Science.gov

Sample records for autoimmune encephalomyelitis mediated

  1. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination

    PubMed Central

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  2. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination.

    PubMed

    Du, Changsheng; Duan, Yanhui; Wei, Wei; Cai, Yingying; Chai, Hui; Lv, Jie; Du, Xiling; Zhu, Jian; Xie, Xin

    2016-01-01

    Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid system, consisting of MOR, DOR, KOR and their ligands, has been suggested to participate in the pathogenesis of MS. However, the exact receptor and mechanism remain elusive. Here we show that genetic deletion of KOR exacerbates experimental autoimmune encephalomyelitis, whereas activating KOR with agonists alleviates the symptoms. KOR does not affect immune cell differentiation and function. Instead, it promotes oligodendrocyte differentiation and myelination both in vitro and in vivo. Our study suggests that targeting KOR might be an intriguing way to develop new MS therapies that may complement the existing immunosuppressive approaches. PMID:27040771

  3. Carbon nanospheres mediated delivery of nuclear matrix protein SMAR1 to direct experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Chemmannur, Sijo V; Bhagat, Prasad; Mirlekar, Bhalchandra; Paknikar, Kishore M; Chattopadhyay, Samit

    2016-01-01

    Owing to the suppression of immune responses and associated side effects, steroid based treatments for inflammatory encephalitis disease can be detrimental. Here, we demonstrate a novel carbon nanosphere (CNP) based treatment regime for encephalomyelitis in mice by exploiting the functional property of the nuclear matrix binding protein SMAR1. A truncated part of SMAR1 ie, the DNA binding domain was conjugated with hydrothermally synthesized CNPs. When administered intravenously, the conjugate suppressed experimental animal encephalomyelitis in T cell specific conditional SMAR1 knockout mice (SMAR−/−). Further, CNP-SMAR1 conjugate delayed the onset of the disease and reduced the demyelination significantly. There was a significant decrease in the production of IL-17 after re-stimulation with MOG. Altogether, our findings suggest a potential carbon nanomaterial based therapeutic intervention to combat Th17 mediated autoimmune diseases including experimental autoimmune encephalomyelitis. PMID:27274234

  4. Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis

    PubMed Central

    Suvannavejh, Graig C.; Dal Canto, Mauro C.; Matis, Louis A.; Miller, Stephen D.

    2000-01-01

    PLP139-51–induced experimental autoimmune encephalomyelitis (R-EAE) displays a relapsing-remitting paralytic course in female SJL mice. We investigated the role of apoptosis/activation-induced cell death (AICD) in the spontaneous recovery from acute disease. Clinical EAE was significantly enhanced in Fas (CD95/APO-1)–deficient SJL lpr/lpr mice, which displayed significantly increased mean peak clinical scores, reduced remission rates, and increased mortality when compared with their SJL +/lpr littermates. PLP139-151–specific proliferative responses were fairly equivalent in the 2 groups, but draining lymph node T cells from SJL lpr/lpr mice produced dramatically increased levels of IFN-γ. Central nervous system (CNS) Fas and FasL mRNA levels in wild-type SJL (H-2s) mice peaked just before spontaneous disease remission and gradually declined as disease remitted. We applied the terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling (TUNEL) assay to detect apoptosis in situ in spinal cords of mice at various clinical stages of EAE. Most TUNEL+ cells were found during active periods of inflammation: the acute, peak, and relapse time points. Significantly fewer apoptotic cells were observed at preclinical and remission time points. Collectively, these findings indicate that Fas-mediated apoptosis/AICD plays a major role in the spontaneous remission after the initial acute inflammatory episode and represents an important intrinsic mechanism in regulation of autoimmune responses. PMID:10642601

  5. T cell-intrinsic ASC critically promotes TH17-mediated experimental autoimmune encephalomyelitis.

    PubMed

    Martin, Bradley N; Wang, Chenhui; Zhang, Cun-Jin; Kang, Zizhen; Gulen, Muhammet Fatih; Zepp, Jarod A; Zhao, Junjie; Bian, Guanglin; Do, Jeong-Su; Min, Booki; Pavicic, Paul G; El-Sanadi, Caroline; Fox, Paul L; Akitsu, Aoi; Iwakura, Yoichiro; Sarkar, Anasuya; Wewers, Mark D; Kaiser, William J; Mocarski, Edward S; Rothenberg, Marc E; Hise, Amy G; Dubyak, George R; Ransohoff, Richard M; Li, Xiaoxia

    2016-05-01

    Interleukin 1β (IL-1β) is critical for the in vivo survival, expansion and effector function of IL-17-producing helper T (TH17) cells during autoimmune responses, including experimental autoimmune encephalomyelitis (EAE). However, the spatiotemporal role and cellular source of IL-1β during EAE pathogenesis are poorly defined. In the present study, we uncovered a T cell-intrinsic inflammasome that drives IL-1β production during TH17-mediated EAE pathogenesis. Activation of T cell antigen receptors induced expression of pro-IL-1β, whereas ATP stimulation triggered T cell production of IL-1β via ASC-NLRP3-dependent caspase-8 activation. IL-1R was detected on TH17 cells but not on type 1 helper T (TH1) cells, and ATP-treated TH17 cells showed enhanced survival compared with ATP-treated TH1 cells, suggesting autocrine action of TH17-derived IL-1β. Together these data reveal a critical role for IL-1β produced by a TH17 cell-intrinsic ASC-NLRP3-caspase-8 inflammasome during inflammation of the central nervous system. PMID:26998763

  6. Platelet-Activating Factor Receptors Mediate Excitatory Postsynaptic Hippocampal Injury in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Geathers, Jasmine S.; Allan, Kevin C.; Gelbard, Harris A.

    2016-01-01

    Gray matter degeneration contributes to progressive disability in multiple sclerosis (MS) and can occur out of proportion to measures of white matter disease. Although white matter pathology, including demyelination and axon injury, can lead to secondary gray matter changes, we hypothesized that neurons can undergo direct excitatory injury within the gray matter independent of these. We tested this using a model of experimental autoimmune encephalomyelitis (EAE) with hippocampal degeneration in C57BL/6 mice, in which immunofluorescent staining showed a 28% loss of PSD95-positive excitatory postsynaptic puncta in hippocampal area CA1 compared with sham-immunized controls, despite preservation of myelin and VGLUT1-positive excitatory axon terminals. Loss of postsynaptic structures was accompanied by appearance of PSD95-positive debris that colocalized with the processes of activated microglia at 25 d after immunization, and clearance of debris was followed by persistently reduced synaptic density at 55 d. In vitro, addition of activated BV2 microglial cells to hippocampal cultures increased neuronal vulnerability to excitotoxic dendritic damage following a burst of synaptic activity in a manner dependent on platelet-activating factor receptor (PAFR) signaling. In vivo treatment with PAFR antagonist BN52021 prevented PSD95-positive synapse loss in hippocampi of mice with EAE but did not affect development of EAE or local microglial activation. These results demonstrate that postsynaptic structures can be a primary target of injury within the gray matter in autoimmune neuroinflammatory disease, and suggest that this may occur via PAFR-mediated modulation of activity-dependent synaptic physiology downstream of microglial activation. SIGNIFICANCE STATEMENT Unraveling gray matter degeneration is critical for developing treatments for progressive disability and cognitive impairment in multiple sclerosis (MS). In a mouse model of MS, we show that neurons can undergo injury

  7. Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway

    PubMed Central

    Zhang, Yuan; Li, Xing; Ciric, Bogoljub; Ma, Cun-Gen; Gran, Bruno; Rostami, Abdolmohamad; Zhang, Guang-Xian

    2015-01-01

    Natural compounds derived from medicinal plants have long been considered a rich source of novel therapeutic agents. Baicalin (Ba) is a bioactive flavonoid compound derived from the root of Scutellaria baicalensis, an herb widely used in traditional medicine for the treatment of various inflammatory diseases. In this study, we investigate the effects and mechanism of action of Ba in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Ba treatment effectively ameliorated clinical disease severity in myelin oligodendrocyte glycoprotein (MOG)35–55 peptide-induced EAE, and reduced inflammation and demyelination of the central nervous system (CNS). Ba reduced infiltration of immune cells into the CNS, inhibited expression of proinflammatory molecules and chemokines, and prevented Th1 and Th17 cell differentiation via STAT/NFκB signaling pathways. Further, we showed that SOCS3 induction is essential to the effects of Ba, given that the inhibitory effect of Ba on pathogenic Th17 responses was largely abolished when SOCS3 signaling was knocked down. Taken together, our findings demonstrate that Ba has significant potential as a novel anti-inflammatory agent for therapy of autoimmune diseases such as MS. PMID:26616302

  8. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  9. Regulatory T cells in spontaneous autoimmune encephalomyelitis.

    PubMed

    Furtado, G C; Olivares-Villagómez, D; Curotto de Lafaille, M A; Wensky, A K; Latkowski, J A; Lafaille, J J

    2001-08-01

    Spontaneous experimental autoimmune encephalomyelitis (EAE) develops in 100% of mice harboring a monoclonal myelin basic protein (MBP)-specific CD4+ alphabeta T-cell repertoire. Monoclonality of the alphabeta T-cell repertoire can be achieved by crossing MBP-specific T-cell receptor (TCR) transgenic mice with either RAG-/- mice or TCR alpha-/-/TCR beta-/- double knockout mice. Spontaneous EAE can be prevented by a single administration of purified CD4+ splenocytes or thymocytes obtained from wild-type syngeneic mice. The regulatory T cells (T-reg) that protect from spontaneous EAE need not express the CD25 marker, as effective protection can be attained with populations depleted of CD25+ T cells. Although the specificity of the regulatory T cells is important for their generation or regulatory function, T cells that protect from spontaneous EAE can have a diverse TCR alpha and beta chain composition. T-reg cells expand poorly in vivo, and appear to be long lived. Finally, precursors for T-reg are present in fetal liver as well as in the bone marrow of aging mice. We propose that protection of healthy individuals from autoimmune diseases involves several layers of regulation, which consist of CD4+CD25+ regulatory T cells, CD4+CD25- T-reg cells, and anti-TCR T cells, with each layer potentially operating at different stages of T-helper cell-mediated immune responses. PMID:11722629

  10. In silico investigation into dendritic cell regulation of CD8Treg mediated killing of Th1 cells in murine experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Experimental autoimmune encephalomyelitis has been used extensively as an animal model of T cell mediated autoimmunity. A down-regulatory pathway through which encephalitogenic CD4Th1 cells are killed by CD8 regulatory T cells (Treg) has recently been proposed. With the CD8Treg cells being primed by dendritic cells, regulation of recovery may be occuring around these antigen presenting cells. CD4Treg cells provide critical help within this process, by licensing dendritic cells to prime CD8Treg cells, however the spatial and temporal aspects of this help in the CTL response is currently unclear. Results We have previously developed a simulator of experimental autoimmune encephalomyelitis (ARTIMMUS). We use ARTIMMUS to perform novel in silico experimentation regarding the priming of CD8Treg cells by dendritic cells, and the resulting CD8Treg mediated killing of encephalitogenic CD4Th1 cells. Simulations using dendritic cells that present antigenic peptides in a mutually exclusive manner (either MBP or TCR-derived, but not both) suggest that there is no significant reliance on dendritic cells that can prime both encephalitogenic CD4Th1 and Treg cells. Further, in silico experimentation suggests that dynamics of CD8Treg priming are significantly influenced through their spatial competition with CD4Treg cells and through the timing of Qa-1 expression by dendritic cells. Conclusion There is no requirement for the encephalitogenic CD4Th1 cells and cytotoxic CD8Treg cells to be primed by the same dendritic cells. We conjecture that no significant portion of CD4Th1 regulation by Qa-1 restricted CD8Treg cells occurs around individual dendritic cells, and as such, that CD8Treg mediated killing of CD4Th1 cells occurring around dendritic cells is not critical for recovery from the murine autoimmune disease. Furthermore, the timing of the CD4Treg licensing of dendritic cells and the spatial competition between CD4Treg and CD8Treg cells around the dendritic cell is

  11. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis

    PubMed Central

    Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin

    2014-01-01

    CD1d-restricted NKT cells can be divided into two groups: type I NKT cells utilize a semi-invariant TCR whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the central nervous system tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. Here we have addressed the mechanism of regulation as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of PLP139-151/I-As–tetramer+ cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells in the periphery as well as CNS-resident microglia are inactivated following sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not αGalCer, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Since CD1 molecules are non-polymorphic, the sulfatide-mediated immune regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. PMID:24973441

  12. Toll-Like Receptor 2 Mediates In Vivo Pro- and Anti-inflammatory Effects of Mycobacterium Tuberculosis and Modulates Autoimmune Encephalomyelitis.

    PubMed

    Piermattei, Alessia; Migliara, Giuseppe; Di Sante, Gabriele; Foti, Maria; Hayrabedyan, Soren Bohos; Papagna, Angela; Geloso, Maria Concetta; Corbi, Maddalena; Valentini, Mariagrazia; Sgambato, Alessandro; Delogu, Giovanni; Constantin, Gabriela; Ria, Francesco

    2016-01-01

    Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll-like receptor 2 (Tlr2), by exploiting a previously characterized Tlr2 variant (Met82Ile). Tlr2 82ile promoted self-specific proinflammatory polarization as well as expansion of ag-specific FoxP3(+) Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 proinflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participated directly to a putative binding pocket for sugars and cadherins. The distinct pro- and anti-inflammatory actions impacted severity, extent of remission, and distribution of the lesions within the central nervous system of experimental autoimmune encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses. PMID:27252700

  13. Toll-Like Receptor 2 Mediates In Vivo Pro- and Anti-inflammatory Effects of Mycobacterium Tuberculosis and Modulates Autoimmune Encephalomyelitis

    PubMed Central

    Piermattei, Alessia; Migliara, Giuseppe; Di Sante, Gabriele; Foti, Maria; Hayrabedyan, Soren Bohos; Papagna, Angela; Geloso, Maria Concetta; Corbi, Maddalena; Valentini, Mariagrazia; Sgambato, Alessandro; Delogu, Giovanni; Constantin, Gabriela; Ria, Francesco

    2016-01-01

    Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll-like receptor 2 (Tlr2), by exploiting a previously characterized Tlr2 variant (Met82Ile). Tlr2 82ile promoted self-specific proinflammatory polarization as well as expansion of ag-specific FoxP3+ Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 proinflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participated directly to a putative binding pocket for sugars and cadherins. The distinct pro- and anti-inflammatory actions impacted severity, extent of remission, and distribution of the lesions within the central nervous system of experimental autoimmune encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses. PMID:27252700

  14. NKT cells can help mediate the protective effects of 1,25-dihydroxyvitamin D3 in experimental autoimmune encephalomyelitis in mice.

    PubMed

    Waddell, Amanda; Zhao, Jun; Cantorna, Margherita T

    2015-05-01

    Active vitamin D [1,25-dihydroxyvitamin D3 (1,25D3)] blocks the development of experimental autoimmune diseases. However, the molecular and immunobiological mechanisms underlying 1,25D3's anti-inflammatory properties are not fully understood. We employed a murine model of experimental autoimmune encephalomyelitis (EAE) in order to determine the role of NKT cells in 1,25D3-mediated protection from EAE. Wild-type (WT) mice or mice lacking all NKT cells (CD1d(-/-)) or invariant NKT cells (Jα18(-/-)) were fed control or 1,25D3-supplemented diets. All mice fed with the control diet developed severe EAE. 1,25D3 treatment of WT mice protected them from developing EAE. CD1d(-/-) and Jα18(-/-) mice treated with 1,25D3 were not protected to the same extent as WT mice. Myelin oligodendrocyte glycoprotein-specific IL-17 and IFN-γ production was significantly reduced in 1,25D3 WT mice compared with WT but was not decreased in 1,25D3 CD1d(-/-) mice compared with CD1d(-/-) mice. IL-4(-/-) mice were utilized to determine how IL-4 deficiency affects susceptibility to EAE. IL-4(-/-) mice were not protected from developing EAE by α-galactosylceramide (α-GalCer) or 1,25D3 treatment. Furthermore, 1,25D3 treatment of splenocytes in vitro decreased α-GalCer-induced IL-17 and increased IL-4, IL-5 and IL-10 production. 1,25D3 alters the cytokine profile of invariant NKT cells in vitro. These studies demonstrate that NKT cells are important mediators of 1,25D3-induced protection from EAE in mice and NKT cell-derived IL-4 may be an important factor in providing this protection. PMID:25574039

  15. 1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Sloka, Scott; Zhornitsky, Simon; Silva, Claudia; Metz, Luanne M; Yong, V Wee

    2015-01-01

    Several studies have reported that low vitamin D levels are associated with an increased risk of developing multiple sclerosis (MS). As MS is an inflammatory disorder with degeneration of axons and neurons, we examined whether the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), could protect against the T cell-mediated killing of human neurons in culture, and the axonal loss seen in mice with experimental autoimmune encephalomyelitis (EAE). Human neurons were exposed to activated human T lymphocytes and the loss of neurons was documented 24 hours later by counting the number of microtubule-associated protein-2 positive cells. Mice with EAE were harvested for counts of axonal profiles in the spinal cord. 1,25D3 was exposed to T cells in culture or administered to mice from peak EAE clinical severity when axonal loss was already evolving. Activated T lymphocytes killed human neurons prominently within 24 hours but toxicity was significantly attenuated when T cells were exposed to 1,25D3 prior to the co-culture. In EAE, 1,25D3 treatment initiated from peak clinical severity reduced the extent of clinical disability and mitigated the progressive loss of axons. The reduction of axonal and neuronal loss by 1,25D3 in the context of an inflammatory assault to the central nervous system is a potential contributor to the putative benefits of vitamin D in MS. PMID:26679341

  16. 1,25-Dihydroxyvitamin D3 Protects against Immune-Mediated Killing of Neurons in Culture and in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sloka, Scott; Zhornitsky, Simon; Silva, Claudia; Metz, Luanne M.; Yong, V. Wee

    2015-01-01

    Several studies have reported that low vitamin D levels are associated with an increased risk of developing multiple sclerosis (MS). As MS is an inflammatory disorder with degeneration of axons and neurons, we examined whether the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), could protect against the T cell-mediated killing of human neurons in culture, and the axonal loss seen in mice with experimental autoimmune encephalomyelitis (EAE). Human neurons were exposed to activated human T lymphocytes and the loss of neurons was documented 24 hours later by counting the number of microtubule-associated protein-2 positive cells. Mice with EAE were harvested for counts of axonal profiles in the spinal cord. 1,25D3 was exposed to T cells in culture or administered to mice from peak EAE clinical severity when axonal loss was already evolving. Activated T lymphocytes killed human neurons prominently within 24 hours but toxicity was significantly attenuated when T cells were exposed to 1,25D3 prior to the co-culture. In EAE, 1,25D3 treatment initiated from peak clinical severity reduced the extent of clinical disability and mitigated the progressive loss of axons. The reduction of axonal and neuronal loss by 1,25D3 in the context of an inflammatory assault to the central nervous system is a potential contributor to the putative benefits of vitamin D in MS. PMID:26679341

  17. Tuftsin-driven experimental autoimmune encephalomyelitis recovery requires neuropilin-1.

    PubMed

    Nissen, Jillian C; Tsirka, Stella E

    2016-06-01

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of demyelinating autoimmune disease, such as multiple sclerosis (MS), which is characterized by central nervous system white matter lesions, microglial activation, and peripheral T-cell infiltration secondary to blood-brain barrier disruption. We have previously shown that treatment with tuftsin, a tetrapeptide generated from IgG proteolysis, dramatically improves disease symptoms in EAE. Here, we report that microglial expression of Neuropilin-1 (Nrp1) is required for tuftsin-driven amelioration of EAE symptoms. Nrp1 ablation in microglia blocks microglial signaling and polarization to the anti-inflammatory M2 phenotype, and ablation in either the microglia or immunosuppressive regulatory T cells (Tregs) reduces extended functional contacts between them and Treg activation, implicating a role for microglia in the activation process, and more generally, how immune surveillance is conducted in the CNS. Taken together, our findings delineate the mechanistic action of tuftsin as a candidate therapeutic against immune-mediated demyelinating lesions. GLIA 2016;64:923-936. PMID:26880314

  18. Experimental autoimmune encephalomyelitis--achievements and prospective advances.

    PubMed

    Batoulis, Helena; Recks, Mascha S; Addicks, Klaus; Kuerten, Stefanie

    2011-12-01

    Multiple sclerosis (MS) is an autoimmune disorder of the CNS. Different subtypes of the disease have been noted, and characterized by distinct clinical courses and histopathologic manifestations. The most intensively studied animal model of MS, experimental autoimmune encephalomyelitis (EAE), classically leads to deficits in motor functions, and is mediated by T helper cells. Recently, T(H)17 cells were ascribed an even greater pathogenic impact than T(H)1 cells, but new findings render this view controversial. Although classic EAE has been an invaluable tool, it does not cover the entire pathogenic entity of MS. Especially B-cell contribution and autoantibody-dependence are not mirrored adequately: therefore, new B-cell-dependent models, such as MP4-induced EAE, have been introduced. Furthermore, certain symptoms and the spontaneous onset of MS are not featured in classic EAE. Herein, atypical and spontaneous EAE models can be used for investigation of common symptoms, such as tremor and ataxia, as well as spontaneous disease development. MS displays a marked inter-individual heterogeneity, and no single model will be able to cover all features. Thus, depending on the objective of one's study, the appropriate EAE model has to be carefully chosen. In addition, refined models should be designed to gain a more complete understanding of MS. PMID:22085358

  19. Histamine and neuroinflammation: insights from murine experimental autoimmune encephalomyelitis

    PubMed Central

    Passani, Maria B.; Ballerini, Clara

    2012-01-01

    Multiple sclerosis (MS) is a chronic inflammatory, neurodegenerative disease of the CNS whose pathogenesis remains largely unknown, and available therapies are rarely successful in reversing neurological deficits or stopping disease progression. Ongoing studies on MS and the widely used murine model of experimental autoimmune encephalomyelitis (EAE) are focused on the many components of this complex and heterogeneous neurodegenerative disease in the hope of providing a mechanism-based characterization of MS that will afford successful strategies to limit and repair the neuronal damage. Recently, histamine has been postulated to have a key regulatory role in EAE and MS pathogenesis. Histamine is a mediator of inflammation and immune responses, exerting its many actions through four G protein-coupled receptors (H1,2,3,4R) that signal through distinct intracellular pathways and have different therapeutic potentials as they vary in expression, isoform distribution, signaling properties, and function. Immune cells involved in MS/EAE, including dendritic cells (DCs) and T lymphocytes, express H1R, H2R and H4R, and histamine may have varying and counteracting effects on a particular cell type, depending on the receptor subtypes being activated. Here, we review evidence of the complex and controversial role of histamine in the pathogenesis of MS and EAE and evaluate the therapeutic potential of histaminergic ligands in the treatment of autoimmune diseases. PMID:22563309

  20. Lipocalin-2 Protein Deficiency Ameliorates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Nam, Youngpyo; Kim, Jong-Heon; Seo, Minchul; Kim, Jae-Hong; Jin, Myungwon; Jeon, Sangmin; Seo, Jung-wan; Lee, Won-Ha; Bing, So Jin; Jee, Youngheun; Lee, Won Kee; Park, Dong Ho; Kook, Hyun; Suk, Kyoungho

    2014-01-01

    Lipocalin-2 (LCN2) plays an important role in cellular processes as diverse as cell growth, migration/invasion, differentiation, and death/survival. Furthermore, recent studies indicate that LCN2 expression and secretion by glial cells are induced by inflammatory stimuli in the central nervous system. The present study was undertaken to examine the regulation of LCN2 expression in experimental autoimmune encephalomyelitis (EAE) and to determine the role of LCN2 in the disease process. LCN2 expression was found to be strongly increased in spinal cord and secondary lymphoid tissues after EAE induction. In spinal cords astrocytes and microglia were the major cell types expressing LCN2 and its receptor 24p3R, respectively, whereas in spleens, LCN2 and 24p3R were highly expressed in neutrophils and dendritic cells, respectively. Furthermore, disease severity, inflammatory infiltration, demyelination, glial activation, the expression of inflammatory mediators, and the proliferation of MOG-specific T cells were significantly attenuated in Lcn2-deficient mice as compared with wild-type animals. Myelin oligodendrocyte glycoprotein-specific T cells in culture exhibited an increased expression of Il17a, Ifng, Rorc, and Tbet after treatment with recombinant LCN2 protein. Moreover, LCN2-treated glial cells expressed higher levels of proinflammatory cytokines, chemokines, and MMP-9. Adoptive transfer and recombinant LCN2 protein injection experiments suggested that LCN2 expression in spinal cord and peripheral immune organs contributes to EAE development. Taken together, these results imply LCN2 is a critical mediator of autoimmune inflammation and disease development in EAE and suggest that LCN2 be regarded a potential therapeutic target in multiple sclerosis. PMID:24808182

  1. Current Views on the Roles of Th1 and Th17 Cells in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    El-behi, Mohamed; Rostami, Abdolmohamad

    2010-01-01

    Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are autoimmune demyelinating diseases of the central nervous system (CNS). Interferon-γ-producing Th1 and interleukin-17-producing Th17 CD4+ T helper (Th) cells mediate disease pathogenesis in EAE and likely in MS as well. However, the relative contribution of each Th subset to autoimmune processes in the CNS remains unclear. Emerging data suggest that both Th1 and Th17 cells contribute to CNS autoimmunity, albeit through different mechanisms. A better understanding of the roles that Th1 and Th17 cells play in autoimmune inflammation will be helpful in developing new therapeutic approaches. In this review, we discuss recent findings on the roles of Th1 and Th17 cells in the pathogenesis of EAE. PMID:20107924

  2. Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis

    PubMed Central

    Basler, Michael; Mundt, Sarah; Muchamuel, Tony; Moll, Carlo; Jiang, Jing; Groettrup, Marcus; Kirk, Christopher J

    2014-01-01

    Multiple sclerosis (MS) is a chronic demyelinating immune mediated disease of the central nervous system. The immunoproteasome is a distinct class of proteasomes found predominantly in monocytes and lymphocytes. Recently, we demonstrated a novel function of immunoproteasomes in cytokine production and T cell differentiation. In this study, we investigated the therapeutic efficacy of an inhibitor of the immunoproteasome (ONX 0914) in two different mouse models of MS. ONX 0914 attenuated disease progression after active and passive induction of experimental autoimmune encephalomyelitis (EAE), both in MOG35–55 and PLP139–151-induced EAE. Isolation of lymphocytes from the brain or spinal cord revealed a strong reduction of cytokine-producing CD4+ cells in ONX 0914 treated mice. Additionally, ONX 0914 treatment prevented disease exacerbation in a relapsing-remitting model. An analysis of draining lymph nodes after induction of EAE revealed that the differentiation to Th17 or Th1 cells was strongly impaired in ONX 0914 treated mice. These results implicate the immunoproteasome in the development of EAE and suggest that immunoproteasome inhibitors are promising drugs for the treatment of MS. PMID:24399752

  3. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells.

    PubMed

    Zhang, B; Yamamura, T; Kondo, T; Fujiwara, M; Tabira, T

    1997-11-17

    In this report, we establish a regulatory role of natural killer (NK) cells in experimental autoimmune encephalomyelitis (EAE), a prototype T helper cell type 1 (Th1)-mediated disease. Active sensitization of C57BL/6 (B6) mice with the myelin oligodendrocyte glycoprotein (MOG)35-55 peptide induces a mild form of monophasic EAE. When mice were deprived of NK cells by antibody treatment before immunization, they developed a more serious form of EAE associated with relapse. Aggravation of EAE by NK cell deletion was also seen in beta 2-microglobulin-/- (beta 2m-/-) mice, indicating that NK cells can play a regulatory role in a manner independent of CD8+ T cells or NK1.1+ T cells (NK-T cells). The disease enhancement was associated with augmentation of T cell proliferation and production of Th1 cytokines in response to MOG35-55. EAE passively induced by the MOG35-55-specific T cell line was also enhanced by NK cell deletion in B6, beta 2m-/-, and recombination activation gene 2 (RAG-2)-/- mice, indicating that the regulation by NK cells can be independent of T, B, or NK-T cells. We further showed that NK cells inhibit T cell proliferation triggered by antigen or cytokine stimulation. Taken together, we conclude that NK cells are an important regulator for EAE in both induction and effector phases. PMID:9362528

  4. Inhibition of the immunoproteasome ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Basler, Michael; Mundt, Sarah; Muchamuel, Tony; Moll, Carlo; Jiang, Jing; Groettrup, Marcus; Kirk, Christopher J

    2014-02-01

    Multiple sclerosis (MS) is a chronic demyelinating immune mediated disease of the central nervous system. The immunoproteasome is a distinct class of proteasomes found predominantly in monocytes and lymphocytes. Recently, we demonstrated a novel function of immunoproteasomes in cytokine production and T cell differentiation. In this study, we investigated the therapeutic efficacy of an inhibitor of the immunoproteasome (ONX 0914) in two different mouse models of MS. ONX 0914 attenuated disease progression after active and passive induction of experimental autoimmune encephalomyelitis (EAE), both in MOG₃₅-₅₅ and PLP₁₃₉₋₁₅₁-induced EAE. Isolation of lymphocytes from the brain or spinal cord revealed a strong reduction of cytokine-producing CD4(+) cells in ONX 0914 treated mice. Additionally, ONX 0914 treatment prevented disease exacerbation in a relapsing-remitting model. An analysis of draining lymph nodes after induction of EAE revealed that the differentiation to Th17 or Th1 cells was strongly impaired in ONX 0914 treated mice. These results implicate the immunoproteasome in the development of EAE and suggest that immunoproteasome inhibitors are promising drugs for the treatment of MS. PMID:24399752

  5. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis)

    PubMed Central

    Klaren, Rachel E.; Motl, Robert W.; Woods, Jeffrey A.; Miller, Stephen D.

    2015-01-01

    Exercise training has improved many outcomes in “clinical” research involving persons with multiple sclerosis (MS), but there is limited understanding of the underlying “basic” pathophysiological mechanisms. The animal model of MS, experimental autoimmune encephalomyelitis (EAE), seems ideal for examining the effects of exercise training on MS-disease pathophysiology. EAE is an autoimmune T-helper cell-mediated disease characterized by T-cell and monocyte infiltration and inflammation in the CNS. To that end, this paper briefly describes common models of EAE, reviews existing research on exercise and EAE, and then identifies future research directions for understanding the consequences of exercise training using EAE. PMID:24999244

  6. Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis).

    PubMed

    Klaren, Rachel E; Motl, Robert W; Woods, Jeffrey A; Miller, Stephen D

    2014-09-15

    Exercise training has improved many outcomes in "clinical" research involving persons with multiple sclerosis (MS), but there is limited understanding of the underlying "basic" pathophysiological mechanisms. The animal model of MS, experimental autoimmune encephalomyelitis (EAE), seems ideal for examining the effects of exercise training on MS-disease pathophysiology. EAE is an autoimmune T-helper cell-mediated disease characterized by T-cell and monocyte infiltration and inflammation in the CNS. To that end, this paper briefly describes common models of EAE, reviews existing research on exercise and EAE, and then identifies future research directions for understanding the consequences of exercise training using EAE. PMID:24999244

  7. Pannexin1 Channels Are Required for Chemokine-Mediated Migration of CD4+ T Lymphocytes: Role in Inflammation and Experimental Autoimmune Encephalomyelitis.

    PubMed

    Velasquez, Stephani; Malik, Shaily; Lutz, Sarah E; Scemes, Eliana; Eugenin, Eliseo A

    2016-05-15

    Pannexin1 (Panx1) channels are large high conductance channels found in all vertebrates that can be activated under several physiological and pathological conditions. Our published data indicate that HIV infection results in the extended opening of Panx1 channels (5-60 min), allowing for the secretion of ATP through the channel pore with subsequent activation of purinergic receptors, which facilitates HIV entry and replication. In this article, we demonstrate that chemokines, which bind CCR5 and CXCR4, especially SDF-1α/CXCL12, result in a transient opening (peak at 5 min) of Panx1 channels found on CD4(+) T lymphocytes, which induces ATP secretion, focal adhesion kinase phosphorylation, cell polarization, and subsequent migration. Increased migration of immune cells is key for the pathogenesis of several inflammatory diseases including multiple sclerosis (MS). In this study, we show that genetic deletion of Panx1 reduces the number of the CD4(+) T lymphocytes migrating into the spinal cord of mice subjected to experimental autoimmune encephalomyelitis, an animal model of MS. Our results indicate that opening of Panx1 channels in response to chemokines is required for CD4(+) T lymphocyte migration, and we propose that targeting Panx1 channels could provide new potential therapeutic approaches to decrease the devastating effects of MS and other inflammatory diseases. PMID:27076682

  8. Preferential Use of Public TCR during Autoimmune Encephalomyelitis.

    PubMed

    Zhao, Yunqian; Nguyen, Phuong; Ma, Jing; Wu, Tianhua; Jones, Lindsay L; Pei, Deqing; Cheng, Cheng; Geiger, Terrence L

    2016-06-15

    How the TCR repertoire, in concert with risk-associated MHC, imposes susceptibility for autoimmune diseases is incompletely resolved. Due largely to recombinatorial biases, a small fraction of TCRα or β-chains are shared by most individuals, or public. If public TCR chains modulate a TCRαβ heterodimer's likelihood of productively engaging autoantigen, because they are pervasive and often high frequency, they could also broadly influence disease risk and progression. Prior data, using low-resolution techniques, have identified the heavy use of select public TCR in some autoimmune models. In this study, we assess public repertoire representation in mice with experimental autoimmune encephalomyelitis at high resolution. Saturation sequencing was used to identify >18 × 10(6) TCRβ sequences from the CNSs, periphery, and thymi of mice at different stages of autoimmune encephalomyelitis and healthy controls. Analyses indicated the prominent representation of a highly diverse public TCRβ repertoire in the disease response. Preferential formation of public TCR implicated in autoimmunity was identified in preselection thymocytes, and, consistently, public, disease-associated TCRβ were observed to be commonly oligoclonal. Increased TCR sharing and a focusing of the public TCR response was seen with disease progression. Critically, comparisons of peripheral and CNS repertoires and repertoires from preimmune and diseased mice demonstrated that public TCR were preferentially deployed relative to nonshared, or private, sequences. Our findings implicate public TCR in skewing repertoire response during autoimmunity and suggest that subsets of public TCR sequences may serve as disease-specific biomarkers or influence disease susceptibility or progression. PMID:27183575

  9. Diazoxide attenuates autoimmune encephalomyelitis and modulates lymphocyte proliferation and dendritic cell functionality.

