole (FBZ, [5-(phenylthio)-1H-benzamidazol-2-yl]carbamic acid methyl ester; C(15)H(13)N(3)O(2)S); however, questions remain as to whether prolonged FBZ exposure alters the disease course in specific experimental models, such as those pertaining to the immune system. We report that a three-month regimen of FBZ-medicated feed severely affected the onset and disease severity of murine experimental autoimmune encephalomyelitis (EAE), a disease that mimics multiple sclerosis. Differences were recorded between mouse strains used. Our data suggest that where the use of FBZ is mandatory, its full effect should be verified on the particular EAE variant adopted by the laboratory.

  6. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination.

    PubMed

    Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui

    2015-09-02

    Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation.

  7. Chronic varied stress modulates experimental autoimmune encephalomyelitis in Wistar rats.

    PubMed

    Correa, S G; Rodriguez-Galán, M C; Rivero, V E; Riera, C M

    1998-06-01

    Stress disturbs homeostasis by altering the equilibrium of various hormones which have a significant impact on immune responses. Few studies have examined the influence of stressors on autoimmune disease in animal models. In our work, we studied the effects of long-term exposure (14 days) to chronic varied stress (CVS) in a model of experimental autoimmune encephalomyelitis (EAE) in Wistar rats. We studied whether the exposure to CVS before or after the immune challenge would correlate with differences in the clinical course of the disease. We also examined whether the CVS would modulate the magnitude of the cellular or the humoral immune response. We observed opposite effects on the clinical signs in animals stressed before or after the immune challenge. The clinical signs of the disease were attenuated in animals stressed before but not after the immune challenge. Relationships were found in the modulation of the clinical severity related to the time of exposure to the CVS, the histological alterations and the proliferative results. Stressed animals with milder clinical signs presented an exacerbated humoral response against myelin antigens while stressed animals with more severe clinical symptoms exhibited a significantly diminished one. Besides, we detected the presence of specific IgG1 associated with the exposure to CVS before the induction of EAE. Our results show that, depending on the timing of the exposure of Wistar rats to the CVS, the neuroendocrine disbalance favors a more pronounced humoral or cellular profile of the response.

  8. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    PubMed Central

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  9. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats

    PubMed Central

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats (“EAE” group). 2- “N. sativa + EAE” group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- “EAE + N. sativa” group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE. PMID:26261504

  10. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-01-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. PMID:25269445

  11. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis

    PubMed Central

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-01-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood–brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139–151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  12. Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael

    1999-03-01

    The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.

  13. Green tea EGCG, T-cell function, and T-cell-mediated autoimmune encephalomyelitis

    USDA-ARS?s Scientific Manuscript database

    Autoimmune diseases are common, disabling immune disorders affecting millions of people. Recent studies indicate that dysregulated balance of different CD4+ T-cell subpopulations plays a key role in immune pathogenesis of several major autoimmune diseases. Green tea and its active ingredient, epigal...

  14. IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity.

    PubMed

    Kocur, Magdalena; Schneider, Reiner; Pulm, Ann-Kathrin; Bauer, Jens; Kropp, Sonja; Gliem, Michael; Ingwersen, Jens; Goebels, Norbert; Alferink, Judith; Prozorovski, Timour; Aktas, Orhan; Scheu, Stefanie

    2015-04-03

    Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris.

  15. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity

    PubMed Central

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M.; Kuchroo, Vijay K.; Constantin, Gabriela

    2014-01-01

    SUMMARY Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper-1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 IgV domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease. PMID:24703780

  16. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice.

    PubMed

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-11-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  17. OGR1/GPR68 Modulates the Severity of Experimental Autoimmune Encephalomyelitis and Regulates Nitric Oxide Production by Macrophages

    PubMed Central

    D’Souza, Cheryl A.; Zhao, Fei Linda; Li, Xujian; Xu, Yan; Dunn, Shannon E.; Zhang, Li

    2016-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity. PMID:26828924

  18. Depletion of CD20 B cells fails to inhibit relapsing mouse experimental autoimmune encephalomyelitis.

    PubMed

    Sefia, Eseberuo; Pryce, Gareth; Meier, Ute-Christiane; Giovannoni, Gavin; Baker, David

    2017-05-01

    Multiple sclerosis (MS) is often considered to be a CD4, T cell-mediated disease. This is largely based on the capacity of CD4 T cells to induce relapsing experimental autoimmune encephalomyelitis (EAE) in rodents. However, CD4-depletion using a monoclonal antibody was considered unsuccessful and relapsing MS responds well to B cell depletion via CD20 B cell depleting antibodies. The influence of CD20 B cell depletion in relapsing EAE was assessed. Relapsing EAE was induced in Biozzi ABH mice. These were treated with CD20-specific (18B12) antibody and the influence on CD45RA-B220 B cell depletion and clinical course was analysed. Relapsing EAE in Biozzi ABH failed to respond to the marked B cell depletion induced with a CD20-specific antibody. In contrast to CD20 and CD8-specific antibodies, CD4 T cell depletion inhibited EAE. Spinal cord antigen-induced disease in ABH mice is CD4 T cell-dependent. The lack of influence of CD20 B cell depletion in relapsing EAE, coupled with the relatively marginal and inconsistent results obtained in other mouse studies, suggests that rodents may have limited value in understanding the mechanism occurring following CD20 B cell depletion in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis.

    PubMed

    Chandawarkar, Rajiv Y; Wagh, Mihir S; Kovalchin, Joseph T; Srivastava, Pramod

    2004-04-01

    Immunization with heat-shock protein (HSP) gp96 elicits protective immunity to the cancer or virus-infected cells from which it is derived. Low doses of gp96 generate immunity, while doses 10 times the immunizing dose do not. We show here that injection of high doses of gp96 generates CD4(+) T cells that down-regulate a variety of ongoing immune responses. Immunization with high doses of gp96 prevents myelin basic protein- or proteolipid protein-induced autoimmune encephalomyelitis in SJL mice and the onset of diabetes in non-obese diabetic mice. The suppression of immune response can be adoptively transferred with CD4(+) cells and does not partition with the CD25 phenotype. The immunomodulatory properties of gp96 (and possibly other HSP) may be used for antigen-specific activation or suppression of cellular immune responses. The latter may form the basis for novel immunotherapies for autoimmune diseases.

  20. Helminth-induced Ly6Chi monocyte-derived alternatively activated macrophages suppress experimental autoimmune encephalomyelitis

    PubMed Central

    Terrazas, Cesar; de Dios Ruiz-Rosado, Juan; Amici, Stephanie A.; Jablonski, Kyle A.; Martinez-Saucedo, Diana; Webb, Lindsay M.; Cortado, Hanna; Robledo-Avila, Frank; Oghumu, Steve; Satoskar, Abhay R.; Rodriguez-Sosa, Miriam; Terrazas, Luis I.; Guerau-de-Arellano, Mireia; Partida-Sánchez, Santiago

    2017-01-01

    Helminths cause chronic infections and affect the immune response to unrelated inflammatory diseases. Although helminths have been used therapeutically to ameliorate inflammatory conditions, their anti-inflammatory properties are poorly understood. Alternatively activated macrophages (AAMϕs) have been suggested as the anti-inflammatory effector cells during helminth infections. Here, we define the origin of AAMϕs during infection with Taenia crassiceps, and their disease-modulating activity on the Experimental Autoimmune Encephalomyelitis (EAE). Our data show two distinct populations of AAMϕs, based on the expression of PD-L1 and PD-L2 molecules, resulting upon T. crassiceps infection. Adoptive transfer of Ly6C+ monocytes gave rise to PD-L1+/PD-L2+, but not PD-L1+/PD-L2− cells in T. crassiceps-infected mice, demonstrating that the PD-L1+/PD-L2+ subpopulation of AAMϕs originates from blood monocytes. Furthermore, adoptive transfer of PD-L1+/PD-L2+ AAMϕs into EAE induced mice reduced disease incidence, delayed disease onset, and diminished the clinical disability, indicating the critical role of these cells in the regulation of autoimmune disorders. PMID:28094319

  1. Regulation of Th1 cells and experimental autoimmune encephalomyelitis (EAE) by glycogen synthase kinase-3

    PubMed Central

    Beurel, Eléonore; Kaidanovich-Beilin, Oksana; Yeh, Wen-I; Song, Ling; Palomo, Valle; Michalek, Suzanne M.; Woodgett, James R.; Harrington, Laurie E.; Eldar-Finkelman, Hagit; Martinez, Ana; Jope, Richard S.

    2013-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a rodent model of multiple sclerosis (MS), a debilitating autoimmune disease of the central nervous system, for which only limited therapeutic interventions are available. Since MS is mediated in part by autoreactive T cells, particularly Th17 and Th1 cells, in the present study, we tested if inhibitors of glycogen synthase kinase-3 (GSK3), previously reported to reduce Th17 cell generation, also alter Th1 cell production or ameliorate EAE. GSK3 inhibitors were found to impede the production of Th1 cells by reducing STAT1 activation. Molecularly reducing the expression of either of the two GSK3 isoforms demonstrated that Th17 cell production was sensitive to reduced levels of GSK3β, and Th1 cell production was inhibited in GSK3α-deficient cells. Administration of the selective GSK3 inhibitors TDZD-8, VP2.51, VP0.7, or L803-mts, significantly reduced the clinical symptoms of MOG35-55-induced EAE in mice, nearly eliminating the chronic progressive phase, and reduced the number of Th17 and Th1 cells in the spinal cord. Administration of TDZD-8 or L803-mts after the initial disease episode ameliorated clinical symptoms in a relapsing/remitting model of PLP139-151-induced EAE. Furthermore, deletion of GSK3β specifically in T cells was sufficient to ameliorate MOG35-55-induced EAE. These results demonstrate isoform-selective effects of GSK3 on T cell generation, therapeutic effects of GSK3 inhibitors in EAE, and that GSK3 inhibition in T cells is sufficient to reduce the severity of EAE, suggesting that GSK3 may be a feasible target for developing new therapeutic interventions for MS. PMID:23606540

  2. The Immunomodulatory and Neuroprotective Effects of Mesenchymal Stem Cells (MSCs) in Experimental Autoimmune Encephalomyelitis (EAE): A Model of Multiple Sclerosis (MS)

    PubMed Central

    Al Jumah, Mohammed A.; Abumaree, Mohamed H.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into the mesenchymal lineages of adipocytes, osteocytes and chondrocytes. MSCs can also transdifferentiate and thereby cross lineage barriers, differentiating for example into neurons under certain experimental conditions. MSCs have anti-proliferative, anti-inflammatory and anti-apoptotic effects on neurons. Therefore, MSCs were tested in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), for their effectiveness in modulating the pathogenic process in EAE to develop effective therapies for MS. The data in the literature have shown that MSCs can inhibit the functions of autoreactive T cells in EAE and that this immunomodulation can be neuroprotective. In addition, MSCs can rescue neural cells via a mechanism that is mediated by soluble factors, which provide a suitable environment for neuron regeneration, remyelination and cerebral blood flow improvement. In this review, we discuss the effectiveness of MSCs in modulating the immunopathogenic process and in providing neuroprotection in EAE. PMID:22942767

  3. Effect of thalidomide and pentoxifylline on experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Corrêa, José Otávio do Amaral; Aarestrup, Beatriz Julião Vieira; Aarestrup, Fernando Monteiro

    2010-11-01

    Autoimmune encephalomyelitis (EAE) in Lewis rats is a classical experimental model of demyelinating inflammatory disease of the central nervous system. EAE is widely accepted for study of immune-inflammatory mechanisms in the CNS related to multiple sclerosis (MS) due to similar clinical evolution. In the present study we investigated the effects of Thalidomide and pentoxifylline during EAE development in Lewis rats. EAE was induced in Lewis rats and treatment with Thalidomide or pentoxifylline was performed. Clinical evaluation was carried out daily. Histopathological analysis of the brain tissue and spinal cord was performed. Griess method was used for determination of NO serum levels. TNF-alpha and IFN-gamma serum levels were investigated using ELISA method. Thalidomide and pentoxifylline treatment is associated with significant reduction of neuroinflammation in CNS. Serum levels of NO, IFN-gamma and TNF-alpha showed a marked reduction. Such findings were correlated with improvement of clinical symptoms, particularly in thalidomide treated rats. Taken together the data suggested that thalidomide and pentoxifylline may be therapeutic options for the treatment of MS, however further experiments must be performed to investigate this hypothesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis.

    PubMed

    Rossi, Silvia; Muzio, Luca; De Chiara, Valentina; Grasselli, Giorgio; Musella, Alessandra; Musumeci, Gabriele; Mandolesi, Georgia; De Ceglia, Roberta; Maida, Simona; Biffi, Emilia; Pedrocchi, Alessandra; Menegon, Andrea; Bernardi, Giorgio; Furlan, Roberto; Martino, Gianvito; Centonze, Diego

    2011-07-01

    Synaptic dysfunction triggers neuronal damage in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS). While excessive glutamate signaling has been reported in the striatum of EAE, it is still uncertain whether GABA synapses are altered. Electrophysiological recordings showed a reduction of spontaneous GABAergic synaptic currents (sIPSCs) recorded from striatal projection neurons of mice with MOG((35-55))-induced EAE. GABAergic sIPSC deficits started in the acute phase of the disease (20-25days post immunization, dpi), and were exacerbated at later time-points (35, 50, 70 and 90dpi). Of note, in slices they were independent of microglial activation and of release of TNF-α. Indeed, sIPSC inhibition likely involved synaptic inputs arising from GABAergic interneurons, because EAE preferentially reduced sIPSCs of high amplitude, and was associated with a selective loss of striatal parvalbumin (PV)-positive GABAergic interneurons, which contact striatal projection neurons in their somatic region, giving rise to more efficient synaptic inhibition. Furthermore, we found also that the chronic persistence of pro-inflammatory cytokines were able, per se, to produce profound alterations of electrophysiological network properties, that were reverted by GABA administration. The results of the present investigation indicate defective GABA transmission in MS models depending from alteration of PV cells number and, in part, deriving from the effects of a chronic inflammation, and suggest that pharmacological agents potentiating GABA signaling might be considered to limit neuronal damage in MS patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. BJ-3105, a 6-Alkoxypyridin-3-ol Analog, Impairs T Cell Differentiation and Prevents Experimental Autoimmune Encephalomyelitis Disease Progression

    PubMed Central

    Timilshina, Maheshwor; Kang, Youra; Dahal, Ishmit; You, Zhiwei; Nam, Tae-gyu; Kim, Keuk-Jun

    2017-01-01

    CD4+ T cells are essential in inflammation and autoimmune diseases. Interferon-γ (IFN-γ) secreting T helper (Th1) and IL-17 secreting T helper (Th17) cells are critical for several autoimmune diseases. To assess the inhibitory effect of a given compound on autoimmune disease, we screened many compounds with an in vitro Th differentiation assay. BJ-3105, a 6-alkoxypyridin-3-ol analog, inhibited IFN-γ and IL-17 production from polyclonal CD4+ T cells and ovalbumin (OVA)-specific CD4+ T cells which were activated by T cell receptor (TCR) engagement. BJ-3105 ameliorated the experimental autoimmune encephalomyelitis (EAE) model by reducing Th1 and Th17 generation. Notably, Th cell differentiation was significantly suppressed by BJ-3105 treatment without inhibiting in vitro proliferation of T cells or inducing programmed cell death. Mechanistically, BJ-3105 inhibited the phosphorylation of JAK and its downstream signal transducer and activator of transcription (STAT) that is critical for Th differentiation. These results demonstrated that BJ-3105 inhibits the phosphorylation of STAT in response to cytokine signals and subsequently suppressed the differentiation of Th cell responses. PMID:28095433

  6. Gut Microbiota Confers Resistance of Albino Oxford Rats to the Induction of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Stanisavljević, Suzana; Dinić, Miroslav; Jevtić, Bojan; Đedović, Neda; Momčilović, Miljana; Đokić, Jelena; Golić, Nataša; Mostarica Stojković, Marija; Miljković, Đorđe

    2018-01-01

    Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.

  7. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells.

    PubMed

    Hwang, Insun; Ahn, Ginnae; Park, Eunjin; Ha, Danbee; Song, Jie-Young; Jee, Youngheun

    2011-08-30

    An acidic polysaccharide of Panax ginseng (APG), so called ginsan, is a purified polysaccharide. APG has multiple immunomodulatory effects of stimulating natural killer (NK) and T cells and producing a variety of cytokines that proved to diminish the proinflammatory response, and protect from septic lethality. To determine APG's role in the autoimmune demyelinating disease, we tested whether APG can regulate inflammatory and encephalitogenic response in experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS). Here, we demonstrate the therapeutic efficacy of the APG which induces the suppression of an encephalitogenic response during EAE. APG significantly ameliorates the progression of EAE by inhibiting the proliferation of autoreactive T cells and the production of inflammatory cytokines such as IFN-γ, IL-1β and IL-17. More importantly, APG promotes the generation of immunosuppressive regulatory T cells (Tregs) through the activation of transcription factor, Foxp3. Furthermore, the depletion of CD25+ cells from APG-treated EAE mice abrogates the beneficial effects of EAE. The capacity of APG to induce clinically beneficial effects furthers our understanding of the basis for its therapeutic immunosuppression of EAE and, possibly, MS. Thus, our results suggest that APG may serve as an effective therapy for MS and other autoimmune diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. CC chemokine receptor 4 is required for experimental autoimmune encephalomyelitis by regulating GM-CSF and IL-23 production in dendritic cells

    PubMed Central

    Poppensieker, Karola; Otte, David-Marian; Schürmann, Britta; Limmer, Andreas; Dresing, Philipp; Drews, Eva; Schumak, Beatrix; Klotz, Luisa; Raasch, Jennifer; Mildner, Alexander; Waisman, Ari; Scheu, Stefanie; Knolle, Percy; Förster, Irmgard; Prinz, Marco; Maier, Wolfgang; Zimmer, Andreas; Alferink, Judith

    2012-01-01

    Dendritic cells (DCs) are pivotal for the development of experimental autoimmune encephalomyelitis (EAE). However, the mechanisms by which they control disease remain to be determined. This study demonstrates that expression of CC chemokine receptor 4 (CCR4) by DCs is required for EAE induction. CCR4−/− mice presented enhanced resistance to EAE associated with a reduction in IL-23 and GM-CSF expression in the CNS. Restoring CCR4 on myeloid cells in bone marrow chimeras or intracerebral microinjection of CCR4-competent DCs, but not macrophages, restored EAE in CCR4−/− mice, indicating that CCR4+ DCs are cellular mediators of EAE development. Mechanistically, CCR4−/− DCs were less efficient in GM-CSF and IL-23 production and also TH-17 maintenance. Intraspinal IL-23 reconstitution restored EAE in CCR4−/− mice, whereas intracerebral inoculation using IL-23−/− DCs or GM-CSF−/− DCs failed to induce disease. Thus, CCR4-dependent GM-CSF production in DCs required for IL-23 release in these cells is a major component in the development of EAE. Our study identified a unique role for CCR4 in regulating DC function in EAE, harboring therapeutic potential for the treatment of CNS autoimmunity by targeting CCR4 on this specific cell type. PMID:22355103

  9. Perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis.

    PubMed

    Sands, Scott A; Williams, Rachel; Marshall, Sylvester; LeVine, Steven M

    2014-10-17

    Nitration of proteins, which is thought to be mediated by peroxynitrite, is a mechanism of tissue damage in multiple sclerosis (MS). However, protein nitration can also be catalyzed by iron, heme or heme-associated molecules independent of peroxynitrite. Since microhemorrhages and perivascular iron deposits are present in the CNS of MS patients, we sought to determine if iron is associated with protein nitration. A cerebral model of experimental autoimmune encephalomyelitis (cEAE) was utilized since this model has been shown to have perivascular iron deposits similar to those present in MS. Histochemical staining for iron was used together with immunohistochemistry for nitrotyrosine, eNOS, or iNOS on cerebral sections. Leakage of the blood-brain barrier (BBB) was studied by albumin immunohistochemistry. Iron deposits were colocalized with nitrotyrosine staining around vessels in cEAE mice while control animals revealed minimal staining. This finding supports the likelihood that nitrotyrosine formation was catalyzed by iron or iron containing molecules. Examples of iron deposits were also observed in association with eNOS and iNOS, which could be one source of substrates for this reaction. Extravasation of albumin was present in cEAE mice, but not in control animals. Extravasated albumin may act to limit tissue injury by binding iron and/or heme as well as being a target of nitration, but the protection is incomplete. In summary, iron-catalyzed nitration of proteins is a likely mechanism of tissue damage in MS. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis.

    PubMed

    Carter, Laura L; Leach, Michael W; Azoitei, Mihai L; Cui, Junqing; Pelker, Jeffrey W; Jussif, Jason; Benoit, Steve; Ireland, Gretchen; Luxenberg, Deborah; Askew, G Roger; Milarski, Kim L; Groves, Christopher; Brown, Tom; Carito, Brenda A; Percival, Karen; Carreno, Beatriz M; Collins, Mary; Marusic, Suzana

    2007-01-01

    Interactions between PD-1 and its two differentially expressed ligands, PD-L1 and PD-L2, attenuate T cell activation and effector function. To determine the role of these molecules in autoimmune disease of the CNS, PD-1-/-, PD-L1-/- and PD-L2-/- mice were generated and immunized to induce experimental autoimmune encephalomyelitis (EAE). PD-1-/- and PD-L1-/- mice developed more severe EAE than wild type and PD-L2-/- mice. Consistent with this, PD-1-/- and PD-L1-/- cells produced elevated levels of the pro-inflammatory cytokines IFN-gamma, TNF, IL-6 and IL-17. These results demonstrate that interactions between PD-1/PD-L1, but not PD-1/PDL-2, are crucial in attenuating T cell responses in EAE.

  11. Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Miyamoto, Katsuichi; Tanaka, Noriko; Moriguchi, Kota; Ueno, Rino; Kadomatsu, Kenji; Kitagawa, Hiroshi; Kusunoki, Susumu

    2014-05-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.

  12. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration.

    PubMed

    Rosenkranz, Eva; Maywald, Martina; Hilgers, Ralf-Dieter; Brieger, Anne; Clarner, Tim; Kipp, Markus; Plümäkers, Birgit; Meyer, Sören; Schwerdtle, Tanja; Rink, Lothar

    2016-03-01

    The essential trace element zinc is indispensable for proper immune function as zinc deficiency accompanies immune defects and dysregulations like allergies, autoimmunity and an increased presence of transplant rejection. This point to the importance of the physiological and dietary control of zinc levels for a functioning immune system. This study investigates the capacity of zinc to induce immune tolerance. The beneficial impact of physiological zinc supplementation of 6 μg/day (0.3mg/kg body weight) or 30 μg/day (1.5mg/kg body weight) on murine experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis with a Th1/Th17 (Th, T helper) cell-dominated immunopathogenesis, was analyzed. Zinc administration diminished EAE scores in C57BL/6 mice in vivo (P<.05), reduced Th17 RORγT(+) cells (P<.05) and significantly increased inducible iTreg cells (P<.05). While Th17 cells decreased systemically, iTreg cells accumulated in the central nervous system. Cumulatively, zinc supplementation seems to be capable to induce tolerance in unwanted immune reactions by increasing iTreg cells. This makes zinc a promising future tool for treating autoimmune diseases without suppressing the immune system. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy

    PubMed Central

    Engler, Jan Broder; Kursawe, Nina; Solano, María Emilia; Patas, Kostas; Wehrmann, Sabine; Heckmann, Nina; Lühder, Fred; Reichardt, Holger M.; Arck, Petra Clara; Gold, Stefan M.

    2017-01-01

    Pregnancy is one of the strongest inducers of immunological tolerance. Disease activity of many autoimmune diseases including multiple sclerosis (MS) is temporarily suppressed by pregnancy, but little is known about the underlying molecular mechanisms. Here, we investigated the endocrine regulation of conventional and regulatory T cells (Tregs) during reproduction. In vitro, we found the pregnancy hormone progesterone to robustly increase Treg frequencies via promiscuous binding to the glucocorticoid receptor (GR) in T cells. In vivo, T-cell–specific GR deletion in pregnant animals undergoing experimental autoimmune encephalomyelitis (EAE), the animal model of MS, resulted in a reduced Treg increase and a selective loss of pregnancy-induced protection, whereas reproductive success was unaffected. Our data imply that steroid hormones can shift the immunological balance in favor of Tregs via differential engagement of the GR in T cells. This newly defined mechanism confers protection from autoimmunity during pregnancy and represents a potential target for future therapy. PMID:28049829

  14. Prolonged Stimulation of a Brainstem Raphe Region Attenuates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Madsen, Pernille M.; Sloley, Stephanie S.; Vitores, Alberto A.; Carballosa-Gautam, Melissa M.; Brambilla, Roberta; Hentall, Ian D.

    2017-01-01

    Multiple sclerosis (MS), a neuroinflammatory disease, has few treatment options, none entirely adequate. We studied whether prolonged electrical stimulation of a hindbrain region (the nucleus raphe magnus) can attenuate experimental autoimmune encephalomyelitis, a murine model of MS induced by MOG35-55 injection. Eight days after symptoms emerged, a wireless electrical stimulator with a connectorless protruding microelectrode was implanted cranially, and daily intermittent stimulation of awake, unrestrained mice began immediately. The thoracic spinal cord was analyzed for changes in histology (on day 29) and gene expression (on day 37), with a focus on myelination and cytokine production. Controls, with inactive implants, showed a phase of disease exacerbation on days 19–25 that stimulation for >16 days eliminated. Prolonged stimulation also reduced infiltrating immune cells and increased numbers of myelinated axons. It additionally lowered gene expression for some pro-inflammatory cytokines (interferon gamma and tumor necrosis factor) and for platelet-derived growth factor receptor alpha, a marker of oligodendrocyte precursors, while raising it for myelin basic protein. Restorative treatments for MS might profitably consider ways to stimulate the raphe magnus, directly or via its inputs, or to emulate its serotonergic and peptidergic output. PMID:28147248

  15. Mycobacterium bovis Bacille Calmette-Guérin Infection in the CNS Suppresses Experimental Autoimmune Encephalomyelitis and Th17 Responses in an IFN-gamma-independent Manner1

    PubMed Central

    Lee, JangEun; Reinke, Emily K.; Zozulya, Alla L.; Sandor, Matyas; Fabry, Zsuzsanna

    2009-01-01

    Multiple sclerosis (MS) and an animal model resembling MS, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the central nervous system (CNS) that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-γ, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-γ in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). Here we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of MOG-specific IFN-γ-producing CD4+ T cells in the CNS. IL-17+CD4+ T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3+CD4+ T cells in these mice was equivalent to that of control mice. The i.c. BCG infection-induced protection of EAE and suppression of MOG-specific IL-17+CD4+ T cell responses were similar in both wild type (WT) and IFN-γ deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-γ-mediated mechanisms. PMID:18941210

  16. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune

  17. Administration of 2-arachidonoylglycerol ameliorates both acute and chronic experimental autoimmune encephalomyelitis.

    PubMed

    Lourbopoulos, Athanasios; Grigoriadis, Nikolaos; Lagoudaki, Roza; Touloumi, Olga; Polyzoidou, Eleni; Mavromatis, Ioannis; Tascos, Nikolaos; Breuer, Aviva; Ovadia, Haim; Karussis, Dimitris; Shohami, Ester; Mechoulam, Raphael; Simeonidou, Constantina

    2011-05-16

    Experimental autoimmune encephalomyelitis (EAE) is a widely used model of multiple sclerosis (MS) and both conditions have been reported to exhibit reduced endocannabinoid activity. The purpose of this study was to address the effect of exogenously administered 2-arachidonoylglycerol (2AG), an endocannabinoid receptor ligand, on acute phase and chronic disability in EAE. Acute and chronic EAE models were induced in susceptible mice and 2AG-treatment was applied for 14 days from day of disease induction. 2AG-treatment ameliorated acute phase of disease with delay of disease onset in both EAE models and reduced disease mortality and long-term (70 days post-induction) clinical disability in chronic EAE. Reduced axonal pathology in the chronic EAE- (p<0.0001) and increased activation and ramification of microglia in the 2AG-treated acute EAE- (p<0.05) model were noticed. The latter was accompanied by a 2- to 4-fold increase of the M2-macrophages in the perivascular infiltrations (p<0.001) of the 2AG-treated animals in the acute (day 22), although not the chronic (day 70), EAE model. Expression of cannabinoid receptors 1 (CB1R) and 2 (CB2R) was increased in 2AG-treated animals of acute EAE vs. controls (p<0.05). In addition, ex vivo viability assays exhibited reduced proliferation of activated lymph node cells when extracted from 2AG-treated EAE animals, whereas a dose-dependent response of activated lymphocytes to 2AG-treatment in vitro was noticed. Our data indicate for the first time that 2AG treatment may provide direct (via CBRs) and immune (via M2 macrophages) mediated neuroprotection in EAE. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Attenuation of autoimmune responses to oxidative specific epitopes, but not nitroso-adducts, is associated with a better clinical outcome in Myalgic Encephalomyelitis/chronic fatigue syndrome.

    PubMed

    Maes, Michael; Leunis, Jean-Claude

    2014-01-01

    There is evidence that inflammatory, oxidative and nitrosative stress (IO&NS) pathways participate in the pathophysiology of a subgroup of patients with Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Increased IgM-related autoimmune responses to oxidative specific epitopes (OSEs), including malondialdehyde (MDA), oleic acid and phosphatidyl inositol (Pi), and nitroso-(NO)-adducts, including NO-tryptophan (NOW), NO-arginine and NO-cysteinyl, are frequently observed in ME/CFS. Autoimmune responses in ME/CFS may be driven by increased bacterial translocation as measured by IgM and IgA responses to LPS of gram negative bacteria. The aim of this study is to examine whether IgM responses to OSEs and NO-adducts are related to a better outcome as measured by the Fibromyalgia and Fatigue Rating Scale (FF). 76 ME/CFS patients with initially abnormal autoimmune responses were treated with care-as-usual, including nutraceuticals with anti-IO&NS effects (NAIOS), such as L-carnitine, coenzyme Q10, taurine + lipoic acid, with or without curcumine + quercitine or N-acetyl-cysteine, zinc + glutamine. We found that use of these NAIOS was associated with highly significant reductions in initially increased IgM-mediated autoimmune responses to OSEs and NO-adducts. A greater reduction in autoimmune responses to OSEs during intake of these NAIOS was associated with a lower FF score. Reductions in IgM responses to oleic acid, MDA and Pi, but not in any of the NO-adducts, were associated with reductions in severity of illness. These associations remained significant after adjusting for possible effects of increased bacterial translocation (leaky gut). Our results show that autoimmune responses to OSEs are involved in the pathophysiology of ME/CFS and that these pathways are a new drug target in a subgroup of ME/CFS patients. Although hypernitrosylation and nitrosative stress play a role in ME/CFS, reductions in these pathways are not associated with lowered severity of

  19. The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck.

    PubMed

    Li, Ju-Pi; Yang, Chia-Yu; Chuang, Huai-Chia; Lan, Joung-Liang; Chen, Der-Yuan; Chen, Yi-Ming; Wang, Xiaohong; Chen, Alice J; Belmont, John W; Tan, Tse-Hua

    2014-04-09

    JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and cytokine production. JKAP-knockout mice show enhanced T-cell-mediated immune responses and are more susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, the recipient mice that are adoptively transferred with JKAP-knockout T cells show exacerbated EAE symptoms. Aged JKAP-knockout mice spontaneously develop inflammation and autoimmunity. Thus, our results indicate that JKAP is an important phosphatase that inactivates Lck in the TCR signalling turn-off stage, leading to suppression of T-cell-mediated immunity and autoimmunity.

  20. Synthesis of a Bifunctional Peptide Inhibitor-IgG1 Fc Fusion That Suppresses Experimental Autoimmune Encephalomyelitis.

    PubMed

    White, Derek R; Khedri, Zahra; Kiptoo, Paul; Siahaan, Teruna J; Tolbert, Thomas J

    2017-07-19

    Multiple sclerosis (MS) is a neurodegenerative disease that is estimated to affect over 2.3 million people worldwide. The exact cause for this disease is unknown but involves immune system attack and destruction of the myelin protein surrounding the neurons in the central nervous system. One promising class of compounds that selectively prevent the activation of immune cells involved in the pathway leading to myelin destruction are bifunctional peptide inhibitors (BPIs). Treatment with BPIs reduces neurodegenerative symptoms in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In this work, as an effort to further improve the bioactivity of BPIs, BPI peptides were conjugated to the N- and C-termini of the fragment crystallizable (Fc) region of the human IgG1 antibody. Initially, the two peptides were conjugated to IgG1 Fc using recombinant DNA technology. However, expression in yeast resulted in low yields and one of the peptides being heavily proteolyzed. To circumvent this problem, the poorly expressed peptide was instead produced by solid phase peptide synthesis and conjugated enzymatically using a sortase-mediated ligation. The sortase-mediated method showed near-complete conjugation yield as observed by SDS-PAGE and mass spectrometry in small-scale reactions. This method was scaled up to obtain sufficient quantities for testing the BPI-Fc fusion in mice induced with EAE. Compared to the PBS-treated control, mice treated with the BPI-Fc fusion showed significantly reduced disease symptoms, did not experience weight loss, and showed reduced de-myelination. These results demonstrate that the BPI peptides were highly active at suppressing EAE when conjugated to the large Fc scaffold in this manner.

  1. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner

    PubMed Central

    Kinoshita, Makoto; Sumi-Akamaru, Hisae; Sasaki, Tsutomu; Takata, Kazushiro; Koda, Toru; Namba, Akiko; Yamashita, Kazuya; Sanda, Eri; Sakaguchi, Manabu; Kumanogoh, Atsushi; Shirakura, Takashi; Tamura, Mizuho; Sakoda, Saburo; Mochizuki, Hideki

    2017-01-01

    Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS. PMID:29107957

  2. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner.

    PubMed

    Honorat, Josephe A; Nakatsuji, Yuji; Shimizu, Mikito; Kinoshita, Makoto; Sumi-Akamaru, Hisae; Sasaki, Tsutomu; Takata, Kazushiro; Koda, Toru; Namba, Akiko; Yamashita, Kazuya; Sanda, Eri; Sakaguchi, Manabu; Kumanogoh, Atsushi; Shirakura, Takashi; Tamura, Mizuho; Sakoda, Saburo; Mochizuki, Hideki; Okuno, Tatsusada

    2017-01-01

    Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS.

  3. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis

    PubMed Central

    Silva, Gleidy A A; Pradella, Fernando; Moraes, Adriel; Farias, Alessandro; dos Santos, Leonilda M B; de Oliveira, Alexandre L R

    2014-01-01

    Background Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. Aims The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. Methods and results The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Conclusions Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction. PMID:25365796

  4. Immunoglobulin E-Mediated Autoimmunity

    PubMed Central

    Maurer, Marcus; Altrichter, Sabine; Schmetzer, Oliver; Scheffel, Jörg; Church, Martin K.; Metz, Martin

    2018-01-01

    The study of autoimmunity mediated by immunoglobulin E (IgE) autoantibodies, which may be termed autoallergy, is in its infancy. It is now recognized that systemic lupus erythematosus, bullous pemphigoid (BP), and chronic urticaria, both spontaneous and inducible, are most likely to be mediated, at least in part, by IgE autoantibodies. The situation in other conditions, such as autoimmune uveitis, rheumatoid arthritis, hyperthyroid Graves’ disease, autoimmune pancreatitis, and even asthma, is far less clear but evidence for autoallergy is accumulating. To be certain of an autoallergic mechanism, it is necessary to identify both IgE autoantibodies and their targets as has been done with the transmembrane protein BP180 and the intracellular protein BP230 in BP and IL-24 in chronic spontaneous urticaria. Also, IgE-targeted therapies, such as anti-IgE, must have been shown to be of benefit to patients as has been done with both of these conditions. This comprehensive review of the literature on IgE-mediated autoallergy focuses on three related questions. What do we know about the prevalence of IgE autoantibodies and their targets in different diseases? What do we know about the relevance of IgE autoantibodies in different diseases? What do we know about the cellular and molecular effects of IgE autoantibodies? In addition to providing answers to these questions, based on a broad review of the literature, we outline the current gaps of knowledge in our understanding of IgE autoantibodies and describe approaches to address them. PMID:29686678

  5. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice.

    PubMed

    Li, Bin; Cui, Wei; Liu, Jia; Li, Ru; Liu, Qian; Xie, Xiao-Hua; Ge, Xiao-Li; Zhang, Jing; Song, Xiu-Juan; Wang, Ying; Guo, Li

    2013-12-01

    Sulforaphane (SFN) is an organosulfur compound present in vegetables and has potent anti-oxidant and anti-inflammatory activities. This study was aimed at investigating the effect of treatment with SFN on inflammation and oxidative stress, and the potential mechanisms underlying the action of SFN in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Treatment with SFN significantly inhibited the development and severity of EAE in mice, accompanied by mitigating inflammatory infiltration and demyelination in the spinal cord of mice. The protective effect of SFN was associated with significantly improved distribution of claudin-5 and occludin, and decreased levels of MMP-9 expression, preserving the blood-brain barrier. Furthermore, the protection of SFN was also related to decreased levels of oxidative stress in the brains of mice by enhanced activation of the Nrf2/ARE pathway and increased levels of anti-oxidant HO-1 and NQO1 expression. In addition, treatment with SFN inhibited antigen-specific Th17 responses and enhanced IL-10 responses. Our data indicated that treatment with SFN inhibited EAE development and severity in mice by its anti-oxidant activity and antagonizing autoimmune inflammation. Our findings suggest that SFN and its analogues may be promising reagents for intervention of multiple sclerosis and other autoimmune diseases. © 2013.

  6. Helminth Products Potently Modulate Experimental Autoimmune Encephalomyelitis by Downregulating Neuroinflammation and Promoting a Suppressive Microenvironment.

    PubMed

    Peón, Alberto N; Ledesma-Soto, Yadira; Olguín, Jonadab E; Bautista-Donis, Marcel; Sciutto, Edda; Terrazas, Luis I

    2017-01-01

    A negative correlation between the geographical distribution of autoimmune diseases and helminth infections has been largely associated in the last few years with a possible role for such type of parasites in the regulation of inflammatory diseases, suggesting new pathways for drug development. However, few helminth-derived immunomodulators have been tested in experimental autoimmune encephalomyelitis (EAE), an animal model of the human disease multiple sclerosis (MS). The immunomodulatory activities of Taenia crassiceps excreted/secreted products (TcES) that may suppress EAE development were sought for. Interestingly, it was discovered that TcES was able to suppress EAE development with more potency than dexamethasone; moreover, TcES treatment was still effective even when inoculated at later stages after the onset of EAE. Importantly, the TcES treatment was able to induce a range of Th2-type cytokines, while suppressing Th1 and Th17 responses. Both the polyclonal and the antigen-specific proliferative responses of lymphocytes were also inhibited in EAE-ill mice receiving TcES in association with a potent recruitment of suppressor cell populations. Peritoneal inoculation of TcES was able to direct the normal inflammatory cell traffic to the site of injection, thus modulating CNS infiltration, which may work along with Th2 immune polarization and lymphocyte activation impairment to downregulate EAE development.

  7. Modeling month-season of birth as a risk factor in mouse models of chronic disease: from multiple sclerosis to autoimmune encephalomyelitis.

    PubMed

    Reynolds, Jacob D; Case, Laure K; Krementsov, Dimitry N; Raza, Abbas; Bartiss, Rose; Teuscher, Cory

    2017-06-01

    Month-season of birth (M-SOB) is a risk factor in multiple chronic diseases, including multiple sclerosis (MS), where the lowest and greatest risk of developing MS coincide with the lowest and highest birth rates, respectively. To determine whether M-SOB effects in such chronic diseases as MS can be experimentally modeled, we examined the effect of M-SOB on susceptibility of C57BL/6J mice to experimental autoimmune encephalomyelitis (EAE). As in MS, mice that were born during the M-SOB with the lowest birth rate were less susceptible to EAE than mice born during the M-SOB with the highest birth rate. We also show that the M-SOB effect on EAE susceptibility is associated with differential production of multiple cytokines/chemokines by neuroantigen-specific T cells that are known to play a role in EAE pathogenesis. Taken together, these results support the existence of an M-SOB effect that may reflect seasonally dependent developmental differences in adaptive immune responses to self-antigens independent of external stimuli, including exposure to sunlight and vitamin D. Moreover, our documentation of an M-SOB effect on EAE susceptibility in mice allows for modeling and detailed analysis of mechanisms that underlie the M-SOB effect in not only MS but in numerous other diseases in which M-SOB impacts susceptibility.-Reynolds, J. D., Case, L. K., Krementsov, D. N., Raza, A., Bartiss, R., Teuscher, C. Modeling month-season of birth as a risk factor in mouse models of chronic disease: from multiple sclerosis to autoimmune encephalomyelitis. © FASEB.

  8. Disruption of oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis.

    PubMed

    Markoullis, Kyriaki; Sargiannidou, Irene; Gardner, Christopher; Hadjisavvas, Andreas; Reynolds, Richard; Kleopa, Kleopas A

    2012-07-01

    Gap junctions (GJs) are vital for oligodendrocyte survival and myelination. In order to examine how different stages of inflammatory demyelination affect oligodendrocyte GJs, we studied the expression of oligodendrocytic connexin32 (Cx32) and Cx47 and astrocytic Cx43 in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis (MS) induced by recombinant myelin oligodendrocyte glycoprotein. EAE was characterized by remissions and relapses with demyelination and axonal loss. Formation of GJ plaques was quantified in relation to the lesions and in normal appearing white matter (NAWM). During acute EAE at 14 days postimmunization (dpi) both Cx47 and Cx32 GJs were severely reduced within and around lesions but also in the NAWM. Cx47 was localized intracellularly in oligodendrocytes while protein levels remained unchanged, and this redistribution coincided with the loss of Cx43 GJs in astrocytes. Cx47 and Cx32 expression increased during remyelination at 28 dpi but decreased again at 50 dpi in the relapsing phase. Oligodendrocyte GJs remained reduced even in NAWM, despite increased formation of Cx43 GJs toward lesions indicating astrogliosis. EAE induced in Cx32 knockout mice resulted in an exacerbated clinical course with more demyelination and axonal loss compared with wild-type EAE mice of the same backcross, despite similar degree of inflammation, and an overall milder loss of Cx47 and Cx43 GJs. Thus, EAE causes persistent impairment of both intra- and intercellular oligodendrocyte GJs even in the NAWM, which may be an important mechanism of MS progression. Furthermore, GJ deficient myelinated fibers appear more vulnerable to CNS inflammatory demyelination. Copyright © 2012 Wiley Periodicals, Inc.

  9. Correlation of nitric oxide levels in the cerebellum and spinal cord of experimental autoimmune encephalomyelitis rats with clinical symptoms.

    PubMed

    Ljubisavljevic, Srdjan; Stojanovic, Ivana; Pavlovic, Dusica; Milojkovic, Maja; Vojinovic, Slobodan; Sokolovic, Dusan; Stevanovic, Ivana

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a well-established cell-mediated autoimmune inflammatory disease of the CNS, which has been used as a model of the human demyelinating disease. EAE is characterized by infiltration of the CNS by lymphocytes and mononuclear cells, microglial and astrocytic hypertrophy, and demyelination which cumulatively contribute to clinical expression of the disease. EAE was induced in female Sprague-Dawley rats, 3 months old (300 g ± 20 g), by immunization with myelin basic protein (MBP) in combination with Complete Freund's adjuvant (CFA). The animals were divided into 7 groups: control, EAE, CFA, EAE + aminoguanidine (AG), AG, EAE + N-acetyl-L-cysteine (NAC) and NAC. The animals were sacrificed 15 days after EAE induction, and the level of nitric oxide (NO(·)) production was determined by measuring nitrite and nitrate concentrations in 10% homogenate of cerebellum and spinal cord. Obtained results showed that the level of NO(·) was significantly increased in all examined tissues of the EAE rats compared to the control and CFA groups. Also, AG and NAC treatment decreased the level of NO(·) in all tissues compared to the EAE group. The level of NO(·) is increased significantly in the spinal cord compared to the cerebellum. The clinical course of the EAE was significantly decreased in the EAE groups treated with AG and NAC during the development of the disease compared to EAE group and its correlates with the NO(·) level in cerebellum and spinal cord. The findings of our work suggest that NO(·) and its derivatives play an important role in multiple sclerosis (MS). It may be the best target for new therapies in human demyelinating disease and recommend the new therapeutic approaches based on a decreased level of NO(·) during the course of MS.

  10. Exercise training attenuates experimental autoimmune encephalomyelitis by peripheral immunomodulation rather than direct neuroprotection.

    PubMed

    Einstein, Ofira; Fainstein, Nina; Touloumi, Olga; Lagoudaki, Roza; Hanya, Ester; Grigoriadis, Nikolaos; Katz, Abram; Ben-Hur, Tamir

    2018-01-01

    Conflicting results exist on the effects of exercise training (ET) on Experimental Autoimmune Encephalomyelitis (EAE), nor is it known how exercise impacts on disease progression. We examined whether ET ameliorates the development of EAE by modulating the systemic immune system or exerting direct neuroprotective effects on the CNS. Healthy mice were subjected to 6weeks of motorized treadmill running. The Proteolipid protein (PLP)-induced transfer EAE model in mice was utilized. To assess effects of ET on systemic autoimmunity, lymph-node (LN)-T cells from trained- vs. sedentary donor mice were transferred to naïve recipients. To assess direct neuroprotective effects of ET, PLP-reactive LN-T cells were transferred into recipient mice that were trained prior to EAE transfer or to sedentary mice. EAE severity was assessed in vivo and the characteristics of encephalitogenic LN-T cells derived from PLP-immunized mice were evaluated in vitro. LN-T cells obtained from trained mice induced an attenuated clinical and pathological EAE in recipient mice vs. cells derived from sedentary animals. Training inhibited the activation, proliferation and cytokine gene expression of PLP-reactive T cells in response to CNS-derived autoantigen, but strongly enhanced their proliferation in response to Concanavalin A, a non-specific stimulus. However, there was no difference in EAE severity when autoreactive encephalitogenic T cells were transferred to trained vs. sedentary recipient mice. ET inhibits immune system responses to an auto-antigen to attenuate EAE, rather than generally suppressing the immune system, but does not induce a direct neuro-protective effect against EAE. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cocaine/levamisole-associated autoimmune syndrome: a disease of neutrophil-mediated autoimmunity.

    PubMed

    Cascio, Michael J; Jen, Kuang-Yu

    2018-01-01

    Levamisole was previously used for its immunomodulatory properties to treat rheumatoid arthritis and some cancers. However, because of serious side-effects, it was taken off the market in the United States. Recently, levamisole has reemerged as a popular cocaine adulterant. Some individuals who consume levamisole-adulterated cocaine can develop a life-threatening autoimmune syndrome. In this review, the medical consequences of levamisole exposure and postulated mechanisms by which levamisole induces these adverse effects are discussed. Although agranulocytosis and cutaneous vasculitis are the major findings in patients who develop cocaine/levamisole-associated autoimmune syndrome (CLAAS), more recent experience indicates that other organ systems can be involved as well. Current studies point to neutrophil activation and neutrophil extracellular trap formation with subsequent antineutrophil cytoplasmic antibody-mediated tissue injury as a possible mechanism of CLAAS. In the past decade, the detrimental effects of levamisole have reemerged because of its popularity as a cocaine adulterant. Although infrequent, some individuals develop a systemic autoimmune syndrome characterized by immune-mediated agranulocytosis and antineutrophil cytoplasmic antibody-mediated vasculitis. Mechanistically, neutrophil antigens appear to be a major player in inducing CLAAS. Prompt cessation of levamisole exposure is key to treatment, although relapses are frequent because of the addictive effects of cocaine and the high prevalence of levamisole within the cocaine supply.

  12. IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis.

    PubMed

    Thakker, Paresh; Leach, Michael W; Kuang, Wen; Benoit, Stephen E; Leonard, John P; Marusic, Suzana

    2007-02-15

    Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.

  13. Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis.

    PubMed

    Musella, Alessandra; Sepman, Helena; Mandolesi, Georgia; Gentile, Antonietta; Fresegna, Diego; Haji, Nabila; Conrad, Andrea; Lutz, Beat; Maccarrone, Mauro; Centonze, Diego

    2014-04-01

    Type-1 cannabinoid receptors (CB1R) are important regulators of the neurodegenerative damage in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). In GABAergic striatal neurons, CB1R stimulation exerts protective effects by limiting inflammation-induced potentiation of glutamate-mediated spontaneous excitatory postsynaptic currents (sEPSCs). Here we show that CB1R located on GABAergic or on glutamatergic neurons are differentially involved in the pre- and postsynaptic alterations of sEPSCs caused by EAE in the striatum. After induction of EAE, mice selectively lacking CB1R on GABAergic neurons (GABA-CB1R-KO) showed exacerbated alterations of sEPSC duration in GABAergic medium spiny neurons (MSN). On the other hand, EAE-induced alterations of corticostriatal sEPSC frequency were exacerbated only in mice lacking CB1R on glutamatergic neurons (Glu-CB1R-KO), indicating that this subset of receptors controls the effects of inflammation on glutamate release. While EAE severity was enhanced in whole CB1R-KO mice, GABA-CB1R-KO and Glu-CB1R-KO mice had similar motor deficits as the respective wild-type (WT) counterparts. Our results provide further evidence that CB1R are involved in EAE pathophysiology, and suggest that both pre- and postsynaptic alterations of glutamate transmission are important to drive excitotoxic neurodegeneration typical of this disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Upregulation of β-1,4-galactosyltransferase I in rat spinal cord with experimental autoimmune encephalomyelitis.

    PubMed

    Zhao, Jianmei; Gao, Ying; Cheng, Chun; Yan, Meijuan; Wang, Jian

    2013-03-01

    Inflammatory infiltration has been recently emphasized in the demyelinating diseases of the central nervous system including multiple sclerosis. β-1,4-Galactosyltransferase I (β-1,4-GalT-I) is a major galactosyltransferase responsible for selectin-ligand biosynthesis, mediating rolling of the inflammatory lymphocytes. In the present study, Western blot showed that expression of β-1,4-GalT-I was low in normal or complete Freund's adjuvant (CFA) control rats' spinal cords, and it began to increase since early stage and peaked at E4 stage of experimental autoimmune encephalomyelitis (EAE) and restored approximately at normal level in the recovery stage. Immunohistochemisty revealed that upregulation of β-1,4-GalT-I was predominantly distributed in the white matter of spinal cord , while there was also some increased staining of β-1,4-GalT-I in the grey matter. Meanwhile, the expression of E-selectin, the substrate of β-1,4-GalT-I, was significantly increased, with a peak at E4 stage of EAE, and gradually decreased thereafter. Lectin blot showed that the protein bands with molecular weights of 65-25 kDa reacted a remarkable increase at the peak stage of EAE when compared with the normal and CFA control. Ricinus Communis Agglutinin-I (RCA-I) histochemistry revealed that RCA-Ι-positive signals were most intense in white matter of lumbosacral spinal cord at the peak stage of EAE (E4). Immunohistochemistry showed that β-1,4-GalT-I and CD62E, a marker for E-selectin stainings located in a considerable number of ED1 (+) macrophages in perivascular or in the white matter in EAE lesions, and a good co-localization of ED1 (+) cells with CD62E was observed. All these results suggest that β-1,4-GalT-I might serve as an inflammatory mediator regulating adhesion and migration of inflammatory cells in EAE, possibly through influencing the modification of galactosylated carbohydrate chains to modulate selectin-ligand biosynthesis and interaction with E-selectin.

  15. Hippocampal neurodegeneration in experimental autoimmune encephalomyelitis (EAE): potential role of inflammation activated myeloperoxidase.

    PubMed

    Sajad, Mir; Zargan, Jamil; Chawla, Raman; Umar, Sadiq; Sadaqat, Mir; Khan, Haider A

    2009-08-01

    Experimental Autoimmune Encephalomyelitis (EAE) is a well-established animal model of human multiple sclerosis (MS). The effect of this inflammatory disease on hippocampus has not been addressed. Keeping in view the above consideration an attempt was made to delineate the effect of EAE on the hippocampus of Wistar rats. The assessment of the damage to the hippocampus was done 16 days post induction by the immunolocalization of ChAT (choline acetyl transferase). ChAT decreased remarkably after induction that revealed cholinergic neuronal degeneration in the hippocampus. Subsequently, many biochemical parameters were assessed to ascertain inflammatory activation of nitric oxide and associated oxidative damage as a putative mechanism of the cholinergic degeneration. Nitric oxide metabolites increased significantly (P < 0.05) with enhancement of MPO (Myeloperoxidase activity) (P < 0.001) in the MOG (myelin oligodendrocyte protein) group as compared to the controls. Peroxidation of biomembranes increased (P < 0.001), while reduced glutathione depleted (P < 0.001) with parallel decrease in catalase (P < 0.01) and superoxide dismutase enzyme activity (P < 0.001) in the MOG group. Our results show a strong role of peroxidase dependent oxidation of nitrite and oxidative stress in cholinergic degeneration in EAE.

  16. Natural Docosahexaenoic Acid in the Triglyceride Form Attenuates In Vitro Microglial Activation and Ameliorates Autoimmune Encephalomyelitis in Mice.

    PubMed

    Mancera, Pilar; Wappenhans, Blanca; Cordobilla, Begoña; Virgili, Noemí; Pugliese, Marco; Rueda, Fèlix; Espinosa-Parrilla, Juan F; Domingo, Joan C

    2017-06-30

    Many neurodegenerative diseases are associated, at least in part, to an inflammatory process in which microglia plays a major role. The effect of the triglyceride form of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (TG-DHA) was assayed in vitro and in vivo to assess the protective and anti-inflammatory activity of this compound. In the in vitro study, BV-2 microglia cells were previously treated with TG-DHA and then activated with Lipopolysaccharide (LPS) and Interferon-gamma (IFN-γ). TG-DHA treatment protected BV-2 microglia cells from oxidative stress toxicity attenuating NO production and suppressing the induction of inflammatory cytokines. When compared with DHA in the ethyl-ester form, a significant difference in the ability to inhibit NO production in favor of TG-DHA was observed. TG-DHA inhibited significantly splenocyte proliferation but isolated CD4+ lymphocyte proliferation was unaffected. In a mice model of autoimmune encephalomyelitis (EAE), 250 mg/kg/day oral TG-DHA treatment was associated with a significant amelioration of the course and severity of the disease as compared to untreated animals. TG-DHA-treated EAE mice showed a better weight profile, which is a symptom related to a better course of encephalomyelitis. TG-DHA may be a promising therapeutic agent in neuroinflammatory processes and merit to be more extensively studied in human neurodegenerative disorders.

  17. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in experimental autoimmune encephalomyelitis.

    PubMed

    Medina-Fernández, Francisco J; Luque, Evelio; Aguilar-Luque, Macarena; Agüera, Eduardo; Feijóo, Montserrat; García-Maceira, Fe I; Escribano, Begoña M; Pascual-Leone, Álvaro; Drucker-Colín, René; Túnez, Isaac

    2017-01-15

    Experimental autoimmune encephalomyelitis (EAE) is considered a valid experimental model for multiple sclerosis, a chronic neuroinflammatory condition of the central nervous system. Additionally, some evidence has shown that some microbial products such as the bacterial lipopolysaccharide could lead to the activation of reactive immune cells, triggering neuroinflammation. Several studies have found that transcranial magnetic stimulation (TMS) may exert a neuroprotective effect. Therefore, we aimed to assess the effect of TMS on the neuroinflammation occurring in EAE. A total of 44 male Dark Agouti rats were used. EAE induction was performed administering subcutaneously at the dorsal base of the tail a single dose of myelin oligodendrocyte glycoprotein. Clinical evaluation of motor symptoms was performed. Brain and spinal cord were collected and analyzed for nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein. We also carried out a histologic exam, which included an astrocyte immunostaining and Nissl staining for the assessment of brain cell density and pyknotic nuclei. TMS effectively ameliorated motor impairment secondary to EAE. This form of magnetic field was capable of decreasing the proliferation of astrocytes as a response to the autoimmune attack, reducing the content of nitric oxide, bacterial lipopolysaccharide and lipopolysaccharide-binding protein in central nervous system. Moreover, in treated animals, brain cell density was improved and the number of pyknotic nuclei was decreased. Transcranial magnetic stimulation modifies astrocytosis, cell density and lipopolysaccharide levels in EAE. These results suggest that TMS could be a promising treatment for neuroinflammatory conditions such as multiple sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Treatment with selective estrogen receptor modulators regulates myelin specific T-cells and suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Bebo, Bruce F; Dehghani, Babak; Foster, Scott; Kurniawan, Astrid; Lopez, Francisco J; Sherman, Larry S

    2009-05-01

    Steroidal estrogens can regulate inflammatory immune responses and may be involved in the suppression of multiple sclerosis (MS) during pregnancy. However, the risks and side effects associated with steroidal estrogens may limit their usefulness for long-term MS therapy. Selective estrogen receptor modulators (SERMs) could provide an alternative therapeutic strategy, because they behave as estrogen agonists in some tissues, but are either inert or behave like estrogen antagonists in other tissues. In this study, we investigated the ability of two commercially available SERMs (tamoxifen and raloxifene) to regulate myelin specific immunity and experimental autoimmune encephalomyelitis (EAE) in mice. Both tamoxifen and raloxifene suppressed myelin antigen specific T-cell proliferation. However, tamoxifen was more effective in this regard. Tamoxifen treatment reduced the induction of major histocompatibility complex II by lipopolysaccharide stimulated dendritic cells and decreased their ability to activate myelin specific T-cells. At lower doses, tamoxifen was found to increase the levels of Th2 transcription factors and induce a Th2 bias in cultures of myelin-specific splenocytes. EAE symptoms and the degree of demyelination were less severe in mice treated with tamoxifen than in control mice. These findings support the notion that tamoxifen or related SERMs are potential agents that could be used in the treatment of inflammatory autoimmune disorders that affect the central nervous system.

  19. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation.

    PubMed

    Maes, Michael; Ringel, Karl; Kubera, Marta; Anderson, George; Morris, Gerwyn; Galecki, Piotr; Geffard, Michel

    2013-09-05

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is accompanied by activation of immuno-inflammatory pathways, increased bacterial translocation and autoimmune responses to serotonin (5-HT). Inflammation is known to damage 5-HT neurons while bacterial translocation may drive autoimmune responses. This study has been carried out to examine the autoimmune responses to 5-HT in ME/CFS in relation to inflammation and bacterial translocation. We examined 5-HT antibodies in 117 patients with ME/CFS (diagnosed according to the centers for disease control and prevention criteria, CDC) as compared with 43 patients suffering from chronic fatigue (CF) but not fulfilling the CDC criteria and 35 normal controls. Plasma interleukin-1 (IL-1), tumor necrosis factor (TNF)α, neopterin and the IgA responses to Gram-negative bacteria were measured. Severity of physio-somatic symptoms was measured using the fibromyalgia and chronic fatigue syndrome rating scale (FF scale). The incidence of positive autoimmune activity against 5-HT was significantly higher (p<0.001) in ME/CFS (61.5%) than in patients with CF (13.9%) and controls (5.7%). ME/CFS patients with 5-HT autoimmune activity displayed higher TNFα, IL-1 and neopterin and increased IgA responses against LPS of commensal bacteria than those without 5-HT autoimmune activity. Anti-5-HT antibody positivity was significantly associated with increased scores on hyperalgesia, fatigue, neurocognitive and autonomic symptoms, sadness and a flu-like malaise. The results show that, in ME/CFS, increased 5-HT autoimmune activity is associated with activation of immuno-inflammatory pathways and increased bacterial translocation, factors which are known to play a role in the onset of autoimmune reactions. 5-HT autoimmune activity could play a role in the pathophysiology of ME/CFS and the onset of physio-somatic symptoms. These results provide mechanistic support for the notion that ME/CFS is a neuro-immune disorder. Copyright © 2013

  20. Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption.

    PubMed

    Pedotti, Rosetta; Musio, Silvia; Scabeni, Stefano; Farina, Cinthia; Poliani, Pietro Luigi; Colombo, Emanuela; Costanza, Massimo; Berzi, Angela; Castellucci, Fabrizio; Ciusani, Emilio; Confalonieri, Paolo; Hemmer, Bernhard; Mantegazza, Renato; Antozzi, Carlo

    2013-09-15

    The pathogenic role of antibodies in multiple sclerosis (MS) is still controversial. We transferred to mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, IgG antibodies purified from a MS patient presenting a dramatic clinical improvement during relapse after selective IgG removal with immunoadsorption. Passive transfer of patient's IgG exacerbated motor paralysis and increased mouse central nervous system (CNS) inflammation and demyelination. Binding of patient's IgG was demonstrated in mouse CNS, with a diffuse staining of white matter oligodendrocytes. These data support a growing body of evidence that antibodies can play an important role in the pathobiology of MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. The neuroprotective agent SR 57746A abrogates experimental autoimmune encephalomyelitis and impairs associated blood–brain barrier disruption: Implications for multiple sclerosis treatment

    PubMed Central

    Bourrié, Bernard; Bribes, Estelle; Esclangon, Martine; Garcia, Laurent; Marchand, Jean; Thomas, Corinne; Maffrand, Jean-Pierre; Casellas, Pierre

    1999-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a T cell autoimmune disorder that is a widely used animal model for multiple sclerosis (MS) and, as in MS, clinical signs of EAE are associated with blood–brain barrier (BBB) disruption. SR 57746A, a nonpeptide drug without classical immunosuppressive properties, efficiently protected the BBB and impaired intrathecal IgG synthesis (two conventional markers of MS exacerbation) and consequently suppressed EAE clinical signs. This compound inhibited EAE-induced spinal cord mononuclear cell invasion and normalized tumor necrosis factor α and IFN-γ mRNA expression within the spinal cord. These data suggested that pharmacological intervention aimed at inhibiting proinflammatory cytokine expression within the central nervous system provided protection against BBB disruption, the first clinical sign of EAE and probably the key point of acute MS attacks. This finding could lead to the development of a new class of compounds for oral therapy of MS, as a supplement to immunosuppressive agents. PMID:10536012

  2. Intravenous administration of bone marrow-derived mesenchymal stem cells induces a switch from classical to atypical symptoms in experimental autoimmune encephalomyelitis.