    PubMed

    Virgili, N; Mancera, P; Chanvillard, C; Wegner, A; Wappenhans, B; Rodríguez, M J; Infante-Duarte, C; Espinosa-Parrilla, J F; Pugliese, M

    2014-09-01

    Activation of mitochondrial ATP-sensitive potassium (KATP) channels is postulated as an effective mechanism to confer cardio and neuroprotection, especially in situations associated to oxidative stress. Pharmacological activation of these channels inhibits glia-mediated neuroinflammation. In this way, diazoxide, an old-known mitochondrial KATP channel opener, has been proposed as an effective and safe treatment for different neurodegenerative diseases, demonstrating efficacy in different animal models, including the experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple Sclerosis. Although neuroprotection and modulation of glial reactivity could alone explain the positive effects of diazoxide administration in EAE mice, little is known of its effects on the immune system and the autoimmune reaction that triggers the EAE pathology. The aim of the present work was to study the effects of diazoxide in autoimmune key processes related with EAE, such as antigen presentation and lymphocyte activation and proliferation. Results show that, although diazoxide treatment inhibited in vitro and ex-vivo lymphocyte proliferation from whole splenocytes it had no effect in isolated CD4(+) T cells. In any case, treatment had no impact in lymphocyte activation. Diazoxide can also slightly decrease CD83, CD80, CD86 and major histocompatibility complex class II expression in cultured dendritic cells, demonstrating a possible role in modulating antigen presentation. Taken together, our results indicate that diazoxide treatment attenuates autoimmune encephalomyelitis pathology without immunosuppressive effect. PMID:24939091

  10. Translational utility of experimental autoimmune encephalomyelitis: recent developments

    PubMed Central

    Guerreiro-Cacais, Andre Ortlieb; Laaksonen, Hannes; Flytzani, Sevasti; N’diaye, Marie; Olsson, Tomas; Jagodic, Maja

    2015-01-01

    Multiple sclerosis (MS) is a complex autoimmune condition with firmly established genetic and environmental components. Genome-wide association studies (GWAS) have revealed a large number of genetic polymorphisms in the vicinity of, and within, genes that associate to disease. However, the significance of these single-nucleotide polymorphisms in disease and possible mechanisms of action remain, with a few exceptions, to be established. While the animal model for MS, experimental autoimmune encephalomyelitis (EAE), has been instrumental in understanding immunity in general and mechanisms of MS disease in particular, much of the translational information gathered from the model in terms of treatment development (glatiramer acetate and natalizumab) has been extensively summarized. In this review, we would thus like to cover the work done in EAE from a GWAS perspective, highlighting the research that has addressed the role of different GWAS genes and their pathways in EAE pathogenesis. Understanding the contribution of these pathways to disease might allow for the stratification of disease subphenotypes in patients and in turn open the possibility for new and individualized treatment approaches in the future. PMID:26622189

  11. Tanshinone IIA attenuates experimental autoimmune encephalomyelitis in rats

    PubMed Central

    Yan, Jun; Yang, Xue; Han, Dong; Feng, Juan

    2016-01-01

    Multiple sclerosis (MS) is an inflammatory autoimmune neurodegenerative disease, which features focal demyelination and inflammatory cell infiltration of the brain and the spinal cord. Tanshinone IIA (TSIIA), one of the major fat-soluble components of Salvia miltiorrhiza (Danshen), has anti-inflammatory, immunoregulatory and neuroprotective activity; however, its efficacy in MS remains unknown. The current study was designed to investigate the potential therapeutic function of TSIIA on MS in the experimental autoimmune encephalomyelitis (EAE) rat model. In comparison to the vehicle control group, the TSIIA-treated groups showed notably improved clinical symptoms and pathological changes, including central nervous system inflammatory cell infiltration and demyelination. Following administration of TSIIA, the quantity of CD4+ T cells, CD8+ T cells and macrophages/microglia in the spinal cord were reduced to different extents. Furthermore, TSIIA was also shown to downregulate interleukin (IL)-17 and IL-23 levels in the brain and serum of EAE rats. The results collectively provide evidence that TSIIA alleviates EAE and support its utility as a novel therapy for MS. PMID:27357729

  12. Tanshinone IIA attenuates experimental autoimmune encephalomyelitis in rats.

    PubMed

    Yan, Jun; Yang, Xue; Han, Dong; Feng, Juan

    2016-08-01

    Multiple sclerosis (MS) is an inflammatory autoimmune neurodegenerative disease, which features focal demyelination and inflammatory cell infiltration of the brain and the spinal cord. Tanshinone IIA (TSIIA), one of the major fat‑soluble components of Salvia miltiorrhiza (Danshen), has anti‑inflammatory, immunoregulatory and neuroprotective activity; however, its efficacy in MS remains unknown. The current study was designed to investigate the potential therapeutic function of TSIIA on MS in the experimental autoimmune encephalomyelitis (EAE) rat model. In comparison to the vehicle control group, the TSIIA‑treated groups showed notably improved clinical symptoms and pathological changes, including central nervous system inflammatory cell infiltration and demyelination. Following administration of TSIIA, the quantity of CD4+ T cells, CD8+ T cells and macrophages/microglia in the spinal cord were reduced to different extents. Furthermore, TSIIA was also shown to downregulate interleukin (IL)‑17 and IL‑23 levels in the brain and serum of EAE rats. The results collectively provide evidence that TSIIA alleviates EAE and support its utility as a novel therapy for MS. PMID:27357729

  13. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Murugaiyan, Gopal; Beynon, Vanessa; Mittal, Akanksha; Joller, Nicole; Weiner, Howard L

    2011-09-01

    IFN-γ-producing Th1 and IL-17-producing Th17 cells are the key participants in various autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Although both of these T cell subsets are known to be regulated by specific transcription factors and cytokines, the role of microRNAs that control these two inflammatory T cell subsets and whether targeting microRNAs can have therapeutic effects are not known. In this study, we show that microRNA-155 (Mir-155) expression is elevated in CD4(+) T cells during EAE, and Mir-155(-/-) mice had a delayed course and reduced severity of disease and less inflammation in the CNS. The attenuation of EAE in Mir-155(-/-) mice was associated with a decrease in Th1 and Th17 responses in the CNS and peripheral lymphoid organs. The T cell-intrinsic function of Mir-155(-/-) was demonstrated by the resistance of Mir-155(-/-) CD4(+) T cell-repleted Rag-1(-/-) mice to EAE. Finally, we found that anti-Mir-155 treatment reduced clinical severity of EAE when given before and after the appearance of clinical symptoms. These findings demonstrate that Mir-155 confers susceptibility to EAE by affecting inflammatory T cell responses and identify Mir-155 as a new target for therapeutic intervention in multiple sclerosis. PMID:21788439

  14. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis.

    PubMed

    Xin, Junping; Feinstein, Douglas L; Hejna, Matthew J; Lorens, Stanley A; McGuire, Susan O

    2012-06-13

    Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune disease that presents with pathological and clinical features similar to those of multiple sclerosis (MS) including inflammation and neurodegeneration. This study investigated whether blueberries, which possess immunomodulatory, anti-inflammatory, and neuroprotective properties, could provide protection in EAE. Dietary supplementation with 1% whole, freeze-dried blueberries reduced disease incidence by >50% in a chronic EAE model (p < 0.01). When blueberry-fed mice with EAE were compared with control-fed mice with EAE, blueberry-fed mice had significantly lower motor disability scores (p = 0.03) as well as significantly greater myelin preservation in the lumbar spinal cord (p = 0.04). In a relapsing-remitting EAE model, blueberry-supplemented mice showed improved cumulative and final motor scores compared to control diet-fed mice (p = 0.01 and 0.03, respectively). These data demonstrate that blueberry supplementation is beneficial in multiple EAE models, suggesting that blueberries, which are easily administered orally and well-tolerated, may provide benefit to MS patients. PMID:22243431

  15. IFN-gamma determines distinct clinical outcomes in autoimmune encephalomyelitis.

    PubMed

    Wensky, Allen K; Furtado, Glaucia C; Marcondes, Maria Cecilia Garibaldi; Chen, Shaohua; Manfra, Denise; Lira, Sergio A; Zagzag, David; Lafaille, Juan J

    2005-02-01

    Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the CNS initiated by autoreactive CD4(+) T cells. EAE classically presents with a progressive ascending paralysis and is a model of multiple sclerosis that recapitulates some aspects of the disease. In this report we describe a mouse strain that spontaneously develops a severe, nonclassical form of EAE with 100% incidence. The distinct clinical phenotype is marked initially by a slight head tilt, progressing to a severe head tilt, spinning, or a rotatory motion. Classical EAE spontaneously occurs in myelin basic protein (MBP)-specific TCR transgenic RAG-1(-/-) mice (referred to as T/R(-)), whereas nonclassical EAE spontaneously occurs in T/R(-) IFN-gamma(-/-) mice (T/R(-)gamma(-)). Thus, the TCR recognizes the same Ag (MBP) and uses identical TCR in both cases. The cellular infiltrate in nonclassical EAE is predominantly found in the brainstem and cerebellum, with very little inflammation in the spinal cord, which is primarily affected in classical disease. Importantly, depending on the genetic makeup and priming conditions of the MBP-specific T cells, nonclassical disease can occur in the presence of an inflammatory infiltrate with eosinophilic, neutrophilic, or monocytic characteristics. Finally, we believe that nonclassical spontaneous EAE could be a useful model for the study of some characteristics of multiple sclerosis not observed in classical EAE, such as the inflammatory responses in the brainstem and cerebellum that can cause vertigo. PMID:15661899

  16. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-01-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. PMID:25269445

  17. Activation of Cannabinoid CB2 receptors Reduces Hyperalgesia in an Experimental Autoimmune Encephalomyelitis Mouse Model of Multiple Sclerosis

    PubMed Central

    Fu, Weisi; Taylor, Bradley K.

    2015-01-01

    Clinical trials investigating the analgesic efficacy of cannabinoids in multiple sclerosis have yielded mixed results, possibly due to psychotropic side effects mediated by cannabinoid CB1 receptors. We hypothesized that a CB2-specific agonist (JWH-133) would decrease hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. 4 weeks after induction of experimental autoimmune encephalomyelitis, we found that intrathecal administration of JWH-133 (10–100 μg) dose-dependently reduced both mechanical and cold hypersensitivity without producing signs of sedation or ataxia. The anti-hyperalgesic effects of JWH-133 could be dose-dependently prevented by intrathecal co-administration of the CB2 antagonist, AM-630 (1–3 μg). Our results suggest that JWH-133 acts at CB2 receptors, most likely within the dorsal horn of the spinal cord, to suppress the hypersensitivity associated with experimental autoimmune encephalomyelitis. These are the first pre-clinical studies to directly promote CB2 as a promising target for the treatment of central pain in an animal model of multiple sclerosis. PMID:25849525

  18. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Chandraratna, Roshantha As; Noelle, Randolph J; Nowak, Elizabeth C

    2016-01-01

    Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4(+) T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4(+) T cells that produce pro-inflammatory cytokines. In addition, CD4(+) T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity. PMID:27158387

  19. Treatment with retinoid X receptor agonist IRX4204 ameliorates experimental autoimmune encephalomyelitis

    PubMed Central

    Chandraratna, Roshantha AS; Noelle, Randolph J; Nowak, Elizabeth C

    2016-01-01

    Retinoid x receptors (RXRs) are master regulators that control cell growth, differentiation, and survival and form heterodimers with many other family members. Here we show that treatment with the RXR agonist IRX4204 enhances the differentiation of CD4+ T cells into inducible regulatory T cells (iTreg) and suppresses the development of T helper (Th) 17 cells in vitro. Furthermore in a murine model of multiple sclerosis (experimental autoimmune encephalomyelitis (EAE)), treatment with IRX4204 profoundly attenuates both active and Th17-mediated passive disease. In the periphery, treatment with IRX4204 is associated with decreased numbers of CD4+ T cells that produce pro-inflammatory cytokines. In addition, CD4+ T cells express decreased levels of Ki-67 and increased expression of CTLA-4. Our findings demonstrate IRX4204 treatment during EAE results in immune modulation and profound attenuation of disease severity. PMID:27158387

  20. Disparate Effects of Mesenchymal Stem Cells in Experimental Autoimmune Encephalomyelitis and Cuprizone-Induced Demyelination

    PubMed Central

    Glenn, Justin D.; Smith, Matthew D.; Kirby, Leslie A.; Baxi, Emily G.; Whartenby, Katharine A

    2015-01-01

    Mesenchymal stem cells (MSCs) are pleiotropic cells with potential therapeutic benefits for a wide range of diseases. Because of their immunomodulatory properties they have been utilized to treat autoimmune diseases such as multiple sclerosis (MS), which is characterized by demyelination. The microenvironment surrounding MSCs is thought to affect their differentiation and phenotype, which could in turn affect the efficacy. We thus sought to dissect the potential for differential impact of MSCs on central nervous system (CNS) disease in T cell mediated and non-T cell mediated settings using the MOG35–55 experimental autoimmune encephalomyelitis (EAE) and cuprizone-mediated demyelination models, respectively. As the pathogeneses of MS and EAE are thought to be mediated by IFNγ-producing (TH1) and IL-17A-producing (TH17) effector CD4+ T cells, we investigated the effect of MSCs on the development of these two key pathogenic cell groups. Although MSCs suppressed the activation and effector function of TH17 cells, they did not affect TH1 activation, but enhanced TH1 effector function and ultimately produced no effect on EAE. In the non- T cell mediated cuprizone model of demyelination, MSC administration had a positive effect, with an overall increase in myelin abundance in the brain of MSC-treated mice compared to controls. These results highlight the potential variability of MSCs as a biologic therapeutic tool in the treatment of autoimmune disease and the need for further investigation into the multifaceted functions of MSCs in diverse microenvironments and the mechanisms behind the diversity. PMID:26407166

  1. Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis

    PubMed Central

    Kalyvas, Athena; Baskakis, Constantinos; Magrioti, Victoria; Constantinou-Kokotou, Violetta; Stephens, Daren; López-Vales, Rubèn; Lu, Jian-Qiang; Yong, V. Wee; Dennis, Edward A.; Kokotos, George

    2009-01-01

    The phospholipase A2 (PLA2) superfamily hydrolyzes phospholipids to release free fatty acids and lysophospholipids, some of which can mediate inflammation and demyelination, hallmarks of the CNS autoimmune disease multiple sclerosis. The expression of two of the intracellular PLA2s (cPLA2 GIVA and iPLA2 GVIA) and two of the secreted PLA2s (sPLA2 GIIA and sPLA2 GV) are increased in different stages of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We show using small molecule inhibitors, that cPLA2 GIVA plays a role in the onset, and iPLA2 GVIA in the onset and progression of EAE. We also show a potential role for sPLA2 in the later remission phase. These studies demonstrate that selective inhibition of iPLA2 can ameliorate disease progression when treatment is started before or after the onset of symptoms. The effects of these inhibitors on lesion burden, chemokine and cytokine expression as well as on the lipid profile provide insights into their potential modes of action. iPLA2 is also expressed by macrophages and other immune cells in multiple sclerosis lesions. Our results therefore suggest that iPLA2 might be an excellent target to block for the treatment of CNS autoimmune diseases, such as multiple sclerosis. PMID:19218359

  2. CXCR7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis.

    PubMed

    Bao, Jianhong; Zhu, Jinying; Luo, Sheng; Cheng, Ying; Zhou, Saijun

    2016-01-01

    Multiple sclerosis (MS) is the prototypical inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE), widely used as an animal model of MS, classically manifests as an ascending paralysis that is characterized by extensive infiltration of the CNS by inflammatory cells. Although several studies uncover the significant role of microglia in the development of EAE, the cellular mechanisms of microglia that govern EAE pathogenesis remain unknown. In the current study, we report that CXCR7 expression is dynamic regulated in activated microglia during CNS autoimmunity and positively correlates with the clinical severity of EAE. In addition, microglial chemotaxis is mediated by CXCR7 during CNS autoimmunity, signaling through extracellular signal-regulated kinase (ERK)1/2 activation, whereas p38 mitogen-activated protein kinase (MAPK) and (c-Jun N-terminal kinase) JNK are not involved. Most importantly, CXCR7 neutralizing treatment ameliorates the clinical severity of EAE along with ERK1/2 phosphorylation reduction. Collectively, our data demonstrate that CXCR7 suppression modulates microglial chemotaxis to ameliorate EAE. PMID:26607112

  3. IFNAR signaling directly modulates T lymphocyte activity, resulting in milder experimental autoimmune encephalomyelitis development.

    PubMed

    Kavrochorianou, Nadia; Evangelidou, Maria; Markogiannaki, Melina; Tovey, Michael; Thyphronitis, George; Haralambous, Sylva

    2016-01-01

    Although interferon-β is used as first-line therapy for multiple sclerosis, the cell type-specific activity of type I interferons in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis, remains obscure. In this study, we have elucidated the in vivo immunomodulatory role of type I interferon signaling in T cells during experimental autoimmune encephalomyelitis by use of a novel transgenic mouse, carrying a cd2-ifnar1 transgene on a interferon-α/β receptor 1 null genetic background, thus allowing expression of the interferon-α/β receptor 1 and hence, a functional type I interferon receptor exclusively on T cells. These transgenic mice exhibited milder experimental autoimmune encephalomyelitis with reduced T cell infiltration, demyelination, and axonal damage in the central nervous system. It is noteworthy that interferon-β administration in transgenic mice generated a more pronounced, protective effect against experimental autoimmune encephalomyelitis compared with untreated littermates. In vivo studies demonstrated that before experimental autoimmune encephalomyelitis onset, endogenous type I interferon receptor signaling in T cells led to impaired T-helper 17 responses, with a reduced fraction of CCR6(+) CD4(+) T cells in the periphery. At the acute phase, an increased proportion of interleukin-10- and interferon-γ-producing CD4(+) T cells was detected in the periphery of the transgenic mice, accompanied by up-regulation of the interferon-γ-induced gene Irgm1 in peripheral T cells. Together, these results reveal a hitherto unknown T cell-associated protective role of type I interferon in experimental autoimmune encephalomyelitis that may provide valuable clues for designing novel therapeutic strategies for multiple sclerosis. PMID:26232452

  4. Dihydrotestosterone as a Protective Agent in Chronic Experimental Autoimmune Encephalomyelitis.

    PubMed

    Giatti, Silvia; Rigolio, Roberta; Romano, Simone; Mitro, Nico; Viviani, Barbara; Cavaletti, Guido; Caruso, Donatella; Garcia-Segura, Luis Miguel; Melcangi, Roberto Cosimo

    2015-01-01

    Multiple sclerosis is a chronic inflammatory disease affecting the central nervous system. As reported by clinical observations, variation in hormonal levels might alter disease susceptibility and progression. Specifically, decreased levels of testosterone in males are reported to be permissive for disease onset. Accordingly, testosterone seems to exert protective effects in experimental autoimmune encephalomyelitis (EAE). In this context, it is important to highlight that testosterone is further metabolized into 17β-estradiol or dihydrotestosterone (DHT). In this study, we aimed to explore the protective effects of DHT treatment in EAE Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction showed that DHT exerts a beneficial effect on clinical scores, coupled with decreased gliosis (i.e. glial fibrillary acidic protein and major histocompatibility complex of class II staining) and inflammation (i.e. translocator protein 18 kDa, interleukin-1β, Toll-like receptor 4 and nuclear factor-κB expression) in the spinal cord. Moreover, parameters linked to oxidative stress and tissue damage, like thiobarbituric acid-reactive substance levels and Bcl-2-associated X protein expression, and to mitochondrial activity (i.e. content of mitochondrial DNA and proteins), were improved after DHT administration. This neuroactive steroid may be further metabolized into 3α- or 3β-diol. However, assessment of the levels of these metabolites after DHT treatment seems to suggest that the protective effects observed here are due to DHT itself. Altogether, the present results indicate that DHT was effective in reducing the severity of chronic EAE and, consequently, may represent an interesting perspective for multiple sclerosis treatment. PMID:25765436

  5. Role of orexin-A in experimental autoimmune encephalomyelitis.

    PubMed

    Fatemi, Iman; Shamsizadeh, Ali; Ayoobi, Fatemeh; Taghipour, Zahra; Sanati, Mohammad Hossein; Roohbakhsh, Ali; Motevalian, Manijeh

    2016-02-15

    The aim of this study was to evaluate the effects of orexin-A (OX-A) on behavioral and pathological parameters and on gene expression of some multiple sclerosis-related peptides in a model of experimental autoimmune encephalomyelitis (EAE). EAE was induced by subcutaneous administration of MOG 35-55. Following immunization, the treatment was initiated by using SB.334867 (orexin-1 receptor antagonist) and/or OX-A. Locomotor activity and exploratory behaviors were monitored using open field and T-maze continuous alternation task (T-CAT) respectively. Pain sensitivity was assessed by hot-plate test. Histopathological assessments were performed by H&E staining. The expression of TGF-β, MBP, MMP-9, IL-12, iNOS and MCP-1 were measured using real-time PCR method in lumbar spinal cord. OX-A administration in EAE mice remarkably attenuated the clinical symptoms, increased latency response in hot plate test, inhibited infiltration of inflammatory cells, up-regulated mRNA expression of TGF-β as well as MBP and down-regulated mRNA expression of iNOS, MMP-9 and IL-12. In contrast SB.334867 administration in EAE mice deteriorated the clinical symptoms, decreased the alternation in T-CAT, increased infiltration of inflammatory cells, down-regulated mRNA expression of TGF-β and MBP and up-regulated mRNA expression of iNOS. Results of this study suggest that the orexinergic system might be involved in pathological development of EAE. These findings suggest orexinergic system as a potential target for treatment of multiple sclerosis. PMID:26857503

  6. Neuroendothelial NMDA receptors as therapeutic targets in experimental autoimmune encephalomyelitis.

    PubMed

    Macrez, Richard; Ortega, Maria C; Bardou, Isabelle; Mehra, Anupriya; Fournier, Antoine; Van der Pol, Susanne M A; Haelewyn, Benoit; Maubert, Eric; Lesept, Flavie; Chevilley, Arnaud; de Castro, Fernando; De Vries, Helga E; Vivien, Denis; Clemente, Diego; Docagne, Fabian

    2016-09-01

    Multiple sclerosis is among the most common causes of neurological disability in young adults. Here we provide the preclinical proof of concept of the benefit of a novel strategy of treatment for multiple sclerosis targeting neuroendothelial N-methyl-D-aspartate glutamate receptors. We designed a monoclonal antibody against N-methyl-D-aspartate receptors, which targets a regulatory site of the GluN1 subunit of N-methyl-D-aspartate receptor sensitive to the protease tissue plasminogen activator. This antibody reverted the effect of tissue plasminogen activator on N-methyl-D-aspartate receptor function without affecting basal N-methyl-D-aspartate receptor activity (n = 21, P < 0.01). This antibody bound N-methyl-D-aspartate receptors on the luminal surface of neurovascular endothelium in human tissues and in mouse, at the vicinity of tight junctions of the blood-spinal cord barrier. Noteworthy, it reduced human leucocyte transmigration in an in vitro model of the blood-brain barrier (n = 12, P < 0.05). When injected during the effector phase of MOG-induced experimental autoimmune encephalomyelitis (n = 24), it blocked the progression of neurological impairments, reducing cumulative clinical score (P < 0.001) and mean peak score (P < 0.001). This effect was observed in wild-type animals but not in tissue plasminogen activator knock-out animals (n = 10). This therapeutic effect was associated to a preservation of the blood-spinal cord barrier (n = 6, P < 0.001), leading to reduced leucocyte infiltration (n = 6, P < 0.001). Overall, this study unveils a critical function of endothelial N-methyl-D-aspartate receptor in multiple sclerosis, and highlights the therapeutic potential of strategies targeting the protease-regulated site of N-methyl-D-aspartate receptor. PMID:27435092

  7. Estrogen treatment prevents gray matter atrophy in experimental autoimmune encephalomyelitis.

    PubMed

    MacKenzie-Graham, Allan J; Rinek, Gilda A; Avedisian, Andrea; Morales, Laurie B; Umeda, Elizabeth; Boulat, Benoit; Jacobs, Russell E; Toga, Arthur W; Voskuhl, Rhonda R

    2012-07-01

    Gray matter atrophy is an important correlate to clinical disability in multiple sclerosis (MS), and many treatment trials include atrophy as an outcome measure. Atrophy has been shown to occur in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The clinical severity of EAE is reduced in estrogen-reated mice, but it remains unknown whether estrogen treatment can reduce gray matter atrophy in EAE. In this study, mice with EAE were treated with either estrogen receptor (ER)-α ligand or ER-β ligand, and diffusion tensor images (DTI) were collected and neuropathology was performed. DTI showed atrophy in the cerebellar gray matter of vehicle-treated EAE mice compared with healthy controls but not in ER-α or ER-β ligand-treated EAE mice. Neuropathology demonstrated that Purkinje cell numbers were decreased in vehicle-treated EAE mice, whereas neither ER ligand-treated EAE groups showed a decrease. This is the first report of a neuroprotective therapy in EAE that unambiguously prevents gray matter atrophy while sparing a major neuronal cell type. Fractional anisotropy (FA) in the cerebellar white matter was decreased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Inflammatory cell infiltration was increased in vehicle- and ER-β ligand-treated but not in ER-α ligand-treated EAE mice. Myelin staining was decreased in vehicle-treated EAE mice and was spared in both ER ligand-treated groups. This is consistent with decreased FA as a potential biomarker for inflammation rather than myelination or axonal damage in the cerebellum in EAE. PMID:22411609

  8. Polymerase I pathway inhibitor ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Achiron, Anat; Mashiach, Roi; Zilkha-Falb, Rina; Meijler, Michael M; Gurevich, Michael

    2013-10-15

    Applying high throughput gene expression microarrays we identified that the suppression of polymerase 1 (POL1) pathway is associated with benign course of multiple sclerosis (MS). This finding supports the rationale for direct targeting of the POL1 transcription machinery as an innovative strategy to suppress MS. To evaluate the effects of a specific polymerase I inhibitor (POL1-I) on experimental autoimmune encephalomyelitis (EAE), we immunized female C57BL/6J mice (8 weeks) with MOG35-55/CFA. A new POL1-I was administered at a daily dose of 12.5mg/kg body weight by oral gavage either from the day of immunization until disease onset (EAE score 1.0, immunization model), at disease onset (EAE score=1.0) for the following 14 days (treatment model), or by alternate daily dose of 25.0mg/kg body weight, by oral gavage from the day of immunization for the following 25 days (combined model). POL1-I remarkably suppressed EAE in the immunization model; while in the Vehicle group the onset of EAE occurred on day 10.0±0.4 with maximal clinical score of 3.2±0.2, in the POL1-I treated mice onset was significantly delayed and occurred on day 16.9±1.1 (p=0.001), and maximal disease score 2.0±0.1 was reduced (p=0.004). In the treatment model POL1-I treatment significantly reduced disease activity; maximal score was 2.0±0.5 while in the Vehicle group it reached a mean maximal score of 3.9±0.1, (p=0.0008). In the combined model, POL1-I treatment completely inhibited disease activity. The effect of POL1-I treatment was modulated through decreased expression of POL1 pathway key-related genes LRPPRC, pre-RNA, POLR1D and RRN3 together with activation of P53 dependent apoptosis of CD4+ splenocytes. Our findings demonstrate that POL1 pathway inhibition delayed and suppressed the development of EAE and ameliorated the disease in mice with persistent clinical signs. PMID:23998422

  9. Differential brain and spinal cord cytokine and BDNF levels in experimental autoimmune encephalomyelitis are modulated by prior and regular exercise.

    PubMed

    Bernardes, Danielle; Oliveira-Lima, Onésia Cristina; Silva, Thiago Vitarelli da; Faraco, Camila Cristina Fraga; Leite, Hércules Ribeiro; Juliano, Maria Aparecida; Santos, Daniel Moreira dos; Bethea, John R; Brambilla, Roberta; Orian, Jacqueline M; Arantes, Rosa Maria Esteves; Carvalho-Tavares, Juliana

    2013-11-15

    The interactions between a prior program of regular exercise and the development of experimental autoimmune encephalomyelitis (EAE)-mediated responses were evaluated. In the exercised EAE mice, although there was no effect on infiltrated cells, the cytokine and derived neurotrophic factor (BDNF) levels were altered, and the clinical score was attenuated. Although, the cytokine levels were decreased in the brain and increased in the spinal cord, BDNF was elevated in both compartments with a tendency of lesser demyelization volume in the spinal cord of the exercised EAE group compared with the unexercised. PMID:24054000

  10. Tolerance Induction in Experimental Autoimmune Encephalomyelitis Using Non-myeloablative Hematopoietic Gene Therapy With Autoantigen

    PubMed Central

    Eixarch, Herena; Espejo, Carmen; Gómez, Alba; Mansilla, María José; Castillo, Mireia; Mildner, Alexander; Vidal, Francisco; Gimeno, Ramón; Prinz, Marco; Montalban, Xavier; Barquinero, Jordi

    2009-01-01

    Experimental autoimmune encephalomyelitis (EAE) constitutes a paradigm of antigen (Ag)-specific T cell driven autoimmune diseases. In this study, we transferred bone marrow cells (BMCs) expressing an autoantigen (autoAg), the peptide 40–55 of the myelin oligodendrocytic glycoprotein (MOG40–55), to induce preventive and therapeutic immune tolerance in a murine EAE model. Transfer of BMC expressing MOG40–55 (IiMOG-BMC) into partially myeloablated mice resulted in molecular chimerism and in robust protection from the experimental disease. In addition, in mice with established EAE, transfer of transduced BMC with or without partial myeloablation reduced the clinical and histopathological severity of the disease. In these experiments, improvement was observed even in the absence of engraftment of the transduced hematopoietic cells, probably rejected due to the previous immunization with the autoAg. Splenocytes from mice transplanted with IiMOG-BMC produced significantly higher amounts of interleukin (IL)-5 and IL-10 upon autoAg challenge than those of control animals, suggesting the participation of regulatory cells. Altogether, these results suggest that different tolerogenic mechanisms may be mediating the preventive and the therapeutic effects. In conclusion, this study demonstrates that a cell therapy using BMC expressing an autoAg can induce Ag-specific tolerance and ameliorate established EAE even in a nonmyeloablative setting. PMID:19277013

  11. Maternal deprivation of rat pups increases clinical symptoms of experimental autoimmune encephalomyelitis at adult age.

    PubMed

    Teunis, Marc A T; Heijnen, Cobi J; Sluyter, Frans; Bakker, Joost M; Van Dam, Anne-Marie M W; Hof, Maleen; Cools, Alexander R; Kavelaars, Annemieke

    2002-12-01

    Maternal deprivation of neonatal animals has been shown to induce long-lasting changes in the reactivity of the neuroendocrine system. The aim of the present study was to investigate whether maternal deprivation also affects susceptibility to immune-mediated diseases such as experimental autoimmune encephalomyelitis (EAE) in adult life. To this end, 9-day-old rat pups were subjected to a short-lasting maternal deprivation for a period of 24 h. At the age of 8 weeks, we induced EAE in these rats by immunization with myelin basic protein (MBP) in complete Freund's adjuvant. Our data demonstrate that short-lasting maternal deprivation induces a marked increase in the severity of EAE in the animals in later life. The histopathological evaluation of spinal cord and cerebellum corresponded with the observed differences in clinical symptoms of EAE. Moreover, neonatal maternal deprivation affects macrophage functioning at adult age. In contrast, no differences were observed in in vitro mitogen- and MBP-induced cytokine production by splenocytes. LPS-induced corticosterone release did not differ either between maternally deprived and control animals. We conclude that short-lasting neonatal maternal deprivation of rat pups has long-lasting consequences for macrophage activity and for susceptibility to the inflammatory autoimmune disease EAE. PMID:12446005

  12. Euphol prevents experimental autoimmune encephalomyelitis in mice: evidence for the underlying mechanisms.

    PubMed

    Dutra, Rafael Cypriano; de Souza, Paula Roberta de Cezaro; Bento, Allisson Freire; Marcon, Rodrigo; Bicca, Maíra Assunção; Pianowski, Luiz Francisco; Calixto, João B

    2012-02-15

    Multiple sclerosis (MS) is a severe chronic T cell-mediated autoimmune inflammatory disease of the central nervous system (CNS), the existing therapy of which is only partially effective and is associated with undesirable side effects. Euphol, an alcohol tetracyclic triterpene, has a wide range of pharmacological properties and is considered to have anti-inflammatory action. However there are no reports about the effects and mechanisms of euphol in experimental autoimmune encephalomyelitis (EAE), an established model of MS. Here we report the effects and the underlying mechanisms of action of euphol in EAE. Euphol (1-10mg/kg) was administered orally at different time-points of EAE. Immunological and inflammatory responses were evaluated by real-time PCR, Western blot and flow cytometry assays. We provide evidence that euphol significantly attenuates neurological signs of EAE. These beneficial effects of euphol seem to be associated with the down-regulation of mRNA and protein expression of some pro-inflammatory mediators such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the CNS. Furthermore, in vitro, euphol consistently inhibited the T cell-mediated immune response including the production of T(H)1 and T(H)17 cytokines in spleen cells of untreated EAE animals. Likewise, oral euphol treatment inhibited the infiltration of T(H)17 myelin-specific cells into the CNS through the adhesion molecule, lymphocyte function-associated antigen 1 (LFA-1). Our findings reveal that oral administration of euphol consistently reduces and limits the severity and development of EAE. Therefore, euphol might represent a potential molecule of interest for the treatment of MS and other T(H)17 cell-mediated inflammatory diseases. PMID:22155310

  13. Neuroprotection in Experimental Autoimmune Encephalomyelitis and Progressive Multiple Sclerosis by Cannabis-Based Cannabinoids.

    PubMed

    Pryce, Gareth; Riddall, Dieter R; Selwood, David L; Giovannoni, Gavin; Baker, David

    2015-06-01

    Multiple sclerosis (MS) is the major immune-mediated, demyelinating, neurodegenerative disease of the central nervous system. Compounds within cannabis, notably Δ9-tetrahydrocannabinol (Δ9-THC) can limit the inappropriate neurotransmissions that cause MS-related problems and medicinal cannabis is now licenced for the treatment of MS symptoms. However, the biology indicates that the endocannabinoid system may offer the potential to control other aspects of disease. Although there is limited evidence that the cannabinoids from cannabis are having significant immunosuppressive activities that will influence relapsing autoimmunity, we and others can experimentally demonstrate that they may limit neurodegeneration that drives progressive disability. Here we show that synthetic cannabidiol can slow down the accumulation of disability from the inflammatory penumbra during relapsing experimental autoimmune encephalomyelitis (EAE) in ABH mice, possibly via blockade of voltage-gated sodium channels. In addition, whilst non-sedating doses of Δ9-THC do not inhibit relapsing autoimmunity, they dose-dependently inhibit the accumulation of disability during EAE. They also appear to slow down clinical progression during MS in humans. Although a 3 year, phase III clinical trial did not detect a beneficial effect of oral Δ9-THC in progressive MS, a planned subgroup analysis of people with less disability who progressed more rapidly, demonstrated a significant slowing of progression by oral Δ9-THC compared to placebo. Whilst this may support the experimental and biological evidence for a neuroprotective effect by the endocannabinoid system in MS, it remains to be established whether this will be formally demonstrated in further trials of Δ9-THC/cannabis in progressive MS. PMID:25537576

  14. Gene-based intramuscular interferon-beta therapy for experimental autoimmune encephalomyelitis.

    PubMed

    Jaini, Ritika; Hannaman, Drew; Johnson, Justin M; Bernard, Robert M; Altuntas, Cengiz Z; Delasalas, Maida M; Kesaraju, Pavani; Luxembourg, Alain; Evans, Claire F; Tuohy, Vincent K

    2006-09-01

    In contrast to serial injections of recombinant interferon-beta (IFN-beta) for long-term therapy of multiple sclerosis (MS), prolonged systemic delivery of proteins derived through in vivo gene transfer may provide a more clinically relevant alternative. Here we compare the therapeutic efficacies of electroporation (EP)-mediated intramuscular IFN-beta gene transfer with repeated alternate-day injections of recombinant IFN-beta after the onset of relapsing-remitting experimental autoimmune encephalomyelitis (EAE), an animal model widely used in MS research. We show for the first time that a single EP-mediated intramuscular administration of 20 microg of an IFN-beta-expressing plasmid provides long-term expression of interferon-inducible genes and is therapeutic in ongoing established EAE. The achieved therapeutic effects of IFN-beta gene delivery were comparable to an 8-week regimen of 10,000 IU rIFN-beta injected every other day and involved a significant inhibition of disease progression and a significant reduction of EAE relapses compared to untreated or null-vector-treated mice. Our results indicate the viability of a convenient and effective gene-based alternative for long-term IFN-beta protein therapy in MS. PMID:16782409

  15. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice.

    PubMed

    Sun, Yafei; Tian, Tian; Gao, Juan; Liu, Xiaoqian; Hou, Huiqing; Cao, Runjing; Li, Bin; Quan, Moyuan; Guo, Li

    2016-03-15

    Immoderate immunoreaction of antigen-specific Th17 and Treg cell dysfunction play critical roles in the pathogenesis of multiple sclerosis. We examined Th17/Treg immune responses and the underlying mechanisms in response to metformin in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Metformin reduced Th17 and increased Treg cell percentages along with the levels of associated cytokines. Molecules involved in cellular metabolism were altered in mice with EAE. Suppressed activation of mTOR and its downstream target, HIF-1α, likely mediated the protective effects of metformin. Our findings demonstrate that regulation of T cell metabolism represents a new therapeutic target for CNS autoimmune disorders. PMID:26943960

  16. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS)

    PubMed Central

    Constantinescu, Cris S; Farooqi, Nasr; O'Brien, Kate; Gran, Bruno

    2011-01-01

    Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions. LINKED ARTICLES This article is part of a themed issue on Translational Neuropharmacology. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.164.issue-4 PMID:21371012

  17. Relapsing experimental allergic encephalomyelitis. An autoimmune model of multiple sclerosis.

    PubMed

    Lublin, F D

    1985-01-01

    R-EAE is a valuable model for human MS. Table 2 outlines the similarities between R-EAE and MS. The clinical course and pathologic changes seen in this model accurately reflect the pattern of MS. The immunologic changes seen in animals with R-EAE also are similar to those seen in MS. Therefore, the clinicopathologic features of MS can be duplicated with a purely autoimmune model. Although this is of considerable pathogenic significance in understanding MS, we do not know what the inciting event is in MS that would be the equivalent of immunizing an animal with neural antigen. Despite this, R-EAE has and should continue to provide experimental data of considerable importance to an understanding of the mechanisms involved in the evolution of inflammatory demyelination. Other important models of MS utilize viral-induced demyelination. Although the clinical picture of most of the chronic demyelinating viral infections does not show as clear a relapsing or remitting pattern as seen in R-EAE, viral etiologies better fit the epidemiology of MS [16]. Several studies have demonstrated development of an acute EAE-like disease with sensitization to neural antigens following viral infection [12, 30, 56]. Thus, one can hypothesize an initial viral illness causing sensitization of the host to a neural antigen (?MBP) with a subsequent immunopathogenic course similar to that seen in R-EAE. Whether this will in fact be the case remains unproven as yet. Our understanding of the immunopathogenic mechanisms underlying inflammatory demyelination has been enlarged through studies of R-EAE. It is now clear that the minimal myelin antigen necessary for production of the disease is MBP, although this may differ in some species. The relapsing nature of this disorder is mediated in part through lymphocytes, as demonstrated in transfer studies, and thus does not require persistent antigenic depots. There is a genetic susceptibility to development of the CNS autoimmune state, and we speculate

  18. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats

    PubMed Central

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats (“EAE” group). 2- “N. sativa + EAE” group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- “EAE + N. sativa” group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE. PMID:26261504

  19. Amelioration of chronic relapsing experimental autoimmune encephalomyelitis (cr-eae) using thymoquinone - biomed 2009.

    PubMed

    Mohamed, Adel; Waris, H M; Ramadan, H; Quereshi, M; Kalra, J

    2009-01-01

    Axonal damage, demylination and inflammation of the central nervous system are the major pathological features of the human multiple sclerosis (MS). MS is thought to be due to abnormal T cell mediated immune response. Oxidative stress plays an important role in the advancement of MS. The management of oxidative stress by outlining central role of reduced glutathione. In our experiment we used Experimental autoimmune encephalomyelitis (EAE) animal model that mimic human MS and tested the effect of Thymoquinone (TQ), an oil constituent of Nigella Sativa also known as black seed. Thirty female mice of strain C57BL/6J and aged between 6 to 12 weeks were placed into 3 groups of 10 and were given Myelin Oligodendrocyte Glycoprotein (MOG) subcutaneously (SC) to induce EAE. Group A was the control group. Group B received MOG (SC) and TQ intraperiotoneally (IP) from day 1 till day 50. Group C received MOG (SC) and TQ (IP) on the appearance of first sign and symptoms of chronic relapsing EAE (CR-EAE). All Mice were examined daily for behavioral deficits and all euthanized and sacrificed on day 50. Preliminary result showed that TQ due to its antioxidant effect is almost 90% preventive and 50% curative in CR-EAE. This result could assist further studies on the mechanism of action of TQ in CR-EAE and explore the possibility of treating the human chronic relapsing multiple sclerosis phase. PMID:19369775

  20. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats.

    PubMed

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats ("EAE" group). 2- "N. sativa + EAE" group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- "EAE + N. sativa" group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE. PMID:26261504

  1. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin

    NASA Astrophysics Data System (ADS)

    Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan

    1992-03-01

    EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.

  2. High salt drives Th17 responses in experimental autoimmune encephalomyelitis without impacting myeloid dendritic cells.

    PubMed

    Jörg, Stefanie; Kissel, Jan; Manzel, Arndt; Kleinewietfeld, Markus; Haghikia, Aiden; Gold, Ralf; Müller, Dominik N; Linker, Ralf A

    2016-05-01

    Recently, we have shown that high dietary salt intake aggravates T helper cell (Th) 17 responses and neuroinflammation. Here, we employed in vitro assays for myeloid dendritic cell (mDC) maturation, DC cytokine production, T cell activation and ex vivo analyses in murine experimental autoimmune encephalomyelitis (EAE) to investigate whether the salt effect on Th17 cells is further mediated through DCs in vivo. In cell culture, an excess of 40mM sodium chloride did neither affect the generation, maturation nor the function of DCs, but, in different assays, significantly increased Th17 differentiation. During the initiation phase of MOG35-55 EAE, we did not observe altered DC frequencies or co-stimulatory capacities in lymphoid organs, while IL-17A production and Th17 cells in the spleen were significantly increased. Complementary ex vivo analyses of the spinal cord during the effector phase of EAE showed increased frequencies of Th17 cells, but did not reveal differences in phenotypes of CNS invading DCs. Finally, adaption of transgenic mice harboring a MOG specific T cell receptor to a high-salt diet led to aggravated clinical disease only after active immunization. Wild-type mice adapted to a high-salt diet in the effector phase of EAE, bypassing the priming phase of T cells, only displayed mildly aggravated disease. In summary, our data argue for a direct effect of NaCl on Th17 cells in neuroinflammation rather than an effect primarily exerted via DCs. These data may further fuel our understanding on the dietary impact on different immune cell subsets in autoimmune diseases, such as multiple sclerosis. PMID:26976739

  3. PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis.

    PubMed

    Schiffmann, Susanne; Weigert, Andreas; Männich, Julia; Eberle, Max; Birod, Kerstin; Häussler, Annett; Ferreiros, Nerea; Schreiber, Yannick; Kunkel, Hana; Grez, Manuel; Weichand, Benjamin; Brüne, Bernhard; Pfeilschifter, Waltraud; Nüsing, Rolf; Niederberger, Ellen; Grösch, Sabine; Scholich, Klaus; Geisslinger, Gerd

    2014-02-15

    Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated inflammatory autoimmune disease model of multiple sclerosis (MS). The inflammatory process is initiated by activation and proliferation of T cells and monocytes and by their subsequent migration into the central nervous system (CNS), where they induce demyelination and neurodegeneration. Prostaglandin E2 (PGE2) - synthesized by cyclooxygenase 2 (COX-2) - has both pro- and anti-inflammatory potential, which is translated via four different EP receptors. We hypothesized that PGE2 synthesized in the preclinical phase by peripheral immune cells exerts pro-inflammatory properties in the EAE model. To investigate this, we used a bone marrow transplantation model, which enables PGE2 synthesis or EP receptor expression to be blocked specifically in peripheral murine immune cells. Our results reveal that deletion of COX-2 or its EP4 receptor in bone marrow-derived cells leads to a significant delay in the onset of EAE. This effect is due to an impaired preclinical inflammatory process indicated by a reduced level of the T cell activating interleukin-6 (IL-6), reduced numbers of T cells and of the T cell secreted interleukin-17 (IL-17) in the blood of mice lacking COX-2 or EP4 in peripheral immune cells. Moreover, mice lacking COX-2 or EP4 in bone marrow-derived cells show a reduced expression of matrix metalloproteinase 9 (MMP9), which results in decreased infiltration of monocytes and T cells into the CNS. In conclusion, our data demonstrate that PGE2 synthesized by monocytes in the early preclinical phase promotes the development of EAE in an EP4 receptor dependent manner. PMID:24355567

  4. Functional and Pathogenic Differences of Th1 and Th17 Cells in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Domingues, Helena S.; Mues, Marsilius; Lassmann, Hans; Wekerle, Hartmut; Krishnamoorthy, Gurumoorthy

    2010-01-01

    Background There is consensus that experimental autoimmune encephalomyelitis (EAE) can be mediated by myelin specific T cells of Th1 as well as of Th17 phenotype, but the contribution of either subset to the pathogenic process has remained controversial. In this report, we compare functional differences and pathogenic potential of “monoclonal” T cell lines that recognize myelin oligodendrocyte glycoprotein (MOG) with the same transgenic TCR but are distinguished by an IFN-γ producing Th1-like and IL-17 producing Th17-like cytokine signature. Methods and Findings CD4+ T cell lines were derived from the transgenic mouse strain 2D2, which expresses a TCR recognizing MOG peptide 35–55 in the context of I-Ab. Adoptive transfer of Th1 cells into lymphopenic (Rag2−/−) recipients, predominantly induced “classic” paralytic EAE, whereas Th17 cells mediated “atypical” ataxic EAE in approximately 50% of the recipient animals. Combination of Th1 and Th17 cells potentiated the encephalitogenicity inducing classical EAE exclusively. Th1 and Th17 mediated EAE lesions differed in their composition but not in their localization within the CNS. While Th1 lesions contained IFN-γ, but no IL-17 producing T cells, the T cells in Th17 lesions showed plasticity, substantially converting to IFN-γ producing Th1-like cells. Th1 and Th17 cells differed drastically by their lytic potential. Th1 but not Th17 cells lysed autoantigen presenting astrocytes and fibroblasts in vitro in a contact-dependent manner. In contrast, Th17 cells acquired cytotoxic potential only after antigenic stimulation and conversion to IFN-γ producing Th1 phenotype. Conclusions Our data demonstrate that both Th1 and Th17 lineages possess the ability to induce CNS autoimmunity but can function with complementary as well as differential pathogenic mechanisms. We propose that Th17-like cells producing IL-17 are required for the generation of atypical EAE whereas IFN-γ producing Th1 cells induce

  5. Mesenchymal stem cells differentially modulate effector CD8+ T cell subsets and exacerbate experimental autoimmune encephalomyelitis.

    PubMed

    Glenn, Justin D; Smith, Matthew D; Calabresi, Peter A; Whartenby, Katharine A

    2014-10-01

    Mesenchymal stem cells (MSC) have emerged as a promising candidate for inflammatory suppression and disease amelioration, especially of neuro-inflammatory diseases such as multiple sclerosis (MS). Auto-reactive CD4+ and CD8+ T cells acquire pathogenic IFNγ-producing- (Type I) and IL-17A-producing- (Type 17) effector phenotypes in MS and its animal model experimental autoimmune encephalomyelitis (EAE). Although MSC have been extensively demonstrated to suppress pathogenic effector CD4+ T cells and CD4+ T cell-mediated EAE, surprisingly few studies have addressed their modulation of effector CD8+ T cells represented in MS or their impact on CD8+ T cell-mediated EAE. We find that MSC differentially modulate CD8+ T cell development depending on effector T cell subtype. MSC drive activated low-IFNγ producers toward an enhanced high-IFNγ Tc1-like phenotype but strongly inhibit the production of IL-17A and Tc17 polarization in vitro. These observations are underscored by differential MSC modulation of T cell activation, proliferation, and signature transcription factor up-regulation. In addition, effector CD8+ T cells co-cultured with MSC exhibited increased production of IL-2, a molecule known to enhance IFNγ, yet suppress IL-17A, production. Based on these in vitro effects on CD8+ T cells, we next evaluated their impact on the severity of EAE. To better evaluate CD8+ T cells, we immunized mice with MOG37-50 , which is a CD8-targeted epitope. Our results revealed a worsening of disease, consistent with their in vitro stimulation of Tc1 cells. These findings highlight the emerging duality of MSC in immune modulation and provide implications for their future use in immune-related diseases. PMID:24911892

  6. Acute disseminated encephalomyelitis in a case of autoimmune haemolytic anaemia: a rare association.

    PubMed

    Hajra, Adrija; Bandyopadhyay, Dhrubajyoti

    2016-01-01

    Acute disseminated encephalomyelitis (ADEM) is a demyelinating disease that may occur in a postvaccination condition or as a parainfectious encephalomyelitis. It is almost always monophasic. The underlying pathogenesis of ADEM may include perivascular inflammation, oedema and demyelination in the central nervous system. We present a case of a 15-year-old girl who was diagnosed as having ADEM, as well as detected to be a follow-up case of autoimmune haemolytic anaemia on steroid treatment. She presented with progressive weakness of the right lower limb for the past 4 days. MRI showed multiple subcortical lesions of varying size showing hyperintensities in T2 fluid-attenuated inversion recovery (FLAIR). The patient responded well to steroid therapy. No residual lesion was found on follow-up. Very few cases have been found with this rare association in the literature. PMID:27268491

  7. Hyperinducibility of Ia antigen on astrocytes correlates with strain-specific susceptibility to experimental autoimmune encephalomyelitis

    SciTech Connect

    Massa, P.T.; ter Meulen, V.; Fontana, A.

    1987-06-01

    In search of a phenotypic marker determining genetically controlled susceptibility to delayed-type hypersensitivity (DTH) reactions in the brain-in particular, experimental autoimmune encephalomyelitis (EAE)- the authors have compared the ..gamma..-interferon (IFN-..gamma..) induction of Ia molecules on astrocytes and macrophages from rat and mouse strains that are susceptible or resistant to this disease. They focused on Ia expression because DTH reactions to self or foreign antigens are largely mediated by lymphocytes restricted by class II (Ia) antigens of the major histocompatibility complex (MHC). The data demonstrate that Lewis (fully susceptible) and Brown Norway (BN) (fully resistant) rats are very different in that Lewis astrocytes express much higher levels of Ia than BN astrocytes. Similar data were obtained from an analysis of EAE-susceptible and -resistant mouse strains (SJL and BALB/c, respectively), which suggest that this phenomenon may be universal and not limited to only one mammalian species. At least one gene responsible for Ia hyperinduction is located outside the rat RT-1 or the mouse MHC locus. Animals congenic at the RT-1 or MHC locus of the resistant strain but with background genes of the susceptible strain exhibit intermediate levels of Ia compared to fully resistant and susceptible rodents, which fits well with the reduced EAE susceptibility of these congenic animals. Furthermore, hyperinduction of Ia is astrocyte specific, since peritoneal macrophages of susceptible and resistant strains exhibit identical profiles of Ia induction. Thus, astrocyte Ia hyperinducibility may be a major strain- and tissue-specific factor that contributes to Ia-restricted DTH reactions in the brain.

  8. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance.

    PubMed

    Álvarez-Sánchez, Nuria; Cruz-Chamorro, Ivan; López-González, Antonio; Utrilla, José C; Fernández-Santos, José M; Martínez-López, Alicia; Lardone, Patricia J; Guerrero, Juan M; Carrillo-Vico, Antonio

    2015-11-01

    Experimental autoimmune encephalomyelitis (EAE), the experimental model for multiple sclerosis (MS), is triggered by myelin-specific Th1 and Th17 cells. The immunomodulatory activities of melatonin have been shown to be beneficial under several conditions in which the immune system is exacerbated. Here, we sought to elucidate the basis of the melatonin protective effect on EAE by characterizing the T effector/regulatory responses, particularly those of the memory cell subsets. Melatonin was tested for its effect on Th1, Th17 and T regulatory (Treg) cells in the lymph nodes and CNS of immunodominant peptide of myelin oligodendrocyte glycoprotein (pMOG)-immunized and EAE mice, respectively. The capacity of melatonin to ameliorate EAE as well as modifying both T cell response and effector/regulatory balance was surveyed. T cell memory subsets and CD44, a key activation marker involved in the EAE pathogenesis, were also examined. Melatonin protected from EAE by decreasing peripheral and central Th1/Th17 responses and enhancing both the Treg frequency and IL-10 synthesis in the CNS. Melatonin reduced the T effector memory population and its pro-inflammatory response and regulated CD44 expression, which was decreased in T effector cells and increased in Tregs. The alterations in the T cell subpopulations were associated with a reduced mononuclear infiltration (CD4 and CD11b cells) of the melatonin-treated mice CNS. For the first time, we report that melatonin protects against EAE by controlling peripheral and central T effector/regulatory responses, effects that might be partially mediated by CD44. This immunomodulatory effect on EAE suggests that melatonin may represent an effective treatment option for MS. PMID:26130320

  9. Immunomodulation of Experimental Autoimmune Encephalomyelitis by Oral Administration of Copolymer 1

    NASA Astrophysics Data System (ADS)

    Teitelbaum, Dvora; Arnon, Ruth; Sela, Michael

    1999-03-01

    The activity of copolymer 1 (Cop 1, Copax-one, glatiramer acetate) in suppressing experimental autoimmune encephalomyelitis (EAE) and in the treatment of multiple sclerosis patients when injected parenterally has been extensively demonstrated. In the present study we addressed the question of whether Cop 1 can induce oral tolerance to EAE similar to myelin basic protein (MBP). We now have demonstrated that oral Cop 1 inhibited EAE induction in both rats and mice. Furthermore, oral Cop 1 was more effective than oral MBP in suppressing EAE in rats. The beneficial effect of oral Cop 1 was found to be associated with specific inhibition of the proliferative and Th1 cytokine secretion responses to MBP of spleen cells from Cop 1-fed mice and rats. In all of these assays, oral Cop 1 was more effective than oral MBP. The tolerance induced by Cop 1 could be adoptively transferred with spleen cells from Cop 1-fed animals. Furthermore, Cop 1-specific T cell lines, which inhibit EAE induction in vivo, could be isolated from the above spleen cells. These T cell lines secrete the anti-inflammatory cytokines IL-10 and transforming growth factor type β , but not IL-4, in response to both Cop 1 and MBP. In conclusion, oral Cop 1 has a beneficial effect on the development of EAE that is associated with down-regulation of T cell immune responses to MBP and is mediated by Th2/3 type regulatory cells. These results suggest that oral administration of Cop 1 may modulate multiple sclerosis as well.

  10. PROGESTERONE TREATMENT REDUCES DISEASE SEVERITY AND INCREASES IL-10 IN EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

    PubMed Central

    Yates, M.A; Li, Y.; Chlebeck, P.; Proctor, T.; Vandenbark, A.A.; Offner, H.

    2010-01-01

    Ovarian hormones, including progesterone, are known to have immunomodulatory and neuroprotective effects which may alter the disease course of experimental autoimmune encephalomyelitis (EAE). In the current study, we examined the treatment potential of progesterone beginning at the onset of EAE symptoms. Progesterone treated animals showed reduced peak disease scores and cumulative disease indices, and decreased inflammatory cytokine secretion (IL-2 and IL-17). In addition, increased production of IL-10 was accompanied by increased numbers of CD19+ cells and an increase in CD8+ cells. Decreased chemokine and chemokine receptor expression in the spinal cord also contributed to decreased lesions in the spinal cord. PMID:20153059

  11. Chrysin suppresses human CD14(+) monocyte-derived dendritic cells and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Kai; Ge, Zhenzhen; Xue, Zhenyi; Huang, Wenjing; Mei, Mei; Zhang, Qi; Li, Yan; Li, Wen; Zhang, Zhihui; Zhang, Zimu; Zhang, Lijuan; Wang, Huafeng; Cai, Jinzhen; Yao, Zhi; Zhang, Rongxin; Da, Yurong

    2015-11-15

    Chrysin, a naturally flavonoid of plant, has various biological activities. However, the effects of chrysin on dendritic cells (DCs) and multiple sclerosis (MS) remain unknown. In this study, we demonstrate that chrysin inhibited human DC differentiation, maturation, function and the expression of the Th1 cells polarizing cytokines IFN-γ and IL-12p35 form DCs. In addition, chrysin ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of MS, by reducing CNS inflammation and demyelination. Furthermore, chrysin suppressed DCs and Th1 cells in the EAE mice. Taken together, chrysin exerts anti-inflammatory and immune suppressive effects, and suggests a possible therapeutic application of chrysin in MS. PMID:26531689

  12. A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Shen, Ruile; Deng, Wenjing; Li, Chun; Zeng, Guangwei

    2015-02-01

    Multiple sclerosis (MS) is an autoimmune disease that is characterized by recurrent episodes of T cell-mediated immune attack on central nervous system (CNS) myelin, leading to axon damage and progressive disability. Icariin, a natural flavonoid glucoside isolated from plants in the Epimedium family, has been proved to have various pharmacological activities. However, the effect of icariin on experimental autoimmune encephalomyelitis (EAE) has never been investigated. In our current study, we found that icariin treatment leads to alleviated inflammatory infiltration and reduced blood-brain barrier leakage (BBB) of the paracellular tracer (FITC-dextran) in EAE. Mice that received icariin-treated T cells also displayed lower EAE scores and better clinical recovery from EAE. Icariin administration suppresses the frequencies of Th1 and Th17 cells in the splenocytes and lymph node cells. Icariin-treated mice also show lower frequency of Th17 cells in CNS mononuclear cells. The effect of icariin on Th1 and Th17 cell differentiation may be mediated via modulation of dendritic cells (DCs). Furthermore, icariin suppresses the proliferation of T cells and the differentiation of Th1 and Th17 cells in vitro. In conclusion, icariin ameliorates EAE and this was associated with suppressed Th1 and Th17 cell differentiation. PMID:25528476

  13. B-cell responses to myelin basic protein and its epitopes in autoimmune encephalomyelitis induced by Semple rabies vaccine.

    PubMed

    Piyasirisilp, S; Hemachudha, T; Griffin, D E

    1999-08-01

    Semple rabies vaccine is composed of rabies virus-infected sheep or goat brain inactivated with phenol and is administered daily after exposure for 14-21 days. Semple rabies vaccine-induced autoimmune encephalomyelitis (SAE) has clinico-pathological findings of demyelination similar to experimental autoimmune encephalomyelitis (EAE) caused by injection of central nervous system tissue or purified myelin proteins into experimental animals and frequently studied as a model for the human demyelinating disease, multiple sclerosis (MS). T-cell-mediated immune responses play a major role in induction of EAE, and antibody responses enhance disease severity. We studied the antibody responses to myelin basic protein (MBP) in 24 Thai patients with SAE and 77 control individuals to define the linear epitopes in human MBP that are encephalitogenic. Antibody levels were assessed by ELISA using native human MBP or synthetic MBP peptides of 20 amino acids. The major B-cell epitope was MBP61-80 and a minor epitope was MBP106-140 in SAE while in MS the major B-cell epitope is MBP84-96. MBP61-80-specific IgG1 and IgG3 levels were significantly higher in patients than controls while IgG2 and IgG4 were not. The data support the hypothesis that autoreactive Th1 cells induce SAE. The difference in B-cell epitope recognition may be due to differences in the genetic backgrounds of the populations studied or may reflect underlying differences in the pathogenesis of SAE and MS. PMID:10430042

  14. Dehydrodiconiferyl alcohol (DHCA) modulates the differentiation of Th17 and Th1 cells and suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Lee, Junghun; Choi, Jinyong; Lee, Wonwoo; Ko, Kyeongryang; Kim, Sunyoung

    2015-12-01

    Dehydrodiconiferyl alcohol (DHCA), originally isolated from the stems of Cucurbita moschata, has previously been shown to exhibit anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts (MEFs) (Lee et al., 2012). Here, we investigated whether synthetic DHCA could suppress the CD4 T helper 17 (Th17)-mediated production of the interleukin (IL)-17 protein. The results from RT-qPCR suggest that DHCA-mediated down-regulation of IL-17 occurred at the transcriptional level by suppressing the expression of RAR-related orphan receptor (ROR)γt, the master transcription factor involved in the differentiation of Th17 cells. Furthermore, such inhibition was mediated by the suppression of NF-κB activity. DHCA also inhibited the Th1-mediated production of interferon (IFN) γ by controlling the expression of a key transcription factor known to regulate the production of this cytokine, T-bet. In the mouse experimental autoimmune encephalomyelitis (EAE) model, DHCA showed significant therapeutic effects by inhibiting the infiltration of immune cells into the spinal cords, decreasing the differentiation of pathogenic Th17 and Th1 cells, suppressing the expression of various pro-inflammatory cytokines, and eventually ameliorating the clinical symptoms of EAE mice. Taken together, our data indicate that DHCA may be a potential candidate as an agent for the control of Th17 and Th1-mediated inflammatory diseases. PMID:26477735

  15. Galectin isolated from parasite inhibits remission of experimental autoimmune encephalomyelitis by up-regulating autoantibody

    PubMed Central

    Bing, S J; Ha, D; Ahn, G; Cho, J; Kim, A; Park, S K; Yu, H S; Jee, Y

    2015-01-01

    Recently, parasite infections or parasite-derived products have been suggested as a therapeutic strategy with suppression of immunopathology, which involves the induction of regulatory T cells or/and T helper type 2 (Th2) responses. In a recent study, researchers reported that constructed recombinant galectin (rTl-gal) isolated from an adult worm of the gastrointestinal nematode parasite Toxascaris leonina attenuated clinical symptoms of inflammatory bowel disease in mice treated with dextran sulphate sodium. Noting the role of rTl-gal in inflammatory disease, we attempted to investigate the effect of the parasite via its rTl-gal on neuronal autoimmune disease using experimental autoimmune encephalomyelitis (EAE), a mouse inflammatory and demyelinating autoimmune disease model of human multiple sclerosis. In this model, rTl-gal-treated experimental autoimmune encephalomyelitis (EAE) mice failed to recover after the peak of the disease, leading to persistent central nervous system (CNS) damage, such as demyelination, gliosis and axonal damage. Further, rTl-gal-treated EAE mice markedly increased the number of CD45R/B220+ B cells in both infiltrated inflammation and the periphery, along with the increased production of autoantibody [anti-myelin oligodendrocyte glycoprotein (MOG)35–55] in serum at chronic stage. Upon antigen restimulation, rTl-gal treatment affected the release of overall cytokines, especially interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Our results suggest that galectin isolated from a gastrointestinal parasite can deliver a harmful effect to EAE contrary to its beneficial effect on inflammatory bowel disease. PMID:25619397

  16. Continued Administration of Ciliary Neurotrophic Factor Protects Mice from Inflammatory Pathology in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle; Bourbonniere, Lyne; Zehntner, Simone; Guilhot, Florence; Herman, Alexandra; Guay-Giroux, Angélique; Antel, Jack P.; Owens, Trevor; Gauchat, Jean-François

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a survival and differentiation factor for neurons and oligodendrocytes, significantly ameliorates the clinical course of a mouse model of multiple sclerosis. In the acute phase of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein peptide 35-55, treatment with CNTF did not change the peripheral immune response but did reduce the number of perivascular infiltrates and T cells and the level of diffuse microglial activation in spinal cord. Blood brain barrier permeability was significantly reduced in CNTF-treated animals. Beneficial effects of CNTF did not persist after it was withdrawn. After cessation of CNTF treatment, inflammation and symptoms returned to control levels. However, slight but significantly higher numbers of oligodendrocytes, NG2-positive cells, axons, and neurons were observed in mice that had been treated with high concentrations of CNTF. Our results show that CNTF inhibits inflammation in the spinal cord, resulting in amelioration of the clinical course of experimental autoimmune encephalomyelitis during time of treatment. PMID:16877358

  17. Involvement of brain-derived neurotrophic factor (BDNF) in MP4-induced autoimmune encephalomyelitis.

    PubMed

    Javeri, Sita; Rodi, Michael; Tary-Lehmann, Magdalena; Lehmann, Paul V; Addicks, Klaus; Kuerten, Stefanie

    2010-11-01

    The role of brain-derived neurotrophic factor (BDNF) in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE) is still unclear. Here we investigate the clinical course, CNS histopathology and peripheral antigen-specific immunity in MP4-induced EAE of BDNF (-/+) mice. We demonstrate that these mice displayed less severe disease compared to BDNF (+/+) mice, reflected by decreased inflammation and demyelination. In correspondence to diminished frequencies of T and B cells in CNS infiltrates, the peripheral MP4-specific T(H)1/T(H)17 response was attenuated in BDNF (-/+), but not in wild-type animals. In contrast, immunization with ovalbumin triggered similar frequencies of IFN-γ- and IL-17-secreting T cells in both groups. The cytokine secretion and proliferative activity upon mitogen stimulation did not reveal any global defect of T cell function in BDNF (-/+) mice. By influencing the antigen-specific immune response in autoimmune encephalomyelitis, BDNF may support and maintain the disease in ways that go beyond its alleged neuroprotective role. PMID:20797911

  18. Combining genetic mapping with genome-wide expression in experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and candidate genes regulating autoimmunity

    PubMed Central

    Thessen Hedreul, Melanie; Möller, Steffen; Stridh, Pernilla; Gupta, Yask; Gillett, Alan; Daniel Beyeen, Amennai; Öckinger, Johan; Flytzani, Sevasti; Diez, Margarita; Olsson, Tomas; Jagodic, Maja

    2013-01-01

    The experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system commonly used to study multiple sclerosis (MS). We combined clinical EAE phenotypes with genome-wide expression profiling in spleens from 150 backcross rats between susceptible DA and resistant PVG rat strains during the chronic EAE phase. This enabled correlation of transcripts with genotypes, other transcripts and clinical EAE phenotypes and implicated potential genetic causes and pathways in EAE. We detected 2285 expression quantitative trait loci (eQTLs). Sixty out of 599 cis-eQTLs overlapped well-known EAE QTLs and constitute positional candidate genes, including Ifit1 (Eae7), Atg7 (Eae20-22), Klrc3 (eEae22) and Mfsd4 (Eae17). A trans-eQTL that overlaps Eae23a regulated a large number of small RNAs and implicates a master regulator of transcription. We defined several disease-correlated networks enriched for pathways involved in cell-mediated immunity. They include C-type lectins, G protein coupled receptors, mitogen-activated protein kinases, transmembrane proteins, suppressors of transcription (Jundp2 and Nr1d1) and STAT transcription factors (Stat4) involved in interferon signaling. The most significant network was enriched for T cell functions, similar to genetic findings in MS, and revealed both established and novel gene interactions. Transcripts in the network have been associated with T cell proliferation and differentiation, the TCR signaling and regulation of regulatory T cells. A number of network genes and their family members have been associated with MS and/or other autoimmune diseases. Combining disease and genome-wide expression phenotypes provides a link between disease risk genes and distinct molecular pathways that are dysregulated during chronic autoimmune inflammation. PMID:23900079

  19. What transgenic and knockout mouse models teach us about experimental autoimmune encephalomyelitis.

    PubMed

    Fazekas, G; Tabira, T

    2000-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system with presumed autoimmune etiology. Experimental autoimmune encephalomyelitis (EAE), an inducible autoimmune disease in laboratory animals, is a widely accepted animal model of MS. Although it is well known that EAE is induced by autoreactive CD4+ T cells specific for myelin antigens, the demyelination process is manifested as a result of complex interactions among encephalitogenic, regulatory and accessory cell populations and factors produced by these cells. The outcome of the disease depends on which components become dominant. Examination of these components using genetically manipulated transgenic or gene-disrupted animal models has proved to be very useful. Here we examine the main processes leading to the development of EAE. The participation of different lymphocyte populations such as T, B cells or NK cells, as well as regulatory molecules and cytokines in the induction and regulation of EAE is discussed in the light of transgenic and knockout animal experiments. These animal models clearly show that autoimmune processes are regulated in a complex way, and that a given factor in this regulation can have very different effects according to the given microenvironment in which it acts. PMID:11324684

  20. Thymoquinone inhibits the activation of NF-kappaB in the brain and spinal cord of experimental autoimmune encephalomyelitis.

    PubMed

    Mohamed, A; Afridi, D M; Garani, O; Tucci, M

    2005-01-01

    The present study was done to investigate the possible effects of thymoquinone on the inhibition of activation of NF-kappaB in experimental autoimmune encephalomyelitis in the rat model of multiple sclerosis. Experimental autoimmune encephalomyelitis was induced in Lewis rats by injecting myelin basic protein emulsified in complete freund's adjuvant. Several parameters including clinical signs, perivascular cuffing and infiltration of mononuclear cells in the brain and spinal cord, glutathione levels in the red blood cells and inhibition of the activation of NF-kappaB were determined to assess the degree of protection. The study showed that treatment of rats with thymoquinone 1 mg/kg/day concomitant to myelin basic protein and after the appearance of clinical signs resulted in preventing and ameliorating experimental autoimmune encephalomyelitis. Thymoquinone was able to counter perivascular cuffing and infiltration of mononuclear cells in the brain and spinal cord, increase the red blood cell glutathione, and inhibit the activation of NF-kappaB in the brain and spinal cord. These results were consistent with the clinical signs and suggest a beneficial effect of thymoquinone against experimental autoimmune encephalomyelitis in the rat model of multiple sclerosis. PMID:15850137

  1. Overexpression of the Dominant-Negative Form of Interferon Regulatory Factor 1 in Oligodendrocytes Protects against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Ren, Zhihua; Wang, Yan; Tao, Duan; Liebenson, David; Liggett, Thomas; Goswami, Rajendra; Clarke, Robert; Stefoski, Dusan

    2011-01-01

    Interferon regulatory factor 1 (IRF-1) is a transcription factor that has been implicated in the pathogenesis of the human autoimmune demyelinating disease multiple sclerosis (MS) and in its animal model, experimental autoimmune encephalomyelitis (EAE). The goal of the present study was to directly examine the role of IRF-1 in oligodendrocyte injury and inflammatory demyelination. For the purpose of this study, we generated a transgenic mouse line (CNP/dnIRF-1) that overexpresses the dominant-negative form of IRF-1 (dnIRF1) specifically in oligodendrocytes. CNP/dnIRF-1 mice exhibited no phenotypic abnormalities but displayed suppressed IRF-1 signaling in oligodendrocytes. The major finding of our study was that the CNP/dnIRF-1 mice, compared with the wild-type mice, were protected against EAE, a phenomenon associated with significant reduction of inflammatory demyelination and with oligodendrocyte and axonal preservation. The observed protection was related to suppressed IRF-1 signaling and impaired expression of immune and proapoptotic genes in oligodendrocytes. No significant differences in the peripheral immune responses between the wild-type and the CNP/dnIRF-1 mice were identified throughout the experiments. This study indicates that IRF-1 plays a critical role in the pathogenesis of EAE by mediating oligodendrocyte response to inflammation and injury. It also suggests that oligodendrocytes are actively involved in the neuroimmune network, and that exploring oligodendrocyte-related pathogenic mechanisms, in addition to the conventional immune-based ones, may have important therapeutic implications in MS. PMID:21653838

  2. Preventive and therapeutic effects of adenanthin on experimental autoimmune encephalomyelitis by inhibiting NF-κB signaling.

    PubMed

    Yin, Qian-Qian; Liu, Chuan-Xu; Wu, Ying-Li; Wu, Shao-Fang; Wang, Yan; Zhang, Xia; Hu, Xiao-Juan; Pu, Jian-Xin; Lu, Ying; Zhou, Hu-Chen; Wang, Hong-Lin; Nie, Hong; Sun, Han-Dong; Chen, Guo-Qiang

    2013-09-01

    Adenanthin, a diterpenoid isolated from the leaves of Isodon adenanthus, has been reported to possess antileukemic activity through targeting peroxiredoxin I/II. However, its other potential activities remain to be explored. Using myelin oligodendrocyte glycoprotein (MOG)35-55-induced experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, we report in this study that adenanthin exerts efficaciously preventive and therapeutic effects on EAE accompanied by significant restriction of infiltration of inflammatory cells and demyelination in CNS. Adenanthin-presented immunomodulatory effects on EAE are correlated with suppressed proliferation of MOG35-55-reactive T cells, decreased Th1 and Th17 cells, increased regulatory T cell populations, decreased production of serum proinflammatory cytokines, and reduced stimulatory capacity of APCs, which might be mediated by its inhibitory action on NF-κB signaling pathway. Our results propose that, as a novel NF-κB inhibitor, adenanthin has potent immunomodulatory activity for the treatment of multiple sclerosis and possibly other autoimmune disorders. PMID:23964105

  3. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis.