    PubMed

    Kurte, Mónica; Bravo-Alegría, Javiera; Torres, Alexander; Carrasco, Vania; Ibáñez, Cristina; Vega-Letter, Ana María; Fernández-O'Ryan, Catalina; Irarrázabal, Carlos E; Figueroa, Fernando E; Fuentealba, Rodrigo A; Riedel, Claudia; Carrión, Flavio

    2015-01-01

    Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis.

  3. Intravenous Administration of Bone Marrow-Derived Mesenchymal Stem Cells Induces a Switch from Classical to Atypical Symptoms in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kurte, Mónica; Bravo-Alegría, Javiera; Torres, Alexander; Carrasco, Vania; Ibáñez, Cristina; Vega-Letter, Ana María; Fernández-O'Ryan, Catalina; Irarrázabal, Carlos E.; Figueroa, Fernando E.; Fuentealba, Rodrigo A.; Riedel, Claudia; Carrión, Flavio

    2015-01-01

    Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis. PMID:25838828

  4. The suppression of mitogen responses associated with resistance to experimental autoimmune encephalomyelitis requires adherent and T cells.

    PubMed

    Lyman, W D; Brosnan, C F; Kadish, A S; Raine, C S

    1984-05-01

    Resistance to experimental autoimmune encephalomyelitis (EAE) in Hartley guinea pigs has previously been reported to be associated with disease-specific antigen-induced suppression of mitogen responses in vitro. The present studies were initiated to investigate the requirement for different cell populations in this suppression. Intact and adherent-cell-depleted cultures of spleen cells from experimental and control animals were incubated with myelin basic protein (MBP), the major antigen of EAE, with the T-cell mitogen concanavalin A (Con A) alone or with Con A in the presence of MBP. In agreement with previous studies, MBP-induced suppression of the Con A response was observed only in cultures derived from resistant animals. In addition, it was observed that this suppression was abrogated by depletion of adherent cells. When cells from resistant and susceptible animals were mixed, suppression occurred only in the presence of nonadherent cells from resistant guinea pigs. Adherent cells from either resistant or susceptible animals functioned equally well. Cultures of purified E-rosette-forming cells (E+) from resistant animals (i.e., T cells) showed no suppression. Similarly, cells from these same animals which were depleted of E+ cells (i.e., non-T cells) did not demonstrate suppression in vitro. Upon reconstitution of spleen cell populations from resistant guinea pigs by mixing E+ and E- cells, suppression was restored. These experiments show that this model of suppression in vitro requires adherent cells as well as T cells and suggests that antigen-induced suppression of mitogen responses is dependent upon a cell-mediated immunologic mechanism.

  5. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  6. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    PubMed

    He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao

    2013-01-01

    Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  7. Homo-β-amino acid containing MBP(85–99) analogs alleviate experimental autoimmune encephalomyelitis

    PubMed Central

    Kant, Ravi; Pasi, Shweta; Surolia, Avadhesha

    2015-01-01

    MBP(85–99), an immuno-dominant epitope of myelin basic protein which binds to the major histocompatibility complex haplotype HLA-DR2 is widely implicated in the pathogenesis of multiple sclerosis. J5, an antagonist of MBP(85–99), that blocks the binding of MBP(85–99) to soluble HLA-DR2b much more efficiently than glatiramer acetate (a random copolymer comprising major MHC and T-cell receptor contact residues), was transformed into analogs with superior biological half-lives and antagonistic-activities by substitution of some of its residues with homo-β-amino acids. S18, the best analog obtained ameliorated symptoms of experimental autoimmune encephalomyelitis at least twice more effectively than glatiramer acetate or J5. S18 displayed marked resistance to proteolysis in-vitro; biological impact of which was evident in the form of delayed clinical onset of disease and prolonged therapeutic-benefits. Besides active suppression of MBP(85–99)-reactive CD4+ T-cells in-vitro and in-vivo S18 treatment also generated IL-4 producing CD4+ T-cell clones, through which protective effect could be transferred passively. PMID:25644378

  8. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model

    PubMed Central

    ’t Hart, Bert A.; Dunham, Jordon; Faber, Bart W.; Laman, Jon D.; van Horssen, Jack; Bauer, Jan; Kap, Yolanda S.

    2017-01-01

    The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes. PMID:28744286

  9. Interaction between interleukin-1β and type-1 cannabinoid receptor is involved in anxiety-like behavior in experimental autoimmune encephalomyelitis.

    PubMed

    Gentile, Antonietta; Fresegna, Diego; Musella, Alessandra; Sepman, Helena; Bullitta, Silvia; De Vito, Francesca; Fantozzi, Roberta; Usiello, Alessandro; Maccarrone, Mauro; Mercuri, Nicola B; Lutz, Beat; Mandolesi, Georgia; Centonze, Diego

    2016-09-02

    Mood disorders, including anxiety and depression, are frequently diagnosed in multiple sclerosis (MS) patients, even independently of the disabling symptoms associated with the disease. Anatomical, biochemical, and pharmacological evidence indicates that type-1 cannabinoid receptor (CB1R) is implicated in the control of emotional behavior and is modulated during inflammatory neurodegenerative diseases such as MS and experimental autoimmune encephalomyelitis (EAE). We investigated whether CB1R could exert a role in anxiety-like behavior in mice with EAE. We performed behavioral, pharmacological, and electrophysiological experiments to explore the link between central inflammation, mood, and CB1R function in EAE. We observed that EAE-induced anxiety was associated with the downregulation of CB1R-mediated control of striatal GABA synaptic transmission and was exacerbated in mice lacking CB1R (CB1R-KO mice). Central blockade of interleukin-1β (IL-1β) reversed the anxiety-like phenotype of EAE mice, an effect associated with the concomitant rescue of dopamine (DA)-regulated spontaneous behavior, and DA-CB1R neurotransmission, leading to the rescue of striatal CB1R sensitivity. Overall, results of the present investigation indicate that synaptic dysfunction linked to CB1R is involved in EAE-related anxiety and motivation-based behavior and contribute to clarify the complex neurobiological mechanisms underlying mood disorders associated to MS.

  10. The Innate Immune Receptor CD14 Mediates Lymphocyte Migration in EAE.

    PubMed

    Halmer, Ramona; Davies, Laura; Liu, Yang; Fassbender, Klaus; Walter, Silke

    2015-01-01

    Multiple sclerosis is the most common autoimmune disease of the central nervous system in young adults and histopathologically characterized by inflammation, demyelination and gliosis. It is considered as a CD4+ T cell-mediated disease, but also a disease-promoting role of the innate immune system has been proposed, based e.g. on the observation that innate immune receptors modulate disease severity of experimental autoimmune encephalomyelitis. Recent studies of our group provided first evidence for a key role of the innate immune LPS receptor (CD14) in pathophysiology of experimental autoimmune encephalomyelitis. CD14-deficient experimental autoimmune encephalomyelitis mice showed increased clinical symptoms and enhanced infiltration of monocytes and neutrophils in brain and spinal cord. In the current study, we further investigated the causes of the disease aggravation by CD14-deficiency and examined T cell activation, also focusing on the costimulatory molecules CTLA-4 and CD28, and T cell migration capacity over the blood brain barrier by FACS analysis, in vitro adhesion and transmigration assays. In the results, we observed a significantly increased migration of CD14-deficient lymphocytes across an endothelial monolayer. In contrast, we did not see any differences in expression levels of TCR/CTLA-4 or TCR/CD28 and lymphocyte adhesion to endothelial cells from CD14-deficient compared to wildtype mice. The results demonstrate an important role of CD14 in migration of lymphocytes, and strengthen the importance of innate immune receptors in adaptive immune disorders, such as multiple sclerosis. © 2015 The Author(s) Published by S. Karger AG, Basel.

  11. ADAM-17 and TIMP3 protein and mRNA expression in spinal cord white matter of rats with acute experimental autoimmune encephalomyelitis.

    PubMed

    Plumb, Jonnie; Cross, Alison K; Surr, Jessica; Haddock, Gail; Smith, Terence; Bunning, Rowena A D; Woodroofe, M Nicola

    2005-07-01

    Tumour necrosis factor (TNF) is a major immunomodulatory and proinflammatory cytokine implicated in the pathogenesis of multiple sclerosis (MS) and the animal model experimental autoimmune encephalomyelitis (EAE). ADAM-17 cleaves membrane-bound TNF into its soluble form. The distribution and level of ADAM-17 expression within spinal cords of Lewis rats with EAE was investigated. ADAM-17 was associated with endothelial cells in the naïve and pre-disease spinal cords. In peak disease astrocytic and inflammatory cells expressed ADAM-17. Upregulation of ADAM-17 mRNA expression was coupled with a decrease in mRNA levels of its inhibitor TIMP3 suggesting a role for ADAM-17 in EAE pathogenesis.

  12. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis.

    PubMed

    Lin, Wensheng; Lin, Yifeng; Li, Jin; Fenstermaker, Ali G; Way, Sharon W; Clayton, Benjamin; Jamison, Stephanie; Harding, Heather P; Ron, David; Popko, Brian

    2013-04-03

    There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.

  13. Cerebral biochemical pathways in experimental autoimmune encephalomyelitis and adjuvant arthritis: a comparative metabolomic study.

    PubMed

    Lutz, Norbert W; Fernandez, Carla; Pellissier, Jean-François; Cozzone, Patrick J; Béraud, Evelyne

    2013-01-01

    Many diseases, including brain disorders, are associated with perturbations of tissue metabolism. However, an often overlooked issue is the impact that inflammations outside the brain may have on brain metabolism. Our main goal was to study similarities and differences between brain metabolite profiles of animals suffering from experimental autoimmune encephalomyelitis (EAE) and adjuvant arthritis (AA) in Lewis rat models. Our principal objective was the determination of molecular protagonists involved in the metabolism underlying these diseases. EAE was induced by intraplantar injection of complete Freund's adjuvant (CFA) and spinal-cord homogenate (SC-H), whereas AA was induced by CFA only. Naive rats served as controls (n = 9 for each group). Two weeks after inoculation, animals were sacrificed, and brains were removed and processed for metabolomic analysis by NMR spectroscopy or for immunohistochemistry. Interestingly, both inflammatory diseases caused similar, though not identical, changes in metabolites involved in regulation of brain cell size and membrane production: among the osmolytes, taurine and the neuronal marker, N-acetylaspartate, were decreased, and the astrocyte marker, myo-inositol, slightly increased in both inoculated groups compared with controls. Also ethanolamine-containing phospholipids, sources of inflammatory agents, and several glycolytic metabolites were increased in both inoculated groups. By contrast, the amino acids, aspartate and isoleucine, were less concentrated in CFA/SC-H and control vs. CFA rats. Our results suggest that inflammatory brain metabolite profiles may indicate the existence of either cerebral (EAE) or extra-cerebral (AA) inflammation. These inflammatory processes may act through distinct pathways that converge toward similar brain metabolic profiles. Our findings open new avenues for future studies aimed at demonstrating whether brain metabolic effects provoked by AA are pain/stress-mediated and/or due to the

  14. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  15. Treatment with NAD(+) inhibited experimental autoimmune encephalomyelitis by activating AMPK/SIRT1 signaling pathway and modulating Th1/Th17 immune responses in mice.

    PubMed

    Wang, Jueqiong; Zhao, Congying; Kong, Peng; Sun, Huanhuan; Sun, Zhe; Bian, Guanyun; Sun, Yafei; Guo, Li

    2016-10-01

    Nicotinamide adenine dinucleotide (NAD(+)) plays vital roles in mitochondrial functions, cellular energy metabolism and calcium homeostasis. In this study, we investigated the effect of NAD(+) administration for the treatment of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. EAE, a classical animal model of multiple sclerosis (MS), was induced by subcutaneous injection of myelin oligodendrocyteglycoprotein (MOG). The mice were treated with 250mg/kg (body weight) NAD(+) in PBS administered intraperitoneally once daily. We observed that NAD(+) treatment could lessen the severity of EAE. Additionally, NAD(+) treatment attenuated pathological injuries of EAE mice. We also found that the AMP-activated protein kinase (AMPK)/silent mating-type information regulation 2 homolog 1(SIRT1) pathway was activated in the NAD(+)-treated mice and NAD(+) treatment suppressed pro-inflammatory T cell responses. Our findings demonstrated that NAD(+) could be an effective and promising agent to treat multiple sclerosis and its effects on other autoimmune diseases should be explored. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis

    PubMed Central

    Quintana, Francisco J.; Murugaiyan, Gopal; Farez, Mauricio F.; Mitsdoerffer, Meike; Tukpah, Ann-Marcia; Burns, Evan J.; Weiner, Howard L.

    2010-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3+ Treg, Tr1 cells, and IL-17–producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3+ Treg compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3+ Treg in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3+ Treg in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3+ Treg that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3+ Treg differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders. PMID:21068375

  17. CD27 natural killer cell subsets play different roles during the pre-onset stage of experimental autoimmune encephalomyelitis.

    PubMed

    Gao, Ming; Yang, Yan; Li, Daling; Ming, Bingxia; Chen, Huoying; Sun, Yan; Xiao, Yifan; Lai, Lin; Zou, Huijuan; Xu, Yong; Xiong, Ping; Tan, Zheng; Gong, Feili; Zheng, Fang

    2016-08-01

    NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27(high) and CD27(low/-) subsets. The CD27(high) subset was decreased and the CD27(low/-) subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27(high) subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27(low/-) subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27(high) subset, the CD27(low/-) subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro Additionally, adoptive transfer of the CD27(low/-) subset, but not the CD27(high) subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease. © The Author(s) 2016.

  18. St. John's wort and its component hyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells.

    PubMed

    Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Tabasi, Nafiseh; Zamani, Shahrzad; Aghaee, Azita; Salehipour, Zohre; Mahmoudi, Mahmoud

    2016-05-01

    Multiple sclerosis (MS) is a central nervous system disorder mainly characterized by inflammation, demyelination and axonal injury. Anti-inflammatory agents can be used to ameliorate the disease process. Hypericum perforatum L or St. John's wort is widely used as an anti-depressant and anti-inflammatory remedy in traditional and herbal medicine. Based on St. John's wort properties, the therapeutic potentials of an H. perforatum extract (HPE) and a single component, hyperforin were evaluated for effectiveness against MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. Female C57BL/6 mice were immunized with specific antigen MOG35-55 and then administered different doses of hyperforin or HPE post-immunization. Clinical symptoms/other relevant parameters were assessed daily. Histological analysis of the spinal cord was performed. T-cell proliferative activity was also evaluated using a BrdU assay. The effect of hyperforin on regulatory T-cells (Treg cells) was assessed using flow cytometry. The results indicate hyperforin and HPE reduced the incidence and severity of EAE, an outcome that closely correlated with an inhibition of pathological features (leukocyte infiltration and demyelination) and antigen-specific T-cell proliferation. The study also showed that hyperforin caused increased Treg cell levels in the spleen. These results indicated that hyperforin and HPE could attenuate EAE autoimmune responses by inhibiting immune cell infiltration and expansion of Treg cell and could eventually be considered as a potential candidate for use in the treatment of MS.

  19. Oxidative Injury and Iron Redistribution Are Pathological Hallmarks of Marmoset Experimental Autoimmune Encephalomyelitis.

    PubMed

    Dunham, Jordon; Bauer, Jan; Campbell, Graham R; Mahad, Don J; van Driel, Nikki; van der Pol, Susanne M A; 't Hart, Bert A; Lassmann, Hans; Laman, Jon D; van Horssen, Jack; Kap, Yolanda S

    2017-06-01

    Oxidative damage and iron redistribution are associated with the pathogenesis and progression of multiple sclerosis (MS), but these aspects are not entirely replicated in rodent experimental autoimmune encephalomyelitis (EAE) models. Here, we report that oxidative burst and injury as well as redistribution of iron are hallmarks of the MS-like pathology in the EAE model in the common marmoset. Active lesions in the marmoset EAE brain display increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p22phox, p47phox, and gp91phox) and inducible nitric oxide synthase immunoreactivity within lesions with active inflammation and demyelination, coinciding with enhanced expression of mitochondrial heat-shock protein 70 and superoxide dismutase 1 and 2. The EAE lesion-associated liberation of iron (due to loss of iron-containing myelin) was associated with altered expression of the iron metabolic markers FtH1, lactoferrin, hephaestin, and ceruloplasmin. The enhanced expression of oxidative damage markers in inflammatory lesions indicates that the enhanced antioxidant enzyme expression could not counteract reactive oxygen and nitrogen species-induced cellular damage, as is also observed in MS brains. This study demonstrates that oxidative injury and aberrant iron distribution are prominent pathological hallmarks of marmoset EAE thus making this model suitable for therapeutic intervention studies aimed at reducing oxidative stress and associated iron dysmetabolism. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  20. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease.

    PubMed

    Racke, M K; Bonomo, A; Scott, D E; Cannella, B; Levine, A; Raine, C S; Shevach, E M; Röcken, M

    1994-11-01

    The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.

  1. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen.

    PubMed

    Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S

    2016-07-01

    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders.

  2. IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kurte, Mónica; Luz-Crawford, Patricia; Vega-Letter, Ana María; Contreras, Rafael A.; Tejedor, Gautier; Elizondo-Vega, Roberto; Martinez-Viola, Luna; Fernández-O’Ryan, Catalina; Figueroa, Fernando E.; Jorgensen, Christian; Djouad, Farida; Carrión, Flavio

    2018-01-01

    The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA−/− MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA−/− MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA−/− MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS. PMID:29760692

  3. IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Kurte, Mónica; Luz-Crawford, Patricia; Vega-Letter, Ana María; Contreras, Rafael A; Tejedor, Gautier; Elizondo-Vega, Roberto; Martinez-Viola, Luna; Fernández-O'Ryan, Catalina; Figueroa, Fernando E; Jorgensen, Christian; Djouad, Farida; Carrión, Flavio

    2018-01-01

    The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo . In vitro , we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA -/- MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA -/- MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA -/- MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4 + CD25 + Foxp3 + signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.

  4. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine.

    PubMed

    Qin, Xia; Guo, Bingshi T; Wan, Bing; Fang, Lei; Lu, Limin; Wu, Lili; Zang, Ying Qin; Zhang, Jingwu Z

    2010-08-01

    Berberine (BBR), an isoquinoline alkaloid derived from plants, is widely used as an anti-inflammatory remedy in traditional Chinese medicine. In this study, we showed that BBR was efficacious in the amelioration of experimental autoimmune encephalomyelitis (EAE) through novel regulatory mechanisms involving pathogenic Th1 and Th17 cells. BBR inhibited differentiation of Th17 cells and, to a lesser degree, Th1 cells through direct actions on the JAK/STAT pathway, whereas it had no effect on the relative number of CD4(+)Foxp3(+) regulatory T cells. In addition, BBR indirectly influenced Th17 and Th1 cell functions through its effect on the expression and function of costimulatory molecules and the production of IL-6, which was attributable to the inhibition of NF-kappaB activity in CD11b(+) APCs. BBR treatment completely abolished the encephalitogenicity of MOG(35-55)-reactive Th17 cells in an adoptive transfer EAE model, and the same treatment significantly inhibited the ability of MOG(35-55)-reactive Th1 cells to induce EAE. This study provides new evidence that natural compounds, such as BBR, are of great value in the search for novel anti-inflammatory agents and therapeutic targets for autoimmune diseases.

  5. Neuronal Surface Antibody-Mediated Autoimmune Encephalitis

    PubMed Central

    Linnoila, Jenny J.; Rosenfeld, Myrna R.; Dalmau, Josep

    2016-01-01

    In the past few years, many autoimmune encephalitides have been identified, with specific clinical syndromes and associated antibodies against neuronal surface antigens. There is compelling evidence that many of these antibodies are pathogenic and most of these encephalitides are highly responsive to immunotherapies. The clinical spectra of some of these antibody-mediated syndromes, especially those reported in only a few patients, are evolving. Others, such as anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, are well characterized. Diagnosis involves recognizing the specific syndromes and identifying the antibody in a patient’s cerebrospinal fluid (CSF) and/or serum. These syndromes are associated with variable abnormalities in CSF, magnetic resonance imaging, and electroencephalography. Treatment is often multidisciplinary and should be focused upon neutralizing the effects of antibodies and eliminating their source. Overlapping disorders have been noted, with some patients having more than one neurologic autoimmune disease. In other patients, viral infections such as herpes simplex virus encephalitis trigger robust antineuronal autoimmune responses. PMID:25369441

  6. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    PubMed

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Cannabidiol limits Tcell-mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation.

    PubMed

    Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Haskó, György; Čiháková, Daniela; Mechoulam, Raphael; Pacher, Pal

    2016-01-08

    Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a non-psychoactive constituent of Marijuana which exerts antiinflammatory effects independent from classical cannabinoid receptors. Recently 80 clinical trials have been reported investigating the effects of CBD in various diseases from inflammatory bowel disease to graft-versus-host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received FDA approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell-mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T cell-infiltration, profound inflammatory response, fibrosis (measured by qRT-PCR, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. CBD may represent a promising novel treatment for management of autoimmune myocarditis and possibly other autoimmune disorders, and organ transplantation.

  8. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  9. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The immunomodulator AS101 suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis.

    PubMed

    Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D; Yu, Shiguang

    2014-08-15

    We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O') tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The immunomodulator AS101suppresses production of inflammatory cytokines and ameliorates the pathogenesis of experimental autoimmune encephalomyelitis

    PubMed Central

    Xie, Li; Chen, Jing; McMickle, Anthony; Awar, Nadia; Nady, Soad; Sredni, Benjamin; Drew, Paul D.; Yu, Shiguang

    2014-01-01

    We reported that AS101 (organotellurium compound, trichloro(dioxoethylene-O,O′) tellurate) inhibited the differentiation of Th17 cells and reduced the production of IL-17 and GM-CSF. In addition, AS101 promoted the production of IL-2 in activated T cells. Flow cytometric analysis showed that AS101 inhibited Th17 cell proliferation. AS101 blocked the activation of transcriptional factor NFAT, Stat3, and RORγt, and increased activation of Erk1/2, suggesting a mechanism of action of AS101. We further demonstrated that AS101 was effective in amelioration of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Finally, by real-time PCR analysis we showed that AS101 reduces the IL-17, IFN-γ, GM-CSF, and IL-6 mRNA expression in inflammatory cells of spinal cords. Additionally, flow cytometry analysis also indicated that the CD4+ T cells and IL-17 and GM-CSF-producing cells were reduced in the spinal cords of AS101 treated mice compared to those treated with PBS. PMID:24975323

  12. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice

    USDA-ARS?s Scientific Manuscript database

    Autoimmune disease is prevalent in humans. Since conventional therapies have limited efficacy and often come with significant side effects, nutrition may provide an alternative and complementary approach to improving the autoimmune disorders. Naringenin, a flavonoid found in citrus fruits, has been ...

  13. Nitrosative Stress and Nitrated Proteins in Trichloroethene-Mediated Autoimmunity

    PubMed Central

    Wang, Gangduo; Wang, Jianling; Luo, Xuemei; Ansari, G. A. Shakeel; Khan, M. Firoze

    2014-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, has been linked to a variety of autoimmune diseases (ADs) including SLE, scleroderma and hepatitis. Mechanisms involved in the pathogenesis of ADs are largely unknown. Earlier studies from our laboratory in MRL+/+ mice suggested the contribution of oxidative/nitrosative stress in TCE-induced autoimmunity, and N-acetylcysteine (NAC) supplementation provided protection by attenuating oxidative stress. This study was undertaken to further evaluate the contribution of nitrosative stress in TCE-mediated autoimmunity and to identify proteins susceptible to nitrosative stress. Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, ∼250 mg/kg/day via drinking water). TCE exposure led to significant increases in serum anti-nuclear and anti-histone antibodies together with significant induction of iNOS and increased formation of nitrotyrosine (NT) in sera and livers. Proteomic analysis identified 14 additional nitrated proteins in the livers of TCE-treated mice. Furthermore, TCE exposure led to decreased GSH levels and increased activation of NF-κB. Remarkably, NAC supplementation not only ameliorated TCE-induced nitrosative stress as evident from decreased iNOS, NT, nitrated proteins, NF-κB p65 activation and increased GSH levels, but also the markers of autoimmunity, as evident from decreased levels of autoantibodies in the sera. These findings provide support to the role of nitrosative stress in TCE-mediated autoimmune response and identify specific nitrated proteins which could have autoimmune potential. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for designing therapeutic strategies. PMID:24892995

  14. Kv1.3 channel blocker (ImKTx88) maintains blood-brain barrier in experimental autoimmune encephalomyelitis.

    PubMed

    Huang, Jie; Han, Song; Sun, Qi; Zhao, Yipeng; Liu, Junchen; Yuan, Xiaolu; Mao, Wenqian; Peng, Biwen; Liu, Wanhong; Yin, Jun; He, Xiaohua

    2017-01-01

    Disruption of blood-brain barrier (BBB) and subsequent infiltration of auto-reactive T lymphocytes are major characteristics of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Kv1.3 channel blockers are demonstrated potential therapeutic effects on MS patients and EAE models, maybe via reducing activation of T cells. However, it remains to be explored whether Kv1.3 channel blockers maintain integrity of BBB in MS model. In this study, ImKTx88, a highly selective Kv1.3 channel blocker, was used to determine the role of Kv1.3 channel in the pathogenesis of EAE, particularly in the maintenance of BBB. ImKTx88 ameliorated pathological severity in the EAE rats, and reduced extravasation into CNS. ImKTx88 also ameliorated the severity of loss or redistribution of tight junction proteins, and inhibited over-expression of ICAM-1 and VCAM-1 in the brain from EAE rats. Furthermore ImKTx88 protection was associated with activation of Ang-1/Tie-2 axis, and might be due to decreased IL-17 production. ImKTx88 may be a novel therapeutic agent for MS treatment by stabilizing the BBB.

  15. T cells in the lesion of experimental autoimmune encephalomyelitis. Enrichment for reactivities to myelin basic protein and to heat shock proteins.

    PubMed Central

    Mor, F; Cohen, I R

    1992-01-01

    To characterize the cellular immune response in an autoimmune lesion, we investigated the accumulation of specific T cells in the central nervous system in actively induced experimental autoimmune encephalomyelitis (EAE) in Lewis rats, using a limiting dilution analysis (LDA) assay for T cells that proliferate in response to antigens. Lymphocytes isolated from the spinal cord infiltrate were compared with cells from the popliteal lymph nodes with respect to frequency of cells responding to basic protein (BP), mycobacterium tuberculosis (MT), the 65-kD heat shock protein (hsp65), allogeneic brown norway spleen cells, and concanavalin A. Additionally, we compared the BP frequency in acute EAE of cells from the spinal cord, peripheral blood, spleen and lymph nodes, and the spinal cord and lymph node after recovery from EAE. We found that acute EAE was associated with marked enrichment of BP-reactive T cells in the spinal cord relative to their frequency in the lymphoid organs and peripheral blood. The infiltrate was also enriched for T cells responding to hsp65; alloreactive T cells, in contrast, were not enriched. The frequency of BP reactive T cells in the spinal cord was highest at the peak of paralysis; however, BP-reactive T cells could still be detected at moderate frequencies after clinical recovery. We established BP- and Mycobacteria-reactive T cell lines from the spinal infiltrates that were CD4+ and TcR alpha beta +. Most of the BP lines were found to react to the major encephalitogenic epitope of guinea pig BP for rats (amino acids 71-90); these lines were found to mediate EAE in naive recipients. T cell lines recognizing other epitopes of BP were not encephalitogenic. All of the lines responsive to Mycobacteria recognized hsp65 or hsp70. These results indicating that the immune infiltrate in active EAE is enriched with cells responding to the autoantigen and to hsp65 were confirmed in EAE adoptively transferred by anti-BP T cell clone. Images PMID:1281835

  16. Inhibitory effects of alprazolam on the development of acute experimental autoimmune encephalomyelitis in stressed rats.

    PubMed

    Núñez-Iglesias, María J; Novío, Silvia; Almeida-Dias, Antonio; Freire-Garabal, Manuel

    2010-12-01

    The progression and development of multiple sclerosis (MS) has long been hypothesized to be associated with stress. Benzodiazepines have been observed to reduce negative consequences of stress on the immune system in experimental and clinical models, but there are no data on their effects on MS, or experimental autoimmune encephalomyelitis (EAE), a model for human MS. We designed experiments conducted to ascertain whether alprazolam could modify the clinical, histological and neuroendocrine manifestations of acute EAE in Lewis rats exposed to a chronic auditory stressor. EAE was induced by injection of an emulsion of MBP and complete Freund's adjuvant containing Mycobacterium tuberculosis H37Ra. Stress application and treatment with drugs (placebo or alprazolam) were initiated 5days before inoculation and continued daily for the duration of the experiment (days 14 or 34 postinoculation).Our results show significant increases in the severity of neurological signs, the histological lesions of the spinal cord (inflammation), and the corticosterone plasmatic levels in stressed rats compared to those non-stressed ones. Treatment with alprazolam reversed the adverse effects of stress. These findings could have clinical implications in patients suffering from MS treated with benzodiazepines, so besides the psychopharmacological properties of alprazolam against stress, it has beneficial consequences on EAE. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis.

    PubMed

    Pfeiffer, Friederike; Schäfer, Julia; Lyck, Ruth; Makrides, Victoria; Brunner, Sarah; Schaeren-Wiemers, Nicole; Deutsch, Urban; Engelhardt, Britta

    2011-11-01

    In experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS), loss of the blood-brain barrier (BBB) tight junction (TJ) protein claudin-3 correlates with immune cell infiltration into the CNS and BBB leakiness. Here we show that sealing BBB TJs by ectopic tetracycline-regulated expression of the TJ protein claudin-1 in Tie-2 tTA//TRE-claudin-1 double transgenic C57BL/6 mice had no influence on immune cell trafficking across the BBB during EAE and furthermore did not influence the onset and severity of the first clinical disease episode. However, expression of claudin-1 did significantly reduce BBB leakiness for both blood borne tracers and endogenous plasma proteins specifically around vessels expressing claudin-1. In addition, mice expressing claudin-1 exhibited a reduced disease burden during the chronic phase of EAE as compared to control littermates. Our study identifies BBB TJs as the critical structure regulating BBB permeability but not immune cell trafficking into CNS during EAE, and indicates BBB dysfunction is a potential key event contributing to disease burden in the chronic phase of EAE. Our observations suggest that stabilizing BBB barrier function by therapeutic targeting of TJs may be beneficial in treating MS, especially when anti-inflammatory treatments have failed.

  18. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  19. Evaluation of the co-registration capabilities of a MRI/PET compatible bed in an Experimental autoimmune encephalomyelitis (EAE) model

    NASA Astrophysics Data System (ADS)

    Esposito, Giovanna; D'angeli, Luca; Bartoli, Antonietta; Chaabane, Linda; Terreno, Enzo

    2013-02-01

    Positron Emission Tomography (PET) with 18F-FDG is a promising tool for the detection and evaluation of active inflammation in animal models of neuroinflammation. MRI is a complementary imaging technique with high resolution and contrast suitable to obtain the anatomical data required to analyze PET data. To combine PET and MRI modalities, we developed a support bed system compatible for both scanners that allowed to perform imaging exams without animal repositioning. With this approach, MRI and PET data were acquired in mice with Experimental autoimmune encephalomyelitis (EAE). In this model, it was possible to measure a variation of 18F-FDG uptake proportional to the degree of disease severity which is mainly related to Central Nervous System (CNS) inflammation. Against the low resolved PET images, the co-registered MRI/PET images allowed to distinguish the different brain structures and to obtain a more accurate tracer evaluation. This is essential in particular for brain regions whose size is of the order of the spatial resolution of PET.

  20. Cannabidiol Limits T Cell–Mediated Chronic Autoimmune Myocarditis: Implications to Autoimmune Disorders and Organ Transplantation

    PubMed Central

    Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Hask’, György; ’iháková, Daniela; Mechoulam, Raphael; Pacher, Pal

    2016-01-01

    Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell–mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell–mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation. PMID:26772776

  1. Inactivation of JNK1 enhances innate IL-10 production and dampens autoimmune inflammation in the brain.

    PubMed

    Tran, Elise H; Azuma, Yasu-Taka; Chen, Manchuan; Weston, Claire; Davis, Roger J; Flavell, Richard A

    2006-09-05

    Environmental insults such as microbial pathogens can contribute to the activation of autoreactive T cells, leading to inflammation of target organs and, ultimately, autoimmune disease. Various infections have been linked to multiple sclerosis and its animal counterpart, autoimmune encephalomyelitis. The molecular process by which innate immunity triggers autoreactivity is not currently understood. By using a mouse model of multiple sclerosis, we found that the genetic loss of the MAPK, c-Jun N-terminal kinase 1 (JNK1), enhances IL-10 production, rendering innate myeloid cells unresponsive to certain microbes and less capable of generating IL-17-producing, encephalitogenic T cells. Moreover, JNK1-deficient central nervous system myeloid cells are unable to respond to effector T cell inflammatory cytokines, preventing further progression to neuroinflammation. Thus, we have identified the JNK1 signal transduction pathway in myeloid cells to be a critical component of a regulatory circuit mediating inflammatory responses in autoimmune disease. Our findings provide further insights into the pivotal MAPK-regulated network of innate and adaptive cytokines in the progression to autoimmunity.

  2. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.

    PubMed

    Murphy, Aine C; Lalor, Stephen J; Lynch, Marina A; Mills, Kingston H G

    2010-05-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model for multiple sclerosis, where disease is mediated by autoantigen-specific T cells. Although there is evidence linking CD4(+) T cells that secrete IL-17, termed Th17 cells, and IFN-gamma-secreting Th1 cells with the pathogenesis of EAE, the precise contribution of these T cell subtypes or their associated cytokines is still unclear. We have investigated the infiltration of CD4(+) T cells that secrete IFN-gamma, IL-17 or both cytokines into CNS during development of EAE and have examined the role of T cells in microglial activation. Our findings demonstrate that Th17 cells and CD4(+) T cells that produce both IFN-gamma and IL-17, which we have called Th1/Th17 cells, infiltrate the brain prior to the development of clinical symptoms of EAE and that this coincides with activation of CD11b(+) microglia and local production of IL-1beta, TNF-alpha and IL-6 in the CNS. In contrast, significant infiltration of Th1 cells was only detected after the development of clinical disease. Co-culture experiments, using mixed glia and MOG-specific T cells, revealed that T cells that secreted IFN-gamma and IL-17 were potent activators of pro-inflammatory cytokines but T cells that secrete IFN-gamma, but not IL-17, were less effective. In contrast both Th1 and Th1/Th17 cells enhanced MHC-class II and co-stimulatory molecule expression on microglia. Our findings suggest that T cells which secrete IL-17 or IL-17 and IFN-gamma infiltrate the CNS prior to the onset of clinical symptoms of EAE, where they may mediate CNS inflammation, in part, through microglial activation. Copyright 2010 Elsevier Inc. All rights reserved.

  3. CP-10, a chemotactic peptide, is expressed in lesions of experimental autoimmune encephalomyelitis, neuritis, uveitis and in C6 gliomas.

    PubMed

    Deininger, M H; Zhao, Y; Schluesener, H J

    1999-01-01

    CP-10 (chemotactic protein of m.w. 10,000) is a member of the S100 superfamily of Ca2+ binding peptides, which has potent chemotactic activity for murine and human myeloid cells. Here we report on the generation of monoclonal antibodies against CP-10 and accumulation of CP-10+ cells during experimental autoimmune encephalomyelitis (EAE), neuritis (EAN), uveitis (EAU) and in experimentally transplanted C6 gliomas. During acute inflammation, CP-10 is mainly expressed by large ED1+ monocytic perivascular cells that accumulate at days 11-14. CP-10+ cells are predominantly located in areas of cellular infiltration but are as well found in the meninges and infiltrating the brain parenchyma. In transplanted gliomas, CP-10+ cells are located exclusively within the tumor parenchyma. Using double labeling experiments, other cells participating in the inflammatory reaction were found to express CP-10, like few lymphoblastic W3/13+ cells in the vicinity of the inflammatory infiltrate.

  4. [MAIT cells in autoimmunity].

    PubMed

    Miyake, Sachiko

    2014-01-01

    Mucosal associated invariant T (MAIT) cells express a semi-invariant TCRα chain: Vα7.2-Jα33 in humans and Vα19-Jα33 in mice. They are restricted by a nonpolymorphic MHC-related molecule-1 (MR1), and cells are selected in the thymus. Interestingly, MAIT cells require B cells as well as commensal flora for their peripheral expansion. MAIT cells display antimicrobial capacity. Recently, vitamin metabolites were demonstrated as antigens created by intestinal flora for MAIT cells. MAIT cells play a protective role against autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), wheras they play a pathogenic role in murine models of arthritis. In patients with autoimmune diseases, the frequency of MAIT cells in peripheral blood was significantly reduced. The frequency of MAIT cells reflected the disease activity in MS patients, suggesting the involvement of MAIT cells in the regulation of autoimmune diseases.

  5. Alterations of glutamate release in the spinal cord of mice with experimental autoimmune encephalomyelitis.

    PubMed

    Marte, Antonella; Cavallero, Anna; Morando, Sara; Uccelli, Antonio; Raiteri, Maurizio; Fedele, Ernesto

    2010-10-01

    We have investigated the spontaneous and the depolarisation-induced release of [(3)H]D-aspartate ([(3)H]D-ASP), a non-metabolisable analogue of glutamate, in spinal cord slices, synaptosomes and gliosomes from mice with experimental autoimmune encephalomyelitis (EAE) at 13, 21 and 55 days post-immunisation (d.p.i.), representing onset, peak and chronic phases of the pathology. At 13 and 21 d.p.i., the KCl-evoked, calcium-dependent overflow of [(3)H]D-ASP in spinal cord slices was significantly lower (30-40%), whereas at 55 d.p.i. it was significantly higher (30%), than that elicited in matched controls. When the release was measured from spinal cord synaptosomes and gliosomes in superfusion, a different picture emerged. The spontaneous and the KCl(15 mM)-induced release of [(3)H]D-ASP were significantly increased both in synaptosomes (17% and 45%, respectively) and gliosomes (26% and 25%, respectively) at 21, but not at 13, d.p.i. At 55 d.p.i., the KCl-induced [(3)H]D-ASP release was significantly increased (40%) only in synaptosomes. Finally, uptake of [(3)H]D-ASP was markedly (50-60%) increased in spinal cord synaptosomes, but not in gliosomes, obtained from EAE mice at 21 d.p.i., whereas no differences could be detected at 13 d.p.i. Our data indicate that glutamatergic neurotransmission is altered in the spinal cord of EAE mice. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  6. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  7. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    PubMed Central

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  8. Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis.

    PubMed

    Wasser, Beatrice; Pramanik, Gautam; Hess, Moritz; Klein, Matthias; Luessi, Felix; Dornmair, Klaus; Bopp, Tobias; Zipp, Frauke; Witsch, Esther

    2016-12-01

    The importance of CD11c + antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c + APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c + APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c + cells is technically difficult. To ask whether the CD11c + APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c + APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.

  9. Myelin basic protein-specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease.

    PubMed

    Lafaille, J J; Keere, F V; Hsu, A L; Baron, J L; Haas, W; Raine, C S; Tonegawa, S

    1997-07-21

    Chronic inflammatory autoimmune diseases such as multiple sclerosis, diabetes, and rheumatoid arthritis are caused by CD4(+) Th1 cells. Because Th2 cells antagonize Th1 cell functions in several ways, it is believed that immune deviation towards Th2 can prevent or cure autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease used as a model for multiple sclerosis. Using an adoptive transfer system we assessed the role of Th1 and Th2 cells in EAE. In vitro generated Th1 and Th2 cells from myelin basic protein (MBP)-specific TCR transgenic mice were transferred into normal and immunodeficient mice. Th1 cells caused EAE in all recipients after a brief preclinical phase. Surprisingly, Th2 cells also caused EAE in RAG-1 KO mice and in alphabeta T cell-deficient mice, albeit after a longer preclinical phase. Normal or gammadelta T cell-deficient mice were resistant to EAE induced by Th2 cells. The histopathological features of this disease resembled those of an allergic process. In addition, disease induction by Th1 cells was not altered by coadmininstration of Th2 cells in any of the recipients. These findings indicate that MBP-specific Th2 cells have the potential to induce EAE and that the disease induced by previously activated Th1 cells cannot be prevented by normal lymphocytes nor by previously activated Th2 cells.

  10. Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis.

    PubMed

    Trubiani, Oriana; Giacoppo, Sabrina; Ballerini, Patrizia; Diomede, Francesca; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela

    2016-01-04

    Multiple sclerosis is a demyelinating disease mostly of autoimmune origin that affects and damages the central nervous system, leading to a disabling condition. The aim of the present study was to investigate whether administration of mesenchymal stem cells from human periodontal ligament (hPDLSCs) could ameliorate multiple sclerosis progression by exerting neuroprotective effects in an experimental model of autoimmune encephalomyelitis (EAE). EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG)35-55 in C57BL/6 mice. After immunization, mice were observed every 48 hours for signs of EAE and weight loss. At the onset of disease, approximately 14 days after immunization, EAE mice were subjected to a single intravenous injection of hPDLSCs (10(6) cells/150 μl) into the tail vein. At the point of animal sacrifice on day 56 after EAE induction, spinal cord and brain tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results reveal that treatment with hPDLSCs may exert neuroprotective effects against EAE, diminishing both clinical signs and histological score typical of the disease (lymphocytic infiltration and demyelination) probably through the production of neurotrophic factors (results focused on brain-derived neurotrophic factor and nerve growth factor expression). Furthermore, administration of hPDLSCs modulates expression of inflammatory key markers (tumor necrosis factor-α, interleukin (IL)-1β, IL-10, glial fibrillary acidic protein, Nrf2 and Foxp3), the release of CD4 and CD8α T cells, and the triggering of apoptotic death pathway (data shown for cleaved caspase 3, p53 and p21). In light of the achieved results, transplantation of hPDLSCs may represent a putative novel and helpful tool for multiple sclerosis treatment. These cells could have considerable implication for future therapies for multiple sclerosis and this study may represent the

  11. First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.

    PubMed

    Borroto, Aldo; Reyes-Garau, Diana; Jiménez, M Angeles; Carrasco, Esther; Moreno, Beatriz; Martínez-Pasamar, Sara; Cortés, José R; Perona, Almudena; Abia, David; Blanco, Soledad; Fuentes, Manuel; Arellano, Irene; Lobo, Juan; Heidarieh, Haleh; Rueda, Javier; Esteve, Pilar; Cibrián, Danay; Martinez-Riaño, Ana; Mendoza, Pilar; Prieto, Cristina; Calleja, Enrique; Oeste, Clara L; Orfao, Alberto; Fresno, Manuel; Sánchez-Madrid, Francisco; Alcamí, Antonio; Bovolenta, Paola; Martín, Pilar; Villoslada, Pablo; Morreale, Antonio; Messeguer, Angel; Alarcon, Balbino

    2016-12-21

    Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC 50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases. Copyright © 2016, American Association for the Advancement of Science.

  12. Hyperforin-loaded gold nanoparticle alleviates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells and upregulating regulatory T cells.

    PubMed

    Nosratabadi, Reza; Rastin, Maryam; Sankian, Mojtaba; Haghmorad, Dariush; Mahmoudi, Mahmoud

    2016-10-01

    Hyperforin an herbal compound, is commonly used in traditional medicine due to its anti-inflammatory activities. The aim of this study was to use a hyperforin loaded gold nanoparticle (Hyp-GNP) in the treatment of experimental autoimmune encephalomyelitis (EAE) an animal model of multiple sclerosis (MS). Hyp-GNP and hyperforin significantly reduced clinical severity of EAE, which was accompanied by a decrease in the number of inflammatory cell infiltration in the spinal cord. Additionally, treatment with Hyp-GNP significantly inhibited disease-associated cytokines as well as an increase in the anti-inflammatory cytokines in comparison to all groups including the free-hyp group. Furthermore, hyperforin and Hyp-GNP inhibited the differentiation of Th1 and Th17 cells while promoting Treg and Th2 cell differentiation via regulating their master transcription factors. The current study demonstrated the although, free-hyp improved clinical and laboratory data Hyp-GNP is significantly more efficient than free hyperforin in the treatment of EAE. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice.

    PubMed

    Piconese, Silvia; Costanza, Massimo; Musio, Silvia; Tripodo, Claudio; Poliani, Pietro L; Gri, Giorgia; Burocchi, Alessia; Pittoni, Paola; Gorzanelli, Andrea; Colombo, Mario P; Pedotti, Rosetta

    2011-04-01

    Mast cell (MC)-deficient c-Kit mutant Kit(W/W-v) mice are protected against experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, suggesting a detrimental role for MCs in this disease. To further investigate the role of MCs in EAE, we took advantage of a recently characterized model of MC deficiency, Kit(W-sh/W-sh). Surprisingly, we observed that myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced chronic EAE was exacerbated in Kit(W-sh/W-sh) compared with Kit(+/+) mice. Kit(W-sh/W-sh) mice showed more inflammatory foci in the central nervous system (CNS) and increased T-cell response against myelin. To understand whether the discrepant results obtained in Kit(W-sh/W-sh) and in Kit(W/W-v) mice were because of the different immunization protocols, we induced EAE in these two strains with varying doses of MOG(35-55) and adjuvants. Although Kit(W-sh/W-sh) mice exhibited exacerbated EAE under all immunization protocols, Kit(W/W-v) mice were protected from EAE only when immunized with high, but not low, doses of antigen and adjuvants. Kit(W-sh/W-sh) mice reconstituted systemically, but not in the CNS, with bone marrow-derived MCs still developed exacerbated EAE, indicating that protection from disease could be exerted by MCs mainly in the CNS, and/or by other cells possibly dysregulated in Kit(W-sh/W-sh) mice. In summary, these data suggest to reconsider MC contribution to EAE, taking into account the variables of using different experimental models and immunization protocols.

  14. Huperzine A inhibits CCL2 production in experimental autoimmune encephalomyelitis mice and in cultured astrocyte.

    PubMed

    Tian, G X; Zhu, X Q; Chen, Y; Wu, G C; Wang, J

    2013-01-01

    The active role of chemokines and inflammatory cytokines in the central nervous system (CNS) during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has been clearly established. Recent studies from our laboratory reported that Huperzine A (HupA) can attenuate the disease process in EAE by the inhibition of inflammation, demyelination, and axonal injury in the spinal cord as well as encephalomyelitic T-cell proliferation. In this study, the effects of low dose HupA on CCL2, TNF-alpha, IL-6, and IL-1beta expression were evaluated in EAE. The effect of HupA on lipopolysachharide (LPS)-induced inflammatory molecule secretion was investigated in cultured-astrocytes in vitro. In MOG35-55-induced EAE mice, intraperitoneal injections of HupA (0.1 mg/kg•d−1) significantly suppressed the expression of CCL2, IL-6, TNF-alpha, and IL-1beta in the spinal cord. HupA also repressed LPS-induced CCL2 production, but with little influence on pro-inflammatory cytokines in primary cultured astrocytes. The inhibition effect of HupA on CCL2 is PPARgamma-dependent and nicotine receptor-independent. Conditioned culture media from HupA-treated astrocyte decreased PBMC migration in vitro. Collectively, these results suggest that HupA can ameliorate EAE by inhibiting CCL2 production in astrocyte, which may consequently decrease inflammatory cell infiltration in the spinal cord. HupA may have a potential therapeutic value for the treatment of MS and other neuroinflammatory diseases.

  15. Systemic Escherichia coli infection does not influence clinical symptoms and neurodegeneration in experimental autoimmune encephalomyelitis.

    PubMed

    Kumar, Prateek; Friebe, Katharina; Schallhorn, Rieka; Moinfar, Zahra; Nau, Roland; Bähr, Mathias; Schütze, Sandra; Hein, Katharina

    2015-06-19

    Systemic infections can influence the course of multiple sclerosis (MS), especially by driving recurrent acute episodes. The question whether the infection enhances tissue damage is of great clinical importance and cannot easily be assessed in clinical trials. Here, we investigated the effects of a systemic infection with Escherichia coli, a Gram-negative bacterium frequently causing urinary tract infections, on the clinical course as well as on neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Rats were immunized with myelin oligodendrocyte glycoprotein (MOG1-125) and challenged intraperitoneally with live E. coli K1 in the preclinical or in the clinical phase of the disease. To ensure the survival of animals, antibiotic treatment with ceftriaxone was initiated 36 h after the infection and continued for 3 consecutive days. Systemic infection with E. coli did not influence the onset of clinical EAE symptoms or disease severity. Analysis of the optic nerve and retinal ganglion cells revealed no significant changes in the extent of inflammatory infiltrates, demyelination and neurodegeneration after E. coli infection. We could not confirm the detrimental effect of lipopolysaccharide-induced systemic inflammation, a model frequently used to mimic the bacterial infection, previously observed in animal models of MS. Our results indicate that the effect of an acute E. coli infection on the course of MS is less pronounced than suspected and underline the need for adequate models to test the role of systemic infections in the pathogenesis of MS.

  16. [Immunopathogenesis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)].

    PubMed

    Yamamura, Takashi; Ono, Hirohiko; Sato, Wakiro

    2018-01-01

    A recent study on the pathogenesis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has revealed an elevation of inflammatory and anti-inflammatory cytokines in the sera and cerebrospinal fluids of the patients and presence of autoantibodies in subgroups of ME/CFS patients. Furthermore, investigator-initiated clinical trials have proved the efficacy of anti-CD20 antibody (rituximab), that eliminate B cells, in the treatment of ME/CFS. Based on these findings, we hypothesize that immune abnormalities, such as enhanced autoimmune responses, may play an essential role in the neuroinflammatory pathogenesis of ME/CFS.

  17. Gestational Hypothyroxinemia Affects Its Offspring With a Reduced Suppressive Capacity Impairing the Outcome of the Experimental Autoimmune Encephalomyelitis.

    PubMed

    Haensgen, Henny; Albornoz, Eduardo; Opazo, María C; Bugueño, Katherinne; Jara Fernández, Evelyn Liliana; Binzberger, Rebecca; Rivero-Castillo, Tomás; Venegas Salas, Luis F; Simon, Felipe; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Kalergis, Alexis M; Bueno, Susan M; Riedel, Claudia A

    2018-01-01

    Hypothyroxinemia (Hpx) is a thyroid hormone deficiency (THD) condition highly frequent during pregnancy, which although asymptomatic for the mother, it can impair the cognitive function of the offspring. Previous studies have shown that maternal hypothyroidism increases the severity of experimental autoimmune encephalomyelitis (EAE), an autoimmune disease model for multiple sclerosis (MS). Here, we analyzed the immune response after EAE induction in the adult offspring gestated in Hpx. Mice gestated in Hpx showed an early appearance of EAE symptoms and the increase of all parameters of the disease such as: the pathological score, spinal cord demyelination, and immune cell infiltration in comparison to the adult offspring gestated in euthyroidism. Isolated CD4 + CD25 + T cells from spleen of the offspring gestated in Hpx that suffer EAE showed reduced capacity to suppress proliferation of effector T cells (T Eff ) after being stimulated with anti-CD3 and anti-CD28 antibodies. Moreover, adoptive transfer experiments of CD4 + CD25 + T cells from the offspring gestated in Hpx suffering EAE to mice that were induced with EAE showed that the receptor mice suffer more intense EAE pathological score. Even though, no significant differences were detected in the frequency of T reg cells and IL-10 content in the blood, spleen, and brain between mice gestated in Hpx or euthyroidism, T cells CD4 + CD25 + from spleen have reduced capacity to differentiate in vitro to T reg and to produce IL-10. Thus, our data support the notion that maternal Hpx can imprint the immune response of the offspring suffering EAE probably due to a reduced capacity to trigger suppression. Such "imprints" on the immune system could contribute to explaining as to why adult offspring gestated in Hpx suffer earlier and more intense EAE.

  18. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior.

    PubMed

    Morris, Gerwyn; Anderson, George; Galecki, Piotr; Berk, Michael; Maes, Michael

    2013-03-08

    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions.

  19. High salt intake does not exacerbate murine autoimmune thyroiditis

    PubMed Central

    Kolypetri, P; Randell, E; Van Vliet, B N; Carayanniotis, G

    2014-01-01

    Recent studies have shown that high salt (HS) intake exacerbates experimental autoimmune encephalomyelitis and have raised the possibility that a HS diet may comprise a risk factor for autoimmune diseases in general. In this report, we have examined whether a HS diet regimen could exacerbate murine autoimmune thyroiditis, including spontaneous autoimmune thyroiditis (SAT) in non-obese diabetic (NOD.H2h4) mice, experimental autoimmune thyroiditis (EAT) in C57BL/6J mice challenged with thyroglobulin (Tg) and EAT in CBA/J mice challenged with the Tg peptide (2549–2560). The physiological impact of HS intake was confirmed by enhanced water consumption and suppressed aldosterone levels in all strains. However, the HS treatment failed to significantly affect the incidence and severity of SAT or EAT or Tg-specific immunoglobulin (Ig)G levels, relative to control mice maintained on a normal salt diet. In three experimental models, these data demonstrate that HS intake does not exacerbate autoimmune thyroiditis, indicating that a HS diet is not a risk factor for all autoimmune diseases. PMID:24528002

  20. Effect of ether glycerol lipids on interleukin-1β release and experimental autoimmune encephalomyelitis.

    PubMed

    Boomkamp, Stephanie D; Byun, Hoe-Sup; Ubhi, Satvir; Jiang, Hui-Rong; Pyne, Susan; Bittman, Robert; Pyne, Nigel J

    2016-01-01

    We have assessed the effect of two ether glycerol lipids, 77-6 ((2S, 3R)-4-(Tetradecyloxy)-2-amino-1,3-butanediol) and 56-5 ((S)-2-Amino-3-O-hexadecyl-1-propanol), which are substrates for sphingosine kinases, on inflammatory responses. Treatment of differentiated U937 macrophage-like cells with 77-6 but not 56-5 enhanced IL-1β release; either alone or in the presence of LPS. The stimulatory effect of sphingosine or 77-6 on LPS-stimulated IL-1β release was reduced by pretreatment of cells with the caspase-1 inhibitor, Ac-YVAD-CHO, thereby indicating a role for the inflammasome. The enhancement of LPS-stimulated IL-1β release in response to sphingosine, but not 77-6, was reduced by pretreatment of cells with the cathepsin B inhibitor, CA074Me, indicating a role for lysosomal destabilization in the effect of sphingosine. Administration of 56-5 to mice increased disease progression in an experimental autoimmune encephalomyelitis model and this was associated with a considerable increase in the infiltration of CD4(+) T-cells, CD11b(+) monocytes and F4/80(+) macrophages in the spinal cord. 56-5 and 77-6 were without effect on the degradation of myc-tagged sphingosine 1-phosphate 1 receptor in CCL39 cells. Therefore, the effect of 56-5 on EAE disease progression is likely to be independent of the inflammasome or the sphingosine 1-phosphate 1 receptor. However, 56-5 is chemically similar to platelet activating factor and the exacerbation of EAE disease progression might be linked to platelet activating factor receptor signaling. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Pre-existing central nervous system lesions negate cytokine requirements for regional experimental autoimmune encephalomyelitis development.

    PubMed

    Li, Xin; Lees, Jason R

    2013-03-01

    In region-specific forms of experimental autoimmune encephalomyelitis (EAE), lesion initiation is regulated by T-cell-produced interferon-γ (IFN-γ) resulting in spinal cord disease in the presence of IFN-γ and cerebellar disease in the absence of IFN-γ. Although this role for IFN-γ in regional disease initiation is well defined, little is known about the consequences of previous tissue inflammation on subsequent regional disease, information vital to the development of therapeutics in established disease states. This study addressed the hypothesis that previous establishment of regional EAE would determine subsequent tissue localization of new T-cell invasion and associated symptoms regardless of the presence or absence of IFN-γ production. Serial transfer of optimal or suboptimal doses of encephalitogenic IFN-γ-sufficient or -deficient T-cell lines was used to examine the development of new clinical responses associated with the spinal cord and cerebellum at various times after EAE initiation. Previous inflammation within either cerebellum or spinal cord allowed subsequent T-cell driven inflammation within that tissue regardless of IFN-γ presence. Further, T-cell IFN-γ production after initial lesion formation exacerbated disease within the cerebellum, suggesting that IFN-γ plays different roles at different stages of cerebellar disease. For the spinal cord, IFN-γ-deficient cells (that are ordinarily cerebellum disease initiators) were capable of driving new spinal-cord-associated clinical symptoms more than 60 days after the initial acute EAE resolution. These data suggest that previous inflammation modulates the molecular requirements for new neuroinflammation development. © 2012 Blackwell Publishing Ltd.

  2. Tolerogenic Dendritic Cells Generated with Tofacitinib Ameliorate Experimental Autoimmune Encephalomyelitis through Modulation of Th17/Treg Balance

    PubMed Central

    Luo, Shasha; Zou, Qiang

    2016-01-01

    It is well known that dendritic cells (DCs) play a pivotal role in triggering self-specific responses. Conversely, tolerogenic DCs (tolDCs), a specialized subset, induce tolerance and negatively regulate autoreactive responses. Tofacitinib, a Janus kinase inhibitor developed by Pfizer for treatment of rheumatoid arthritis, is probable to be a promising candidate for inducing tolDCs. The aims of this study were to evaluate the effectiveness of tolDCs induced by tofacitinib in a myelin oligodendrocyte glycoprotein- (MOG-) specific experimental autoimmune encephalomyelitis (EAE) model and to investigate their effects on Th17/Treg balance in the animal model of multiple sclerosis (MS). Our results revealed that tofacitinib-treated DCs maintained a steady semimature phenotype with a low level of proinflammatory cytokines and costimulatory molecules. DCs treated by tofacitinib also induced antigen-specific T cells hyporesponsiveness in a concentration-dependent manner. Upon intravenous injection into EAE mice, MOG pulsed tolDCs significantly dampened disease activity, and adoptive cell therapy (ACT) disturbed Th17/Treg balance with a remarkable decrease of Th1/Th17 cells and an increase in regulatory T cells (Tregs). Overall, DCs modified by tofacitinib exhibited a typical tolerogenic phenotype, and the antigen-specific tolDCs may represent a new avenue of research for the development of future clinical treatments for MS. PMID:28070525

  3. Beneficial effect of agmatine in the acute phase of experimental autoimmune encephalomyelitis in iNOS-/- knockout mice.

    PubMed

    Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Ljubisavljevic, Srdjan; Stojnev, Slavica; Bokonjic, Dubravko

    2013-11-25

    The aim of the study was to investigate the hypothesis that agmatine (AGM) provides protection against oxidative stress in experimental autoimmune encephalomyelitis (EAE). Wild-type (WT) and knockout (KO) CBA/H iNOS-/- 3 months old (15 ± 5 g) mice, were used for EAE induction by myelin basic protein (MBP), dissolved in Complete Freund's Adjuvant (CFA). The animals were divided into control, EAE, CFA, EAE+AGM and AGM groups. After the development of full clinical remission, animals were decapitated and oxidative stress parameters were determined in whole encephalitic mass (WEM) and cerebellum homogenates. The EAE clinical expression manifested to greater extent in WT than KO mice, was significantly decreased during AGM treatment. We demonstrated significant elevations of superoxide dismutase activity in WT and KO EAE animals, in WEM and cerebellum tissues, which were decreased during AGM treatment in both groups. Superoxide anion content was increased in WEM of both study groups, with a decrease during AGM treatment. The observed changes were more pronounced in WT than in KO animals. Also, the increased expressions of transferrin receptor and glial fibrillary acidic protein observed in WT and KO EAE mice were significantly decreased during AGM treatment. The results suggest potentially beneficial AGM effects in EAE, which might be used for a modified antioxidative approach in MS therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Neuroprotective effects of placenta-derived mesenchymal stromal cells in a rat model of experimental autoimmune encephalomyelitis.

    PubMed

    Selim, Assmaa O; Selim, Sally A; Shalaby, Sally M; Mosaad, Hala; Saber, Taisir

    2016-09-01

    Current therapies for multiple sclerosis (MS) are largely palliative, not curative. Mesenchymal stromal cells (MSCs) harbor regenerative and immunosuppressive functions, indicating a potential therapy for MS. A preparation of MSCs derived from full-term human placenta (PDMSCs) is a new approach in the treatment of patients with MS. This study aimed to rule out the possible therapy by PDMSCs in experimental autoimmune encephalomyelitis (EAE), a rat model of MS. Thirty-five female Wistar rats were classified into the following groups: I, control; II, EAE untreated; III and IV, EAE treated with phosphate-buffered saline (PBS) at 9 and 16 days post-immunization (dpi), respectively; V and VI, EAE treated with PDMSCs at 9 and 16 dpi, respectively. Intravenous administration of PDMSCs at 9 or 16 dpi significantly ameliorated the disease course, decreasing brain inflammation and degenerating neurons. A reduction of axonal damage as well as an increase of oligodendrocyte precursors were recorded. Moreover, there was an engraftment of the PDMSCs into the brain tissue. Human brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin 3 (NTF3) were significantly expressed in brains of rats treated by PDMSCs. Human PDMSCs have demonstrated striking therapeutic effects when delivered at the onset or at the peak of the disease. PDMSCs have direct neurotrophic support after their engraftment within the lesion through expression of the neurotrophins. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota.