    PubMed

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-02-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood-brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139-151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  4. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis

    PubMed Central

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-01-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood–brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139–151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  5. Genetic resistance in experimental autoimmune encephalomyelitis. I. Analysis of the mechanism of LeR resistance using radiation chimeras

    SciTech Connect

    Pelfrey, C.M.; Waxman, F.J.; Whitacre, C.C. )

    1989-09-01

    Experimental autoimmune encephalomyelitis (EAE) is a cell-mediated autoimmune disease of the central nervous system that has been extensively studied in the rat. The Lewis rat is highly susceptible to the induction of EAE, while the Lewis resistant (LeR) rat is known to be resistant. In this paper, we demonstrate that the LeR rat, which was derived from the Lewis strain by inbreeding of fully resistant animals, is histocompatible with the Lewis strain. Radiation chimeras, a tool for distinguishing between immunologic and nonimmunologic resistance mechanisms, were utilized to analyze the cellular mechanisms involved in genetic resistance to EAE. By transplanting bone marrow cells from LeR rats into irradiated Lewis recipients, Lewis rats were rendered resistant to EAE induction. Likewise, transplanting Lewis bone marrow cells into irradiated LeR recipients rendered LeR rats susceptible. Mixed lymphoid cell chimeras using bone marrow, spleen, and thymus cells in Lewis recipient rats revealed individual lymphoid cell types and cell interactions that significantly affected the incidence and severity of EAE. Our results suggest that LeR resistance is mediated by hematopoietic/immune cells, and that cells located in the spleen appear to play a critical role in the resistance/susceptibility to EAE induction. Depletion of splenic adherent cells did not change the patterns of EAE resistance. In vivo cell mixing studies suggested the presence of a suppressor cell population in the LeR spleen preparations which exerted an inhibitory effect on Lewis autoimmune responses. Thus, the mechanism of LeR resistance appears to be different from that in other EAE-resistant animals.

  6. Soluble MOG35-55/I-Ab Dimers Ameliorate Experimental Autoimmune Encephalomyelitis by Reducing Encephalitogenic T Cells

    PubMed Central

    Gong, Yeli; Wang, Zhigang; Liang, Zhihui; Duan, Hongxia; Ouyang, Lichen; Yu, Qian; Xu, Zhe; Shen, Guanxin; Weng, Xiufang; Wu, Xiongwen

    2012-01-01

    The MOG35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice is a useful animal model to explore therapeutic approaches to T cell-mediated autoimmune diseases because the dominant T-cell epitope(s) have been defined. It is rational that antigen-specific immunosuppression can be induced by using MHC-peptide complexes as specific TCR ligand(s) that interact with autoreactive T cells in the absence of co-stimulation. In this study, a soluble divalent MOG35-55/I-Ab fusion protein (MOG35-55/I-Ab dimer) was constructed to specifically target the autoreactive CD4+ T cells in the EAE mouse. Intraperitoneal administration of the MOG35-55/I-Ab dimer significantly delayed and ameliorated EAE symptoms by reducing EAE-related inflammation in the mouse CNS and reducing encephalitogenic Th1 and Th17 cells in the peripheral lymphoid organs. We observed that dimer intervention at a concentration of 1.2 nM suppressed MOG35-55 peptide-specific 2D2 transgenic T cells (2D2 T cells) proliferation by over 90% after in vitro activation with MOG35-55 peptide. The mechanisms involved in this antigen-specific dimer-mediated suppression were found to be downregulated TCR-CD3 expression as well as upregulated expression of membrane-bound TGF-β (mTGF-β) and IL-10 suppressive cytokines by the autoreactive CD4+ T cells. Collectively, our data demonstrates that soluble divalent MHC class II molecules can abrogate pathogenic T cells in EAE. Furthermore, our data suggests that this strategy may provide an efficient and clinically useful option to treat autoimmune diseases. PMID:23077616

  7. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Stormanns, Eva R.; Recks, Mascha S.; Kuerten, Stefanie

    2015-01-01

    Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP) fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE) in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Limited availability of human tissue underscores the importance of animal models to study the pathology of MS. Methods Twenty-two female C57BL/6 (B6) mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE) was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE) and six months after onset of EAE (long-term EAE). The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT) of the spinal cord. Results B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. In addition, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND) as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG) model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation. Conclusions Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute

  8. Age-related changes in spleen of Dark Agouti rats immunized for experimental autoimmune encephalomyelitis.

    PubMed

    Djikić, Jasmina; Nacka-Aleksić, Mirjana; Pilipović, Ivan; Kosec, Duško; Arsenović-Ranin, Nevena; Stojić-Vukanić, Zorica; Dimitrijević, Mirjana; Leposavić, Gordana

    2015-01-15

    The study was undertaken considering age-related changes in susceptibility to experimental autoimmune encephalomyelitis (EAE) and a putative role of spleen in pathogenesis of this disease. The phenotypic and functional characteristics of T splenocytes were examined in young (3-month-old), middle-aged (8-month-old) and aged (26-month-old) Dark Agouti rats immunized for EAE with rat spinal cord in complete Freund's adjuvant. The rat susceptibility to EAE induction, as well as the number of activated CD4+CD134+ lymphocytes retrieved from their spinal cords progressively decreased with aging. To the contrary, in rats immunized for EAE the number of activated CD4+ splenocytes, i.e., CD4+CD134+, CD4+CD25+FoxP3- and CD4+CD40L+ cells, progressively increased with aging. This was associated with age-related increase in (i) CD4+ splenocyte surface expression of CD44, the molecule suggested to be involved in limiting emigration of encephalitogenic CD4+ cells from spleen into blood and (ii) frequency of regulatory T cells, including CD4+CD25+FoxP3+ cells, which are also shown to control encephalitogenic cell migration from spleen into the central nervous system. In favor of expansion of T-regulatory cell pool in aged rats was the greater concentration of IL-10 in unstimulated, Concanavalin A (ConA)- and myelin basic protein (MBP)-stimulated splenocyte cultures from aged rats compared with the corresponding cultures from young ones. Consistent with the age-related increase in the expression of CD44, which is shown to favor Th1 effector cell survival by interfering with CD95-mediated signaling, the frequency of apoptotic cells among CD4+ splenocytes, despite the greater frequency of CD95+ cells, was diminished in splenocyte cultures from aged compared with young rats. In addition, in control, as well as in ConA- and MBP-stimulated splenocyte cultures from aged rats, despite of impaired CD4+ cell proliferation, IFN-γ concentrations were greater than in corresponding cultures

  9. Gilt required for RTL550-CYS-MOG to treat experimental autoimmune encephalomyelitis.

    PubMed

    Burrows, Gregory G; Meza-Romero, Roberto; Huan, Jianya; Sinha, Sushmita; Mooney, Jeffrey L; Vandenbark, Arthur A; Offner, Halina

    2012-06-01

    MHC class II-derived recombinant T cell receptor ligands (RTLs) modulate the behavior of pathogenic T cells and can reverse clinical and histological signs of autoimmune disease in experimental autoimmune encephalomyelitis (EAE), experimental autoimmune uveitis (EAU) and collagen-induced arthritis (CIA), and are currently in clinical trials for treatment of multiple sclerosis (MS). To expand the utility of these rationally-designed biologics and explore their mechanism(s) of activity in vivo, we have engineered RTL constructs bearing cysteine-tethered antigenic peptides and demonstrate that the appropriate cysteine-tethered RTLs effectively treat EAE. The data presented here suggests that the mechanism by which antigen-specific tolerance induction by RTLs bearing cysteine-tethered antigenic peptides in vivo involves delivery of RTL/antigen to endosomal compartments for processing and re-presentation by full-length MHC class II, with RTLs bearing cysteine-tethered antigenic peptides requiring gamma-interferon-inducible lysosomal thiol-reductase (GILT) for therapeutic activity. PMID:22392628

  10. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis.

    PubMed

    Serafini, B; Columba-Cabezas, S; Di Rosa, F; Aloisi, F

    2000-12-01

    Dendritic cells (DCs) are thought to be key elements in the initiation and maintenance of autoimmune diseases. In this study, we sought evidence that DCs recruited to the central nervous system (CNS), a site that is primarily devoid of resident DCs, play a role in the effector phase and propagation of the immune response in experimental autoimmune encephalomyelitis (EAE). After immunization of SJL mice with proteolipid protein 139-151 peptide, process-bearing cells expressing the DC markers DEC-205 and CD11c appeared early in the spinal cord. During acute, chronic, and relapsing EAE, DEC-205(+) DCs expressing a lymphostimulatory phenotype (including the mature DC marker MIDC-8, major histocompatibility complex class II, CD40, and CD86 molecules) accumulated within the CNS inflammatory cell infiltrates. More prominent infiltration of the spinal cord parenchyma by mature DCs was observed in mice with relapsing disease. Macrophage inflammatory protein 3alpha, a chemokine active on DCs and lymphocytes, and its receptor CCR6 were up-regulated in the CNS during EAE. These findings suggest that intracerebral recruitment and maturation of DCs may be crucial in the local stimulation and maintenance of autoreactive immune responses, and that therapeutic strategies aimed at manipulating DC migration could be useful in the treatment of CNS autoimmune disorders. PMID:11106572

  11. Diversification and senescence of Foxp3+ regulatory T cells during experimental autoimmune encephalomyelitis.

    PubMed

    Tauro, Sharyn; Nguyen, Phuong; Li, Bofeng; Geiger, Terrence L

    2013-05-01

    The fate of Foxp3(+) regulatory T (Treg) cells responding during autoimmunity is not well defined. We observed a marked elevation in KLRG1(+) (where KLRG1 stands for killer cell lectin-like receptor G1) CNS-infiltrating Treg cells in experimental autoimmune encephalomyelitis (EAE), and assessed their origin and properties. KLRG1(+) Treg cells showed increased activation marker expression, Foxp3 and CD25 levels, and more rapid cell cycling than KLRG1(-) cells. KLRG1(-) Treg cells converted into KLRG1(+) cells and this was increased in autoimmune inflammation. Conversion was unidirectional; KLRG1(+) Treg cells did not revert to a KLRG1(-) state. KLRG1(+) but notKLRG1(-) Treg cells survived poorly, indicative of terminal differentiation. This was associated with diminished BCL2 and increased apoptosis of isolated cells. KLRG1 was also upregulated on iTreg cells after transfer and EAE induction or on iTreg cells developing spontaneously during EAE. KLRG1(+) Treg cells produced more IL-10 and had altered effector cytokine production compared with their KLRG1(-) counterparts. Despite their differences, KLRG1(+) and KLRG1(-) Treg cells proved similarly potent in suppressing EAE. KLRG1(+) and KLRG1(-) populations were phenotypically heterogeneous, with the extent and pattern of activation marker expression dependent both on cellular location and inflammation. Our results support an extensive diversification of Treg cells during EAE, and associate KLRG1 with altered Treg-cell function and senescence. PMID:23436224

  12. GILT REQUIRED FOR RTL550-CYS-MOG TO TREAT EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

    PubMed Central

    Burrows, Gregory G.; Meza-Romero, Roberto; Huan, Jianya; Sinha, Sushmita; Mooney, Jeffrey L.; Vandenbark, Arthur A.; Offner, Halina

    2012-01-01

    MHC class II-derived recombinant T cell receptor ligands (RTLs) modulate the behavior of pathogenic T cells and can reverse clinical and histological signs of autoimmune disease in experimental autoimmune encephalomyelitis (EAE), experimental autoimmune uveitis (EAU) and collagen-induced arthritis (CIA), and are currently in clinical trials for treatment of multiple sclerosis (MS). To expand the utility of these rationally-designed biologics and explore their mechanism(s) of activity in vivo, we have engineered RTL constructs bearing cysteine-tethered antigenic peptides and demonstrate that the appropriate cysteine-tethered RTLs effectively treat EAE. The data presented here suggests that the mechanism by which antigen-specific tolerance induction by RTLs bearing cysteine-tethered antigenic peptides in vivo involves delivery of RTL/antigen to endosomal compartments for processing and re-presentation by full-length MHC class II, with RTLs bearing cysteine-tethered antigenic peptides requiring gamma-interferon-inducible lysosomal thiol-reductase (GILT) for therapeutic activity. PMID:22392628

  13. The Adaptor Protein Rai/ShcC Promotes Astrocyte-Dependent Inflammation during Experimental Autoimmune Encephalomyelitis.

    PubMed

    Ulivieri, Cristina; Savino, Maria Teresa; Luccarini, Ilaria; Fanigliulo, Emanuela; Aldinucci, Alessandra; Bonechi, Elena; Benagiano, Marisa; Ortensi, Barbara; Pelicci, Giuliana; D'Elios, Mario Milco; Ballerini, Clara; Baldari, Cosima Tatiana

    2016-07-15

    Th17 cells have been casually associated to the pathogenesis of autoimmune disease. We have previously demonstrated that Rai/ShcC, a member of the Shc family of adaptor proteins, negatively regulates Th17 cell differentiation and lupus autoimmunity. In this study, we have investigated the pathogenic outcome of the Th17 bias associated with Rai deficiency on multiple sclerosis development, using the experimental autoimmune encephalomyelitis (EAE) mouse model. We found that, unexpectedly, EAE was less severe in Rai(-/-) mice compared with their wild-type counterparts despite an enhanced generation of myelin-specific Th17 cells that infiltrated into the CNS. Nevertheless, when adoptively transferred into immunodeficient Rai(+/+) mice, these cells promoted a more severe disease compared with wild-type encephalitogenic Th17 cells. This paradoxical phenotype was caused by a dampened inflammatory response of astrocytes, which were found to express Rai, to IL-17. The results provide evidence that Rai plays opposite roles in Th17 cell differentiation and astrocyte activation, with the latter dominant over the former in EAE, highlighting this adaptor as a potential novel target for the therapy of multiple sclerosis. PMID:27288534

  14. Co-delivery of autoantigen and b7 pathway modulators suppresses experimental autoimmune encephalomyelitis.

    PubMed

    Northrup, Laura; Sestak, Joshua O; Sullivan, Bradley P; Thati, Sharadvi; Hartwell, Brittany L; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory

    2014-11-01

    Autoimmune diseases such as multiple sclerosis (MS) are characterized by the breakdown of immune tolerance to autoantigens. Targeting surface receptors on immune cells offers a unique strategy for reprogramming immune responses in autoimmune diseases. The B7 signaling pathway was targeted using adaptations of soluble antigen array (SAgA) technology achieved by covalently linking B7-binding peptides and disease causing autoantigen (proteolipid peptide (PLP)) to hyaluronic acid (HA). We hypothesized that co-delivery of a B7-binding peptide and autoantigen would suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Three independent B7-targeted SAgAs were created containing peptides to either inhibit or potentially stimulate the B7 signaling pathway. Surprisingly, all SAgAs were found to suppress EAE disease symptoms. Altered cytokine expression was observed in primary splenocytes isolated from SAgA-treated mice, indicating that SAgAs with different B7-binding peptides may suppress EAE through different immunological mechanisms. This antigen-specific immunotherapy using SAgAs can successfully suppress EAE through co-delivery of autoantigen and peptides targeting with the B7 signaling pathway. PMID:25297853

  15. Chaperone Activity of Small Heat Shock Proteins Underlies Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis*

    PubMed Central

    Kurnellas, Michael P.; Brownell, Sara E.; Su, Leon; Malkovskiy, Andrey V.; Rajadas, Jayakumar; Dolganov, Gregory; Chopra, Sidharth; Schoolnik, Gary K.; Sobel, Raymond A.; Webster, Jonathan; Ousman, Shalina S.; Becker, Rachel A.; Steinman, Lawrence; Rothbard, Jonathan B.

    2012-01-01

    To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73–92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions. PMID:22955287

  16. Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of V alpha 14 NK T cells.

    PubMed

    Pál, E; Tabira, T; Kawano, T; Taniguchi, M; Miyake, S; Yamamura, T

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a Th1 cell-mediated autoimmune disease that can be protected against by stimulating regulatory cells. Here we examined whether EAE can be purposefully modulated by stimulating Valpha14 NK T cells with the CD1d-restricted ligand alpha-galactosylceramide (alpha-GC). EAE induced in wild-type C57BL/6 (B6) mice was not appreciably altered by injection of alpha-GC. However, EAE induced in IL-4 knockout mice and IFN-gamma knockout mice was enhanced or suppressed by alpha-GC, respectively. This indicates that the IL-4 and IFN-gamma triggered by alpha-GC may play an inhibitory or enhancing role in the regulation of EAE. We next studied whether NK T cells of wild-type mice may switch their Th0-like phenotype toward Th1 or Th2. Notably, in the presence of blocking B7.2 (CD86) mAb, alpha-GC stimulation could bias the cytokine profile of NK T cells toward Th2, whereas presentation of alpha-GC by CD40-activated APC induced a Th1 shift of NK T cells. Furthermore, transfer of the alpha-GC-pulsed APC preparations suppressed or enhanced EAE according to their ability to polarize NK T cells toward Th2 or Th1 in vitro. These results have important implications for understanding the role of NK T cells in autoimmunity and for designing a therapeutic strategy targeting NK T cells. PMID:11123351

  17. The neonatal CNS is not conducive for encephalitogenic Th1 T cells and B cells during experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Multiple sclerosis (MS) is thought to be a CD4+ T cell mediated autoimmune demyelinating disease of the central nervous system (CNS) that is rarely diagnosed during infancy. Cellular and molecular mechanisms that confer disease resistance in this age group are unknown. We tested the hypothesis that a differential composition of immune cells within the CNS modulates age-associated susceptibility to CNS autoimmune disease. C57BL/6 mice younger than eight weeks were resistant to experimental autoimmune encephalomyelitis (EAE) following active immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p) 35–55. Neonates also developed milder EAE after transfer of adult encephalitogenic T cells primed by adult or neonate antigen presenting cells (APC). There was a significant increase in CD45+ hematopoietic immune cells and CD45+ high side scatter granulocytes in the CNS of adults, but not in neonates. Within the CD45+ immune cell compartment of adults, the accumulation of CD4+ T cells, Gr-1+ and Gr-1- monocytes and CD11c+ dendritic cells (DC) was identified. A significantly greater percentage of CD19+ B cells in the adult CNS expressed MHC II than neonate CNS B cells. Only in the adult CNS could IFNγ transcripts be detected 10 days post immunization for EAE. IFNγ is highly expressed by adult donor CD4+ T cells that are adoptively transferred but not by transferred neonate donor cells. In contrast, IL-17 transcripts could not be detected in adult or neonate CNS in this EAE model, and neither adult nor neonate donor CD4+ T cells expressed IL-17 at the time of adoptive transfer. PMID:23705890

  18. Pertussis toxin promotes relapsing-remitting experimental autoimmune encephalomyelitis in Lewis rats.

    PubMed

    Mohajeri, Maryam; Sadeghizadeh, Majid; Javan, Mohammad

    2015-12-15

    Animal models simulate different aspects of human diseases and are essential to get a better understanding of the disease, studying treatments and producing new drugs. Experimental autoimmune encephalomyelitis (EAE) is a preferred model in multiple sclerosis research. Common EAE model in Lewis rats is induced using MBP peptide as a myelin antigen which results in a monophasic disease course. In the present study, EAE was induced in Lewis rats by homogenized guinea pig spinal cord along with or without pertussis toxin (PT). When PT was used, EAE turned into remitting-relapsing form and worsen the clinical symptoms. Higher inflammation and oxidative stress marker gene expression was observed when PT was administrated. PMID:26616879

  19. C-C chemokine receptor type 4 antagonist Compound 22 ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Moriguchi, Kota; Miyamoto, Katsuichi; Tanaka, Noriko; Ueno, Rino; Nakayama, Takashi; Yoshie, Osamu; Kusunoki, Susumu

    2016-02-15

    Chemokines and chemokine receptors play important roles in the immune response. We previously reported the pathogenic role of C-C chemokine receptor type 4 (CCR4) in experimental autoimmune encephalomyelitis (EAE). Here, we examined whether CCR4 antagonism modulates the disease course of EAE. Wild-type and CCR4-knockout mice were induced EAE and were administered Compound 22, an antagonist of CCR4. Compound 22 significantly ameliorated the severity of EAE in wild-type mice, but not in the CCR4-knockout mice. Compound 22 inhibited Th1 and Th17 polarization of antigen-induced T-cell responses. Therefore, CCR4 antagonists might be potential therapeutic agents for multiple sclerosis. PMID:26857495

  20. Damage to the Optic Chiasm in Myelin Oligodendrocyte Glycoprotein–Experimental Autoimmune Encephalomyelitis Mice

    PubMed Central

    Herrera, Sheryl L; Palmer, Vanessa L; Whittaker, Heather; Smith, Blair Cardigan; Kim, Annie; Schellenberg, Angela E; Thiessen, Jonathan D; Buist, Richard; Del Bigio, Marc R; Martin, Melanie

    2014-01-01

    Optic chiasm lesions in myelin oligodendrocyte glycoprotein (MOG)–experimental autoimmune encephalomyelitis (EAE) mice were characterized using magnetic resonance imaging (MRI) and validated using electron microscopy (EM). MR images were collected from 3 days after induction to remission, approximately 20 days after induction. Hematoxylin and eosin, solochrome cyanin–stained sections, and EM images were obtained from the optic chiasms of some mice approximately 4 days after disease onset when their scores were thought to be the highest. T2-weighted imaging and apparent diffusion coefficient map hyperintensities corresponded to abnormalities in the optic chiasms of EAE mice. Mixed inflammation was concentrated at the lateral surface. Degeneration of oligodendrocytes, myelin, and early axonal damage were also apparent. A marked increase in chiasm thickness was observed. T2-weighted and diffusion-weighted MRI can detect abnormalities in the optic chiasms of MOG-EAE mice. MRI is an important method in the study of this model toward understanding optic neuritis. PMID:25520558

  1. Control of Experimental Autoimmune Encephalomyelitis by CD4+ Suppressor T Cells: Peripheral versus in situ Immunoregulation

    PubMed Central

    Bynoe, Margaret S.; Bonorino, Paula; Viret, Christophe

    2007-01-01

    The pathogenesis of experimental autoimmune encephalomyelitis (EAE) can be efficiently kept under control by specialized subsets of CD4+ T lymphocytes able to negatively regulate the function of T cells with encephalitogenic potential. A number of observations support a role for such suppressor T cells in controlling early phases of disease development at the level of peripheral lymphoid organs but there is also evidence suggesting immunoregulation within the central nervous system (CNS) microenvironment itself. This review evaluates the sites of regulation based on available data from distinct experimental models. We then discuss these aspects with reference to suppressor CD4+ T cells induced through the epicutaneous application of pure CNS antigens that confer long term protection against EAE. Finally, we give an overview of genes recently discovered to be important in regulation of the immune system that may also prove to be key players in the modulation of EAE and MS. PMID:17900707

  2. IL-12Rβ2 has a protective role in relapsing-remitting experimental autoimmune encephalomyelitis

    PubMed Central

    Xie, Chong; Ciric, Bogoljub; Yu, Shuo; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2016-01-01

    IL-12Rβ2 participates in the receptors of IL-12 and IL-35, two cytokines that are involved in a variety of immune responses. In this study we evaluate the role of IL-12Rβ2 in relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE). We found that the IL-12Rβ2 deficient SJL/J EAE mice presented more severe symptoms and had more frequent, more severe relapses compared with wild type controls. IL-12Rβ2 deficient EAE mice also had more infiltrating mononuclear cells in the central nervous system, as well as higher splenic proliferative capacity and decreased IFN-γ production at the periphery. These findings suggest a protective role of IL-12Rβ2 in RR-EAE, an animal model of RR-MS, the most prevalent form of MS. PMID:26857496

  3. Microglia response in retina and optic nerve in chronic experimental autoimmune encephalomyelitis.

    PubMed

    Horstmann, Lioba; Kuehn, Sandra; Pedreiturria, Xiomara; Haak, Kathrin; Pfarrer, Christiane; Dick, H Burkhard; Kleiter, Ingo; Joachim, Stephanie C

    2016-09-15

    Experimental autoimmune encephalomyelitis (EAE) is a common rodent model for multiple sclerosis (MS). Yet, the long-term consequences for retina and optic nerve (ON) are unknown. C57BL/6 mice were immunized with an encephalitogenic peptide (MOG35-55) and the controls received the carriers or PBS. Clinical symptoms started at day 8, peaked at day 14, and were prevalent until day 60. They correlated with infiltration and demyelination of the ON. In MOG-immunized animals more microglia cells in the ONs and retinas were detected at day 60. Additionally, retinal ganglion cell (RGC) loss was combined with an increased macroglia response. At this late stage, an increased number of microglia was associated with axonal damage in the ON and in the retina with RGC loss. Whether glial activation contributes to repair mechanisms or adversely affects the number of RGCs is currently unclear. PMID:27609273

  4. Prazosin, an alpha 1-adrenergic receptor antagonist, suppresses experimental autoimmune encephalomyelitis in the Lewis rat.

    PubMed Central

    Brosnan, C F; Goldmuntz, E A; Cammer, W; Factor, S M; Bloom, B R; Norton, W T

    1985-01-01

    Prazosin, an antagonist of alpha 1-adrenergic receptors, has been found to suppress the clinical and histological expression of experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. Suppression was more significant in females than in males and was a dose-dependent phenomenon. Analysis of the effect of other adrenergic receptor antagonists supports the conclusion that the suppressive effect of prazosin is a consequence of blockade of the alpha 1-receptor since treatment with either the alpha 2-antagonist yohimbine or the beta-antagonist propranolol exacerbated the disease, whereas treatment with the long-acting mixed alpha 1/alpha 2-antagonist phenoxybenzamine had some suppressive activity. Treatment with prazosin was also able to suppress clinical and histological signs of EAE in animals sensitized by adoptive transfer with activated spleen or lymph node cells. Whether prazosin acts through altering vascular permeability or the immune response, or both, remains to be determined. Images PMID:2994053

  5. Damage to the optic chiasm in myelin oligodendrocyte glycoprotein-experimental autoimmune encephalomyelitis mice.

    PubMed

    Herrera, Sheryl L; Palmer, Vanessa L; Whittaker, Heather; Smith, Blair Cardigan; Kim, Annie; Schellenberg, Angela E; Thiessen, Jonathan D; Buist, Richard; Del Bigio, Marc R; Martin, Melanie

    2014-01-01

    Optic chiasm lesions in myelin oligodendrocyte glycoprotein (MOG)-experimental autoimmune encephalomyelitis (EAE) mice were characterized using magnetic resonance imaging (MRI) and validated using electron microscopy (EM). MR images were collected from 3 days after induction to remission, approximately 20 days after induction. Hematoxylin and eosin, solochrome cyanin-stained sections, and EM images were obtained from the optic chiasms of some mice approximately 4 days after disease onset when their scores were thought to be the highest. T2-weighted imaging and apparent diffusion coefficient map hyperintensities corresponded to abnormalities in the optic chiasms of EAE mice. Mixed inflammation was concentrated at the lateral surface. Degeneration of oligodendrocytes, myelin, and early axonal damage were also apparent. A marked increase in chiasm thickness was observed. T2-weighted and diffusion-weighted MRI can detect abnormalities in the optic chiasms of MOG-EAE mice. MRI is an important method in the study of this model toward understanding optic neuritis. PMID:25520558

  6. Myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis is ameliorated in interleukin-32 alpha transgenic mice.

    PubMed

    Yun, Jaesuk; Gu, Sun Mi; Yun, Hyung Mun; Son, Dong Ju; Park, Mi Hee; Lee, Moon Soon; Hong, Jin Tae

    2015-12-01

    Multiple sclerosis (MS), also known as disseminated sclerosis or encephalomyelitis disseminate, is an inflammatory disease in which myelin in the spinal cord and brain are damaged. IL-32α is known as a critical molecule in the pathophysiology of immune-mediated chronic inflammatory disease such as rheumatoid arthritis, chronic pulmonary disease, and cancers. However, the role of IL-32α on spinal cord injuries and demyelination is poorly understood. Recently, we reported that the release of proinflammatory cytokines were reduced in IL-32α-overexpressing transgenic mice. In this study, we investigated whether IL-32α plays a role on MS using experimental autoimmune encephalomyelitis (EAE), an experimental mouse model of MS, in human IL-32α Tg mice. The Tg mice were immunized with MOG35-55 suspended in CFA emulsion followed by pertussis toxin, and then EAE paralysis of mice was scored. We observed that the paralytic severity and neuropathology of EAE in IL-32α Tg mice were significantly decreased compared with that of non-Tg mice. The immune cells infiltration, astrocytes/microglials activation, and pro-inflammatory cytokines (IL-1β and IL-6) levels in spinal cord were suppressed in IL-32α Tg mice. Furthermore, NG2 and O4 were decreased in IL-32α Tg mice, indicating that spinal cord damaging was suppressed. In addition, in vitro assay also revealed that IL-32α has a preventive role against Con A stimulation which is evidenced by decrease in T cell proliferation and inflammatory cytokine levels in IL-32α overexpressed Jurkat cell. Taken together, our findings suggested that IL-32α may play a protective role in EAE by suppressing neuroinflammation in spinal cord. PMID:26564962

  7. Prior regular exercise improves clinical outcome and reduces demyelination and axonal injury in experimental autoimmune encephalomyelitis.

    PubMed

    Bernardes, Danielle; Brambilla, Roberta; Bracchi-Ricard, Valerie; Karmally, Shaffiat; Dellarole, Anna; Carvalho-Tavares, Juliana; Bethea, John R

    2016-01-01

    Although previous studies have shown that forced exercise modulates inflammation and is therapeutic acutely for experimental autoimmune encephalomyelitis (EAE), the long-term benefits have not been evaluated. In this study, we investigated the effects of preconditioning exercise on the clinical and pathological progression of EAE. Female C57BL/6 mice were randomly assigned to either an exercised (Ex) or unexercised (UEx) group and all of them were induced for EAE. Mice in the Ex group had an attenuated clinical score relative to UEx mice throughout the study. At 42 dpi, flow cytometry analysis showed a significant reduction in B cells, CD4(+) T cells, and CD8(+) T cells infiltrating into the spinal cord in the Ex group compared to UEx. Ex mice also had a significant reduction in myelin damage with a corresponding increase in proteolipid protein expression. Finally, Ex mice had a significant reduction in axonal damage. Collectively, our study demonstrates for the first time that a prolonged and forced preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. In this study, we show that a program of 6 weeks of preconditioning exercise promoted a significant reduction of cells infiltrating into the spinal cord, a significant reduction in myelin damage and a significant reduction in axonal damage in experimental autoimmune encephalomyelitis (EAE) mice at 42 dpi. Collectively, our study demonstrates for the first time that a preconditioning protocol of exercise improves clinical outcome and attenuates pathological hallmarks of EAE at chronic disease. PMID:26364732

  8. 18β-glycyrrhetinic acid suppresses experimental autoimmune encephalomyelitis through inhibition of microglia activation and promotion of remyelination.

    PubMed

    Zhou, Jieru; Cai, Wei; Jin, Min; Xu, Jingwei; Wang, Yanan; Xiao, Yichuan; Hao, Li; Wang, Bei; Zhang, Yanyun; Han, Jie; Huang, Rui

    2015-01-01

    Microglia are intrinsic immune cells in the central nervous system (CNS). The under controlled microglia activation plays important roles in inflammatory demyelination diseases, such as multiple sclerosis (MS). However, the means to modulate microglia activation as a therapeutic modality and the underlying mechanisms remain elusive. Here we show that administration of 18β-glycyrrhetinic acid (GRA), by using both preventive and therapeutic treatment protocols, significantly suppresses disease severity of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. The treatment effect of GRA on EAE is attributed to its regulatory effect on microglia. GRA-modulated microglia significantly decreased pro-inflammatory profile in the CNS through suppression of MAPK signal pathway. The ameliorated CNS pro-inflammatory profile prevented the recruitment of encephalitogenic T cells into the CNS, which alleviated inflammation-induced demyelination. In addition, GRA treatment promoted remyelination in the CNS of EAE mice. The induced remyelination can be mediated by the overcome of inflammation-induced blockade of brain-derived neurotrophic factor expression in microglia, as well as enhancing oligodendrocyte precursor cell proliferation. Collectively, our results demonstrate that GRA-modulated microglia suppresses EAE through inhibiting microglia activation-mediated CNS inflammation, and promoting neuroprotective effect of microglia, which represents a potential therapeutic strategy for MS and maybe other neuroinflammatory diseases associated with microglia activation. PMID:26329786

  9. Central nervous system infiltrates are characterized by features of ongoing B cell-related immune activity in MP4-induced experimental autoimmune encephalomyelitis.

    PubMed

    Batoulis, Helena; Wunsch, Marie; Birkenheier, Johannes; Rottlaender, Andrea; Gorboulev, Valentin; Kuerten, Stefanie

    2015-05-01

    In multiple sclerosis (MS) lymphoid follicle-like aggregates have been reported in the meninges of patients. Here we investigated the functional relevance of B cell infiltration into the central nervous system (CNS) in MP4-induced experimental autoimmune encephalomyelitis (EAE), a B cell-dependent mouse model of MS. In chronic EAE, B cell aggregates were characterized by the presence of CXCL13(+) and germinal center CD10(+) B cells. Germline transcripts were expressed in the CNS and particularly related to TH17-associated isotypes. We also observed B cells with restricted VH gene usage that differed from clones found in the spleen. Finally, we detected CNS-restricted spreading of the antigen-specific B cell response towards a myelin and a neuronal autoantigen. These data imply the development of autonomous B cell-mediated autoimmunity in the CNS in EAE - a concept that might also apply to MS itself. PMID:25796192

  10. Preferential Recruitment of Neutrophils into the Cerebellum and Brainstem Contributes to the Atypical Experimental Autoimmune Encephalomyelitis Phenotype.

    PubMed

    Liu, Yudong; Holdbrooks, Andrew T; Meares, Gordon P; Buckley, Jessica A; Benveniste, Etty N; Qin, Hongwei

    2015-08-01

    The JAK/STAT pathway is critical for development, regulation, and termination of immune responses, and dysregulation of the JAK/STAT pathway, that is, hyperactivation, has pathological implications in autoimmune and neuroinflammatory diseases. Suppressor of cytokine signaling 3 (SOCS3) regulates STAT3 activation in response to cytokines that play important roles in the pathogenesis of neuroinflammatory diseases, including IL-6 and IL-23. We previously demonstrated that myeloid lineage-specific deletion of SOCS3 resulted in a severe, nonresolving atypical form of experimental autoimmune encephalomyelitis (EAE), characterized by lesions, inflammatory infiltrates, elevated STAT activation, and elevated cytokine and chemokine expression in the cerebellum. Clinically, these mice exhibit ataxia and tremors. In this study, we provide a detailed analysis of this model, demonstrating that the atypical EAE observed in LysMCre-SOCS3(fl/fl) mice is characterized by extensive neutrophil infiltration into the cerebellum and brainstem, increased inducible NO synthase levels in the cerebellum and brainstem, and prominent axonal damage. Importantly, infiltrating SOCS3-deficient neutrophils produce high levels of CXCL2, CCL2, CXCL10, NO, TNF-α, and IL-1β. Kinetic studies demonstrate that neutrophil infiltration into the cerebellum and brainstem of LysMCre-SOCS3(fl/fl) mice closely correlates with atypical EAE clinical symptoms. Ab-mediated depletion of neutrophils converts the atypical phenotype to the classical EAE phenotype and, in some cases, a mixed atypical/classical phenotype. Blocking CXCR2 signaling ameliorates atypical EAE development by reducing neutrophil infiltration into the cerebellum/brainstem. Thus, neutrophils lacking SOCS3 display elevated STAT3 activation and expression of proinflammatory mediators and play a critical role in the development of atypical EAE. PMID:26085687

  11. Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells.

    PubMed

    Korniotis, Sarantis; Gras, Christophe; Letscher, Hélène; Montandon, Ruddy; Mégret, Jérôme; Siegert, Stefanie; Ezine, Sophie; Fallon, Padraic G; Luther, Sanjiv A; Fillatreau, Simon; Zavala, Flora

    2016-01-01

    The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases. PMID:27396388

  12. Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis.

    PubMed

    Shimojima, Chiaki; Takeuchi, Hideyuki; Jin, Shijie; Parajuli, Bijay; Hattori, Hisashi; Suzumura, Akio; Hibi, Hideharu; Ueda, Minoru; Yamamoto, Akihito

    2016-05-15

    Multiple sclerosis (MS) is a major neuroinflammatory demyelinating disease of the CNS. Current MS treatments, including immunomodulators and immunosuppressants, do not result in complete remission. Stem cells from human exfoliated deciduous teeth (SHEDs) are mesenchymal stem cells derived from dental pulp. Both SHED and SHED-conditioned medium (SHED-CM) exhibit immunomodulatory and regenerative activities and have the potential to treat various diseases. In this study, we investigated the efficacy of SHED-CM in treating experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. EAE mice treated with a single injection of SHED-CM exhibited significantly improved disease scores, reduced demyelination and axonal injury, and reduced inflammatory cell infiltration and proinflammatory cytokine expression in the spinal cord, which was associated with a shift in the microglia/macrophage phenotype from M1 to M2. SHED-CM also inhibited the proliferation of myelin oligodendrocyte glycoprotein-specific CD4(+) T cells, as well as their production of proinflammatory cytokines in vitro. Treatment of EAE mice with the secreted ectodomain of sialic acid-binding Ig-like lectin-9, a major component of SHED-CM, recapitulated the effects of SHED-CM treatment. Our data suggest that SHED-CM and secreted ectodomain of sialic acid-binding Ig-like lectin-9 may be novel therapeutic treatments for autoimmune diseases, such as MS. PMID:27053763

  13. The primate autoimmune encephalomyelitis model; a bridge between mouse and man

    PubMed Central

    ‘t Hart, Bert A; van Kooyk, Yvette; Geurts, Jeroen J G; Gran, Bruno

    2015-01-01

    Introduction Multiple sclerosis (MS) is an enigmatic autoimmune-driven inflammatory/demyelinating disease of the human central nervous system (CNS), affecting brain, spinal cord, and optic nerves. The cause of the disease is not known and the number of effective treatments is limited. Despite some clear successes, translation of immunological discoveries in the mouse experimental autoimmune encephalomyelitis (EAE) model into effective therapies for MS patients has been difficult. This translation gap between MS and its elected EAE animal model reflects the phylogenetic distance between humans and their experimental counterpart, the inbred/specific pathogen free (SPF) laboratory mouse. Objective Here, we discuss that important new insights can be obtained into the mechanistic basis of the therapy paradox from the study of nonhuman primate EAE (NHP-EAE) models, the well-validated EAE model in common marmosets (Callithrix jacchus) in particular. Interpretation Data presented in this review demonstrate that due to a considerable immunological and pathological overlap with mouse EAE on one side and MS on the other, the NHP EAE model can help us bridge the translation gap. PMID:26000330

  14. Critical role of activation induced cytidine deaminase in experimental autoimmune encephalomyelitis.

    PubMed

    Sun, Yonglian; Peng, Ivan; Senger, Kate; Hamidzadeh, Kajal; Reichelt, Mike; Baca, Miriam; Yeh, Ronald; Lorenzo, Maria N; Sebrell, Andrew; Dela Cruz, Christopher; Tam, Lucinda; Corpuz, Racquel; Wu, Jiansheng; Sai, Tao; Roose-Girma, Merone; Warming, Søren; Balazs, Mercedesz; Gonzalez, Lino C; Caplazi, Patrick; Martin, Flavius; Devoss, Jason; Zarrin, Ali A

    2013-03-01

    Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder caused by chronic inflammation and demyelination within the central nervous system (CNS). Clinical studies in MS patients have demonstrated efficacy with B cell targeted therapies such as anti-CD20. However, the exact role that B cells play in the disease process is unclear. Activation Induced cytidine deaminase (AID) is an essential enzyme for the processes of antibody affinity maturation and isotype switching. To evaluate the impact of affinity maturation and isotype switching, we have interrogated the effect of AID-deficiency in an animal model of MS. Here, we show that the severity of experimental autoimmune encephalomyelitis (EAE) induced by the extracellular domain of human myelin oligodendrocyte glycoprotein (MOG1-125) is significantly reduced in Aicda deficient mice, which, unlike wild-type mice, lack serum IgG to myelin associated antigens. MOG specific T cell responses are comparable between wild-type and Aicda knockout mice suggesting an active role for antigen experienced B cells. Thus affinity maturation and/or class switching are critical processes in the pathogenesis of EAE. PMID:23167594

  15. Critical role of activation induced cytidine deaminase in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    2013-01-01

    Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder caused by chronic inflammation and demyelination within the central nervous system (CNS). Clinical studies in MS patients have demonstrated efficacy with B cell targeted therapies such as anti-CD20. However, the exact role that B cells play in the disease process is unclear. Activation Induced cytidine deaminase (AID) is an essential enzyme for the processes of antibody affinity maturation and isotype switching. To evaluate the impact of affinity maturation and isotype switching, we have interrogated the effect of AID-deficiency in an animal model of MS. Here, we show that the severity of experimental autoimmune encephalomyelitis (EAE) induced by the extracellular domain of human myelin oligodendrocyte glycoprotein (MOG1-125) is significantly reduced in Aicda deficient mice, which, unlike wild-type mice, lack serum IgG to myelin associated antigens. MOG specific T cell responses are comparable between wild-type and Aicda knockout mice suggesting an active role for antigen experienced B cells. Thus affinity maturation and/or class switching are critical processes in the pathogenesis of EAE. PMID:23167594

  16. Gut-associated lymphoid tissue, gut microbes and susceptibility to experimental autoimmune encephalomyelitis.

    PubMed

    Stanisavljević, S; Lukić, J; Momčilović, M; Miljković, M; Jevtić, B; Kojić, M; Golić, N; Mostarica Stojković, M; Miljković, D

    2016-06-01

    Gut microbiota and gut-associated lymphoid tissue have been increasingly appreciated as important players in pathogenesis of various autoimmune diseases, including multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis that can be induced with an injection of spinal cord homogenate emulsified in complete Freund's adjuvant in Dark Agouti (DA) rats, but not in Albino Oxford (AO) rats. In this study, mesenteric lymph nodes (MLN), Peyer's patches (PP) and gut microbiota were analysed in these two rat strains. There was higher proportion of CD4(+) T cells and regulatory T cells in non-immunised DA rats in comparison to AO rats. Also, DA rat MLN and PP cells were higher producers of pro-inflammatory cytokines interferon-γ and interleukin-17. Finally, microbial analyses showed that uncultivated species of Turicibacter and Atopostipes genus were exclusively present in AO rats, in faeces and intestinal tissue, respectively. Thus, it is clear that in comparison of an EAE-susceptible with an EAE-resistant strain of rats, various discrepancies at the level of gut associated lymphoid tissue, as well as at the level of gut microbiota can be observed. Future studies should determine if the differences have functional significance for EAE pathogenesis. PMID:26839070

  17. Association of myelin peptide with vitamin D prevents autoimmune encephalomyelitis development.

    PubMed

    Mimura, L A N; Chiuso-Minicucci, F; Fraga-Silva, T F C; Zorzella-Pezavento, S F G; França, T G D; Ishikawa, L L W; Penitenti, M; Ikoma, M R V; Sartori, A

    2016-03-11

    Multiple sclerosis is a chronic, inflammatory and demyelinating disease of the central nervous system (CNS). As there is no cure for this disease, new therapeutic strategies and prophylactic measures are necessary. We recently described the therapeutic activity of the association between myelin oligodendrocyte glycoprotein peptide (MOG) and active vitamin D3 (VitD) against experimental autoimmune encephalomyelitis (EAE). The objective of this work was to evaluate the prophylactic potential of this association in EAE. C57BL/6 mice were vaccinated with MOG in the presence of VitD and then subjected to EAE induction. Animals were euthanized 7 and 19days after disease induction and the following parameters were evaluated: body weight, clinical score, inflammatory process in the CNS, amount of dendritic cells (DCs) and regulatory T cells in the spleen and cytokine production by spleen and CNS cell cultures. Vaccination with MOG associated with VitD determined a drastic reduction in clinical score, body weight loss, CNS inflammation, DCs maturation and also in the production of cytokines by CNS and spleen cell cultures. Collectively, our data indicate that this association prevents EAE development. A similar effect from specific self-antigens associated with VitD is expected in other autoimmune conditions and deserves to be experimentally appraised. PMID:26762804

  18. Glia maturation factor regulation of STAT expression: a novel mechanism in experimental autoimmune encephalomyelitis.

    PubMed

    Zaheer, Smita; Wu, Yanghong; Bassett, Jon; Yang, Baoli; Zaheer, Asgar

    2007-12-01

    Inflammatory cytokines are implemented in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. We previously demonstrated that glia maturation factor (GMF), a brain protein, isolated, sequenced and cloned in our laboratory, induce expression of proinflammatory cytokine/chemokine in the central nervous system (CNS). We found GMF-deficient (knockout) mice relatively resistant to EAE development after immunization with encephalitogenic MOG peptide 35-55. Consistent with these findings, the expression of proinflammatory cytokines in CNS of mice with EAE differed profoundly between wild type and GMF-knockout mice. In the present study we examined the expressions of six murine signal transducers and activators of transcription (STATs) genes, which are known to regulate the cytokine-dependent signal transduction pathways in autoimmune inflammation. The expressions of STATs genes were evaluated in the brains and spinal cords of wild type and GMF-knockout mice at the peak of EAE by quantitative real-time RT-PCR. Compared to GMF-knockout mice, the expressions of STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6 genes were significantly (P < 0.001) upregulated in the wild type mice exhibiting EAE symptoms. The results are consistent with the diminished development of EAE in the GMF-knockout mice. A significant suppression of STATs expression in GMF-knockout mice suggests GMF as an upstream effector of JAK/STAT signaling. PMID:17551829

  19. C-Kit plays a critical role in induction of intravenous tolerance in experimental autoimmune encephalomyelitis

    PubMed Central

    Safavi, Farinaz; Li, Hongmei; Gonnella, Patricia; Mari, Elisabeth Rose; Rasouli, Javad; Zhang, Guang Xian; Rostami, Abdolmohamad

    2015-01-01

    c-Kit (CD117) is a tyrosine kinase receptor found in various types of immune cells. It has been shown that c-Kit plays a role in the pathogenesis of multiple sclerosis, an inflammatory demyelinating disorder of the CNS. Recent data have suggested an immunoregulatory effect of c-Kit. We therefore examined the role of c-Kit in autoantigen-induced i.v. tolerance in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our results show that induction of intravenous tolerance against EAE in B6 mice is characterized by increased numbers of CD117+ cells and altered mast-cell associated molecules in the periphery and in the CNS. W−sh (c-Kit deficient) mice were resistant to i.v autoantigen-induced tolerance, with increased proinflammatory cytokine production in the periphery. I.v. autoantigen in WT mice suppressed production of proinflammatory cytokines IFN-γ and IL-6 and up-regulated expression of FoxP3, a transcription factor of Tregs; however, in W−sh mice IFN-γ and IL-6 were increased with a failure of FoxP3 induction upon i.v. autoantigen injection, and is thus a mechanism for resistance to i.v. tolerance induction in these mice. We conclude that c-kit signaling has a regulatory role in i.v. tolerance and could be a target for potential immunotherapy in autoimmune disorders. PMID:25588867

  20. Carboxypeptidase N-deficient mice present with polymorphic disease phenotypes on induction of experimental autoimmune encephalomyelitis.

    PubMed

    Hu, Xianzhen; Wetsel, Rick A; Ramos, Theresa N; Mueller-Ortiz, Stacey L; Schoeb, Trenton R; Barnum, Scott R

    2014-02-01

    Carboxypeptidase N (CPN) is a member of the carboxypeptidase family of enzymes that cleave carboxy-terminal lysine and arginine residues from a large number of biologically active peptides and proteins. These enzymes are best known for their roles in modulating the activity of kinins, complement anaphylatoxins and coagulation proteins. Although CPN makes important contributions to acute inflammatory events, little is known about its role in autoimmune disease. In this study we used CPN(-/-) mice in experimental autoimmune encephalomyelitis (EAE), the animal model for multiple sclerosis. Unexpectedly, we observed several EAE disease phenotypes in CPN(-/-) mice compared to wild type mice. The majority of CPN(-/-) mice died within five to seven days after disease induction, before displaying clinical signs of disease. The remaining mice presented with either mild EAE or did not develop EAE. In addition, CPN(-/-) mice injected with complete or incomplete Freund's adjuvant died within the same time frame and in similar numbers as those induced for EAE. Overall, the course of EAE in CPN(-/-) mice was significantly delayed and attenuated compared to wild type mice. Spinal cord histopathology in CPN(-/-) mice revealed meningeal, but not parenchymal leukocyte infiltration, and minimal demyelination. Our results indicate that CPN plays an important role in EAE development and progression and suggests that multiple CPN ligands contribute to the disease phenotypes we observed. PMID:24028840

  1. Eriocalyxin B ameliorates experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells

    PubMed Central

    Lu, Ying; Chen, Bing; Song, Jun-Hong; Zhen, Tao; Wang, Bai-Yan; Li, Xin; Liu, Ping; Yang, Xin; Zhang, Qun-Ling; Xi, Xiao-Dong; Chen, Sheng-Di; Zuo, Jian-Ping; Chen, Zhu; Chen, Sai-Juan

    2013-01-01

    Eriocalyxin B (EriB), a diterpenoid isolated from Isodon eriocalyx, was previously reported to have antitumor effects via multiple pathways, and these pathways are related to immune responses. In this study, we demonstrated that EriB was efficacious in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Treatment with EriB led to amelioration of EAE, which correlated with reduced spinal cord inflammation and demyelination. EriB treatment abolished encephalitogenic T-cell responses to myelin oligodendrocyte glycoprotein in an adoptive transfer EAE model. The underlying mechanism of EriB-induced effects involved inhibition of T helper (Th) 1 and Th17 cell differentiation through Janus Kinase/Signal Transducer and Activator Of Transcription and Nuclear factor-κB signaling pathways as well as elevation of reactive oxygen species. These findings indicate that EriB exerts potent antiinflammatory effects through selective modulation of pathogenic Th1 and Th17 cells by targeting critical signaling pathways. The study provides insights into the role of EriB as a unique therapeutic agent for the treatment of autoimmune diseases. PMID:23345445

  2. Complement C5 in Experimental Autoimmune Encephalomyelitis (EAE) Facilitates Remyelination and Prevents Gliosis

    PubMed Central

    Weerth, Susanna H.; Rus, Horea; Shin, Moon L.; Raine, Cedric S.

    2003-01-01

    Activation of the classical complement system is known to play a central role in autoimmune demyelination. We have analyzed the role of complement component C5 in experimental autoimmune encephalomyelitis (EAE) using C5-deficient (C5-d) and C5-sufficient (C5-s) mice. Both groups of mice displayed early onset EAE, a short recovery phase, and similar stable chronic courses. However, in contrast to the clinical similarities, marked differences were apparent by histopathology. During acute EAE in C5-d, a delay in inflammatory cell infiltration and tissue damage was observed along with restricted lesion areas, which in C5-s mice were more extensive and diffuse. More striking were the differences in chronic lesions. In C5-d mice, inflammatory demyelination and Wallerian degeneration were followed by axonal depletion and severe gliosis, while in C5-s, the same initial signs were followed by axonal sparing and extensive remyelination. In C5-d, immunohistochemistry and Western blotting showed an increase in glial fibrillary acidic protein and a decrease in neurofilament protein, proteolipid protein, and several pro-inflammatory markers. These results in the EAE model indicate that absence of C5 resulted in fiber loss and extensive scarring, whereas presence of C5-favored axonal survival and more efficient remyelination. PMID:12937147

  3. Reprogrammed quiescent B cells provide an effective cellular therapy against chronic experimental autoimmune encephalomyelitis

    PubMed Central

    Calderón-Gómez, Elisabeth; Lampropoulou, Vicky; Shen, Ping; Neves, Patricia; Roch, Toralf; Stervbo, Ulrik; Rutz, Sascha; Kühl, Anja A.; Heppner, Frank L.; Loddenkemper, Christoph; Anderton, Stephen M.; Kanellopoulos, Jean M.; Charneau, Pierre; Fillatreau, Simon

    2011-01-01

    Activated B cells can regulate immunity, and have been envisaged as potential cell-based therapy for treating autoimmune diseases. However, activated human B cells can also propagate immune responses, and the effects resulting from their infusion into patients cannot be predicted. This led us to consider resting B cells, which in contrast are poorly immunogenic, as an alternative cellular platform for the suppression of unwanted immunity. Here, we report that resting B cells can be directly engineered to express antigens in a remarkably simple, rapid, and effective way with lentiviral vectors. Notably, this neither required nor induced activation of the B cells. With that approach we were able to produce reprogrammed resting B cells that inhibited antigen-specific CD4+ T cells, CD8+ T cells, and B cells upon adoptive transfer in mice. Furthermore, resting B cells engineered to ectopically express myelin oligodendrocyte glycoprotein antigen protected recipient mice from severe disability and demyelination in experimental autoimmune encephalomyelitis, and even induced complete remission from disease in mice lacking functional natural regulatory T cells, which otherwise developed a chronic paralysis. In conclusion, our study introduces reprogrammed quiescent B cells as a novel tool for suppressing undesirable immunity. PMID:21469107

  4. Hydrogen-rich water improves neurological functional recovery in experimental autoimmune encephalomyelitis mice.

    PubMed

    Zhao, Ming; Liu, Ming-Dong; Pu, Ying-Yan; Wang, Dan; Xie, Yu; Xue, Gai-Ci; Jiang, Yong; Yang, Qian-Qian; Sun, Xue-Jun; Cao, Li

    2016-05-15

    Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS). The high costs, inconvenient administration, and side effects of current Food and Drug Administration (FDA)-approved drugs often lead to poor adherence to the long-term treatment of MS. Molecular hydrogen (H2) has been reported to exhibit anti-oxidant, anti-apoptotic, anti-inflammatory, anti-allergy, and anti-cancer effects. In the present study, we explored the prophylactic and therapeutic effects of hydrogen-rich water (HRW) on the progress of experimental autoimmune encephalomyelitis (EAE), the animal model for MS. We found that prophylactic administration of both 0.36mM and 0.89mM HRW was able to delay EAE onset and reduce maximum clinical scores. Moreover, 0.89mM HRW also reduced disease severity, CNS infiltration, and demyelination when administered after the onset of disease. Furthermore, HRW treatment prevented infiltration of CD4(+) T lymphocytes into the CNS and inhibited Th17 cell development without affecting Th1 cell populations. Because HRW is non-toxic, inexpensive, easily administered, and can readily cross the blood-brain barrier, our experiments suggest that HRW may have great potential in the treatment of MS. PMID:27138092

  5. Allogeneic bone marrow transplantation in models of experimental autoimmune encephalomyelitis: evidence for a graft-versus-autoimmunity effect.

    PubMed

    Van Wijmeersch, Bart; Sprangers, Ben; Rutgeerts, Omer; Lenaerts, Caroline; Landuyt, Willy; Waer, Mark; Billiau, An D; Dubois, Bénédicte

    2007-06-01

    Autologous hematopoietic stem cell transplantation (HSCT) is being explored in the treatment of severe multiple sclerosis (MS), and is based on the concept of "resetting" the immune system. The use of allogeneic HSCT may offer additional advantages, such as the replacement of the autoreactive immune compartment by healthy allogeneic cells and development of a graft-versus-autoimmunity (GVA) effect. However, in clinical practice, the genetic susceptibility to MS of allogeneic stem cell donors is generally unknown, and GVA may therefore be an important mechanism of action. Experimental autoimmune encephalomyelitis (EAE)-susceptible and -resistant mouse strains were used to determine the roles of genetic susceptibility, level of donor-chimerism, and alloreactivity in the therapeutic potential of syngeneic versus allogeneic bone marrow transplant (BMT) for EAE. After transplantation and EAE induction, animals were evaluated for clinical EAE and ex vivo myelin oligodendrocyte glycoprotein-specific proliferation. Early after BMT, both syngeneic and allogeneic chimeras were protected from EAE development. On the longer term, allogeneic but not syngeneic BMT conferred protection, but this required high-level donor-chimerism from EAE-resistant donors. Importantly, when EAE-susceptible donors were used, robust protection from EAE was obtained when active alloreactivity, induced by donor lymphocyte infusions, was provided. Our findings indicate the requirement of a sufficient level of donor-chimerism from a nonsusceptible donor in the therapeutic effect of allogeneic BMT. Importantly, the data indicate that, independently of genetic susceptibility, active alloreactivity is associated with a GVA effect, thereby providing new evidence to support the potential role of allogeneic BMT in the treatment of MS. PMID:17531772

  6. The leukotriene B{sub 4} receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis

    SciTech Connect

    Kihara, Yasuyuki; Yokomizo, Takehiko; Kunita, Akiko; Morishita, Yasuyuki; Fukayama, Masashi; Ishii, Satoshi; Shimizu, Takao

    2010-04-09

    Leukotriene B{sub 4} (LTB{sub 4}) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB{sub 4}. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and T{sub H}1/T{sub H}17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1{sup -/-} mice had delayed onset and less severe symptoms of EAE than BLT1{sup +/+} mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1{sup +/+}, but not BLT1{sup -/-} mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-{gamma}, TNF-{alpha}, IL-17 and IL-6 were impaired in BLT1{sup -/-} cells, as compared with BLT1{sup +/+} cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and T{sub H}1/T{sub H}17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other T{sub H}17-mediated diseases.

  7. Novel Function of Extracellular Matrix Protein 1 in Suppressing Th17 Cell Development in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Su, Pan; Chen, Sheng; Zheng, Yu Han; Zhou, Hai Yan; Yan, Cheng Hua; Yu, Fang; Zhang, Ya Guang; He, Lan; Zhang, Yuan; Wang, Yanming; Wu, Lei; Wu, Xiaoai; Yu, Bingke; Ma, Li Yan; Yang, Zhiru; Wang, Jianhua; Zhao, Guixian; Zhu, Jinfang; Wu, Zhi-Ying; Sun, Bing

    2016-08-15

    Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. Although Th17 cells are important for disease induction, Th2 cells are inhibitory in this process. In this article, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of EAE. Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further study of the mechanism revealed that ECM1 could interact with αv integrin on dendritic cells and block the αv integrin-mediated activation of latent TGF-β, resulting in an inhibition of Th17 cell differentiation at an early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited the Th17 cell response and EAE induction in ECM1 transgenic mice. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 cell differentiation in the EAE model, suggesting that ECM1 may have the potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis. PMID:27316685

  8. A silent exonic SNP in kdm3a affects nucleic acids structure but does not regulate experimental autoimmune encephalomyelitis.

    PubMed

    Gillett, Alan; Bergman, Petra; Parsa, Roham; Bremges, Andreas; Giegerich, Robert; Jagodic, Maja

    2013-01-01

    Defining genetic variants that predispose for diseases is an important initiative that can improve biological understanding and focus therapeutic development. Genetic mapping in humans and animal models has defined genomic regions controlling a variety of phenotypes known as quantitative trait loci (QTL). Causative disease determinants, including single nucleotide polymorphisms (SNPs), lie within these regions and can often be identified through effects on gene expression. We previously identified a QTL on rat chromosome 4 regulating macrophage phenotypes and immune-mediated diseases including experimental autoimmune encephalomyelitis (EAE). Gene analysis and a literature search identified lysine-specific demethylase 3A (Kdm3a) as a potential regulator of these phenotypes. Genomic sequencing determined only two synonymous SNPs in Kdm3a. The silent synonymous SNP in exon 15 of Kdm3a caused problems with quantitative PCR detection in the susceptible strain through reduced amplification efficiency due to altered secondary cDNA structure. Shape Probability Shift analysis predicted that the SNP often affects RNA folding; thus, it may impact protein translation. Despite these differences in rats, genetic knockout of Kdm3a in mice resulted in no dramatic effect on immune system development and activation or EAE susceptibility and severity. These results provide support for tools that analyze causative SNPs that impact nucleic acid structures. PMID:24312603

  9. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells

    PubMed Central

    Xue, Haikuo; Ren, Huijun; Zhang, Lei; Sun, Xiaoxu; Wang, Wanhai; Zhang, Shijie; Zhao, Junwei; Ming, Liang

    2016-01-01

    Objective(s): Multiple sclerosis (MS) is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E) is an important component of human diet with antioxidant activity, which protects the body’s biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE), the animal model of MS, and treated EAE with α-tocopherol (AT) which is the main content of Vit E. Materials and Methods: Twenty C57BL/6 adult female mice were used and divided into two groups randomly. EAE was induced with myelin oligodendrocyte glycoprotein (MOG), and one group was treated with AT, at a dose of 100 mg/kg on the 3th day post-immunization with MOG, the other group was treated with 1% alcohol. Mice were euthanized on day 14, post-immunization, spleens were removed for assessing splenocytes proliferation and cytokine profile, and spinal cords were dissected to assess the infiltration of inflammatory cells in spinal cord. Results: AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine), though the other cytokines were only affected slightly. Conclusion: According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS. PMID:27403263

  10. Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilaments may contribute to neurodegeneration in multiple sclerosis. Methods We studied the immune response to the axonal protein neurofilament light (NF-L) in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. To examine the association between T cells and axonal damage, pathology studies were performed on NF-L immunized mice. The interaction of T cells and axons was analyzed by confocal microscopy of central nervous system tissues and T-cell and antibody responses to immunodominant epitopes identified in ABH (H2-Ag7) and SJL/J (H2-As) mice. These epitopes, algorithm-predicted peptides and encephalitogenic motifs within NF-L were screened for encephalitogenicity. Results Confocal microscopy revealed both CD4+ and CD8+ T cells alongside damaged axons in the lesions of NF-L immunized mice. CD4+ T cells dominated the areas of axonal injury in the dorsal column of spastic mice in which the expression of granzyme B and perforin was detected. Identified NF-L epitopes induced mild neurological signs similar to the observed with the NF-L protein, yet distinct from those characteristic of neurological disease induced with myelin oligodendrocyte glycoprotein. Conclusions Our data suggest that CD4+ T cells are associated with spasticity, axonal damage and neurodegeneration in NF-L immunized mice. In addition, defined T-cell epitopes in the NF-L protein might be involved in the pathogenesis of the disease. PMID:24053384

  11. Therapeutic efficacy of suppressing the Jak/STAT pathway in multiple models of experimental autoimmune encephalomyelitis.

    PubMed

    Liu, Yudong; Holdbrooks, Andrew T; De Sarno, Patrizia; Rowse, Amber L; Yanagisawa, Lora L; McFarland, Braden C; Harrington, Laurie E; Raman, Chander; Sabbaj, Steffanie; Benveniste, Etty N; Qin, Hongwei

    2014-01-01

    Pathogenic Th cells and myeloid cells are involved in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The JAK/STAT pathway is used by numerous cytokines for signaling and is critical for development, regulation, and termination of immune responses. Dysregulation of the JAK/STAT pathway has pathological implications in autoimmune and neuroinflammatory diseases. Many of the cytokines involved in MS/EAE, including IL-6, IL-12, IL-23, IFN-γ, and GM-CSF, use the JAK/STAT pathway to induce biological responses. Thus, targeting JAKs has implications for treating autoimmune inflammation of the brain. We have used AZD1480, a JAK1/2 inhibitor, to investigate the therapeutic potential of inhibiting the JAK/STAT pathway in models of EAE. AZD1480 treatment inhibits disease severity in myelin oligodendrocyte glycoprotein-induced classical and atypical EAE models by preventing entry of immune cells into the brain, suppressing differentiation of Th1 and Th17 cells, deactivating myeloid cells, inhibiting STAT activation in the brain, and reducing expression of proinflammatory cytokines and chemokines. Treatment of SJL/J mice with AZD1480 delays disease onset of PLP-induced relapsing-remitting disease, reduces relapses and diminishes clinical severity. AZD1480 treatment was also effective in reducing ongoing paralysis induced by adoptive transfer of either pathogenic Th1 or Th17 cells. In vivo AZD1480 treatment impairs both the priming and expansion of T cells and attenuates Ag presentation functions of myeloid cells. Inhibition of the JAK/STAT pathway has clinical efficacy in multiple preclinical models of MS, suggesting the feasibility of the JAK/STAT pathway as a target for neuroinflammatory diseases. PMID:24323580

  12. Role of passive T-cell death in chronic experimental autoimmune encephalomyelitis

    PubMed Central

    Issazadeh, Shohreh; Abdallah, Kald; Chitnis, Tanuja; Chandraker, Anil; Wells, Andrew D.; Turka, Laurence A.; Sayegh, Mohamed H.; Khoury, Samia J.

    2000-01-01

    The mechanisms of chronic disease and recovery from relapses in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, are unknown. Deletion of myelin-specific lymphocytes by apoptosis may play a role in termination of the inflammatory response. One pathway of apoptosis is the passive cell death or “cell death by neglect” pathway, which is under the control of the Bcl family of genes. To investigate the role of passive cell death pathway in EAE, we used mice with transgenic expression of the long form of the bcl-x gene (Bcl-xL) targeted to the T-cell lineage. We found that mice transgenic for Bcl-xL have an earlier onset and a more chronic form of EAE induced by myelin oligodendrocyte glycoprotein (MOG) peptide 35–55 compared with wild-type littermate mice. This was not due to an expanded autoreactive cell repertoire. Primed peripheral lymphocytes from Bcl-xL transgenic mice showed increased proliferation and cytokine production to MOG peptide in vitro compared with lymphocytes from wild-type animals. Immunohistologic studies demonstrated increased cellular infiltrates, immunoglobulin precipitation, and demyelination in the Bcl-xL transgenic central nervous system (CNS) compared with controls. There was also a decreased number of apoptotic cells in the CNS of Bcl-xL transgenic mice when compared with littermates at all time points tested. This is the first report of an autoimmune disease model in Bcl-xL transgenic mice. Our data indicate that the passive cell death pathway is important in the pathogenesis of chronic EAE. These findings have implications for understanding the pathogenesis of multiple sclerosis and other autoimmune diseases. PMID:10772655

  13. Cell mediated immune regulation in autoimmunity.

    PubMed

    Gillissen, G; Pusztai-Markos, Z

    1979-01-01

    Autoimmunity is the term for the immune conditions characterized by a specific humoral or cell mediated response to the body's own tissues. The termination of the natural state of self tolerance may lead to immunopathological manifestations with clinical consequences, i.e. autoimmune diseases. In a very general sense, one may classify autoimmune diseases into two groups with respect to the underlying mechanism: 1. There are autoimmune diseases which develop in the presence of a normal intact regulation mechanism. 2. Another group whose development must be understood on the basis of a cellular dysfunction. In the first case, dequestered or semi-sequestered autoantigens are liberated as a consequence of exogenic influences inducing the sensitization of immunocompetent cells. The immune system then reacts with these autoantigens in the same way as with foreign substances. This kind of autoimmune disease will, however, not be dealt with here. In the second case, autoantigens are normally, i.e. in healthy individuals, accessible to the immunocompetent cells. To understand the reason for the development of an autoimmune reaction one must first clarify the mechanism of self tolerance. Then one must examine the way in which a break of this physiological state takes place. One of the major unanswered questions is the relative importance of antibody-mediated and cell-mediated immune mechanisms in the onset and further development of autoimmune diseases. Recently it has been suggested that a dysfunction at the cellular level might represent the basic cause which induces the termination of selftolerance. Most of the conceptions about the mechanism by which autoimmune diseases are triggered were gained through experiments with animals. It is, however, difficult to use these experimental results to explain human diseases; in humans many questions are still open. Undoubtedly, the mechanisms of induction and maintenance of self tolerance and also the ways in which autoimmune

  14. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune

  15. The role of interferon-β in the treatment of multiple sclerosis and experimental autoimmune encephalomyelitis – in the perspective of inflammasomes

    PubMed Central

    Inoue, Makoto; Shinohara, Mari L

    2013-01-01

    Inflammasomes in innate immune cells mediate the induction of inflammation by sensing microbes and pathogen-associated/damage-associated molecular patterns. Inflammasomes are also known to be involved in the development of some human and animal autoimmune diseases. The Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is currently the most fully characterized inflammasome, although a limited number of studies have demonstrated its role in demyelinating autoimmune diseases in the central nervous system of humans and animals. Currently, the development of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), is known to be induced by the NLRP3 inflammasome through enhanced recruitment of inflammatory immune cells in the central nervous system. On the other hand, interferon-β (IFNβ), a first-line drug to treat MS, inhibits NLRP3 inflammasome activation, and ameliorates EAE. The NLRP3 inflammasome is indeed a factor capable of inducing EAE, but it is dispensable when EAE is induced by aggressive disease induction regimens. In such NLRP3 inflammasome-independent EAE, IFN-β treatment is generally not effective. This might therefore be one mechanism that leads to occasional failures of IFN-β treatment in EAE, and possibly, in MS as well. In the current review, we discuss inflammasomes and autoimmunity; in particular, the impact of the NLRP3 inflammasome on MS/EAE, and on IFN-β therapy. PMID:23360426

  16. Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis.

    PubMed

    Klemann, Christian; Raveney, Benjamin J E; Klemann, Anna K; Ozawa, Tomoko; von Hörsten, Stephan; Shudo, Koichi; Oki, Shinji; Yamamura, Takashi

    2009-06-01

    Recent evidence suggests that interleukin-17-producing CD4(+) T cells (Th17 cells) are the dominant pathogenic cellular component in autoimmune inflammatory diseases, including multiple sclerosis. It has recently been demonstrated that all-trans retinoic acid can suppress Th17 differentiation and promote the generation of Foxp3(+) regulatory T cells via retinoic acid receptor signals. Here, we investigated the effects of AM80, a synthetic retinoid with enhanced biological properties to all-trans retinoic acid, on Th17 differentiation and function and evaluated its therapeutic potential in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. AM80 treatment was more effective than all-trans retinoic acid in inhibiting Th17 differentiation in vitro. Oral administration of AM80 was protective for the early development of EAE and the down-modulation of Th17 differentiation and effector functions in vivo. Moreover, AM80 inhibited interleukin-17 production by splenic memory T cells, in vitro-differentiated Th17 cells, and central nervous system-infiltrating effector T cells. Accordingly, AM80 was effective when administered therapeutically after the onset of EAE. Continuous AM80 treatment, however, was ineffective at inhibiting late EAE symptoms despite the maintained suppression of RORgammat and interleukin-17 expression levels by central nervous system-infiltrating T cells. We reveal that continuous AM80 treatment also led to the suppression of interleukin-10 production by a distinct T cell subset that expressed both Foxp3 and RORgammat. These findings suggest that retinoid signaling regulates both inflammatory Th17 cells and Th17-like regulatory cells. PMID:19389933

  17. Synthetic Retinoid AM80 Inhibits Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Klemann, Christian; Raveney, Benjamin J.E.; Klemann, Anna K.; Ozawa, Tomoko; von Hörsten, Stephan; Shudo, Koichi; Oki, Shinji; Yamamura, Takashi

    2009-01-01

    Recent evidence suggests that interleukin-17-producing CD4+ T cells (Th17 cells) are the dominant pathogenic cellular component in autoimmune inflammatory diseases, including multiple sclerosis. It has recently been demonstrated that all-trans retinoic acid can suppress Th17 differentiation and promote the generation of Foxp3+ regulatory T cells via retinoic acid receptor signals. Here, we investigated the effects of AM80, a synthetic retinoid with enhanced biological properties to all-trans retinoic acid, on Th17 differentiation and function and evaluated its therapeutic potential in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. AM80 treatment was more effective than all-trans retinoic acid in inhibiting Th17 differentiation in vitro. Oral administration of AM80 was protective for the early development of EAE and the down-modulation of Th17 differentiation and effector functions in vivo. Moreover, AM80 inhibited interleukin-17 production by splenic memory T cells, in vitro-differentiated Th17 cells, and central nervous system-infiltrating effector T cells. Accordingly, AM80 was effective when administered therapeutically after the onset of EAE. Continuous AM80 treatment, however, was ineffective at inhibiting late EAE symptoms despite the maintained suppression of RORγt and interleukin-17 expression levels by central nervous system-infiltrating T cells. We reveal that continuous AM80 treatment also led to the suppression of interleukin-10 production by a distinct T cell subset that expressed both Foxp3 and RORγt. These findings suggest that retinoid signaling regulates both inflammatory Th17 cells and Th17-like regulatory cells. PMID:19389933

  18. Intrinsic and induced regulation of the age-associated onset of spontaneous experimental autoimmune encephalomyelitis.