    PubMed

    Cignarella, Francesca; Cantoni, Claudia; Ghezzi, Laura; Salter, Amber; Dorsett, Yair; Chen, Lei; Phillips, Daniel; Weinstock, George M; Fontana, Luigi; Cross, Anne H; Zhou, Yanjiao; Piccio, Laura

    2018-06-05

    Multiple sclerosis (MS) is more common in western countries with diet being a potential contributing factor. Here we show that intermittent fasting (IF) ameliorated clinical course and pathology of the MS model, experimental autoimmune encephalomyelitis (EAE). IF led to increased gut bacteria richness, enrichment of the Lactobacillaceae, Bacteroidaceae, and Prevotellaceae families and enhanced antioxidative microbial metabolic pathways. IF altered T cells in the gut with a reduction of IL-17 producing T cells and an increase in regulatory T cells. Fecal microbiome transplantation from mice on IF ameliorated EAE in immunized recipient mice on a normal diet, suggesting that IF effects are at least partially mediated by the gut flora. In a pilot clinical trial in MS patients, intermittent energy restriction altered blood adipokines and the gut flora resembling protective changes observed in mice. In conclusion, IF has potent immunomodulatory effects that are at least partially mediated by the gut microbiome. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6–producing B cells

    PubMed Central

    Shen, Ping; Brown, Sheila; Lampropoulou, Vicky; Roch, Toralf; Lawrie, Sarah; Fan, Boli; O’Connor, Richard A.; Anderton, Stephen M.; Bar-Or, Amit; Fillatreau, Simon; Gray, David

    2012-01-01

    B cells have paradoxical roles in autoimmunity, exerting both pathogenic and protective effects. Pathogenesis may be antibody independent, as B cell depletion therapy (BCDT) leads to amelioration of disease irrespective of autoantibody ablation. However, the mechanisms of pathogenesis are poorly understood. We demonstrate that BCDT alleviates central nervous system autoimmunity through ablation of IL-6–secreting pathogenic B cells. B cells from mice with experimental autoimmune encephalomyelitis (EAE) secreted elevated levels of IL-6 compared with B cells from naive controls, and mice with a B cell–specific IL-6 deficiency showed less severe disease than mice with wild-type B cells. Moreover, BCDT ameliorated EAE only in mice with IL-6–sufficient B cells. This mechanism of pathogenesis may also operate in multiple sclerosis (MS) because B cells from MS patients produced more IL-6 than B cells from healthy controls, and this abnormality was normalized with B cell reconstitution after Rituximab treatment. This suggests that BCDT improved disease progression, at least partly, by eliminating IL-6–producing B cells in MS patients. Taking these data together, we conclude that IL-6 secretion is a major mechanism of B cell–driven pathogenesis in T cell–mediated autoimmune disease such as EAE and MS. PMID:22547654

  7. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific.

    PubMed

    Krementsov, Dimitry N; Case, Laure K; Hickey, William F; Teuscher, Cory

    2015-08-01

    Multiple sclerosis (MS) is a debilitating autoimmune neuroinflammatory disease influenced by genetics and the environment. MS incidence in female subjects has approximately tripled in the last century, suggesting a sex-specific environmental influence. Recent animal and human studies have implicated dietary sodium as a risk factor in MS, whereby high sodium augmented the generation of T helper (Th) 17 cells and exacerbated experimental autoimmune encephalomyelitis (EAE), the principal model of MS. However, whether dietary sodium interacts with sex or genetics remains unknown. Here, we show that high dietary sodium exacerbates EAE in a strain- and sex-specific fashion. In C57BL6/J mice, exposure to a high-salt diet exacerbated disease in both sexes, while in SJL/JCrHsd mice, it did so only in females. In further support of a genetic component, we found that sodium failed to modify EAE course in C57BL6/J mice carrying a 129/Sv-derived interval on chromosome 17. Furthermore, we found that the high-sodium diet did not augment Th17 or Th1 responses, but it did result in increased blood-brain barrier permeability and brain pathology. Our results demonstrate that the effects of dietary sodium on autoimmune neuroinflammation are sex specific, genetically controlled, and CNS mediated. © FASEB.

  8. Neuroantigen-specific, tolerogenic vaccines: GM-CSF is a fusion partner that facilitates tolerance rather than immunity to dominant self-epitopes of myelin in murine models of experimental autoimmune encephalomyelitis (EAE)

    PubMed Central

    2011-01-01

    Background Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. Results A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. Conclusion These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity. PMID:22208499

  9. Differential expression of ADAMTS-1, -4, -5 and TIMP-3 in rat spinal cord at different stages of acute experimental autoimmune encephalomyelitis.

    PubMed

    Cross, A K; Haddock, G; Surr, J; Plumb, J; Bunning, R A D; Buttle, D J; Woodroofe, M N

    2006-02-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of inflammatory demyelination, a pathological event common to multiple sclerosis (MS). During CNS inflammation there are alterations in the extracellular matrix (ECM). A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS)-1, -4 and -5 are proteases present in the CNS, which are able to cleave the aggregating chondroitin sulphate proteoglycans, aggrecan, phosphacan, neurocan and brevican. It is therefore important to investigate changes in their expression in different stages of EAE induction. We have investigated expression of ADAMTS-1, -4, -5 and tissue inhibitor of metalloproteinase (TIMP)-3, by real-time RT-PCR. We have also examined protein expression of ADAMTS-1, -4 and -5 by western blotting and immunocytochemistry in spinal cord from animals at different stages of disease progression. Our study demonstrated a decrease in ADAMTS-4 mRNA and protein expression. TIMP-3 was decreased at the mRNA level although protein levels were increased in diseased animals compared to controls. Our study identifies changes in ADAMTS expression during the course of CNS inflammation which may contribute to ECM degradation and disease progression.

  10. Microwave & Magnetic (M2) Proteomics Reveals CNS-Specific Protein Expression Waves that Precede Clinical Symptoms of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.

    2014-09-01

    Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.

  11. Ageing and recurrent episodes of neuroinflammation promote progressive experimental autoimmune encephalomyelitis in Biozzi ABH mice.

    PubMed

    Peferoen, Laura A N; Breur, Marjolein; van de Berg, Sarah; Peferoen-Baert, Regina; Boddeke, Erik H W G M; van der Valk, Paul; Pryce, Gareth; van Noort, Johannes M; Baker, David; Amor, Sandra

    2016-10-01

    Current therapies for multiple sclerosis (MS) reduce the frequency of relapses by modulating adaptive immune responses but fail to limit the irreversible neurodegeneration driving progressive disability. Experimental autoimmune encephalomyelitis (EAE) in Biozzi ABH mice recapitulates clinical features of MS including relapsing-remitting episodes and secondary-progressive disability. To address the contribution of recurrent inflammatory events and ageing as factors that amplify progressive neurological disease, we examined EAE in 8- to 12-week-old and 12-month-old ABH mice. Compared with the relapsing-remitting (RREAE) and secondary progressive (SPEAE) EAE observed in young mice, old mice developed progressive disease from onset (PEAE) associated with pronounced axonal damage and increased numbers of CD3(+) T cells and microglia/macrophages, but not B cells. Whereas the clinical neurological features of PEAE and SPEAE were comparable, the pathology was distinct. SPEAE was associated with significantly reduced perivascular infiltrates and T-cell numbers in the central nervous system (CNS) compared with PEAE and the acute phase of RREAE. In contrast to perivascular infiltrates that declined during progression from RREAE into SPEAE, the numbers of microglia clusters remained constant. Similar to what is observed during MS, the microglia clusters emerging during EAE were associated with axonal damage and oligodendrocytes expressing heat-shock protein B5, but not lymphocytes. Taken together, our data reveal that the course of EAE is dependent on the age of the mice. Younger mice show a relapsing-remitting phase followed by progressive disease, whereas old mice immediately show progression. This indicates that recurrent episodes of inflammation in the CNS, as well as age, contribute to progressive neurological disease. © 2016 John Wiley & Sons Ltd.

  12. Protective Effects on Central Nervous System by Acidic Polysaccharide of Panax ginseng in Relapse-Remitting Experimental Autoimmune Encephalomyelitis-Induced SJL/J Mice.

    PubMed

    Bing, So Jin; Ha, Danbee; Hwang, Insun; Park, Eunjin; Ahn, Ginnae; Song, Jie-Young; Jee, Youngheun

    2016-01-01

    Bearing pathologic and clinical similarities to human multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE) is used as a murine model to test potential therapeutic agents for MS. Recently, we reported the protective effects of an acidic polysaccharide of Panax ginseng (APG) in C57BL/6 strain-dependent EAE, a model of primary progressive MS. In this study, we extend our previous findings on the therapeutic capacity of APG in relapsing-remitting EAE (rr-EAE), the animal model to closely mimic recurrent inflammatory demyelination lesions of relapsing-remitting MS. Treatments with APG led to a significant reduction of clinical symptoms and the relapse rate of EAE than vehicle treatments. Consistent with this, histological examination revealed that APG markedly modulated the infiltration of CD4[Formula: see text] T cells and CD11b[Formula: see text] macrophages into the spinal cord and the APG-treated CNS was devoid of demyelination and axonal damages. In addition, APG decreased the proliferation of peripheral PLP-reactive T cells and the production of pro-inflammatory factors such as IFN-[Formula: see text], IL-17 and TNF-[Formula: see text]. The fact that APG can induce clinically beneficial effects to distinct types of EAE furthers our understanding on the basis of its immunosuppression in EAE and, possibly, in MS. Our results suggest that APG may serve as a new therapeutic agent for MS as well as other human autoimmune diseases, and warrants continued evaluation for its translation into therapeutic application.

  13. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    PubMed

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  14. Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis

    PubMed Central

    Dasgupta, Anushka; Zheng, Jianzheng; Perrone-Bizzozero, Nora I.; Bizzozero, Oscar A.

    2013-01-01

    Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis) and its animal model EAE (experimental autoimmune encephalomyelitis). Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein)35–55 peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress) and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3)-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS. PMID:23489322

  15. A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior

    PubMed Central

    2013-01-01

    It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions. PMID:23497361

  16. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific

    PubMed Central

    Krementsov, Dimitry N.; Case, Laure K.; Hickey, William F.; Teuscher, Cory

    2015-01-01

    Multiple sclerosis (MS) is a debilitating autoimmune neuroinflammatory disease influenced by genetics and the environment. MS incidence in female subjects has approximately tripled in the last century, suggesting a sex-specific environmental influence. Recent animal and human studies have implicated dietary sodium as a risk factor in MS, whereby high sodium augmented the generation of T helper (Th) 17 cells and exacerbated experimental autoimmune encephalomyelitis (EAE), the principal model of MS. However, whether dietary sodium interacts with sex or genetics remains unknown. Here, we show that high dietary sodium exacerbates EAE in a strain- and sex-specific fashion. In C57BL6/J mice, exposure to a high-salt diet exacerbated disease in both sexes, while in SJL/JCrHsd mice, it did so only in females. In further support of a genetic component, we found that sodium failed to modify EAE course in C57BL6/J mice carrying a 129/Sv-derived interval on chromosome 17. Furthermore, we found that the high-sodium diet did not augment Th17 or Th1 responses, but it did result in increased blood–brain barrier permeability and brain pathology. Our results demonstrate that the effects of dietary sodium on autoimmune neuroinflammation are sex specific, genetically controlled, and CNS mediated.—Krementsov, D. N., Case, L. K., Hickey, W. F., Teuscher, C. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. PMID:25917331

  17. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S

    2001-10-01

    Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis.

  18. 3,3′-Diindolylmethane Ameliorates Experimental Autoimmune Encephalomyelitis by Promoting Cell Cycle Arrest and Apoptosis in Activated T Cells through MicroRNA Signaling Pathways

    PubMed Central

    Rouse, Michael; Rao, Roshni; Nagarkatti, Mitzi

    2014-01-01

    3,3′-Diindolylmethane (DIM) is a naturally derived indole found in cruciferous vegetables that has great potential as a novel and effective therapeutic agent. In the current study, we investigated the effects of DIM post-treatment on the regulation of activated T cells during the development of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. We demonstrated that the administration of DIM 10 days after EAE induction was effective at ameliorating disease parameters, including inflammation and central nervous system cellular infiltration. MicroRNA (miRNA) microarray analysis revealed an altered miRNA profile in brain infiltrating CD4+ T cells following DIM post-treatment of EAE mice. Additionally, bioinformatics analysis suggested the involvement of DIM-induced miRNAs in pathways and processes that halt cell cycle progression and promote apoptosis. Additional studies confirmed that DIM impacted these cellular processes in activated T cells. Further evidence indicated that DIM treatment significantly upregulated several miRNAs (miR-200c, miR-146a, miR-16, miR-93, and miR-22) in brain CD4+ T cells during EAE while suppressing their associated target genes. Similarly, we found that overexpression of miR-16 in primary CD4+ T cells led to significant downregulation of both mRNA and protein levels of cyclin E1 and B-cell lymphoma-2, which play important roles in regulating cell cycle progression and apoptosis. Collectively, these studies demonstrate that DIM post-treatment leads to the amelioration of EAE development by suppressing T-cell responses through the induction of select miRNAs that control cell cycle progression and mediate apoptosis. PMID:24898268

  19. Blockade of tumour necrosis factor-α in experimental autoimmune encephalomyelitis reveals differential effects on the antigen-specific immune response and central nervous system histopathology.

    PubMed

    Batoulis, H; Recks, M S; Holland, F O; Thomalla, F; Williams, R O; Kuerten, S

    2014-01-01

    In various autoimmune diseases, anti-tumour necrosis factor (TNF)-α treatment has been shown to reduce both clinical disease severity and T helper type 1 (Th1)1/Th17 responses. In experimental autoimmune encephalomyelitis (EAE), however, the role of TNF-α has remained unclear. Here, C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 and treated with anti-TNF-α, control antibody or vehicle. The clinical disease course, incidence and severity were assessed. On day 20 after immunization the antigen-specific Th1/Th17 response was evaluated by enzyme-linked immunospot (ELISPOT) in spleen and central nervous system (CNS). Also, the extent of spinal cord histopathology was analysed on semi- and ultrathin sections. Our results demonstrate that anti-TNF-α treatment reduced the incidence and delayed the onset of EAE, but had no effect on disease severity once EAE had been established. Whereas anti-TNF-α treatment induced an increase in splenic Th1/Th17 responses, there was no effect on the number of antigen-specific Th1/Th17 cells in the spinal cord. Accordingly, the degree of CNS histopathology was comparable in control and anti-TNF-α-treated mice. In conclusion, while the anti-TNF-α treatment had neither immunosuppressive effects on the Th1/Th17 response in the CNS nor histoprotective properties in EAE, it enhanced the myelin-specific T cell response in the immune periphery. © 2013 British Society for Immunology.

  20. A Herpes Simplex Virus-Derived Replicative Vector Expressing LIF Limits Experimental Demyelinating Disease and Modulates Autoimmunity

    PubMed Central

    Nygårdas, Michaela; Paavilainen, Henrik; Müther, Nadine; Nagel, Claus-Henning; Röyttä, Matias; Sodeik, Beate; Hukkanen, Veijo

    2013-01-01

    Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE. PMID:23700462

  1. A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection

    PubMed Central

    2012-01-01

    Background The CXCR3 receptor and its three interferon-inducible ligands (CXCL9, CXCL10 and CXCL11) have been implicated as playing a central role in directing a Th1 inflammatory response. Recent studies strongly support that the CXCR3 receptor is a very attractive therapeutic target for treating autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and psoriasis, and to prevent transplant rejection. We describe here the in vitro and in vivo pharmacological characterizations of a novel and potent small molecule CXCR3 antagonist, SCH 546738. Results In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment. Conclusions SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, and to

  2. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Merega, Elisa; Di Prisco, Silvia; Padolecchia, Cristina; Grilli, Massimo; Milanese, Marco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Bonanno, Giambattista; Marchi, Mario

    2017-01-01

    Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1–0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders. PMID:28125677

  3. Cell- and stage-specific localization of galectin-3, a β-galactoside-binding lectin, in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Itabashi, Tetsuya; Arima, Yasunobu; Kamimura, Daisuke; Higuchi, Kotaro; Bando, Yoshio; Takahashi-Iwanaga, Hiromi; Murakami, Masaaki; Watanabe, Masahiko; Iwanaga, Toshihiko; Nio-Kobayashi, Junko

    2018-06-16

    Multiple sclerosis (MS) is an autoimmune disease in which pathogenic T cells play an important role, and an experimental autoimmune encephalomyelitis (EAE) is used as an animal model of MS. Galectins are β-galactoside-binding lectins and involved in various physiological and pathological events. Among fifteen members of galectins, galectin-1, -8, and -9 play immunosuppressive roles in MS and EAE; however, the role of galectin-3 (gal-3) is complex and controversial. We examined expression of gal-3 in the spinal cord and nerve roots of EAE mice. No immunohistochemical signals were detected in naïve mice, whereas gal-3 appeared at lower lumbar levels of the spinal cord and nerve roots in EAE mice. In the spinal cord, gal-3-positive cells were activated microglia and/or infiltrating macrophages, which were round in shape and intensified for the lysosomal enzyme, cathepsin D, indicating elevated phagocytic activity. Gal-3-positive cells in the spinal cord were most abundant during the peak symptomatic period. In the recovery period, they disappeared from the spinal parenchyma but remained at moderate levels in the pia mater. Interestingly, gal-3-positive cells selectively appeared in ventral, but not dorsal, nerve roots running through the spinal canal, with expression peaking during the recovery period. In ventral nerve roots, the major cell type expressing gal-3 was a specific population of Schwann cells that surround unmyelinated axons and express the biosynthetic enzyme for l-serine, a potent neurotrophic amino acid. Gal-3 was also induced in Iba1/F4/80-positive macrophages, which engulf damaged myelin and axon debris. Thus, gal-3 is induced in distinct cell types that are engaged in removal of damaged axons and cell debris and axon regeneration and remyelination, suggesting a potential neuroprotective role of gal-3 in EAE mice. Copyright © 2018. Published by Elsevier Ltd.

  4. Prenatal maternal immune activation increases anxiety- and depressive-like behaviors in offspring with experimental autoimmune encephalomyelitis.

    PubMed

    Majidi-Zolbanin, J; Doosti, M-H; Kosari-Nasab, M; Salari, A-A

    2015-05-21

    Multiple sclerosis (MS) is thought to result from a combination of genetics and environmental factors. Several lines of evidence indicate that significant prevalence of anxiety and depression-related disorders in MS patients can influence the progression of the disease. Although we and others have already reported the consequences of prenatal maternal immune activation on anxiety and depression, less is known about the interplay between maternal inflammation, MS and gender. We here investigated the effects of maternal immune activation with Poly I:C during mid-gestation on the progression of clinical symptoms of experimental autoimmune encephalomyelitis (EAE; a mouse model of MS), and then anxiety- and depressive-like behaviors in non-EAE and EAE-induced offspring were evaluated. Stress-induced corticosterone and tumor necrosis factor-alpha (TNF-α) levels in EAE-induced offspring were also measured. Maternal immune activation increased anxiety and depression in male offspring, but not in females. This immune challenge also resulted in an earlier onset of the EAE clinical signs in male offspring and enhanced the severity of the disease in both male and female offspring. Interestingly, the severity of the disease was associated with increased anxiety/depressive-like behaviors and elevated corticosterone or TNF-α levels in both sexes. Overall, these data suggest that maternal immune activation with Poly I:C during mid-pregnancy increases anxiety- and depressive-like behaviors, and the clinical symptoms of EAE in a sex-dependent manner in non-EAE or EAE-induced offspring. Finally, the progression of EAE in offspring seems to be linked to maternal immune activation-induced dysregulation in neuro-immune-endocrine system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J

    2015-09-01

    Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. [A case of anti-MOG antibody-positive multiphasic disseminated encephalomyelitis co-occurring with unilateral cerebral cortical encephalitis].

    PubMed

    Fukushima, Naoya; Suzuki, Miki; Ogawa, Ryo; Hayashi, Kitami; Takanashi, Jun-Ichi; Ohashi, Takashi

    2017-11-25

    A 20-year-old woman first developed acute disseminated encephalomyelitis (ADEM) at 11 years of age. At 17 years of age, she was hospitalized due to generalized seizure and diagnosed with encephalitis. Brain MRI revealed a FLAIR-hyperintense lesion in the unilateral cerebral cortex. At 18 years of age, serum anti-myelin oligodendrocyte glycoprotein (MOG) antibody was detected. At 20 years of age, she was admitted to our hospital, diagnosed with multifocal disseminated encephalomyelitis (MDEM). MDEM has been observed in patients that are seropositive for the anti-MOG antibody. More recently, unilateral cerebral cortex encephalitis with epilepsy has also been reported in such patients. The co-occurrence of MDEM and cortical encephalitis in the same patient has important implications for the pathogenesis of anti-MOG antibody-associated autoimmune diseases.

  7. Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Yukiko K.; Metea, Christina; Karstens, Lisa

    The bacteria that live normally in our intestinal tract, or the gut microbiota contribute to the pathogenesis of extra intestinal autoimmune disease via their ability to dynamically educate the immune system. For example, in a mouse model of relapsing, remitting multiple sclerosis (MS), experimental autoimmune encephalomyelitis or EAE, several studies demonstrated that commensal microorganisms are essential in causing clinical disease activity. Interestingly, MS patients have a distinct gut microbiota to healthy controls. Several studies have also illustrated the importance of the gut microbiome in the development of other diseases, including Type 1 diabetes, metabolic syndrome, rheumatoid arthritis, and ankylosing spondylitis.more » Furthermore, HLA=B27 transgenic rats, which develop spontaneous spondyloarthropathy analogous to patients who have ankylosing spondylitis, associated with uveitis in humans, do not develop intestinal or peripheral join inflammation when raised in a germ-free environment. Our group has shown that HLA-B27 transgenic rats have an altered intestinal microbiota compared to healthy control rats. Given the similarities between the central nervous system (CNS) and the retina, as well as co-expression of potentially immunogenic self-antigens from the CNS and joint in the eye, we hypothesized that modulating the gut microbiome can result in amelioration of autoimmune uveitis. Although uveitis is a heterogeneous collection of diseases, in general immune-mediated, non-infectious, uveitis is thought to be due to a combination of genetic and environmental factors. It arises from an imbalance between the regulatory and effector arms of the immune system, result in an inappropriate immune reaction at an otherwise immune-privileged tissue site, the eye. Th1 and Th17 T lymphocytes are examples of effector immune cell subsets that my contribute to inflammatory disease of the eye, whereas regulatory T cells (Tregs) are an example of a regulatory immune

  8. Gut Microbial Alterations Associated With Protection From Autoimmune Uveitis

    DOE PAGES

    Nakamura, Yukiko K.; Metea, Christina; Karstens, Lisa; ...

    2016-07-01

    The bacteria that live normally in our intestinal tract, or the gut microbiota contribute to the pathogenesis of extra intestinal autoimmune disease via their ability to dynamically educate the immune system. For example, in a mouse model of relapsing, remitting multiple sclerosis (MS), experimental autoimmune encephalomyelitis or EAE, several studies demonstrated that commensal microorganisms are essential in causing clinical disease activity. Interestingly, MS patients have a distinct gut microbiota to healthy controls. Several studies have also illustrated the importance of the gut microbiome in the development of other diseases, including Type 1 diabetes, metabolic syndrome, rheumatoid arthritis, and ankylosing spondylitis.more » Furthermore, HLA=B27 transgenic rats, which develop spontaneous spondyloarthropathy analogous to patients who have ankylosing spondylitis, associated with uveitis in humans, do not develop intestinal or peripheral join inflammation when raised in a germ-free environment. Our group has shown that HLA-B27 transgenic rats have an altered intestinal microbiota compared to healthy control rats. Given the similarities between the central nervous system (CNS) and the retina, as well as co-expression of potentially immunogenic self-antigens from the CNS and joint in the eye, we hypothesized that modulating the gut microbiome can result in amelioration of autoimmune uveitis. Although uveitis is a heterogeneous collection of diseases, in general immune-mediated, non-infectious, uveitis is thought to be due to a combination of genetic and environmental factors. It arises from an imbalance between the regulatory and effector arms of the immune system, result in an inappropriate immune reaction at an otherwise immune-privileged tissue site, the eye. Th1 and Th17 T lymphocytes are examples of effector immune cell subsets that my contribute to inflammatory disease of the eye, whereas regulatory T cells (Tregs) are an example of a regulatory immune

  9. [MAIT cells in autoimmunity].

    PubMed

    Miyake, Sachiko

    2012-01-01

    Mucosal associated invariant T (MAIT) cells are restricted by a nonpolymorphic MHC-related molecule-1 (MR1), and express an invariant TCRα chain: Vα7.2-Jα33 in humans and Vα19-Jα33 in mice. MAIT cells are selected in the thymus, but, interestingly, MAIT cells require B cells as well as commensal flora for their peripheral expansion. Bourhis et al demonstrated that MAIT cells display antimicrobial capacity. Both human and mouse MAIT cells have been shown to be activated by Escherichia coli-infected antigen presenting cells in an MR1-dependent manner. MAIT cells show a protective role against Mycobacteriu abscessus or E. coli infections in mice. Human MAIT cells are capable of producing IFNγ and IL-17 and are found in Mycobacterium tuberculosis-infected lung tissues. Thus, MAIT cells play an antimicrobial function under these infectious conditions. MAIT cells play a protective role against autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), whereas they play a pathogenic role in murine models of arthritis. In patients with autoimmune diseases, the frequency of MAIT cells in peripheral blood was significantly reduced. The frequency of MAIT cells reflected the disease activity in MS patients, suggesting the involvement of MAIT cells in the regulation of autoimmune diseases.

  10. The role of IL‐23 receptor signaling in inflammation‐mediated erosive autoimmune arthritis and bone remodeling

    PubMed Central

    Razawy, Wida; van Driel, Marjolein

    2018-01-01

    Abstract The IL‐23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL‐23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL‐23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL‐23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation‐mediated joint erosion, IL‐23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL‐23 in autoimmune arthritis in patients and murine models, and provide an overview of IL‐23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL‐23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation‐mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. PMID:29148561

  11. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.

    PubMed

    Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory

    2017-01-03

    Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.

  12. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    PubMed

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  13. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCEmore » exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure

  14. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells

    PubMed Central

    Vaitaitis, Gisela M.; Yussman, Martin G.; Waid, Dan M.; Wagner, David H.

    2017-01-01

    CD40-CD154 interaction is critically involved in autoimmune diseases, and CD4 T cells play a dominant role in the Experimental Autoimmune Encephalomyelitis (EAE) model of Multiple Sclerosis (MS). CD4 T cells expressing CD40 (Th40) are pathogenic in type I diabetes but have not been evaluated in EAE. We demonstrate here that Th40 cells drive a rapid, more severe EAE disease course than conventional CD4 T cells. Adoptively transferred Th40 cells are present in lesions in the CNS and are associated with wide spread demyelination. Primary Th40 cells from EAE-induced donors adoptively transfer EAE without further in-vitro expansion and without requiring the administration of the EAE induction regimen to the recipient animals. This has not been accomplished with primary, non-TCR-transgenic donor cells previously. If co-injection of Th40 donor cells with Freund’s adjuvant (CFA) in the recipient animals is done, the disease course is more severe. The CFA component of the EAE induction regimen causes generalized inflammation, promoting expansion of Th40 cells and infiltration of the CNS, while MOG-antigen shapes the antigen-specific TCR repertoire. Those events are both necessary to precipitate disease. In MS, viral infections or trauma may induce generalized inflammation in susceptible individuals with subsequent disease onset. It will be important to further understand the events leading up to disease onset and to elucidate the contributions of the Th40 T cell subset. Also, evaluating Th40 levels as predictors of disease onset would be highly useful because if either the generalized inflammation event or the TCR-honing can be interrupted, disease onset may be prevented. PMID:28192476

  15. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    PubMed Central

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2017-01-01

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL+/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL+/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. PMID:23993974

  16. Galectin-3 in autoimmunity and autoimmune diseases

    PubMed Central

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo

    2015-01-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116

  17. Excess Circulating Alternatively Activated Myeloid (M2) Cells Accelerate ALS Progression While Inhibiting Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Miller, Omer; Butovsky, Oleg; Bukshpan, Shay; Beers, David R.; Henkel, Jenny S.; Yoles, Eti; Appel, Stanley H.; Schwartz, Michal

    2011-01-01

    Background Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS) in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs), representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease. Methods and Findings We tested this working hypothesis in amyotrophic lateral sclerosis (ALS) and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2) cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1) mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS), revealed a two-fold increase in the percentage of circulating MDSCs (LIN−/LowHLA-DR−CD33+) compared to controls. Conclusions Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of

  18. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.

    PubMed

    Hammer, Leslie A; Waldner, Hanspeter; Zagon, Ian S; McLaughlin, Patricia J

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is the animal model widely utilized to study MS. EAE is mediated by CD4(+) T cells and can be induced in EAE-susceptible mice through immunization with a myelin antigen, such as proteolipid protein 139-151 (PLP139-151) in SJL mice. In this PLP-induced EAE model, autoreactive CD4(+) T cells migrate from peripheral tissues into the CNS where they are reactivated resulting in CNS damage. Th1 and Th17 cells produce the pro-inflammatory cytokines IFNγ and IL-17, respectively, that have been shown to have pathogenic roles in EAE and MS. Anti-inflammatory Th2, IL-4 secreting cells, have been indicated to inhibit EAE exacerbation. However, given the inflammatory environment of EAE, Th2 effector cells are outnumbered by Th1/Th17 cells. Regulatory CD4(+) T cells suppress immune reactions and have been demonstrated to be dysfunctional in MS patients. Opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin, is a negative growth factor that interacts with the OGF receptor. The OGF-OGFr axis can be activated through exogenous administration of OGF or a low dosage of naltrexone (LDN), an opioid antagonist. We have previously demonstrated that modulation of the OGF-OGFr axis results in alleviation from relapse-remitting EAE, and that CNS-infiltrating CD3(+) T cells are diminished with exogenous OGF or intermittent blockade with LDN administration. In this paper, we aimed to determine whether OGF or LDN alter the Th effector responses of CD4(+) T lymphocytes within the CNS in established EAE. We report in these studies that the numbers of CD4(+) T lymphocytes in the CNS of EAE mice are decreased following treatment with OGF for five days but not LDN. However, modulation of the OGF-OGFr axis did not result in changes to CD4(+) Th effector cell responses

  19. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    PubMed Central

    Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  20. The role of IL-23 receptor signaling in inflammation-mediated erosive autoimmune arthritis and bone remodeling.

    PubMed

    Razawy, Wida; van Driel, Marjolein; Lubberts, Erik

    2018-02-01

    The IL-23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL-23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL-23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL-23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation-mediated joint erosion, IL-23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL-23 in autoimmune arthritis in patients and murine models, and provide an overview of IL-23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL-23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation-mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Peroxisome proliferator-activated receptor δ agonists inhibit T helper type 1 (Th1) and Th17 responses in experimental allergic encephalomyelitis

    PubMed Central

    Kanakasabai, Saravanan; Chearwae, Wanida; Walline, Crystal C; Iams, Wade; Adams, Suzanne M; Bright, John J

    2010-01-01

    Multiple sclerosis (MS) is a neurological disorder that affects more than a million people world-wide. The aetiology of MS is not known and there is no medical treatment available that can cure MS. Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune disease model of MS. The pathogenesis of EAE/MS is a complex process involving activation of immune cells, secretion of inflammatory cytokines and destruction of myelin sheath in the central nervous system (CNS). Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptor transcription factors that regulate cell growth, differentiation and homeostasis. PPAR agonists have been used in the treatment of obesity, diabetes, cancer and inflammation. We and others have shown that PPARγ, α and δ agonists inhibit CNS inflammation and demyelination in the EAE model of MS. In this study we show that the PPARδ agonists GW501516 and L165041 ameliorate MOGp35-55-induced EAE in C57BL/6 mice by blocking interferon (IFN)-γ and interleukin (IL)-17 production by T helper type 1 (Th1) and Th17 cells. The inhibition of EAE by PPARδ agonists was also associated with a decrease in IL-12 and IL-23 and an increase in IL-4 and IL-10 expression in the CNS and lymphoid organs. These findings indicate that PPARδ agonists modulate Th1 and Th17 responses in EAE and suggest their use in the treatment of MS and other autoimmune diseases. PMID:20406305

  2. 9 CFR 113.308 - Encephalomyelitis Vaccine, Venezuelan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Encephalomyelitis Vaccine, Venezuelan... REQUIREMENTS Live Virus Vaccines § 113.308 Encephalomyelitis Vaccine, Venezuelan. Encephalomyelitis Vaccine... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  3. 9 CFR 113.308 - Encephalomyelitis Vaccine, Venezuelan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Encephalomyelitis Vaccine, Venezuelan... REQUIREMENTS Live Virus Vaccines § 113.308 Encephalomyelitis Vaccine, Venezuelan. Encephalomyelitis Vaccine... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  4. 9 CFR 113.308 - Encephalomyelitis Vaccine, Venezuelan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Encephalomyelitis Vaccine, Venezuelan... REQUIREMENTS Live Virus Vaccines § 113.308 Encephalomyelitis Vaccine, Venezuelan. Encephalomyelitis Vaccine... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  5. 9 CFR 113.308 - Encephalomyelitis Vaccine, Venezuelan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Encephalomyelitis Vaccine, Venezuelan... REQUIREMENTS Live Virus Vaccines § 113.308 Encephalomyelitis Vaccine, Venezuelan. Encephalomyelitis Vaccine... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  6. 9 CFR 113.308 - Encephalomyelitis Vaccine, Venezuelan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Encephalomyelitis Vaccine, Venezuelan... REQUIREMENTS Live Virus Vaccines § 113.308 Encephalomyelitis Vaccine, Venezuelan. Encephalomyelitis Vaccine... established as pure, safe, and immunogenic shall be used for preparing seeds for vaccine production. All...

  7. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  8. Lethal acute demyelinization with encephalo-myelitis as a complication of cured Cushing's disease.

    PubMed

    Chevalier, N; Hieronimus, S; Vandenbos, F; Delmont, E; Cua, E; Cherick, F; Paquis, P; Michiels, J-F; Fenichel, P; Brucker-Davis, F

    2010-12-01

    Cushing's disease is usually associated with higher mortality rate, especially from cardiovascular causes. Development or exacerbation of autoimmune or inflammatory diseases is known to occur in patients with hypercortisolism after cure. We report for the first time a 34-year old woman with a psychiatric background, who developed four months after the surgical cure of Cushing's disease an acute disseminated encephalomyelitis (ADEM) presenting initially as a psychiatric illness. We hypothesize that the recent correction of hypercortisolism triggered ADEM and that the atypical presentation, responsible for diagnosis delay, led to the death of this patient. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  9. Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice

    PubMed Central

    Wen, Jing; Chen, Chris; Stock, Ariel; Doerner, Jessica; Gulinello, Maria; Putterman, Chaim

    2016-01-01

    Fn14, the sole known signaling receptor for the TNF family member TWEAK, is inducibly expressed in the central nervous system (CNS) in endothelial cells, astrocytes, microglia, and neurons. There is increasing recognition of the importance of the TWEAK/Fn14 pathway in autoimmune neurologic conditions, including experimental autoimmune encephalomyelitis and neuropsychiatric lupus. Previously, we had found that Fn14 knockout lupus-prone MRL/lpr mice display significantly attenuated neuropsychiatric manifestations. To investigate whether this improvement in disease is secondary to inhibition of TWEAK/Fn14 signaling within the CNS or the periphery, and determine whether TWEAK-mediated neuropsychiatric effects are strain dependent, we performed intracerebroventricular (ICV) injection of Fc-TWEAK or an isotype matched control protein to C57Bl6/J non-autoimmune mice. We found that Fc-TWEAK injected C57Bl6/J mice developed significant depression-like behavior and cognitive dysfunction. Inflammatory mediators associated with lupus brain disease, including CCL2, C3, and iNOS, were significantly elevated in the brains of Fc-TWEAK treated mice. Furthermore, Fc-TWEAK directly increased blood brain barrier (BBB) permeability, as demonstrated by increased IgG deposition in the brain and reduced aquaporin-4 expression. Finally, Fc-TWEAK increased apoptotic cell death in the cortex and hippocampus. In conclusion, TWEAK can contribute to lupus-associated neurobehavioral deficits including depression and cognitive dysfunction by acting within the CNS to enhance production of inflammatory mediators, promote disruption of the BBB, and induce apoptosis in resident brain cells. Our study provides further support that the TWEAK/Fn14 signaling pathway may be a potential therapeutic target for inflammatory diseases involving the CNS. PMID:26721417

  10. Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination

    PubMed Central

    Pedotti, Rosetta; DeVoss, Jason J.; Youssef, Sawsan; Mitchell, Dennis; Wedemeyer, Jochen; Madanat, Rami; Garren, Hideki; Fontoura, Paulo; Tsai, Mindy; Galli, Stephen J.; Sobel, Raymond A.; Steinman, Lawrence

    2003-01-01

    Analysis of mRNA from multiple sclerosis lesions revealed increased amounts of transcripts for several genes encoding molecules traditionally associated with allergic responses, including prostaglandin D synthase, histamine receptor type 1 (H1R), platelet activating factor receptor, Ig Fc ɛ receptor 1 (FcɛRI), and tryptase. We now demonstrate that, in the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), mediated by T helper 1 (Th1) T cells, histamine receptor 1 and 2 (H1R and H2R) are present on inflammatory cells in brain lesions. Th1 cells reactive to myelin proteolipid protein expressed more H1R and less H2R than Th2 cells. Pyrilamine, an H1R antagonist, blocked EAE, and the platelet activating factor receptor antagonist CV6209 reduced the severity of EAE. EAE severity was also decreased in mice with disruption of the genes encoding Ig FcγRIII or both FcγRIII and FcɛRI. Prostaglandin D synthase and tryptase transcripts were elevated in EAE brain. Taken together, these data reveal extensive involvement of elements of the immune response associated with allergy in autoimmune demyelination. The pathogenesis of demyelination must now be viewed as encompassing elements of both Th1 responses and “allergic” responses. PMID:12576552

  11. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...

  12. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...

  13. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...

  14. 9 CFR 113.325 - Avian Encephalomyelitis Vaccine.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Avian Encephalomyelitis Vaccine. 113... REQUIREMENTS Live Virus Vaccines § 113.325 Avian Encephalomyelitis Vaccine. Avian Encephalomyelitis Vaccine... vaccine production. All serials shall be prepared from the first through the fifth passage from the Master...

  15. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model

    NASA Astrophysics Data System (ADS)

    Al-Ghobashy, Medhat A.; Elmeshad, Aliaa N.; Abdelsalam, Rania M.; Nooh, Mohammed M.; Al-Shorbagy, Muhammad; Laible, Götz

    2017-04-01

    Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ɛ-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. In conclusion: i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

  16. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model.

    PubMed

    Al-Ghobashy, Medhat A; ElMeshad, Aliaa N; Abdelsalam, Rania M; Nooh, Mohammed M; Al-Shorbagy, Muhammad; Laible, Götz

    2017-04-20

    Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.

  17. Acute disseminated encephalomyelitis and thrombocytopenia following Epstein-Barr virus infection.

    PubMed

    Saeed, Muhammad; Dabbagh, Omar; Al-Muhaizae, Muhammad; Dhalaan, Hesham; Chedrawi, Aziza

    2014-11-01

    Epstein-Barr Virus (EBV) causes a broad spectrum of disease in humans with several clinical syndromes and is ubiquitous, infecting more than 95% of the world's population. Central Nervous System (CNS) disease alone associated with Epstein-Barr virus rarely occurs in previously healthy individuals. Systemic viral illness in children and complications are rare, but may occur. In few cases, it is associated with a variety of CNS and hematological complications like acute disseminated encephalomyelitis, transverse myelitis, neuropsychiatric syndrome, GBS, autoimmune thrombocytopenia and hemolytic anemia and they usually respond to immunotherapy. We report previously healthy boy, who presented with left sided weakness, headache and thrombocytopenia following EBV infection. The thrombocytopenia was resistant to intravenous immunoglobulin and methylprednisolone but responded well to Rituximab.

  18. Alphaviral equine encephalomyelitis (Eastern, Western and Venezuelan).

    PubMed

    Aréchiga-Ceballos, N; Aguilar-Setién, A

    2015-08-01

    Summary Alphaviral equine encephalomyelitis is a mosquito-borne infection that causes severe neurological disease and fatalities in horses and humans in the Americas. Consequently, the equine alphaviruses (Eastern, Western and Venezuelan) are of considerable concern worldwide and are notifiable to the World Organisation for Animal Health. In addition, these diseases are considered a potent potential biological weapon, emphasising the need to develop an effective vaccine. Alphaviral equine encephalomyelitis is caused by Eastern equine encephalomyelitis virus (EEEV), Western equine encephalomyelitis virus (WEEV) or Venezuelan equine encephalomyelitis virus (VEEV), which are related members of the Alphavirus genus in the Togaviridae family. Although related, the three viruses are genetically and antigenically distinct. The disease is characterised by fever, anorexia, depression and clinical signs of encephalomyelitis, and may be fatal in up to 90% of cases, for both humans and horses, particularly in the case of EEE. Surviving horses develop lifelong immunity but may have permanent neuropathology. The aim of this paper is to analyse the scientific information available on the evolution of EEE, WEE and VEE, and any potential vaccines.

  19. Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis

    PubMed Central

    Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Diomede, Francesca; Bramanti, Placido; Trubiani, Oriana; Mazzon, Emanuela

    2017-01-01

    Research in recent years has largely explored the immunomodulatory effects of mesenchymal stem cells (MSCs) and their secretory products, called “secretome,” in the treatment of neuroinflammatory diseases. Here, we examined whether such immunosuppressive effects might be elicited due to inflammasome inactivation. To this end, we treated experimental autoimmune encephalomyelitis (EAE) mice model of multiple sclerosis (MS) with the conditioned medium or purified exosomes/microvesicles (EMVs) obtained from relapsing-remitting-MS patients human periodontal ligament stem cells (hPDLSCs) and investigated the regulation of NALP3 inflammasome. We noticed enhanced expression of NALP3, Cleaved Caspase 1, interleukin (IL)-1β, and IL-18 in EAE mouse spinal cord. Conversely, hPDLSCs-conditioned medium and EMVs significantly blocked NALP3 inflammasome activation and provided protection from EAE. Reduction in NALP3, Cleaved Caspase 1, IL-1β, and IL-18 level was noticed in conditioned medium and EMVs-treated EAE mice. Pro-inflammatory Toll-like receptor (TLR)-4 and nuclear factor (NF)-κB were elevated in EAE, while hPDLSCs-conditioned medium and EMVs treatment reduced their expression and increased IκB-α expression. Characterization of hPDLSCs-conditioned medium showed substantial level of anti-inflammatory IL-10, transforming growth factor (TGF)-β, and stromal cell–derived factor 1α (SDF-1α). We propose that the immunosuppressive role of hPDLSCs-derived conditioned medium and EMVs in EAE mice may partly attribute to the presence of soluble immunomodulatory factors, NALP3 inflammasome inactivation, and NF-κB reduction. PMID:28764573

  20. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice.

    PubMed

    Mallol, Cristina; Casana, Estefania; Jimenez, Veronica; Casellas, Alba; Haurigot, Virginia; Jambrina, Claudia; Sacristan, Victor; Morró, Meritxell; Agudo, Judith; Vilà, Laia; Bosch, Fatima

    2017-07-01

    Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28-30 weeks. In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a

  1. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease.

    PubMed

    Jafarzadeh, A; Mohammadi-Kordkhayli, M; Ahangar-Parvin, R; Azizi, V; Khoramdel-Azad, H; Shamsizadeh, A; Ayoobi, A; Nemati, M; Hassan, Z M; Moazeni, S M; Khaksari, M

    2014-11-15

    The immunomodulatory effects of the IL-27 and IL-33 and the anti-inflammatory effects of ginger have been reported in some studies. The aim was to evaluate the effects of the ginger extract on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). In PBS-treated EAE mice the expression of IL-27 P28 was significantly lower whereas the expression of IL-33 was significantly higher than unimmunized control mice. In 200 and 300 mg/kg ginger-treated EAE groups the expression of IL-27 P28 and IL-27 EBI3 was significantly higher whereas the expression of IL-33 was significantly lower than PBS-treated EAE mice. The EAE clinical symptoms and the pathological scores were significantly lower in ginger-treated EAE groups. These results showed that the ginger extract modulates the expression of the IL-27 and IL-33 in the spinal cord of EAE mice and ameliorates the clinical symptoms of disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures.

    PubMed

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2016-01-01

    There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes.

  3. Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis

    PubMed Central

    2012-01-01

    Background DNA vaccines represent promising therapeutic strategies in autoimmune disorders such as multiple sclerosis (MS). However, the precise mechanisms by which DNA vaccines induce immune regulation remain largely unknown. Here, we aimed to expand previous knowledge existing on the mechanisms of action of DNA vaccines in the animal model of MS, experimental autoimmune encephalomyelitis (EAE), by treating EAE mice with a DNA vaccine encoding the myelin oligodendrocyte glycoprotein (MOG), and exploring the therapeutic effects on the disease-induced inflammatory and neurodegenerative changes. Methods EAE was induced in C57BL6/J mice by immunization with MOG35-55 peptide. Mice were intramuscularly treated with a MOG-DNA vaccine or vehicle in prophylactic and therapeutic approaches. Histological studies were performed in central nervous system (CNS) tissue. Cytokine production and regulatory T cell (Treg) quantification were achieved by flow cytometry. Gene expression patterns were determined using microarrays, and the main findings were validated by real-time PCR. Results MOG-DNA treatment reduced the clinical and histopathological signs of EAE when administered in both prophylactic and therapeutic settings. Suppression of clinical EAE was associated with dampening of antigen (Ag)-specific proinflammatory Th1 and Th17 immune responses and, interestingly, expansion of Treg in the periphery and upregulation in the CNS of genes encoding neurotrophic factors and proteins involved in remyelination. Conclusions These results suggest for the first time that the beneficial effects of DNA vaccines in EAE are not limited to anti-inflammatory mechanisms, and DNA vaccines may also exert positive effects through hitherto unknown neuroprotective mechanisms. PMID:22727044

  4. Modulation of neurological deficits and expression of glutamate receptors during experimental autoimmune encephalomyelitis after treatment with selected antagonists of glutamate receptors.

    PubMed

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Strużyńska, Lidia

    2013-01-01

    The aim of our investigation was to characterize the role of group I mGluRs and NMDA receptors in pathomechanisms of experimental autoimmune encephalomyelitis (EAE), the rodent model of MS. We tested the effects of LY 367385 (S-2-methyl-4-carboxyphenylglycine, a competitive antagonist of mGluR1), MPEP (2-methyl-6-(phenylethynyl)-pyridine, an antagonist of mGluR5), and the uncompetitive NMDA receptor antagonists amantadine and memantine on modulation of neurological deficits observed in rats with EAE. The neurological symptoms of EAE started at 10-11 days post-injection (d.p.i.) and peaked after 12-13 d.p.i. The protein levels of mGluRs and NMDA did not increase in early phases of EAE (4 d.p.i.), but starting from 8 d.p.i. to 25 d.p.i., we observed a significant elevation of mGluR1 and mGluR5 protein expression by about 20% and NMDA protein expression by about 10% over the control at 25 d.p.i. The changes in protein levels were accompanied by changes in mRNA expression of group I mGluRs and NMDARs. During the late disease phase (20-25 d.p.i.), the mRNA expression levels reached 300% of control values. In contrast, treatment with individual receptor antagonists resulted in a reduction of mRNA levels relative to untreated animals.

  5. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis.

    PubMed

    Brenu, Ekua Weba; Huth, Teilah K; Hardcastle, Sharni L; Fuller, Kirsty; Kaur, Manprit; Johnston, Samantha; Ramos, Sandra B; Staines, Don R; Marshall-Gradisnik, Sonya M

    2014-04-01

    Perturbations in immune processes are a hallmark of a number of autoimmune and inflammatory disorders. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is an inflammatory disorder with possible autoimmune correlates, characterized by reduced NK cell activity, elevations in regulatory T cells (Tregs) and dysregulation in cytokine levels. The purpose of this article is to examine innate and adaptive immune cell phenotypes and functional characteristics that have not been previously examined in CFS/ME patients. Thirty patients with CFS/ME and 25 non-fatigued controls were recruited for this study. Whole blood samples were collected from all participants for the assessment of cell phenotypes, functional properties, receptors, adhesion molecules, antigens and intracellular proteins using flow cytometric protocols. The cells investigated included NK cells, dendritic cells, neutrophils, B cells, T cells, γδT cells and Tregs. Significant changes were observed in B-cell subsets, Tregs, CD4(+)CD73(+)CD39(+) T cells, cytotoxic activity, granzyme B, neutrophil antigens, TNF-α and IFN-γ in the CFS/ME patients in comparison with the non-fatigued controls. Alterations in B cells, Tregs, NK cells and neutrophils suggest significant impairments in immune regulation in CFS/ME and these may have similarities to a number of autoimmune disorders.

  6. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease.

    PubMed

    Brown, Melissa A; Weinberg, Rebecca B

    2018-01-01

    Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood-brain barrier (BBB) in affected individuals, myelin-specific CD4 + and CD8 + T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.

  7. GM-CSF-Producing Th Cells in Rats Sensitive and Resistant to Experimental Autoimmune Encephalomyelitis.

    PubMed

    Stojić-Vukanić, Zorica; Pilipović, Ivan; Vujnović, Ivana; Nacka-Aleksić, Mirjana; Petrović, Raisa; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2016-01-01

    Given that granulocyte macrophage colony-stimulating factor (GM-CSF) is identified as the key factor to endow auto-reactive Th cells with the potential to induce neuroinflammation in experimental autoimmune encephalomyelitis (EAE) models, the frequency and phenotype of GM-CSF-producing (GM-CSF+) Th cells in draining lymph nodes (dLNs) and spinal cord (SC) of Albino Oxford (AO) and Dark Agouti (DA) rats immunized for EAE were examined. The generation of neuroantigen-specific GM-CSF+ Th lymphocytes was impaired in dLNs of AO rats (relatively resistant to EAE induction) compared with their DA counterparts (susceptible to EAE) reflecting impaired CD4+ lymphocyte proliferation and less supportive of GM-CSF+ Th cell differentiation dLN cytokine microenvironment. Immunophenotyping of GM-CSF+ Th cells showed their phenotypic heterogeneity in both strains and revealed lower frequency of IL-17+IFN-γ+, IL-17+IFN-γ-, and IL-17-IFN-γ+ cells accompanied by higher frequency of IL-17-IFN-γ- cells among them in AO than in DA rats. Compared with DA, in AO rats was also found (i) slightly lower surface density of CCR2 (drives accumulation of highly pathogenic GM-CSF+IFN-γ+ Th17 cells in SC) on GM-CSF+IFN-γ+ Th17 lymphocytes from dLNs, and (ii) diminished CCL2 mRNA expression in SC tissue, suggesting their impaired migration into the SC. Moreover, dLN and SC cytokine environments in AO rats were shown to be less supportive of GM-CSF+IFN-γ+ Th17 cell differentiation (judging by lower expression of mRNAs for IL-1β, IL-6 and IL-23/p19). In accordance with the (i) lower frequency of GM-CSF+ Th cells in dLNs and SC of AO rats and their lower GM-CSF production, and (ii) impaired CCL2 expression in the SC tissue, the proportion of proinflammatory monocytes among peripheral blood cells and their progeny (CD45hi cells) among the SC CD11b+ cells were reduced in AO compared with DA rats. Collectively, the results indicate that the strain specificities in efficacy of several mechanisms

  8. Cinnamon Ameliorates Experimental Allergic Encephalomyelitis in Mice via Regulatory T Cells: Implications for Multiple Sclerosis Therapy

    PubMed Central

    Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum) powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach. PMID:25569428

  9. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures

    PubMed Central

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2017-01-01

    Background There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. Patient Description We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. Conclusion This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes. PMID:29308451

  10. Enhancing the Ability of Experimental Autoimmune Encephalomyelitis to Serve as a More Rigorous Model of Multiple Sclerosis through Refinement of the Experimental Design

    PubMed Central

    Emerson, Mitchell R; Gallagher, Ryan J; Marquis, Janet G; LeVine, Steven M

    2009-01-01

    Advancing the understanding of the mechanisms involved in the pathogenesis of multiple sclerosis (MS) likely will lead to new and better therapeutics. Although important information about the disease process has been obtained from research on pathologic specimens, peripheral blood lymphocytes and MRI studies, the elucidation of detailed mechanisms has progressed largely through investigations using animal models of MS. In addition, animal models serve as an important tool for the testing of putative interventions. The most commonly studied model of MS is experimental autoimmune encephalomyelitis (EAE). This model can be induced in a variety of species and by various means, but there has been concern that the model may not accurately reflect the disease process, and more importantly, it may give rise to erroneous findings when it is used to test possible therapeutics. Several reasons have been given to explain the shortcomings of this model as a useful testing platform, but one idea provides a framework for improving the value of this model, and thus, it deserves careful consideration. In particular, the idea asserts that EAE studies are inadequately designed to enable appropriate evaluation of putative therapeutics. Here we discuss problem areas within EAE study designs and provide suggestions for their improvement. This paper is principally directed at investigators new to the field of EAE, although experienced investigators may find useful suggestions herein. PMID:19389303

  11. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Avian Encephalomyelitis Vaccine... STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian Encephalomyelitis Vaccine (Killed Virus) shall be prepared from virus-bearing tissues or fluids obtained from...

  12. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Avian Encephalomyelitis Vaccine... STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian Encephalomyelitis Vaccine (Killed Virus) shall be prepared from virus-bearing tissues or fluids obtained from...

  13. COPA mutations impair ER-Golgi transport causing hereditary autoimmune-mediated lung disease and arthritis

    PubMed Central

    Watkin, Levi B.; Jessen, Birthe; Wiszniewski, Wojciech; Vece, Timothy; Jan, Max; Sha, Youbao; Thamsen, Maike; Santos-Cortez, Regie L. P.; Lee, Kwanghyuk; Gambin, Tomasz; Forbes, Lisa; Law, Christopher S.; Stray-Petersen, Asbjørg; Cheng, Mickie H.; Mace, Emily M.; Anderson, Mark S.; Liu, Dongfang; Tang, Ling Fung; Nicholas, Sarah K.; Nahmod, Karen; Makedonas, George; Canter, Debra; Kwok, Pui-Yan; Hicks, John; Jones, Kirk D.; Penney, Samantha; Jhangiani, Shalini N.; Rosenblum, Michael D.; Dell, Sharon D.; Waterfield, Michael R.; Papa, Feroz R.; Muzny, Donna M.; Zaitlen, Noah; Leal, Suzanne M.; Gonzaga-Jauregui, Claudia; Boerwinkle, Eric; Eissa, N. Tony; Gibbs, Richard A.; Lupski, James R.; Orange, Jordan S.; Shum, Anthony K.

    2015-01-01

    Advances in genomics have allowed unbiased genetic studies of human disease with unexpected insights into the molecular mechanisms of cellular immunity and autoimmunity1. We performed whole exome sequencing (WES) and targeted sequencing in patients with an apparent Mendelian syndrome of autoimmune disease characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease (ILD). In five families, we identified four unique deleterious variants in the Coatomer subunit alpha (COPA) gene all located within the same functional domain. We hypothesized that mutant COPA leads to a defect in intracellular transport mediated by coat protein complex I (COPI)2–4. We show that COPA variants impair binding of proteins targeted for retrograde Golgi to ER transport and demonstrate that expression of mutant COPA leads to ER stress and the upregulation of Th17 priming cytokines. Consistent with this pattern of cytokine expression, patients demonstrated a significant skewing of CD4+ T cells toward a T helper 17 (Th17) phenotype, an effector T cell population implicated in autoimmunity5,6. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease. These findings provide a unique opportunity to understand how alterations in cellular homeostasis caused by a defect in the intracellular trafficking pathway leads to the generation of human autoimmune disease. PMID:25894502

  14. The Extracellular Domain of Myelin Oligodendrocyte Glycoprotein Elicits Atypical Experimental Autoimmune Encephalomyelitis in Rat and Macaque Species

    PubMed Central

    Curtis, Alan D.; Taslim, Najla; Reece, Shaun P.; Grebenciucova, Elena; Ray, Richard H.; Rosenbaum, Matthew D.; Wardle, Robert L.; Van Scott, Michael R.; Mannie, Mark D.

    2014-01-01

    Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord

  15. The extracellular domain of myelin oligodendrocyte glycoprotein elicits atypical experimental autoimmune encephalomyelitis in rat and Macaque species.

    PubMed

    Curtis, Alan D; Taslim, Najla; Reece, Shaun P; Grebenciucova, Elena; Ray, Richard H; Rosenbaum, Matthew D; Wardle, Robert L; Van Scott, Michael R; Mannie, Mark D

    2014-01-01

    Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund's adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund's adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6-7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and

  16. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease.

    PubMed

    Penberthy, W Todd

    2007-04-01

    Cells at the maternal-fetal interface express indoleamine 2,3 dioxygenase (IDO) to consume all local tryptophan for the express purpose of starving adjacent maternal T cells of this most limiting and essential amino acid. This stops local T cell proliferation to ultimately result in the most dramatic example of immune tolerance, acceptance of the fetus. By contrast, inhibition of IDO using 1-methyl-tryptophan causes a sudden catastrophic rejection of the mammalian fetus. Immunomodulatory factors including IFNgamma, TNFalpha, IL-1, and LPS use IDO induction in responsive antigen presenting cells (APCs) also to transmit tolerogenic signals to T cells. Thus it makes sense to consider IDO induction towards tolerance for autoimmune diseases in general. Approaches to cell specific therapeutic IDO induction with NAD precursor supplementation to prevent the collateral non-T cell pathogenesis due to chronic TNFalpha-IDO activated tryptophan depletion in autoimmune diseases are reviewed. Tryptophan is an essential amino acid most immediately because it is the only precursor for the endogenous biosynthesis of nicotinamide adenine dinucleotide (NAD). Both autoimmune disease and the NAD deficiency disease pellagra occur in women at greater than twice the frequency of occurrence in men. The importance of IDO dysregulation manifest as autoimmune pellagric dementia is genetically illustrated for Nasu-Hakola Disease (or PLOSL), which is caused by a mutation in the IDO antagonizing genes TYROBP/DAP12 or TREM2. Loss of function leads to psychotic symptoms rapidly progressing to presenile dementia likely due to unchecked increases in microglial IDO expression, which depletes neurons of tryptophan causing neurodegeneration. Administration of NAD precursors rescued entire mental hospitals of dementia patients literally overnight in the 1930's and NAD precursors should help Nasu-Hakola patients as well. NAD depletion mediated by peroxynitrate PARP1 activation is one of the few

  17. Acute disseminated encephalomyelitis in dengue viral infection.

    PubMed

    Wan Sulaiman, Wan Aliaa; Inche Mat, Liyana Najwa; Hashim, Hasnur Zaman; Hoo, Fan Kee; Ching, Siew Mooi; Vasudevan, Ramachandran; Mohamed, Mohd Hazmi; Basri, Hamidon

    2017-09-01

    Dengue is the most common arboviral disease affecting many countries worldwide. An RNA virus from the flaviviridae family, dengue has four antigenically distinct serotypes (DEN-1-DEN-4). Neurological involvement in dengue can be classified into dengue encephalopathy immune-mediated syndromes, encephalitis, neuromuscular or dengue muscle dysfunction and neuro-ophthalmic involvement. Acute disseminated encephalomyelitis (ADEM) is an immune mediated acute demyelinating disorder of the central nervous system following recent infection or vaccination. This monophasic illness is characterised by multifocal white matter involvement. Many dengue studies and case reports have linked ADEM with dengue virus infection but the association is still not clear. Therefore, this article is to review and discuss concerning ADEM in dengue as an immune-medicated neurological complication; and the management strategy required based on recent literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Porcine Hemagglutinating Encephalomyelitis Virus Enters Neuro-2a Cells via Clathrin-Mediated Endocytosis in a Rab5-, Cholesterol-, and pH-Dependent Manner.

    PubMed

    Li, Zi; Zhao, Kui; Lan, Yungang; Lv, Xiaoling; Hu, Shiyu; Guan, Jiyu; Lu, Huijun; Zhang, Jing; Shi, Junchao; Yang, Yawen; Song, Deguang; Gao, Feng; He, Wenqi

    2017-12-01

    Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that invades the central nervous system (CNS) in piglets. Although important progress has been made toward understanding the biology of PHEV, many aspects of its life cycle remain obscure. Here we dissected the molecular mechanism underlying cellular entry and intracellular trafficking of PHEV in mouse neuroblastoma (Neuro-2a) cells. We first performed a thin-section transmission electron microscopy (TEM) assay to characterize the kinetics of PHEV, and we found that viral entry and transfer occur via membranous coating-mediated endo- and exocytosis. To verify the roles of distinct endocytic pathways, systematic approaches were used, including pharmacological inhibition, RNA interference, confocal microscopy analysis, use of fluorescently labeled virus particles, and overexpression of a dominant negative (DN) mutant. Quantification of infected cells showed that PHEV enters cells by clathrin-mediated endocytosis (CME) and that low pH, dynamin, cholesterol, and Eps15 are indispensably involved in this process. Intriguingly, PHEV invasion leads to rapid actin rearrangement, suggesting that the intactness and dynamics of the actin cytoskeleton are positively correlated with viral endocytosis. We next investigated the trafficking of internalized PHEV and found that Rab5- and Rab7-dependent pathways are required for the initiation of a productive infection. Furthermore, a GTPase activation assay suggested that endogenous Rab5 is activated by PHEV and is crucial for viral progression. Our findings demonstrate that PHEV hijacks the CME and endosomal system of the host to enter and traffic within neural cells, providing new insights into PHEV pathogenesis and guidance for antiviral drug design. IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV), a nonsegmented, positive-sense, single-stranded RNA coronavirus, invades the central nervous system (CNS) and causes

  19. IDO2 is a critical mediator of autoantibody production and inflammatory pathogenesis in a mouse model of autoimmune arthritis.