    PubMed

    Zhang, Hong; Podojil, Joseph R; Luo, Xunrong; Miller, Stephen D

    2008-10-01

    Multiple sclerosis is characterized by perivascular CNS infiltration of myelin-specific CD4(+) T cells and activated mononuclear cells. TCR transgenic mice on the SJL background specific for proteolipid protein (PLP)(139-151) develop a high incidence of spontaneous experimental autoimmune encephalomyelitis (sEAE). We examined the intrinsic mechanisms regulating onset and severity of sEAE. CD4(+) T cells isolated from the cervical lymph nodes, but not spleens, of diseased 5B6 transgenic mice are hyperactivated when compared with age-matched healthy mice and produce both IFN-gamma and IL-17, indicating that the cervical lymph node is the initial peripheral activation site. The age-associated development of sEAE correlates with a decline in both the functional capacity of natural regulatory T cells (nTregs) and in PLP(139-151)-induced IL-10 production and a concomitant increase in IL-17 production. Anti-CD25-induced inactivation of nTregs increased the incidence and severity of sEAE. Conversely, induction of peripheral tolerance via the i.v. injection of PLP(139-151)-pulsed, ethylcarbodiimide-fixed APCs (PLP(139-151)-SP) inhibited the development of clinical disease concomitant with increased production of IL-10 and conversion of Foxp3(+) Tregs from CD4(+)CD25(-) progenitors. These data indicate that heterogeneous populations of Tregs regulate onset of sEAE, and that induction of peripheral tolerance can be exploited to prevent/treat spontaneous autoimmune disease. PMID:18802066

  19. Analysis of Neurogenesis during Experimental Autoimmune Encephalomyelitis Reveals Pitfalls of Bioluminescence Imaging

    PubMed Central

    Metzdorf, Judith; Stahlke, Sarah; Pedreitturia, Xiomara; Hunfeld, Anika; Couillard-Despres, Sebastien; Kleiter, Ingo

    2015-01-01

    Bioluminescence imaging is a sensitive approach for longitudinal neuroimaging. Transgenic mice expressing luciferase under the promoter of doublecortin (DCX-luc), a specific marker of neuronal progenitor cells (NPC), allow monitoring of neurogenesis in living mice. Since the extent and time course of neurogenesis during autoimmune brain inflammation are controversial, we investigated neurogenesis in MOG-peptide induced experimental allergic encephalomyelitis (EAE) using DCX-luc reporter mice. We observed a marked, 2- to 4-fold increase of the bioluminescence signal intensity 10 days after EAE induction and a gradual decline 1–2 weeks thereafter. In contrast, immunostaining for DCX revealed no differences between EAE and control mice 2 and 4 weeks after immunization in zones of adult murine neurogenesis such as the dentate gyrus. Ex vivo bioluminescence imaging showed similar luciferase expression in brain homogenates of EAE and control animals. Apart from complete immunization including MOG-peptide also incomplete immunization with complete Freund´s adjuvant and pertussis toxin resulted in a rapid increase of the in vivo bioluminescence signal. Blood-brain barrier (BBB) leakage was demonstrated 10 days after both complete and incomplete immunization and might explain the increased bioluminescence signal in vivo. We conclude, that acute autoimmune inflammation in EAE does not alter neurogenesis, at least at the stage of DCX-expressing NPC. Effects of immunization on the BBB integrity must be considered when luciferase is used as a reporter within the CNS during the active stage of EAE. Models with stable CNS-restricted luciferase expression could serve as technically convenient way to evaluate BBB integrity in a longitudinal manner. PMID:25780928

  20. Dopaminergic dysfunction is associated with IL-1β-dependent mood alterations in experimental autoimmune encephalomyelitis.

    PubMed

    Gentile, Antonietta; Fresegna, Diego; Federici, Mauro; Musella, Alessandra; Rizzo, Francesca Romana; Sepman, Helena; Bullitta, Silvia; De Vito, Francesca; Haji, Nabila; Rossi, Silvia; Mercuri, Nicola B; Usiello, Alessandro; Mandolesi, Georgia; Centonze, Diego

    2015-02-01

    Mood disturbances are frequent in patients with multiple sclerosis (MS), even in non-disabled patients and in the remitting stages of the disease. It is still largely unknown how the pathophysiological process on MS causes anxiety and depression, but the dopaminergic system is likely involved. Aim of the present study was to investigate depressive-like behavior in mice with experimental autoimmune encephalomyelitis (EAE), a model of MS, and its possible link to dopaminergic neurotransmission. Behavioral, amperometric and biochemical experiments were performed to determine the role of inflammation in mood control in EAE. First, we assessed the independence of mood alterations from motor disability during the acute phase of the disease, by showing a depressive-like behavior in EAE mice with mild clinical score and preserved motor skills (mild-EAE). Second, we linked such behavioral changes to the selective increased striatal expression of interleukin-1beta (IL-1β) in a context of mild inflammation and to dopaminergic system alterations. Indeed, in the striatum of EAE mice, we observed an impairment of dopamine (DA) neurotransmission, since DA release was reduced and signaling through DA D1- and D2-like receptors was unbalanced. In conclusion, the present study provides first evidence of the link between the depressive-like behavior and the alteration of dopaminergic system in EAE mice, raising the possibility that IL-1β driven dysfunction of dopaminergic signaling might play a role in mood disturbances also in MS patients. PMID:25511803

  1. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Desbiens, Louisane; Lapointe, Catherine; Gharagozloo, Marjan; Mahmoud, Shaimaa; Pejler, Gunnar; Gris, Denis; D'Orléans-Juste, Pedro

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35-55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS. PMID:27610007

  2. IFN-γ ameliorates autoimmune encephalomyelitis by limiting myelin lipid peroxidation

    PubMed Central

    Sosa, Rebecca A.; Murphey, Cathi; Robinson, Rachel R.; Forsthuber, Thomas G.

    2015-01-01

    Evidence has suggested both a pathogenic and a protective role for the proinflammatory cytokine IFN-γ in experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying the protective role of IFN-γ in EAE have not been fully resolved, particularly in the context of CNS antigen-presenting cells (APCs). In this study we examined the role of IFN-γ in myelin antigen uptake by CNS APCs during EAE. We found that myelin antigen colocalization with APCs was decreased substantially and that EAE was significantly more severe and showed a chronic-progressive course in IFN-γ knockout (IFN-γ−/−) or IFN-γ receptor knockout (IFN-γR−/−) mice as compared with WT animals. IFN-γ was a critical regulator of phagocytic/activating receptors on CNS APCs. Importantly, “free” myelin debris and lipid peroxidation activity at CNS lesions was increased in mice lacking IFN-γ signaling. Treatment with N-acetyl-l-cysteine, a potent antioxidant, abolished lipid peroxidation activity and ameliorated EAE in IFN-γ–signaling-deficient mice. Taken together the data suggest a protective role for IFN-γ in EAE by regulating the removal of myelin debris by CNS APCs and thereby limiting the substrate available for the generation of neurotoxic lipid peroxidation products. PMID:26305941

  3. Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Gharagozloo, Marjan; Mahmoud, Shaimaa; Gris, Denis

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS. PMID:27610007

  4. Alternative Splicing and Transcriptome Profiling of Experimental Autoimmune Encephalomyelitis Using Genome-Wide Exon Arrays

    PubMed Central

    Gillett, Alan; Maratou, Klio; Fewings, Chris; Harris, Robert A.; Jagodic, Maja; Aitman, Tim; Olsson, Tomas

    2009-01-01

    Background Multiple Sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate complex pathogenic mechanisms. Transcriptional control through isoform selection and mRNA levels determines pathway activation and ultimately susceptibility to disease. Methodology/Principal Findings We have studied the role of alternative splicing and differential expression in lymph node cells from EAE-susceptible Dark Agouti (DA) and EAE-resistant Piebald Virol Glaxo.AV1 (PVG) inbred rat strains using Affymetrix Gene Chip Rat Exon 1.0 ST Arrays. Comparing the two strains, we identified 11 differentially spliced and 206 differentially expressed genes at day 7 post-immunization, as well as 9 differentially spliced and 144 differentially expressed genes upon autoantigen re-stimulation. Functional clustering and pathway analysis implicate genes for glycosylation, lymphocyte activation, potassium channel activity and cellular differentiation in EAE susceptibility. Conclusions/Significance Our results demonstrate that alternative splicing occurs during complex disease and may govern EAE susceptibility. Additionally, transcriptome analysis not only identified previously defined EAE pathways regulating the immune system, but also novel mechanisms. Furthermore, several identified genes overlap known quantitative trait loci, providing novel causative candidate targets governing EAE. PMID:19915720

  5. The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment

    PubMed Central

    ROBINSON, ANDREW P.; HARP, CHRISTOPHER T.; NORONHA, AVERTANO; MILLER, STEPHEN D.

    2014-01-01

    While no single model can exactly recapitulate all aspects of multiple sclerosis (MS), animal models are essential in understanding the induction and pathogenesis of the disease and to develop therapeutic strategies that limit disease progression and eventually lead to effective treatments for the human disease. Several different models of MS exist, but by far the best understood and most commonly used is the rodent model of experimental autoimmune encephalomyelitis (EAE). This model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. Mouse models are most frequently used because of the inbred genotype of laboratory mice, their rapid breeding capacity, the ease of genetic manipulation, and availability of transgenic and knockout mice to facilitate mechanistic studies. Although not all therapeutic strategies for MS have been developed in EAE, all of the current US Food and Drug Administration (FDA)-approved immunomodulatory drugs are effective to some degree in treating EAE, a strong indicator that EAE is an extremely useful model to study potential treatments for MS. Several therapies, such as glatiramer acetate (GA: Copaxone), and natalizumab (Tysabri), were tested first in the mouse model of EAE and then went on to clinical trials. Here we discuss the usefulness of the EAE model in understanding basic disease pathophysiology and developing treatments for MS as well as the potential drawbacks of this model. PMID:24507518

  6. Microglia and astrocyte activation in the frontal cortex of rats with experimental autoimmune encephalomyelitis.

    PubMed

    Chanaday, N L; Roth, G A

    2016-02-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for the human disease multiple sclerosis (MS), a demyelinating and neurodegenerative pathology of the central nervous system. Both diseases share physiopathological and clinical characteristics, mainly associated with a neuroinflammatory process that leads to a set of motor, sensory, and cognitive symptoms. In MS, gray matter atrophy is related to the emergence of cognitive deficits and contributes to clinical progression. In particular, injury and dysfunction in certain areas of the frontal cortex (FrCx) have been related to the development of cognitive impairments with high incidence, like central fatigue and executive dysfunction. In the present work we show the presence of region-specific microglia and astrocyte activation in the FrCx, during the first hours of acute EAE onset. It is accompanied by the production of the pro-inflammatory cytokines IL-6 and TNF-α, in the absence of detectable leukocyte infiltration. These findings expand previous studies showing presynaptic neural dysfunction occurring at the FrCx and might contribute to the understanding of the mechanisms involved in the genesis and prevalence of common MS symptoms. PMID:26679600

  7. Immune mechanisms in the transfer of experimental autoimmune encephalomyelitis without adjuvant

    SciTech Connect

    Silberg, D.G.

    1985-01-01

    Experimental autoimmune encephalomyelitis (EAE) can be induced in Lewis rats without the use of adjuvant. Spleen cells of naive rats were sensitized to myelin basic protein (MBP) in vitro. Transfer of these cells did not result in the development of EAE. However, spleen cells from primary recipients, taken 10 days post transfer, and cultured with MBP (secondary culture, transferred EAE to secondary recipients. EAE can be induced in primary recipients by the transfer of secondary cultured cells or cultured cells or challenge with MBP in complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA) 10 days after injection of naive cultured cells. The finding that MBP-CFA challenged 1' recipients developed EAE, suggests that the rats have been primed to MBP through the naive cultured cell transfer. The cells from naive culture that sensitize the primary recipient were radioresistant (1500 R), probably macrophages. This is in contrast to the cells transferring EAE to the secondary recipient, which were radiosensitive. Unlike the spleen cells which transfer EAE from MBP-CFA sensitized rats, the cells in the secondary transfer could not be activated to transfer EAE when cultured with concanavalin A. Clinical EAE in the secondary recipient was more severe when these rats were irradiated (200 R) prior to transfer. There is evidence that low dose irradiation eliminates naturally occurring suppressor cells. EAE also developed in lethally irradiated (850 R) recipients of secondary cultured cells, suggesting that the transferred cells can induce EAE alone or by recruiting radioresistant cells in the secondary host.

  8. Mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis.

    PubMed

    Xu, Wen; Fazekas, Gyorgy; Hara, Hideo; Tabira, Takeshi

    2005-06-01

    The mechanism of natural killer (NK) cell regulatory role in experimental autoimmune encephalomyelitis (EAE) was studied in SJL/J mice. In vivo experiments showed that NK cell depletion by anti-NK1.1 monoclonal antibody treatment enhanced EAE in mice. To investigate the mechanism, we cultured proteolipid protein (PLP)136-150 peptide-specific, encephalitogenic T cell lines, which were used as the NK cell target. Our results show that NK cells exert a direct cytotoxic effect on autoantigen-specific, encephalitogenic T cells. Furthermore, cytotoxicity to PLP-specific, encephalitogenic T line cells was enhanced by using enriched NK cells as effector cells. However, the cytotoxic effect of NK cells to ovalbumin-specific T line cells and ConA-stimulated T cells could also be detected with a lesser efficiency. Our studies indicate that NK cells play a regulatory role in EAE through killing of syngeneic T cells which include myelin antigen-specific, encephalitogenic T cells, and thus ameliorate EAE. PMID:15885305

  9. Autonomic regulation of experimental autoimmune encephalomyelitis in IL-4 knockout mice.

    PubMed

    Pál, E; Yamamura, T; Tabira, T

    1999-12-01

    The effect of chemical sympathectomy induced with 6-hydroxydopamine (OHDA) on experimental autoimmune encephalomyelitis (EAE) was studied in wild type and IL-4-/- C57BL/6 (B6) mice. When actively sensitized with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, control B6 mice developed a mild form of EAE with full recovery. The sympathectomized mice developed paralysis with higher maximum disease score and did not recover completely, indicating that the sympathetic nervous system (SNS) down-modulates the process of EAE. Unexpectedly, however, sympathectomy resulted in suppression of EAE in IL-4-/- mice, implying that control of actively induced EAE by the SNS depends on the genetic background of mice. We also induced EAE by passive transfer of MOG35-55-reactive lymph node cells, and this disease was augmented by sympathectomy in both wild type and knockout animals. Further experiments showed that changes in T cell populations and the activity of antigen presenting cells might be responsible for the altered immune response and clinical course after sympathetic ablation. Our studies indicate that the absence of a single cytokine can severely alter nervous-immune system interactions. PMID:10695725

  10. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Gu, Sun Mi; Park, Mi Hee; Yun, Hyung Mun; Han, Sang Bae; Oh, Ki Wan; Son, Dong Ju; Yun, Jae Suk; Hong, Jin Tae

    2016-03-29

    Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5-/-) mice. CCR5-/- and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5-/- mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5-/- mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5-/- mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5-/- mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS. PMID:26985768

  11. The extent of ultrastructural spinal cord pathology reflects disease severity in experimental autoimmune encephalomyelitis.

    PubMed

    Gruppe, Traugott L; Recks, Mascha S; Addicks, Klaus; Kuerten, Stefanie

    2012-09-01

    Experimental autoimmune encephalomyelitis (EAE) has been studied for decades as an animal model for human multiple sclerosis (MS). Here we performed ultrastructural analysis of corticospinal tract (CST) and motor neuron pathology in myelin oligodendrocyte glycoprotein (MOG) peptide 35-55- and MP4-induced EAE of C57BL/6 mice. Both models were clinically characterized by ascending paralysis. Our data show that CST and motor neuron pathology differentially contributed to the disease. In both MOG peptide- and MP4-induced EAE pathological changes in the CST were evident. While the MP4 model also encompassed severe motor neuron degeneration in terms of rough endoplasmic reticulum alterations, the presence of intracytoplasmic vacuoles and nuclear dissolution, both models showed motor neuron atrophy. Features of axonal damage covered mitochondrial swelling, a decrease in nearest neighbor neurofilament distance (NNND) and an increase of the oligodendroglial cytoplasm inner tongue. The extent of CST and motor neuron pathology was reflective of the severity of clinical EAE in MOG peptide- and MP4-elicited EAE. Differential targeting of CNS gray and white matter are typical features of MS pathology. The MOG peptide and MP4 model may thus be valuable tools for downstream studies of the mechanisms underlying these morphological disease correlates. PMID:22806903

  12. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice

    PubMed Central

    Yun, Hyung Mun; Han, Sang Bae; Oh, Ki Wan; Son, Dong Ju; Yun, Jae Suk; Hong, Jin Tae

    2016-01-01

    Multiple sclerosis (MS) is an inflammatory disease in which myelin in the spinal cord is damaged. C-C chemokine receptor type 5 (CCR5) is implicated in immune cell migration and cytokine release in central nervous system (CNS). We investigated whether CCR5 plays a role in MS progression using a murine model, experimental autoimmune encephalomyelitis (EAE), in CCR5 deficient (CCR5−/−) mice. CCR5−/− and CCR5+/+ (wild-type) mice were immunized with myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) followed by pertussis toxin, after which EAE paralysis was scored for 28 days. We found that clinical scoring and EAE neuropathology were lower in CCR5−/− mice than CCR5+/+ mice. Immune cells (CD3+, CD4+, CD8+, B cell, NK cell and macrophages) infiltration and astrocytes/microglial activation were attenuated in CCR5−/− mice. Moreover, levels of IL-1β, TNF-α, IFN-γ and MCP-1 cytokine levels were decreased in CCR5−/− mice spinal cord. Myelin basic protein (MBP) and CNPase were increased while NG2 and O4 were decreased in CCR5−/− mice, indicating that demyelination was suppressed by CCR5 gene deletion. These findings suggest that CCR5 is likely participating in demyelination in the spinal cord the MS development, and that it could serve as an effective therapeutic target for the treatment of MS. PMID:26985768

  13. Prevention of Axonal Injury using Calpain Inhibitor in Chronic Progressive Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Hassen, Getaw Worku; Feliberti, Jason; Kesner, Leo; Stracher, Alfred; Mokhtarian, Foroozan

    2011-01-01

    Axonal injury is the major correlate of permanent disability in neurodegenerative diseases such as multiple sclerosis (MS), especially in secondary-progressive MS following relapsing-remitting disease course. Proteolytic enzyme, calpain, is a potential candidate for causing axonal injury. Most current treatment options only target the inflammatory component of MS. Previous work using calpain inhibitor CYLA in our laboratory showed significant reduction in clinical sign, demyelination and tissue calpain content in acute experimental autoimmune encephalomyelitis (EAE). Here we evaluated markers of axonal injury (amyloid precursor protein, Nav1.6 channels), neuronal calpain content and the effect of CYLA on axonal protection using histological methods in chronic EAE [myelin oligodendrocyte glycoprotein (MOG) – induced disease model of MS]. Intraperitoneal application of CYLA (2mg/mouse/day) significantly reduced the clinical signs, tissue calpain content, demyelination and inflammatory infiltration of EAE. Similarly, markers for axonal injury were barely detectable in the treated mice. Thus, this novel drug, which markedly suppresses the disease course, axonal injury and its progression, is a candidate for the treatment of a neurodegenerative disease such as multiple sclerosis. PMID:18725211

  14. The Emerging Roles of Gamma–Delta T Cells in Tissue Inflammation in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Malik, Sakshi; Want, Muzamil Yaqub; Awasthi, Amit

    2016-01-01

    γδ (gamma–delta) T cells, a small population of unconventional T cells, have been found in central nervous system lesions of multiple sclerosis (MS) patients, but their function in disease activity is not clearly understood. Previous studies in experimental autoimmune encephalomyelitis (EAE) were inconsistent in identifying their specific roles in suppressing or promoting disease pathogenesis. Emerging advancements in the biology of γδ T cells especially in the context of their being the major initial producers of IL-17, suggested their crucial role in pathogenesis of EAE. In addition, γδ T cells express high levels of IL-23R and IL-1R, which further enhance their effector functions in the pathogenesis of EAE. Nonetheless, activated heterogeneous γδ T cells display functional dichotomy, which is crucial in determining the outcomes of tissue inflammation in EAE. In this review, we discussed recent advances in understanding the biology of γδ T cells in tissue inflammation as well as their roles in suppressing or promoting the development of EAE. PMID:26858718

  15. A role for surface lymphotoxin in experimental autoimmune encephalomyelitis independent of LIGHT

    PubMed Central

    Gommerman, Jennifer L.; Giza, Keith; Perper, Stuart; Sizing, Irene; Ngam-ek, Apinya; Nickerson-Nutter, Cheryl; Browning, Jeffrey L.

    2003-01-01

    In studies using genetically deficient mice, a role for the lymphotoxin (LT) system in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has remained controversial. Here, we have reassessed this conclusion by using a fusion protein decoy that blocks the LT pathway in vivo without evoking the developmental defects inherent in LT-deficient mice. We have found that inhibition of the LT pathway prevented disease in two models of EAE that do not rely on the administration of pertussis toxin. Surprisingly, disease attenuation was due to specific blockade of LTαβ binding rather than the binding of LIGHT to its receptors. In a third system that requires pertussis toxin, LT inhibition did not affect disease, as was observed when the same model was used with LT-deficient mice. Disease prevention in pertussis toxin–free models was associated with defects in T cell responses and migration. When the DO11.10 T cell transgenic system was used, inhibition of the LT pathway was shown to uncouple T cell priming from T cell recall responses. Therefore, it is hypothesized that the LT pathway and its ability to maintain lymphoid microenvironments is critical for sustaining late-phase T cell responses in multiple sclerosis. PMID:12952924

  16. Ncx3 gene ablation impairs oligodendrocyte precursor response and increases susceptibility to experimental autoimmune encephalomyelitis.

    PubMed

    Casamassa, Antonella; La Rocca, Claudia; Sokolow, Sophie; Herchuelz, Andre; Matarese, Giuseppe; Annunziato, Lucio; Boscia, Francesca

    2016-07-01

    The Na(+) /Ca(2+) exchanger NCX3, recently identified as a myelin membrane component, is involved in the regulation of [Ca(2+) ]i during oligodendrocyte maturation. Here NCX3 involvement was studied in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Western blotting and quantitative colocalization studies performed in wild-type ncx3(+/+) mice at different stages of EAE disease showed that NCX3 protein was intensely upregulated during the chronic stage, where it was intensely coexpressed with the oligodendrocyte precursor cells (OPC) marker NG2 and the premyelinating marker CNPase. Moreover, MOG35-55 -immunized mice lacking the ncx3 gene displayed not only a reduced diameter of axons and an intact myelin ring number but also a dramatic decrease in OPC and pre-myelinating cells in the white matter of the spinal cord when compared with ncx3(+/+) . Accordingly, ncx3(-/-) and ncx3(+/-) mutants developed early onset of EAE and more severe clinical symptoms. Interestingly, cytofluorimetric analysis revealed that during the peak stage of the disease, the number of immune T-cell subsets in ncx3(-/-) mice, was not statistically different from that measured in ncx3(+/+) . Our findings demonstrate that knocking-out NCX3 impairs oligodendrocyte response and worsens clinical symptoms in EAE without altering the immune T-cell population. GLIA 2016;64:1124-1137. PMID:27120265

  17. Ninjurin1 Deficiency Attenuates Susceptibility of Experimental Autoimmune Encephalomyelitis in Mice*

    PubMed Central

    Ahn, Bum Ju; Le, Hoang; Shin, Min Wook; Bae, Sung-Jin; Lee, Eun Ji; Wee, Hee-Jun; Cha, Jong-Ho; Lee, Hyo-Jong; Lee, Hye Shin; Kim, Jeong Hun; Kim, Chang-Yeon; Seo, Ji Hae; Lo, Eng H.; Jeon, Sejin; Lee, Mi-Ni; Oh, Goo Taeg; Yin, Guo Nan; Ryu, Ji-Kan; Suh, Jun-Kyu; Kim, Kyu-Won

    2014-01-01

    Ninjurin1 is a homotypic adhesion molecule that contributes to leukocyte trafficking in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, in vivo gene deficiency animal studies have not yet been done. Here, we constructed Ninjurin1 knock-out (KO) mice and investigated the role of Ninjurin1 on leukocyte trafficking under inflammation conditions such as EAE and endotoxin-induced uveitis. Ninjurin1 KO mice attenuated EAE susceptibility by reducing leukocyte recruitment into the injury regions of the spinal cord and showed less adhesion of leukocytes on inflamed retinal vessels in endotoxin-induced uveitis mice. Moreover, the administration of a custom-made antibody (Ab26–37) targeting the Ninjurin1 binding domain ameliorated the EAE symptoms, showing the contribution of its adhesion activity to leukocyte trafficking. In addition, we addressed the transendothelial migration (TEM) activity of bone marrow-derived macrophages and Raw264.7 cells according to the expression level of Ninjurin1. TEM activity was decreased in Ninjurin1 KO bone marrow-derived macrophages and siNinj1 Raw264.7 cells. Consistent with this, GFP-tagged mNinj1-overexpressing Raw264.7 cells increased their TEM activity. Taken together, we have clarified the contribution of Ninjurin1 to leukocyte trafficking in vivo and delineated its direct functions to TEM, emphasizing Ninjurin1 as a beneficial therapeutic target against inflammatory diseases such as multiple sclerosis. PMID:24347169

  18. Effects of exercise in a relapsing-remitting model of experimental autoimmune encephalomyelitis.

    PubMed

    Klaren, Rachel E; Stasula, Ulana; Steelman, Andrew J; Hernandez, Jessica; Pence, Brandt D; Woods, Jeffrey A; Motl, Robert W

    2016-10-01

    Previous research has examined the effects of exercise in experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis. However, all previous studies have utilized a chronic model of EAE, with exercise delivered prior to or immediately after induction of EAE. To our knowledge, no study has examined the effects of exercise delivered during a remission period after initial disease onset in a relapsing-remitting model of EAE (RR-EAE). The current study examines the effects of both voluntary wheel running and forced treadmill exercise on clinical disability and hippocampal brain-derived neurotrophic factor (BDNF) in SJL mice with RR-EAE. The results demonstrate no significant effects of exercise delivered during remission after initial disease onset on clinical disability scores or levels of hippocampal BDNF in mice with RR-EAE. Furthermore, our results demonstrate no significant increase in citrate synthase activity in the gastrocnemius and soleus muscles of mice in the running wheel or treadmill conditions compared with the sedentary condition. These results suggest that the exercise stimuli might have been insufficient to elicit differences in clinical disability or hippocampal BDNF among treatment conditions. © 2016 Wiley Periodicals, Inc. PMID:27312674

  19. Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis via Induction of Neurogenesis and Oligodendrogenesis

    PubMed Central

    Amir-Levy, Yifat; Mausner-Fainberg, Karin; Karni, Arnon

    2014-01-01

    Background. The neural stem cells (NSCs) migrate to the damaged sites in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the differentiation into neurons or oligodendrocytes is blocked. Epidermal growth factor (EGF) stimulates NSC proliferation and mobilization to demyelinated lesions but also induces astrogenesis and glial scar. Objective. To examine the clinical and histopathological effects of EGF neutralization on EAE. Methods. EAE-induced SJL mice were intravenously treated with either anti-EGF neutralizing antibody (Ab) or isotype control or PBS. On day 9 after immunization, 3 mice of each group were daily treated for 9 days with BrdU and then sacrificed for immunohistochemical analysis. Results. Treatment with anti-EGF Ab significantly ameliorated EAE symptoms during the second relapse. Anti-EGF Ab induced a shift from BrdU+GFAP+ NSCs to BrdU+DCX+ neuroblasts in the subventricular zone (SVZ), increased BrdU+NeuN+ neurons in the granular cell layer of the dentate gyrus, and increased BrdU+O4+ oligodendrocytes in the SVZ. There was no change in the inflammatory infiltrates in response to anti-EGF Ab. Conclusions. Therapy with anti-EGF Ab ameliorates EAE via induction of neurogenesis and oligodendrogenesis. No immunosuppressive effect was found. Further investigation is needed to support these notions of beneficial effect of anti-EGF Ab in MS. PMID:25610650

  20. Stage-Specific Role of Interferon-Gamma in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis

    PubMed Central

    Arellano, Gabriel; Ottum, Payton A.; Reyes, Lilian I.; Burgos, Paula I.; Naves, Rodrigo

    2015-01-01

    The role of interferon (IFN)-γ in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), has remained as an enigmatic paradox for more than 30 years. Several studies attribute this cytokine a prominent proinflammatory and pathogenic function in these pathologies. However, accumulating evidence shows that IFN-γ also plays a protective role inducing regulatory cell activity and modulating the effector T cell response. Several innate and adaptive immune cells also develop opposite functions strongly associated with the production of IFN-γ in EAE. Even the suppressive activity of different types of regulatory cells is dependent on IFN-γ. Interestingly, recent data supports a stage-specific participation of IFN-γ in EAE providing a plausible explanation for previous conflicting results. In this review, we will summarize and discuss such literature, emphasizing the protective role of IFN-γ on immune cells. These findings are fundamental to understand the complex role of IFN-γ in the pathogenesis of these diseases and can provide basis for potential stage-specific therapy for MS targeting IFN-γ-signaling or IFN-γ-producing immune cells. PMID:26483787

  1. Thiamine deficiency promotes T cell infiltration in experimental autoimmune encephalomyelitis: the involvement of CCL2.

    PubMed

    Ji, Zhe; Fan, Zhiqin; Zhang, Ying; Yu, Ronghuan; Yang, Haihua; Zhou, Chenghua; Luo, Jia; Ke, Zun-Ji

    2014-09-01

    Multiple sclerosis (MS) is a complex multifactorial disease that results from the interplay between environmental factors and a susceptible genetic background. Experimental autoimmune encephalomyelitis (EAE) has been widely used to investigate the mechanisms underlying MS pathogenesis. Chemokines, such as CCL2, are involved in the development of EAE. We have previously shown that thiamine deficiency (TD) induced CCL2 in neurons. We hypothesized that TD may affect the pathogenesis of EAE. In this study, EAE was induced in C57BL/6J mice by the injection of myelin oligodendroglial glycoprotein (MOG) peptides 35-55 with or without TD. TD aggravated the development of EAE, which was indicated by clinical scores and pathologic alterations in the spinal cord. TD also accelerated the development of EAE in an adoptive transfer EAE model. TD caused microglial activation and a drastic increase (up 140%) in leukocyte infiltration in the spinal cord of the EAE mice; specifically, TD increased Th1 and Th17 cells. TD upregulated the expression of CCL2 and its receptor CCR2 in the spinal cord of EAE mice. Cells in peripheral lymph node and spleen isolated from MOG-primed TD mice showed much stronger proliferative responses to MOG. CCL2 stimulated the proliferation and migration of T lymphocytes in vitro. Our results suggested that TD exacerbated the development of EAE through activating CCL2 and inducing pathologic inflammation. PMID:25063874

  2. Routes of Administration and Dose Optimization of Soluble Antigen Arrays in Mice with Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Thati, Shara; Kuehl, Christopher; Hartwell, Brittany; Sestak, Joshua; Siahaan, Teruna; Forrest, Laird; Berkland, Cory

    2014-01-01

    Soluble Antigen Arrays (SAgAs) were developed for treating mice with experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. SAgAs are composed of hyaluronan with grafted EAE antigen and LABL peptide (a ligand of ICAM-1). SAgA dose was tested by varying injection volume, SAgA concentration, and administration schedule. Routes of administration were explored to determine the efficacy of SAgAs when injected intramuscularly, subcutaneously, intraperitoneally, intravenously, or instilled into lungs. Injections proximal to the central nervous system (CNS) were compared to distal injection sites. Intravenous dosing was included to determine if SAgA efficiency results from systemic exposure. Pulmonary instillation was included since reports suggest T cells are licensed in the lungs before moving onto the CNS1,2. Decreasing the volume of injection or SAgA dose reduced treatment efficacy. Treating mice with a single injection on day 4, 7, or 10 also reduced efficacy compared to injecting on all three days. Surprisingly, changing the injection site did not lead to a significant difference in efficacy. Intravenous administration showed efficacy similar to other routes, suggesting SAgAs act systemically. When SAgAs were delivered via pulmonary instillation, however, EAE mice failed to develop any symptoms, suggesting a unique lung mechanism to ameliorate EAE in mice. PMID:25447242

  3. Mesenchymal Stem Cell-Based Therapy in a Mouse Model of Experimental Autoimmune Encephalomyelitis (EAE)

    PubMed Central

    Bowles, Annie C.; Scruggs, Brittni A.; Bunnell, Bruce

    2015-01-01

    Multiple sclerosis (MS) is a common neurodegenerative disease that presents after an auto-reactive immune response against constituents of the central nervous system. Demyelination, inflammation, and white matter lesions are all hallmarks of this disease. Clinical research supports the use of mesenchymal stem cells (MSCs) as therapy for MS to ameliorate symptoms and pathology. MSCs can be isolated from multiple tissues, including adipose and bone marrow, and are able to migrate to sites of pathology, release anti-inflammatory factors, and provide immunomodulatory and neuroprotective effects once administered. Numerous studies have demonstrated the beneficial effects of MSCs in experimental autoimmune encephalomyelitis (EAE), an induced model of MS. EAE can be induced in several species; however, the mouse is commonly used for therapeutic testing. In the following chapter, scientists will be able to learn how to prepare reagents and MSCs (e.g., isolate, culture, and expand) as well as skillfully execute induction of EAE in mice and administer stem cell-based treatments. Standard methods used to evaluate the disease progression and analyze postmortem tissues are also included. PMID:25173393

  4. Treatment with Anti-EGF Ab Ameliorates Experimental Autoimmune Encephalomyelitis via Induction of Neurogenesis and Oligodendrogenesis.