    PubMed

    Merlo, Lauren M F; Pigott, Elizabeth; DuHadaway, James B; Grabler, Samantha; Metz, Richard; Prendergast, George C; Mandik-Nayak, Laura

    2014-03-01

    Rheumatoid arthritis and other autoimmune disorders are associated with altered activity of the immunomodulatory enzyme IDO. However, the precise contributions of IDO function to autoimmunity remain unclear. In this article, we examine the effect of two different IDO enzymes, IDO1 and IDO2, on the development of autoimmune arthritis in the KRN preclinical model of rheumatoid arthritis. We find that IDO2, not IDO1, is critical for arthritis development, providing direct evidence of separate in vivo functions for IDO1 and IDO2. Mice null for Ido2 display decreased joint inflammation relative to wild-type mice owing to a reduction in pathogenic autoantibodies and Ab-secreting cells. Notably, IDO2 appears to specifically mediate autoreactive responses, but not normal B cell responses, as total serum Ig levels are not altered and IDO2 knockout mice are able to mount productive Ab responses to model Ags in vitro and in vivo. Reciprocal adoptive transfer studies confirm that autoantibody production and arthritis are modulated by IDO2 expression in a cell type extrinsic to the T cell. Taken together, our results, provide important insights into IDO2 function by defining its pathogenic contributions to autoantibody-mediated autoimmunity.

  20. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis.

    PubMed

    Barik, Subhasis; Ellis, Jason S; Cascio, Jason A; Miller, Mindy M; Ukah, Tobechukwu K; Cattin-Roy, Alexis N; Zaghouani, Habib

    2017-10-01

    IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R -/- ) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R +/+ ) and develop early onset and more severe disease. Moreover, Th17 cells from 13R -/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R +/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Ameliorating Role Exerted by Al-Hijamah in Autoimmune Diseases: Effect on Serum Autoantibodies and Inflammatory Mediators

    PubMed Central

    Baghdadi, Hussam; Abdel-Aziz, Nada; Ahmed, Nagwa Sayed; Mahmoud, Hany Salah; Barghash, Ayman; Nasrat, Abdullah; Nabo, Manal Mohamed Helmy; El Sayed, Salah Mohamed

    2015-01-01

    Autoimmune diseases have common properties characterized by abnormal blood chemistry with high serum autoimmune antibodies, and inflammatory mediators. Those causative pathological substances (CPS) cannot be excreted by physiological mechanisms. Current treatments for autoimmune diseases involve steroids, cytotoxic drugs, plasmapheresis and monoclonal antibodies. Wet cupping therapy (WCT) of prophetic medicine is called Al-hijamah that treats numerous diseases having different etiology and pathogenesis via a pressure-dependent and size-dependent non-specific filtration then excretion of CPS causing clearance of blood and interstitial fluids. Al-hijamah clears blood passing through the fenestrated skin capillaries. Medical bases of Al-hijamah were reported in the evidence-based Taibah mechanism (Taibah theory). Al-hijamah was reported to be an excellent treatment for rheumatoid arthritis that improved patients’ blood chemistry and induced significant clinical improvement and pharmacological potentiation. Al-hijamah improved the natural immunity and suppressed the pathological immunity through decreasing the serum level of autoantibodies, inflammatory mediators, and serum ferritin (a key player in autoimmunity). Al-hijamah reduced significantly pain severity, number of swollen joints and disease activity with no significant side effects. Main steps of Al-hijamah are skin suction (cupping), scarification (sharatmihjam in Arabic) and second suction (triple S technique) that is better therapeutically than the traditional WCT (double S technique). Whenever an excess noxious substance is to be removed from patients’ blood and interstitial fluids, Al-hijamah is indicated. Shartatmihjam is a curative treatment in prophetic teachings according to the prophetic hadeeth: “Cure is in three: in shartatmihjam, oral honey and cauterization. I do not recommend my nation to cauterize”. Al-hijamah may have better therapeutic benefits than plasmapheresis. Al-hijamah may be

  2. Effective combination of human bone marrow mesenchymal stem cells and minocycline in experimental autoimmune encephalomyelitis mice

    PubMed Central

    2013-01-01

    Introduction Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). Minocycline ameliorates the clinical severity of MS and exhibits antiinflammatory, neuroprotective activities, and good tolerance for long-term use, whereas it is toxic to the CNS. Recently, the immunomodulation and neuroprotection capabilities of human bone marrow mesenchymal stem cells (hBM-MSCs) were shown in experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice. Methods The sensitivity of hBM-MSCs to minocycline was determined by an established cell-viability assay. Minocycline-treated hBM-MSCs were also characterized with flow cytometry by using MSC surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by using immunization with MOG35-55. Immunopathology assays were used to detect the inflammatory cells, demyelination, and neuroprotection. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct Th1 and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). terminal dUTP nick-end labeling (TUNEL) staining was performed to elucidate the cell apoptosis in the spinal cords of EAE mice. Results Minocycline did not affect the viability, surface phenotypes, or differentiation capacity of hBM-MSCs, while minocycline affected the viability of astrocytes at a high dose. In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration. Moreover, the combined treatment with hBM-MSCs and minocycline enhanced the immunomodulatory effects, which suppressed proinflammatory

  3. Methodological Challenges in Protein Microarray and Immunohistochemistry for the Discovery of Novel Autoantibodies in Paediatric Acute Disseminated Encephalomyelitis

    PubMed Central

    Peschl, Patrick; Ramberger, Melanie; Höftberger, Romana; Jöhrer, Karin; Baumann, Matthias; Rostásy, Kevin; Reindl, Markus

    2017-01-01

    Acute disseminated encephalomyelitis (ADEM) is a rare autoimmune-mediated demyelinating disease affecting mainly children and young adults. Differentiation to multiple sclerosis is not always possible, due to overlapping clinical symptoms and recurrent and multiphasic forms. Until now, immunoglobulins reactive to myelin oligodendrocyte glycoprotein (MOG antibodies) have been found in a subset of patients with ADEM. However, there are still patients lacking autoantibodies, necessitating the identification of new autoantibodies as biomarkers in those patients. Therefore, we aimed to identify novel autoantibody targets in ADEM patients. Sixteen ADEM patients (11 seronegative, 5 seropositive for MOG antibodies) were analysed for potential new biomarkers, using a protein microarray and immunohistochemistry on rat brain tissue to identify antibodies against intracellular and surface neuronal and glial antigens. Nine candidate antigens were identified in the protein microarray analysis in at least two patients per group. Immunohistochemistry on rat brain tissue did not reveal new target antigens. Although no new autoantibody targets could be found here, future studies should aim to identify new biomarkers for therapeutic and prognostic purposes. The microarray analysis and immunohistochemistry methods used here have several limitations, which should be considered in future searches for biomarkers. PMID:28327523

  4. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Methods Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined. Results Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1α, -1β, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-α), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-κB. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte

  5. Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    PubMed Central

    2013-01-01

    Background ‘Encephalomyelitis disseminata’ (multiple sclerosis) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are both classified as diseases of the central nervous system by the World Health Organization. This review aims to compare the phenomenological and neuroimmune characteristics of MS with those of ME/CFS. Discussion There are remarkable phenomenological and neuroimmune overlaps between both disorders. Patients with ME/CFS and MS both experience severe levels of disabling fatigue and a worsening of symptoms following exercise and resort to energy conservation strategies in an attempt to meet the energy demands of day-to-day living. Debilitating autonomic symptoms, diminished cardiac responses to exercise, orthostatic intolerance and postural hypotension are experienced by patients with both illnesses. Both disorders show a relapsing-remitting or progressive course, while infections and psychosocial stress play a large part in worsening of fatigue symptoms. Activated immunoinflammatory, oxidative and nitrosative (O+NS) pathways and autoimmunity occur in both illnesses. The consequences of O+NS damage to self-epitopes is evidenced by the almost bewildering and almost identical array of autoantibodies formed against damaged epitopes seen in both illnesses. Mitochondrial dysfunctions, including lowered levels of ATP, decreased phosphocreatine synthesis and impaired oxidative phosphorylation, are heavily involved in the pathophysiology of both MS and ME/CFS. The findings produced by neuroimaging techniques are quite similar in both illnesses and show decreased cerebral blood flow, atrophy, gray matter reduction, white matter hyperintensities, increased cerebral lactate and choline signaling and lowered acetyl-aspartate levels. Summary This review shows that there are neuroimmune similarities between MS and ME/CFS. This further substantiates the view that ME/CFS is a neuroimmune illness and that patients with MS are immunologically primed to

  6. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy.

    PubMed

    Psarras, Antonios; Emery, Paul; Vital, Edward M

    2017-10-01

    Type I interferons (IFN-Is) are a group of molecules with pleiotropic effects on the immune system forming a crucial link between innate and adaptive immune responses. Apart from their important role in antiviral immunity, IFN-Is are increasingly recognized as key players in autoimmune CTDs such as SLE. Novel therapies that target IFN-I appear effective in SLE in early trials, but effectiveness is related to the presence of IFN-I biomarkers. IFN-I biomarkers may also act as positive or negative predictors of response to other biologics. Despite the high failure rate of clinical trials in SLE, subgroups of patients often respond better. Fully optimizing the potential of these agents is therefore likely to require stratification of patients using IFN-I and other biomarkers. This suggests the unified concept of type I IFN-mediated autoimmune diseases as a grouping including patients with a variety of different traditional diagnoses. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. A Cyclic Altered Peptide Analogue Based on Myelin Basic Protein 87-99 Provides Lasting Prophylactic and Therapeutic Protection Against Acute Experimental Autoimmune Encephalomyelitis.

    PubMed

    Emmanouil, Mary; Tseveleki, Vivian; Triantafyllakou, Iro; Nteli, Agathi; Tselios, Theodore; Probert, Lesley

    2018-01-31

    In this report, amide-linked cyclic peptide analogues of the 87-99 myelin basic protein (MBP) epitope, a candidate autoantigen in multiple sclerosis (MS), are tested for therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). Cyclic altered peptide analogues of MBP 87-99 with substitutions at positions 91 and/or 96 were tested for protective effects when administered using prophylactic or early therapeutic protocols in MBP 72-85 -induced EAE in Lewis rats. The Lys 91 and Pro 96 of MBP 87-99 are crucial T-cell receptor (TCR) anchors and participate in the formation of trimolecular complex between the TCR-antigen (peptide)-MHC (major histocompability complex) for the stimulation of encephalitogenic T cells that are necessary for EAE induction and are implicated in MS. The cyclic peptides were synthesized using Solid Phase Peptide Synthesis (SPPS) applied on the 9-fluorenylmethyloxycarboxyl/tert-butyl Fmoc/tBu methodology and combined with the 2-chlorotrityl chloride resin (CLTR-Cl). Cyclo(91-99)[Ala 96 ]MBP 87-99 , cyclo(87-99)[Ala 91,96 ]MBP 87-99 and cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 , but not wild-type linear MBP 87-99 , strongly inhibited MBP 72-85 -induced EAE in Lewis rats when administered using prophylactic and early therapeutic vaccination protocols. In particular, cyclo(87-99)[Arg 91 , Ala 96 ]MBP 87-99 was highly effective in preventing the onset and development of clinical symptoms and spinal cord pathology and providing lasting protection against EAE induction.

  8. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns.

    PubMed

    Azzam, Sausan; Broadwater, Laurie; Li, Shuo; Freeman, Ernest J; McDonough, Jennifer; Gregory, Roger B

    2013-05-01

    Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein isoform 8 (MBP8) (14.2 k

  9. Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity.

    PubMed

    Sonar, Sandip Ashok; Lal, Girdhari

    2017-01-01

    CD4 + T cells play a central role in orchestrating protective immunity and autoimmunity. The activation and differentiation of myelin-reactive CD4 + T cells into effector (Th1 and Th17) and regulatory (Tregs) subsets at the peripheral tissues, and their subsequent transmigration across the blood-brain barrier (BBB) into the central nervous system (CNS) parenchyma are decisive events in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. How the Th1, Th17, and regulatory Tregs transmigrate across the BBB into the CNS and cause CNS inflammation is not clearly understood. Studies with transgenic and gene knockout mice have unraveled that Th1, Th17, and Tregs play a critical role in the induction and resolution of neuroinflammation. However, the plasticity of these lineages and functional dichotomy of their cytokine products makes it difficult to understand what role CD4 + T cells in the peripheral lymphoid organs, endothelial BBB, and the CNS parenchyma play in the CNS autoimmune response. In this review, we describe some of the recent findings that shed light on the mechanisms behind the differentiation and transmigration of CD4 + T cells across the BBB into the CNS parenchyma and also highlight how these two processes are interconnected, which is crucial for the outcome of CNS inflammation and autoimmunity.

  10. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    PubMed

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-11-04

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization.

  11. The mediator subunit Med23 contributes to controlling T-cell activation and prevents autoimmunity.

    PubMed

    Sun, Yang; Zhu, Xiaoyan; Chen, Xufeng; Liu, Haifeng; Xu, Yu; Chu, Yajing; Wang, Gang; Liu, Xiaolong

    2014-10-10

    T-cell activation is critical for successful immune responses and is controlled at multiple levels. Although many changes of T-cell receptor-associated signalling molecules affect T-cell activation, the transcriptional mechanisms that control this process remain largely unknown. Here we find that T cell-specific deletion of the mediator subunit Med23 leads to hyperactivation of T cells and aged Med23-deficient mice exhibit an autoimmune syndrome. Med23 specifically and consistently promotes the transcription of multiple negative regulators of T-cell activation. In the absence of Med23, the T-cell activation threshold is lower, which results in enhanced antitumour T-cell function. Cumulatively, our data suggest that Med23 contributes to controlling T-cell activation at the transcriptional level and prevents the development of autoimmunity.

  12. Adjuvant immunotherapy of experimental autoimmune encephalomyelitis: immature myeloid cells expressing CXCL10 and CXCL16 attract CXCR3+CXCR6+ and myelin-specific T cells to the draining lymph nodes rather than the central nervous system.

    PubMed

    O'Connor, Richard A; Li, Xujian; Blumerman, Seth; Anderton, Stephen M; Noelle, Randolph J; Dalton, Dyana K

    2012-03-01

    CFA is a strong adjuvant capable of stimulating cellular immune responses. Paradoxically, adjuvant immunotherapy by prior exposure to CFA or live mycobacteria suppresses the severity of experimental autoimmune encephalomyelitis (EAE) and spontaneous diabetes in rodents. In this study, we investigated immune responses during adjuvant immunotherapy of EAE. Induction of EAE in CFA-pretreated mice resulted in a rapid influx into the draining lymph nodes (dLNs) of large numbers of CD11b(+)Gr-1(+) myeloid cells, consisting of immature cells with ring-shaped nuclei, macrophages, and neutrophils. Concurrently, a population of mycobacteria-specific IFN-γ-producing T cells appeared in the dLNs. Immature myeloid cells in dLNs expressed the chemokines CXCL10 and CXCL16 in an IFN-γ-dependent manner. Subsequently, CD4(+) T cells coexpressing the cognate chemokine receptors CXCR3 and CXCR6 and myelin oligodendrocyte glycoprotein (MOG)-specific CD4(+) T cells accumulated within the chemokine-expressing dLNs, rather than within the CNS. Migration of CD4(+) T cells toward dLN cells was abolished by depleting the CD11b(+) cells and was also mediated by the CD11b(+) cells alone. In addition to altering the distribution of MOG-specific T cells, adjuvant treatment suppressed development of MOG-specific IL-17. Thus, adjuvant immunotherapy of EAE requires IFN-γ, which suppresses development of the Th17 response, and diverts autoreactive T cells away from the CNS toward immature myeloid cells expressing CXCL10 and CXCL16 in the lymph nodes.

  13. Surfactant protein A is expressed in the central nervous system of rats with experimental autoimmune encephalomyelitis, and suppresses inflammation in human astrocytes and microglia

    PubMed Central

    Yang, Xue; Yan, Jun; Feng, Juan

    2017-01-01

    The collectin surfactant protein-A (SP-A), a potent host defense molecule, is well recognized for its role in the maintenance of pulmonary homeostasis and the modulation of inflammatory responses. While previous studies have detected SP-A in numerous extrapulmonary tissues, there is still a lack of information regarding its expression in central nervous system (CNS) and potential effects in neuroinflammatory diseases, such as multiple sclerosis (MS). The present study used experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS, to investigate the expression of SP-A in the CNS at different stages of disease progression. In addition, in vitro experiments with lipopolysaccharide (LPS)-stimulated human astrocytes and microglia were performed to investigate the potential role of SP-A in the modulation of CNS inflammatory responses. The results of the present study demonstrated widespread distribution of SP-A in the rat CNS, and also identified specific expression patterns of SP-A at different stages of EAE. In vitro, the current study revealed that treatment of human astrocytes and microglia with LPS promoted SP-A expression in a dose-dependent manner. Furthermore, exogenous SP-A protein significantly decreased Toll-like receptor 4 and nuclear factor-κB expression, and reduced interleukin-1β and tumor necrosis factor-α levels. The results of the current study indicate a potential role for SP-A in the modulation of CNS inflammatory responses. PMID:28393255

  14. Occurrence of Autoimmune Diseases Related to the Vaccine against Yellow Fever

    PubMed Central

    Oliveira, Ana Cristina Vanderley; Maria Henrique da Mota, Licia; dos Santos-Neto, Leopoldo Luiz; De Carvalho, Jozélio Freire; Caldas, Iramaya Rodrigues; Martins Filho, Olindo Assis; Tauil, Pedro Luis

    2014-01-01

    Yellow fever is an infectious disease, endemic in South America and Africa. This is a potentially serious illness, with lethality between 5 and 40% of cases. The most effective preventive vaccine is constituted by the attenuated virus strain 17D, developed in 1937. It is considered safe and effective, conferring protection in more than 90% in 10 years. Adverse effects are known as mild reactions (allergies, transaminases transient elevation, fever, headache) and severe (visceral and neurotropic disease related to vaccine). However, little is known about its potential to induce autoimmune responses. This systematic review aims to identify the occurrence of autoinflammatory diseases related to 17D vaccine administration. Six studies were identified describing 13 possible cases. The diseases were Guillain-Barré syndrome, multiple sclerosis, multiple points evanescent syndrome, acute disseminated encephalomyelitis, autoimmune hepatitis, and Kawasaki disease. The data suggest that 17D vaccination may play a role in the mechanism of loss of self-tolerance. PMID:25405025

  15. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP)

    PubMed Central

    Murphy, Stephen F.; Schaeffer, Anthony J.; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90–95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17’s role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS. PMID:25933188

  16. IL17 Mediates Pelvic Pain in Experimental Autoimmune Prostatitis (EAP).

    PubMed

    Murphy, Stephen F; Schaeffer, Anthony J; Done, Joseph; Wong, Larry; Bell-Cohn, Ashlee; Roman, Kenny; Cashy, John; Ohlhausen, Michelle; Thumbikat, Praveen

    2015-01-01

    Chronic pelvic pain syndrome (CPPS) is the most common form of prostatitis, accounting for 90-95% of all diagnoses. It is a complex multi-symptom syndrome with unknown etiology and limited effective treatments. Previous investigations highlight roles for inflammatory mediators in disease progression by correlating levels of cytokines and chemokines with patient reported symptom scores. It is hypothesized that alteration of adaptive immune mechanisms results in autoimmunity and subsequent development of pain. Mouse models of CPPS have been developed to delineate these immune mechanisms driving pain in humans. Using the experimental autoimmune prostatitis (EAP) in C57BL/6 mice model of CPPS we examined the role of CD4+T-cell subsets in the development and maintenance of prostate pain, by tactile allodynia behavioral testing and flow cytometry. In tandem with increased CD4+IL17A+ T-cells upon EAP induction, prophylactic treatment with an anti-IL17 antibody one-day prior to EAP induction prevented the onset of pelvic pain. Therapeutic blockade of IL17 did not reverse pain symptoms indicating that IL17 is essential for development but not maintenance of chronic pain in EAP. Furthermore we identified a cytokine, IL7, to be associated with increased symptom severity in CPPS patients and is increased in patient prostatic secretions and the prostates of EAP mice. IL7 is fundamental to development of IL17 producing cells and plays a role in maturation of auto-reactive T-cells, it is also associated with autoimmune disorders including multiple sclerosis and type-1 diabetes. More recently a growing body of research has pointed to IL17's role in development of neuropathic and chronic pain. This report presents novel data on the role of CD4+IL17+ T-cells in development and maintenance of pain in EAP and CPPS.

  17. Pain in autoimmune disorders.

    PubMed

    Mifflin, Katherine A; Kerr, Bradley J

    2017-06-01

    Most autoimmune diseases are associated with pathological pain development. Autoimmune diseases with pathological pain include complex regional pain syndrome, rheumatoid arthritis, and Guillian-Barré syndrome to name a few. The present Review explores research linking the immune system to the development of pathological pain in autoimmune diseases. Pathological pain has been linked to T-cell activation and the release of cytokines from activated microglia in the dorsal horn of the spinal cord. New research on the role of autoantibodies in autoimmunity has generated insights into potential mechanisms of pain associated with autoimmune disease. Autoantibodies may act through various mechanisms in autoimmune disorders. These include the alteration of neuronal excitability via specific antigens such as the voltage-gated potassium channel complexes or by mediating bone destruction in rheumatoid arthritis. Although more research must be done to understand better the role of autoantibodies in autoimmune disease related pain, this may be a promising area of research for new analgesic therapeutic targets. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. A Role for the Intestinal Microbiota and Virome in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)?

    PubMed

    Navaneetharaja, Navena; Griffiths, Verity; Wileman, Tom; Carding, Simon R

    2016-06-06

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous disorder of significant societal impact that is proposed to involve both host and environmentally derived aetiologies that may be autoimmune in nature. Immune-related symptoms of at least moderate severity persisting for prolonged periods of time are common in ME/CFS patients and B cell depletion therapy is of significant therapeutic benefit. The origin of these symptoms and whether it is infectious or inflammatory in nature is not clear, with seeking evidence of acute or chronic virus infections contributing to the induction of autoimmune processes in ME/CFS being an area of recent interest. This article provides a comprehensive review of the current evidence supporting an infectious aetiology for ME/CFS leading us to propose the novel concept that the intestinal microbiota and in particular members of the virome are a source of the "infectious" trigger of the disease. Such an approach has the potential to identify disease biomarkers and influence therapeutics, providing much-needed approaches in preventing and managing a disease desperately in need of confronting.

  19. A Role for the Intestinal Microbiota and Virome in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)?

    PubMed Central

    Navaneetharaja, Navena; Griffiths, Verity; Wileman, Tom; Carding, Simon R.

    2016-01-01

    Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a heterogeneous disorder of significant societal impact that is proposed to involve both host and environmentally derived aetiologies that may be autoimmune in nature. Immune-related symptoms of at least moderate severity persisting for prolonged periods of time are common in ME/CFS patients and B cell depletion therapy is of significant therapeutic benefit. The origin of these symptoms and whether it is infectious or inflammatory in nature is not clear, with seeking evidence of acute or chronic virus infections contributing to the induction of autoimmune processes in ME/CFS being an area of recent interest. This article provides a comprehensive review of the current evidence supporting an infectious aetiology for ME/CFS leading us to propose the novel concept that the intestinal microbiota and in particular members of the virome are a source of the “infectious” trigger of the disease. Such an approach has the potential to identify disease biomarkers and influence therapeutics, providing much-needed approaches in preventing and managing a disease desperately in need of confronting. PMID:27275835

  20. Immune Tolerance to Apoptotic Self Is Mediated Primarily by Regulatory B1a Cells.

    PubMed

    Miles, Katherine; Simpson, Joanne; Brown, Sheila; Cowan, Graeme; Gray, David; Gray, Mohini

    2017-01-01

    The chronic autoimmune inflammatory diseases, systemic lupus erythematosus and Sjogren's syndrome, develop when tolerance to apoptotic cells (ACs) is lost. We have previously reported that this tolerance is maintained by innate-like, IL-10 secreting regulatory B cells. Two questions remained. First, do these regulatory B cells belong predominantly to a single subset of steady-state B cells and second, what is their specificity? We report here that innate-like B cells with markers characteristic for B1a cells (CD43 +ve CD19 hi CD5 +ve IgM hi IgD lo ) constitute 80% of splenic and 96% of peritoneal B cells that respond to ACs by secreting IL-10. AC responsive B1a cells secrete self-reactive natural antibodies (NAbs) and IL-10, which is augmented by toll-like receptor (TLR) 7 or TLR9 stimulation. In so doing, they both accelerate the clearance of dying cells by macrophages and inhibit their potential to mount proinflammatory immune responses. While B1a cells make prolonged contact with ACs, they do not require TIM1 or complement to mediate their regulatory function. In an animal model of neural inflammation (experimental autoimmune encephalomyelitis), just 10 5 activated B1a B cells was sufficient to restrain inflammation. Activated B1a B cells also induced antigen-specific T cells to secrete IL-10. Hence, regulatory B1a cells specifically recognize and augment tolerance to apoptotic self via IL-10 and NAbs; but once activated, can also prevent autoimmune mediated inflammation.

  1. IDO2 is a critical mediator of autoantibody production and inflammatory pathogenesis in a mouse model of autoimmune arthritis1

    PubMed Central

    DuHadaway, James B.; Grabler, Samantha; Metz, Richard; Prendergast, George C.; Mandik-Nayak, Laura

    2014-01-01

    Rheumatoid arthritis (RA) and other autoimmune disorders are associated with altered activity of the immunomodulatory enzyme indoleamine-2,3-dioxygenase (IDO). However, the precise contributions of IDO function to autoimmunity remain unclear. Here, we examine the effect of two different IDO enzymes, IDO1 and IDO2, on the development of autoimmune arthritis in the KRN preclinical model of RA. We find that IDO2, not IDO1, is critical for arthritis development, providing the first direct evidence of separate in vivo functions for IDO1 and IDO2. Mice null for Ido2 display decreased joint inflammation relative to wild-type mice due to a reduction in pathogenic autoantibodies and antibody secreting cells. Notably, IDO2 appears to specifically mediate autoreactive, but not normal B cell responses, as total serum Ig levels are not altered and IDO2 ko mice are able to mount productive antibody responses to model antigens in vitro and in vivo. Reciprocal adoptive transfer studies confirm that autoantibody production and arthritis are modulated by IDO2 expression in a cell type extrinsic to the T cell. Taken together, our results provide the first insights into IDO2 function by defining its pathogenic contributions to autoantibody-mediated autoimmunity. PMID:24489090

  2. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin

    PubMed Central

    Boroujerdi, Amin; Welser-Alves, Jennifer V.; Milner, Richard

    2013-01-01

    Alterations in vascular structure and function are a central component of demyelinating disease. In addition to blood-brain barrier (BBB) breakdown, which occurs early in the course of disease, recent studies have described angiogenic remodeling, both in multiple sclerosis tissue and in the mouse demyelinating model, experimental autoimmune encephalomyelitis (EAE). As the precise timing of vascular remodeling in demyelinating disease has yet to be fully defined, the purpose of the current study was to define the time-course of these events in the MOG35-55 EAE model. Quantification of endothelial cell proliferation and vessel density revealed that a large part of angiogenic remodeling in cervical spinal cord white matter occurs during the pre-symptomatic phase of EAE. At the height of vascular remodeling, blood vessels in the cervical spinal cord showed strong transient upregulation of fibronectin and the α5β1 integrin. In vitro experiments revealed that α5 integrin inhibition reduced brain endothelial cell proliferation under inflammatory conditions. Interestingly, loss of vascular integrity was evident in all vessels during the first 4–7 days post-immunization, but after 14 days, was localized predominantly to venules. Taken together, our data demonstrate that extensive vascular remodeling occurs during the pre-symptomatic phase of EAE and point to a potential role for the fibronectin-α5β1 integrin interaction in promoting vascular remodeling during demyelinating disease. PMID:24056042

  3. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin.

    PubMed

    Boroujerdi, Amin; Welser-Alves, Jennifer V; Milner, Richard

    2013-12-01

    Alterations in vascular structure and function are a central component of demyelinating disease. In addition to blood-brain barrier (BBB) breakdown, which occurs early in the course of disease, recent studies have described angiogenic remodeling, both in multiple sclerosis tissue and in the mouse demyelinating model, experimental autoimmune encephalomyelitis (EAE). As the precise timing of vascular remodeling in demyelinating disease has yet to be fully defined, the purpose of the current study was to define the time-course of these events in the MOG35-55 EAE model. Quantification of endothelial cell proliferation and vessel density revealed that a large part of angiogenic remodeling in cervical spinal cord white matter occurs during the pre-symptomatic phase of EAE. At the height of vascular remodeling, blood vessels in the cervical spinal cord showed strong transient upregulation of fibronectin and the α5β1 integrin. In vitro experiments revealed that α5 integrin inhibition reduced brain endothelial cell proliferation under inflammatory conditions. Interestingly, loss of vascular integrity was evident in all vessels during the first 4-7days post-immunization, but after 14days, was localized predominantly to venules. Taken together, our data demonstrate that extensive vascular remodeling occurs during the pre-symptomatic phase of EAE and point to a potential role for the fibronectin-α5β1 integrin interaction in promoting vascular remodeling during demyelinating disease. © 2013.

  4. Acute Disseminated Encephalomyelitis: A Gray Distinction.

    PubMed

    Abu Libdeh, Amal; Goodkin, Howard P; Ramirez-Montealegre, Denia; Brenton, J Nicholas

    2017-03-01

    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated, inflammatory acquired demyelinating syndrome predominantly affecting the white matter of the central nervous system. We describe a three-year-old boy whose clinical presentation was suspicious for ADEM but whose initial imaging abnormalities were confined to the deep gray matter (without evidence of white matter involvement). His clinical course was fluctuating and repeat imaging one week after presentation demonstrated interval development of characteristic white matter lesions. Treatment with adjunctive intravenous immunoglobulin and high-dose corticosteroids resulted in significant clinical improvement. Isolated deep gray matter involvement can precede the appearance of white matter abnormalities of ADEM, suggesting that repeat imaging is indicated in individuals whose findings are clinically suspicious for ADEM but who lack characteristic imaging findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity

    PubMed Central

    Jaworski, Maike; Marsland, Ben J; Gehrig, Jasmine; Held, Werner; Favre, Stéphanie; Luther, Sanjiv A; Perroud, Mai; Golshayan, Déla; Gaide, Olivier; Thome, Margot

    2014-01-01

    The protease activity of the paracaspase Malt1 has recently gained interest as a drug target for immunomodulation and the treatment of diffuse large B-cell lymphomas. To address the consequences of Malt1 protease inactivation on the immune response in vivo, we generated knock-in mice expressing a catalytically inactive C472A mutant of Malt1 that conserves its scaffold function. Like Malt1-deficient mice, knock-in mice had strong defects in the activation of lymphocytes, NK and dendritic cells, and the development of B1 and marginal zone B cells and were completely protected against the induction of autoimmune encephalomyelitis. Malt1 inactivation also protected the mice from experimental induction of colitis. However, Malt1 knock-in mice but not Malt1-deficient mice spontaneously developed signs of autoimmune gastritis that correlated with an absence of Treg cells, an accumulation of T cells with an activated phenotype and high serum levels of IgE and IgG1. Thus, removal of the enzymatic activity of Malt1 efficiently dampens the immune response, but favors autoimmunity through impaired Treg development, which could be relevant for therapeutic Malt1-targeting strategies. PMID:25319413

  6. A SELDI mass spectrometry study of experimental autoimmune encephalomyelitis: sample preparation, reproducibility, and differential protein expression patterns

    PubMed Central

    2013-01-01

    Background Experimental autoimmune encephalomyelitis (EAE) is an autoimmune, inflammatory disease of the central nervous system that is widely used as a model of multiple sclerosis (MS). Mitochondrial dysfunction appears to play a role in the development of neuropathology in MS and may also play a role in disease pathology in EAE. Here, surface enhanced laser desorption ionization mass spectrometry (SELDI-MS) has been employed to obtain protein expression profiles from mitochondrially enriched fractions derived from EAE and control mouse brain. To gain insight into experimental variation, the reproducibility of sub-cellular fractionation, anion exchange fractionation as well as spot-to-spot and chip-to-chip variation using pooled samples from brain tissue was examined. Results Variability of SELDI mass spectral peak intensities indicates a coefficient of variation (CV) of 15.6% and 17.6% between spots on a given chip and between different chips, respectively. Thinly slicing tissue prior to homogenization with a rotor homogenizer showed better reproducibility (CV = 17.0%) than homogenization of blocks of brain tissue with a Teflon® pestle (CV = 27.0%). Fractionation of proteins with anion exchange beads prior to SELDI-MS analysis gave overall CV values from 16.1% to 18.6%. SELDI mass spectra of mitochondrial fractions obtained from brain tissue from EAE mice and controls displayed 39 differentially expressed proteins (p≤ 0.05) out of a total of 241 protein peaks observed in anion exchange fractions. Hierarchical clustering analysis showed that protein fractions from EAE animals with severe disability clearly segregated from controls. Several components of electron transport chain complexes (cytochrome c oxidase subunit 6b1, subunit 6C, and subunit 4; NADH dehydrogenase flavoprotein 3, alpha subcomplex subunit 2, Fe-S protein 4, and Fe-S protein 6; and ATP synthase subunit e) were identified as possible differentially expressed proteins. Myelin Basic Protein

  7. Gut environment-induced intraepithelial autoreactive CD4+ T cells suppress central nervous system autoimmunity via LAG-3

    PubMed Central

    Kadowaki, Atsushi; Miyake, Sachiko; Saga, Ryoko; Chiba, Asako; Mochizuki, Hideki; Yamamura, Takashi

    2016-01-01

    The gut environment has been found to significantly influence autoimmune diseases such as multiple sclerosis; however, immune cell mechanisms are unclear. Here we show that the gut epithelium of myelin oligodendrocyte glycoprotein(35-55)-specific T-cell receptor transgenic mice contains environmental stimuli-induced intraepithelial lymphocytes (IELs) that inhibit experimental autoimmune encephalomyelitis on transfer. These cells express surface markers phenotypical of ‘induced' IELs, have a TH17-like profile and infiltrate the central nervous system (CNS). They constitutively express Ctla4 and Tgfb1 and markedly upregulate Lag3 expression in the CNS, thereby inhibiting inflammation. We also demonstrate the suppressive capability of CD4+ IELs with alternative antigen specificities, their proliferation in response to gut-derived antigens and contribution of the microbiota and dietary aryl hydrocarbon receptor ligands to their induction. Thus, the gut environment favours the generation of autoreactive CD4+ T cells with unique regulatory functions, potentially important for preventing CNS autoimmunity. PMID:27198196

  8. Glutamine antagonist-mediated immune suppression decreases pathology but delays virus clearance in mice during nonfatal alphavirus encephalomyelitis.

    PubMed

    Baxter, Victoria K; Glowinski, Rebecca; Braxton, Alicia M; Potter, Michelle C; Slusher, Barbara S; Griffin, Diane E

    2017-08-01

    Infection of weanling C57BL/6 mice with the TE strain of Sindbis virus (SINV) causes nonfatal encephalomyelitis associated with hippocampal-based memory impairment that is partially prevented by treatment with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist (Potter et al., J Neurovirol 21:159, 2015). To determine the mechanism(s) of protection, lymph node and central nervous system (CNS) tissues from SINV-infected mice treated daily for 1 week with low (0.3mg/kg) or high (0.6mg/kg) dose DON were examined. DON treatment suppressed lymphocyte proliferation in cervical lymph nodes resulting in reduced CNS immune cell infiltration, inflammation, and cell death compared to untreated SINV-infected mice. Production of SINV-specific antibody and interferon-gamma were also impaired by DON treatment with a delay in virus clearance. Cessation of treatment allowed activation of the antiviral immune response and viral clearance, but revived CNS pathology, demonstrating the ability of the immune response to mediate both CNS damage and virus clearance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis

    PubMed Central

    Mao, Peizhong; Manczak, Maria; Shirendeb, Ulziibat P.; Reddy, P. Hemachandra

    2013-01-01

    Oxidative stress and mitochondrial dysfunction are involved in the progression and pathogenesis of multiple sclerosis (MS). MitoQ is a mitochondria-targeted antioxidant that has a neuroprotective role in several mitochondrial and neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Here we sought to determine the possible effects of a systematic administration of MitoQ as a therapy, using an experimental autoimmune encephalomyelitis (EAE) mouse model. We studied the beneficial effects of MitoQ in EAE mice that mimic MS like symptoms by treating EAE mice with MitoQ and pretreated C57BL6 mice MitoQ plus EAE induction. We found that pretreatment and treatment of EAE mice with MitoQ reduced neurological disabilities associated with EAE. We also found that both pretreatment and treatment of the EAE mice with MitoQ significantly suppressed inflammatory markers of EAE, including the inhibition of inflammatory cytokines and chemokines. MitoQ treatments reduced neuronal cell loss in the spinal cord, a factor underlying motor disability in EAE mice. The neuroprotective role of MitoQ was confirmed by a neuron-glia co-culture system designed to mimic the mechanism of MS and EAE in vitro. We found that axonal inflammation and oxidative stress are associated with impaired behavioral functions in the EAE mouse model and that treatment with MitoQ can exert protective effects on neurons and reduce axonal inflammation and oxidative stress. These protective effects are likely via multiple mechanisms, including the attenuation of the robust immune response. These results suggest that MitoQ may be a new candidate for the treatment of MS. PMID:24055980

  10. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis.

    PubMed

    Mao, Peizhong; Manczak, Maria; Shirendeb, Ulziibat P; Reddy, P Hemachandra

    2013-12-01

    Oxidative stress and mitochondrial dysfunction are involved in the progression and pathogenesis of multiple sclerosis (MS). MitoQ is a mitochondria-targeted antioxidant that has a neuroprotective role in several mitochondrial and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Here we sought to determine the possible effects of a systematic administration of MitoQ as a therapy, using an experimental autoimmune encephalomyelitis (EAE) mouse model. We studied the beneficial effects of MitoQ in EAE mice that mimic MS like symptoms by treating EAE mice with MitoQ and pretreated C57BL6 mice with MitoQ plus EAE induction. We found that pretreatment and treatment of EAE mice with MitoQ reduced neurological disabilities associated with EAE. We also found that both pretreatment and treatment of the EAE mice with MitoQ significantly suppressed inflammatory markers of EAE, including the inhibition of inflammatory cytokines and chemokines. MitoQ treatments reduced neuronal cell loss in the spinal cord, a factor underlying motor disability in EAE mice. The neuroprotective role of MitoQ was confirmed by a neuron-glia co-culture system designed to mimic the mechanism of MS and EAE in vitro. We found that axonal inflammation and oxidative stress are associated with impaired behavioral functions in the EAE mouse model and that treatment with MitoQ can exert protective effects on neurons and reduce axonal inflammation and oxidative stress. These protective effects are likely via multiple mechanisms, including the attenuation of the robust immune response. These results suggest that MitoQ may be a new candidate for the treatment of MS. © 2013.

  11. 9 CFR 113.207 - Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Encephalomyelitis Vaccine, Eastern... PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.207 Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus. Encephalomyelitis Vaccine, Eastern, Western, and...

  12. 9 CFR 113.207 - Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Encephalomyelitis Vaccine, Eastern... PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.207 Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus. Encephalomyelitis Vaccine, Eastern, Western, and...

  13. 9 CFR 113.207 - Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Encephalomyelitis Vaccine, Eastern... PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.207 Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus. Encephalomyelitis Vaccine, Eastern, Western, and...

  14. 9 CFR 113.207 - Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Encephalomyelitis Vaccine, Eastern... PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.207 Encephalomyelitis Vaccine, Eastern, Western, and Venezuelan, Killed Virus. Encephalomyelitis Vaccine, Eastern, Western, and...

  15. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: What is ME/CFS?

    MedlinePlus

    ... Controls Search Form Controls Cancel Submit Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Note: Javascript is disabled or is not supported ... Recommend on Facebook Tweet Share Compartir Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disabling and complex illness. ...

  16. T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis.

    PubMed

    Zheng, Hui; Zhang, Han; Liu, Feng; Qi, Yuanyuan; Jiang, Hong

    2014-01-01

    Mice immunized with neuroantigens in incomplete Freund's adjuvant (IFA) are resistant to subsequent induction of experimental autoimmune encephalomyelitis (EAE). The mechanisms involved in this protection are complex. Studies on relevant CD4(+) or CD8(+) T cells, including effective and regulatory T cells, have been performed by others. In this work, the effects of CD4(-)-, CD8(-)- splenocytes on protection from EAE in C57BL/6 mice which were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG)35-55 in IFA were evaluated. We observed that MOG-reactive CD4(+) T cells failed to be activated and proliferate when CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice were regarded as antigen-presenting cells (APC). It was shown that these APC expressed lower levels of major histocompatibility complex class II (MHC-II), CD80, and CD86 than naïve cells. In addition, CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice showed significantly higher levels of IL-10 mRNA expression. When the immunized-mice were induced to develop EAE, these cells secreted significantly higher levels of IL-10 and produced lower levels of IL-6, leading to decreased secretion of IL-17 and IFN-γ from MOG-specific CD4(+) T cells. The transfer of CD4(-)-, CD8(-)- splenocytes from MOG/IFA-immunized mice was able to ameliorate the subsequent induction of EAE in recipient mice. Thus, MOG/IFA immunization can modulate CD4(-)-, CD8(-)- splenocytes by reducing the expression of antigen-presenting molecules and altering the levels of secreted cytokines. Our study reveals an additional mechanism involved in the protective effects of MOG/IFA pre-immunization in an EAE model. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Virus infection, antiviral immunity, and autoimmunity

    PubMed Central

    Getts, Daniel R.; Chastain, Emily M. L.; Terry, Rachael L.; Miller, Stephen D.

    2014-01-01

    Summary As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity. PMID:23947356

  18. Differentiation and Transmigration of CD4 T Cells in Neuroinflammation and Autoimmunity

    PubMed Central

    Sonar, Sandip Ashok; Lal, Girdhari

    2017-01-01

    CD4+ T cells play a central role in orchestrating protective immunity and autoimmunity. The activation and differentiation of myelin-reactive CD4+ T cells into effector (Th1 and Th17) and regulatory (Tregs) subsets at the peripheral tissues, and their subsequent transmigration across the blood–brain barrier (BBB) into the central nervous system (CNS) parenchyma are decisive events in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. How the Th1, Th17, and regulatory Tregs transmigrate across the BBB into the CNS and cause CNS inflammation is not clearly understood. Studies with transgenic and gene knockout mice have unraveled that Th1, Th17, and Tregs play a critical role in the induction and resolution of neuroinflammation. However, the plasticity of these lineages and functional dichotomy of their cytokine products makes it difficult to understand what role CD4+ T cells in the peripheral lymphoid organs, endothelial BBB, and the CNS parenchyma play in the CNS autoimmune response. In this review, we describe some of the recent findings that shed light on the mechanisms behind the differentiation and transmigration of CD4+ T cells across the BBB into the CNS parenchyma and also highlight how these two processes are interconnected, which is crucial for the outcome of CNS inflammation and autoimmunity. PMID:29238350

  19. Eosinophils in Autoimmune Diseases

    PubMed Central

    Diny, Nicola L.; Rose, Noel R.; Čiháková, Daniela

    2017-01-01

    Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs. PMID:28496445

  20. MRI in acute disseminated encephalomyelitis following Semple antirabies vaccine.

    PubMed

    Murthy, J M

    1998-07-01

    I reviewed MRI findings in five patients with acute disseminated encephalomyelitis following vaccination with Semple antirabies vaccine. MRI in two patients with encephalitis features showed multiple white matter lesions in the cerebrum, cerebellar peduncles and brain stem. Two patients who had features of cord involvement showed signal alterations in the cord extending over a few segments. Asymptomatic lesions in the cerebrum were seen in two patients. In a patient with encephalomyelitis MRI 50 days later showed resolution of the lesions. The white matter lesions described were indistinguishable from those seen in acute disseminated encephalomyelitis following other infections.

  1. Cytokine production profiles in chronic relapsing-remitting experimental autoimmune encephalomyelitis: IFN-γ and TNF-α are important participants in the first attack but not in the relapse.

    PubMed

    Hidaka, Yoshihiko; Inaba, Yuji; Matsuda, Kazuyuki; Itoh, Makoto; Kaneyama, Tomoki; Nakazawa, Yozo; Koh, Chang-Sung; Ichikawa, Motoki

    2014-05-15

    Multiple sclerosis (MS) is a chronic demyelinating disease often displaying a relapsing-remitting course of neurological manifestations that is mimicked by experimental autoimmune encephalomyelitis (EAE) in animal models of MS. In particular, NOD mice immunized with myelin oligodendrocyte glycoprotein peptide 35-55 develop chronic relapsing-remitting EAE (CREAE). To elucidate the mechanisms that cause MS relapse, we investigated the histopathology and cytokine production of spleen cells and mRNA expression levels in the central nervous system (CNS) of CREAE mice. During the first attack, inflammatory cell infiltration around small vessels and in the subarachnoid space was observed in the spinal cord. Spleen cell production and mRNA expression in the CNS of several cytokines, including IFN-γ, TNF-α, IL-6, IL-17, and CC chemokine ligand 2 (CCL2), were higher in CREAE mice than in controls. Afterwards, parenchymal infiltration and demyelination were observed histologically in the spinal cord and corresponded with the more severe clinical symptoms of the first and second relapses. IL-17 and CCL2, but not IFN-γ, TNF-α, or IL-6, were also produced by spleen cells during recurrences. Our results suggested that the immune mechanisms in relapses were different from those in the first attack for CREAE. Further investigation of CREAE mechanisms may provide important insights into successful therapies for human relapsing-remitting MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Early alpha-lipoic acid therapy protects from degeneration of the inner retinal layers and vision loss in an experimental autoimmune encephalomyelitis-optic neuritis model.

    PubMed

    Dietrich, Michael; Helling, Niklas; Hilla, Alexander; Heskamp, Annemarie; Issberner, Andrea; Hildebrandt, Thomas; Kohne, Zippora; Küry, Patrick; Berndt, Carsten; Aktas, Orhan; Fischer, Dietmar; Hartung, Hans-Peter; Albrecht, Philipp

    2018-03-07

    In multiple sclerosis (MS), neurodegeneration is the main reason for chronic disability. Alpha-lipoic acid (LA) is a naturally occurring antioxidant which has recently been demonstrated to reduce the rate of brain atrophy in progressive MS. However, it remains uncertain if it is also beneficial in the early, more inflammatory-driven phases. As clinical studies are costly and time consuming, optic neuritis (ON) is often used for investigating neuroprotective or regenerative therapeutics. We aimed to investigate the prospect for success of a clinical ON trial using an experimental autoimmune encephalomyelitis-optic neuritis (EAE-ON) model with visual system readouts adaptable to a clinical ON trial. Using an in vitro cell culture model for endogenous oxidative stress, we compared the neuroprotective capacity of racemic LA with the R/S-enantiomers and its reduced form. In vivo, we analyzed retinal neurodegeneration using optical coherence tomography (OCT) and the visual function by optokinetic response (OKR) in MOG 35-55 -induced EAE-ON in C57BL/6J mice. Ganglion cell counts, inflammation, and demyelination were assessed by immunohistological staining of retinae and optic nerves. All forms of LA provided equal neuroprotective capacities in vitro. In EAE-ON, prophylactic LA therapy attenuated the clinical EAE score and prevented the thinning of the inner retinal layer while therapeutic treatment was not protective on visual outcomes. A prophylactic LA treatment is necessary to protect from visual loss and retinal thinning in EAE-ON, suggesting that a clinical ON trial starting therapy after the onset of symptoms may not be successful.

  3. Rare phenotypes in the understanding of autoimmunity

    PubMed Central

    Zeissig, Yvonne; Petersen, Britt-Sabina; Franke, Andre; Blumberg, Richard S; Zeissig, Sebastian

    2017-01-01

    The study of rare phenotypes has a long history in the description of autoimmune disorders. First Mendelian syndromes of idiopathic tissue destruction were defined more than 100 years ago and were later revealed to result from immune-mediated reactivity against self. In the past two decades, continuous advances in sequencing technology and particularly the advent of next-generation sequencing have allowed to define the genetic basis of an ever-growing number of Mendelian forms of autoimmunity. This has provided unique insight into the molecular pathways that govern immunological homeostasis and that are indispensable for the prevention of self-reactive immune-mediated tissue damage and ‘horror autotoxicus’. Here we will discuss selected examples of past and recent investigations into rare phenotypes of autoimmunity that have delineated pathways critical for central and peripheral control of the adaptive immune system. We will outline the implications of these findings for rare and common forms of autoimmunity and will discuss the benefits and potential pitfalls of the integration of next-generation sequencing into algorithms for clinical diagnostics. Because of the concise nature of this review, we will focus on syndromes caused by defects in the control of adaptive immunity as innate immune-mediated autoinflammatory disorders have been covered in excellent recent reviews on Mendelian and polygenic forms of autoimmunity. PMID:27562064

  4. Age of the Donor Reduces the Ability of Human Adipose-Derived Stem Cells to Alleviate Symptoms in the Experimental Autoimmune Encephalomyelitis Mouse Model

    PubMed Central

    Scruggs, Brittni A.; Semon, Julie A.; Zhang, Xiujuan; Zhang, Shijia; Bowles, Annie C.; Pandey, Amitabh C.; Imhof, Kathleen M.P.; Kalueff, Allan V.; Gimble, Jeffrey M.

    2013-01-01

    There is a significant clinical need for effective therapies for primary progressive multiple sclerosis, which presents later in life (i.e., older than 50 years) and has symptoms that increase in severity without remission. With autologous mesenchymal stem cell therapy now in the early phases of clinical trials for all forms of multiple sclerosis (MS), it is necessary to determine whether autologous stem cells from older donors have therapeutic effectiveness. In this study, the therapeutic efficacy of human adipose-derived mesenchymal stem cells (ASCs) from older donors was directly compared with that of cells from younger donors for disease prevention. Mice were induced with chronic experimental autoimmune encephalomyelitis (EAE) using the myelin oligodendrocyte glycoprotein35–55 peptide and treated before disease onset with ASCs derived from younger (<35 years) or older (>60 years) donors. ASCs from older donors failed to ameliorate the neurodegeneration associated with EAE, and mice treated with older donor cells had increased central nervous system inflammation, demyelination, and splenocyte proliferation in vitro compared with the mice receiving cells from younger donors. Therefore, the results of this study demonstrated that donor age significantly affects the ability of human ASCs to provide neuroprotection, immunomodulation, and/or remyelination in EAE mice. The age-related therapeutic differences corroborate recent findings that biologic aging occurs in stem cells, and the differences are supported by evidence in this study that older ASCs, compared with younger donor cells, secrete less hepatocyte growth factor and other bioactive molecules when stimulated in vitro. These results highlight the need for evaluation of autologous ASCs derived from older patients when used as therapy for MS. PMID:24018793

  5. Autoimmune encephalitis update

    PubMed Central

    Dalmau, Josep; Rosenfeld, Myrna R.

    2014-01-01

    Cancer-associated immune-mediated disorders of the central nervous system are a heterogeneous group. These disorders include the classic paraneoplastic neurologic disorders and the more recently described autoimmune encephalitis associated with antibodies to neuronal cell-surface or synaptic receptors that occur with and without a cancer association. Autoimmune encephalitis is increasingly recognized as the cause of a variety of neuropsychiatric syndromes that can be severe and prolonged. In contrast to the classic paraneoplastic disorders that are poorly responsive to tumor treatment and immunotherapy, autoimmune encephalitis often responds to these treatments, and patients can have full or marked recoveries. As early treatment speeds recovery, reduces disability, and decreases relapses that can occur in about 20% of cases, it is important that the immune pathogenesis of these disorders is recognized. PMID:24637228

  6. [Can acute disseminated encephalomyelitis progress in a deferred way?].

    PubMed

    Gener, B; Garaizar-Axpe, C; Ruiz Espinosa, C; Prats-Viñas, J M

    To report on the heterogeneity with regard to the clinical course of the acute disseminated encephalomyelitis (ADEM). A 5 year old boy suffered of acute disseminated encephalomyelitis of unknown origin. This child suffered two episodes of different neurologic symptoms separated by several weeks. Based on the clinical manifestations and typical appearance of magnetic resonance imaging findings and the absence of oligoclonal bands in CSF immunoglobulins, multiple sclerosis (MS) was ruled out. We postulate that the recurrent symptoms in our patient could be explained as a multiphasic disseminated encephalomyelitis (MDEM). Favourable outcome after simultaneous treatment with methylprednisolone and intravenous immunoglobulin is emphasized in this report.

  7. Membranoproliferative glomerulonephritis associated with autoimmune diseases.

    PubMed

    Zand, Ladan; Fervenza, Fernando C; Nasr, Samih H; Sethi, Sanjeev

    2014-04-01

    Membranoproliferative glomerulonephritis (MPGN) has been classified based on its pathogenesis into immune complex-mediated and complement-mediated MPGN. The immune complex-mediated type is secondary to chronic infections, autoimmune diseases or monoclonal gammopathy. There is a paucity of data on MPGN associated with autoimmune diseases. We reviewed the Mayo Clinic database over a 10-year period and identified 12 patients with MPGN associated with autoimmune diseases, after exclusion of systemic lupus erythematosus. The autoimmune diseases included rheumatoid arthritis, primary Sjögren's syndrome, undifferentiated connective tissue disease, primary sclerosing cholangitis and Graves' disease. Nine of the 12 patients were female, and the mean age was 57.9 years. C4 levels were decreased in nine of 12 patients tested. The serum creatinine at time of renal biopsy was 2.2 ± 1.0 mg/dl and the urinary protein was 2,850 ± 3,543 mg/24 h. Three patients required dialysis at the time of renal biopsy. Renal biopsy showed an MPGN in all cases, with features of cryoglobulins in six cases; immunoglobulin (Ig)M was the dominant Ig, and both subendothelial and mesangial electron dense deposits were noted. Median follow-up was 10.9 months. Serum creatinine and proteinuria improved to 1.6 ± 0.8 mg/dl and 428 ± 677 mg/24 h, respectively, except in 3 patients with end-stage renal disease. In summary, this study describes the clinical features, renal biopsy findings, laboratory evaluation, treatment and prognosis of MPGN associated with autoimmune diseases.

  8. Sodium Benzoate, a Food Additive and a Metabolite of Cinnamon, Enriches Regulatory T Cells via STAT6-Mediated Upregulation of TGF-β.

    PubMed

    Kundu, Madhuchhanda; Mondal, Susanta; Roy, Avik; Martinson, Jeffrey L; Pahan, Kalipada

    2016-10-15

    Upregulation and/or maintenance of regulatory T cells (Tregs) during autoimmune insults may have therapeutic efficacy in autoimmune diseases. Earlier we have reported that sodium benzoate (NaB), a metabolite of cinnamon and a Food and Drug Administration-approved drug against urea cycle disorders, upregulates Tregs and protects mice from experimental allergic encephalomyelitis, an animal model of multiple sclerosis. However, mechanisms by which NaB increases Tregs are poorly understood. Because TGF-β is an important inducer of Tregs, we examined the effect of NaB on the status of TGF-β. In this study, we demonstrated that NaB induced the expression of TGF-β mRNA and protein in normal as well as proteolipid protein-primed splenocytes. The presence of a consensus STAT6 binding site in the promoter of the TGF-β gene, activation of STAT6 in splenocytes by NaB, recruitment of STAT6 to the TGF-β promoter by NaB, and abrogation of NaB-induced expression of TGF-β in splenocytes by small interfering RNA knockdown of STAT6 suggest that NaB induces the expression of TGF-β via activation of STAT6. Furthermore, we demonstrated that blocking of TGF-β by neutralizing Abs abrogated NaB-mediated protection of Tregs and experimental allergic encephalomyelitis. These studies identify a new function of NaB in upregulating TGF-β via activation of STAT6, which may be beneficial in MS patients. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Autoimmune autonomic ganglionopathy

    PubMed Central

    Wang, Z.; Low, P.A.; Jordan, J.; Freeman, R.; Gibbons, C.H.; Schroeder, C.; Sandroni, P.; Vernino, S.

    2008-01-01

    Background Autoimmune autonomic ganglionopathy (AAG) is an acquired immune-mediated form of diffuse autonomic failure. Many patients have serum antibodies that bind to the ganglionic acetylcholine receptors (AChRs) that mediate fast synaptic transmission in autonomic ganglia. Previous clinical studies and observations in animal models suggest that AAG is an antibody-mediated neurologic disorder. Methods Using whole-cell patch clamp techniques, we recorded ganglionic AChR currents in cultured human IMR-32 cells and examined the effects of bath application of IgG derived from patients with AAG. Results IgG from seven patients with AAG all produced a progressive decline in whole-cell ganglionic AChR current, whereas IgG from control subjects had no effect. The effect was abolished at low temperature. Fab antibody fragments had no effect unless a secondary antibody was added concurrently. IgG from one patient also produced a more immediate reduction of ganglionic AChR current. Conclusions The characteristics of antibody-mediated inhibition of ganglionic acetylcholine receptor (AChR) current are consistent with modulation and blocking of the membrane AChR, analogous to the effects of muscle AChR antibodies in myasthenia gravis. Our observations demonstrate that antibodies in patients with autoimmune autonomic ganglionopathy (AAG) cause physiologic changes in ganglionic AChR function and confirm that AAG is an antibody-mediated disorder. PMID:17536048

  10. Infection Elicited Autoimmunity and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: An Explanatory Model

    PubMed Central

    Blomberg, Jonas; Gottfries, Carl-Gerhard; Elfaitouri, Amal; Rizwan, Muhammad; Rosén, Anders

    2018-01-01

    Myalgic encephalomyelitis (ME) often also called chronic fatigue syndrome (ME/CFS) is a common, debilitating, disease of unknown origin. Although a subject of controversy and a considerable scientific literature, we think that a solid understanding of ME/CFS pathogenesis is emerging. In this study, we compiled recent findings and placed them in the context of the clinical picture and natural history of the disease. A pattern emerged, giving rise to an explanatory model. ME/CFS often starts after or during an infection. A logical explanation is that the infection initiates an autoreactive process, which affects several functions, including brain and energy metabolism. According to our model for ME/CFS pathogenesis, patients with a genetic predisposition and dysbiosis experience a gradual development of B cell clones prone to autoreactivity. Under normal circumstances these B cell offsprings would have led to tolerance. Subsequent exogenous microbial exposition (triggering) can lead to comorbidities such as fibromyalgia, thyroid disorder, and orthostatic hypotension. A decisive infectious trigger may then lead to immunization against autoantigens involved in aerobic energy production and/or hormone receptors and ion channel proteins, producing postexertional malaise and ME/CFS, affecting both muscle and brain. In principle, cloning and sequencing of immunoglobulin variable domains could reveal the evolution of pathogenic clones. Although evidence consistent with the model accumulated in recent years, there are several missing links in it. Hopefully, the hypothesis generates testable propositions that can augment the understanding of the pathogenesis of ME/CFS. PMID:29497420

  11. Protein adducts of malondialdehyde and 4-hydroxynonenal contribute to trichloroethene-mediated autoimmunity via activating Th17 cells: Dose- and time-response studies in female MRL+/+ mice

    PubMed Central

    Wang, Gangduo; Wang, Jianling; Fan, Xiuzhen; Ansari, G. A. S.; Khan, M. Firoze

    2011-01-01

    Trichloroethene (TCE), a common occupational and environmental toxicant, is known to induce autoimmunity. Previous studies in our laboratory showed increased oxidative stress in TCE-mediated autoimmunity. To further establish the role of oxidative stress and to investigate the mechanisms of TCE-mediated autoimmunity, dose- and time- response studies were conducted in MRL+/+ mice by treating them with TCE via drinking water at doses of 0.5, 1.0 or 2.0 mg/ml for 12, 24 or 36 weeks. TCE exposure led to dose-related increases in malondialdehyde (MDA)-/hydroxynonenal (HNE)-protein adducts and their corresponding antibodies in the sera and decreases in GSH and GSH/GSSG ratio in the kidneys at 24 and 36 weeks, with greater changes at 36 weeks. The increases in these protein adducts and decreases in GSH/GSSG ratio were associated with significant elevation in serum anti-nuclear- and anti-ssDNA-antibodies, suggesting an association between TCE-induced oxidative stress and autoimmune response. Interestingly, splenocytes from mice treated with TCE for 24 weeks secreted significantly higher levels of IL-17 and IL-21 than did splenocytes from controls after stimulation with MDA-mouse serum albumin (MSA) or HNE-MSA adducts. The increased release of these cytokines showed a dose-related response and was more pronounced in mice treated with TCE for 36 weeks. These studies provide evidence that MDA- and or HNE-protein adducts contribute to TCE-mediated autoimmunity, which may be via activation of Th17 cells. PMID:22178267

  12. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis.

    PubMed

    Koch, Marcus W; Zabad, Rana; Giuliani, Fabrizio; Hader, Walter; Lewkonia, Ray; Metz, Luanne; Wee Yong, V

    2015-11-15

    Microglial activation is thought to be a key pathophysiological mechanism underlying disease activity in all forms of MS. Hydroxychloroquine (HCQ) is an antimalarial drug with immunomodulatory properties that is widely used in the treatment of rheumatological diseases. In this series of experiments, we explore the effect of HCQ on human microglial activation in vitro and on the development of experimental autoimmune encephalitis (EAE) in vivo. We activated human microglia with lipopolysaccharide (LPS), and measured concentrations of several pro- and anti-inflammatory cytokines in untreated and HCQ pretreated cultures. We investigated the effect of HCQ pretreatment at two doses on the development of EAE and spinal cord histology. HCQ pretreatment reduced the production of pro-inflammatory (TNF-alpha, IL-6, and IL-12) and anti-inflammatory (IL-10 and IL-1 receptor antagonist) cytokines in LPS-stimulated human microglia. HCQ pretreatment delayed the onset of EAE, and reduced the number of Iba-1 positive microglia/macrophages and signs of demyelination in the spinal cords of HCQ treated animals. HCQ treatment reduces the activation of human microglia in vitro, delays the onset of EAE, and decreases the representation of activated macrophages/microglia and demyelination in the spinal cord of treated mice. HCQ is a plausible candidate for further clinical studies in MS. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Epidemiology of Viliuisk encephalomyelitis in Eastern Siberia.

    PubMed

    Lee, Hee Suk; Zhdanova, Svetlana N; Vladimirtsev, Vsevolod A; Platonov, Fyodor A; Osakovskiy, Vladimir L; Subbotina, Ekaterina L; Broytman, Oleg; Danilova, Al'bina P; Nikitina, Raisa S; Chepurnov, Alexander A; Krivoshapkin, Vadim G; Gajdusek, D Carleton; Savilov, Yevgeniy D; Garruto, Ralph M; Goldfarb, Lev G

    2010-01-01

    Viliuisk encephalomyelitis is a disorder that starts, in most cases, as an acute meningoencephalitis. Survivors of the acute phase develop a slowly progressing neurologic syndrome characterized by dementia, dysarthria, and spasticity. An epidemic of this disease has been spreading throughout the Yakut Republic of the Russian Federation. Although clinical, neuropathologic, and epidemiologic data suggest infectious etiology, multiple attempts at pathogen isolation have been unsuccessful. Detailed clinical, pathologic, laboratory, and epidemiologic studies have identified 414 patients with definite Viliuisk encephalomyelitis in 15 of 33 administrative regions of the Yakut Republic between 1940 and 1999. All data are documented in a Registry. The average annual Viliuisk encephalomyelitis incidence rate at the height of the epidemic reached 8.8 per 100,000 population and affected predominantly young adults. The initial outbreak occurred in a remote isolated area of the middle reaches of Viliui River; the disease spread to adjacent areas and further in the direction of more densely populated regions. The results suggest that intensified human migration from endemic villages led to the emergence of this disease in new communities. Recent social and demographic changes have presumably contributed to a subsequent decline in disease incidence. Based on the largest known set of diagnostically verified Viliuisk encephalomyelitis cases, we demonstrate how a previously little-known disease that was endemic in a small indigenous population subsequently reached densely populated areas and produced an epidemic involving hundreds of persons.

  14. Active induction of experimental autoimmune encephalomyelitis by MOG35-55 peptide immunization is associated with differential responses in separate compartments of the choroid plexus

    PubMed Central

    2012-01-01

    Background There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood–brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. Methods To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.). To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund’s adjuvant (CFA) and pertussis toxin (PTX) included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. Results The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion molecules, cytokines

  15. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  16. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease

    PubMed Central

    Hasham, Muneer G.; Baxan, Nicoleta; Stuckey, Daniel J.; Branca, Jane; Perkins, Bryant; Dent, Oliver; Duffy, Ted; Hameed, Tolani S.; Stella, Sarah E.; Bellahcene, Mohammed; Schneider, Michael D.; Harding, Sian E.; Rosenthal, Nadia

    2017-01-01

    ABSTRACT Systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8) agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity. PMID:28250051

  17. A novel IL-10-independent regulatory role for B cells in suppressing autoimmunity by maintenance of regulatory T cells via GITR ligand.

    PubMed

    Ray, Avijit; Basu, Sreemanti; Williams, Calvin B; Salzman, Nita H; Dittel, Bonnie N

    2012-04-01

    B cells are important for the regulation of autoimmune responses. In experimental autoimmune encephalomyelitis (EAE), B cells are required for spontaneous recovery in acute models. Production of IL-10 by regulatory B cells has been shown to modulate the severity EAE and other autoimmune diseases. Previously, we suggested that B cells regulated the number of CD4(+)Foxp3(+) T regulatory cells (Treg) in the CNS during EAE. Because Treg suppress autoimmune responses, we asked whether B cells control autoimmunity by maintenance of Treg numbers. B cell deficiency achieved either genetically (μMT) or by depletion with anti-CD20 resulted in a significant reduction in the number of peripheral but not thymic Treg. Adoptive transfer of WT B cells into μMT mice restored both Treg numbers and recovery from EAE. When we investigated the mechanism whereby B cells induce the proliferation of Treg and EAE recovery, we found that glucocorticoid-induced TNF ligand, but not IL-10, expression by B cells was required. Of clinical significance is the finding that anti-CD20 depletion of B cells accelerated spontaneous EAE and colitis. Our results demonstrate that B cells play a major role in immune tolerance required for the prevention of autoimmunity by maintenance of Treg via their expression of glucocorticoid-induced TNFR ligand.

  18. Interleukin-10 Overexpression Promotes Fas-Ligand-Dependent Chronic Macrophage-Mediated Demyelinating Polyneuropathy

    PubMed Central

    Dace, Dru S.; Khan, Aslam A.; Stark, Jennifer L.; Kelly, Jennifer; Cross, Anne H.; Apte, Rajendra S.

    2009-01-01

    Background Demyelinating polyneuropathy is a debilitating, poorly understood disease that can exist in acute (Guillain-Barré syndrome) or chronic forms. Interleukin-10 (IL-10), although traditionally considered an anti-inflammatory cytokine, has also been implicated in promoting abnormal angiogenesis in the eye and in the pathobiology of autoimmune diseases such as lupus and encephalomyelitis. Principal Findings Overexpression of IL-10 in a transgenic mouse model leads to macrophage-mediated demyelinating polyneuropathy. IL-10 upregulates ICAM-1 within neural tissues, promoting massive macrophage influx, inflammation-induced demyelination, and subsequent loss of neural tissue resulting in muscle weakness and paralysis. The primary insult is to perineural myelin followed by secondary axonal loss. Infiltrating macrophages within the peripheral nerves demonstrate a highly pro-inflammatory signature. Macrophages are central players in the pathophysiology, as in vivo depletion of macrophages using clodronate liposomes reverses the phenotype, including progressive nerve loss and paralysis. Macrophage-mediate demyelination is dependent on Fas-ligand (FasL)-mediated Schwann cell death. Significance These findings mimic the human disease chronic idiopathic demyelinating polyneuropathy (CIDP) and may also promote further understanding of the pathobiology of related conditions such as acute idiopathic demyelinating polyneuropathy (AIDP) or Guillain-Barré syndrome. PMID:19771172

  19. A new formulation of cannabidiol in cream shows therapeutic effects in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Giacoppo, Sabrina; Galuppo, Maria; Pollastro, Federica; Grassi, Gianpaolo; Bramanti, Placido; Mazzon, Emanuela

    2015-10-21

    The present study was designed to investigate the efficacy of a new formulation of alone, purified cannabidiol (CBD) (>98 %), the main non-psychotropic cannabinoid of Cannabis sativa, as a topical treatment in an experimental model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS). Particularly, we evaluated whether administration of a topical 1 % CBD-cream, given at the time of symptomatic disease onset, could affect the EAE progression and if this treatment could also recover paralysis of hind limbs, qualifying topical-CBD for the symptomatic treatment of MS. In order to have a preparation of 1 % of CBD-cream, pure CBD have been solubilized in propylene glycoland basic dense cream O/A. EAE was induced by immunization with myelin oligodendroglial glycoprotein peptide (MOG35-55) in C57BL/6 mice. After EAE onset, mice were allocated into several experimental groups (Naïve, EAE, EAE-1 % CBD-cream, EAE-vehicle cream, CTRL-1 % CBD-cream, CTRL-vehicle cream). Mice were observed daily for signs of EAE and weight loss. At the sacrifice of the animals, which occurred at the 28(th) day from EAE-induction, spinal cord and spleen tissues were collected in order to perform histological evaluation, immunohistochemistry and western blotting analysis. Achieved results surprisingly show that daily treatment with topical 1 % CBD-cream may exert neuroprotective effects against EAE, diminishing clinical disease score (mean of 5.0 in EAE mice vs 1.5 in EAE + CBD-cream), by recovering of paralysis of hind limbs and by ameliorating histological score typical of disease (lymphocytic infiltration and demyelination) in spinal cord tissues. Also, 1 % CBD-cream is able to counteract the EAE-induced damage reducing release of CD4 and CD8α T cells (spleen tissue localization was quantified about 10,69 % and 35,96 % of positive staining respectively in EAE mice) and expression of the main pro-inflammatory cytokines as well as several other

  20. Bell's palsy and autoimmunity.

    PubMed

    Greco, A; Gallo, A; Fusconi, M; Marinelli, C; Macri, G F; de Vincentiis, M

    2012-12-01

    To review our current knowledge of the etiopathogenesis of Bell's palsy, including viral infection or autoimmunity, and to discuss disease pathogenesis with respect to pharmacotherapy. Relevant publications on the etiopathogenesis, clinical presentation, diagnosis and histopathology of Bell's palsy from 1975 to 2012 were analysed. Bell's palsy is an idiopathic peripheral nerve palsy involving the facial nerve. It accounts for 60 to 75% of all cases of unilateral facial paralysis. The annual incidence of Bell's palsy is 15 to 30 per 100,000 people. The peak incidence occurs between the second and fourth decades (15 to 45 years). The aetiology of Bell's palsy is unknown but viral infection or autoimmune disease has been postulated as possible pathomechanisms. Bell's palsy may be caused when latent herpes viruses (herpes simplex, herpes zoster) are reactivated from cranial nerve ganglia. A cell-mediated autoimmune mechanism against a myelin basic protein has been suggested for the pathogenesis of Bell's palsy. Bell's palsy may be an autoimmune demyelinating cranial neuritis, and in most cases, it is a mononeuritic variant of Guillain-Barré syndrome, a neurologic disorder with recognised cell-mediated immunity against peripheral nerve myelin antigens. In Bell's palsy and GBS, a viral infection or the reactivation of a latent virus may provoke an autoimmune reaction against peripheral nerve myelin components, leading to the demyelination of cranial nerves, especially the facial nerve. Given the safety profile of acyclovir, valacyclovir, and short-course oral corticosteroids, patients who present within three days of the onset of symptoms should be offered combination therapy. However it seems logical that in fact, steroids exert their beneficial effect via immunosuppressive action, as is the case in some other autoimmune disorders. It is to be hoped that (monoclonal) antibodies and/or T-cell immunotherapy might provide more specific treatment guidelines in the

  1. The CD8 T cell in multiple sclerosis: suppressor cell or mediator of neuropathology?

    PubMed

    Johnson, Aaron J; Suidan, Georgette L; McDole, Jeremiah; Pirko, Istvan

    2007-01-01

    Multiple sclerosis (MS) is the most common human demyelinating disease of the central nervous system. It is universally accepted that the immune system plays a major role in the pathogenesis of MS. For decades, CD4 T cells have been considered the predominant mediator of neuropathology in MS. This perception was largely due to the similarity between MS and CD4 T-cell-driven experimental allergic encephalomyelitis, the most commonly studied murine model of MS. Over the last decade, several new observations in MS research imply an emerging role for CD8 T cells in neuropathogenesis. In certain experimental autoimmune encephalomyelitis (EAE) models, CD8 T cells are considered suppressors of pathology, whereas in other EAE models, neuropathology can be exacerbated by adoptive transfer of CD8 T cells. Studies using the Theiler's murine encephalomyelitis virus (TMEV) model have demonstrated preservation of motor function and axonal integrity in animals deficient in CD8 T cells or their effector molecules. CD8 T cells have also been demonstrated to be important regulators of blood-brain barrier permeability. There is also an emerging role for CD8 T cells in human MS. Human genetic studies reveal an important role for HLA class I molecules in MS susceptibility. In addition, neuropathologic studies demonstrate that CD8 T cells are the most numerous inflammatory infiltrate in MS lesions at all stages of lesion development. CD8 T cells are also capable of damaging neurons and axons in vitro. In this chapter, we discuss the neuropathologic, genetic, and experimental evidence for a critical role of CD8 T cells in the pathogenesis of MS and its most frequently studied animal models. We also highlight important new avenues for future research.

  2. Transcriptional Modulation of the Immune Response by Peroxisome Proliferator-Activated Receptor-α Agonists in Autoimmune Disease1

    PubMed Central

    Gocke, Anne R.; Hussain, Rehana Z.; Yang, Yuhong; Peng, Haiyan; Weiner, Jeffrey; Ben, Li-Hong; Drew, Paul D.; Stuve, Olaf; Lovett-Racke, Amy E.; Racke, Michael K.

    2010-01-01

    Peroxisome proliferator-activated receptor-α (PPARα) agonists have been shown to have a therapeutic benefit in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). In this study, we investigated the mechanism by which the PPARα agonist gemfibrozil induces immune deviation and protects mice from EAE. We demonstrated that treatment with gemfibrozil increases expression of the Th2 transcription factor GATA-3 and decreases expression of the Th1 transcription factor T-bet in vitro and directly ex vivo. These changes correlated with an increase in nuclear PPARα expression. Moreover, the protective effects of PPARα agonists in EAE were shown to be partially dependent on IL-4 and to occur in a receptor-dependent manner. PPARα was demonstrated, for the first time, to regulate the IL-4 and IL-5 genes and to bind the IL-4 promoter in the presence of steroid receptor coactivator-1, indicating that PPARα can directly transactivate the IL-4 gene. Finally, therapeutic administration of PPARα agonists ameliorated clinically established EAE, suggesting that PPARα agonists may provide a treatment option for immune-mediated inflammatory diseases. PMID:19299749

  3. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease.

    PubMed

    Hinks, Timothy S C

    2016-05-01

    Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  4. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse

    PubMed Central

    Miraghazadeh, Bahar; Cook, Matthew C.

    2018-01-01

    NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease. PMID:29686669

  5. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level.

    PubMed

    Nacka-Aleksić, Mirjana; Djikić, Jasmina; Pilipović, Ivan; Stojić-Vukanić, Zorica; Kosec, Duško; Bufan, Biljana; Arsenović-Ranin, Nevena; Dimitrijević, Mirjana; Leposavić, Gordana

    2015-10-01

    Compared with females, male Dark Agouti (DA) rats immunized for experimental autoimmune encephalomyelitis (EAE) with rat spinal cord homogenate in complete Freund's adjuvant (CFA) exhibited lower incidence of the disease, but the maximal neurological deficit was greater in the animals that developed the disease. Consistently, at the peak of the disease greater number of reactivated CD4+CD134+CD45RC- T lymphocytes was retrieved from male rat spinal cord. Their microglia/macrophages were more activated and produced greater amount of prototypic proinflammatory cytokines in vitro. Additionally, oppositely to the expression of mRNAs for IL-12/p35, IL-10 and IL-27/p28, the expression of mRNA for IL-23/p19 was upregulated in male rat spinal cord mononuclear cells. Consequently, the IL-17+:IFN-γ+ cell ratio within T lymphocytes from their spinal cord was skewed towards IL-17+ cells. Within this subpopulation, the IL-17+IFN-γ+:IL-17+IL-10+ cell ratio was shifted towards IL-17+IFN-γ+ cells, which have prominent tissue damaging capacity. This was associated with an upregulated expression of mRNAs for IL-1β and IL-6, but downregulated TGF-β mRNA expression in male rat spinal cord mononuclear cells. The enhanced GM-CSF mRNA expression in these cells supported the greater pathogenicity of IL-17+ T lymphocytes infiltrating male spinal cord. In the inductive phase of the disease, contrary to the draining lymph node, in the spinal cord the frequency of CD134+ cells among CD4+ T lymphocytes and the frequency of IL-17+ cells among T lymphocytes were greater in male than in female rats. This most likely reflected an enhanced transmigration of mononuclear cells into the spinal cord (judging by the lesser spinal cord CXCL12 mRNA expression), the greater frequency of activated microglia/macrophages and the increased expression of mRNAs for Th17 polarizing cytokines in male rat spinal cord mononuclear cells. Collectively, the results showed cellular and molecular mechanisms

  6. The Role of AhR in Autoimmune Regulation and Its Potential as a Therapeutic Target against CD4 T Cell Mediated Inflammatory Disorder

    PubMed Central

    Zhu, Conghui; Xie, Qunhui; Zhao, Bin

    2014-01-01

    AhR has recently emerged as a critical physiological regulator of immune responses affecting both innate and adaptive systems. Since the AhR signaling pathway represents an important link between environmental stimulators and immune-mediated inflammatory disorder, it has become the object of great interest among researchers recently. The current review discusses new insights into the mechanisms of action of a select group of inflammatory autoimmune diseases and the ligand-activated AhR signaling pathway. Representative ligands of AhR, both exogenous and endogenous, are also reviewed relative to their potential use as tools for understanding the role of AhR and as potential therapeutics for the treatment of various inflammatory autoimmune diseases, with a focus on CD4 helper T cells, which play important roles both in self-immune tolerance and in inflammatory autoimmune diseases. Evidence indicating the potential use of these ligands in regulating inflammation in various diseases is highlighted, and potential mechanisms of action causing immune system effects mediated by AhR signaling are also discussed. The current review will contribute to a better understanding of the role of AhR and its signaling pathway in CD4 helper T cell mediated inflammatory disorder. Considering the established importance of AhR in immune regulation and its potential as a therapeutic target, we also think that both further investigation into the molecular mechanisms of immune regulation that are mediated by the ligand-specific AhR signaling pathway, and integrated research and development of new therapeutic drug candidates targeting the AhR signaling pathway should be pursued urgently. PMID:24905409

  7. Paraneoplastic autoimmune movement disorders.

    PubMed

    Lim, Thien Thien

    2017-11-01

    To provide an overview of paraneoplastic autoimmune disorders presenting with various movement disorders. The spectrum of paraneoplastic autoimmune disorders has been expanding with the discovery of new antibodies against cell surface and intracellular antigens. Many of these paraneoplastic autoimmune disorders manifest as a form of movement disorder. With the discovery of new neuronal antibodies, an increasing number of idiopathic or neurodegenerative movement disorders are now being reclassified as immune-mediated movement disorders. These include anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis which may present with orolingual facial dyskinesia and stereotyped movements, CRMP-5 IgG presenting with chorea, anti-Yo paraneoplastic cerebellar degeneration presenting with ataxia, anti-VGKC complex (Caspr2 antibodies) neuromyotonia, opsoclonus-myoclonus-ataxia syndrome, and muscle rigidity and episodic spasms (amphiphysin, glutamic acid decarboxylase, glycine receptor, GABA(A)-receptor associated protein antibodies) in stiff-person syndrome. Movement disorders may be a presentation for paraneoplastic autoimmune disorders. Recognition of these disorders and their common phenomenology is important because it may lead to the discovery of an occult malignancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. How I treat autoimmune lymphoproliferative syndrome

    PubMed Central

    Oliveira, João Bosco

    2011-01-01

    Autoimmune lymphoproliferative syndrome (ALPS) represents a failure of apoptotic mechanisms to maintain lymphocyte homeostasis, permitting accumulation of lymphoid mass and persistence of autoreactive cells that often manifest in childhood with chronic nonmalignant lymphadenopathy, hepatosplenomegaly, and recurring multilineage cytopenias. Cytopenias in these patients can be the result of splenic sequestration as well as autoimmune complications manifesting as autoimmune hemolytic anemia, immune-mediated thrombocytopenia, and autoimmune neutropenia. More than 300 families with hereditary ALPS have now been described; nearly 500 patients from these families have been studied and followed worldwide over the last 20 years by our colleagues and ourselves. Some of these patients with FAS mutations affecting the intracellular portion of the FAS protein also have an increased risk of B-cell lymphoma. The best approaches to diagnosis, follow-up, and management of ALPS, its associated cytopenias, and other complications resulting from infiltrative lymphoproliferation and autoimmunity are presented. This trial was registered at www.clinicaltrial.gov as #NCT00001350. PMID:21885601

  9. Is Multiple Sclerosis an Autoimmune Disease?

    PubMed Central

    Wootla, Bharath; Eriguchi, Makoto; Rodriguez, Moses

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with varied clinical presentations and heterogeneous histopathological features. The underlying immunological abnormalities in MS lead to various neurological and autoimmune manifestations. There is strong evidence that MS is, at least in part, an immune-mediated disease. There is less evidence that MS is a classical autoimmune disease, even though many authors state this in the description of the disease. We show the evidence that both supports and refutes the autoimmune hypothesis. In addition, we present an alternate hypothesis based on virus infection to explain the pathogenesis of MS. PMID:22666554

  10. Zika Virus Causing Encephalomyelitis Associated With Immunoactivation

    PubMed Central

    Galliez, Rafael Mello; Spitz, Mariana; Rafful, Patricia Piazza; Cagy, Marcelo; Escosteguy, Claudia; Germano, Caroline Spósito Brito; Sasse, Elisa; Gonçalves, Alessandro Luis; Silveira, Paola Paz; Pezzuto, Paula; Ornelas, Alice Maria de Magalhães; Tanuri, Amilcar; Aguiar, Renato Santana

    2016-01-01

    Brazil has experienced a Zika virus (ZIKV) outbreak with increased incidence of congenital malformations and neurological manifestations. We describe a case of a 26-year-old Brazilian Caucasian man infected with ZIKV and diagnosed with encephalomyelitis. Brain and spinal cord images showed hyperintense lesions on T2 and fluid-attenuated inversion recovery (FLAIR), and levels of proinflammatory cytokines in the cerebrospinal fluid showed a remarkable increase of interleukin (IL)-6 and IL-8. The observed pattern suggests immune activation during the acute phase, along with the neurological impairment, with normalization in the recovery phase. This is the first longitudinal report of ZIKV infection causing encephalomyelitis with documented immune activation. PMID:28053996

  11. Autoimmune encephalitis and its relation to infection.

    PubMed

    Venkatesan, Arun; Benavides, David R

    2015-03-01

    Encephalitis, an inflammatory condition of the brain that results in substantial morbidity and mortality, has numerous causes. Over the past decade, it has become increasingly recognized that autoimmune conditions contribute significantly to the spectrum of encephalitis causes. Clinical suspicion and early diagnosis of autoimmune etiologies are of particular importance due to the need for early institution of immune suppressive therapies to improve outcome. Emerging clinical observations suggest that the most commonly recognized cause of antibody-mediated autoimmune encephalitis, anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, may in some cases be triggered by herpes virus infection. Other conditions such as Rasmussen's encephalitis (RE) and febrile infection-related epilepsy syndrome (FIRES) have also been posited to be autoimmune conditions triggered by infectious agents. This review focuses on emerging concepts in central nervous system autoimmunity and addresses clinical and mechanistic findings linking autoimmune encephalitis and infections. Particular consideration will be given to anti-NMDA receptor encephalitis and its relation to herpes simplex encephalitis.

  12. T cells targeting a neuronal paraneoplastic antigen mediate tumor rejection and trigger CNS autoimmunity with humoral activation.

    PubMed

    Blachère, Nathalie E; Orange, Dana E; Santomasso, Bianca D; Doerner, Jessica; Foo, Patricia K; Herre, Margaret; Fak, John; Monette, Sébastien; Gantman, Emily C; Frank, Mayu O; Darnell, Robert B

    2014-11-01

    Paraneoplastic neurologic diseases (PND) involving immune responses directed toward intracellular antigens are poorly understood. Here, we examine immunity to the PND antigen Nova2, which is expressed exclusively in central nervous system (CNS) neurons. We hypothesized that ectopic expression of neuronal antigen in the periphery could incite PND. In our C57BL/6 mouse model, CNS antigen expression limits antigen-specific CD4+ and CD8+ T-cell expansion. Chimera experiments demonstrate that this tolerance is mediated by antigen expression in nonhematopoietic cells. CNS antigen expression does not limit tumor rejection by adoptively transferred transgenic T cells but does limit the generation of a memory population that can be expanded upon secondary challenge in vivo. Despite mediating cancer rejection, adoptively transferred transgenic T cells do not lead to paraneoplastic neuronal targeting. Preliminary experiments suggest an additional requirement for humoral activation to induce CNS autoimmunity. This work provides evidence that the requirements for cancer immunity and neuronal autoimmunity are uncoupled. Since humoral immunity was not required for tumor rejection, B-cell targeting therapy, such as rituximab, may be a rational treatment option for PND that does not hamper tumor immunity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The clinical spectrum of autoimmune congenital heart block

    PubMed Central

    Brito-Zerón, Pilar; Izmirly, Peter M.; Ramos-Casals, Manuel; Buyon, Jill P.; Khamashta, Munther A.

    2017-01-01

    Autoimmune congenital heart block (CHB) is an immune-mediated acquired disease that is associated with the placental transference of maternal antibodies specific for Ro and La autoantigens. The disease develops in a fetal heart without anatomical abnormalities that could otherwise explain the block, and which is usually diagnosed in utero, but also at birth or within the neonatal period. Autoantibody-mediated damage of fetal conduction tissues causes inflammation and fibrosis and leads to blockage of signal conduction at the atrioventricular (AV) node. Irreversible complete AV block is the principal cardiac manifestation of CHB, although some babies might develop other severe cardiac complications, such as endocardial fibroelastosis or valvular insufficiency, even in the absence of cardiac block. In this Review, we discuss the epidemiology, classification and management of women whose pregnancies are affected by autoimmune CHB, with a particular focus on the autoantibodies associated with autoimmune CHB and how we should test for these antibodies and diagnose this disease. Without confirmed effective preventive or therapeutic strategies and further research on the aetiopathogenic mechanisms, autoimmune CHB will remain a severe life-threatening disorder. PMID:25800217

  14. Th17 cell cytokine secretion profile in host defense and autoimmunity.

    PubMed

    Graeber, Kristen E; Olsen, Nancy J

    2012-02-01

    The goal of this review is to examine the effector functions of Th17 cells in host defense and autoimmunity. Published literature on Th17 cells was reviewed with a focus on the secreted products that mediate effector activities of these cells. Th17 cells secrete an array of cytokines that contribute to host defense and that bridge the innate and adaptive arms of the immune response. When this subset of T cells is dysregulated, autoimmune phenomena develop that contribute to the manifestations of many autoimmune diseases. Th17 cells are positioned at a crossroads between innate and adaptive immunity and provide mediators that are essential for host defense. Current interest in harnessing this system for treatment of autoimmune disease will be challenged by the need to avoid abrogating these many protective functions.

  15. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Symptoms

    MedlinePlus

    ... Controls Search Form Controls Cancel Submit Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Note: Javascript is disabled or is not supported ... please visit this page: About CDC.gov . ME/CFS What is ME/CFS Possible Causes Symptoms and ...

  16. Microsomal Prostaglandin E Synthase-1 Facilitates an Intercellular Interaction between CD4⁺ T Cells through IL-1β Autocrine Function in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Takemiya, Takako; Takeuchi, Chisen; Kawakami, Marumi

    2017-12-19

    Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E₂ (PGE₂). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES - 1 -deficient ( mPGES-1 -/- ) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4⁺) T cells was extensive, and that PGE₂ receptors EP1-4 were more induced in activated CD4⁺ T cells of wt mice than in those of mPGES - 1 -/- mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4⁺ T cells in wt mice and by 44% and 27% of CD4⁺ T cells in mPGES-1 -/- mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4⁺ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4⁺ T cells by upregulating the autocrine function of IL-1β in activated CD4⁺ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.

  17. Adoptive cell transfer in autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2015-06-01

    Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.

  18. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    PubMed

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  19. Effect of Cordyceps sinensis on the Treatment of Experimental Autoimmune Encephalomyelitis: A Pilot Study on Mice Model.

    PubMed

    Zhong, Shan-Shan; Xiang, Ya-Juan; Liu, Pen-Ju; He, Yang; Yang, Ting-Ting; Wang, Yang-Yang; Rong, A; Zhang, Jun; Liu, Guang-Zhi

    2017-10-05

    As a traditional Chinese medicine, Cordyceps sinensis (CS) possesses a variety of immunoregulatory properties. This study aimed to explore the therapeutic potential of CS in a mice model of multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE). Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35-55to induce EAE, followed by an instant intragastric feeding with a low dosage of CS (low-CS group, n = 5), high dosage of CS (high-CS group, n = 5), or the same volume of normal saline (control group, n = 5). All the mice were observed for clinical assessment. Over the 30 days of CS treatment, flow cytometry was used to detect the frequency of helper T-cell (Th) subsets, Th1 and Th17, and CD4+ CD25+ regulatory T cells in the spleen and lymph nodes. Meanwhile, pathological changes in brain were determined using both hematoxylin-eosin and luxol fast blue staining. Data were analyzed using the one-way analysis of variance (ANOVA). Over the 15 and 30 days of CS treatment, the clinical assessment for EAE demonstrated that both high-CS group (2.51 ± 0.31 and 2.26 ± 0.39 scores, respectively) and low-CS group (2.99 ± 0.40 and 2.69 ± 0.46, respectively) had lower disease severity scores than those of control group (3.57 ± 0.53 and 3.29 ± 0.53, all P < 0.01, respectively). Meanwhile, after 15 and 30 days, the high-CS group (19.18 ± 1.34 g and 20.41 ± 1.56 g, respectively) and low-CS group (18.07 ± 1.18 g and 19.48 ± 1.69 g, respectively) had a lower body weight, as compared with control group (16.85 ± 1.15 g and 18.22 ± 1.63 g, all P < 0.01, respectively). At 30 days post-CS treatment, there was a lower Th1 frequency in the lymph nodes (2.85 ± 1.54% and 2.77 ± 1.07% vs. 5.35 ± 1.34%, respectively; P < 0.05) and spleens (3.96 ± 1.09% and 3.09 ± 0.84% vs. 5.07 ± 1.50%, respectively; P < 0.05) and less inflammatory infiltration and demyelination in the brain of CS-treated mice than that of control group. Our preliminary

  20. Effect of Cordyceps sinensis on the Treatment of Experimental Autoimmune Encephalomyelitis: A Pilot Study on Mice Model

    PubMed Central

    Zhong, Shan-Shan; Xiang, Ya-Juan; Liu, Pen-Ju; He, Yang; Yang, Ting-Ting; Wang, Yang-Yang; Rong, A; Zhang, Jun; Liu, Guang-Zhi

    2017-01-01

    Background: As a traditional Chinese medicine, Cordyceps sinensis (CS) possesses a variety of immunoregulatory properties. This study aimed to explore the therapeutic potential of CS in a mice model of multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE). Methods: Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35–55 to induce EAE, followed by an instant intragastric feeding with a low dosage of CS (low-CS group, n = 5), high dosage of CS (high-CS group, n = 5), or the same volume of normal saline (control group, n = 5). All the mice were observed for clinical assessment. Over the 30 days of CS treatment, flow cytometry was used to detect the frequency of helper T-cell (Th) subsets, Th1 and Th17, and CD4+ CD25+ regulatory T cells in the spleen and lymph nodes. Meanwhile, pathological changes in brain were determined using both hematoxylin-eosin and luxol fast blue staining. Data were analyzed using the one-way analysis of variance (ANOVA). Results: Over the 15 and 30 days of CS treatment, the clinical assessment for EAE demonstrated that both high-CS group (2.51 ± 0.31 and 2.26 ± 0.39 scores, respectively) and low-CS group (2.99 ± 0.40 and 2.69 ± 0.46, respectively) had lower disease severity scores than those of control group (3.57 ± 0.53 and 3.29 ± 0.53, all P < 0.01, respectively). Meanwhile, after 15 and 30 days, the high-CS group (19.18 ± 1.34 g and 20.41 ± 1.56 g, respectively) and low-CS group (18.07 ± 1.18 g and 19.48 ± 1.69 g, respectively) had a lower body weight, as compared with control group (16.85 ± 1.15 g and 18.22 ± 1.63 g, all P < 0.01, respectively). At 30 days post-CS treatment, there was a lower Th1 frequency in the lymph nodes (2.85 ± 1.54% and 2.77 ± 1.07% vs. 5.35 ± 1.34%, respectively; P < 0.05) and spleens (3.96 ± 1.09% and 3.09 ± 0.84% vs. 5.07 ± 1.50%, respectively; P < 0.05) and less inflammatory infiltration and demyelination in the brain of CS-treated mice than that of

  1. A neuro-immune model of Myalgic Encephalomyelitis/Chronic fatigue syndrome.

    PubMed

    Morris, Gerwyn; Maes, Michael

    2013-12-01

    This paper proposes a neuro-immune model for Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). A wide range of immunological and neurological abnormalities have been reported in people suffering from ME/CFS. They include abnormalities in proinflammatory cytokines, raised production of nuclear factor-κB, mitochondrial dysfunctions, autoimmune responses, autonomic disturbances and brain pathology. Raised levels of oxidative and nitrosative stress (O&NS), together with reduced levels of antioxidants are indicative of an immuno-inflammatory pathology. A number of different pathogens have been reported either as triggering or maintaining factors. Our model proposes that initial infection and immune activation caused by a number of possible pathogens leads to a state of chronic peripheral immune activation driven by activated O&NS pathways that lead to progressive damage of self epitopes even when the initial infection has been cleared. Subsequent activation of autoreactive T cells conspiring with O&NS pathways cause further damage and provoke chronic activation of immuno-inflammatory pathways. The subsequent upregulation of proinflammatory compounds may activate microglia via the vagus nerve. Elevated proinflammatory cytokines together with raised O&NS conspire to produce mitochondrial damage. The subsequent ATP deficit together with inflammation and O&NS are responsible for the landmark symptoms of ME/CFS, including post-exertional malaise. Raised levels of O&NS subsequently cause progressive elevation of autoimmune activity facilitated by molecular mimicry, bystander activation or epitope spreading. These processes provoke central nervous system (CNS) activation in an attempt to restore immune homeostatsis. This model proposes that the antagonistic activities of the CNS response to peripheral inflammation, O&NS and chronic immune activation are responsible for the remitting-relapsing nature of ME/CFS. Leads for future research are suggested based on this

  2. Gestational bisphenol-A exposure lowers the threshold for autoimmunity in a model of multiple sclerosis.

    PubMed

    Rogers, James A; Mishra, Manoj K; Hahn, Jennifer; Greene, Catherine J; Yates, Robin M; Metz, Luanne M; Yong, V Wee

    2017-05-09

    Environmental and hormonal factors are implicated in dysimmunity in multiple sclerosis. We investigated whether bisphenol-A, a prominent contaminant with endocrine-disrupting capabilities, altered susceptibility in an inflammatory model of multiple sclerosis. We found that gestational, but not adult, exposure to bisphenol-A increased the development of experimental autoimmune encephalomyelitis in adulthood in male, but not female, mice when a suboptimal disease-inducing immunization was used. Gestational bisphenol-A in male mice primed macrophages in adulthood and raised granulocyte-colony stimulating factor and neutrophil counts/activity postsuboptimal immunization. Neutralizing granulocyte-colony stimulating factor blocked susceptibility to disease in bisphenol-A mice. Early life exposure to bisphenol-A may represent an environmental consideration in multiple sclerosis.

  3. Beta-lactam antibiotics modulate T-cell functions and gene expression via covalent binding to cellular albumin.

    PubMed

    Mor, Felix; Cohen, Irun R

    2013-02-19

    Recent work has suggested that beta-lactam antibiotics might directly affect eukaryotic cellular functions. Here, we studied the effects of commonly used beta-lactam antibiotics on rodent and human T cells in vitro and in vivo on T-cell-mediated experimental autoimmune diseases. We now report that experimental autoimmune encephalomyelitis and adjuvant arthritis were significantly more severe in rats treated with cefuroxime and other beta-lactams. T cells appeared to mediate the effect: an anti-myelin basic protein T-cell line treated with cefuroxime or penicillin was more encephalitogenic in adoptive transfer experiments. The beta-lactam ampicillin, in contrast to cefuroxime and penicillin, did not enhance encephalomyelitis, but did inhibit the autoimmune diabetes developing spontaneously in nonobese diabetic mice. Gene expression analysis of human peripheral blood T cells showed that numerous genes associated with T helper 2 (Th2) and T regulatory (Treg) differentiation were down-regulated in T cells stimulated in the presence of cefuroxime; these genes were up-regulated in the presence of ampicillin. The T-cell protein that covalently bound beta-lactam antibiotics was found to be albumin. Human and rodent T cells expressed albumin mRNA and protein, and penicillin-modified albumin was taken up by rat T cells, leading to enhanced encephalitogenicity. Thus, beta-lactam antibiotics in wide clinical use have marked effects on T-cell behavior; beta-lactam antibiotics can function as immunomodulators, apparently through covalent binding to albumin.

  4. Reproduction of Venezulean Equine Encephalomyelitis Virus at Low Ionic Strength

    DTIC Science & Technology

    1975-02-28

    AD/A-006 206 REPRODUCTION OF VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS AT LOW IONIC STRENGTH T.M. Sokolova, et al Army Medical Research Institute of... Reproduction of Venezuelan equine encephalo- Translation myelitis virus at low ionic strength 6. PERFORM4ING ORG. REPORT NU14BER II!LTT, 0491 7. AUTHOR(a... REPRODUCTION OF VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS AT LOW IONIC STRFNGTH Article by T. M. Sokolova, I. B. Tazulakhova, S. S. Grigoryan and F. I. e v

  5. Ionizing radiation and autoimmunity: Induction of autoimmune disease in mice by high dose fractionated total lymphoid irradiation and its prevention by inoculating normal T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, N.; Sakaguchi, S.; Miyai, K.

    1992-11-01

    Ionizing radiation can functionally alter the immune system and break self-tolerance. High dose (42.5 Gy), fractionated (2.5 Gy 17 times) total lymphoid irradiation (TLI) on mice caused various organ-specific autoimmune diseases, such as gastritis, thyroiditis, and orchitis, depending on the radiation dosages, the extent of lymphoid irradiation, and the genetic background of the mouse strains. Radiation-induced tissue damage is not the primary cause of the autoimmune disease because irradiation of the target organs alone failed to elicit the autoimmunity and shielding of the organs from irradiation was unable to prevent it. In contrast, irradiation of both the thymus and themore » peripheral lymphoid organs/tissues was required for efficient induction of autoimmune disease by TLI. TLI eliminated the majority of mature thymocytes and the peripheral T cells for 1 mo, and inoculation of spleen cell, thymocyte, or bone marrow cell suspensions (prepared from syngeneic nonirradiated mice) within 2 wk after TLI effectively prevented the autoimmune development. Depletion of T cells from the inocula abrogated the preventive activity. CD4[sup +] T cells mediated the autoimmune prevention but CD8[sup +] T cells did not. CD4[sup +] T cells also appeared to mediate the TLI-induced autoimmune disease because CD4[sup +] T cells from disease-bearing TLI mice adoptively transferred the autoimmune disease to syngeneic naive mice. Taken together, these results indicate that high dose, fractionated ionizing radiation on the lymphoid organs/tissues can cause autoimmune disease by affecting the T cell immune system, rather than the target self-Ags, presumably by altering T cell-dependent control of self-reactive T cells. 62 refs., 9 figs., 2 tabs.« less

  6. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2‐interacting mediator knock‐out mice

    PubMed Central

    Wang, Y. M.; Zhang, G. Y.; Wang, Y.; Hu, M.; Zhou, J. J.; Sawyer, A.; Cao, Q.; Wang, Y.; Zheng, G.; Lee, V. W. S.; Harris, D. C. H.

    2017-01-01

    Summary Regulatory T cells (Tregs) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of Tregs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of Tregs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of Tregs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2‐interacting mediator (Bim) knock‐out mice by transient depleting Tregs. Bim is a pro‐apoptotic member of the B cell lymphoma 2 (Bcl‐2) family. Bim knock‐out (Bim–/–) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that Treg depletion in Bim–/– mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild‐type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)−2, IL‐4, IL‐6, IL‐10, IL‐17α, interferon (IFN)‐γ and tumour necrosis factor (TNF)‐α were increased significantly after Treg depletion in Bim–/– mice. This study demonstrates that transient depletion of Tregs leads to enhanced self‐reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim‐deficient mice. PMID:28152566

  7. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease.

    PubMed

    Harbige, L S

    1998-11-01

    Clearly there is much evidence to show that under well-controlled laboratory and dietary conditions fatty acid intake can have profound effects on animal models of autoimmune disease. Studies in human autoimmune disease have been less dramatic; however, human trials have been subject to uncontrolled dietary and genetic backgrounds, infection and other environmental influences, and basic trial designs have been inadequate. The impact of dietary fatty acids on animal autoimmune disease models appears to depend on the animal model and the type and amount of fatty acids fed. Diets low in fat, essential fatty acid-deficient, or high in n-3 fatty acids from fish oils increase the survival and reduce disease severity in spontaneous autoantibody-mediated disease, whilst linoleic acid-rich diets appear to increase disease severity. In experimentally-induced T-cell-mediated autoimmune disease, essential fatty acid-deficient diets or diets supplemented with n-3 fatty acids appear to augment disease, whereas n-6 fatty acids prevent or reduce the severity. In contrast, in both T-cell and antibody-mediated auto-immune disease the desaturated and elongated metabolites of linoleic acid are protective. Suppression of autoantibody and T lymphocyte proliferation, apoptosis of autoreactive lymphocytes, and reduced pro-inflammatory cytokine production by high-dose fish oils are all likely mechanisms by which n-3 fatty acids ameliorate autoimmune disease. However, these could be undesirable long-term effects of high-dose fish oil which may compromise host immunity. The protective mechanism(s) of n-6 fatty acids in T-cell- mediated autoimmune disease are less clear, but may include dihomo-gamma-linolenic acid- and arachidonic acid-sensitive immunoregulatory circuits such as Th1 responses, TGF beta 1-mediated effects and Th3-like responses. It is often claimed that n-6 fatty acids promote autoimmune and inflammatory disease based on results obtained with linoleic acid only. It should be

  8. IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci

    PubMed Central

    2012-01-01

    Background Murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, presents typically as ascending paralysis. However, in mice in which interferon-gamma (IFNγ) signaling is disrupted by genetic deletion, limb paralysis is accompanied by atypical deficits, including head tilt, postural imbalance, and circling, consistent with cerebellar/vestibular dysfunction. This was previously attributed to intense cerebellar and brainstem infiltration by peripheral immune cells and formation of neutrophil-rich foci within the CNS. However, the exact mechanism by which IFNγ signaling prohibits the development of vestibular deficits, and whether the distribution and composition of inflammatory foci within the CNS affects the course of atypical EAE remains elusive. Methods We induced EAE in IFNγ-/- mice and bone marrow chimeric mice in which IFNγR is not expressed in the CNS but is intact in the periphery (IFNγRCNSKO) and vice versa (IFNγRperiKO). Blood-brain barrier permeability was determined by Evans blue intravenous administration at disease onset. Populations of immune cell subsets in the periphery and the CNS were quantified by flow cytometry. CNS tissues isolated at various time points after EAE induction, were analyzed by immunohistochemistry for composition of inflammatory foci and patterns of axonal degeneration. Results Incidence and severity of atypical EAE were more pronounced in IFNγRCNSKO as compared to IFNγRperiKO mice. Contrary to what we anticipated, cerebella/brainstems of IFNγRCNSKO mice were only minimally infiltrated, while the same areas of IFNγRperiKO mice were extensively populated by peripheral immune cells. Furthermore, the CNS of IFNγRperiKO mice was characterized by persistent neutrophil-rich foci as compared to IFNγRCNSKO. Immunohistochemical analysis of the CNS of IFNγ-/- and IFNγR chimeric mice revealed that IFNγ protective actions are exerted through microglial STAT1. Conclusions Alterations in

  9. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation.

    PubMed

    Veremeyko, Tatyana; Yung, Amanda W Y; Dukhinova, Marina; Kuznetsova, Inna S; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S; Ponomarev, Eugene D

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro , suggesting prevalence of indirect effect of Forskolin on differentiation and

  10. Zuo-Gui and You-Gui pills, two traditional Chinese herbal formulas, downregulated the expression of NogoA, NgR, and RhoA in rats with experimental autoimmune encephalomyelitis.

    PubMed

    Kou, Shuang; Zheng, Qi; Wang, Yizhou; Zhao, Hui; Zhang, Qiuxia; Li, Ming; Qi, Fang; Fang, Ling; Liu, Lei; Ouyang, Junyao; Zhao, Haiyu; Wang, Lei

    2014-12-02

    Zuo-Gui pills (ZGPs) and You-Gui pills (YGPs) are 2 traditional Chinese herbal formulas used for treating multiple sclerosis (MS) in the clinical setting and have been shown to have neuroprotective effects in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The aim of this study was to explore the mechanisms underlying the neuroprotective functions of ZGPs and YGPs. Female Lewis rats were randomly divided into normal control, EAE model, 2g/kg ZGP-treated EAE, 3g/kg YGP-treated EAE, and prednisone acetate-treated groups. EAE model was induced by subcutaneous injection of MBP68-86 antigen. The neurological function scores were estimated. Histological structures of the brains and spinal cords were observed, and myelinated and axons imaged. NogoA, Nogo receptor (NgR), and RhoA transcript and protein levels were measured by real-time quantitative RT-PCR and western blotting on postimmunization (PI) days 14 (acute stage) and 28 (remission stage). ZGPs and YGPs significantly reduced neurological functions scores and abrogated inflammatory infiltrates, demyelination, and axonal damage. Furthermore, treatment with ZGPs and YGPs inhibited NogoA, NgR, and RhoA mRNA and protein expression in rats at both the acute and remission stages. ZGPs exhibited stronger effects on NogoA and RhoA expressions, as well as neurological function, during the acute stage of EAE, while YGPs caused greater reductions in NogoA expression during the remission stage. Our findings suggested that ZGPs and YGPs exerted neuroprotective effects by downregulation of NogoA, NgR, and RhoA pathways, with differences in response times and targets observed between ZGPs and YGPs. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis.

    PubMed

    Hirota, Keiji; Hashimoto, Motomu; Ito, Yoshinaga; Matsuura, Mayumi; Ito, Hiromu; Tanaka, Masao; Watanabe, Hitomi; Kondoh, Gen; Tanaka, Atsushi; Yasuda, Keiko; Kopf, Manfred; Potocnik, Alexandre J; Stockinger, Brigitta; Sakaguchi, Noriko; Sakaguchi, Shimon

    2018-06-19

    Despite the importance of Th17 cells in autoimmune diseases, it remains unclear how they control other inflammatory cells in autoimmune tissue damage. Using a model of spontaneous autoimmune arthritis, we showed that arthritogenic Th17 cells stimulated fibroblast-like synoviocytes via interleukin-17 (IL-17) to secrete the cytokine GM-CSF and also expanded synovial-resident innate lymphoid cells (ILCs) in inflamed joints. Activated synovial ILCs, which expressed CD25, IL-33Ra, and TLR9, produced abundant GM-CSF upon stimulation by IL-2, IL-33, or CpG DNA. Loss of GM-CSF production by either ILCs or radio-resistant stromal cells prevented Th17 cell-mediated arthritis. GM-CSF production by Th17 cells augmented chronic inflammation but was dispensable for the initiation of arthritis. We showed that GM-CSF-producing ILCs were present in inflamed joints of rheumatoid arthritis patients. Thus, a cellular cascade of autoimmune Th17 cells, ILCs, and stromal cells, via IL-17 and GM-CSF, mediates chronic joint inflammation and can be a target for therapeutic intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Experimental autoimmune hearing loss

    PubMed Central

    Billings, Peter

    2004-01-01

    Understanding of autoimmune sensorineural hearing loss (ASNHL) has been hindered by the inaccessibility of the inner ear to biopsy and the lack of workable animal models. A report in this issue of the JCI describes a mouse model of CD4+ T cell–mediated ASNHL induced by immunization with peptides from the inner ear–specific proteins cochlin and β-tectorin. PMID:15085190

  13. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity

    PubMed Central

    Bearoff, Frank; del Rio, Roxana; Case, Laure K.; Dragon, Julie A.; Nguyen-Vu, Trang; Lin, Chin-Yo; Blankenhorn, Elizabeth P.; Teuscher, Cory; Krementsov, Dimitry N.

    2016-01-01

    Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases, such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naïve immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific, and sex-specific. Bioinformatic analysis of the genetically-controlled transcript networks reveals reduced cell type-specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared to PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease. PMID:27653816

  14. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways.

    PubMed

    Zhao, Ke; Du, Juan; Peng, Yanfeng; Li, Peng; Wang, Shaohua; Wang, Yu; Hou, Jingwei; Kang, Jian; Zheng, Wenwen; Hua, Shucheng; Yu, Xiao-Fang

    2018-06-01

    Improper host immune activation leads to the development of the autoimmune disease Aicardi-Goutières syndrome (AGS), which is attributed to defined genetic mutations in such proteins as TREX1 and ADAR1. The mechanism of immune activation in AGS patients has not been thoroughly elucidated to date. In this study, we report that endogenous LINE1 components trigger IFNβ production in multiple human cell types, including those defective for cGAS/STING-mediated DNA sensing. In these cells, LINE1 DNA synthesis and retrotransposition were not required for LINE1-triggered immune activation, but RNA sensing pathways were essential. LINE1-triggered immune activation could be suppressed by diverse LINE1 inhibitors, including AGS-associated proteins targeting LINE1 RNA or proteins. However, AGS-associated ADAR1 or TREX1 mutants were defective in suppressing LINE1 retrotransposition or LINE1-triggered immune activation. Therefore, we have revealed a new function for LINE1 as an endogenous trigger of innate immune activation, which is important for understanding the molecular basis of IFN-based autoimmune diseases and may offer new intervention strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Prevention and diminished expression of experimental autoimmune encephalomyelitis by low dose naltrexone (LDN) or opioid growth factor (OGF) for an extended period: Therapeutic implications for multiple sclerosis.

    PubMed

    Rahn, Kristen A; McLaughlin, Patricia J; Zagon, Ian S

    2011-03-24

    Endogenous opioids inhibit the onset and progression of experimental autoimmune encephalomyelitis (EAE) with 30days of treatment. This study examined the long term effects of the opioid growth factor (OGF, [Met(5)]-enkephalin) and a low dose of the opioid antagonist naltrexone (LDN) on expression of myelin oligodendrocyte glycoprotein (MOG)-induced EAE. C57BL/6 mice began receiving daily injections of 10mg/kg OGF (MOG+OGF), 0.1mg/kg naltrexone (MOG+LDN), or saline (MOG+Vehicle) at the time of EAE induction and continuing for 60days. In contrast to 100% of the MOG+Vehicle group with behavioral symptoms of EAE, 63% and 68% of the MOG+OGF and MOG+LDN mice expressed disease. Both severity and disease indices of EAE in OGF- and LDN-treated mice were notably decreased from MOG+Vehicle cohorts. By day 60, 6- and 3-fold more animals in the MOG+OGF and MOG+LDN groups, respectively, had a remission compared to MOG+Vehicle mice. Neuropathological studies revealed i) astrocyte activation and neuronal damage as early as day 10 (prior to behavioral symptoms) in all MOG-injected groups, ii) a significant reduction of activated astrocytes in MOG+OGF and MOG+LDN groups compared to MOG+Vehicle mice at day 30, and iii) no demyelination on day 60 in mice treated with OGF or LDN and not displaying disease symptoms. These results indicate that treatment with OGF or LDN had no deleterious long-term repercussions and did not exacerbate EAE, but i) halted progression of disease, ii) reversed neurological deficits, and iii) prevented the onset of neurological dysfunction across a considerable span of time. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Autoimmune Encephalitis: Pathophysiology and Imaging Review of an Overlooked Diagnosis.

    PubMed

    Kelley, B P; Patel, S C; Marin, H L; Corrigan, J J; Mitsias, P D; Griffith, B

    2017-06-01

    Autoimmune encephalitis is a relatively new category of immune-mediated disease involving the central nervous system that demonstrates a widely variable spectrum of clinical presentations, ranging from the relatively mild or insidious onset of cognitive impairment to more complex forms of encephalopathy with refractory seizure. Due to its diverse clinical features, which can mimic a variety of other pathologic processes, autoimmune encephalitis presents a diagnostic challenge to clinicians. Imaging findings in patients with these disorders can also be quite variable, but recognizing characteristic findings within limbic structures suggestive of autoimmune encephalitis can be a key step in alerting clinicians to the potential diagnosis and ensuring a prompt and appropriate clinical work-up. In this article, we review antibody-mediated encephalitis and its various subtypes with a specific emphasis on the role of neuroimaging in the diagnostic work-up. © 2017 by American Journal of Neuroradiology.

  17. Toxicogenomic analysis reveals profibrogenic effects of trichloroethylene in autoimmune-mediated cholangitis in mice.

    PubMed

    Kopec, Anna K; Sullivan, Bradley P; Kassel, Karen M; Joshi, Nikita; Luyendyk, James P

    2014-10-01

    Epidemiological studies suggest that exposure to environmental chemicals increases the risk of developing autoimmune liver disease. However, the identity of specific chemical perpetrators and the mechanisms whereby environmental chemicals modify liver disease is unclear. Previous studies link exposure to trichloroethylene (TCE) with the development of autoimmune liver disease and exacerbation of autoimmunity in lupus-prone MRL mice. In this study, we utilized NOD.c3c4 mice, which spontaneously develop autoimmune cholangitis bearing resemblance to some features of primary biliary cirrhosis. Nine-week-old female NOD.c3c4 mice were given TCE (0.5 mg/ml) or its vehicle (1% Cremophor-EL) in drinking water for 4 weeks. TCE had little effect on clinical chemistry, biliary cyst formation, or hepatic CD3+ T-cell accumulation. Hepatic microarray profiling revealed a dramatic suppression of early growth response 1 (EGR1) mRNA in livers of TCE-treated mice, which was verified by qPCR and immunohistochemical staining. Consistent with a reported link between reduced EGR1 expression and liver fibrosis, TCE increased hepatic type I collagen (COL1A1) mRNA and protein levels in livers of NOD.c3c4 mice. In contrast, TCE did not increase COL1A1 expression in NOD.ShiLtJ mice, which do not develop autoimmune cholangitis. These results suggest that in the context of concurrent autoimmune liver disease with a genetic basis, modification of hepatic gene expression by TCE may increase profibrogenic signaling in the liver. Moreover, these studies suggest that NOD.c3c4 mice may be a novel model to study gene-environment interactions critical for the development of autoimmune liver disease. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Research Techniques Made Simple: Mouse Models of Autoimmune Blistering Diseases.

    PubMed

    Pollmann, Robert; Eming, Rüdiger

    2017-01-01

    Autoimmune blistering diseases are examples of autoantibody-mediated, organ-specific autoimmune disorders. Based on a genetic susceptibility, such as a strong HLA-class II association, as yet unknown triggering factors induce the formation of circulating and tissue-bound autoantibodies that are mainly directed against adhesion structures of the skin and mucous membranes. Compared with other autoimmune diseases, especially systemic disorders, the pathogenicity of autoimmune blistering diseases is relatively well described. Several animal models of autoimmune blistering diseases have been established that helped to uncover the immunological and molecular mechanisms underlying the blistering phenotypes. Each in vivo model focuses on specific aspects of the autoimmune cascade, from loss of immunological tolerance on the level of T and B cells to the pathogenic effects of autoantibodies upon binding to their target autoantigen. We discuss current mouse models of autoimmune blistering diseases, including models of pemphigus vulgaris, bullous pemphigoid, epidermolysis bullosa acquisita, and dermatitis herpetiformis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Human neutrophils in auto-immunity.

    PubMed

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression.

    PubMed

    Hao, Zhenyue; Sheng, Yi; Duncan, Gordon S; Li, Wanda Y; Dominguez, Carmen; Sylvester, Jennifer; Su, Yu-Wen; Lin, Gloria H Y; Snow, Bryan E; Brenner, Dirk; You-Ten, Annick; Haight, Jillian; Inoue, Satoshi; Wakeham, Andrew; Elford, Alisha; Hamilton, Sara; Liang, Yi; Zúñiga-Pflücker, Juan C; He, Housheng Hansen; Ohashi, Pamela S; Mak, Tak W

    2017-01-13

    T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8 + T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo.

  1. Exploring the interplay between autoimmunity and cancer to find the target therapeutic hotspots.

    PubMed

    Kumar, Neeraj; Chugh, Heerak; Tomar, Ravi; Tomar, Vartika; Singh, Vimal Kishor; Chandra, Ramesh

    2018-06-01

    Autoimmunity arises when highly active immune responses are developed against the tissues or substances of one's own body. It is one of the most prevalent disorders among the old-age population with prospects increasing with age. The major cause of autoimmunity and associated diseases is the dysregulation of host immune surveillance. Impaired repairment of immune system and apoptosis regulation can be seen as major landmarks in autoimmune disorders such as the mutation of p53 gene which results in rheumatoid arthritis, bowel disease which consequently lead to tissue destruction, inflammation and dysfunctioning of body organs. Cytokines mediated apoptosis and proliferation of cells plays a regulatory role in cell cycle and further in cancer development. Anti-TNF therapy, Treg therapy and stem cell therapy have been used for autoimmune diseases, however, with the increase in the use of immunomodulatory therapies and their development for autoimmune diseases and cancer, the understanding of human immune system tends to become an increasing requirement. Hence, the findings associated with the relationship between autoimmune diseases and cancer may prove to be beneficial for the improvement in the health of suffering patients. Here in, we are eliciting the underlying mechanisms which result in autoimmune disorders causing the onset of cancer, exploration of interactome to find the pathways which are mutual to both, and recognition of hotspots which might play important role in autoimmunity mediated therapeutics with different therapies such as anti-TNF therapy, Treg therapy and stem cell therapy.

  2. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity

    PubMed Central

    Ifergan, Igal; Davidson, Todd S.; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M.; Hunter, Zoe N.; Pittet, Camille L.; Beddow, Sara; Jones, Clare A.; Prat, Alexandre; Sleeman, Matthew A.; Miller, Stephen D.

    2017-01-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα+ myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. PMID:28641926

  3. [Autoimmune thyroid disease and other non-endocrine autoimmune diseases].

    PubMed

    Dilas, Ljiljana Todorović; Icin, Tijana; Paro, Jovanka Novaković; Bajkin, Ivana

    2011-01-01

    Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. AUTOIMMNUNE THYROID DISEASE AND OTHER ORGAN SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. AUTOIMMUNE THYROID DISEASE AND OTHER ORGAN NON-SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Otherwise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  4. Sex-specific control of CNS autoimmunity by p38 MAPK signaling in myeloid cells

    PubMed Central

    Krementsov, Dimitry N.; Noubade, Rajkumar; Dragon, Julie A.; Otsu, Kinya; Rincon, Mercedes; Teuscher, Cory

    2013-01-01

    Objective Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS), characterized by a global increasing incidence driven by relapsing-remitting disease in females. p38 MAP kinase (MAPK) has been described as a key regulator of inflammatory responses in autoimmunity, but its role in the sexual dimorphism in MS or MS models remains unexplored. Methods Toward this end, we used experimental autoimmune encephalomyelitis (EAE), the principal animal model of MS, combined with pharmacologic and genetic inhibition of p38 MAPK activity and transcriptomic analyses. Results Pharmacologic inhibition of p38 MAPK selectively ameliorated EAE in female mice. Conditional deletion studies demonstrated that p38α signaling in macrophages/myeloid cells, but not T cells or dendritic cells, recapitulated this sexual dimorphism. Analysis of CNS inflammatory infiltrates showed that female, but not male mice lacking p38α in myeloid cells exhibited reduced immune cell activation compared with controls, while peripheral T cell priming was unaffected in both sexes. Transcriptomic analyses of myeloid cells revealed differences in p38α-controlled transcripts comprising female- and male-specific gene modules, with greater p38α dependence of pro-inflammatory gene expression in females. Interpretation Our findings demonstrate a key role for p38α in myeloid cells in CNS autoimmunity and uncover important molecular mechanisms underlying sex differences in disease pathogenesis. Taken together, our results suggest that the p38 MAPK signaling pathway represents a novel target for much needed disease modifying therapies for MS. PMID:24027119

  5. Autoimmune Addison's disease - An update on pathogenesis.

    PubMed

    Hellesen, Alexander; Bratland, Eirik; Husebye, Eystein S

    2018-06-01

    Autoimmunity against the adrenal cortex is the leading cause of Addison's disease in industrialized countries, with prevalence estimates ranging from 93-220 per million in Europe. The immune-mediated attack on adrenocortical cells cripples their ability to synthesize vital steroid hormones and necessitates life-long hormone replacement therapy. The autoimmune disease etiology is multifactorial involving variants in immune genes and environmental factors. Recently, we have come to appreciate that the adrenocortical cell itself is an active player in the autoimmune process. Here we summarize the complex interplay between the immune system and the adrenal cortex and highlight unanswered questions and gaps in our current understanding of the disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Autoimmunity and autoimmune co-morbidities in psoriasis.

    PubMed

    Furue, Kazuhisa; Ito, Takamichi; Tsuji, Gaku; Kadono, Takafumi; Nakahara, Takeshi; Furue, Masutaka

    2018-05-01

    Psoriasis is characterized by widespread scaly erythematous plaques that cause significant physical and psychological burdens for the affected individuals. Accelerated inflammation driven by the tumour necrosis factor-α/interleukin-23/interleukin-17 axis is now known to be the major mechanism in the development of psoriasis. In addition, psoriasis has an autoimmune nature that manifests as autoreactive T cells and is co-morbid with other autoimmune diseases, such as autoimmune bullous diseases, vitiligo, alopecia and thyroiditis. In this article, we review the recent topics on autoimmunity and autoimmune co-morbidities in psoriasis. © 2018 John Wiley & Sons Ltd.

  7. Soluble Tumor Necrosis Factor Receptor 1 Released by Skin-Derived Mesenchymal Stem Cells Is Critical for Inhibiting Th17 Cell Differentiation

    PubMed Central

    Ke, Fang; Zhang, Lingyun; Liu, Zhaoyuan; Yan, Sha; Xu, Zhenyao; Bai, Jing; Zhu, Huiyuan; Lou, Fangzhou; Cai, Wei; Sun, Yang; Gao, Yuanyuan; Wang, Hong

    2016-01-01

    T helper 17 (Th17) cells play an important role in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Th17 cell differentiation from naïve T cells can be induced in vitro by the cytokines transforming growth factor β1 and interleukin-6. However, it remains unclear whether other regulatory factors control the differentiation of Th17 cells. Mesenchymal stem cells (MSCs) have emerged as a promising candidate for inhibiting Th17 cell differentiation and autoimmune diseases. Despite the fact that several molecules have been linked to the immunomodulatory function of MSCs, many other key MSC-secreted regulators that are involved in inhibiting Th17 cell polarization are ill-defined. In this study, we demonstrated that the intraperitoneal administration of skin-derived MSCs (S-MSCs) substantially ameliorated the development of EAE in mice. We found that the proinflammatory cytokine tumor necrosis factor (TNF)-α, a key mediator in the pathophysiology of MS and EAE, was capable of promoting Th17 cell differentiation. Moreover, under inflammatory conditions, we demonstrated that S-MSCs produced high amounts of soluble TNF receptor 1 (sTNFR1), which binds TNF-α and antagonizes its function. Knockdown of sTNFR1 in S-MSCs decreased their inhibitory effect on Th17 cell differentiation ex vivo and in vivo. Thus, our data identified sTNFR1 and its target TNF-α as critical regulators for Th17 cell differentiation, suggesting a previously unrecognized mechanism for MSC therapy in Th17-mediated autoimmune diseases. Significance This study showed that administration of skin-derived mesenchymal stem cells (S-MSCs) was able to alleviate the clinical score of experimental autoimmune encephalomyelitis by inhibiting the differentiation of T helper 17 (Th17) cells. Tumor necrosis factor (TNF)-α is a critical cytokine for promoting Th17 cell differentiation. It was discovered that activated S-MSCs produced high amount of soluble TNF receptor 1

  8. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation

    PubMed Central

    Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Kuznetsova, Inna S.; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S.; Ponomarev, Eugene D.