    PubMed

    Amir-Levy, Yifat; Mausner-Fainberg, Karin; Karni, Arnon

    2014-01-01

    Background. The neural stem cells (NSCs) migrate to the damaged sites in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the differentiation into neurons or oligodendrocytes is blocked. Epidermal growth factor (EGF) stimulates NSC proliferation and mobilization to demyelinated lesions but also induces astrogenesis and glial scar. Objective. To examine the clinical and histopathological effects of EGF neutralization on EAE. Methods. EAE-induced SJL mice were intravenously treated with either anti-EGF neutralizing antibody (Ab) or isotype control or PBS. On day 9 after immunization, 3 mice of each group were daily treated for 9 days with BrdU and then sacrificed for immunohistochemical analysis. Results. Treatment with anti-EGF Ab significantly ameliorated EAE symptoms during the second relapse. Anti-EGF Ab induced a shift from BrdU(+)GFAP(+) NSCs to BrdU(+)DCX(+) neuroblasts in the subventricular zone (SVZ), increased BrdU(+)NeuN(+) neurons in the granular cell layer of the dentate gyrus, and increased BrdU(+)O4(+) oligodendrocytes in the SVZ. There was no change in the inflammatory infiltrates in response to anti-EGF Ab. Conclusions. Therapy with anti-EGF Ab ameliorates EAE via induction of neurogenesis and oligodendrogenesis. No immunosuppressive effect was found. Further investigation is needed to support these notions of beneficial effect of anti-EGF Ab in MS. PMID:25610650

  5. Endogenous Erythropoietin as Part of the Cytokine Network in the Pathogenesis of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Mengozzi, Manuela; Cervellini, Ilaria; Bigini, Paolo; Martone, Sara; Biondi, Antonella; Pedotti, Rosetta; Gallo, Barbara; Barbera, Sara; Mennini, Tiziana; Boraso, Mariaserena; Marinovich, Marina; Petit, Edwige; Bernaudin, Myriam; Bianchi, Roberto; Viviani, Barbara; Ghezzi, Pietro

    2008-01-01

    Erythropoietin (EPO) is of great interest as a therapy for many of the central nervous system (CNS) diseases and its administration is protective in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Endogenous EPO is induced by hypoxic/ischemic injury, but little is known about its expression in other CNS diseases. We report here that EPO expression in the spinal cord is induced in mouse models of chronic or relapsing-remitting EAE, and is prominently localized to motoneurons. We found a parallel increase of hypoxia-inducible transcription factor (HIF)-1α, but not HIF-2α, at the mRNA level, suggesting a possible role of non-hypoxic factors in EPO induction. EPO mRNA in the spinal cord was co-expressed with interferon (IFN)–γ and tumor necrosis factor (TNF), and these cytokines inhibited EPO production in vitro in both neuronal and glial cells. Given the known inhibitory effect of EPO on neuroinflammation, our study indicates that EPO should be viewed as part of the inflammatory/anti-inflammatory network in MS. PMID:18670620

  6. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis

    PubMed Central

    Sardi, Claudia; Zambusi, Laura; Finardi, Annamaria; Ruffini, Francesca; Tolun, Adviye A.; Dickerson, Ian M.; Righi, Marco; Zacchetti, Daniele; Grohovaz, Fabio; Provini, Luciano; Furlan, Roberto; Morara, Stefano

    2015-01-01

    Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null > heterozygote > wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing–remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocationof RCP. PMID:24746422

  7. Enhanced expression of constitutive and inducible forms of nitric oxide synthase in autoimmune encephalomyelitis.

    PubMed

    Kim, S; Moon, C; Wie, M B; Kim, H; Tanuma, N; Matsumoto, Y; Shin, T

    2000-06-01

    To elucidate the role of nitric oxide synthase (NOS) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), we analyzed the expression of constitutive neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) in the spinal cords of rats with EAE. We further examined the structural interaction between apoptotic cells and spinal cord cells including neurons and astrocytes, which are potent cell types of nitric oxide (NO) production in the brain. Western blot analysis showed that three forms of NOS significantly increased in the spinal cords of rats at the peak stage of EAE, while small amounts of these enzymes were identified in the spinal cords of rats without EAE. Immunohistochemical study showed that the expression of either nNOS or eNOS increased in the brain cells including neurons and astrocytes during the peak and recovery stages of EAE, while the expression of iNOS was found mainly in the inflammatory macrophages in the perivascular EAE lesions. Double labeling showed that apoptotic cells had intimate contacts with either neurons or astrocytes, which are major cell types to express nNOS and eNOS constitutively. Our results suggest that the three NOS may play an important role in the recovery of EAE. PMID:14612615

  8. T-Cell Properties Determine Disease Site, Clinical Presentation, and Cellular Pathology of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Abromson-Leeman, Sara; Bronson, Rod; Luo, Yi; Berman, Michael; Leeman, Rebecca; Leeman, Joshua; Dorf, Martin

    2004-01-01

    Two distinct clinical phenotypes of experimental autoimmune encephalomyelitis are observed in BALB interferon-γ knockout mice immunized with encephalitogenic peptides of myelin basic protein. Conventional disease, characterized by ascending weakness and paralysis, occurs with greater frequency after immunizing with a peptide comprising residues 59 to 76. Axial-rotatory disease, characterized by uncontrolled axial rotation, occurs with greater frequency in mice immunized with a peptide corresponding to exon 2 of the full length 21.5-kd protein. The two clinical phenotypes are histologically distinguishable. Conventional disease is characterized by inflammation and demyelination primarily in spinal cord, whereas axial-rotatory disease involves inflammation and demyelination of lateral medullary areas of brain. Both types have infiltrates in which neutrophils are a predominating component. By isolating T cells and transferring disease to naïve recipients, we show here that the type of disease is determined entirely by the inducing T cell. Furthermore, studies using CXCR2 knockout recipients, unable to recruit neutrophils to inflammatory sites, show that although neutrophils are critical for some of these T cells to effect disease, there are also interferon-γ-deficient T cells that induce disease in the absence of both interferon-γ and neutrophils. These results highlight the multiplicity of T-cell-initiated effector pathways available for inflammation and demyelination. PMID:15509523

  9. Combined Medication of Lovastatin with Rolipram Suppresses Severity of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Paintlia, Ajaib S; Paintlia, Manjeet K; Singh, Inderjit; Singh, Avtar K

    2008-01-01

    Combinations of new medications or existing therapies are gaining momentum over monotherapy to treat central nervous system (CNS) demyelinating diseases including multiple sclerosis (MS). Recent studies established that statins (HMG-CoA reductase inhibitors) are effective in experimental autoimmune encephalomyelitis (EAE), an MS model and are promising candidates for future MS medication. Another drug, rolipram (phosphodiesterase-4 inhibitor) ameliorates the clinical severity of EAE via induction of various anti-inflammatory and neuroprotective activities. In this study, we tested whether combining the suboptimal doses of these drugs can suppress the severity of EAE. Prophylactic studies revealed that combined treatment with suboptimal doses of statins perform better than their individually administered optimal doses in EAE as evidenced by delayed clinical scores, reduced disease severity, and rapid recovery. Importantly, combination therapy suppressed the progression of disease in an established EAE case via attenuation of inflammation, axonal loss and demyelination. Combination treatment attenuated inflammatory TH1 and TH17 immune responses and induced TH2-biased immunity in the peripheral and CNS as revealed by serological, quantitative, and immunosorbant assay-based analyses. Moreover, the expansion of T regulatory (CD25+/Foxp3+) cells and self-immune tolerance was apparent in the CNS. These effects of combined drugs were reduced or minimal with either drug alone in this setting. In conclusion, our findings demonstrate that the combination of these drugs suppresses EAE severity and provides neuroprotection thereby suggesting that this pharmacological approach could be a better future therapeutic strategy to treat MS patients. PMID:18775426

  10. A New Targeted Model of Experimental Autoimmune Encephalomyelitis in the Common Marmoset.

    PubMed

    Stassart, Ruth Martha; Helms, Gunther; Garea-Rodríguez, Enrique; Nessler, Stefan; Hayardeny, Liat; Wegner, Christiane; Schlumbohm, Christina; Fuchs, Eberhard; Brück, Wolfgang

    2016-07-01

    Multiple sclerosis (MS) is the most common cause for sustained disability in young adults, yet treatment options remain very limited. Although numerous therapeutic approaches have been effective in rodent models of experimental autoimmune encephalomyelitis (EAE), only few proved to be beneficial in patients with MS. Hence, there is a strong need for more predictive animal models. Within the past decade, EAE in the common marmoset evolved as a potent, alternative model for MS, with immunological and pathological features resembling more closely the human disease. However, an often very rapid and severe disease course hampers its implementation for systematic testing of new treatment strategies. We here developed a new focal model of EAE in the common marmoset, induced by myelin oligodendrocyte glycoprotein (MOG) immunization and stereotactic injections of proinflammatory cytokines. At the injection site of cytokines, confluent inflammatory demyelinating lesions developed that strongly resembled human MS lesions. In a proof-of-principle treatment study with the immunomodulatory compound laquinimod, we demonstrate that targeted EAE in marmosets provides a promising and valid tool for preclinical experimental treatment trials in MS research. PMID:26207848

  11. Facial hypersensitivity and trigeminal pathology in mice with experimental autoimmune encephalomyelitis.

    PubMed

    Thorburn, Kevin C; Paylor, John W; Webber, Christine A; Winship, Ian R; Kerr, Bradley J

    2016-03-01

    Trigeminal neuropathic pain is a well-recognized complication of the demyelinating disease multiple sclerosis (MS). However, the mechanisms underlying MS-related trigeminal neuropathic pain are poorly understood. This can be attributed, at least in part, to the lack of an animal model that exhibits trigeminal pathology similar to that described in MS. Experimental autoimmune encephalomyelitis (EAE) is an animal model that is commonly used to study the pathophysiology of MS. We show here that mice with EAE exhibit increased sensitivity to air puffs applied to the whisker pad. The increased sensitivity to air puff stimulation is accompanied by T cell infiltration and glial activation at several points along the trigeminal primary afferent pathway. We also observe demyelination of the intra- and extra-pontine aspects of the trigeminal sensory root and the spinal trigeminal tract. This is the first study to show orofacial sensory disturbances and trigeminal demyelination in EAE. Collectively, our data suggest that EAE may be a useful model for understanding MS-related trigeminal neuropathic pain conditions such as trigeminal neuralgia. PMID:26545087

  12. Protective effects of matrine on experimental autoimmune encephalomyelitis via regulation of ProNGF and NGF signaling.

    PubMed

    Zhu, Lin; Pan, Qing-Xia; Zhang, Xiao-Jian; Xu, Yu-Ming; Chu, Yao-Juan; Liu, Nan; Lv, Peng; Zhang, Guang-Xian; Kan, Quan-Cheng

    2016-04-01

    Inflammation, demyelination, oligodendrocyte (OLG) death, and axonal degeneration are primary characteristics of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). OLGs generate myelin sheaths that surround axons, while damage to OLGs leads to demyelination and neurological functional deficit. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been recently found to effectively ameliorate clinical signs in EAE. Its therapeutic mechanism has, however, not been completely elucidated. In the present study, we found that MAT retarded the disease process, attenuated the clinical severity of EAE rats, ameliorated inflammation and demyelination, and suppressed the apoptosis of OLGs in the central nervous system (CNS) of EAE rats. In addition, MAT markedly blocked increased expression of the proNGF-p75(NTR) death signaling complex, which is known to mediate OLG death in EAE animals. At the same time, MAT also prevented a decrease in the levels of NGF and its receptor TrkA, which together mediate the cell survival pathway and differentiation of OLGs. ProNGF, NGF, and the downstream effector proteins play an important role in the growth, differentiation, and apoptosis of OLGs as well as the reparative response to neuronal damage. These findings thus indicate that MAT improves clinical severity of EAE in part by reducing OLG apoptosis via restoring the ratios of proNGF:NGF and the respective receptors p75(NTR):TrkA in vivo. Taken together, these results suggest that MAT may be a promising agent for MS treatment based on its protective effect on OLGs. PMID:26681653

  13. Acute desipramine restores presynaptic cortical defects in murine experimental autoimmune encephalomyelitis by suppressing central CCL5 overproduction

    PubMed Central

    Di Prisco, Silvia; Merega, Elisa; Lanfranco, Massimiliano; Casazza, Simona; Uccelli, Antonio; Pittaluga, Anna

    2014-01-01

    Background and Purpose Altered glutamate exocytosis and cAMP production in cortical terminals of experimental autoimmune encephalomyelitis (EAE) mice occur at the early stage of disease (13 days post-immunization, d.p.i.). Neuronal defects were paralleled by overexpression of the central chemokine CCL5 (also known as RANTES), suggesting it has a role in presynaptic impairments. We propose that drugs able to restore CCL5 content to physiological levels could also restore presynaptic defects. Because of its efficacy in controlling CCL5 overexpression, desipramine (DMI) appeared to be a suitable candidate to test our hypothesis. Experimental Approach Control and EAE mice at 13 d.p.i. were acutely or chronically administered DMI and monitored for behaviour and clinical scores. Noradrenaline and glutamate release, cAMP, CCL5 and TNF-α production were quantified in cortical synaptosomes and homogenates. Peripheral cytokine production was also determined. Key Results Noradrenaline exocytosis and α2-adrenoeceptor-mediated activity were unmodified in EAE mice at 13 d.p.i. when compared with control. Acute, but not chronic, DMI reduced CCL5 levels in cortical homogenates of EAE mice at 13 d.p.i., but did not affect peripheral IL-17 and TNF-α contents or CCL5 plasma levels. Acute DMI caused a long-lasting restoration of glutamate exocytosis, restored endogenous cAMP production and impeded the shift from inhibition to facilitation of the CCL5-mediated control of glutamate exocytosis. Finally, DMI ameliorated anxiety-related behaviour but not motor activity or severity of clinical signs. Conclusions We propose DMI as an add-on therapy to normalize neuropsychiatric symptoms in multiple sclerosis patients at the early stage of the disease. PMID:24528439

  14. Glatiramer acetate guards against rapid memory decline during relapsing-remitting experimental autoimmune encephalomyelitis.

    PubMed

    LoPresti, Patrizia

    2015-03-01

    Cognitive decline presents a therapeutic challenge for patients with multiple sclerosis (MS), a disease characterized by recurrent autoimmune demyelination and by progressive CNS degeneration. Glatiramer acetate (GA, also known as Copolymer 1, Cop-1, or Copaxone), commonly used to treat MS, reduces the frequency of relapses; it has both anti-inflammatory and neuroprotective properties. However, clinical trials have not definitively shown that GA improves cognitive impairment during MS. Using an in vivo animal model of autoimmune demyelination, i.e., relapsing-remitting experimental autoimmune encephalomyelitis (EAE), we tested short-term memory in EAE mice (EAE), in EAE mice treated with GA for 10 days starting at the time of immunization (EAE + GA), and in age-matched healthy, naïve mice (Naïve). Short-term memory was assessed using the cross-maze test at 10, 20, and 30 days post-immunization (d.p.i.); data were analyzed at each time point and over time. At 10 d.p.i., EAE and EAE + GA mice had better memory function than Naïve mice. However, at the later time points, EAE mice had a steep negative slope of memory function (indicating decline), whereas EAE + GA mice had a flatter, less-negative slope of memory function. Notably, the memory function of EAE mice significantly decreased over time compared with that of Naïve mice, indicating that EAE had a negative impact on cognitive ability. In contrast, there was no statistically significant difference between the slopes of memory function in mice with EAE treated with GA versus Naïve mice, which revealed effective, albeit partial, protection by GA treatment against progressive memory decline during EAE disease. Of particular interest, although EAE mice had memory decline over 30 d.p.i., their clinical disease scores improved during that time. Thus, our results suggest that EAE mice had a significant progressive memory decline and that GA, administered at the time of immunization, partially guards against rapid

  15. Intermittent feeding attenuates clinical course of experimental autoimmune encephalomyelitis in C57BL/6 mice.

    PubMed

    Kafami, Laya; Raza, Mohsin; Razavi, Alireza; Mirshafiey, Abbas; Movahedian, Mansooreh; Khorramizadeh, Mohammad Reza

    2010-01-01

    Multiple Sclerosis (MS) is an autoimmune inflammatory, demyelinating disease of human central nervous system. Experimental Autoimmune Encephalomyelitis (EAE) is the commonly used animal model of MS. Calorie restriction has been found to reduce inflammation and autoimmune responses and promote neuroprotection. In this study we evaluated the effects of intermittent feeding protocol of the calorie restriction in a mouse model of EAE. Fifty four female mice (C57BL/6) were used in this study. The animals were divided into two dietary groups: ad libitum (AL) (n = 29) with free access to food and water and intermittent feeding (IF) (n = 25) with access to food on alternate days. After 8 weeks, EAE was induced in animals by immunization with MOG antigen (Hooke labs, Lawrence, MA, USA) subcutaneously. AL and IF groups were then further divided into two groups each: AA (ad libitum until the end of study) (n = 16) and AI (subjected to intermittent feeding regimen after immunization day) (n = 13). The IF group was divided into II (continued intermittent feeding regimen until the end of study) (n = 13) and IA (changed to AL regimen after immunization day) (n = 12). All the animals were behaviorally monitored for 35 days after immunization and observed daily for the signs and severity of disease with EAE scoring scale [0-5] and cumulative disease index (CDI) score. Intermittent feeding significantly reduced the incidence of EAE in IF groups (AI 0%, II 18.5%, IA 22.2%, p < 0.05). In addition, intermittent feeding significantly delayed the onset of EAE in AI group (p < 0.05) and also, intermittent feeding significantly reduced the severity of disease in II and IA groups (AA vs. II, p < 0.05 & AA vs. IA p < 0.05) groups. The CDI was also significantly reduced in intermittent feeding fed groups [AI, II and IA compared to AA group (P < 0.05, <0.01, <0.05 respectively)]. Intermittent feeding regimen protocol of the calorie restriction significantly suppressed EAE incidence, induction

  16. A Cannabigerol Derivative Suppresses Immune Responses and Protects Mice from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Carrillo-Salinas, Francisco J.; Navarrete, Carmen; Mecha, Miriam; Feliú, Ana; Collado, Juan A.; Cantarero, Irene; Bellido, María L.; Muñoz, Eduardo; Guaza, Carmen

    2014-01-01

    Phytocannabinoids that do not produce psychotropic effects are considered of special interest as novel therapeutic agents in CNS diseases. A cannabigerol quinone, the compound VCE-003, has been shown to alleviate symptoms in a viral model of multiple sclerosis (MS). Hence, we studied T cells and macrophages as targets for VCE-003 and its efficacy in an autoimmune model of MS. Proliferation, cell cycle, expression of activation markers was assessed by FACs in human primary T cells, and cytokine and chemokine production was evaluated. Transcription was studied in Jurkat cells and RAW264.7 cells were used to study the effects of VCE-003 on IL-17-induced macrophage polarization to a M1 phenotype. Experimental autoimmune encephalomyelitis (EAE) was induced by myelin oligodendrocyte glycoprotein (MOG35–55) immunization and spinal cord pathology was assessed by immunohistochemistry. Neurological impairment was evaluated using disease scores. We show here that VCE-003 inhibits CD3/CD28-induced proliferation, cell cycle progression and the expression of the IL-2Rα and ICAM-1 activation markers in human primary T cells. VCE-003 inhibits the secretion of Th1/Th17 cytokines and chemokines in primary murine T cells, and it reduces the transcriptional activity of the IL-2, IL-17 and TNFα promoters induced by CD3/CD28. In addition, VCE-003 and JWH-133, a selective CB2 agonist, dampened the IL-17-induced polarization of macrophages to a pro-inflammatory M1 profile. VCE-003 also prevented LPS-induced iNOS expression in microglia. VCE-003 ameliorates the neurological defects and the severity of MOG-induced EAE in mice through CB2 and PPARγ receptor activation. A reduction in cell infiltrates, mainly CD4+ T cells, was observed, and Th1 and Th17 responses were inhibited in the spinal cord of VCE-003-treated mice, accompanied by weaker microglial activation, structural preservation of myelin sheets and reduced axonal damage. This study highlights the therapeutic potential of VCE

  17. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T-cell subsets.

    PubMed

    Wang, Junpeng; Ren, Zhihong; Xu, Yanmei; Xiao, Sheng; Meydani, Simin N; Wu, Dayong

    2012-01-01

    The green tea component epigallocatechin-3-gallate (EGCG) may be beneficial in autoimmune diseases; however, the underlying mechanisms are not well understood. In this study, we determined the effect of EGCG on the development of experimental autoimmune encephalomyelitis, an animal model for human multiple sclerosis, and the underlying mechanisms. Female C57BL/6 mice were fed EGCG (0%, 0.15%, 0.3%, and 0.6% in diet) for 30 days and then immunized with specific antigen myelin oligodendrocyte glycoprotein 35-55. EGCG dose dependently attenuated clinical symptoms and pathological features (leukocyte infiltration and demyelination) in the central nervous system and inhibited antigen-specific T-cell proliferation and delayed-type hypersensitivity skin response. We further showed that EGCG reduced production of interferon-γ, IL-17, IL-6, IL-1β, and tumor necrosis factor-α; decreased types 1 and 17 helper T cells (Th1 and Th17, respectively); and increased regulatory T-cell populations in lymph nodes, the spleen, and the central nervous system. Moreover, EGCG inhibited expression of transcription factors T-box expressed in T cells and retinoid-related orphan receptor-γt, the specific transcription factor for Th1 and Th17 differentiation, respectively; the plasma levels of intercellular adhesion molecule 1; and CCR6 expression in CD4(+) T cells. These results indicate that EGCG may attenuate experimental autoimmune encephalomyelitis autoimmune response by inhibiting immune cell infiltration and modulating the balance among pro- and anti-autoimmune CD4(+) T-cell subsets. Thus, we identified a novel mechanism that underlies EGCG's beneficial effect in autoimmune disease. PMID:22056360

  18. Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A.

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139–151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D3 (vitamin D3), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D3 and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D3-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells. PMID:26580651

  19. Vitamin D₃ and monomethyl fumarate enhance natural killer cell lysis of dendritic cells and ameliorate the clinical score in mice suffering from experimental autoimmune encephalomyelitis.

    PubMed

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A

    2015-11-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4⁺ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139-151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D₃ (vitamin D₃), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D₃ and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D₃-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells. PMID:26580651

  20. Age-associated changes in rat immune system: lessons learned from experimental autoimmune encephalomyelitis.

    PubMed

    Djikić, Jasmina; Nacka-Aleksić, Mirjana; Pilipović, Ivan; Stojić-Vukanić, Zorica; Bufan, Biljana; Kosec, Duško; Dimitrijević, Mirjana; Leposavić, Gordana

    2014-10-01

    Aging is associated with the decline in immune response to infectious agents and tumors and increasing risk of autoimmunity, but the incidence of autoimmune diseases does not increase in the elderly. To elucidate the cellular and molecular mechanisms influencing clinical expression of autoimmunity in aged animals, the phenotypic and functional characteristics of mononuclear cells isolated from the spinal cords of 3-month-old (young) and 26-month-old (aged) Dark Agouti rats immunized to induce experimental autoimmune encephalomyelitis (EAE) - the model of multiple sclerosis, the most common autoimmune disease of the central nervous system, were examined. Aged rats were less susceptible to EAE induction, and the neurological and histological picture was milder in those rats which developed the clinically manifested disease. At the peak of the disease, several times fewer mononuclear cells and T lymphocytes were isolated from the spinal cords of aged rats compared with the young ones. The frequency of CD4+ cells among TCRαβ+ lymphocytes, as well as that of reactivated CD134(OX40)+ cells within its CD4+ T-lymphocyte subpopulation, was less in spinal cords of aged compared with young rats. Additionally, CD134 surface density on CD4+ lymphocytes was decreased in the spinal cord of aged rats. The changes in CD134 expression most likely reflected in part age-related intrinsic changes in CD4+ lymphocytes as the expression of this molecule was also impaired on in vitro stimulated naïve CD4+ splenocytes from aged rats compared with young animals. In addition, greater frequency of CD8+ lymphocytes with regulatory phenotypes could also contribute to impaired CD4+ cell reactivation in aged rats. The increased apoptosis of CD4+ cells from aged rats was consistent with their impaired reactivation and it was accompanied by the greater frequency of CD4+CD11b+CD45(int/high) cells, which are supposed to be actively engaged in apoptotic cell phagocytosis and to have immunoregulatory

  1. Defining and Regulating Acute Inflammatory Lesion Formation during the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis.

    PubMed

    Bolton, Christopher; Smith, Paul

    2015-01-01

    The primary pathology of the human central nervous system disease multiple sclerosis (MS) and the animal counterpart experimental autoimmune encephalomyelitis (EAE) includes immunological and inflammatory events. Immune system involvement in MS has been widely debated but the role of inflammation has received less attention. Classic acute inflammation features vasculitis, resident tissue macrophage and mast cell participation plus the involvement of circulatory-derived neutrophils and platelets. Pre-lesion development in MS incorporates cerebral vasculitis, activated resident microglia in normal appearing white matter together with infiltrating cell types and factors indicative of an acute inflammatory reaction. Similarly, the formation of perivascular lesions during early EAE includes characteristic neurovasculitis, the participation of central nervous system microglial phenotypes plus haemopoietic cells and mediators, signifying an ongoing acute inflammatory response. EAE has been extensively used as a screen to select drugs for MS treatment but has been criticised as unrepresentative of the human condition due to fundamental differences in disease induction and pathogenesis. The review provides compelling evidence for a distinct acute inflammatory phase in MS lesion formation that is convincingly reproduced in early EAE pathology. Moreover, consideration of drug efficacy studies undertaken during initial EAE validates the occurrence of an acute inflammatory phase in disease pathogenesis. Critical appraisal, recognition and acceptance of the mutual acute inflammatory components inherent in the primary pathology of MS and EAE reveals new targets and encourages confident and reliable employment of the animal model in the assessment of novel compounds for the control of key primary pathological events in human demyelinating disease. PMID:26177741

  2. Middle-age male mice have increased severity of experimental autoimmune encephalomyelitis and are unresponsive to testosterone therapy.

    PubMed

    Matejuk, Agata; Hopke, Corwyn; Vandenbark, Arthur A; Hurn, Patricia D; Offner, Halina

    2005-02-15

    Treatment with sex hormones is known to protect against experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. However, little is known about how age affects the course of EAE or response to hormone treatment. This study demonstrates striking differences between middle-age vs young C57BL/6 male mice in the clinical course of EAE and response to both testosterone (T4) and estrogen (E2) hormone therapy. Unlike young males that developed an acute phase of EAE followed by a partial remission, middle-age males suffered severe chronic and unremitting EAE that was likely influenced by alterations in the distribution and function of splenic immunocytes and a significant reduction in suppressive activity of CD4+CD25+ regulatory T cells in the spleen and spinal cord. Middle-age males had reduced numbers of splenic CD4+ T cells that were generally hypoproliferative, but enhanced numbers of splenic macrophages and MHC class II-expressing cells, and increased secretion of the proinflammatory factors IFN-gamma and MCP-1. Surprisingly, middle-age males were unresponsive to the EAE-protective effects of T4 and had only a transient benefit from E2 treatment; young males were almost completely protected by both hormone treatments. T4 treatment of young males inhibited proliferation of myelin oligodendrocyte glycoprotein 35-55-specific T cells and secretion of TNF-alpha and IFN-gamma. The effects of T4 in vivo and in vitro were reversed by the androgen receptor antagonist, flutamide, indicating that the regulatory effects of T4 were mediated through the androgen receptor. These data are the first to define age-dependent differences in EAE expression and response to hormone therapy. PMID:15699175

  3. Impact of Notch1 Deletion in Macrophages on Proinflammatory Cytokine Production and the Outcome of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Wongchana, Wipawee; Lawlor, Rebecca G; Osborne, Barbara A; Palaga, Tanapat

    2015-12-01

    Notch signaling is involved in regulating TLR-mediated responses in activated macrophages. In this study, we investigated the impact of Notch signaling in macrophages in an experimental autoimmune encephalomyelitis (EAE) model. To examine the impact of deficiency in Notch signaling in activated macrophages in EAE, an adoptive transfer of activated macrophages derived from Notch1(fl/fl) × Mx1cre(+/-) (Notch1 knockout [N1KO]) or CSL/Rbp-jκ(fl/fl) × Mx1cre(+/-) (CSL/RBP-Jκ KO) mice was performed prior to induction of EAE. Mice receiving activated N1KO macrophages showed decreased severity of EAE compared with mice receiving wild-type or CSL/RBP-Jκ KO macrophages. In vitro restimulation of splenocytes by myelin oligodendrocyte glycoprotein 35-55 peptide from these mice revealed that cells from mice receiving N1KO macrophages produced significantly less IL-17 compared with the control mice, whereas IFN-γ production was similar in both groups. We found that activated N1KO, but not CSL/RBP-Jκ KO, macrophages produced less IL-6 and had lower CD80 expression compared with wild-type and did not exhibit any defect in IL-12p40/70 production, whereas activated macrophages from CSL/RBP-Jκ KO mice phenocopied γ-secretase inhibitor treatment for reduced IL-12p40/70 production. Furthermore, the nuclear translocation of the NF-κB subunit c-Rel was compromised in γ-secretase inhibitor-treated and CSL/RBP-Jκ KO but not N1KO macrophages. These results suggest that Notch1 and CSL/RBP-Jκ in macrophages may affect the severity of EAE differently, possibly through modulating IL-6 and CD80 expression, which is involved in the Th17 but not Th1 response. PMID:26503951

  4. Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis

    PubMed Central

    Ghosh, Srimoyee; Koralov, Sergei B.; Stevanovic, Irena; Sundrud, Mark S.; Sasaki, Yoshiteru; Rajewsky, Klaus; Rao, Anjana; Müller, Martin R.

    2010-01-01

    Nuclear factor of activated T cells (NFAT) proteins are a group of Ca2+-regulated transcription factors residing in the cytoplasm of resting cells. Dephosphorylation by calcineurin results in nuclear translocation of NFAT and subsequent expression of target genes; rephosphorylation by kinases, including casein kinase 1 (CK1), restores NFAT to its latent state in the cytoplasm. We engineered a hyperactivable version of NFAT1 with increased affinity for calcineurin and decreased affinity for casein kinase 1. Mice expressing hyperactivable NFAT1 in their T-cell compartment exhibited a dramatically increased frequency of both IL-17– and IL-10–producing cells after differentiation under Th17 conditions—this was associated with direct binding of NFAT1 to distal regulatory regions of Il-17 and Il-10 gene loci in Th17 cells. Despite higher IL-17 production in culture, the mice were significantly less prone to myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis than controls, correlating with increased production of the immunomodulatory cytokine IL-10 and enhanced accumulation of regulatory T cells within the CNS. Thus, NFAT hyperactivation paradoxically leads to decreased susceptibility to experimental autoimmune encephalomyelitis, supporting previous observations linking defects in Ca2+/NFAT signaling to lymphoproliferation and autoimmune disease. PMID:20696888

  5. Infection of non-encapsulated species of Trichinella ameliorates experimental autoimmune encephalomyelitis involving suppression of Th17 and Th1 response.

    PubMed

    Wu, Zhiliang; Nagano, Isao; Asano, Kazunobu; Takahashi, Yuzo

    2010-10-01

    Epidemiological and experimental studies have indicated that helminth infections can ameliorate autoimmune diseases. The present study investigated the amelioration effect of the Trichinella pseudospiralis infection on experimental autoimmune encephalomyelitis (EAE), a T-cell-mediated autoimmune disease of central nervous system (CNS), and expression kinetics of Th17 and Th1 cytokine which play a crucial role in the pathogenesis of EAE. The results indicated that the infection of helminth T. pseudospiralis obviously ameliorated clinical severity and greatly delayed the onset of EAE induced by myelin oligodendrocyte glycoprotein (MOG) immunization. Infection caused much lesser inflammatory infiltration and demyilination in the CNS of infected EAE mice than uninfected EAE mice. The reduced infiltration was also suggested by the expressions of the inflammation cytokines, IL-17, IL-6, IL-1β, IFN-γ, and TNF-α, which were high in the spinal cords of the uninfected EAE mice, but was nearly normal or low in the infected EAE mice. The increased production of MOG-induced IL-17 and IFN-γ and the expression of IL-6, IL-1β, TGF-β in splenocytes after restimulation with MOG was inhibited in the infected EAE mice. On the other hand, the greatly induced Th2 response was observed in the splenocytes of the infected EAE mice. The present study showed that T. pseudospiralis infection can suppresses EAE by reducing the inflammatory infiltration in CNS, likely associated with the suppression of Th17 and Th1 responses by the infection. PMID:20661746

  6. Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J

    2015-09-01

    Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease. PMID:26033473

  7. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis

    PubMed Central

    Ho, Peggy P.; Steinman, Lawrence

    2016-01-01

    Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid–FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid–FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Obeticholic acid (6α-ethyl-chenodeoxycholic acid, 6-ECDCA), a synthetic FXR agonist, is an orally available drug that is currently in clinical trials for the treatment of inflammatory diseases such as alcoholic hepatitis, nonalcoholic steatohepatitis, and primary biliary cirrhosis. When we treated mice exhibiting established EAE with 6-ECDCA, or the natural FXR ligand chenodeoxycholic acid (CDCA), clinical disease was ameliorated by (i) suppressing lymphocyte activation and proinflammatory cytokine production; (ii) reducing CD4+ T cells and CD19+ B cell populations and their expression of negative checkpoint regulators programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and B and T lymphocyte attenuator (BTLA); (iii) increasing CD8+ T cells and PD1, PDl-1, and BTLA expression; and (iv) reducing VLA-4 expression in both the T- and B-cell populations. Moreover, adoptive transfer of 6-ECDCA– or CDCA-treated donor cells failed to transfer disease in naive recipients. Thus, we show that FXR functions as a negative regulator in neuroinflammation and we highlight that FXR agonists represent a potential previously unidentified therapy for MS. PMID:26811456

  8. Early P2X7R-related astrogliosis in autoimmune encephalomyelitis.

    PubMed

    Grygorowicz, Tomasz; Wełniak-Kamińska, Marlena; Strużyńska, Lidia

    2016-07-01

    Astrocytes are the main cells responsible for maintenance of brain homeostasis. Undisturbed action and signaling with other cells are crucial for proper functioning of the central nervous system (CNS). Dysfunctional astrocytes may determine the degree of neuronal injury and are associated with several brain pathologies, among which are multiple sclerosis (MS) and the animal model of this disease which is known as experimental autoimmune encephalomyelitis (EAE). One of the many functions of astrocytes is their response to CNS damage when they undergo reactive gliosis. Our data reveal that activation of astrocytes occurs in forebrains of immunized rats at a very early stage of EAE, well before the symptomatic phase of the disease. We have noted enhanced expression of GFAP and S100β starting from day 4 post-immunization. Temporal coincidence between the expression of astrocyte activation markers and the expression of connexin 43 and purinergic P2X7 receptor (P2X7R) was also observed. Administration of Brilliant blue G, an antagonist of P2X7R, significantly decreases astrogliosis as confirmed by immunohistochemical analysis and observation of decreased levels of GFAP and S100β. The condition of the treated animals was improved and the neurological symptoms of the disease were alleviated. With the knowledge that cerebral astroglia represent the main source of ATP and glutamate which are potentially neurotoxic substances released through P2X7R and connexin hemichannels, we suggest that astroglia may be involved in pathogenesis of MS/EAE at a very early stage through the purinergic/glutamatergic mechanisms. PMID:26921791

  9. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis.