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and

  9. B-Cell Maturation Antigen, A Proliferation-Inducing Ligand, and B-Cell Activating Factor Are Candidate Mediators of Spinal Cord Injury-Induced Autoimmunity

    PubMed Central

    Saltzman, Jonah W.; Battaglino, Ricardo A.; Salles, Loise; Jha, Prateek; Sudhakar, Supreetha; Garshick, Eric; Stott, Helen L.; Zafonte, Ross

    2013-01-01

    Abstract Autoimmunity is thought to contribute to poor neurological outcomes after spinal cord injury (SCI). There are few mechanism-based therapies, however, designed to reduce tissue damage and neurotoxicity after SCI because the molecular and cellular bases for SCI-induced autoimmunity are not completely understood. Recent groundbreaking studies in rodents indicate that B cells are responsible for SCI-induced autoimmunity. This novel paradigm, if confirmed in humans, could aid in the design of neuroprotective immunotherapies. The aim of this study was to investigate the molecular signaling pathways and mechanisms by which autoimmunity is induced after SCI, with the goal of identifying potential targets in therapies designed to reduce tissue damage and inflammation in the chronic phase of SCI. To that end, we performed an exploratory microarray analysis of peripheral blood mononuclear cells to identify differentially expressed genes in chronic SCI. We identified a gene network associated with lymphoid tissue structure and development that was composed of 29 distinct molecules and five protein complexes, including two cytokines, a proliferation-inducing ligand (APRIL) and B-cell–activating factor (BAFF), and one receptor, B-cell maturation antigen (BMCA) involved in B cell development, proliferation, activation, and survival. Real-time polymerase chain reaction analysis from ribonucleic acid samples confirmed upregulation of these three genes in SCI. To our knowledge, this is the first report that peripheral blood mononuclear cells produce increased levels of BAFF and APRIL in chronic SCI. This finding provides evidence of systemic regulation of SCI-autoimmunity via APRIL and BAFF mediated activation of B cells through BMCA and points toward these molecules as potential targets of therapies designed to reduce neuroinflammation after SCI. PMID:23088438

  10. Emerging role of IL-35 in inflammatory autoimmune diseases.

    PubMed

    Su, Lin-Chong; Liu, Xiao-Yan; Huang, An-Fang; Xu, Wang-Dong

    2018-05-03

    Interleukin 35 (IL-35) is the recently identified member of the IL-12 family of cytokines and provides the possibility to be a target for new therapies for autoimmune, inflammatory diseases. It is composed of an α chain (p35) and a β chain (EBI3). IL-35 mediates signaling by binding to its receptors, activates subsequent signaling pathways, and therefore, regulates the differentiation, function of T, B cells, macrophages, dendritic cells. Recent findings have shown abnormal expression of IL-35 in inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, type 1 diabetes, psoriasis, multiple sclerosis, autoimmune hepatitis, experimental autoimmune uveitis. In addition, functional analysis suggested that IL-35 is critical in the onset and development of these diseases. Therefore, the present study will systematically review what had been occurred regarding IL-35 in inflammatory autoimmune disease. The information collected will help to understand the biologic role of IL-35 in immune cells, and give information about the therapeutic potential of IL-35 in these diseases. Copyright © 2018. Published by Elsevier B.V.

  11. Inotuzumab Ozogamicin Murine Analog–Mediated B-Cell Depletion Reduces Anti-islet Allo- and Autoimmune Responses

    PubMed Central

    Carvello, Michele; Petrelli, Alessandra; Vergani, Andrea; Lee, Kang Mi; Tezza, Sara; Chin, Melissa; Orsenigo, Elena; Staudacher, Carlo; Secchi, Antonio; Dunussi-Joannopoulos, Kyri; Sayegh, Mohamed H.; Markmann, James F.; Fiorina, Paolo

    2012-01-01

    B cells participate in the priming of the allo- and autoimmune responses, and their depletion can thus be advantageous for islet transplantation. Herein, we provide an extensive study of the effect of B-cell depletion in murine models of islet transplantation. Islet transplantation was performed in hyperglycemic B-cell–deficient(μMT) mice, in a purely alloimmune setting (BALB/c into hyperglycemic C57BL/6), in a purely autoimmune setting (NOD.SCID into hyperglycemic NOD), and in a mixed allo-/autoimmune setting (BALB/c into hyperglycemic NOD). Inotuzumab ozogamicin murine analog (anti-CD22 monoclonal antibody conjugated with calicheamicin [anti-CD22/cal]) efficiently depleted B cells in all three models of islet transplantation examined. Islet graft survival was significantly prolonged in B-cell–depleted mice compared with control groups in transplants of islets from BALB/c into C57BL/6 (mean survival time [MST]: 16.5 vs. 12.0 days; P = 0.004), from NOD.SCID into NOD (MST: 23.5 vs. 14.0 days; P = 0.03), and from BALB/c into NOD (MST: 12.0 vs. 5.5 days; P = 0.003). In the BALB/c into B-cell–deficient mice model, islet survival was prolonged as well (MST: μMT = 32.5 vs. WT = 14 days; P = 0.002). Pathology revealed reduced CD3+ cell islet infiltration and confirmed the absence of B cells in treated mice. Mechanistically, effector T cells were reduced in number, concomitant with a peripheral Th2 profile skewing and ex vivo recipient hyporesponsiveness toward donor-derived antigen as well as islet autoantigens. Finally, an anti-CD22/cal and CTLA4-Ig–based combination therapy displayed remarkable prolongation of graft survival in the stringent model of islet transplantation (BALB/c into NOD). Anti-CD22/cal–mediated B-cell depletion promotes the reduction of the anti-islet immune response in various models of islet transplantation. PMID:22076927

  12. Coupling of Peripheral Tolerance to Endogenous Interleukin 10 Promotes Effective Modulation of Myelin-Activated T Cells and Ameliorates Experimental Allergic Encephalomyelitis

    PubMed Central

    Legge, Kevin L.; Min, Booki; Bell, J. Jeremiah; Caprio, Jacque C.; Li, Lequn; Gregg, Randal K.; Zaghouani, Habib

    2000-01-01

    Several immune-based approaches are being considered for modulation of inflammatory T cells and amelioration of autoimmune diseases. The most recent strategies include simulation of peripheral self-tolerance by injection of adjuvant free antigen, local delivery of cytokines by genetically altered T cells, and interference with the function of costimulatory molecules. Although promising results have been obtained from these studies that define mechanisms of T cell modulation, efficacy, practicality, and toxicity, concerns remain unsolved, thereby justifying further investigations to define alternatives for effective downregulation of aggressive T cells. In prior studies, we demonstrated that an immunoglobulin (Ig) chimera carrying the encephalitogenic proteolipid protein (PLP)1 peptide corresponding to amino acid sequence 139–151 of PLP, Ig-PLP1, is presented to T cells ∼100-fold better than free PLP1. Here, we demonstrate that aggregation endows Ig-PLP1 with an additional feature, namely, induction of interleukin (IL)-10 production by macrophages and dendritic cells, both of which are antigen-presenting cells (APCs). These functions synergize in vivo and drive effective modulation of autoimmunity. Indeed, it is shown that animals with ongoing active experimental allergic encephalomyelitis dramatically reduce the severity of their paralysis when treated with adjuvant free aggregated Ig-PLP1. Moreover, IL-10 displays bystander antagonism on unrelated autoreactive T cells, allowing for reversal of disease involving multiple epitopes. Therefore, aggregated Ig-PLP1 likely brings together a peripheral T cell tolerance mechanism emanating from peptide presentation by APCs expressing suboptimal costimulatory molecules and IL-10 bystander suppression to drive a dual-modal T cell modulation system effective for reversal of autoimmunity involving several epitopes and diverse T cell specificities. PMID:10859329

  13. Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    PubMed Central

    Yamada, Akiko; Ishimaru, Naozumi; Arakaki, Rieko; Katunuma, Nobuhiko; Hayashi, Yoshio

    2010-01-01

    Background Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes. PMID:20877570

  14. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  15. Achalasia and thyroid disease: possible autoimmune connection?

    PubMed

    Quidute, Ana Rosa P; Freitas, Eduardo Vasconcelos de; Lima, Tadeu Gonçalves de; Feitosa, Ana Márcia Lima; Santos, Joyce Paiva dos; Correia, José Walter

    2012-12-01

    Many cases have been published showing a co-existence of autoimmune thyroid diseases (AITDs) and other autoimmune diseases. About a quarter of patients with achalasia have a concurrent thyroid disease, most commonly associated with hypothyroidism. Although relatively rare, the association of achalasia and hyperthyroidism requires attention. The physiopathology of Grave's Disease (GD) involves B- and T-mediator lymphocytes, which have an affinity for known thyroid antigens: thyroglobulin, thyroid-peroxidase, and thyrotrophin receptor. Currently, however, the real physiopathogenesis of achalasia continues to be unknown. Some important findings are suggestive of an autoimmune mechanism: significant infiltration of the myoenteric plexus by monocytes, presence of the class II-Human Histocompatibility Complex DQwl antigen and antibodies to myoenteric neurons. The present case reports a patient who, despite testing negative for Chagas' disease, had achalasia, progressed to developing significant wasting and worsening of his quality of life, was later diagnosed with hyperthyroidism. After endoscopic esophageal dilatation and radioiodine ablation of the thyroid gland, there was great improvement in the patient clinical condition.

  16. Current knowledge on psoriasis and autoimmune diseases

    PubMed Central

    Ayala-Fontánez, Nilmarie; Soler, David C; McCormick, Thomas S

    2016-01-01

    Psoriasis is a prevalent, chronic inflammatory disease of the skin, mediated by crosstalk between epidermal keratinocytes, dermal vascular cells, and immunocytes such as antigen presenting cells (APCs) and T cells. Exclusive cellular “responsibility” for the induction and maintenance of psoriatic plaques has not been clearly defined. Increased proliferation of keratinocytes and endothelial cells in conjunction with APC/T cell/monocyte/macrophage inflammation leads to the distinct epidermal and vascular hyperplasia that is characteristic of lesional psoriatic skin. Despite the identification of numerous susceptibility loci, no single genetic determinant has been identified as responsible for the induction of psoriasis. Thus, numerous other triggers of disease, such as environmental, microbial and complex cellular interactions must also be considered as participants in the development of this multifactorial disease. Recent advances in therapeutics, especially systemic so-called “biologics” have provided new hope for identifying the critical cellular targets that drive psoriasis pathogenesis. Recent recognition of the numerous co-morbidities and other autoimmune disorders associated with psoriasis, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus suggest common signaling elements and cellular mediators may direct disease pathogenesis. In this review, we discuss common cellular pathways and participants that mediate psoriasis and other autoimmune disorders that share these cellular signaling pathways. PMID:29387591

  17. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    PubMed

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  18. Diffusion Tensor Imaging as a Biomarker to Differentiate Acute Disseminated Encephalomyelitis From Multiple Sclerosis at First Demyelination.

    PubMed

    Aung, Wint Yan; Massoumzadeh, Parinaz; Najmi, Safa; Salter, Amber; Heaps, Jodi; Benzinger, Tammie L S; Mar, Soe

    2018-01-01

    There are no clinical features or biomarkers that can reliably differentiate acute disseminated encephalomyelitis from multiple sclerosis at the first demyelination attack. Consequently, a final diagnosis is sometimes delayed by months and years of follow-up. Early treatment for multiple sclerosis is recommended to reduce long-term disability. Therefore, we intend to explore neuroimaging biomarkers that can reliably distinguish between the two diagnoses. We reviewed prospectively collected clinical, standard MRI and diffusion tensor imaging data from 12 pediatric patients who presented with acute demyelination with and without encephalopathy. Patients were followed for an average of 6.5 years to determine the accuracy of final diagnosis. Final diagnosis was determined using 2013 International Pediatric MS Study Group criteria. Control subjects consisted of four age-matched healthy individuals for each patient. The study population consisted of six patients with central nervous system demyelination with encephalopathy with a presumed diagnosis of acute disseminated encephalomyelitis and six without encephalopathy with a presumed diagnosis of multiple sclerosis or clinically isolated syndrome at high risk for multiple sclerosis. During follow-up, two patients with initial diagnosis of acute disseminated encephalomyelitis were later diagnosed with multiple sclerosis. Diffusion tensor imaging region of interest analysis of baseline scans showed differences between final diagnosis of multiple sclerosis and acute disseminated encephalomyelitis patients, whereby low fractional anisotropy and high radial diffusivity occurred in multiple sclerosis patients compared with acute disseminated encephalomyelitis patients and the age-matched controls. Fractional anisotropy and radial diffusivity measures may have the potential to serve as biomarkers for distinguishing acute disseminated encephalomyelitis from multiple sclerosis at the onset. Copyright © 2017 Elsevier Inc. All

  19. Epidermal Cadm1 expression promotes autoimmune alopecia via enhanced T cell adhesion and cytotoxicity.

    PubMed

    Giangreco, Adam; Hoste, Esther; Takai, Yoshimi; Rosewell, Ian; Watt, Fiona M

    2012-02-01

    Autoimmune alopecia is characterized by an extensive epidermal T cell infiltrate that mediates hair follicle destruction. We have investigated the role of cell adhesion molecule 1 (Cadm1; Necl2) in this disease. Cadm1 is expressed by epidermal cells and mediates heterotypic adhesion to lymphocytes expressing class 1-restricted T cell-associated molecule (CRTAM). Using a murine autoimmune alopecia model, we observed an increase in early-activated cytotoxic (CD8-restricted, CRTAM-expressing) T cells, which preferentially associated with hair follicle keratinocytes expressing Cadm1. Coculture with Cadm1-transduced MHC-matched APCs stimulated alopecic lymph node cells to release IL-2 and IFN-γ. Overexpression of Cadm1 in cultured human keratinocytes did not promote cytokine secretion, but led to increased adhesion of alopecic cytotoxic T cells and enhanced T cell cytotoxicity in an MHC-independent manner. Epidermal overexpression of Cadm1 in transgenic mice led to increased autoimmune alopecia susceptibility relative to nontransgenic littermate controls. Our findings reveal that Cadm1 expression in the hair follicle plays a role in autoimmune alopecia.

  20. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity.

    PubMed

    Ifergan, Igal; Davidson, Todd S; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M; Hunter, Zoe N; Pittet, Camille L; Beddow, Sara; Jones, Clare A; Prat, Alexandre; Sleeman, Matthew A; Miller, Stephen D

    2017-11-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα + myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effects of Intermittent Fasting on Experimental Autoimune Encephalomyelitis in C57BL/6 Mice.

    PubMed

    Razeghi Jahromi, Soodeh; Ghaemi, Amir; Alizadeh, Akram; Sabetghadam, Fatemeh; Moradi Tabriz, Hedieh; Togha, Mansoureh

    2016-06-01

    Several religions recommend periods of fasting. One of the most frequently asked questions of MS patients before the holy month of Ramadan is weather fasting might have an unfavorable effect on their disease course. This debate became more challenging after the publication of experimental studies suggesting that calorie restriction prior to disease induction attenuates disease severity. We conducted this study to assess early and late effects of fasting on the animal model of MS, known as autoimmune encephalomyelitis. EAE was induced in the C57BL/6 mice, using Myelin Oligodendrocyte Glycopeptide  (MOG) 35-55 and they fasted every other day either after the appearance of the first clinical sign or 30 days after disease induction for ten days. Thereafter, the mice were sacrificed for further histological and immunological evaluations. Intermittent fasting after the establishment of EAE did not have any unfavorable effect on the course of disease. Moreover, fasting at the early phase of disease alleviated EAE severity by ameliorating spinal cord demyelination. Fasting suppressed the secretion of IFN-γ, TNF-α and raised IL-10 production in splenocytes. Fasting was also associated with a lower percent of cytotoxicity. Intermittent fasting not only had no unfavorable effect on EAE but also reduced EAE severity if started at early phase of disease.

  2. Housebound versus nonhousebound patients with myalgic encephalomyelitis and chronic fatigue syndrome.

    PubMed

    Pendergrast, Tricia; Brown, Abigail; Sunnquist, Madison; Jantke, Rachel; Newton, Julia L; Strand, Elin Bolle; Jason, Leonard A

    2016-12-01

    The objective of this study was to examine individuals with myalgic encephalomyelitis and chronic fatigue syndrome who are confined to their homes due to severe symptomatology. The existing literature fails to address differences between this group, and less severe, nonhousebound patient populations. Participants completed the DePaul Symptom Questionnaire, a measure of myalgic encephalomyelitis and chronic fatigue syndrome symptomology, and the SF-36, a measure of health impact on physical/mental functioning. ANOVAs and, where appropriate, MANCOVAS were used to compare housebound and nonhousebound patients with myalgic encephalomyelitis and chronic fatigue syndrome across areas of functioning, symptomatology, and illness onset characteristics. Findings indicated that the housebound group represented one quarter of the sample, and were significantly more impaired with regards to physical functioning, bodily pain, vitality, social functioning, fatigue, postexertional malaise, sleep, pain, neurocognitive, autonomic, neuroendocrine, and immune functioning compared to individuals who were not housebound. Findings indicated that housebound patients have more impairment on functional and symptom outcomes compared to those who were not housebound. Understanding the differences between housebound and not housebound groups holds implications for physicians and researchers as they develop interventions intended for patients who are most severely affected by this chronic illness. © The Author(s) 2016.

  3. VIRUS-SPECIFIC POLYSOMES IN CELLS INFECTED WITH THE VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS,

    DTIC Science & Technology

    VENEZUELAN EQUINE ENCEPHALOMYELITIS VIRUS, *RIBOSOMES, *TISSUE CULTURE CELLS, RIBOSOMES, GROWTH(PHYSIOLOGY), INFECTIOUS DISEASES, ARBOVIRUSES, VIRUSES, NUCLEIC ACIDS, BIOSYNTHESIS, USSR, MOLECULAR STRUCTURE.

  4. Therapeutic effect of the natural compounds baicalein and baicalin on autoimmune diseases.

    PubMed

    Xu, Jian; Liu, Jinlong; Yue, Guolin; Sun, Mingqiang; Li, Jinliang; Xiu, Xia; Gao, Zhenzhong

    2018-05-23

    A series of natural compounds have been implicated to be useful in regulating the pathogenesis of various autoimmune diseases. The present study demonstrated that the Scutellariae radix compounds baicalein and baicalin may serve as drugs for the treatment of autoimmune diseases, including rheumatoid arthritis and inflammatory bowel disease. Following the administration of baicalein and baicalin in vivo, T cell‑mediated autoimmune diseases in the mouse model were profoundly ameliorated: In the collagen‑induced arthritis model (CIA), the severity of the disease was reduced by baicalein and, consistently, baicalein was demonstrated to suppress T cell proliferation in CIA mice. In the dextran sodium sulfate (DSS)‑induced colitis model, the disease was attenuated by baicalin, and baicalin promoted colon epithelial cell (CEC) proliferation in vitro. The present study further revealed that the mRNA expression of signal transducer and activator of transcription (STAT)3 and STAT4 in the tyrosine‑protein kinase JAK‑STAT signaling pathway in T cells was downregulated by baicalein, contributing to its regulation of T cell proliferation. However, in the DSS model, the STAT4 transcription in CECs, which are the target cells of activated T cells in the gut, was downregulated by baicalin, suggesting that baicalein and baicalin mediated similar STAT expression in different cell types in autoimmune diseases. In conclusion, the similarly structured compounds baicalein and baicalin selectively exhibited therapeutic effects on autoimmune diseases by regulating cell proliferation and STAT gene expression, albeit in different cell types.

  5. 21 CFR 866.3240 - Equine encephalomyelitis virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Equine encephalomyelitis virus serological reagents. 866.3240 Section 866.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  6. 21 CFR 866.3240 - Equine encephalomyelitis virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Equine encephalomyelitis virus serological reagents. 866.3240 Section 866.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  7. 21 CFR 866.3240 - Equine encephalomyelitis virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Equine encephalomyelitis virus serological reagents. 866.3240 Section 866.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  8. 21 CFR 866.3240 - Equine encephalomyelitis virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Equine encephalomyelitis virus serological reagents. 866.3240 Section 866.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  9. 21 CFR 866.3240 - Equine encephalomyelitis virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Equine encephalomyelitis virus serological reagents. 866.3240 Section 866.3240 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents...

  10. [Autoimmune hepatitis].

    PubMed

    Ostojić, Rajko

    2003-01-01

    Autoimmune hepatitis is an unresolving, hepatocellular inflammation of unknown cause that is characterized by the presence of periportal hepatitis on histologic examination, tissue autoantibodies in serum, and hypergammaglobulinemia. By international consensus, the designation autoimmune hepatitis has replaced alternative terms for the condition. Three types of autoimmune hepatitis have been proposed based on immunoserologic findings. Type 1 autoimmune hepatitis is characterized by the presence of antinuclear antibodies (ANA) or smooth muscle antibodies (SMA) (or both) in serum. Seventy percent of patients with type 1 of autoimmune hepatitis are women. This type is the most common form and accounts for at least 80% of cases. Type 2 is characterized by the presence of antibodies to liver-kidney microsome type 1 (anti-LKM1) in serum. Patients with this type of autoimmune hepatitis are predominantly children. Type 3 autoimmune hepatitis is characterized by the presence of antibodies to soluble liver antigen (anti-SLA) in serum. There are no individual features that are pathognomonic of autoimmune hepatitis, and its diagnosis requires the confident exclusion of other conditions. The large majority of patients show satisfactory response to corticosteroid (usually prednisone or prednisolone) therapy. For the past 30 years it has been customary to add azathioprine as a "steroid sparing" agent to allow lower doses of steroids to be used and remission, once achieved, can be sustained in many patients with azathioprine alone after steroid withdrawal. Patients with autoimmune hepatitis who have decompensated during or after corticosteroid therapy are candidates for liver transplantation.

  11. Role of inflammasomes in inflammatory autoimmune rheumatic diseases.

    PubMed

    Yi, Young-Su

    2018-01-01

    Inflammasomes are intracellular multiprotein complexes that coordinate anti-pathogenic host defense during inflammatory responses in myeloid cells, especially macrophages. Inflammasome activation leads to activation of caspase-1, resulting in the induction of pyroptosis and the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Although the inflammatory response is an innate host defense mechanism, chronic inflammation is the main cause of rheumatic diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), ankylosing spondylitis (AS), and Sjögren's syndrome (SS). Since rheumatic diseases are inflammatory/autoimmune disorders, it is reasonable to hypothesize that inflammasomes activated during the inflammatory response play a pivotal role in development and progression of these diseases. Indeed, previous studies have provided important observations that inflammasomes are actively involved in the pathogenesis of inflammatory/autoimmune rheumatic diseases. In this review, we summarize the current knowledge on several types of inflammasomes during macrophage-mediated inflammatory responses and discuss recent research regarding the role of inflammasomes in the pathogenesis of inflammatory/autoimmune rheumatic diseases. This avenue of research could provide new insights for the development of promising therapeutics to treat inflammatory/autoimmune rheumatic diseases.

  12. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis.

    PubMed

    von Kutzleben, Stephanie; Pryce, Gareth; Giovannoni, Gavin; Baker, David

    2017-04-01

    The objective was to determine whether CD52 lymphocyte depletion can act to promote immunological tolerance induction by way of intravenous antigen administration such that it could be used to either improve efficiency of multiple sclerosis (MS) inhibition or inhibit secondary autoimmunities that may occur following alemtuzumab use in MS. Relapsing experimental autoimmune encephalomyelitis was induced in ABH mice and immune cell depletion was therapeutically applied using mouse CD52 or CD4 (in conjunction with CD8 or CD20) depleting monoclonal antibodies. Immunological unresponsiveness was then subsequently induced using intravenous central nervous system antigens and responses were assessed clinically. A dose-response of CD4 monoclonal antibody depletion indicated that the 60-70% functional CD4 T-cell depletion achieved in perceived failed trials in MS was perhaps too low to even stop disease in animals. However, more marked (~75-90%) physical depletion of CD4 T cells by CD4 and CD52 depleting antibodies inhibited relapsing disease. Surprisingly, in contrast to CD4 depletion, CD52 depletion blocked robust immunological unresponsiveness through a mechanism involving CD8 T cells. Although efficacy was related to the level of CD4 T-cell depletion, the observations that CD52 depletion of CD19 B cells was less marked in lymphoid organs than in the blood provides a rationale for the rapid B-cell hyper-repopulation that occurs following alemtuzumab administration in MS. That B cells repopulate in the relative absence of T-cell regulatory mechanisms that promote immune tolerance may account for the secondary B-cell autoimmunities, which occur following alemtuzumab treatment of MS. © 2016 The Authors. Immunology Published by John Wiley & Sons Ltd.

  13. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. NK cell subsets in autoimmune diseases.

    PubMed

    Zhang, Cai; Tian, Zhigang

    2017-09-01

    Natural killer (NK) cells are lymphocytes of the innate immune system. They not only exert cell-mediated cytotoxicity against tumor cells or infected cells, but also play regulatory role through promoting or suppressing functions of other immune cells by secretion of cytokines and chemokines. However, overactivation or dysfunction of NK cells may be associated with pathogenesis of some diseases. NK cells are found to act as a two edged weapon and play opposite roles with both regulatory and inducer activity in autoimmune diseases. Though the precise mechanisms for the opposite effects of NK cells has not been fully elucidated, the importance of NK cells in autoimmune diseases might be associated with different NK cell subsets, different tissue microenvironment and different stages of corresponding diseases. The local tissue microenvironment, unique cellular interactions and different stages of corresponding diseases shape the properties and function of NK cells. In this review, we focus on recent research on the features and function of different NK cell subsets, particularly tissue-resident NK cells in different tissues, and their potential role in autoimmune diseases. Copyright © 2017. Published by Elsevier Ltd.

  15. Arabidopsis TAF15b Localizes to RNA Processing Bodies and Contributes to snc1-Mediated Autoimmunity.

    PubMed

    Dong, Oliver X; Meteignier, Louis-Valentin; Plourde, Melodie B; Ahmed, Bulbul; Wang, Ming; Jensen, Cassandra; Jin, Hailing; Moffett, Peter; Li, Xin; Germain, Hugo

    2016-04-01

    In both animals and plants, messenger (m)RNA export has been shown to contribute to immune response regulation. The Arabidopsis nuclear protein MOS11, along with the nucleoporins MOS3/Nup96/SAR3 and Nup160/SAR1 are components of the mRNA export machinery and contribute to immunity mediated by nucleotide binding leucine-rich repeat immune receptors (NLR). The human MOS11 ortholog CIP29 is part of a small protein complex with three additional members: the RNA helicase DDX39, ALY, and TAF15b. We systematically assessed the biological roles of the Arabidopsis homologs of these proteins in toll interleukin 1 receptor-type NLR (TNL)-mediated immunity using reverse genetics. Although mutations in ALY and DDX39 did not result in obvious defects, taf15b mutation partially suppressed the autoimmune phenotypes of a gain-of-function TNL mutant, snc1. An additive effect on snc1 suppression was observed in mos11-1 taf15b snc1 triple mutant plants, suggesting that MOS11 and TAF15b have independent functions. TAF15b-GFP fusion protein, which fully complemented taf15b mutant phenotypes, localized to nuclei similarly to MOS11. However, it was also targeted to cytosolic granules identified as processing bodies. In addition, we observed no change in SNC1 mRNA levels, whereas less SNC1 protein accumulated in taf15b mutant, suggesting that TAF15b contributes to SNC1 homeostasis through posttranscriptional mechanisms. In summary, this study highlights the importance of posttranscriptional RNA processing mediated by TAF15b in the regulation of TNL-mediated immunity.

  16. Featured Article: Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone.

    PubMed

    Ludwig, Michael D; Zagon, Ian S; McLaughlin, Patricia J

    2017-09-01

    Low-dose naltrexone is a widely used off-label therapeutic prescribed for a variety of immune-related disorders. The mechanism underlying low-dose naltrexone's efficacy for fatigue, Crohn's disease, fibromyalgia, and multiple sclerosis is, in part, intermittent blockade of opioid receptors followed by upregulation of endogenous opioids. Short, intermittent blockade by naltrexone specifically blocks the opioid growth factor receptor resulting in biofeedback events that increase production of the endogenous opioid growth factor (OGF) (chemically termed [Met 5 ]-enkephalin) facilitating interactions between opioid growth factor and opioid growth factor receptor that ultimately, result in inhibited cell proliferation. Preclinical studies have reported that enkephalin levels are deficient in animal models of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Our hypothesis is that serum enkephalin levels are diminished in humans with multiple sclerosis and experimental autoimmune encephalomyelitis mice, and that change in serum opioid growth factor levels may serve as a reasonable candidate biomarker for the onset of experimental autoimmune encephalomyelitis and response to therapy. To address this, we designed a two-part study to measure endogenous opioids in multiple sclerosis patients, and to investigate the temporal pattern of decline in serum enkephalin concentrations in mice with chronic progressive experimental autoimmune encephalomyelitis and treated with low-dose naltrexone. For comparison, we investigated whether low-dose naltrexone exposure in normal mice also resulted in altered enkephalin levels. In both animal models, we monitored tactile and heat sensitivity, as well as differential white blood cell counts as indicators of inflammation. Serum [Met 5 ]-enkephalin levels were lower in humans with multiple sclerosis relative to non-multiple sclerosis patients, and low-dose naltrexone restored their levels. In experimental

  17. Monomeric DR2/MOG-35-55 recombinant TCR ligand treats relapses of experimental encephalomyelitis in DR2 transgenic mice.

    PubMed

    Link, Jason M; Rich, Cathleen M; Korat, Maya; Burrows, Gregory G; Offner, Halina; Vandenbark, Arthur A

    2007-04-01

    Treatment of human autoimmune diseases such as multiple sclerosis (MS) will likely require agents that can prevent or reverse the inflammatory process that results in clinical relapses and disease progression. We evaluated the ability of a newly designed monomeric recombinant TCR ligand (RTL342M) containing HLA-DR2 peptide-binding domains covalently linked to MOG-35-55 peptide to prevent and treat both the initial episode and subsequent relapses of experimental autoimmune encephalomyelitis (EAE) in HLA-DR2 transgenic mice. Single doses of RTL342M given either i.v. or s.c. to HLA-DR2 mice produced a rapid (within 24 h) and dose-dependent reversal of clinical signs of paralytic EAE, and even a single dose < or = 2 microg could produce a significant treatment effect. Multiple daily doses were even more effective than the same total amount of RTL given as a single dose. By establishing the minimal effective dose, we determined that RTLs may be 50 times more potent than molar equivalent doses of myelin peptide alone. RTL342M given prior to induction of EAE prevented disease in most mice, and the remainder could be successfully retreated with RTL. Most important for clinical application, RTL342M was highly effective for treating EAE relapses when given periodically prior to the relapse or even after relapses had occurred. These data demonstrate the rapid and potent clinical effects of RTL342M at disease onset and during relapses in EAE and establish important principles governing the application of this novel approach as a possible therapy for patients with MS.

  18. Immune complex-mediated autoimmunity in a patient With Smith-Magenis syndrome (del 17p11.2).

    PubMed

    Yang, Jianying; Chandrasekharappa, Settara C; Vilboux, Thierry; Smith, Ann C M; Peterson, Erik J

    2014-08-01

    Smith-Magenis syndrome (SMS) is a sporadic congenital disorder involving multiple organ systems caused by chromosome 17p11.2 deletions. Smith-Magenis syndrome features craniofacial and skeletal anomalies, cognitive impairment, and neurobehavioral abnormalities. In addition, some SMS patients may exhibit hypogammaglobulinemia. We report the first case of SMS-associated autoimmunity in a woman who presented with adult onset of multiple autoimmune disorders, including systemic lupus erythematosus, antiphospholipid antibody syndrome, and autoimmune hepatitis. Molecular analysis using single-nucleotide polymorphism array confirmed a de novo 3.8-Mb deletion (breakpoints, chr17: 16,660,721-20,417,975), resulting in haploinsufficiency for TACI (transmembrane activator and CAML interactor). Our data are consistent with potential loss of function for the BAFF (B cell-activating factor) receptor TACI as a contributing factor to human autoimmune phenomena.

  19. Experimental Infection of Goats with a Newly Isolated Strain of Akabane Virus that Causes Encephalomyelitis.

    PubMed

    Jeong, H; Oem, J-K; Yang, M-S; Yang, D; Kim, M-S; Lee, K-H; Lee, M-H; Lim, C-W; Kim, B

    In 2010, there was a large-scale outbreak of bovine encephalomyelitis in Korea, and 15 new strains of Akabane virus (AKAV) were isolated. To identify the pathogenicity of one of these strains, we infected adult goats with AKAV-7 via different routes. Twenty-five female goats were used in this study and were divided into five groups: intracerebral (IC) and intrasubarachnoid (IS) viral inoculation (n = 8 each), intravenous (IV) inoculation (n = 4), and vaccinated before IV inoculation (n = 4), in addition to a negative control animal. All animals inoculated with AKAV-7 had AKAV-neutralizing antibodies at 6-8 days post infection (dpi). During the experimental period, infected animals showed no clinical signs. In the IC group, 5/8 goats had non-suppurative encephalomyelitis affecting the cerebrum. Virus S RNA segments were detected in nearly all areas of the brain. In the IS group, 3/8 goats had encephalomyelitis affecting the cerebrum, cerebellum and spinal cord. At 7 and 21 dpi, virus S RNA segments were found mostly in the spinal cord, especially around the area of injection (L5-L6). Antibody titres in the serum of the vaccinated group had an early onset and slightly increased titre compared with the IV group. Histopathologically, there were no obvious lesions in the central nervous tissues in the vaccinated group, while one of four goats in the IV group showed encephalomyelitis in the parietal lobe of the cerebrum. The newly isolated AKAV-7 can cause encephalomyelitis in goats after experimental injection. The attenuated AKAV vaccine currently used in Korea may provide partial protective immunity against AKAV-7 infection, but the real effect of the vaccine requires further investigation in goats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prophylactic Effect of Probiotics on the Development of Experimental Autoimmune Myasthenia Gravis

    PubMed Central

    Chae, Chang-Suk; Kwon, Ho-Keun; Hwang, Ji-Sun; Kim, Jung-Eun; Im, Sin-Hyeog

    2012-01-01

    Probiotics are live bacteria that confer health benefits to the host physiology. Although protective role of probiotics have been reported in diverse diseases, no information is available whether probiotics can modulate neuromuscular immune disorders. We have recently demonstrated that IRT5 probiotics, a mixture of 5 probiotics, could suppress diverse experimental disorders in mice model. In this study we further investigated whether IRT5 probiotics could modulate the progression of experimental autoimmune myasthenia gravis (EAMG). Myasthenia gravis (MG) is a T cell dependent antibody mediated autoimmune disorder in which acetylcholine receptor (AChR) at the neuromuscular junction is the major auto-antigen. Oral administration of IRT5 probiotics significantly reduced clinical symptoms of EAMG such as weight loss, body trembling and grip strength. Prophylactic effect of IRT5 probiotics on EMAG is mediated by down-regulation of effector function of AChR-reactive T cells and B cells. Administration of IRT5 probiotics decreased AChR-reactive lymphocyte proliferation, anti-AChR reactive IgG levels and inflammatory cytokine levels such as IFN-γ, TNF-α, IL-6 and IL-17. Down-regulation of inflammatory mediators in AChR-reactive lymphocytes by IRT5 probiotics is mediated by the generation of regulatory dendritic cells (rDCs) that express increased levels of IL-10, TGF-β, arginase 1 and aldh1a2. Furthermore, DCs isolated from IRT5 probiotics-fed group effectively converted CD4+ T cells into CD4+Foxp3+ regulatory T cells compared with control DCs. Our data suggest that IRT5 probiotics could be applicable to modulate antibody mediated autoimmune diseases including myasthenia gravis. PMID:23284891

  1. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation

    PubMed Central

    Duraes, Fernanda V.; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. PMID:26341385

  2. Progranulin antibodies in autoimmune diseases.

    PubMed

    Thurner, Lorenz; Preuss, Klaus-Dieter; Fadle, Natalie; Regitz, Evi; Klemm, Philipp; Zaks, Marina; Kemele, Maria; Hasenfus, Andrea; Csernok, Elena; Gross, Wolfgang L; Pasquali, Jean-Louis; Martin, Thierry; Bohle, Rainer Maria; Pfreundschuh, Michael

    2013-05-01

    Systemic vasculitides constitute a heterogeneous group of diseases. Autoimmunity mediated by B lymphocytes and their humoral effector mechanisms play a major role in ANCA-associated vasculitis (AAV) as well as in non-ANCA associated primary systemic vasculitides and in the different types of autoimmune connective tissue disorders and rheumatoid arthritis. In order to detect autoantibodies in systemic vasculitides, we screened protein macroarrays of human cDNA expression libraries with sera from patients with ANCA-associated and ANCA-negative primary systemic vasculitides. This approach led to the identification of antibodies against progranulin, a 88 kDA secreted glycoprotein with strong anti-inflammatory activity in the course of disease of giant-cell arteritis/polymyalgia rheumatica (14/65), Takayasu's arteritis (4/13), classical panarteritis nodosa (4/10), Behcet's disease (2/6) and in the course of disease in granulomatosis with polyangiitis (31/75), Churg-Strauss syndrome (7/23) and in microscopic polyangiitis (7/19). In extended screenings the progranulin antibodies were also detected in other autoimmune diseases such as systemic lupus erythematosus (39/91) and rheumatoid arthritis (16/44). Progranulin antibodies were detected only in 1 of 97 healthy controls. Anti-progranulin positive patients with systemic vasculitides, systemic lupus erythematosus or rheumatoid arthritis had significant lower progranulin plasma levels, indicating a neutralizing effect. In light of the anti-inflammatory effects of progranulin, progranulin antibodies might exert pro-inflammatory effects thus contributing to the pathogenesis of the respective autoimmune diseases and might serve as a marker for disease activity. This hypothesis is supported by the fact that a positive progranulin antibody status was associated with active disease in granulomatosis with polyangiitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination.

    PubMed

    Karim, Hawra; Kim, Sung Hoon; Lapato, Andrew S; Yasui, Norio; Katzenellenbogen, John A; Tiwari-Woodruff, Seema K

    2018-06-12

    Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis. Copyright © 2018 the Author(s). Published by PNAS.

  4. The Autoimmune Ecology

    PubMed Central

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Alzate, Maria A.; Molano-Gonzalez, Nicolas; Rojas-Villarraga, Adriana

    2016-01-01

    Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures – internal and external – across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied. PMID:27199979

  5. The Autoimmune Ecology.

    PubMed

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Alzate, Maria A; Molano-Gonzalez, Nicolas; Rojas-Villarraga, Adriana

    2016-01-01

    Autoimmune diseases (ADs) represent a heterogeneous group of disorders that affect specific target organs or multiple organ systems. These conditions share common immunopathogenic mechanisms (i.e., the autoimmune tautology), which explain the clinical similarities they have among them as well as their familial clustering (i.e., coaggregation). As part of the autoimmune tautology, the influence of environmental exposure on the risk of developing ADs is paramount (i.e., the autoimmune ecology). In fact, environment, more than genetics, shapes immune system. Autoimmune ecology is akin to exposome, that is all the exposures - internal and external - across the lifespan, interacting with hereditary factors (both genetics and epigenetics) to favor or protect against autoimmunity and its outcomes. Herein, we provide an overview of the autoimmune ecology, focusing on the immune response to environmental agents in general, and microbiota, cigarette smoking, alcohol and coffee consumption, socioeconomic status (SES), gender and sex hormones, vitamin D, organic solvents, and vaccines in particular. Inclusion of the autoimmune ecology in disease etiology and health will improve the way personalized medicine is currently conceived and applied.

  6. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation.

    PubMed

    Claudio, Estefania; Sønder, Søren Ulrik; Saret, Sun; Carvalho, Gabrielle; Ramalingam, Thirumalai R; Wynn, Thomas A; Chariot, Alain; Garcia-Perganeda, Antonio; Leonardi, Antonio; Paun, Andrea; Chen, Amy; Ren, Nina Y; Wang, Hongshan; Siebenlist, Ulrich

    2009-02-01

    IL-17 is the signature cytokine of recently discovered Th type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production, and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (also known as Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses that these two cytokines elicit. We identify CD11c(+) macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo.

  7. Regulatory T Cells in Autoimmune and Viral Chronic Hepatitis

    PubMed Central

    Lapierre, Pascal; Lamarre, Alain

    2015-01-01

    In both autoimmune liver disease and chronic viral hepatitis, the injury results from an immune-mediated cytotoxic T cell response to liver cells. As such, it is not surprising that CD4+ regulatory T cells, a key regulatory population of T cells able to curb immune responses, could be involved in both autoimmune hepatitis and chronic viral hepatitis. The liver can induce the conversion of naïve CD4+ T cells to CD4+ regulatory T cells and induce tolerance to locally expressed antigens. This tolerance mechanism is carefully regulated in physiological conditions but any imbalance could be pathological. An overly tolerant immune response can lead to chronic infections while an overreactive and unbridled immune response can lead to autoimmune hepatitis. With the recent advent of monoclonal antibodies able to target regulatory T cells (daclizumab) and improve immune responses and several ongoing clinical trials analysing the impact of regulatory T cell infusion on autoimmune liver disease or liver transplant tolerance, modulation of immunological tolerance through CD4+ regulatory T cells could be a key element of future immunotherapies for several liver diseases allowing restoring the balance between proper immune responses and tolerance.   PMID:26106627

  8. Understanding mechanisms of autoimmunity through translational research in vitiligo

    PubMed Central

    Strassner, James P; Harris, John E

    2016-01-01

    Vitiligo is an autoimmune disease of the skin that leads to life-altering depigmentation and remains difficult to treat. However, clinical observations and translational studies over 30-40 years have led to the development of an insightful working model of disease pathogenesis: Genetic risk spanning both immune and melanocyte functions is pushed over a threshold by known and suspected environmental factors to initiate autoimmune T cell-mediated killing of melanocytes. While under cellular stress, melanocytes appear to signal innate immunity to activate T cells. Once the autoimmune T cell response is established, the IFN-γ-STAT1-CXCL10 signaling axis becomes the primary inflammatory pathway driving both progression and maintenance of vitiligo. This pathway is a tempting target for both existing and developing pharmaceuticals, but further detailing how melanocytes signal their own demise may also lead to new therapeutic targets. Research in vitiligo may be the future key to understand the pathogenesis of organ-specific autoimmunity, as vitiligo is common, reversible, progresses over the life of the individual, has been relatively well-defined, and is quite easy to study using translational and clinical approaches. What is revealed in these studies can lead to innovative treatments and also help elucidate the principles that underlie similar organ-specific autoimmune diseases, especially in cases where the target organ is less accessible. PMID:27764715

  9. Safinamide and flecainide protect axons and reduce microglial activation in models of multiple sclerosis.

    PubMed

    Morsali, Damineh; Bechtold, David; Lee, Woojin; Chauhdry, Summen; Palchaudhuri, Upayan; Hassoon, Paula; Snell, Daniel M; Malpass, Katy; Piers, Thomas; Pocock, Jennifer; Roach, Arthur; Smith, Kenneth J

    2013-04-01

    Axonal degeneration is a major cause of permanent disability in the inflammatory demyelinating disease multiple sclerosis, but no therapies are known to be effective in axonal protection. Sodium channel blocking agents can provide effective protection of axons in the white matter in experimental models of multiple sclerosis, but the mechanism of action (directly on axons or indirectly via immune modulation) remains uncertain. Here we have examined the efficacy of two sodium channel blocking agents to protect white matter axons in two forms of experimental autoimmune encephalomyelitis, a common model of multiple sclerosis. Safinamide is currently in phase III development for use in Parkinson's disease based on its inhibition of monoamine oxidase B, but the drug is also a potent state-dependent inhibitor of sodium channels. Safinamide provided significant protection against neurological deficit and axonal degeneration in experimental autoimmune encephalomyelitis, even when administration was delayed until after the onset of neurological deficit. Protection of axons was associated with a significant reduction in the activation of microglia/macrophages within the central nervous system. To clarify which property of safinamide was likely to be involved in the suppression of the innate immune cells, the action of safinamide on microglia/macrophages was compared with that of the classical sodium channel blocking agent, flecainide, which has no recognized monoamine oxidase B activity, and which has previously been shown to protect the white matter in experimental autoimmune encephalomyelitis. Flecainide was also potent in suppressing microglial activation in experimental autoimmune encephalomyelitis. To distinguish whether the suppression of microglia was an indirect consequence of the reduction in axonal damage, or possibly instrumental in the axonal protection, the action of safinamide was examined in separate experiments in vitro. In cultured primary rat microglial

  10. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld's syndrome) - An update.

    PubMed

    Watad, A; Quaresma, M; Brown, S; Cohen Tervaert, J W; Rodríguez-Pint, I; Cervera, R; Perricone, C; Shoenfeld, Y

    2017-06-01

    Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) has been widely described in many studies conducted thus far. The syndrome incorporates five immune-mediated conditions, all associated with previous exposure to various agents such as vaccines, silicone implants and several others. The emergence of ASIA syndrome is associated with individual genetic predisposition, for instance those carrying HLA-DRB1*01 or HLA-DRB4 and results from exposure to external or endogenous factors triggering autoimmunity. Such factors have been demonstrated as able to induce autoimmunity in both animal models and humans via a variety of proposed mechanisms. In recent years, physicians have become more aware of the existence of ASIA syndrome and the relationship between adjuvants exposure and autoimmunity and more cases are being reported. Accordingly, we have created a registry that includes at present more than 300 ASIA syndrome cases that have been reported by different physicians worldwide, describing various autoimmune conditions induced by diverse adjuvants. In this review, we have summarized the updated literature on ASIA syndrome and the knowledge accumulated since 2013 in order to elucidate the association between the exposure to various adjuvant agents and its possible clinical manifestations. Furthermore, we especially referred to the relationship between ASIA syndrome and systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS).

  11. Protective Effects of Astaxanthin on ConA-Induced Autoimmune Hepatitis by the JNK/p-JNK Pathway-Mediated Inhibition of Autophagy and Apoptosis

    PubMed Central

    Liu, Tong; Wang, Junshan; Dai, Weiqi; Wang, Fan; Zheng, Yuanyuan; Chen, Kan; Li, Sainan; Abudumijiti, Huerxidan; Zhou, Zheng; Wang, Jianrong; Lu, Wenxia; Zhu, Rong; Yang, Jing; Zhang, Huawei; Yin, Qin; Wang, Chengfen; Zhou, Yuqing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Objective Astaxanthin, a potent antioxidant, exhibits a wide range of biological activities, including antioxidant, atherosclerosis and antitumor activities. However, its effect on concanavalin A (ConA)-induced autoimmune hepatitis remains unclear. The aim of this study was to investigate the protective effects of astaxanthin on ConA-induced hepatitis in mice, and to elucidate the mechanisms of regulation. Materials and Methods Autoimmune hepatitis was induced in in Balb/C mice using ConA (25 mg/kg), and astaxanthin was orally administered daily at two doses (20 mg/kg and 40 mg/kg) for 14 days before ConA injection. Levels of serum liver enzymes and the histopathology of inflammatory cytokines and other maker proteins were determined at three time points (2, 8 and 24 h). Primary hepatocytes were pretreated with astaxanthin (80 μM) in vitro 24 h before stimulation with TNF-α (10 ng/ml). The apoptosis rate and related protein expression were determined 24 h after the administration of TNF-α. Results Astaxanthin attenuated serum liver enzymes and pathological damage by reducing the release of inflammatory factors. It performed anti-apoptotic effects via the descending phosphorylation of Bcl-2 through the down-regulation of the JNK/p-JNK pathway. Conclusion This research firstly expounded that astaxanthin reduced immune liver injury in ConA-induced autoimmune hepatitis. The mode of action appears to be downregulation of JNK/p-JNK-mediated apoptosis and autophagy. PMID:25761053

  12. SOCS3 deletion in T lymphocytes suppresses development of chronic ocular inflammation via upregulation of CTLA-4 and expansion of regulatory T cells.

    PubMed

    Yu, Cheng-Rong; Kim, Sung-Hye; Mahdi, Rashid M; Egwuagu, Charles E

    2013-11-15

    Suppressors of cytokine signaling (SOCS) proteins are negative-feedback regulators of the JAK/STAT pathway, and SOCS3 contributes to host immunity by regulating the intensity and duration of cytokine signals and inflammatory responses. Mice with Socs3 deletion in myeloid cells exhibit enhanced STAT3 signaling, expansion of Th1 and Th17 cells, and develop severe experimental autoimmune encephalomyelitis. Interestingly, development of the unique IL-17/IFN-γ double-producing (Th17/IFN-γ and Tc17/IFN-γ) subsets that exhibit strong cytotoxic activities and are associated with pathogenesis of several autoimmune diseases has recently been shown to depend on epigenetic suppression of SOCS3 expression, further suggesting involvement of SOCS3 in autoimmunity and tumor immunity. In this study, we generated mice with Socs3 deletion in the CD4 T cell compartment (CD4-SOCS3 knockout [KO]) to determine in vivo effects of the loss of Socs3 in the T cell-mediated autoimmune disease, experimental autoimmune uveitis (EAU). In contrast to the exacerbation of experimental autoimmune encephalomyelitis in myeloid-specific SOCS3-deleted mice, CD4-SOCS3KO mice were protected from acute and chronic uveitis. Protection from EAU correlated with enhanced expression of CTLA-4 and expansion of IL-10-producing regulatory T cells with augmented suppressive activities. We further show that SOCS3 interacts with CTLA-4 and negatively regulates CTLA-4 levels in T cells, providing a mechanistic explanation for the expansion of regulatory T cells in CD4-SOCS3 during EAU. Contrary to in vitro epigenetic studies, Th17/IFN-γ and Tc17/IFN-γ populations were markedly reduced in CD4-SOCS3KO, suggesting that SOCS3 promotes expansion of the Th17/IFN-γ subset associated with development of severe uveitis. Thus, SOCS3 is a potential therapeutic target in uveitis and other autoinflammatory diseases.

  13. The adaptor protein CIKS/Act1 is essential for IL-25-mediated allergic airway inflammation1

    PubMed Central

    Claudio, Estefania; Sønder, Søren Ulrik; Saret, Sun; Carvalho, Gabrielle; Ramalingam, Thirumalai R; Wynn, Thomas A; Chariot, Alain; Garcia-Perganeda, Antonio; Leonardi, Antonio; Paun, Andrea; Chen, Amy; Ren, Nina Y.; Wang, Hongshan; Siebenlist, Ulrich

    2008-01-01

    IL-17 is the signature cytokine of recently discovered T helper type 17 (Th17) cells, which are prominent in defense against extracellular bacteria and fungi as well as in autoimmune diseases, such as rheumatoid arthritis and experimental autoimmune encephalomyelitis in animal models. IL-25 is a member of the IL-17 family of cytokines, but has been associated with Th2 responses instead and may negatively cross-regulate Th17/IL-17 responses. IL-25 can initiate an allergic asthma-like inflammation in the airways, which includes recruitment of eosinophils, mucus hypersecretion, Th2 cytokine production and airways hyperreactivity. We demonstrate that these effects of IL-25 are entirely dependent on the adaptor protein CIKS (a.k.a. Act1). Surprisingly, this adaptor is necessary to transmit IL-17 signals as well, despite the very distinct biologic responses these two cytokines elicit. We identify CD11c+ macrophage-like lung cells as physiologic relevant targets of IL-25 in vivo. PMID:19155511

  14. Incidence of autoimmune diseases in patients with scabies: a nationwide population-based study in Taiwan.

    PubMed

    Liu, Jui-Ming; Chiu, Feng-Hsiang; Lin, Chien-Yu; Chang, Fung-Wei; Hsu, Ren-Jun

    2017-07-01

    Scabies is a commonly occurring infectious immune-mediated inflammatory skin disease. Immune-mediated inflammatory processes are also observed in autoimmune diseases. There have been very few previous studies; however, that have investigated the possible association between scabies and autoimmune diseases. To address this research gap, we conducted a nationwide population-based cohort study that included a total of 4481 scabies patients and 16,559 control subjects matched by gender, age, insured region, urbanization and income. We tracked both cohorts for a 7-year period to identify the incidence of autoimmune diseases in both groups during that follow-up period. Relatedly, a Cox regression analysis was performed to calculate and compare the hazard ratio (HR) for autoimmune diseases of both groups. An overall increased risk for 19 autoimmune diseases was observed in the scabies patients, with an adjusted HR (aHR) of 1.14 (95% CI 1.04-1.25). Compared with the control group, the scabies patients exhibited increased risks of hypersensitivity vasculitis (aHR 5.44, 95% CI 1.64-18.07), dermatomyositis (aHR 4.91, 95% CI 1.80-13.38), polyarteritis nodosa (aHR 2.89, 95% CI 1.46-5.73), systemic lupus erythematosus (aHR 2.73, 95% CI 1.33-5.64), psoriasis (aHR 2.31, 95% CI 1.85-2.88), myasthenia gravis (aHR 2.01, 95% CI 1.31-3.12), type 1 diabetes mellitus (aHR 1.93, 95% CI 1.53-2.44), pernicious anemia (aHR 1.92, 95% CI 1.42-2.61), and rheumatoid arthritis (aHR 1.43, 95% CI 1.12-1.83). In conclusion, the associations between scabies and a variety of autoimmune diseases may exist. Further studies are needed to clarify the shared etiologies and relationships between scabies and autoimmune diseases.

  15. Autoimmunity and Gastric Cancer

    PubMed Central

    Bizzaro, Nicola; Antico, Antonio; Villalta, Danilo

    2018-01-01

    Alterations in the immune response of patients with autoimmune diseases may predispose to malignancies, and a link between chronic autoimmune gastritis and gastric cancer has been reported in many studies. Intestinal metaplasia with dysplasia of the gastric corpus-fundus mucosa and hyperplasia of chromaffin cells, which are typical features of late-stage autoimmune gastritis, are considered precursor lesions. Autoimmune gastritis has been associated with the development of two types of gastric neoplasms: intestinal type and type I gastric carcinoid. Here, we review the association of autoimmune gastritis with gastric cancer and other autoimmune features present in gastric neoplasms. PMID:29373557

  16. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    PubMed

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-05-01

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Congenital heart disease linked to maternal autoimmunity against cardiac myosin.

    PubMed

    Cole, Charles R; Yutzey, Katherine E; Brar, Anoop K; Goessling, Lisa S; Van Vickle-Chavez, Sarah J; Cunningham, Madeleine W; Eghtesady, Pirooz

    2014-05-01

    Structural congenital heart disease (CHD) has not previously been linked to autoimmunity. In our study, we developed an autoimmune model of structural CHD that resembles hypoplastic left heart syndrome (HLHS), a life-threatening CHD primarily affecting the left ventricle. Because cardiac myosin (CM) is a dominant autoantigen in autoimmune heart disease, we hypothesized that immunization with CM might lead to transplacental passage of maternal autoantibodies and a prenatal HLHS phenotype in exposed fetuses. Elevated anti-CM autoantibodies in maternal and fetal sera, as well as IgG reactivity in fetal myocardium, were correlated with structural CHD that included diminished left ventricular cavity dimensions in the affected progeny. Further, fetuses that developed a marked HLHS phenotype had elevated serum titers of anti-β-adrenergic receptor Abs, as well as increased protein kinase A activity, suggesting a potential mechanism for the observed pathological changes. Our maternal-fetal model presents a new concept linking autoimmunity against CM and cardiomyocyte proliferation with cardinal features of HLHS. To our knowledge, this report shows the first evidence in support of a novel immune-mediated mechanism for pathogenesis of structural CHD that may have implications in its future diagnosis and treatment.

  18. Oral lichen planus: a report and review of an autoimmune-mediated condition in gingiva.

    PubMed

    Pendyala, Gowri; Joshi, Saurabh; Kalburge, Jithendra; Joshi, Manjiri; Tejnani, Avneesh

    2012-09-01

    Oral lichen planus (OLP) is a chronic autoimmune, mucocutaneous disease that affects the oral mucosa as well as the skin, genital mucosa, scalp, and nails. It is one of the most common dermatological diseases presenting in the oral cavity. An immune-mediated pathogenesis is recognized in lichen planus, although the exact etiology is unknown. The disease most commonly affects middle-aged females. It is infrequently found in children, with a prevalence of about 0.03%, and reports of this are scarce in the literature. The erosive and atrophic forms of OLP are less common, yet they are more likely to cause symptoms. OLP is the target of much controversy, especially in relation to its potential for malignancy. Thus, it is important for clinicians to maintain a high index of suspicion for all intraoral lichenoid lesions. Periodic follow-up of all patients with OLP is recommended. In view of the above, the authors highlight a case of gingival erosive lichen planus affecting a 17-year-old adolescent without concomitant cutaneous lesions, with special emphasis on clinical and microscopic characteristics of the condition and management with retinoids and steroid therapy.

  19. Interventions for the treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis

    PubMed Central

    Bagnall, A; Whiting, P; Richardson, R; Sowden, A

    2002-01-01

    

 The research evidence on the effectiveness of interventions for the treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) published in a recent issue of Effective Health Care is reviewed. PMID:12486997

  20. Powassan virus infection presenting as acute disseminated encephalomyelitis in Tennessee.

    PubMed

    Hicar, Mark D; Edwards, Kathryn; Bloch, Karen

    2011-01-01

    Powassan virus is a rarely diagnosed cause of encephalitis, and is associated with significant neurologic sequelae. Although symptomatic infections with Powassan virus occur primarily in adults, we report a case of confirmed Powassan neuroinvasive disease in a child presenting to a Tennessee hospital, with symptoms and imaging studies suggestive of acute disseminated encephalomyelitis.

  1. Autoimmune encephalitis.

    PubMed

    Newman, M P; Blum, S; Wong, R C W; Scott, J G; Prain, K; Wilson, R J; Gillis, D

    2016-02-01

    Over the past decade, the clinical spectrum of autoimmune encephalitis has expanded with the emergence of several new clinicopathological entities. In particular, autoimmune encephalitis has recently been described in association with antibodies to surface receptors and ion channels on neurological tissues. Greater clinician awareness has resulted in autoimmune encephalitis being increasingly recognised in patients with unexplained neurological and psychiatric symptoms and signs. The clinical spectrum of presentations, as well as our understanding of disease mechanisms and treatment regimens, is rapidly developing. An understanding of these conditions is important to all subspecialties of Internal Medicine, including neurology and clinical immunology, psychiatry, intensive care and rehabilitation medicine. This review provides a contemporary overview of the aetiology, investigations and treatment of the most recently described autoimmune encephalitides. © 2016 Royal Australasian College of Physicians.

  2. The first childhood case with coexisting Hashimoto thyroiditis, vitiligo and autoimmune hepatitis.

    PubMed

    Keskin, Melikşah; Savaş-Erdeve, Şenay; Özbay-Hoşnut, Ferda; Kurnaz, Erdal; Çetinkaya, Semra; Aycan, Zehra

    2016-01-01

    Hashimoto thyroiditis (HT) is the most common pediatric autoimmune endocrine disorder. It results in autoimmune-mediated thyroid gland destruction and is an organ-specific, typical autoimmune disease. The presence of antithyroid antibodies and the typical pattern on ultrasonography indicate the diagnosis. It is also frequently seen together with other autoimmune disorders including type 1 insulin-dependent diabetes, celiac disease, alopecia and vitiligo. Autoimmune hepatitis (AIH) is a chronic type of liver injury with an immune etiology that can frequently cause end-stage liver disease if left untreated. Autoimmune hepatitis patients may present with hepatitis, and the laboratory tests in the absence of other etiology usually reveal a positive immune serology together with elevated immunoglobulins and abnormal liver histology. It is interesting that HT and AIH are rarely seen together although both have an autoimmune etiology. 14-year-old male who was being followed-up for vitiligo presented with symptoms of a swelling at the neck and fatigue. He was diagnosed with HT after the tests and the liver enzymes were found to be high. The patient was also diagnosed with AIH after tests revealed that the liver enzyme elevation had continued for longer than six months. The thyroid functions and liver enzymes returned to normal and the symptoms decreased after sodium L-thyroxine replacement together with steroid and azathioprine treatment. We present this case as we believe it is the first pediatric patient diagnosed with HT, AIH and vitiligo.

  3. Ginger Extract Modulates the Expression of Chemokines CCL20 and CCL22 and Their Receptors (CCR6 and CCR4) in the Central Nervous System of Mice with Experimental Autoimmune Encephalomyelitis.

    PubMed

    Jafarzadeh, Abdollah; Arabi, Zahra; Ahangar-Parvin, Rayhaneh; Mohammadi-Kordkhayli, Marziyeh; Nemati, Maryam

    2017-11-01

    Background Chemokines facilitate the leukocytes infiltration into the central nervous system (CNS) which is an essential step in the pathogenesis of multiple sclerosis. Ginger has also a broad anti-inflammatory properties. The aim was to evaluate the effects of ginger extract on the expression of CCL20 and CCL22 and their receptors (CCR6 and CCR4, respectively) in experimental autoimmune encephalomyelitis (EAE). Material and Methods Female C57BL/6 mice used for EAE induction by immunization with myelin oligodendroglial glycoprotein. Then, the EAE mice were treated with PBS or ginger extract, from day +3 to +30. At day 31, mice were scarified and the expression of CCL20 and CCL22 and their receptors in the spinal cord measured using real time-PCR. Results The expression of CCL20, CCL22 and CCR4 in the spinal cord of PBS-administrated EAE mice was significantly higher than healthy group (P<0.04, P<0.05 and P<0.02, respectively). In 200- and 300 mg/kg ginger extract-treated EAE mice, the expression of CCL20, CCL22 and CCR4 were significantly reduced as compared with PBS-administrated EAE group (P<0.04, P<0.01 and P<0.002 for 200 mg/kg ginger extract and P<0.01, P<0.005 and P<0.004 for 300 mg/kg ginger extract, respectively). The CCR6 expression in EAE mice treated with 200- or 300 mg/kg ginger extracts was lower than PBS-administrated EAE mice (P<0.01 and P=0.07, respectively). Conclusion Treatment of EAE mice with ginger extract down-regulate the expression of CCL20 and CCL22 and their receptors in EAE mice. The possible therapeutic potential of ginger for treatment of MS can be considered in future investigations. © Georg Thieme Verlag KG Stuttgart · New York.

  4. The immune system which adversely alter thyroid functions: a review on the concept of autoimmunity.

    PubMed

    Mansourian, Azad Reza

    2010-08-15

    The immune system protect individual from many pathogens exists within our environment and in human body, by destroying them through molecular and cellular mechanism of B and T cells of immune system. Autoimmunity is an adverse relation of immune system against non- foreign substances leaving behind either alters the normal function or destroying the tissue involved. Autoimmunity occur in genetically predispose persons with familial connections. The autoimmunity to the thyroid gland mainly consists of Hashimato thyroiditis and Grave's disease, the two end of spectrum in thyroid function of hypo and hyperactivity, respectively. The thyroid stimulating hormone receptor, thyroglobuline, enzymes of thyroid hormones synthesis are targeted by autoantibodies and cell- mediated reactions. The aim of this review is to explore the studies reported on the autoimmunity to the thyroid gland.

  5. Conditional deletion of SLP-76 in mature T cells abrogates peripheral immune responses.

    PubMed

    Wu, Gregory F; Corbo, Evann; Schmidt, Michelle; Smith-Garvin, Jennifer E; Riese, Matthew J; Jordan, Martha S; Laufer, Terri M; Brown, Eric J; Maltzman, Jonathan S

    2011-07-01

    The adaptor protein Src homology 2 domain-containing leukocyte-specific protein of 76 kDa (SLP-76) is central to the organization of intracellular signaling downstream of the T-cell receptor (TCR). Evaluation of its role in mature, primary T cells has been hampered by developmental defects that occur in the absence of WT SLP-76 protein in thymocytes. Here, we show that following tamoxifen-regulated conditional deletion of SLP-76, mature, antigen-inexperienced T cells maintain normal TCR surface expression but fail to transduce TCR-generated signals. Conditionally deficient T cells fail to proliferate in response to antigenic stimulation or a lymphopenic environment. Mice with induced deletion of SLP-76 are resistant to induction of the CD4+ T-cell-mediated autoimmune disease experimental autoimmune encephalomyelitis. Altogether, our findings demonstrate the critical role of SLP-76-mediated signaling in initiating T-cell-directed immune responses both in vitro and in vivo and highlight the ability to analyze signaling processes in mature T cells in the absence of developmental defects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Conditional deletion of SLP-76 in mature T cells abrogates peripheral immune responses1

    PubMed Central

    Wu, Gregory F.; Corbo, Evann; Schmidt, Michelle; Smith-Garvin, Jennifer E.; Riese, Matthew J.; Jordan, Martha S.; Laufer, Terri M.; Brown, Eric J.; Maltzman, Jonathan S.

    2011-01-01

    SUMMARY The adaptor protein Src homology 2 domain-containing leukocyte-specific protein of 76 kDa (SLP-76) is central to the organization of intracellular signaling downstream of the T cell receptor (TCR). Evaluation of its role in mature, primary T cells has been hampered by developmental defects that occur in the absence of wild-type SLP-76 protein in thymocytes. Following tamoxifen-regulated conditional deletion of SLP-76, mature, antigen-inexperienced T cells maintain normal TCR surface expression but fail to transduce TCR generated signals. Conditionally deficient T cells fail to proliferate in response to antigenic stimulation or a lymphopenic environment. Mice with induced deletion of SLP-76 are resistant to induction of the CD4+ T cell mediated autoimmune disease experimental autoimmune encephalomyelitis. Our findings demonstrate the critical role of SLP-76-mediated signaling in initiating T cell-directed immune responses both in vitro and in vivo and highlight the ability to analyze signaling processes in mature T cells in the absence of developmental defects. PMID:21469089

  7. Pemphigus autoimmunity: Hypotheses and realities

    PubMed Central

    Grando, Sergei A

    2011-01-01

    The goal of contemporary research in pemphigus vulgaris and pemphigus foliaceus is to achieve and maintain clinical remission without corticosteroids. Recent advances of knowledge on pemphigus autoimmunity scrutinize old dogmas, resolve controversies, and open novel perspectives for treatment. Elucidation of intimate mechanisms of keratinocyte detachment and death in pemphigus has challenged the monopathogenic explanation of disease immunopathology. Over 50 organ-specific and non-organ-specific antigens can be targeted by pemphigus autoimmunity, including desmosomal cadherins and other adhesion molecules, PERP cholinergic and other cell membrane (CM) receptors, and mitochondrial proteins. The initial insult is sustained by the autoantibodies to the cell membrane receptor antigens triggering the intracellular signaling by Src, epidermal growth factor receptor kinase, protein kinases A and C, phospholipase C, mTOR, p38 MAPK, JNK, other tyrosine kinases, and calmodulin that cause basal cell shrinkage and ripping desmosomes off the CM. Autoantibodies synergize with effectors of apoptotic and oncotic pathways, serine proteases, and inflammatory cytokines to overcome the natural resistance and activate the cell death program in keratinocytes. The process of keratinocyte shrinkage/detachment and death via apoptosis/oncosis has been termed apoptolysis to emphasize that it is triggered by the same signal effectors and mediated by the same cell death enzymes. The natural course of pemphigus has improved due to a substantial progress in developing of the steroid-sparing therapies combining the immunosuppressive and direct anti-acantholytic effects. Further elucidation of the molecular mechanisms mediating immune dysregulation and apoptolysis in pemphigus should improve our understanding of disease pathogenesis and facilitate development of steroid-free treatment of patients. PMID:21939410

  8. Autoimmune Thyroid Disorders

    PubMed Central

    Iddah, M. A.; Macharia, B. N.

    2013-01-01

    Purpose of Review. Studies have been published in the field of autoimmune thyroid diseases since January 2005. The review is organized into areas of etiology, autoimmune features, autoantibodies, mechanism of thyroid cell injury, B-cell responses, and T-cell responses. Also it reviews the diagnosis and the relationship between autoimmune thyroid disease, neoplasm, and kidney disorders. Recent Findings. Autoimmune thyroid diseases have been reported in people living in different parts of the world including North America, Europe, Baalkans, Asia, Middle East, South America, and Africa though the reported figures do not fully reflect the number of people infected per year. Cases are unrecognized due to inaccurate diagnosis and hence are treated as other diseases. However, the most recent studies have shown that the human autoimmune thyroid diseases (AITDs) affect up to 5% of the general population and are seen mostly in women between 30 and 50 years. Summary. Autoimmune thyroid disease is the result of a complex interaction between genetic and environmental factors. Overall, this review has expanded our understanding of the mechanism involved in pathogenesis of AITD and the relationship between autoimmune thyroid disease, neoplasm, and kidney disease. It has opened new lines of investigations that will ultimately result in a better clinical practice. PMID:23878745

  9. Computerized training improves verbal working memory in patients with myalgic encephalomyelitis/chronic fatigue syndrome: A pilot study.

    PubMed

    Maroti, Daniel; Westerberg, Annika Fryxell; Saury, Jean-Michel; Bileviciute-Ljungar, Indre

    2015-08-18

    Patients with myalgic encephalomyelitis/chronic fatigue syndrome experience cognitive difficulties. The aim of this study was to evaluate the effect of computerized training on working memory in this syndrome. Non-randomized (quasi-experimental) study with no-treatment control group and non-equivalent dependent variable design in a myalgic encephalomyelitis/chronic fatigue syndrome-cohort. Patients with myalgic encephalomyelitis/chronic fatigue syndrome who participated in a 6-month outpatient rehabilitation programme were included in the study. Eleven patients who showed signs of working memory deficit were recruited for additional memory training and 12 patients with no working memory deficit served as controls. Cognitive training with computerized working memory tasks of increasing difficulty was performed 30-45 min/day, 5 days/week over a 5-week period. Short-term and working memory tests (Digit Span - forward, backward, total) were used as primary outcome measures. Nine of the 11 patients were able to complete the training. Cognitive training increased working memory (p = 0.003) and general attention (p = 0.004) to the mean level. Short-term memory was also improved, but the difference was not statistically significant (p = 0.052) vs prior training. The control group did not show any significant improvement in primary outcome measures. Cognitive training may be a new treatment for patients with myalgic encephalomyelitis/chronic fatigue syndrome.

  10. Autoimmune encephalopathies

    PubMed Central

    Leypoldt, Frank; Armangue, Thaís; Dalmau, Josep

    2014-01-01

    Over the last 10 years the continual discovery of novel forms of encephalitis associated with antibodies to cell-surface or synaptic proteins has changed the paradigms for diagnosing and treating disorders that were previously unknown or mischaracterized. We review here the process of discovery, the symptoms, and the target antigens of twelve autoimmune encephatilic disorders, grouped by syndromes and approached from a clinical perspective. Anti-NMDAR encephalitis, several subtypes of limbic encephalitis, stiff-person spectrum disorders, and other autoimmune encephalitides that result in psychosis, seizures, or abnormal movements are described in detail. We include a novel encephalopathy with prominent sleep dysfunction that provides an intriguing link between chronic neurodegeneration and cell-surface autoimmunity (IgLON5). Some of the caveats of limited serum testing are outlined. In addition, we review the underlying cellular and synaptic mechanisms that for some disorders confirm the antibody pathogenicity. The multidisciplinary impact of autoimmune encephalitis has been expanded recently by the discovery that herpes simplex encephalitis is a robust trigger of synaptic autoimmunity, and that some patients may develop overlapping syndromes, including anti-NMDAR encephalitis and neuromyelitis optica or other demyelinating diseases. PMID:25315420

  11. Increased autoimmune activity against 5-HT: a key component of depression that is associated with inflammation and activation of cell-mediated immunity, and with severity and staging of depression.

    PubMed

    Maes, Michael; Ringel, Karl; Kubera, Marta; Berk, Michael; Rybakowski, Janusz

    2012-02-01

    Depression is characterized by inflammation and cell-mediated immune (CMI) activation and autoimmune reactions directed against a multitude of self-epitopes. There is evidence that the inflammatory response in depression causes dysfunctions in the metabolism of 5-HT, e.g. lowering the 5-HT precursor tryptophan, and upregulating 5-HT receptor mRNA. This study has been undertaken to examine autoimmune activity directed against 5-HT in relation to CMI activation and inflammation. 5-HT antibodies were examined in major depressed patients (n=109) versus normal controls (n=35) in relation to serum neopterin and lysozyme, and plasma pro-inflammatory cytokines (PIC), i.e. interleukin-1 (IL-1) and tumor necrosis factor-α (TNFα). Severity of depression was assessed with the Hamilton Depression Rating Scale (HDRS) and severity of fatigue and somatic symptoms with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. The incidence of anti-5-HT antibody activity was significantly higher in depressed patients (54.1%), and in particular in those with melancholia (82.9%), than in controls (5.7%). Patients with positive 5-HT antibodies showed increased serum neopterin and lysozyme, and plasma TNFα and IL-1; higher scores on the HDRS and FF scales, and more somatic symptoms, including malaise and neurocognitive dysfunctions. There was a significant association between autoimmune activity to 5-HT and the number of previous depressive episodes. The autoimmune reactions directed against 5-HT might play a role in the pathophysiology of depression and the onset of severe depression. The strong association between autoimmune activity against 5-HT and inflammation/CMI activation is explained by multiple, reciprocal pathways between these factors. Exposure to previous depressive episodes increases the incidence of autoimmune activity directed against 5-HT, which in turn may increase the likelihood to develop new depressive episodes. These findings suggest that sensitization

  12. Seven newly identified loci for autoimmune thyroid disease.

    PubMed

    Cooper, Jason D; Simmonds, Matthew J; Walker, Neil M; Burren, Oliver; Brand, Oliver J; Guo, Hui; Wallace, Chris; Stevens, Helen; Coleman, Gillian; Franklyn, Jayne A; Todd, John A; Gough, Stephen C L

    2012-12-01

    Autoimmune thyroid disease (AITD), including Graves' disease (GD) and Hashimoto's thyroiditis (HT), is one of the most common of the immune-mediated diseases. To further investigate the genetic determinants of AITD, we conducted an association study using a custom-made single-nucleotide polymorphism (SNP) array, the ImmunoChip. The SNP array contains all known and genotype-able SNPs across 186 distinct susceptibility loci associated with one or more immune-mediated diseases. After stringent quality control, we analysed 103 875 common SNPs (minor allele frequency >0.05) in 2285 GD and 462 HT patients and 9364 controls. We found evidence for seven new AITD risk loci (P < 1.12 × 10(-6); a permutation test derived significance threshold), five at locations previously associated and two at locations awaiting confirmation, with other immune-mediated diseases.

  13. Evidence for a prolonged role of alpha 4 integrin throughout active experimental allergic encephalomyelitis.

    PubMed

    Keszthelyi, E; Karlik, S; Hyduk, S; Rice, G P; Gordon, G; Yednock, T; Horner, H

    1996-10-01

    The leukocyte integrin receptor, alpha 4 beta 1, and its endothelial cell ligand, vascular cell adhesion molecule 1, appear to be of critical importance in the leukocyte trafficking that accompanies CNS damage in experimental allergic encephalomyelitis (EAE). In this study, the persistence of the role for alpha 4 beta 1/VCAM-1 in EAE was established by observing antibody-mediated disease reversal up to 1 month following disease onset. Limited treatment with a monoclonal antibody against alpha 4 integrin, GG5/3, resulted in a significant decrease in both clinical and histopathologic signs. This was not observed in isotype control experiments. In the latter phase of progressive disease, widespread demyelination occurred in the animals that did not respond to 6 days of anti-alpha 4 treatment. These results demonstrate an essential role for alpha 4 beta 1 interactions throughout active EAE and illustrate the difference between reversible clinical deficits caused by edema and irreversible deficits associated with demyelination.

  14. Classification, clinical manifestations, and immunopathological mechanisms of the epithelial variant of paraneoplastic autoimmune multiorgan syndrome: a reappraisal of paraneoplastic pemphigus.

    PubMed

    Nguyen, V T; Ndoye, A; Bassler, K D; Shultz, L D; Shields, M C; Ruben, B S; Webber, R J; Pittelkow, M R; Lynch, P J; Grando, S A

    2001-02-01

    Recent studies suggest that paraneoplastic pemphigus (PNP) is a heterogeneous autoimmune syndrome involving several internal organs and that the pathophysiological mechanisms mediating cutaneous, mucosal, and internal lesions are not limited to autoantibodies targeting adhesion molecules. To classify the diverse mucocutaneous and respiratory presentations of PNP and characterize the effectors of humoral and cellular autoimmunity mediating epithelial tissue damage. We examined 3 patients manifesting the lichen planus pemphigoideslike subtype of PNP. A combination of standard immunohistochemical techniques, enzyme-linked immunosorbent assay with desmoglein (DSG) baculoproteins, and an immunoprecipitation assay were used to characterize effectors of humoral and cellular autoimmunity in patients with PNP and in neonatal wild-type and DSG3-knockout mice with PNP phenotype induced by passive transfer of patients' IgGs. In addition to the known "PNP antigenic complex," epithelial targets recognized by PNP antibodies included 240-, 150-, 130-, 95-, 80-, 70-, 66-, and 40/42-kd proteins but excluded DSG1 and DSG3. In addition to skin and the epithelium lining upper digestive and respiratory tract mucosa, deposits of autoantibodies were found in kidney, urinary bladder, and smooth as well as striated muscle. Autoreactive cellular cytotoxicity was mediated by CD8(+) cytotoxic T lymphocytes, CD56(+) natural killer cells, and CD68(+) monocytes/macrophages. Inducible nitric oxide synthase was visualized both in activated effectors of cellular cytotoxicity and their targets. Keratin 14-positive basal epithelial cells sloughed from the large airways and obstructed small airways. The paraneoplastic disease of epithelial adhesion known as PNP in fact represents only 1 manifestation of a heterogeneous autoimmune syndrome in which patients, in addition to small airway occlusion and deposition of autoantibodies in different organs, may display a spectrum of at least 5 different clinical

  15. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice

    PubMed Central

    Khare, Sanjay D.; Sarosi, Ildiko; Xia, Xing-Zhong; McCabe, Susan; Miner, Kent; Solovyev, Irina; Hawkins, Nessa; Kelley, Michael; Chang, David; Van, Gwyneth; Ross, Larry; Delaney, John; Wang, Ling; Lacey, David; Boyle, William J.; Hsu, Hailing

    2000-01-01

    TALL-1/Blys/BAFF is a member of the tumor necrosis factor (TNF) ligand superfamily that is functionally involved in B cell proliferation. Here, we describe B cell hyperplasia and autoimmune lupus-like changes in transgenic mice expressing TALL-1 under the control of a β-actin promoter. The TALL-1 transgenic mice showed severe enlargement of spleen, lymph nodes, and Peyer's patches because of an increased number of B220+ cells. The transgenic mice also had hypergammaglobulinemia contributed by elevations of serum IgM, IgG, IgA, and IgE. In addition, a phenotype similar to autoimmune lupus-like disease was also seen in TALL-1 transgenic mice, characterized by the presence of autoantibodies to nuclear antigens and immune complex deposits in the kidney. Prolonged survival and hyperactivity of transgenic B cells may contribute to the autoimmune lupus-like phenotype in these animals. Our studies further confirm TALL-1 as a stimulator of B cells that affect Ig production. Thus, TALL-1 may be a primary mediator in B cell-associated autoimmune diseases. PMID:10716715

  16. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  17. The Pathogenesis of Autoimmune Liver Disease.

    PubMed

    Arndtz, Katherine; Hirschfield, Gideon M

    Autoimmune liver disease (AILD) encompasses 3 main distinct clinical diseases: autoimmune hepatitis, primary biliary cholangitis (formally known as cirrhosis, PBC) and primary sclerosing cholangitis (PSC). These conditions are an important, yet under-appreciated cause of patient morbidity and mortality with ongoing unmet needs for further research and clinical advances. There is observational evidence for genetic predisposition, with all 3 conditions being more common in first degree relatives. AILD is associated with the presence of auto-antibodies and higher risks of other non-hepatic auto-immune conditions. Genetic risk association studies have identified HLA and non-HLA risk loci for the development of disease, with some HLA loci providing prognostic information. This re-enforces the concept that genetic predisposition to autoimmunity is important, likely in the context of environmental exposures. Such environmental triggers are unclear but relevant risks include smoking, drug and xenobiotic exposure as well as the complexities of the microbiome. There is evidence for a loss of immune tolerance to self-antigens playing a part in the development of these conditions. In particular the IL-2 and IL-12 regulatory pathways have been implicated in pre-disposing to an unopposed inflammatory response within the liver. Main immunological themes revolve around loss of immune tolerance leading to T-cell mediated injury, imbalance in the regulation of immune cells and defective immune response to foreign antigens. For PBC and PSC, there is then the added complexity of the consequences of cholestasis on hepato-biliary injury, immune regulation and liver fibrosis. Whilst specific disease causes and triggers are still lacking, AILD arises on the background of collective genetic and environmental risk, leading to chronic and abnormal hepato-biliary immune responses. Effective and more rational therapy will ultimately be developed when the multiple pathways to liver injury are

  18. H2 Control of Natural T Regulatory Cell Frequency in the Lymph Node Correlates with Susceptibility to Day Three Thymectomy Induced Autoimmune Disease

    PubMed Central

    Rio, Roxana del; Sun, Yuefang; Alard, Pascale; Tung, Kenneth S.K.; Teuscher, Cory

    2010-01-01

    Day 3 thymectomy (D3Tx) results in a loss of peripheral tolerance mediated by natural T regulatory cells (nTR) and development of autoimmune ovarian dysgenesis (AOD) and dacryoadenitis (ADA) in A/J and (C57BL/6J × A/J) F1 hybrids (B6A) but not in C57BL/6J (B6) mice. Previously, using quantitative trait locus (QTL) linkage analysis, we showed that D3Tx-AOD is controlled by five unlinked QTL (Aod1-Aod5) and H2. In the present study, using D3Tx B6-ChrA/J/NaJ chromosome substitution strains, we confirm that QTL on chromosome (Chr) 16 (Aod1a/Aod1b), Chr3 (Aod2), Chr1 (Aod3), Chr2 (Aod4), Chr7 (Aod5), and Chr17 (H2) control D3Tx-AOD susceptibility. Additionally, we present the first data mapping QTL controlling D3Tx-ADA to Chr17 (Ada1/H2), Chr1 (Ada2), and Chr3 (Ada3). Importantly, B6-ChrXA/J mice were as resistant to D3Tx-AOD and D3Tx-ADA as B6 mice thereby excluding Foxp3 as a susceptibility gene in these models. Moreover, we report quantitative differences in the frequency of nTR cells in the lymph nodes (LNs), but not spleen or thymus, of AOD/ADA-resistant B6 and AOD/ADA-susceptible A/J, B6A, and B6-Chr17A/J mice. Similar results correlating with experimental allergic encephalomyelitis and orchitis susceptibility were seen with B10.S and SJL/J mice. Using H2-congenic mice we show that the observed difference in frequency of LN nTR cells is controlled by H2. These data support the existence of a LN-specific, H2-controlled mechanism regulating the prevalence of nTR cells in autoimmune disease susceptibility. PMID:21135167

  19. Autoimmune gastritis.

    PubMed

    Kulnigg-Dabsch, Stefanie

    2016-10-01

    Autoimmune gastritis is a chronic inflammatory disease with destruction of parietal cells of the corpus and fundus of the stomach. The known consequence is vitamin B12 deficiency and, consequently, pernicious anemia. However, loss of parietal cells reduces secretion of gastric acid which is also required for absorption of inorganic iron; thus, iron deficiency is commonly found in patients with autoimmune gastritis. This usually precedes vitamin B12 deficiency and is found mainly in young women. Patients with chronic iron deficiency, especially those refractory to oral iron therapy, should therefore be evaluated for the presence of autoimmune gastritis.

  20. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    PubMed Central

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  1. A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes

    PubMed Central

    Serr, Isabelle; Scherm, Martin G.; Zahm, Adam M.; Schug, Jonathan; Flynn, Victoria K.; Hippich, Markus; Kälin, Stefanie; Becker, Maike; Achenbach, Peter; Nikolaev, Alexei; Gerlach, Katharina; Liebsch, Nicole; Loretz, Brigitta; Lehr, Claus-Michael; Kirchner, Benedikt; Spornraft, Melanie; Haase, Bettina; Segars, James; Küper, Christoph; Palmisano, Ralf; Waisman, Ari; Willis, Richard A.; Kim, Wan-Uk; Weigmann, Benno; Kaestner, Klaus H.; Ziegler, Anette-Gabriele; Daniel, Carolin

    2018-01-01

    Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)–mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+ regulatory T cell (Treg) induction in vitro. Accordingly, Treg induction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treg induction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)–mediated NFAT5, which interferes with FoxP3+ Treg induction. Blocking miRNA181a or NFAT5 increases Treg induction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity. PMID:29298866

  2. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation.

    PubMed

    Duraes, Fernanda V; Lippens, Carla; Steinbach, Karin; Dubrot, Juan; Brighouse, Dale; Bendriss-Vermare, Nathalie; Issazadeh-Navikas, Shohreh; Merkler, Doron; Hugues, Stephanie

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) exhibit both innate and adaptive functions. In particular they are the main source of type I IFNs and directly impact T cell responses through antigen presentation. We have previously demonstrated that during experimental autoimmune encephalomyelitis (EAE) initiation, myelin-antigen presentation by pDCs is associated with suppressive Treg development and results in attenuated EAE. Here, we show that pDCs transferred during acute disease phase confer recovery from EAE. Clinical improvement is associated with migration of injected pDCs into inflamed CNS and is dependent on the subsequent and selective chemerin-mediated recruitment of endogenous pDCs to the CNS. The protective effect requires pDC pre-loading with myelin antigen, and is associated with the modulation of CNS-infiltrating pDC phenotype and inhibition of CNS encephalitogenic T cells. This study may pave the way for novel pDC-based cell therapies in autoimmune diseases, aiming at specifically modulating pathogenic cells that induce and sustain autoimmune inflammation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Metabolism as a Target for Modulation in Autoimmune Diseases.

    PubMed

    Huang, Nick; Perl, Andras

    2018-05-05

    Metabolic pathways are now well recognized as important regulators of immune differentiation and activation, and thus influence the development of autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanistic target of rapamycin (mTOR) has emerged as a key sensor of metabolic stress and an important mediator of proinflammatory lineage specification. Metabolic pathways control the production of mitochondrial reactive oxygen species (ROS), which promote mTOR activation and also modulate the antigenicity of proteins, lipids, and DNA, thus placing ROS at the heart of metabolic disturbances during pathogenesis of SLE. Therefore, we review here the pathways that control ROS production and mTOR activation and identify targets for safe therapeutic modulation of the signaling network that underlies autoimmune diseases, focusing on SLE. Copyright © 2018. Published by Elsevier Ltd.

  4. Active suppression induced by repetitive self-epitopes protects against EAE development.

    PubMed

    Puentes, Fabiola; Dickhaut, Katharina; Hofstätter, Maria; Falk, Kirsten; Rötzschke, Olaf

    2013-01-01

    Autoimmune diseases result from a breakdown in self-tolerance to autoantigens. Self-tolerance is induced and sustained by central and peripheral mechanisms intended to deviate harmful immune responses and to maintain homeostasis, where regulatory T cells play a crucial role. The use of self-antigens in the study and treatment of a range of autoimmune diseases has been widely described; however, the mechanisms underlying the induced protection by these means are unclear. This study shows that protection of experimental autoimmune disease induced by T cell self-epitopes in a multimerized form (oligomers) is mediated by the induction of active suppression. The experimental autoimmune encephalomyelitis (EAE) animal model for multiple sclerosis was used to study the mechanisms of protection induced by the treatment of oligomerized T cell epitope of myelin proteolipid protein (PLP139-151). Disease protection attained by the administration of oligomers was shown to be antigen specific and effective in both prevention and treatment of ongoing EAE. Oligomer mediated tolerance was actively transferred by cells from treated mice into adoptive hosts. The induction of active suppression was correlated with the recruitment of cells in the periphery associated with increased production of IL-10 and reduction of the pro-inflammatory cytokine TNF-α. The role of suppressive cytokines was demonstrated by the reversion of oligomer-induced protection after in vivo blocking of either IL-10 or TGF-β cytokines. This study strongly supports an immunosuppressive role of repeat auto-antigens to control the development of EAE with potential applications in vaccination and antigen specific treatment of autoimmune diseases.

  5. Anti-NMDA Encephalitis: An Uncommon, Autoimmune Mediated Form of Encephalitis

    PubMed Central

    Azizyan, Avetis; Albrektson, Joshua R; Maya, Marcel M; Pressman, Barry D; Moser, Franklin

    2014-01-01

    We report an interesting case of a 19 year old female with findings on MRI suggestive of viral encephalitis. An extensive workup was negative for infectious causes and she was subsequently diagnosed with anti-NMDA encephalitis. Anti-NMDA encephalitis is a highly lethal but treatable form of autoimmune encephalitis that has recently been characterized. It is frequently found in young women and associated with an underlying teratoma. Although rare, this diagnosis should be considered in young females for whom a rapid onset of encephalitis cannot be explained by more common causes. PMID:25426239

  6. Autoimmune hepatitis.

    PubMed

    Vergani, D; Mieli-Vergani, G

    1996-01-01

    Autoimmune hepatitis is an inflammatory liver disease in which the immune system is believed to orchestrate an immune attack onto the liver cell. Current knowledge suggests that both T helper 1 (TH1) and TH2 programmes are involved in the generation of the liver damage. Release of TH2 cytokines leads to the production of autoantibodies to the hepatocyte membrane that recruit killer cells. TH1 cytokines induce macrophage activation which contributes to hepatocyte destruction. Patients commonly possess the "autoimmune" HLA A1/B8/DR3 haplotype and a silent gene at the C4A locus with consequent partial deficiency of the complement component C4. Two main types of autoimmune hepatitis are recognised according to the presence of circulating non-organ specific autoantibodies. Patients with smooth muscle antibody and/or antinuclear antibody may be adults or children, while patients with antiliver kidney microsomal type 1 (LKM1) antibody are usually children or very young adults. In both types there is a preponderance of females. LKM1 antibody is also present in a proportion of adult patients, mainly male, with chronic hepatitis C virus infection. This observation originally led to the suggestion that hepatitis C virus may be the cause of this form of autoimmune hepatitis, but several studies have shown that the epitopes target of the LKM1 antibody in autoimmune hepatitis and chronic hepatitis C virus infection differ. Although autoimmune hepatitis responds satisfactorily to immunosuppression in the short term, progression to cirrhosis is frequent. It is hoped that ongoing research will provide a better understanding of the pathogenic mechanisms of liver damage leading to a more effective and specific mode of treatment.

  7. Organ specificity in autoimmune diseases: thyroid and islet autoimmunity in alopecia areata.

    PubMed

    Noso, Shinsuke; Park, Choongyong; Babaya, Naru; Hiromine, Yoshihisa; Harada, Takeshi; Ito, Hiroyuki; Taketomo, Yasunori; Kanto, Kousei; Oiso, Naoki; Kawada, Akira; Suzuki, Tamio; Kawabata, Yumiko; Ikegami, Hiroshi

    2015-05-01

    Multiple autoimmune diseases, such as autoimmunity against the thyroid gland and pancreatic islets, are often observed in a single patient. Although alopecia areata (AA) is one of the most frequent organ-specific autoimmune diseases, the association of AA with other autoimmune diseases and the genetic basis of the association remain to be analyzed. The aim of this study was to clarify the similarities and differences in HLA and clinical characteristics of thyroid and islet autoimmunity in patients with AA. A total of 126 patients with AA were newly recruited. Anti-islet and antithyroid autoantibodies were tested, and genotypes of HLA genes were determined. Among the autoimmune diseases associated with AA, autoimmune thyroid disease was most frequent (10.0%), followed by vitiligo (2.7%) and rheumatoid arthritis (0.9%) but not type 1 diabetes (0.0%). The prevalence of thyroid-related autoantibodies in patients with AA was significantly higher than that in controls (TSH receptor antibody [TRAb]: 42.7% vs 1.2%, P = 1.6 × 10(-46); thyroid peroxidase antibody: 29.1% vs 11.6%; P = 1.7 × 10(-6)), whereas the prevalence of islet-related autoantibodies was comparable between patients with AA and control subjects. The frequency of DRB1*15:01-DQB1*06:02, a protective haplotype for type 1 diabetes, was significantly higher in TRAb-positive (12.8%, P = .0028, corrected P value [Pc] = .02) but not TRAb-negative (7.1%, not significant) patients with AA than in control subjects (4.5%). The frequency of DRB1*04:05-DQB1*04:01, a susceptible haplotype for type 1 diabetes, was significantly lower in patients with AA (TRAb-positive: 8.5%; TRAb-negative: 11.9%) than in those with type 1 diabetes (29.5%, Pc < .0003 and Pc < .0008, respectively). AA was associated with thyroid autoimmunity but not islet autoimmunity, which correlated with class II HLA haplotypes susceptible or resistant to each autoimmune disease.

  8. [Diagnosis and Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome].

    PubMed

    Kuratsune, Hirohiko

    2018-01-01

    We present here the Japanese clinical diagnostic criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) that were proposed in 2016 by the Japanese Ministry of Health, Labour and Welfare study group. The clinical diagnosis criteria of ME/CFS were created to be used by healthcare agencies in charge of primary care practice. We also explain the current prognosis in ME/CFS and medical treatments used in major medical institutions in Japan.

  9. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    PubMed Central

    Galipeau, Jacques; Nooka, Ajay K.

    2013-01-01

    The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs) make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS), linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs) in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs. PMID:24350294

  10. Redefining progressive encephalomyelitis with rigidity and myoclonus after the discovery of antibodies to glycine receptors.

    PubMed

    Crisp, Sarah J; Balint, Bettina; Vincent, Angela

    2017-06-01

    This review highlights the recent discovery of antibodies to glycine receptor (GlyR-Ab) and discusses the relationship between these antibodies and neurological disorders. Since the initial description in 2008 of antibodies to glycine receptors (GlyR-Abs) in a patient with progressive encephalomyelitis with rigidity and myoclonus (PERM), these antibodies have been found in PERM and in some patients with a variety of stiff person spectrum (SPS) or related disorders. Patients with GlyR-Abs often improve with aggressive immunotherapy, and antibody titres correlate with disease severity. Around 25% of patients have another autoimmune condition and 10-20% have an underlying malignancy. GlyR-Abs bind to extracellular determinants, are mainly Immunoglobulin G1 subclass and induce GlyR internalization in Human embryonic kidney 293 cells, suggesting pathogenicity. The spectrum of neurological disease associated with GlyR-Abs has not been fully characterized, and lower titres may not be syndrome specific, but GlyR-Abs, like antibodies to other neuronal cell-surface antigens, define immunotherapy-responsive disease and are likely to be pathogenic. This distinguishes them from the glutamic acid decarboxylase antibodies that can also be found at high titres in patients with classical stiff person syndrome which is more often chronic and relatively resistant to immunological treatments. Irrespective of the clinical features, GlyR-Abs are helpful in the diagnosis of patients who very often have a subacute, progressive and life-threatening disorder which shows a favourable response to immunotherapy.

  11. Epitopes of Microbial and Human Heat Shock Protein 60 and Their Recognition in Myalgic Encephalomyelitis

    PubMed Central

    Elfaitouri, Amal; Herrmann, Björn; Bölin-Wiener, Agnes; Wang, Yilin; Gottfries, Carl-Gerhard; Zachrisson, Olof; Pipkorn, Rϋdiger; Rönnblom, Lars; Blomberg, Jonas

    2013-01-01

    Myalgic encephalomyelitis (ME, also called Chronic Fatigue Syndrome), a common disease with chronic fatigability, cognitive dysfunction and myalgia of unknown etiology, often starts with an infection. The chaperonin human heat shock protein 60 (HSP60) occurs in mitochondria and in bacteria, is highly conserved, antigenic and a major autoantigen. The anti-HSP60 humoral (IgG and IgM) immune response was studied in 69 ME patients and 76 blood donors (BD) (the Training set) with recombinant human and E coli HSP60, and 136 30-mer overlapping and targeted peptides from HSP60 of humans, Chlamydia, Mycoplasma and 26 other species in a multiplex suspension array. Peptides from HSP60 helix I had a chaperonin-like activity, but these and other HSP60 peptides also bound IgG and IgM with an ME preference, theoretically indicating a competition between HSP60 function and antibody binding. A HSP60-based panel of 25 antigens was selected. When evaluated with 61 other ME and 399 non-ME samples (331 BD, 20 Multiple Sclerosis and 48 Systemic Lupus Erythematosus patients), a peptide from Chlamydia pneumoniae HSP60 detected IgM in 15 of 61 (24%) of ME, and in 1 of 399 non-ME at a high cutoff (p<0.0001). IgM to specific cross-reactive epitopes of human and microbial HSP60 occurs in a subset of ME, compatible with infection-induced autoimmunity. PMID:24312270

  12. Prolactin and Autoimmunity

    PubMed Central

    Borba, Vânia Vieira; Zandman-Goddard, Gisele; Shoenfeld, Yehuda

    2018-01-01

    The great asymmetry of autoimmune diseases between genders represents one of the most enigmatic observations among the mosaic of autoimmunity. Sex hormones are believed to play a crucial role on this dimorphism. The higher prevalence of autoimmunity among women at childbearing ages, disease onset/relapses during pregnancy, and post-partum are some of the arguments that support this hypothesis. Certainly, motherhood represents one of the most remarkable challenges for the immune system, which not only has to allow for the conceptus, but also has to deal with complex endocrine alterations. Hormonal homeostasis is known to exert a crucial influence in achieving a competent and healthy immune system. Prolactin (PRL) has a bioactive function acting as a hormone and a cytokine. It interferes with immune system modulation, mainly inhibiting the negative selection of autoreactive B lymphocytes. Likewise, hyperprolactinemia has been described in relation to the pathogenesis and activity of several autoimmune disorders. Dopamine is an effective inhibitor of PRL secretion due to either a direct influence on the hypophysis or stimulation of postsynaptic dopamine receptors in the hypothalamus, arousing the release of the PRL inhibitory factor. Hence, dopamine agonists have proven to offer clinical benefits among autoimmune patients and represent a promising therapy to be explored. In this review, we attempt to provide a critical overview of the link between PRL, autoimmune diseases, and motherhood. PMID:29483903

  13. Prolactin and Autoimmunity.

    PubMed

    Borba, Vânia Vieira; Zandman-Goddard, Gisele; Shoenfeld, Yehuda

    2018-01-01

    The great asymmetry of autoimmune diseases between genders represents one of the most enigmatic observations among the mosaic of autoimmunity. Sex hormones are believed to play a crucial role on this dimorphism. The higher prevalence of autoimmunity among women at childbearing ages, disease onset/relapses during pregnancy, and post-partum are some of the arguments that support this hypothesis. Certainly, motherhood represents one of the most remarkable challenges for the immune system, which not only has to allow for the conceptus, but also has to deal with complex endocrine alterations. Hormonal homeostasis is known to exert a crucial influence in achieving a competent and healthy immune system. Prolactin (PRL) has a bioactive function acting as a hormone and a cytokine. It interferes with immune system modulation, mainly inhibiting the negative selection of autoreactive B lymphocytes. Likewise, hyperprolactinemia has been described in relation to the pathogenesis and activity of several autoimmune disorders. Dopamine is an effective inhibitor of PRL secretion due to either a direct influence on the hypophysis or stimulation of postsynaptic dopamine receptors in the hypothalamus, arousing the release of the PRL inhibitory factor. Hence, dopamine agonists have proven to offer clinical benefits among autoimmune patients and represent a promising therapy to be explored. In this review, we attempt to provide a critical overview of the link between PRL, autoimmune diseases, and motherhood.

  14. Proliferating brain cells are a target of neurotoxic CSF in systemic autoimmune disease

    PubMed Central

    Sakic, Boris; Kirkham, David L.; Ballok, David A.; Mwanjewe, James; Fearon, Ian M.; Macri, Joseph; Yu, Guanhua; Sidor, Michelle M.; Denburg, Judah A.; Szechtman, Henry; Lau, Jonathan; Ball, Alexander K.; Doering, Laurie C.

    2006-01-01

    Brain atrophy, neurologic and psychiatric (NP) manifestations are common complications in the systemic autoimmune disease, lupus erythematosus (SLE). Here we show that the cerebrospinal fluid (CSF) from autoimmune MRL-lpr mice and a deceased NP-SLE patient reduce the viability of brain cells which proliferate in vitro. This detrimental effect was accompanied by periventricular neurodegeneration in the brains of autoimmune mice and profound in vivo neurotoxicity when their CSF was administered to the CNS of a rat. Multiple ionic responses with microfluorometry and protein peaks on electropherograms suggest more than one mechanism of cellular demise. Similar to the CSF from diseased MRL-lpr mice, the CSF from a deceased SLE patient with a history of psychosis, memory impairment, and seizures, reduced viability of the C17.2 neural stem cell line. Proposed mechanisms of cytotoxicity involve binding of intrathecally synthesized IgG autoantibodies to target(s) common to different mammalian species and neuronal populations. More importantly, these results indicate that the viability of proliferative neural cells can be compromised in systemic autoimmune disease. Antibody-mediated lesions of germinal layers may impair the regenerative capacity of the brain in NP-SLE and possibly, brain development and function in some forms of CNS disorders in which autoimmune phenomena have been documented. PMID:16198428

  15. Inhibition of allergic encephalomyelitis in marmosets by vaccination with recombinant vaccinia virus encoding for myelin basic protein.

    PubMed

    Genain, C P; Gritz, L; Joshi, N; Panicali, D; Davis, R L; Whitaker, J N; Letvin, N L; Hauser, S L

    1997-11-01

    A primary demyelinating form of experimental allergic encephalomyelitis (EAE) resembling human multiple sclerosis (MS) occurs in Callithrix jacchus marmosets following immunization with human white matter. Participation of a T-cell immune response against myelin basic protein (MBP) in this disease model is supported by observations of increased reactivity against MBP in PBMC and of adoptive transfer of an inflammatory form of EAE by MBP-reactive T-cells. To evaluate the effects of ectopic presentation of MBP on marmoset EAE, animals were vaccinated prior to induction of EAE by subcutaneous injection of attenuated strains of vaccinia virus genetically engineered to contain either the entire coding sequence for human MBP (vT15) or the equine herpes virus glycoprotein gH gene (vAbT249). Vaccination with vT15 was followed by transient cytoplasmic and surface membrane expression of MBP in circulating PBMC (15-45 days). The onset of clinical EAE after immunization (pi) was markedly delayed in vT15-vaccinated animals (37-97 days pi, n = 4) compared to vAbT249-vaccinated controls (14-18 days pi, n = 3). Proliferative responses against MBP but not against vaccinia antigens or phytohemagglutinin were suppressed in protected animals. Thus, development of attenuated live viruses carrying genes for myelin antigens could be useful for induction of immunologic tolerance and for modulation of autoimmune demyelination.

  16. Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity.

    PubMed

    Walsh, Elizabeth R; Pisitkun, Prapaporn; Voynova, Elisaveta; Deane, Jonathan A; Scott, Bethany L; Caspi, Rachel R; Bolland, Silvia

    2012-10-02

    Toll-like receptor 7 (Tlr7) has been linked to systemic lupus disease incidence in humans and mice, but how TLR7 potentiates autoimmunity is unclear. We used a Tlr7 transgenic (tg) mouse model to investigate the cellular and molecular events required to induce spontaneous autoimmunity through increased TLR7 activity. We determined that Tlr7 exerts B-cell-intrinsic effects in promoting spontaneous germinal center (GC) and plasmablast B-cell development, and that these B-cell subsets are dependent on T-cell-derived signals through CD40L and SLAM-associated protein (SAP), but not IL-17. Antigen specificity also factored into TLR7-induced disease, as both a restricted T cell receptor (TCR) specificity and MHC haplotype H2(k/k) protected Tlr7tg mice from spontaneous lymphocyte activation and autoantibody production. Inflammatory myeloid cell expansion and autoimmunity did not develop in Tlr7tgIgH(-/-) mice, suggesting either that spontaneous TLR7 activation does not occur in dendritic cells, or, if it does occur, cannot drive these events in the absence of B-cell aid. These data indicate that autoimmune disease in Tlr7tg mice is contingent upon B cells receiving stimulation both through innate pathways and T-cell-derived signals and suggest a codependent relationship between B cells and T cells in the development of autoimmunity.

  17. Vitamin D Actions on CD4+ T Cells in Autoimmune Disease

    PubMed Central

    Hayes, Colleen Elizabeth; Hubler, Shane L.; Moore, Jerott R.; Barta, Lauren E.; Praska, Corinne E.; Nashold, Faye E.

    2015-01-01

    This review summarizes and integrates research on vitamin D and CD4+ T-lymphocyte biology to develop new mechanistic insights into the molecular etiology of autoimmune disease. A deep understanding of molecular mechanisms relevant to gene–environment interactions is needed to deliver etiology-based autoimmune disease prevention and treatment strategies. Evidence linking sunlight, vitamin D, and the risk of multiple sclerosis and type 1 diabetes is summarized to develop the thesis that vitamin D is the environmental factor that most strongly influences autoimmune disease development. Evidence for CD4+ T-cell involvement in autoimmune disease pathogenesis and for paracrine calcitriol signaling to CD4+ T lymphocytes is summarized to support the thesis that calcitriol is sunlight’s main protective signal transducer in autoimmune disease risk. Animal modeling and human mechanistic data are summarized to support the view that vitamin D probably influences thymic negative selection, effector Th1 and Th17 pathogenesis and responsiveness to extrinsic cell death signals, FoxP3+CD4+ T-regulatory cell and CD4+ T-regulatory cell type 1 (Tr1) cell functions, and a Th1–Tr1 switch. The proposed Th1–Tr1 switch appears to bridge two stable, self-reinforcing immune states, pro- and anti-inflammatory, each with a characteristic gene regulatory network. The bi-stable switch would enable T cells to integrate signals from pathogens, hormones, cell–cell interactions, and soluble mediators and respond in a biologically appropriate manner. Finally, unanswered questions and potentially informative future research directions are highlighted to speed delivery of etiology-based strategies to reduce autoimmune disease. PMID:25852682

  18. Tolerogenic dendritic cells in autoimmune diseases: crucial players in induction and prevention of autoimmunity.

    PubMed

    Torres-Aguilar, Honorio; Blank, Miri; Jara, Luis J; Shoenfeld, Yehuda

    2010-11-01

    The immune system has evolved to coordinate responses against numerous invading pathogens and simultaneously remain silent facing self-antigens and those derived from commensal organisms. But, if both processes are not maintained in strict balance, a potential threat can emerge due to the risk of chronic inflammation and/or autoimmunity development. Therefore, there is a negative immune regulation where tolerogenic dendritic cells (tDCs) participate actively. Under steady-state conditions, tDC are notably involved in the elimination of autoreactive T cells at the thymus, and in the control of T cells specific to self and harmless antigens in the periphery. But in the presence of foreign antigens in an inflammatory milieu, dendritic cells (DCs) mature and induce T cells activation and their migration to B cell areas to assist in antibody production. Additionally, there are other factors such as infections, anti tumoral immune responses, trauma-mediated disruption, etc. that may induce alterations in the balance between tolerogenic and immunogenic functions of DCs and instigate the development of autoimmune diseases (ADs). Therefore, in recent years, DCs have emerged as therapeutic targets to control of ADs. Diverse strategies in vitro and/or in animal models of ADs have explored the tolerogenic functions of DCs and demonstrated their feasibility to prevent or control an autoimmune process, but still leaving a void in their application in clinical assays. The purpose of this paper is to give a general overview of the current literature on the significance of tDCs in tolerance maintenance to self and innocuous antigens, the most relevant alterations involved in the pathophysiology of ADs, the cellular and molecular mechanisms involved in their tolerogenic function and the current strategies used to exploit their tolerogenic potential. Published by Elsevier B.V.

  19. [Non-autoimmune thyroiditis].

    PubMed

    Rizzo, Leonardo F L; Mana, Daniela L; Bruno, Oscar D

    2014-01-01

    The term thyroiditis comprises a group of thyroid diseases characterized by the presence of inflammation, including autoimmune and non-autoimmune entities. It may manifest as an acute illness with severe thyroid pain (subacute thyroiditis and infectious thyroiditis), and conditions in which the inflammation is not clinically evident evolving without pain and presenting primarily thyroid dysfunction and/or goiter (drug-induced thyroiditis and Riedel thyroiditis). The aim of this review is to provide an updated approach on non-autoimmune thyroiditis and its clinical, diagnostic and therapeutic aspects.

  20. Long-term consumption of caffeine-free high sucrose cola beverages aggravates the pathogenesis of EAE in mice.

    PubMed

    Cao, Guangchao; Wang, Qian; Huang, Wanjun; Tong, Jiyu; Ye, Dewei; He, Yan; Liu, Zonghua; Tang, Xin; Cheng, Hao; Wen, Qiong; Li, Dehai; Chau, Hau-Tak; Wen, Yiming; Zhong, Hui; Meng, Ziyu; Liu, Hui; Wu, Zhenzhou; Zhao, Liqing; Flavell, Richard A; Zhou, Hongwei; Xu, Aimin; Yang, Hengwen; Yin, Zhinan

    2017-01-01

    Epidemiological data provide strong evidence of dramatically increasing incidences of many autoimmune diseases in the past few decades, mainly in western and westernized countries. Recent studies clearly revealed that 'Western diet' increases the risk of autoimmune diseases at least partially via disrupting intestinal tight junctions and altering the construction and metabolites of microbiota. However, the role of high sucrose cola beverages (HSCBs), which are one of the main sources of added sugar in the western diet, is barely known. Recently, a population study showed that regular consumption of sugar-sweetened beverages is associated with increased risk of seropositive rheumatoid arthritis in women, which provokes interest in the genuine effects of these beverages on the pathogenesis of autoimmune diseases and the underlying mechanisms. Here we showed that long-term consumption of caffeine-free HSCBs aggravated the pathogenesis of experimental autoimmune encephalomyelitis in mice in a microbiota-dependent manner. Further investigation revealed that HSCBs altered community structure of microbiota and increased Th17 cells. High sucrose consumption had similar detrimental effects while caffeine contamination limited the infiltrated pathogenic immune cells and counteracted these effects. These results uncovered a deleterious role of decaffeinated HSCBs in aggravating the pathogenesis of experimental autoimmune encephalomyelitis in mice.

  1. Long-term consumption of caffeine-free high sucrose cola beverages aggravates the pathogenesis of EAE in mice

    PubMed Central

    Cao, Guangchao; Wang, Qian; Huang, Wanjun; Tong, Jiyu; Ye, Dewei; He, Yan; Liu, Zonghua; Tang, Xin; Cheng, Hao; Wen, Qiong; Li, Dehai; Chau, Hau-Tak; Wen, Yiming; Zhong, Hui; Meng, Ziyu; Liu, Hui; Wu, Zhenzhou; Zhao, Liqing; Flavell, Richard A; Zhou, Hongwei; Xu, Aimin; Yang, Hengwen; Yin, Zhinan

    2017-01-01

    Epidemiological data provide strong evidence of dramatically increasing incidences of many autoimmune diseases in the past few decades, mainly in western and westernized countries. Recent studies clearly revealed that ‘Western diet’ increases the risk of autoimmune diseases at least partially via disrupting intestinal tight junctions and altering the construction and metabolites of microbiota. However, the role of high sucrose cola beverages (HSCBs), which are one of the main sources of added sugar in the western diet, is barely known. Recently, a population study showed that regular consumption of sugar-sweetened beverages is associated with increased risk of seropositive rheumatoid arthritis in women, which provokes interest in the genuine effects of these beverages on the pathogenesis of autoimmune diseases and the underlying mechanisms. Here we showed that long-term consumption of caffeine-free HSCBs aggravated the pathogenesis of experimental autoimmune encephalomyelitis in mice in a microbiota-dependent manner. Further investigation revealed that HSCBs altered community structure of microbiota and increased Th17 cells. High sucrose consumption had similar detrimental effects while caffeine contamination limited the infiltrated pathogenic immune cells and counteracted these effects. These results uncovered a deleterious role of decaffeinated HSCBs in aggravating the pathogenesis of experimental autoimmune encephalomyelitis in mice. PMID:28670480

  2. Hot topics in autoimmune diseases: perspectives from the 2013 Asian Congress of Autoimmunity.

    PubMed

    Selmi, Carlo

    2014-08-01

    Our understanding of the pathogenic mechanisms and possible treatments of autoimmune diseases has significantly increased over the past decade. Nonetheless, numerous major issues remain open and such issues span from epidemiology to clinimetrics and from the role of infectious agents to the search for accurate biomarkers in paradigmatic conditions such as systemic lupus erythematosus, rheumatoid arthritis, and spondyloarthropathies. In the case of cardiovascular comorbidities of autoimmune diseases or, more generally, the pathogenesis of atherosclerosis, fascinating evidence points to a central role of autoimmunity and metabolic dysfunctions and a possible role of therapies targeting inflammation to ameliorate both conditions. Basic science and translational medicine contribute to identify common mechanisms that underlie different autoimmune diseases, as in the case of tumor necrosis factor alpha, and more recently vitamin D, autoantibodies, T and B regulatory cells, and microRNA. Finally, new therapies are expected to significantly change our approach to autoimmune diseases, as represented by the recent FDA approval of the first oral JAK inhibitor. The present article moves from the major topics that were discussed at the 2013 Asian Congress of Autoimmunity in Hong Kong to illustrate the most recent data from leading journals in autoimmunity and immunology. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. T Cell Intrinsic Function of the Noncanonical NF-κB Pathway in the Regulation of GM-CSF Expression and EAE Pathogenesis

    PubMed Central

    Yu, Jiayi; Zhou, Xiaofei; Nakaya, Mako; Jin, Wei; Cheng, Xuhong; Sun, Shao-Cong

    2014-01-01

    The Noncanonical NF-κB pathway induces processing of the NF-κB2 precursor protein p100 and, thereby, mediates activation of p52-containing NF-κB complexes. This pathway is crucial for B-cell maturation and humoral immunity, but its role in regulating T-cell function is less clear. Using mutant mice that express a non-processible p100, NF-κB2lym1, we show that the noncanonical NF-κB pathway has a T cell-intrinsic role in regulating the pathogenesis of a T cell-mediated autoimmunity, experimental autoimmune encephalomyelitis (EAE). Although the lym1 mutation does not interfere with naïve T-cell activation, it renders the Th17 cells defective in the production of inflammatory effector molecules, particularly the cytokine GM-CSF. We provide evidence that p52 binds to the promoter of the GM-CSF-encoding gene (Csf2) and cooperates with c-Rel in the transactivation of this target gene. Introduction of exogenous p52 or GM-CSF to the NF-κB2lym1 mutant T cells partially restores their ability to induce EAE. These results suggest that the noncanonical NF-κB pathway mediates induction of EAE by regulating the effector function of inflammatory T cells. PMID:24899500

  4. Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling.

    PubMed

    Kido, Masahiro; Watanabe, Norihiko; Okazaki, Taku; Akamatsu, Takuji; Tanaka, Junya; Saga, Kazuyuki; Nishio, Akiyoshi; Honjo, Tasuku; Chiba, Tsutomu

    2008-10-01

    Because of the lack of animal models developing spontaneous autoimmune hepatitis (AIH), the molecular mechanisms involved in the development of AIH are still unclear. This study aims to examine the regulatory roles of naturally arising CD4(+)CD25(+) regulatory T (Treg) cells and programmed cell death 1 (PD-1)-mediated signaling in the development of AIH. To induce a concurrent loss of Treg cells and PD-1-mediated signaling, neonatal thymectomy (NTx), which severely reduces the number of Treg cells, was performed on PD-1(-/-) mice. After the NTx, we performed histologic examination, assessed autoantibody production and infiltrating cells in the liver, and conducted adoptive transfer experiments. In contrast to NTx mice and PD-1(-/-) mice, NTx-PD-1(-/-) mice produced antinuclear antibodies and developed fatal hepatitis characterized by a CD4(+) and CD8(+) T-cell infiltration invading the parenchyma with massive lobular necrosis. Induction of AIH in NTx-PD-1(-/-) mice was suppressed by transfer of Treg cells, even derived from PD-1(-/-) mice. Transfer of total but not CD4(+) T-cell-depleted splenocytes from NTx-PD-1(-/-) mice into RAG2(-/-) mice induced the development of severe hepatitis. In contrast, the transfer of CD8(+) T-cell-depleted splenocytes triggered only mononuclear infiltrates without massive necrosis of the parenchyma. NTx-PD-1(-/-) mice are the first mouse model of spontaneous fatal AIH. The concurrent loss of Treg cells and PD-1-mediated signaling can induce the development of fatal AIH. Autoreactive CD4(+) T cells are essential for induction of AIH, whereas CD8(+) T cells play an important role in progression to fatal hepatic damage.

  5. Autoimmune progesterone dermatitis.

    PubMed

    Detrixhe, A; Nikkels, A F; Dezfoulian, B

    2017-11-01

    Autoimmune progesterone dermatitis (APD) is an exceptional condition affecting young women of childbearing age with a high prevalence during the third decade of life. The diagnosis should be confirmed using an intradermal skin test to progesterone, during the follicular phase of the menstrual cycle. APD represents an early manifestation of autoimmune disease. A case of APD is presented who after curative treatment did not develop other autoimmune diseases during a 6-year follow-up. Dermatologists, gynecologists and obstetricians should be aware of this rare but highly invalidating entity.

  6. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation.

    PubMed

    Weindel, Chi G; Richey, Lauren J; Bolland, Silvia; Mehta, Abhiruchi J; Kearney, John F; Huber, Brigitte T

    2015-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5(f/f)). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines.

  7. Impaired neurosteroid synthesis in multiple sclerosis

    PubMed Central

    Noorbakhsh, Farshid; Ellestad, Kristofor K.; Maingat, Ferdinand; Warren, Kenneth G.; Han, May H.; Steinman, Lawrence; Baker, Glen B.

    2011-01-01

    High-throughput technologies have led to advances in the recognition of disease pathways and their underlying mechanisms. To investigate the impact of micro-RNAs on the disease process in multiple sclerosis, a prototypic inflammatory neurological disorder, we examined cerebral white matter from patients with or without the disease by micro-RNA profiling, together with confirmatory reverse transcription–polymerase chain reaction analysis, immunoblotting and gas chromatography-mass spectrometry. These observations were verified using the in vivo multiple sclerosis model, experimental autoimmune encephalomyelitis. Brains of patients with or without multiple sclerosis demonstrated differential expression of multiple micro-RNAs, but expression of three neurosteroid synthesis enzyme-specific micro-RNAs (miR-338, miR-155 and miR-491) showed a bias towards induction in patients with multiple sclerosis (P < 0.05). Analysis of the neurosteroidogenic pathways targeted by micro-RNAs revealed suppression of enzyme transcript and protein levels in the white matter of patients with multiple sclerosis (P < 0.05). This was confirmed by firefly/Renilla luciferase micro-RNA target knockdown experiments (P < 0.05) and detection of specific micro-RNAs by in situ hybridization in the brains of patients with or without multiple sclerosis. Levels of important neurosteroids, including allopregnanolone, were suppressed in the white matter of patients with multiple sclerosis (P < 0.05). Induction of the murine micro-RNAs, miR-338 and miR-155, accompanied by diminished expression of neurosteroidogenic enzymes and allopregnanolone, was also observed in the brains of mice with experimental autoimmune encephalomyelitis (P < 0.05). Allopregnanolone treatment of the experimental autoimmune encephalomyelitis mouse model limited the associated neuropathology, including neuroinflammation, myelin and axonal injury and reduced neurobehavioral deficits (P < 0.05). These multi-platform studies point to

  8. Vaccines, adjuvants and autoimmunity.

    PubMed

    Guimarães, Luísa Eça; Baker, Britain; Perricone, Carlo; Shoenfeld, Yehuda

    2015-10-01

    Vaccines and autoimmunity are linked fields. Vaccine efficacy is based on whether host immune response against an antigen can elicit a memory T-cell response over time. Although the described side effects thus far have been mostly transient and acute, vaccines are able to elicit the immune system towards an autoimmune reaction. The diagnosis of a definite autoimmune disease and the occurrence of fatal outcome post-vaccination have been less frequently reported. Since vaccines are given to previously healthy hosts, who may have never developed the disease had they not been immunized, adverse events should be carefully accessed and evaluated even if they represent a limited number of occurrences. In this review of the literature, there is evidence of vaccine-induced autoimmunity and adjuvant-induced autoimmunity in both experimental models as well as human patients. Adjuvants and infectious agents may exert their immune-enhancing effects through various functional activities, encompassed by the adjuvant effect. These mechanisms are shared by different conditions triggered by adjuvants leading to the autoimmune/inflammatory syndrome induced by adjuvants (ASIA syndrome). In conclusion, there are several case reports of autoimmune diseases following vaccines, however, due to the limited number of cases, the different classifications of symptoms and the long latency period of the diseases, every attempt for an epidemiological study has so far failed to deliver a connection. Despite this, efforts to unveil the connection between the triggering of the immune system by adjuvants and the development of autoimmune conditions should be undertaken. Vaccinomics is a field that may bring to light novel customized, personalized treatment approaches in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Resetting microbiota by Lactobacillus reuteri inhibits T reg deficiency–induced autoimmunity via adenosine A2A receptors

    PubMed Central

    Hoang, Thomas K.; Tian, Xiangjun; Luo, Meng; Zhou, Jain; Tatevian, Nina; Molina, Jose G.; Blackburn, Michael R.; Gomez, Thomas H.

    2017-01-01

    Regulatory T (T reg) cell deficiency causes lethal, CD4+ T cell–driven autoimmune diseases. Stem cell transplantation is used to treat these diseases, but this procedure is limited by the availability of a suitable donor. The intestinal microbiota drives host immune homeostasis by regulating the differentiation and expansion of T reg, Th1, and Th2 cells. It is currently unclear if T reg cell deficiency–mediated autoimmune disorders can be treated by targeting the enteric microbiota. Here, we demonstrate that Foxp3+ T reg cell deficiency results in gut microbial dysbiosis and autoimmunity over the lifespan of scurfy (SF) mouse. Remodeling microbiota with Lactobacillus reuteri prolonged survival and reduced multiorgan inflammation in SF mice. L. reuteri changed the metabolomic profile disrupted by T reg cell deficiency, and a major effect was to restore levels of the purine metabolite inosine. Feeding inosine itself prolonged life and inhibited multiorgan inflammation by reducing Th1/Th2 cells and their associated cytokines. Mechanistically, the inhibition of inosine on the differentiation of Th1 and Th2 cells in vitro depended on adenosine A2A receptors, which were also required for the efficacy of inosine and of L. reuteri in vivo. These results reveal that the microbiota–inosine–A2A receptor axis might represent a potential avenue for combatting autoimmune diseases mediated by T reg cell dysfunction. PMID:27994068

  10. Identification of a CD8 T cell that can independently mediate autoimmune diabetes development in the complete absence of CD4 T cell helper functions.

    PubMed

    Graser, R T; DiLorenzo, T P; Wang, F; Christianson, G J; Chapman, H D; Roopenian, D C; Nathenson, S G; Serreze, D V

    2000-04-01

    Previous work has indicated that an important component for the initiation of autoimmune insulin-dependent diabetes mellitus (IDDM) in the NOD mouse model entails MHC class I-restricted CD8 T cell responses against pancreatic beta cell Ags. However, unless previously activated in vitro, such CD8 T cells have previously been thought to require helper functions provided by MHC class II-restricted CD4 T cells to exert their full diabetogenic effects. In this study, we show that IDDM development is greatly accelerated in a stock of NOD mice expressing TCR transgenes derived from a MHC class I-restricted CD8 T cell clone (designated AI4) previously found to contribute to the earliest preclinical stages of pancreatic beta cell destruction. Importantly, these TCR transgenic NOD mice (designated NOD.AI4alphabeta Tg) continued to develop IDDM at a greatly accelerated rate when residual CD4 helper T cells were eliminated by introduction of the scid mutation or a functionally inactivated CD4 allele. In a previously described stock of NOD mice expressing TCR transgenes derived from another MHC class I-restricted beta cell autoreactive T cell clone, IDDM development was retarded by elimination of residual CD4 T cells. Hence, there is variability in the helper dependence of CD8 T cells contributing to the development of autoimmune IDDM. The AI4 clonotype represents the first CD8 T cell with a demonstrated ability to progress from a naive to functionally activated state and rapidly mediate autoimmune IDDM development in the complete absence of CD4 T cell helper functions.

  11. Autoimmune diseases in asthma.

    PubMed

    Tirosh, Amir; Mandel, Dror; Mimouni, Francis B; Zimlichman, Eyal; Shochat, Tzippora; Kochba, Ilan

    2006-06-20

    Previous research has suggested an inverse relationship between T-helper 2-related atopic disorders, such as asthma, and T-helper 1-related autoimmune diseases. One controversial hypothesis postulates that asthma provides a protective effect for the development of autoimmune-related disorders. To assess the rate of newly diagnosed autoimmune disorders in a large cohort of young adults. Using cross-sectional data from the Israeli Defense Force database, the authors analyzed the prevalence of autoimmune disorders in asthmatic and nonasthmatic military personnel between 1980 and 2003. A follow-up study traced newly diagnosed autoimmune disorders among asthmatic and nonasthmatic individuals from the time of enrollment in military service until discharge (22 and 36 months for women and men, respectively). General community. 307,367 male and 181,474 female soldiers in compulsory military service who were between 18 and 21 years of age. Cases of type 1 diabetes mellitus, vasculitis, immune thrombocytopenic purpura, inflammatory bowel disease, rheumatoid arthritis, and the antiphospholipid syndrome. Of 488,841 participants at enrollment, significantly more women than men had autoimmune disorders. Compared with asthmatic women, nonasthmatic women had a significantly higher prevalence of all autoimmune disorders except for the antiphospholipid syndrome. Type 1 diabetes mellitus, vasculitis, and rheumatoid arthritis were less prevalent in men with asthma than in those without. During the follow-up period, vasculitis and rheumatoid arthritis were more frequently diagnosed in nonasthmatic persons of both sexes. There was a significantly higher incidence of immune thrombocytopenic purpura, inflammatory bowel disease, and the antiphospholipid syndrome in nonasthmatic women and a statistically significantly higher incidence of type 1 diabetes mellitus in nonasthmatic men. The study was limited to a population of young military recruits; therefore, its findings are not necessarily

  12. ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity

    PubMed Central

    Bi, Xinyun; Li, Fanghong; Liu, Shanshan; Jin, Yan; Zhang, Xin; Yang, Tao; Dai, Yifan; Li, Xiaoxi; Zhao, Allan Zijian

    2017-01-01

    Despite the benefit of insulin, blockade of autoimmune attack and regeneration of pancreatic islets are ultimate goals for the complete cure of type 1 diabetes (T1D). Long-term consumption of ω-3 polyunsaturated fatty acids (PUFAs) is known to suppress inflammatory processes, making these fatty acids candidates for the prevention and amelioration of autoimmune diseases. Here, we explored the preventative and therapeutic effects of ω-3 PUFAs on T1D. In NOD mice, dietary intervention with ω-3 PUFAs sharply reduced the incidence of T1D, modulated the differentiation of Th cells and Tregs, and decreased the levels of IFN-γ, IL-17, IL-6, and TNF-α. ω-3 PUFAs exerted similar effects on the differentiation of CD4+ T cells isolated from human peripheral blood mononuclear cells. The regulation of CD4+ T cell differentiation was mediated at least in part through ω-3 PUFA eicosanoid derivatives and by mTOR complex 1 (mTORC1) inhibition. Importantly, therapeutic intervention in NOD mice through nutritional supplementation or lentivirus-mediated expression of an ω-3 fatty acid desaturase, mfat-1, normalized blood glucose and insulin levels for at least 182 days, blocked the development of autoimmunity, prevented lymphocyte infiltration into regenerated islets, and sharply elevated the expression of the β cell markers pancreatic and duodenal homeobox 1 (Pdx1) and paired box 4 (Pax4). The findings suggest that ω-3 PUFAs could potentially serve as a therapeutic modality for T1D. PMID:28375156

  13. Pre-symptomatic autoimmunity in rheumatoid arthritis: when does the disease start?

    PubMed

    Tracy, Alexander; Buckley, Christopher D; Raza, Karim

    2017-06-01

    It is well recognised that a state of autoimmunity, in which immunological tolerance is broken, precedes the development of symptoms in the majority of patients with rheumatoid arthritis (RA). For individuals who will later develop seropositive disease, this manifests as autoantibodies directed against proteins that have undergone specific post-translational modifications. There is evidence that the induction of this autoantibody response occurs at peripheral extra-articular mucosal sites, such as the periodontium and lung. In addition to their utility as diagnostic markers, these autoantibodies may have a pathogenic role that helps localise disease to the synovium. Alongside the development of autoantibodies, other factors contributing to pre-symptomatic autoimmunity may include dysbiosis of the gastrointestinal tract, abnormal development of lymphoid tissue, and dysregulated autonomic and lipid-mediated anti-inflammatory signalling. These factors combine to skew the balance between pro-inflammatory and anti-inflammatory signalling in a manner that is permissive for the development of clinical arthritis. We present data to support the concept that the transitions from at-risk states to systemic autoimmunity and then to classifiable RA depend on multiple "switches". However, further prospective studies are necessary to define the molecular basis of these switches and the specific features of pre-symptomatic autoimmunity, so that preventative treatments can be targeted to individuals at high risk for RA. In this review, we analyse mechanisms that may contribute to the development of autoimmunity in at-risk individuals and discuss the relationship between this pre-symptomatic state and subsequent development of RA.

  14. Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin.

    PubMed

    Maes, Michael; Twisk, Frank N M; Kubera, Marta; Ringel, Karl

    2012-02-01

    There is evidence that inflammatory pathways and cell-mediated immunity (CMI) play an important role in the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Activation of inflammatory and CMI pathways, including increased levels of cytokines, is known to induce fatigue and somatic symptoms. Given the broad spectrum inflammatory state in ME/CFS, the aim of this study was to examine whether inflammatory and CMI biomarkers are increased in individuals with ME/CFS. In this study we therefore measured plasma interleukin-(IL)1, tumor necrosis factor (TNF)α, and PMN-elastase, and serum neopterin and lysozyme in 107 patients with ME/CFS, 37 patients with chronic fatigue (CF), and 20 normal controls. The severity of ME/CFS was measured with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. Serum IL-1, TNFα, neopterin and lysozyme are significantly higher in patients with ME/CFS than in controls and CF patients. Plasma PMN-elastase is significantly higher in patients with ME/CFS than in controls and CF patients and higher in the latter than in controls. Increased IL-1 and TNFα are significantly correlated with fatigue, sadness, autonomic symptoms, and a flu-like malaise; neopterin is correlated with fatigue, autonomic symptoms, and a flu-like malaise; and increased PMN-elastase is correlated with concentration difficulties, failing memory and a subjective experience of infection. The findings show that ME/CFS is characterized by low-grade inflammation and activation of CMI. The results suggest that characteristic symptoms of ME/CFS, such as fatigue, autonomic symptoms and a flu-like malaise, may be caused by inflammatory mediators, e.g. IL-1 and TNFα. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The Increased Risk for Autoimmune Diseases in Patients with Eating Disorders

    PubMed Central

    Raevuori, Anu; Haukka, Jari; Vaarala, Outi; Suvisaari, Jaana M.; Gissler, Mika; Grainger, Marjut; Linna, Milla S.; Suokas, Jaana T.

    2014-01-01

    Objective Research suggests autoimmune processes to be involved in psychiatric disorders. We aimed to address the prevalence and incidence of autoimmune diseases in a large Finnish patient cohort with anorexia nervosa, bulimia nervosa, and binge eating disorder. Methods Patients (N = 2342) treated at the Eating Disorder Unit of Helsinki University Central Hospital between 1995 and 2010 were compared with general population controls (N = 9368) matched for age, sex, and place of residence. Data of 30 autoimmune diseases from the Hospital Discharge Register from 1969 to 2010 were analyzed using conditional and Poisson regression models. Results Of patients, 8.9% vs. 5.4% of control individuals had been diagnosed with one or more autoimmune disease (OR 1.7, 95% CI 1.5–2.0, P<0.001). The increase in endocrinological diseases (OR 2.4, 95% CI 1.8–3.2, P<0.001) was explained by type 1 diabetes, whereas Crohn's disease contributed most to the risk of gastroenterological diseases (OR 1.8, 95% CI 1.4–2.5, P<0.001). Higher prevalence of autoimmune diseases among patients with eating disorders was not exclusively due to endocrinological and gastroenterological diseases; when the two categories were excluded, the increase in prevalence was seen in the patients both before the onset of the eating disorder treatment (OR 1.5, 95% CI 1.1–2.1, P = 0.02) and at the end of the follow-up (OR 1.4, 95% CI 1.1–1.8, P = 0.01). Conclusions We observed an association between eating disorders and several autoimmune diseases with different genetic backgrounds. Our findings support the link between immune-mediated mechanisms and development of eating disorders. Future studies are needed to further explore the risk of autoimmune diseases and immunological mechanisms in individuals with eating disorders and their family members. PMID:25147950

  16. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation.

    PubMed

    Hertwig, Laura; Hamann, Isabell; Romero-Suarez, Silvina; Millward, Jason M; Pietrek, Rebekka; Chanvillard, Coralie; Stuis, Hanna; Pollok, Karolin; Ransohoff, Richard M; Cardona, Astrid E; Infante-Duarte, Carmen

    2016-08-01

    Fractalkine receptor (CX3CR1)-deficient mice develop very severe experimental autoimmune encephalomyelitis (EAE), associated with impaired NK cell recruitment into the CNS. Yet, the precise implications of NK cells in autoimmune neuroinflammation remain elusive. Here, we investigated the pattern of NK cell mobilization and the contribution of CX3CR1 to NK cell dynamics in the EAE. We show that in both wild-type and CX3CR1-deficient EAE mice, NK cells are mobilized from the periphery and accumulate in the inflamed CNS. However, in CX3CR1-deficient mice, the infiltrated NK cells displayed an immature phenotype contrasting with the mature infiltrates in WT mice. This shift in the immature/mature CNS ratio contributes to EAE exacerbation in CX3CR1-deficient mice, since transfer of mature WT NK cells prior to immunization exerted a protective effect and normalized the CNS NK cell ratio. Moreover, mature CD11b(+) NK cells show higher degranulation in the presence of autoreactive 2D2 transgenic CD4(+) T cells and kill these autoreactive cells more efficiently than the immature CD11b(-) fraction. Together, these data suggest a protective role of mature NK cells in EAE, possibly through direct modulation of T cells inside the CNS, and demonstrate that mature and immature NK cells are recruited into the CNS by distinct chemotactic signals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications.

    PubMed

    Babushok, Daria V; Duke, Jamie L; Xie, Hongbo M; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J D; Kearns, Jane; Porter, David L; Podsakoff, Gregory M; Eisenlohr, Laurence C; Biegel, Jaclyn A; Chou, Stella T; Monos, Dimitrios S; Bessler, Monica; Olson, Timothy S

    2017-10-10

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by Human Leukocyte Antigen (HLA)-restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole exome sequencing (WES), we recently identified two aAA patients with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the Major Histocompatibility Complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping we screened 66 aAA patients for somatic HLA class I loss. We found somatic HLA loss in eleven patients (17%), with thirteen loss-of-function mutations in HLA-A *33:03, HLA-A *68:01, HLA-B *14:02 and HLA-B *40:02 alleles. Three patients had more than one mutation targeting the same HLA allele. Interestingly, HLA-B *14:02 and HLA-B *40:02 were significantly overrepresented in aAA patients, compared to ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA, and establishes a novel link between aAA patients' immunogenetics and clonal evolution.

  18. Somatic HLA mutations expose the role of class I–mediated autoimmunity in aplastic anemia and its clonal complications

    PubMed Central

    Duke, Jamie L.; Xie, Hongbo M.; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J. D.; Kearns, Jane; Porter, David L.; Podsakoff, Gregory M.; Eisenlohr, Laurence C.; Biegel, Jaclyn A.; Chou, Stella T.; Monos, Dimitrios S.; Bessler, Monica; Olson, Timothy S.

    2017-01-01

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by human leukocyte antigen (HLA)–restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole-exome sequencing (WES), we recently identified 2 patients with aAA with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the major histocompatibility complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping, we screened 66 patients with aAA for somatic HLA class I loss. We found somatic HLA loss in 11 patients (17%), with 13 loss-of-function mutations in HLA-A*33:03, HLA-A*68:01, HLA-B*14:02, and HLA-B*40:02 alleles. Three patients had more than 1 mutation targeting the same HLA allele. Interestingly, HLA-B*14:02 and HLA-B*40:02 were significantly overrepresented in patients with aAA compared with ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA and establishes a novel link between immunogenetics and clonal evolution of patients with aAA. PMID:28971166

  19. Excessive interferon-α signaling in autoimmunity alters glycosphingolipid processing in B cells.

    PubMed

    Tan, Andy Hee-Meng; Sanny, Arleen; Ng, Sze-Wai; Ho, Ying-Swan; Basri, Nurhidayah; Lee, Alison Ping; Lam, Kong-Peng

    2018-05-01

    Excessive interferon-α (IFN-α) production by innate immune cells is a hallmark of autoimmune diseases. What other cell type secretes IFN-α and how IFN-α affects immune cell metabolism and homeostasis in autoimmunity are largely unclear. Here, we report that autoimmune B cells, arising from two different B cell-specific genetic lesions in mice, secrete IFN-α. In addition, IFN-α, found in abundance in autoimmunity, elicited profound changes in the B cell lipidome, increasing their expression of glycosphingolipids (GSLs) and leading to their CD1d-mediated depletion of iNKT cells in vitro and in vivo. IFN-α receptor blockade could reverse the loss of iNKT cells. Excessive stimulation of B cells with IFN-α altered the expression of enzymes that catalyze critical steps in GSL processing, increasing the expressions of glucosylceramide synthase (GCS) and globotrihexosylceramide synthase (Gb3S) but decreasing that of α-galactosidase A (α-galA). Inhibiting GCS or restoring α-galA expression prevented iNKT depletion by IFN-α-activated B cells. Taken together, our work indicated that excessive IFN-α perturbs GSL metabolism in B cells which in turn adversely affects iNKT homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Stromal interaction molecules 1 and 2 are key regulators of autoreactive T cell activation in murine autoimmune central nervous system inflammation.

    PubMed

    Schuhmann, Michael K; Stegner, David; Berna-Erro, Alejandro; Bittner, Stefan; Braun, Attila; Kleinschnitz, Christoph; Stoll, Guido; Wiendl, Heinz; Meuth, Sven G; Nieswandt, Bernhard

    2010-02-01

    Calcium (Ca(2+)) signaling in T lymphocytes is essential for a variety of functions, including the regulation of differentiation, gene transcription, and effector functions. A major Ca(2+) entry pathway in nonexcitable cells, including T cells, is store-operated Ca(2+) entry (SOCE), wherein depletion of intracellular Ca(2+) stores upon receptor stimulation causes subsequent influx of extracellular Ca(2+) across the plasma membrane. Stromal interaction molecule (STIM) 1 is the Ca(2+) sensor in the endoplasmic reticulum, which controls this process, whereas the other STIM isoform, STIM2, coregulates SOCE. Although the contribution of STIM molecules and SOCE to T lymphocyte function is well studied in vitro, their significance for immune processes in vivo has remained largely elusive. In this study, we studied T cell function in mice lacking STIM1 or STIM2 in a model of myelin-oligodendrocyte glycoprotein (MOG(35-55))-induced experimental autoimmune encephalomyelitis (EAE). We found that STIM1 deficiency significantly impaired the generation of neuroantigen-specific T cell responses in vivo with reduced Th1/Th17 responses, resulting in complete protection from EAE. Mice lacking STIM2 developed EAE, but the disease course was ameliorated. This was associated with a reduced clinical peak of disease. Deficiency of STIM2 was associated with an overall reduced proliferative capacity of lymphocytes and a reduction of IFN-gamma/IL-17 production by neuroantigen-specific T cells. Neither STIM1 nor STIM2 deficiency altered the phenotype or function of APCs. These findings reveal a crucial role of STIM-dependent pathways for T cell function and activation under autoimmune inflammatory conditions, establishing them as attractive new molecular therapeutic targets for the treatment of inflammatory and autoimmune disorders.

  1. Porcine Hemagglutinating Encephalomyelitis Virus and Respiratory Disease in Exhibition Swine, Michigan, USA, 2015.

    PubMed

    Lorbach, Joshua N; Wang, Leyi; Nolting, Jacqueline M; Benjamin, Madonna G; Killian, Mary Lea; Zhang, Yan; Bowman, Andrew S

    2017-07-01

    Acute outbreaks of respiratory disease in swine at agricultural fairs in Michigan, USA, in 2015 raised concern for potential human exposure to influenza A virus. Testing ruled out influenza A virus and identified porcine hemagglutinating encephalomyelitis virus as the cause of influenza-like illness in the affected swine.

  2. Sirolimus for Autoimmune Disease of Blood Cells

    ClinicalTrials.gov

    2017-11-02

    Autoimmune Pancytopenia; Autoimmune Lymphoproliferative Syndrome (ALPS); Evans Syndrome; Idiopathic Thrombocytopenic Purpura; Anemia, Hemolytic, Autoimmune; Autoimmune Neutropenia; Lupus Erythematosus, Systemic; Inflammatory Bowel Disease; Rheumatoid Arthritis

  3. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.

    PubMed

    Czaja, Albert J

    2016-11-14

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.

  4. p38 MAPK Signaling in Pemphigus: Implications for Skin Autoimmunity

    PubMed Central

    Mavropoulos, Athanasios; Orfanidou, Timoklia; Liaskos, Christos; Smyk, Daniel S.; Spyrou, Vassiliki; Sakkas, Lazaros I.; Rigopoulou, Eirini I.; Bogdanos, Dimitrios P.

    2013-01-01

    p38 mitogen activated protein kinase (p38 MAPK) signaling plays a major role in the modulation of immune-mediated inflammatory responses and therefore has been linked with several autoimmune diseases. The extent of the involvement of p38 MAPK in the pathogenesis of autoimmune blistering diseases has started to emerge, but whether it pays a critical role is a matter of debate. The activity of p38 MAPK has been studied in great detail during the loss of keratinocyte cell-cell adhesions and the development of pemphigus vulgaris (PV) and pemphigus foliaceus (PF). These diseases are characterised by autoantibodies targeting desmogleins (Dsg). Whether autoantibody-antigen interactions can trigger signaling pathways (such as p38 MAPK) that are tightly linked to the secretion of inflammatory mediators which may perpetuate inflammation and tissue damage in pemphigus remains unclear. Yet, the ability of p38 MAPK inhibitors to block activation of the proapoptotic proteinase caspase-3 suggests that the induction of apoptosis may be a consequence of p38 MAPK activation during acantholysis in PV. This review discusses the current evidence for the role of p38 MAPK in the pathogenesis of pemphigus. We will also present data relating to the targeting of these cascades as a means of therapeutic intervention. PMID:23936634

  5. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis

    PubMed Central

    Czaja, Albert J

    2016-01-01

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies. PMID:27895415

  6. [Microbiota and autoimmunity].

    PubMed

    Miyake, Sachiko

    2014-01-01

    The microbiota plays a fundamental role in the development and the maintenance of the host immune system. Since microbiota is important in the induction and the expansion of Th17 cells and regulatory T cells, growing evidence supports that microbiome affect the induction and the disease course of autoimmune disorders. In this review, we describe the recent studies on the involvement of microbes in animal models of autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS) using germ-free conditions, antibiotics treatment and gnotobiotic mice. Furthermore, we introduce the studies on analysis of microbiota in human autoimmune diseases including RA and MS.

  7. Upregulation of voltage-gated Ca2+ channels in mouse astrocytes infected with Theiler's murine encephalomyelitis virus (TMEV).

    PubMed

    Rubio, N; Almanza, A; Mercado, F; Arévalo, M-Á; Garcia-Segura, L M; Vega, R; Soto, E

    2013-09-05

    Theiler's murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice through a CD4(+) Th1 T cell-mediated immunopathological process. TMEV infection produces a syndrome in mice that resembles multiple sclerosis. In this work, we focused on the increased expression of the genes encoding voltage-gated Ca(2+) channel subunits in SJL/J mouse astrocytes infected in culture with a BeAn strain of TMEV. Affymetrix DNA murine genome U74v2 DNA microarray hybridized with cRNA from mock- and TMEV-infected astrocytes revealed the upregulation of four sequences encoding Ca(2+)-binding and Ca(2+) channel subunit proteins. The DNA hybridization results were further validated using conventional RT-PCR and quantitative RT-PCR, demonstrating the increased expression of mRNA encoding channel subunit proteins. Western blotting also showed the increased synthesis of L- and N-type channel subunit specific proteins after infection. The reduced expression and the functional upregulation of functional voltage-gated Ca(2+) channels in mock- and TMEV-infected cells, respectively, was demonstrated using voltage clamp experiments. TMEV infection in mouse astrocytes induced a Ca(2+) current with a density proportional to the amount of viral particles used for infection. The use of Ca(2+) channel blockers, nimodipine and ω-conotoxin-GVIA, showed that both functional L- and N-type Ca(2+) channels were upregulated in infected astrocytes. The upregulation of Ca(2+) channels in astrocytes after TMEV infection provides insight into the molecular processes and potential role of astrocyte Ca(2+) dysregulation in the pathophysiology of encephalomyelitis and is important for the development of novel therapeutic strategies leading to prevention of neurodegeneration. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Follicular helper T cell in immunity and autoimmunity.

    PubMed

    Mesquita, D; Cruvinel, W M; Resende, L S; Mesquita, F V; Silva, N P; Câmara, N O S; Andrade, L E C

    2016-01-01

    The traditional concept that effector T helper (Th) responses are mediated by Th1/Th2 cell subtypes has been broadened by the recent demonstration of two new effector T helper cells, the IL-17 producing cells (Th17) and the follicular helper T cells (Tfh). These new subsets have many features in common, such as the ability to produce IL-21 and to express the IL-23 receptor (IL23R), the inducible co-stimulatory molecule ICOS, and the transcription factor c-Maf, all of them essential for expansion and establishment of the final pool of both subsets. Tfh cells differ from Th17 by their ability to home to B cell areas in secondary lymphoid tissue through interactions mediated by the chemokine receptor CXCR5 and its ligand CXCL13. These CXCR5+ CD4+ T cells are considered an effector T cell type specialized in B cell help, with a transcriptional profile distinct from Th1 and Th2 cells. The role of Tfh cells and its primary product, IL-21, on B-cell activation and differentiation is essential for humoral immunity against infectious agents. However, when deregulated, Tfh cells could represent an important mechanism contributing to exacerbated humoral response and autoantibody production in autoimmune diseases. This review highlights the importance of Tfh cells by focusing on their biology and differentiation processes in the context of normal immune response to infectious microorganisms and their role in the pathogenesis of autoimmune diseases.

  9. [The pathogenesis and regulation of autoimmunity].

    PubMed

    Miyake, Sachiko

    2008-06-01

    The pathogenesis of autoimmunity has been studied extensively using animal models and genome-wide genetic analysis. Moreover, recent advance in the therapy for the autoimmune diseases using molecular-targeted drugs has provided us a lot of information in the pathogenesis of human autoimmune diseases. In this review, we overviewed the recent progress in the study of autoimmunity including central tolerance, regulatory cells and cytokines. Finally, we discuss the relationship of innate immunity and adoptive immunity in the context of autoimmunity.

  10. Neuron-directed autoimmunity in the central nervous system: entities, mechanisms, diagnostic clues, and therapeutic options.

    PubMed

    Melzer, Nico; Meuth, Sven G; Wiendl, Heinz

    2012-06-01

    The human central nervous system (CNS) can mistakenly be the target of adaptive cellular and humoral immune responses causing both functional and structural impairment. We here provide an overview of neuron-directed autoimmunity as a novel class of inflammatory CNS disorders, their differential diagnoses, clinical hallmarks, imaging features, characteristic laboratory, electrophysiological, cerebrospinal fluid and neuropathological findings, cellular and molecular disease mechanisms, as well as therapeutic options. A growing number of immune-mediated CNS disorders of both autoimmune and paraneoplastic origin have emerged, in which neurons seem to be the target of the immune response. Antibodies binding to a variety of synaptic and extrasynaptic antigens located on the neuronal surface membrane can define distinct entities. Clinically, these disorders are characterized by subacute CNS-related [and sometimes peripheral nervous system (PNS)-related] symptoms involving a variety of cortical and subcortical gray matter areas, which often reflect the expression pattern and function of the respective target antigen. Antibodies seem to be pathogenic and cause (reversible) disturbance of synaptic transmission and neuronal excitability by selective functional inhibition or crosslinking and internalization of their antigen in the absence of overt cytotoxicity, at least at early disease stages. Whether at later disease stages antibody-mediated cytotoxicity, cytotoxic CD8+ T cells, or other detrimental immune mechanisms contribute to neuronal impairment is unclear at present. Adaptive humoral autoimmunity directed to neuronal cell-surface antigens offers first and unique insights and provokes further investigation into the systemic, cellular, and molecular consequences of immune-mediated disruption of distinct neuronal signaling pathways within the living human CNS.

  11. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes

    PubMed Central

    Castro, C N; Barcala Tabarrozzi, A E; Winnewisser, J; Gimeno, M L; Antunica Noguerol, M; Liberman, A C; Paz, D A; Dewey, R A; Perone, M J

    2014-01-01

    Type 1 diabetes (T1DM) is a T cell-mediated autoimmune disease that selectively destroys pancreatic β cells. The only possible cure for T1DM is to control autoimmunity against β cell-specific antigens. We explored whether the natural compound curcumin, with anti-oxidant and anti-inflammatory activities, might down-regulate the T cell response that destroys pancreatic β cells to improve disease outcome in autoimmune diabetes. We employed two accelerated autoimmune diabetes models: (i) cyclophosphamide (CYP) administration to non-obese diabetic (NOD) mice and (ii) adoptive transfer of diabetogenic splenocytes into NODscid mice. Curcumin treatment led to significant delay of disease onset, and in some instances prevented autoimmune diabetes by inhibiting pancreatic leucocyte infiltration and preserving insulin-expressing cells. To investigate the mechanisms of protection we studied the effect of curcumin on key immune cell populations involved in the pathogenesis of the disease. Curcumin modulates the T lymphocyte response impairing proliferation and interferon (IFN)-γ production through modulation of T-box expressed in T cells (T-bet), a key transcription factor for proinflammatory T helper type 1 (Th1) lymphocyte differentiation, both at the transcriptional and translational levels. Also, curcumin reduces nuclear factor (NF)-κB activation in T cell receptor (TCR)-stimulated NOD lymphocytes. In addition, curcumin impairs the T cell stimulatory function of dendritic cells with reduced secretion of proinflammatory cytokines and nitric oxide (NO) and low surface expression of co-stimulatory molecules, leading to an overall diminished antigen-presenting cell activity. These in-vitro effects correlated with ex-vivo analysis of cells obtained from curcumin-treated mice during the course of autoimmune diabetes. These findings reveal an effective therapeutic effect of curcumin in autoimmune diabetes by its actions on key immune cells responsible for β cell death. PMID

  12. Porcine Hemagglutinating Encephalomyelitis Virus and Respiratory Disease in Exhibition Swine, Michigan, USA, 2015

    PubMed Central

    Lorbach, Joshua N.; Wang, Leyi; Nolting, Jacqueline M.; Benjamin, Madonna G.; Killian, Mary Lea

    2017-01-01

    Acute outbreaks of respiratory disease in swine at agricultural fairs in Michigan, USA, in 2015 raised concern for potential human exposure to influenza A virus. Testing ruled out influenza A virus and identified porcine hemagglutinating encephalomyelitis virus as the cause of influenza-like illness in the affected swine. PMID:28628449

  13. Autoimmune phenomena following prostatectomy.

    PubMed

    Tweezer-Zaks, Nurit; Marai, Ibrahim; Livneh, Avi; Bank, Ilan; Langevitz, Pnina

    2005-09-01

    Benign prostatic hypertrophy is the most common benign tumor in males, resulting in prostatectomy in 20-30% of men who live to the age of 80. There are no data on the association of prostatectomy with autoimmune phenomena in the English-language medical literature. To report our experience with three patients who developed autoimmune disease following prostatectomy. Three patients presented awith autoimmune phenomenon soon after a prostectomy for BPH or prostatic carcinoma: one had clinically diagnosed temporal arteritis, one had leukocytoclastic vasculitis, and the third patient developed sensory Guillian-Barré syndrome following prostatectomy. In view of the temporal association between the removal of the prostate gland andthe autoimmune process, combined with previously known immunohistologic features of BPH, a cause-effect relationship probably exists.

  14. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue

    PubMed Central

    Diaz, Alain; Romero, Maria; Thaller, Seth; Blomberg, Bonnie B.

    2018-01-01

    The adipose tissue (AT) contributes to systemic and B cell intrinsic inflammation, reduced B cell responses and secretion of autoimmune antibodies. In this study we show that adipocytes in the human obese subcutaneous AT (SAT) secrete several pro-inflammatory cytokines and chemokines, which contribute to the establishment and maintenance of local and systemic inflammation, and consequent suboptimal immune responses in obese individuals, as we have previously shown. We also show that pro-inflammatory chemokines recruit immune cells expressing the corresponding receptors to the SAT, where they also contribute to local and systemic inflammation, secreting additional pro-inflammatory mediators. Moreover, we show that the SAT generates autoimmune antibodies. During the development of obesity, reduced oxygen and consequent hypoxia and cell death lead to further release of pro-inflammatory cytokines, “self” protein antigens, cell-free DNA and lipids. All these stimulate class switch and the production of autoimmune IgG antibodies which have been described to be pathogenic. In addition to hypoxia, we have measured cell cytotoxicity and DNA damage mechanisms, which may also contribute to the release of “self” antigens in the SAT. All these processes are significantly elevated in the SAT as compared to the blood. We definitively found that fat-specific IgG antibodies are secreted by B cells in the SAT and that B cells express mRNA for the transcription factor T-bet and the membrane marker CD11c, both involved in the production of autoimmune IgG antibodies. Finally, the SAT also expresses RNA for cytokines known to promote Germinal Center formation, isotype class switch, and plasma cell differentiation. Our results show novel mechanisms for the generation of autoimmune antibody responses in the human SAT and allow the identification of new pathways to possibly manipulate in order to reduce systemic inflammation and autoantibody production in obese individuals. PMID

  15. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue.

    PubMed

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Thaller, Seth; Blomberg, Bonnie B

    2018-01-01

    The adipose tissue (AT) contributes to systemic and B cell intrinsic inflammation, reduced B cell responses and secretion of autoimmune antibodies. In this study we show that adipocytes in the human obese subcutaneous AT (SAT) secrete several pro-inflammatory cytokines and chemokines, which contribute to the establishment and maintenance of local and systemic inflammation, and consequent suboptimal immune responses in obese individuals, as we have previously shown. We also show that pro-inflammatory chemokines recruit immune cells expressing the corresponding receptors to the SAT, where they also contribute to local and systemic inflammation, secreting additional pro-inflammatory mediators. Moreover, we show that the SAT generates autoimmune antibodies. During the development of obesity, reduced oxygen and consequent hypoxia and cell death lead to further release of pro-inflammatory cytokines, "self" protein antigens, cell-free DNA and lipids. All these stimulate class switch and the production of autoimmune IgG antibodies which have been described to be pathogenic. In addition to hypoxia, we have measured cell cytotoxicity and DNA damage mechanisms, which may also contribute to the release of "self" antigens in the SAT. All these processes are significantly elevated in the SAT as compared to the blood. We definitively found that fat-specific IgG antibodies are secreted by B cells in the SAT and that B cells express mRNA for the transcription factor T-bet and the membrane marker CD11c, both involved in the production of autoimmune IgG antibodies. Finally, the SAT also expresses RNA for cytokines known to promote Germinal Center formation, isotype class switch, and plasma cell differentiation. Our results show novel mechanisms for the generation of autoimmune antibody responses in the human SAT and allow the identification of new pathways to possibly manipulate in order to reduce systemic inflammation and autoantibody production in obese individuals.

  16. Transcutaneous photodynamic therapy delays the onset of paralysis in a murine multiple sclerosis model

    NASA Astrophysics Data System (ADS)

    Hunt, David W. C.; Leong, Simon; Levy, Julia G.; Chan, Agnes H.

    1995-03-01

    Photodynamic therapy (PDT) using benzoporphyrin derivative (BPD, Verteporfin) and whole body irradiation, can affect the course of adoptively transferred experimental allergic (autoimmune) encephalomyelitis (EAE) in PL mice. Murine EAE is a T cell-mediated autoimmune disease which serves as a model for human multiple sclerosis. Using a novel disease induction protocol, we found that mice characteristically developed EAE within 3 weeks of receipt of myelin basic protein (MBP)-sensitized, in vitro-cultured spleen or lymph node cells. However, if animals were treated with PDT (1 mg BPD/kg bodyweight and exposed to whole body 15 Joules cm2 of LED light) 24 hours after receiving these cells, disease onset time was significantly delayed. PDT-treated mice developed disease symptoms 45 +/- 3 days following cell administration whereas untreated controls were affected within 23 +/- 2 days. In contrast, application of PDT 48 or 120 hours following injection of the pathogenic cells had no significant effect upon the development of EAE. Experiments are in progress to account for the protective effect of PDT in this animal model. These studies should provide evidence on the feasibility of PDT as a treatment for human autoimmune disease.

  17. Autoimmune gastritis: Pathologist's viewpoint.

    PubMed

    Coati, Irene; Fassan, Matteo; Farinati, Fabio; Graham, David Y; Genta, Robert M; Rugge, Massimo

    2015-11-14

    Western countries are seeing a constant decline in the incidence of Helicobacter pylori-associated gastritis, coupled with a rising epidemiological and clinical impact of autoimmune gastritis. This latter gastropathy is due to autoimmune aggression targeting parietal cells through a complex interaction of auto-antibodies against the parietal cell proton pump and intrinsic factor, and sensitized T cells. Given the specific target of this aggression, autoimmune gastritis is typically restricted to the gastric corpus-fundus mucosa. In advanced cases, the oxyntic epithelia are replaced by atrophic (and metaplastic) mucosa, creating the phenotypic background in which both gastric neuroendocrine tumors and (intestinal-type) adenocarcinomas may develop. Despite improvements in our understanding of the phenotypic changes or cascades occurring in this autoimmune setting, no reliable biomarkers are available for identifying patients at higher risk of developing a gastric neoplasm. The standardization of autoimmune gastritis histology reports and classifications in diagnostic practice is a prerequisite for implementing definitive secondary prevention strategies based on multidisciplinary diagnostic approaches integrating endoscopy, serology, histology and molecular profiling.

  18. Autoimmune Neurology of the Central Nervous System.

    PubMed

    Tobin, W Oliver; Pittock, Sean J

    2017-06-01

    This article reviews the rapidly evolving spectrum of autoimmune neurologic disorders with a focus on those that involve the central nervous system, providing an understanding of how to approach the diagnostic workup of patients presenting with central nervous system symptoms or signs that could be immune mediated, either paraneoplastic or idiopathic, to guide therapeutic decision making. The past decade has seen a dramatic increase in the discovery of novel neural antibodies and their targets. Many commercial laboratories can now test for these antibodies, which serve as diagnostic markers of diverse neurologic disorders that occur on an autoimmune basis. Some are highly specific for certain cancer types, and the neural antibody profiles may help direct the physician's cancer search. The diagnosis of an autoimmune neurologic disorder is aided by the detection of an objective neurologic deficit (usually subacute in onset with a fluctuating course), the presence of a neural autoantibody, and improvement in the neurologic status after a course of immunotherapy. Neural autoantibodies should raise concern for a paraneoplastic etiology and may inform a targeted oncologic evaluation (eg, N-methyl-D-aspartate [NMDA] receptor antibodies are associated with teratoma, antineuronal nuclear antibody type 1 [ANNA-1, or anti-Hu] are associated with small cell lung cancer). MRI, EEG, functional imaging, videotaped evaluations, and neuropsychological evaluations provide objective evidence of neurologic dysfunction by which the success of immunotherapy may be measured. Most treatment information emanates from retrospective case series and expert opinion. Nonetheless, early intervention may allow reversal of deficits in many patients and prevention of future disability.

  19. Novel pebbles in the mosaic of autoimmunity.

    PubMed

    Perricone, Carlo; Agmon-Levin, Nancy; Shoenfeld, Yehuda

    2013-04-04

    Almost 25 years ago, the concept of the 'mosaic of autoimmunity' was introduced to the scientific community, and since then this concept has continuously evolved, with new pebbles being added regularly. We are now looking at an era in which the players of autoimmunity have changed names and roles. In this issue of BMC Medicine, several aspects of autoimmunity have been addressed, suggesting that we are now at the forefront of autoimmunity science. Within the environmental factors generating autoimmunity are now included unsuspected molecules such as vitamin D and aluminum. Some adjuvants such as aluminum are recognized as causal factors in the development of the autoimmune response. An entirely new syndrome, the autoimmune/inflammatory syndrome induced by adjuvants (ASIA), has been recently described. This is the new wind blowing within the branches of autoimmunity, adding knowledge to physicians for helping patients with autoimmune disease.

  20. Multiplex autoantibody detection for autoimmune liver diseases and autoimmune gastritis.

    PubMed

    Vanderlocht, Joris; van der Cruys, Mart; Stals, Frans; Bakker-Jonges, Liesbeth; Damoiseaux, Jan

    2017-09-01

    Autoantibody detection for autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and autoimmune gastritis (AIG) is traditionally performed by IIF on a combination of tissues. Multiplex line/dot blots (LIA/DIA) offer multiple advantages, i.e. automation, objective reading, no interfering reactivities, no coincidental findings. In the current study we evaluated automated DIA (D-Tek) for detecting autoantibodies related to autoimmune diseases of the gastrointestinal tract. We tested samples of the Dutch EQC program and compared the results with the consensus of the participating labs. For the autoimmune liver diseases and AIG, respectively, 64 and 36 samples were tested. For anti-mitochondrial and anti-smooth muscle antibodies a concordance rate of 97% and 88% was observed, respectively. The concordance rate for anti-parietal cell antibodies was 92% when samples without EQC consensus (n=15) were excluded. For antibodies against intrinsic factor a concordance of 96% was observed. For all these antibodies discrepancies were identified that relate to the different test characteristics and the preponderance of IIF utilizing labs in the EQC program. In conclusion, we observed good agreement of the tested DIA blots with the consensus results of the Dutch EQC program. Taken together with the logistic advantages these blots are a good alternative for autoantibody detection in the respective diseases. A large prospective multicenter study is warranted to position these novel tests further in the whole spectrum of assays for the detection of these antibodies in a routine autoimmune laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. EBV and Autoimmunity.

    PubMed

    Ascherio, Alberto; Munger, Kassandra L

    2015-01-01

    Although a role of EBV in autoimmunity is biologically plausible and evidence of altered immune responses to EBV is abundant in several autoimmune diseases, inference on causality requires the determination that disease risk is higher in individuals infected with EBV than in those uninfected and that in the latter it increases following EBV infection. This determination has so far been possible only for multiple sclerosis (MS) and, to some extent, for systemic lupus erythematosus (SLE), whereas evidence is either lacking or not supportive for other autoimmune conditions. In this chapter, we present the main epidemiological findings that justify the conclusion that EBV is a component cause of MS and SLE and possible mechanisms underlying these effects.

  2. Adverse effects of gluten ingestion and advantages of gluten withdrawal in nonceliac autoimmune disease.

    PubMed

    Lerner, Aaron; Shoenfeld, Yehuda; Matthias, Torsten

    2017-12-01

    In light of the coincident surge in overall gluten intake and the incidence of autoimmune diseases, the possible biological adverse effects of gluten were explored. PubMed, MEDLINE, and the Cochrane Library databases were screened for reports published between 1964 and 2016 regarding the adverse effects of gluten as well as the effects of a gluten-free diet on autoimmune diseases. In vitro and in vivo studies describing gluten intake in animal models or cell lines and gluten-free diets in human autoimmune diseases were reviewed. Multiple detrimental aspects of gluten affect human health, including gluten-dependent digestive and extradigestive manifestations mediated by potentially immunological or toxic reactions that induce gastrointestinal inadequacy. Gluten affects the microbiome and increases intestinal permeability. It boosts oxidative stress and affects epigenetic behavior. It is also immunogenic, cytotoxic, and proinflammatory. Gluten intake increases apoptosis and decreases cell viability and differentiation. In certain nonceliac autoimmune diseases, gluten-free diets may help curtail the adverse effects of gluten. Additional in vivo studies are needed to unravel the puzzle of gluten effects in humans and to explore the potential beneficial effects of gluten-free diets in autoimmune diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Autoimmune diseases and vaccinations.

    PubMed

    Vial, Thierry; Descotes, Jacques

    2004-01-01

    The potential association between vaccination and autoimmune diseases has been largely questioned in the past few years, but this assumption has mostly been based on case reports. The available evidence derived from several negative epidemiological studies is reassuring and at least indicates that vaccines are not a major cause of autoimmune diseases. However, there are still uncertainties as to whether a susceptible subpopulation may be at a higher risk of developing an autoimmune disease without causing an overall increase in the disease incidence. Based on selected examples, this review highlights the difficulties in assessing this issue. We suggest that a potential link between vaccines and autoimmune diseases cannot be definitely ruled out and should be carefully explored during the development of new candidate vaccines. Copyright John Libbey Eurotext 2003.

  4. Adoptive Cellular Gene Therapy for the Treatment of Experimental Autoimmune Polychondritis Ear Disease.

    PubMed

    Zhou, Bin; Liao, Yonggan; Guo, Yunkai; Tarner, Ingo H; Liao, Chunfen; Chen, Sisi; Kermany, Mohammad Habiby; Tu, Hanjun; Zhong, Sen; Chen, Peijie

    2017-01-01

    In the past, the clinical therapy for autoimmune diseases, such as autoimmune polychondritis ear disease, was mostly limited to nonspecific immunosuppressive agents, which could lead to variable responses. Currently, gene therapy aims at achieving higher specificity and less adverse effects. This concept utilizes the adoptive transfer of autologous T cells that have been retrovirally transduced ex vivo to express and deliver immunoregulatory gene products to sites of autoimmune inflammation. In the animal model of collagen-induced autoimmune polychondritis ear disease (CIAPED), the adoptive transfer of IL-12p40-expressing collagen type II (CII)-specific CD4+ T-cell hybridomas resulted in a significantly lower disease incidence and severity compared with untreated or vector-only-treated animals. In vivo cell detection using bioluminescent labels showed that transferred CII-reactive T-cell hybridomas accumulated in the inflamed earlobes of the mice with CIAPED. In vitro analysis demonstrated that IL-12p40-transduced T cells did not affect antigen-specific T-cell activation or systemic anti-CII Ab responses. However, IL-12p40-transduced T cells suppressed IFN-γ and augmented IL-4 production, indicating their potential to act therapeutically by interrupting Th1-mediated inflammatory responses via augmenting Th2 responses. These results indicate that the local delivery of IL-12p40 by T cells could inhibit CIAPED by suppressing autoimmune responses at the site of inflammation. © 2017 S. Karger AG, Basel.

  5. De novo autoimmune hepatitis after liver transplantation.

    PubMed

    Lohse, Ansgar W; Weiler-Norman, Christina; Burdelski, Martin

    2007-10-01

    The Kings College group was the first to describe a clinical syndrome similar to autoimmune hepatitis in children and young adults transplanted for non-immune mediated liver diseases. They coined the term "de novo autoimmune hepatitis". Several other liver transplant centres confirmed this observation. Even though the condition is uncommon, patients with de novo AIH are now seen in most of the major transplant centres. The disease is usually characterized by features of acute hepatitis in otherwise stable transplant recipients. The most characteristic laboratory hallmark is a marked hypergammaglobulinaemia. Autoantibodies are common, mostly ANA. We described also a case of LKM1-positivity in a patients transplanted for Wilson's disease, however this patients did not develop clinical or histological features of AIH. Development of SLA/LP-autoantibodies is also not described. Therefore, serologically de novo AIH appears to correspond to type 1 AIH. Like classical AIH patients respond promptly to treatment with increased doses of prednisolone and azathioprine, while the calcineurin inhibitors cyclosporine or tacrolimus areof very limited value - which is not surprising, as almost all patients develop de novo AIH while receiving these drugs. Despite the good response to treatment, most patients remain a clinical challenge as complete stable remissions are uncommon and flares, relapses and chronic disease activity can often occur. Pathogenetically this syndrome is intriguing. It is not clear, if the immune response is directed against allo-antigens, neo-antigens in the liver, or self-antigens, possibly shared by donor and host cells. It is very likely that the inflammatory milieu due to alloreactive cells in the transplanted organ contribute to the disease process. Either leading to aberrant antigen presentation, or providing co-stimulatory signals leading to the breaking of self-tolerance. The development of this disease in the presence of treatment with calcineurin

  6. Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases.

    PubMed

    Witoelar, Aree; Jansen, Iris E; Wang, Yunpeng; Desikan, Rahul S; Gibbs, J Raphael; Blauwendraat, Cornelis; Thompson, Wesley K; Hernandez, Dena G; Djurovic, Srdjan; Schork, Andrew J; Bettella, Francesco; Ellinghaus, David; Franke, Andre; Lie, Benedicte A; McEvoy, Linda K; Karlsen, Tom H; Lesage, Suzanne; Morris, Huw R; Brice, Alexis; Wood, Nicholas W; Heutink, Peter; Hardy, John; Singleton, Andrew B; Dale, Anders M; Gasser, Thomas; Andreassen, Ole A; Sharma, Manu

    2017-07-01

    Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes. To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach. Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017. The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases. Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes. The study findings provide novel mechanistic

  7. Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with low doses of heparins.

    PubMed

    Lider, O; Baharav, E; Mekori, Y A; Miller, T; Naparstek, Y; Vlodavsky, I; Cohen, I R

    1989-03-01

    The ability of activated T lymphocytes to penetrate the extracellular matrix and migrate to target tissues was found to be related to expression of a heparanase enzyme (Naparstek, Y., I. R. Cohen, Z. Fuks, and I. Vlodavsky. 1984. Nature (Lond.). 310:241-243; Savion, N., Z. Fuks, and I. Vlodavsky. 1984. J. Cell. Physiol. 118:169-176; Fridman, R., O. Lider, Y. Naparstek, Z. Fuks, I. Vlodavsky, and I. R. Cohen. 1987. J. Cell. Physiol. 130:85-92; Lider, O., J. Mekori, I. Vlodavsky, E. Baharav, Y. Naparstek, and I. R. Cohen, manuscript submitted for publication). We found previously that heparin molecules inhibited expression of T lymphocyte heparanase activity in vitro and in vivo, and administration of a low dose of heparin in mice inhibited lymphocyte traffic and delayed-type hypersensitivity reactions (Lider, O., J. Mekori, I. Vlodavsky, E. Baharav, Y. Naparstek, and I. R. Cohen, manuscript submitted for publication). We now report that treatment with commercial or chemically modified heparins at relatively low doses once daily (5 micrograms for mice and 20 micrograms for rats) led to inhibition of allograft rejection and the experimental autoimmune diseases adjuvant arthritis and experimental autoimmune encephalomyelitis. Higher doses of the heparins were less effective. The ability of chemically modified heparins to inhibit these immune reactions was associated with their ability to inhibit expression of T lymphocyte heparanase. There was no relationship to anticoagulant activity. Thus heparins devoid of anticoagulant activity can be effective in regulating immune reactions when used at appropriate doses.

  8. Unraveling the contribution of pancreatic beta-cell suicide in autoimmune type 1 diabetes✩

    PubMed Central

    Jaberi-Douraki, Majid; Schnell, Santiago; Pietropaolo, Massimo; Khadra, Anmar

    2014-01-01

    In type 1 diabetes, an autoimmune disease mediated by autoreactive T-cells that attack insulin-secreting pancreatic beta-cells, it has been suggested that disease progression may additionally require protective mechanisms in the target tissue to impede such auto-destructive mechanisms. We hypothesize that the autoimmune attack against beta-cells causes endoplasmic reticulum stress by forcing the remaining beta-cells to synthesize and secrete defective insulin. To rescue beta-cell from the endoplasmic reticulum stress, beta-cells activate the unfolded protein response to restore protein homeostasis and normal insulin synthesis. Here we investigate the compensatory role of unfolded protein response by developing a multi-state model of type 1 diabetes that takes into account beta-cell destruction caused by pathogenic autoreactive T-cells and apoptosis triggered by endoplasmic reticulum stress. We discuss the mechanism of unfolded protein response activation and how it counters beta-cell extinction caused by an autoimmune attack and/or irreversible damage by endoplasmic reticulum stress. Our results reveal important insights about the balance between beta-cell destruction by autoimmune attack (beta-cell homicide) and beta-cell apoptosis by endoplasmic reticulum stress (beta-cell suicide). It also provides an explanation as to why the unfolded protein response may not be a successful therapeutic target to treat type 1 diabetes. PMID:24831415

  9. Liquid-phase study of ozone inactivation of Venezuelan equine encephalomyelitis virus.

    PubMed

    Akey, D H; Walton, T E

    1985-10-01

    Ozone, in a liquid-phase application, was evaluated as a residue-free viral inactivant that may be suitable for use in an arboviral research laboratory. Commonly used sterilizing agents may leave trace residues, be flammable or explosive, and require lengthy periods for gases or residues to dissipate after decontamination of equipment such as biological safety cabinets. Complete liquid-phase inactivation of Venezuelan equine encephalomyelitis virus was attained at 0.025 mg of ozone per liter within 45 min of exposure. The inactivation of 10(6.5) median cell culture infective doses (CCID50 of Venezuelan equine encephalomyelitis virus per milliliter represented a reduction of 99.99997% of the viral particles from the control levels of 10(7.25-7.5) CCID50/ml. A dose-response relationship was demonstrated. Analysis by polynomial regression of the logarithmic values for both ozone concentrations and percent reduction of viral titers had a highly significant r2 of 0.8 (F = 63.6; df = 1, 16). These results, together with those of Akey (J. Econ. Entomol. 75:387-392, 1982) on the use of ozone to kill a winged arboviral vector, indicate that ozone is a promising candidate as a sterilizing agent in some applications for biological safety cabinets and other equipment used in vector studies with arboviruses.

  10. Autoimmune neuropathies associated to rheumatic diseases.

    PubMed

    Martinez, Alberto R M; Faber, Ingrid; Nucci, Anamarli; Appenzeller, Simone; França, Marcondes C

    2017-04-01

    Systemic manifestations are frequent in autoimmune rheumatic diseases and include peripheral nervous system damage. Neuron cell body, axons and myelin sheath may all be affected in this context. This involvement results in severe and sometimes disabling symptoms. Sensory, motor and autonomic features may be present in different patterns that emerge as peculiar clinical pictures. Prompt recognition of these neuropathies is pivotal to guide treatment and reduce the risks of long term disability. In this review, we aim to describe the main immune-mediated neuropathies associated to rheumatic diseases: sensory neuronopathies, multiple mononeuropathies and chronic inflammatory demyelinating polyradiculoneuropathy, with an emphasis on clinical features and therapeutic options. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Enterovirus 71 encephalomyelitis and Japanese encephalitis can be distinguished by topographic distribution of inflammation and specific intraneuronal detection of viral antigen and RNA.

    PubMed

    Wong, K T; Ng, K Y; Ong, K C; Ng, W F; Shankar, S K; Mahadevan, A; Radotra, B; Su, I J; Lau, G; Ling, A E; Chan, K P; Macorelles, P; Vallet, S; Cardosa, M J; Desai, A; Ravi, V; Nagata, N; Shimizu, H; Takasaki, T

    2012-08-01

    To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished. Tissue sections from the central nervous system of infected cases were examined by light microscopy, immunohistochemistry and in situ hybridization. All 13 cases of EV71 encephalomyelitis collected from Asia and France invariably showed stereotyped distribution of inflammation in the spinal cord, brainstem, hypothalamus, cerebellar dentate nucleus and, to a lesser extent, cerebral cortex and meninges. Anterior pons, corpus striatum, thalamus, temporal lobe, hippocampus and cerebellar cortex were always uninflamed. In contrast, the eight JE cases studied showed inflammation involving most neuronal areas of the central nervous system, including the areas that were uninflamed in EV71 encephalomyelitis. Lesions in both infections were nonspecific, consisting of perivascular and parenchymal infiltration by inflammatory cells, oedematous/necrolytic areas, microglial nodules and neuronophagia. Viral inclusions were absent. Immunohistochemistry and in situ hybridization assays were useful to identify the causative virus, localizing viral antigens and RNA, respectively, almost exclusively to neurones. The stereotyped distribution of inflammatory lesions in EV71 encephalomyelitis appears to be very useful to help distinguish it from JE. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  12. Targeting MOG expression to dendritic cells delays onset of experimental autoimmune disease.

    PubMed

    Ko, Hyun-Ja; Chung, Jie-Yu; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Toh, Ban-Hock; Alderuccio, Frank

    2011-05-01

    Haematopoietic stem cell (HSC) transfer coupled with gene therapy is a powerful approach to treating fatal diseases such as X-linked severe combined immunodeficiency. This ability to isolate and genetically manipulate HSCs also offers a strategy for inducing immune tolerance through ectopic expression of autoantigens. We have previously shown that retroviral transduction of bone marrow (BM) with vectors encoding the autoantigen, myelin oligodendrocyte glycoprotein (MOG), can prevent the induction of experimental autoimmune encephalomyelitis (EAE). However, ubiquitous cellular expression of autoantigen driven by retroviral promoters may not be the best approach for clinical translation and a targeted expression approach may be more acceptable. As BM-derived dendritic cells (DCs) play a major role in tolerance induction, we asked whether targeted expression of MOG, a target autoantigen in EAE, to DCs can promote tolerance induction and influence the development of EAE. Self-inactivating retroviral vectors incorporating the mouse CD11c promoter were generated and used to transduce mouse BM cells. Transplantation of gene-modified cells into irradiated recipients resulted in the generation of chimeric mice with transgene expression limited to DCs. Notably, chimeric mice transplanted with MOG-expressing BM cells manifest a significant delay in the development of EAE suggesting that targeted antigen expression to tolerogenic cell types may be a feasible approach to inducing antigen-specific tolerance.

  13. The hygiene theory harnessing helminths and their ova to treat autoimmunity.

    PubMed

    Ben-Ami Shor, Dana; Harel, Michal; Eliakim, Rami; Shoenfeld, Yehuda

    2013-10-01

    The incidence of autoimmune diseases is increasing in Western countries, possibly due to the improved sanitary conditions and reduced exposure to infections in childhood (the hygiene hypothesis). There is an ongoing debate whether infection prevents or precipitates autoimmune diseases. Various helminths species used in several animal models were shown to limit inflammatory activity in a variety of diseases including inflammatory bowel disease, multiple sclerosis, type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. At present the scientific data is based mostly on experimental animal models; however, there is an increasing body of evidence in a number of clinical trials being conducted. Herein we review several clinical trials evaluating the anti-inflammatory effects of helminths and assessing their association with different autoimmune diseases, including inflammatory bowel disease, multiple sclerosis, and autoimmune liver diseases. We also describe the common pathways by which helminths induce immune modulation and the key changes observed in the host immune system following exposure to helminths. These common pathways include the inhibition of IFN-γ and IL-17 production, promotion of IL-4, IL-10 and TGF-β release, induction of CD4(+) T cell FoxP3(+) expression, and generation of regulatory macrophages, dendritic cells, and B cells. Helminths products are becoming significant candidates for anti-inflammatory agents in this context. However, further research is needed for synthetic analogues of helminths' potent products that mimic the parasite-mediated immunomodulation effect.

  14. Autoantibodies in Autoimmune Hepatitis.

    PubMed

    Muratori, Luigi; Deleonardi, Gaia; Lalanne, Claudine; Barbato, Erica; Tovoli, Alessandra; Libra, Alessia; Lenzi, Marco; Cassani, Fabio; Muratori, Paolo

    2015-01-01

    The detection of diagnostic autoantibodies such as antinuclear antibodies (ANA), anti-smooth muscle antibodies (SMA), anti-liver/kidney microsomal type 1 (anti-LKM1), anti-liver cytosol type 1 (anti-LC1) and anti-soluble liver antigen (anti-SLA) is historically associated with the diagnosis of autoimmune hepatitis. When autoimmune hepatitis is suspected, the detection of one or any combination of diagnostic autoantibodies, by indirect immunofluorescence or immuno-enzymatic techniques with recombinant antigens, is a pivotal step to reach a diagnostic score of probable or definite autoimmune hepatitis. Diagnostic autoantibodies (ANA, SMA, anti-LKM1, anti-LC1, anti-SLA) are a cornerstone in the diagnosis of autoimmune hepatitis. Other ancillary autoantibodies, associated with peculiar clinical correlations, appear to be assay-dependent and institution-specific, and validation studies are needed. © 2015 S. Karger AG, Basel.

  15. Cancer and autoimmunity: autoimmune and rheumatic features in patients with malignancies

    PubMed Central

    Abu-Shakra, M; Buskila, D; Ehrenfeld, M; Conrad, K; Shoenfeld, Y

    2001-01-01

    OBJECTIVES—To review the autoimmune and rheumatic manifestations of patients with malignancy.
METHODS—A Medline search of all published papers using keywords related to malignancies, autoimmunity, rheumatic diseases, and paraneoplastic syndromes.
RESULTS—Patients with malignant diseases may develop autoimmune phenomena and rheumatic diseases as a result of (a) generation of autoantibodies against various autoantigens, including oncoproteins (P185, 1-myc, c-myc, c-myb), tumour suppression genes (P53), proliferation associated antigens (cyclin A, B1, D1, E; CENP-F; CDK, U3-RNP), onconeural antigens (Hu, Yo, Ri, Tr), cancer/testis antigens (MAGE, GAGE, BAGE, SSX, ESO, SCP, CT7), and rheumatic disease associated antigens (RNP, Sm). The clinical significance of the various autoantibodies is not clear. Anti-oncoprotein and anti-tumour suppression gene antigens are detected before the diagnosis of the cancer or in the early stages of the malignant disease, suggesting a potential diagnostic or prognostic role. Anti-onconeural antibodies are pathogenic and are associated with specific clinical neurological syndromes (anti-Hu syndrome and others). (b) Paraneoplastic syndromes, a wide range of clinical syndromes, including classic autoimmune rheumatic diseases that develop among patients with cancer. (c) Rheumatism after chemotherapy, a clinical entity characterised by the development of musculoskeletal symptoms after combination chemotherapy for malignancy.
CONCLUSION—Autoimmune and rheumatic features are not rare among patients with malignancies. They are the result of various diverse mechanisms and occasionally they may be associated with serious clinical entities.

 PMID:11302861

  16. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    PubMed

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  17. Gulf War illnesses are autoimmune illnesses caused by reactive oxygen species which were caused by nerve agent prophylaxis.

    PubMed

    Moss, J I

    2012-08-01

    Gulf War illnesses (GWI share many of the features of chronic fatigue syndrome (CFS) and both CFS and GWI may be the result of chronic immune system processes. The main suspected cause for GWI, the drug pyridostigmine bromide (PB), has been shown to cause neuronal damage from reactive oxygen species (ROS). ROS have been associated with IgM mediated autoimmune responses against ROS induced neoepitopes in depressed patients and this may also apply to CFS. It therefore follows that the drug used in the Gulf War caused ROS, the ROS modified native molecules, and that this trigged the autoimmune condition we refer to as Gulf War illnesses. Similar mechanisms may apply to other autoimmune illnesses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance.

    PubMed

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.

  19. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Kudo, Yasusei; Ishimaru, Naozumi

    2017-01-01

    Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL. PMID:28424702

  20. The autoimmune ecology: an update.

    PubMed

    Anaya, Juan-Manuel; Restrepo-Jiménez, Paula; Ramírez-Santana, Carolina

    2018-07-01

    The autoimmune ecology refers to the interactions between individuals and their environment leading to a breakdown in immune tolerance and, therefore, to the development of one or more autoimmune diseases in such an individual. Herein, an update is offered on four specific factors associated with autoimmune diseases, namely, vitamin D, smoking, alcohol and coffee consumption from the perspective of exposome and metabolomics. Smoking is associated with an increased risk for most of the autoimmune diseases. Carbamylation of proteins as well as NETosis have emerged as possible new pathophysiological mechanisms for rheumatoid arthritis. Low-to-moderate alcohol consumption seems to decrease the risk of systemic lupus erythematosus and rheumatoid arthritis, and studies of vitamin have suggested a beneficial effect on these conditions. Coffee intake appears to be a risk factor for type 1 diabetes mellitus and rheumatoid arthritis and a protective factor for multiple sclerosis and primary biliary cholangitis. Recent studies support the previously established positive associations between environmental factors and most of the autoimmune diseases. Nevertheless, further studies from the perspective of metabolomics, proteomics and genomics will help to clarify the effect of environment on autoimmune diseases.