    PubMed

    Ho, Peggy P; Steinman, Lawrence

    2016-02-01

    Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid-FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid-FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Obeticholic acid (6α-ethyl-chenodeoxycholic acid, 6-ECDCA), a synthetic FXR agonist, is an orally available drug that is currently in clinical trials for the treatment of inflammatory diseases such as alcoholic hepatitis, nonalcoholic steatohepatitis, and primary biliary cirrhosis. When we treated mice exhibiting established EAE with 6-ECDCA, or the natural FXR ligand chenodeoxycholic acid (CDCA), clinical disease was ameliorated by (i) suppressing lymphocyte activation and proinflammatory cytokine production; (ii) reducing CD4(+) T cells and CD19(+) B cell populations and their expression of negative checkpoint regulators programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and B and T lymphocyte attenuator (BTLA); (iii) increasing CD8(+) T cells and PD1, PDl-1, and BTLA expression; and (iv) reducing VLA-4 expression in both the T- and B-cell populations. Moreover, adoptive transfer of 6-ECDCA- or CDCA-treated donor cells failed to transfer disease in naive recipients. Thus, we show that FXR functions as a negative regulator in neuroinflammation and we highlight that FXR agonists represent a potential previously unidentified therapy for MS. PMID:26811456

  10. Huperzine A inhibits CCL2 production in experimental autoimmune encephalomyelitis mice and in cultured astrocyte.

    PubMed

    Tian, G X; Zhu, X Q; Chen, Y; Wu, G C; Wang, J

    2013-01-01

    The active role of chemokines and inflammatory cytokines in the central nervous system (CNS) during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has been clearly established. Recent studies from our laboratory reported that Huperzine A (HupA) can attenuate the disease process in EAE by the inhibition of inflammation, demyelination, and axonal injury in the spinal cord as well as encephalomyelitic T-cell proliferation. In this study, the effects of low dose HupA on CCL2, TNF-alpha, IL-6, and IL-1beta expression were evaluated in EAE. The effect of HupA on lipopolysachharide (LPS)-induced inflammatory molecule secretion was investigated in cultured-astrocytes in vitro. In MOG35-55-induced EAE mice, intraperitoneal injections of HupA (0.1 mg/kg•d−1) significantly suppressed the expression of CCL2, IL-6, TNF-alpha, and IL-1beta in the spinal cord. HupA also repressed LPS-induced CCL2 production, but with little influence on pro-inflammatory cytokines in primary cultured astrocytes. The inhibition effect of HupA on CCL2 is PPARgamma-dependent and nicotine receptor-independent. Conditioned culture media from HupA-treated astrocyte decreased PBMC migration in vitro. Collectively, these results suggest that HupA can ameliorate EAE by inhibiting CCL2 production in astrocyte, which may consequently decrease inflammatory cell infiltration in the spinal cord. HupA may have a potential therapeutic value for the treatment of MS and other neuroinflammatory diseases. PMID:24067473

  11. High-affinity σ1 protein agonist reduces clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Oxombre, B; Lee-Chang, C; Duhamel, A; Toussaint, M; Giroux, M; Donnier-Maréchal, M; Carato, P; Lefranc, D; Zéphir, H; Prin, L; Melnyk, P; Vermersch, P

    2015-01-01

    Background and Purpose Selective agonists of the sigma-1 receptor (σ1 protein) are generally reported to protect against neuronal damage and modulate oligodendrocyte differentiation. Human and rodent lymphocytes possess saturable, high-affinity binding sites for compounds binding to the σ1 protein and potential immunomodulatory properties have been described for σ1 protein ligands. Experimental autoimmune encephalomyelitis (EAE) is recognized as a valuable model of the inflammatory aspects of multiple sclerosis (MS). Here, we have assessed the role of a σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, in EAE. Experimental Approach EAE was induced in SJL/J female mice by active immunization with myelin proteolipid protein (PLP)139–151 peptide. The σ1 protein agonist was injected i.p. at the time of immunization (day 0). Disease severity was assessed clinically and by histopathological evaluation of the CNS. Phenotyping of B-cell subsets and regulatory T-cells were performed by flow cytometry in spleen and cervical lymph nodes. Key Results Prophylactic treatment of EAE mice with the σ1 protein agonist prevented mononuclear cell accumulation and demyelination in brain and spinal cord and increased T2 B-cells and regulatory T-cells, resulting in an overall reduction in the clinical progression of EAE. Conclusions and Implications This σ1 protein agonist, containing the tetrahydroisoquinoline-hydantoin structure, decreased the magnitude of inflammation in EAE. This effect was associated with increased proportions of B-cell subsets and regulatory T-cells with potential immunoregulatory functions. Targeting of the σ1 protein might thus provide new therapeutic opportunities in MS. PMID:25521311

  12. A leading role for NADPH oxidase in an in-vitro study of experimental autoimmune encephalomyelitis.

    PubMed

    Seo, Ji-Eun; Hasan, Mahbub; Rahaman, Khandoker Asiqur; Kang, Min-Jung; Jung, Byung-Hwa; Kwon, Oh-Seung

    2016-04-01

    Myelin oligodendrocyte glycoprotein peptide fragment 35-55 (MOG35-55) is a major autoantigen inducing experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis that is characterized by blood-brain barrier (BBB) disruption. Various experimental approaches have employed MOG35-55 in vivo; however, in vitro BBB models using MOG35-55 are rarely reported. We investigated MOG35-55 exposure effects with complete Freund's adjuvant (CFA) and pertussis toxin (PTX) on brain endothelial cells and elucidated the relationships among NADPH oxidase, MMP-9, ICAM-1, and VCAM-1. These 4 factors significantly increased in MOG35-55+CFA+PTX-exposed endothelial cells compared with the control cells. NADPH oxidase inhibition using apocynin reduced MMP-9 activity, ICAM-1, and VCAM-1. MMP-9 inhibitor I decreased expression of ICAM-1 and VCAM-1, and both anti-ICAM-1 and anti-VCAM-1 inhibited MMP-9 activity. Inhibitions of MMP-9, ICAM-1, and VCAM-1 did not change NADPH oxidase activity. Although inhibition of these 4 factors decreased BBB permeability in cells, inhibition of NADPH oxidase exhibited the highest decrease among these. NADPH oxidase directly influenced MMP-9, ICAM-1, and VCAM-1, but not vice versa. MMP-9 and the cell adhesion molecules reversibly affected each other. In conclusion, NADPH oxidase-derived superoxide elevated expression of MMP-9, ICAM-1, and VCAM-1, and these interactions can finally result in increases of BBB permeability in MOG35-55+CFA+PTX-exposed endothelial cells. PMID:26928315

  13. Induction and clinical scoring of chronic-relapsing experimental autoimmune encephalomyelitis.

    PubMed

    Beeton, Christine; Garcia, Adriana; Chandy, K George

    2007-01-01

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that commonly affects young adults. It is characterized by demyelination and glial scaring in areas disseminated in the brain and spinal cord. These lesions alter nerve conduction and induce the disabling neurological deficits that vary with the location of the demyelinated plaques in the CNS (e.g. paraparesis, paralysis, blindness, incontinence). Experimental autoimmune encephalomyelitis (EAE) is a model for MS. EAE was first induced accidentally in humans during vaccination against rabies, using viruses grown on rabbit spinal cords. Residues of spinal injected with the inactivated virus induced the CNS disease. Following these observations, a first model of EAE was described in non-human primates immunized with a CNS homogenate by Rivers and Schwenther in 1935. EAE has since been generated in a variety of species and can follow different courses depending on the species/strain and immunizing antigen used. For example, immunizing Lewis rats with myelin basic protein in emulsion with adjuvant induces an acute model of EAE, while the same antigen induces a chronic disease in guinea pigs. The EAE model described here is induced by immunizing DA rats against DA rat spinal cord in emulsion in complete Freund's adjuvant. Rats develop an ascending flaccid paralysis within 7-14 days post-immunization. Clinical signs follow a relapsing-remitting course over several weeks. Pathology shows large immune infiltrates in the CNS and demyelination plaques. Special considerations for taking care for animals with EAE are described at the end of the video. PMID:18979022

  14. Estrogen induces multiple regulatory B cell subtypes and promotes M2 microglia and neuroprotection during experimental autoimmune encephalomyelitis.

    PubMed

    Benedek, Gil; Zhang, Jun; Bodhankar, Sheetal; Nguyen, Ha; Kent, Gail; Jordan, Kelley; Manning, Dustin; Vandenbark, Arthur A; Offner, Halina

    2016-04-15

    Sex hormones promote immunoregulatory effects on multiple sclerosis. The current study evaluated estrogen effects on regulatory B cells and resident CNS microglia during experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate an estrogen-dependent induction of multiple regulatory B cell markers indicative of IL-10 dependent as well as IFN-γ dependent pathways. Moreover, although estrogen pretreatment of EAE mice inhibited the infiltration of pro-inflammatory cells into the CNS, it enhanced the frequency of regulatory B cells and M2 microglia. Our study suggests that estrogen has a broad effect on the development of regulatory B cells during EAE, which in turn could promote neuroprotection. PMID:27049561

  15. Involvement of JAK/STAT signaling in the effect of cornel iridoid glycoside on experimental autoimmune encephalomyelitis amelioration in rats.

    PubMed

    Yin, Linlin; Chen, Yongyan; Qu, Zhao; Zhang, Li; Wang, Qi; Zhang, Qi; Li, Lin

    2014-09-15

    In the present study, we investigated the therapeutic benefit of cornel iridoid glycoside (CIG), the main component extracted from Cornus officinalis, in experimental autoimmune encephalomyelitis (EAE) rats. CIG was intragastrically administered daily after EAE initiation for 20days and reduced disease severity, incidence, disease onset and ongoing paralysis. Histopathological staining showed that CIG could reduce T cell entry to the central nervous system and microglia activation, increased brain-derived neurotrophic factor (BDNF) expression and mature oligodendrocytes, and decreased oligodendrocyte progenitor cells (OPCs). Also, CIG treatment inhibited brain JAK/STAT1/3 and reduced proinflammatory cytokines. CIG might be a novel potential therapeutic agent for multiple sclerosis (MS). PMID:25012120

  16. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  17. Human Wharton's Jelly-Derived Stem Cells Display Immunomodulatory Properties and Transiently Improve Rat Experimental Autoimmune Encephalomyelitis.

    PubMed

    Donders, Raf; Vanheusden, Marjan; Bogie, Jeroen F J; Ravanidis, Stylianos; Thewissen, Kristof; Stinissen, Piet; Gyselaers, Wilfried; Hendriks, Jerome J A; Hellings, Niels

    2015-01-01

    Umbilical cord matrix or Wharton's jelly-derived stromal cells (WJ-MSCs) are an easily accessible source of mesenchymal-like stem cells. Recent studies describe a hypoimmunogenic phenotype, multipotent differentiation potential, and trophic support function for WJ-MSCs, with variable clinical benefit in degenerative disease models such as stroke, myocardial infarction, and Parkinson's disease. It remains unclear whether WJ-MSCs have therapeutic value for multiple sclerosis (MS), where autoimmune-mediated demyelination and neurodegeneration need to be halted. In this study, we investigated whether WJ-MSCs possess the required properties to effectively and durably reverse these pathological hallmarks and whether they survive in an inflammatory environment after transplantation. WJ-MSCs displayed a lowly immunogenic phenotype and showed intrinsic expression of neurotrophic factors and a variety of anti-inflammatory molecules. Furthermore, they dose-dependently suppressed proliferation of activated T cells using contact-dependent and paracrine mechanisms. Indoleamine 2,3-dioxygenase 1 was identified as one of the main effector molecules responsible for the observed T-cell suppression. The immune-modulatory phenotype of WJ-MSCs was further enhanced after proinflammatory cytokine treatment in vitro (licensing). In addition to their effect on adaptive immunity, WJ-MSCs interfered with dendritic cell differentiation and maturation, thus directly affecting antigen presentation and therefore T-cell priming. Systemically infused WJ-MSCs potently but transiently ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model for MS, when injected at onset or during chronic disease. This protective effect was paralleled with a reduction in autoantigen-induced T-cell proliferation, confirming their immunomodulatory activity in vivo. Surprisingly, in vitro licensed WJ-MSCs did not ameliorate EAE, indicative of a fast rejection as a result of enhanced immunogenicity

  18. Requirement of CD30 expression on CD4 T cells in the pathogenesis of experimental autoimmune encephalomyelitis.

    PubMed

    Shinoda, Koji; Sun, Xun; Oyamada, Akiko; Yamada, Hisakata; Kira, Jun-Ichi; Yoshikai, Yasunobu

    2016-02-15

    CD30, a member of the tumor necrosis factor receptor superfamily, is expressed preferentially by effector or memory helper T cells. Here we show that experimental autoimmune encephalomyelitis (EAE) is ameliorated with markedly reduced induction of antigen-specific Th1 and Th17 cells in CD30 knockout mice. Passive EAE indicated that CD30 on non-hematopoietic parenchymal cell is not required and mixed bone marrow chimera experiments revealed that CD30 signaling on CD4 T cells amplified the development of antigen-specific and encephalitogenic CD4 T cells. Thus, CD30 expression on CD4 T cells is critically involved in the pathogenesis of central nervous system autoimmunity. PMID:26857493

  19. Site-specific chemokine expression regulates central nervous system inflammation and determines clinical phenotype in autoimmune encephalomyelitis.

    PubMed

    Stoolman, Joshua S; Duncker, Patrick C; Huber, Amanda K; Segal, Benjamin M

    2014-07-15

    The adoptive transfer of myelin-reactive T cells into wild-type hosts results in spinal cord inflammation and ascending paralysis, referred to as conventional experimental autoimmune encephalomyelitis (EAE), as opposed to brainstem inflammation and ataxia, which characterize disease in IFN-γRKO hosts (atypical EAE). In this article, we show that atypical EAE correlates with preferential upregulation of CXCL2 in the brainstem, and is driven by CXCR2-dependent recruitment of neutrophils. In contrast, conventional EAE is associated with upregulation of CCL2 in the spinal cord, and is driven by recruitment of monocytes via a partially CCR2-dependent pathway. This study illustrates how regional differences in chemokine expression within a target organ shape the spatial pattern and composition of autoimmune infiltrates, leading to disparate clinical outcomes. PMID:24928987

  20. Prevention and Mitigation of Experimental Autoimmune Encephalomyelitis by Murine β-Defensins via Induction of Regulatory T Cells.

    PubMed

    Bruhs, Anika; Schwarz, Thomas; Schwarz, Agatha

    2016-01-01

    The antimicrobial peptide murine β-defensin-14 (mBD14) was found to exert, in addition to its antimicrobial activity, the capacity to induce regulatory T cells as demonstrated in the model of contact hypersensitivity. Because it is induced by ultraviolet radiation, mBD14 may contribute to the antigen-specific immunosuppression by ultraviolet radiation. To prove whether this applies also for other immunologic models and because ultraviolet radiation appears to have beneficial effects on multiple sclerosis, we utilized the model of experimental autoimmune encephalomyelitis. Injection of mBD14 into mice before immunization with myelin oligodendrocyte glycoprotein caused amelioration of the disease with less central nervous system inflammation and decreased levels of proinflammatory cytokines and cytotoxic T cells. The beneficial effect was due to Foxp3(+) regulatory T cells because it was lost on in vivo depletion of regulatory T cells. mBD14, however, also acts in a therapeutic setting, because injection of mBD14 into mice with clinical features of experimental autoimmune encephalomyelitis reduced the clinical score significantly. Human β-defensin-3, the human orthologue of mBD14, induced in vitro regulatory T cell-specific markers in CD4(+)CD25(-) T cells, shifting these nonregulatory cells into a regulatory phenotype with suppressive features. Thus, defensins may represent candidates worth being further pursued for the therapy of multiple sclerosis. PMID:26763437

  1. Kv1.3 deletion biases T cells toward an immunoregulatory phenotype and renders mice resistant to autoimmune encephalomyelitis.

    PubMed

    Gocke, Anne R; Lebson, Lori A; Grishkan, Inna V; Hu, Lina; Nguyen, Hai M; Whartenby, Katharine A; Chandy, K George; Calabresi, Peter A

    2012-06-15

    Increasing evidence suggests ion channels have critical functions in the differentiation and plasticity of T cells. Kv1.3, a voltage-gated K(+) channel, is a functional marker and a pharmacological target for activated effector memory T cells. Selective Kv1.3 blockers have been shown to inhibit proliferation and cytokine production by human and rat effector memory T cells. We used Kv1.3 knockout (KO) mice to investigate the mechanism by which Kv1.3 blockade affects CD4(+) T cell differentiation during an inflammatory immune-mediated disease. Kv1.3 KO animals displayed significantly lower incidence and severity of myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis. Kv1.3 was the only K(V) channel expressed in MOG 35-55-specific CD4(+) T cell blasts, and no K(V) current was present in MOG-specific CD4(+) T cell-blasts from Kv1.3 KO mice. Fewer CD4(+) T cells migrated to the CNS in Kv1.3 KO mice following disease induction, and Ag-specific proliferation of CD4(+) T cells from these mice was impaired with a corresponding cell-cycle delay. Kv1.3 was required for optimal expression of IFN-γ and IL-17, whereas its absence led to increased IL-10 production. Dendritic cells from Kv1.3 KO mice fully activated wild-type CD4(+) T cells, indicating a T cell-intrinsic defect in Kv1.3 KO mice. The loss of Kv1.3 led to a suppressive phenotype, which may contribute to the mechanism by which deletion of Kv1.3 produces an immunotherapeutic effect. Skewing of CD4(+) T cell differentiation toward Ag-specific regulatory T cells by pharmacological blockade or genetic suppression of Kv1.3 might be beneficial for therapy of immune-mediated diseases such as multiple sclerosis. PMID:22581856

  2. Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis

    PubMed Central

    2013-01-01

    Background Extracts of leaves from Clerodendrum have been used for centuries to treat a variety of medicinal problems in tropical Africa. However, little is known about the high-molecular weight active components conferring therapeutic properties to these extracts. Methods Polysaccharides from the leaves of Clerodendrum splendens were extracted and fractionated by ion exchange and size-exclusion chromatography. Molecular weight determination, sugar analysis, degree of methyl esterification, and other chemical characterization of the fractions were performed. Immunomodulatory activity of the fractions was evaluated by determining their ability to induce monocyte/macrophage nitric oxide (NO), cytokine production, and mitogen-activated protein kinase (MAPK) phosphorylation. Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice, and severity of EAE was monitored in mice treated with intraperitoneal (i.p.) injections of the most active polysaccharide fraction. Lymph nodes (LN) and spleen were harvested, and levels of cytokines in supernatants from LN cells and splenocytes challenged with myelin oligodendrocyte glycoprotein peptide were determined. Results Fractions containing type II arabinogalactan had potent immunomodulatory activity. Specifically, the high-molecular weight sub-fraction CSP-AU1 (average of 38.5 kDa) induced NO and cytokine [interleukin (IL)-1α, -1β, -6, -10, tumor necrosis factor (TNF; designated previously as TNF-α), and granulocyte macrophage-colony stimulating factor (GM-CSF)] production by human peripheral blood mononuclear cells (PBMCs) and monocyte/macrophages. CSP-AU1-induced secretion of TNF was prevented by Toll-like receptor 4 (TLR4) antagonist LPS-RS, indicating a role for TLR4 signaling. Treatment with CSP-AU1 also induced phosphorylation of a number of MAPKs in human PBMC and activated AP-1/NF-κB. In vivo treatment of mice with CSP-AU1 and CSP-NU1 resulted in increased serum IL-6, IL-10, TNF, monocyte

  3. Effective combination of human bone marrow mesenchymal stem cells and minocycline in experimental autoimmune encephalomyelitis mice

    PubMed Central

    2013-01-01

    Introduction Multiple sclerosis (MS) is the most common inflammatory demyelinating disorder of the central nervous system (CNS). Minocycline ameliorates the clinical severity of MS and exhibits antiinflammatory, neuroprotective activities, and good tolerance for long-term use, whereas it is toxic to the CNS. Recently, the immunomodulation and neuroprotection capabilities of human bone marrow mesenchymal stem cells (hBM-MSCs) were shown in experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated whether the combination of hBM-MSCs and a low-dose minocycline could produce beneficial effects in EAE mice. Methods The sensitivity of hBM-MSCs to minocycline was determined by an established cell-viability assay. Minocycline-treated hBM-MSCs were also characterized with flow cytometry by using MSC surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by using immunization with MOG35-55. Immunopathology assays were used to detect the inflammatory cells, demyelination, and neuroprotection. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct Th1 and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). terminal dUTP nick-end labeling (TUNEL) staining was performed to elucidate the cell apoptosis in the spinal cords of EAE mice. Results Minocycline did not affect the viability, surface phenotypes, or differentiation capacity of hBM-MSCs, while minocycline affected the viability of astrocytes at a high dose. In vivo efficacy experiments showed that combined treatment, compared to the use of minocycline or hBM-MSCs alone, resulted in a significant reduction in clinical scores, along with attenuation of inflammation, demyelination, and neurodegeneration. Moreover, the combined treatment with hBM-MSCs and minocycline enhanced the immunomodulatory effects, which suppressed proinflammatory

  4. OGR1/GPR68 Modulates the Severity of Experimental Autoimmune Encephalomyelitis and Regulates Nitric Oxide Production by Macrophages

    PubMed Central

    D’Souza, Cheryl A.; Zhao, Fei Linda; Li, Xujian; Xu, Yan; Dunn, Shannon E.; Zhang, Li

    2016-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity. PMID:26828924

  5. T cell factor-1 negatively regulates expression of IL-17 family of cytokines and protects mice from experimental autoimmune encephalomyelitis.

    PubMed

    Yu, Qing; Sharma, Archna; Ghosh, Amalendu; Sen, Jyoti Misra

    2011-04-01

    Activated CD4 T cells are associated with protective immunity and autoimmunity. The manner in which the inflammatory potential of T cells and resultant autoimmunity is restrained is poorly understood. In this article, we demonstrate that T cell factor-1 (TCF1) negatively regulates the expression of IL-17 and related cytokines in activated CD4 T cells. We show that TCF1 does not affect cytokine signals and expression of transcription factors that have been shown to regulate Th17 differentiation. Instead, TCF1 regulates IL-17 expression, in part, by binding to the regulatory regions of the Il17 gene. Moreover, TCF1-deficient Th17 CD4 T cells express higher levels of IL-7Rα, which potentially promotes their survival and expansion in vivo. Accordingly, TCF1-deficient mice are hyperresponsive to experimental autoimmune encephalomyelitis. Thus, TCF1, a constitutively expressed T cell-specific transcription factor, is a critical negative regulator of the inflammatory potential of TCR-activated T cells and autoimmunity. PMID:21339363

  6. Evaluation of AD-MSC (adipose-derived mesenchymal stem cells) as a vehicle for IFN-β delivery in experimental autoimmune encephalomyelitis.

    PubMed

    Mohammadzadeh, Adel; Pourfathollah, Ali Akbar; Shahrokhi, Somayeh; Fallah, Ali; Tahoori, Mohammad Taher; Amari, Afshin; Forouzandeh, Mahdi; Soleimani, Masoud

    2016-08-01

    Interferon-β (IFN-β) is commonly used as a disease modifying drug for the treatment of relapse-remitting multiple sclerosis (RR-MS). However, the underlying mechanism by which IFN-β mediate this immunosuppressive effect is still unknown. In this study, we analyzed the effects of genetically modified adipose-derived mesenchymal stem cells (AD-MSCs) expressing murine interferon beta (MSCs-VP/IFN-β) on the animal model of MS, experimental autoimmune encephalomyelitis (EAE). Lymph node mononuclear cells and serum were examined by using RT-PCR and ELISA methods to measure the production of IL-10 and IL-17 gene and protein expression, respectively. Our results indicated that in the MSCs-VP/IFN-β treated group induction of Tregs and IL-10 and reduction of IL-17 were significant. Taken together, we showed that using AD-MSCs expressing IFN-β as an anti-inflammatory agent, offer evidence supporting that the stem cell therapies in EAE conceivably will improve the valuable effects of IFN-β in this autoimmune disease. PMID:27373971

  7. Therapeutic effect of ghrelin in experimental autoimmune encephalomyelitis by inhibiting antigen-specific Th1/Th17 responses and inducing regulatory T cells.

    PubMed

    Souza-Moreira, Luciana; Delgado-Maroto, Virginia; Morell, Maria; O'Valle, Francisco; Del Moral, Raimundo G; Gonzalez-Rey, Elena

    2013-05-01

    Ghrelin is an important gastrointestinal hormone that regulates feeding and metabolism. Moreover, ghrelin is produced by immune cells and shows potent anti-inflammatory activities. Here, we investigated its effect in two models of experimental autoimmune encephalomyelitis (EAE) that mirror chronic and relapsing-remitting multiple sclerosis. A short systemic treatment with ghrelin after the disease onset reduced clinical severity and incidence of both forms of EAE, which was associated with a decrease in inflammatory infiltrates in spinal cord and in the subsequent demyelination. This therapeutic effect was exerted through the reduction of the autoimmune and inflammatory components of the disease. Ghrelin decreased the presence/activation of encephalitogenic Th1 and Th17 cells in periphery and nervous system, down-regulated various inflammatory mediators, and induced regulatory T cells. In summary, our findings provide a powerful rationale for the assessment of the efficacy of ghrelin as a novel therapeutic approach for treating multiple sclerosis through distinct immunomodulatory mechanisms and further support the concept that the neuroendocrine and immune systems crosstalk to finely tune the final immune response of our body. PMID:23376169

  8. Anti-inflammatory mechanisms of IFN-γ studied in experimental autoimmune encephalomyelitis reveal neutrophils as a potential target in multiple sclerosis

    PubMed Central

    Miller, Nichole M.; Wang, Jun; Tan, Yanping; Dittel, Bonnie N.

    2015-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) mediated by T helper (h)1 and/or Th17 CD4 T cells that drive inflammatory lesion development along with demyelination and neuronal damage. Defects in immune regulatory mechanisms are thought to play a role in the pathogenesis of MS. While an early clinical trial indicated that IFN-γ administration was detrimental to MS, studies in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE), indicated that IFN-γ exhibits a number of anti-inflammatory properties within the CNS. These mechanisms include inhibition of IL-17 production, induction of regulatory T cells, T cell apoptosis and regulation of chemokine production. Mice deficient in IFN-γ or its receptor were instrumental in deciphering the anti-inflammatory properties of IFN-γ in the CNS. In particular, they revealed that IFN-γ is a major regulator of neutrophil recruitment into the CNS, which by a variety of mechanisms including disruption of the blood-brain-barrier (BBB) and production of reactive oxygen species are thought to contribute to the onset and progression of EAE. Neutrophils were also shown to be instrumental in EAE relapses. To date neutrophils have not been appreciated as a driver of MS, but more recently based largely on strong EAE data this view is being reevaluated by some investigators in the field. PMID:26347600

  9. Oral Administration of Lactococcus lactis Expressing Synthetic Genes of Myelin Antigens in Decreasing Experimental Autoimmune Encephalomyelitis in Rats

    PubMed Central

    Kasarello, Kaja; Kwiatkowska-Patzer, Barbara; Lipkowski, Andrzej W.; Bardowski, Jacek K.; Szczepankowska, Agnieszka K.

    2015-01-01

    Background Multiple sclerosis is a human autoimmunological disease that causes neurodegeneration. One of the potential ways to stop its development is induction of oral tolerance, whose effect lies in decreasing immune response to the fed antigen. It was shown in animal models that administration of specific epitopes of the three main myelin proteins – myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and proteolipid protein (PLP) – results in induction of oral tolerance and suppression of disease symptoms. Use of bacterial cells to produce and deliver antigens to gut mucosa seems to be an attractive method for oral tolerance induction in treatment of diseases with autoimmune background. Material/Methods Synthetic genes of MOG35-55, MBP85-97, and PLP139-151 myelin epitopes were generated and cloned in Lactococcus lactis under a CcpA-regulated promoter. The tolerogenic effect of bacterial preparations was tested on experimental autoimmune encephalomyelitis, which is the animal model of MS. EAE was induced in rats by intradermal injection of guinea pig spinal cord homogenate into hind paws. Results Rats were administered preparations containing whole-cell lysates of L. lactis producing myelin antigens using different feeding schemes. Our study demonstrates that 20-fold, but not 4-fold, intragastric administration of autoantigen-expressing L. lactis cells under specific conditions reduces the clinical symptoms of EAE in rats. Conclusions The present study evaluated the use of myelin antigens produced in L. lactis in inhibiting the onset of experimental autoimmune encephalomyelitis in rats. Obtained results indicate that application of such recombinant cells can be an attractive method of oral tolerance induction. PMID:26026273

  10. GCN2 kinase plays an important role triggering the remission phase of experimental autoimmune encephalomyelitis (EAE) in mice.

    PubMed

    Orsini, Heloisa; Araujo, Leandro P; Maricato, Juliana T; Guereschi, Marcia G; Mariano, Mario; Castilho, Beatriz A; Basso, Alexandre S

    2014-03-01

    Experimental autoimmune encephalomyelitis (EAE) has been widely employed as a model to study multiple sclerosis (MS) and indeed has allowed some important advances in our comprehension of MS pathogenesis. Several pieces of evidence suggest that infiltrating Th1 and Th17 lymphocytes are important players leading to CNS demyelination and lesion during the peak of murine EAE. Subsequently, effector T cell responses rapidly decline and the recovery phase of the disease strongly correlates with the expression of anti-inflammatory cytokines and the enrichment of Foxp3+ regulatory T (Treg) cells within the target organ. However, the mechanisms leading to the increased presence of Treg cells and to the remission phase of the disease are still poorly understood. Recent researches demonstrated that chemically induced amino-acid starvation response might suppress CNS immune activity. Here we verified an important participation of the general control nonrepressible 2 (GCN2), a key regulator kinase of the amino-acid starvation response, in the development of the remission phase of EAE in C57BL/6 mice. By immunizing wild type C57BL/6 (WT) and GCN2 knock-out mice (GCN2 KO) with myelin oligodendrocyte glycoprotein peptide (MOG35-55), it was noticed that GCN2 KO mice did not develop the remission phase of the disease and this was associated with higher levels of CNS inflammation and increased presence of effector T cells (Th1/Th17). These animals also showed lower frequency of Treg cells within the CNS as compared to WT animals. Higher expression of indoleamine 2,3-dioxygenase (IDO) and higher frequency of plasmacytoid dendritic cells (pDCs) were found at the peak of the disease in the CNS of WT animals. Our results suggest that the GCN2 kinase-dependent sensing of IDO activity represents an important trigger to the EAE remission phase. The IDO-mediated immunoregulatory events may include the arresting of effector T cell responses and the differentiation/expansion of Treg cells

  11. [Ion channels and demyelination: basis of a treatment of experimental autoimmune encephalomyelitis (EAE) by potassium channel blockers].

    PubMed

    Devaux, J; Beeton, C; Béraud, E; Crest, M

    2004-05-01

    Voltage-gated potassium channels (Kv channels) are ion channels, openings of which provide an outward flow of potassium ions repolarising the cell. In neurons, Kv channels play a crucial role in action potential repolarisation and in shaping neuronal excitability. In non-excitable cells, such as T lymphocytes, Kv channels and calcium-activated K+ channels (KCa channels) determine the driving force for Ca2+ entry. During T cell activation the calcium entry depolarises the cell and increases the cytosolic calcium concentration, which in return activates Kv and KCa channels. K+ channel opening repolarises the cell and drives the membrane potential to a negative voltage. The roles of Kv channels in nervous and immune systems have been investigated here by means of a rat experimental autoimmune disease of the central nervous system, the experimental autoimmune encephalomyelitis (EAE). EAE is characterised clinically by paralysis, and pathologically by inflammatory cell infiltrations into the brain and the spinal cord. Among the inflammatory cells, T lymphocytes play a major role. Hence, EAE can be adoptively transferred into syngenic animals by the injection of T cells reactive to myelin antigens. During adoptive-EAE, somato-sensory evoked potentials recorded along the spinal tracts decrease in amplitude and axonal propagation is disrupted. We have analysed the consequences of Kv channels blockade by peptidyl toxins on central nerve conduction, on T cell activation and on the time course of EAE. In rat optic nerves, Kv channels have been identified up from postnatal day 1. Their blockade by kaliotoxin (a scorpion toxin) or by dendrotoxin-I (a snake toxin) enlarges the compound action potentials, demonstrating the participation of Kv channels to spike repolarisation. This effect disappears at adult age due to the sequestration of Kv channels under the myelin, in the paranodal regions. During acute demyelination by lysophosphatidyl-choline, the surface area of compound

  12. Sex bias in CNS autoimmune disease mediated by androgen control of autoimmune regulator.

    PubMed

    Zhu, Meng-Lei; Bakhru, Pearl; Conley, Bridget; Nelson, Jennifer S; Free, Meghan; Martin, Aaron; Starmer, Joshua; Wilson, Elizabeth M; Su, Maureen A

    2016-01-01

    Male gender is protective against multiple sclerosis and other T-cell-mediated autoimmune diseases. This protection may be due, in part, to higher androgen levels in males. Androgen binds to the androgen receptor (AR) to regulate gene expression, but how androgen protects against autoimmunity is not well understood. Autoimmune regulator (Aire) prevents autoimmunity by promoting self-antigen expression in medullary thymic epithelial cells, such that developing T cells that recognize these self-antigens within the thymus undergo clonal deletion. Here we show that androgen upregulates Aire-mediated thymic tolerance to protect against autoimmunity. Androgen recruits AR to Aire promoter regions, with consequent enhancement of Aire transcription. In mice and humans, thymic Aire expression is higher in males compared with females. Androgen administration and male gender protect against autoimmunity in a multiple sclerosis mouse model in an Aire-dependent manner. Thus, androgen control of an intrathymic Aire-mediated tolerance mechanism contributes to gender differences in autoimmunity. PMID:27072778

  13. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    PubMed

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases. PMID:26440666

  14. Comparative Effects of Human Neural Stem Cells and Oligodendrocyte Progenitor Cells on the Neurobehavioral Disorders of Experimental Autoimmune Encephalomyelitis Mice

    PubMed Central

    Bae, Dae-Kwon; Park, Dongsun; Lee, Sun Hee; Yang, Goeun; Kyung, Jangbeen; Kim, Dajeong; Shin, Kyungha; Choi, Ehn-Kyoung; Kim, Gonhyung; Hong, Jin Tae; Kim, Seung U.

    2016-01-01

    Since multiple sclerosis (MS) is featured with widespread demyelination caused by autoimmune response, we investigated the recovery effects of F3.olig2 progenitors, established by transducing human neural stem cells (F3 NSCs) with Olig2 transcription factor, in myelin oligodendrocyte glycoprotein- (MOG-) induced experimental autoimmune encephalomyelitis (EAE) model mice. Six days after EAE induction, F3 or F3.olig2 cells (1 × 106/mouse) were intravenously transplanted. MOG-injected mice displayed severe neurobehavioral deficits which were remarkably attenuated and restored by cell transplantation, in which F3.olig2 cells were superior to its parental F3 cells. Transplanted cells migrated to the injured spinal cord, matured to oligodendrocytes, and produced myelin basic proteins (MBP). The F3.olig2 cells expressed growth and neurotrophic factors including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF), and leukemia inhibitory factor (LIF). In addition, the transplanted cells markedly attenuated inflammatory cell infiltration, reduced cytokine levels in the spinal cord and lymph nodes, and protected host myelins. The results indicate that F3.olig2 cells restore neurobehavioral symptoms of EAE mice by regulating autoimmune inflammatory responses as well as by stimulating remyelination and that F3.olig2 progenitors could be a candidate for the cell therapy of demyelinating diseases including MS. PMID:27429621

  15. Impact of pregabalin treatment on synaptic plasticity and glial reactivity during the course of experimental autoimmune encephalomyelitis

    PubMed Central

    Silva, Gleidy A A; Pradella, Fernando; Moraes, Adriel; Farias, Alessandro; dos Santos, Leonilda M B; de Oliveira, Alexandre L R

    2014-01-01

    Background Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. Aims The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. Methods and results The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Conclusions Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction. PMID:25365796

  16. Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis.

    PubMed

    Chen, Jing; Cascio, Jason; Magee, Joseph D; Techasintana, Patsharaporn; Gubin, Matthew M; Dahm, Garrett M; Calaluce, Robert; Yu, Shiguang; Atasoy, Ulus

    2013-12-01

    IL-17 is a proinflammatory cytokine produced by activated Th17 cells and other immune cells. IL-17-producing Th17 cells are major contributors to chronic inflammatory and autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although the transcriptional regulation of Th17 cells is well understood, the posttranscriptional regulation of IL-17 gene expression remains unknown. The RNA-binding protein HuR positively regulates the stability of many target mRNAs via binding the AU-rich elements present in the 3' untranslated region of many inflammatory cytokines including IL-4, IL-13, and TNF-α. However, the regulation of IL-17 expression by HuR has not been established. CD4(+) Th17 cells from HuR knockout mice had decreased IL-17 steady-state mRNA and protein levels compared with wild-type Th17 cells, as well as decreases in frequency of IL-17(+) cells. Moreover, we demonstrated that HuR directly binds to the IL-17 mRNA 3' untranslated region by using RNA immunoprecipitation and biotin pulldown assays. In addition, the knockout of HuR decreased cellular proliferation of CD4(+) T cells. Mice with adoptively transferred HuR KO Th17 cells had delayed initiation and reduced disease severity in the onset of experimental autoimmune encephalomyelitis compared with wild-type Th17 cells. Our results reveal a HuR-induced posttranscriptional regulatory mechanism of Th17 differentiation that influences IL-17 expression. These findings may provide novel therapeutic targets for the treatment of Th17-mediated autoimmune neuroinflammation. PMID:24166976

  17. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis.

    PubMed

    Jiang, Hong; Tian, Ke-Wei; Zhang, Fan; Wang, Beibei; Han, Shu

    2016-01-01

    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS). PMID:27242448

  18. Suppression of murine experimental autoimmune encephalomyelitis development by 1,25-dihydroxyvitamin D3 with autophagy modulation.

    PubMed

    Zhen, Chao; Feng, Xuedan; Li, Zhe; Wang, Yabo; Li, Bin; Li, Lin; Quan, Moyuan; Wang, Gaoning; Guo, Li

    2015-03-15

    Multiple sclerosis (MS) has been associated with a history of sub-optimal exposure to ultraviolet light, implicating vitamin D3 as a possible protective agent. We evaluated whether 1,25(OH)2D3 attenuates the progression of experimental autoimmune encephalomyelitis (EAE), and explored its potential mechanisms. EAE was induced in C57BL/6 mice via immunization with MOG35-55, and some mice received 1,25(OH)2D3. 1,25(OH)2D3 inhibited EAE progression. Additionally, 1,25(OH)2D3 reduced inflammation, demyelination, and neuron loss in the spinal cord. The protective effect of 1,25(OH)2D3 was associated with significantly elevated expression of Beclin1, increased Bcl-2/Bax ratio, and decreased LC3-II accumulation. Thus, 1,25(OH)2D3 may represent a promising new MS treatment. PMID:25773147

  19. Reg-2, A Downstream Signaling Protein in the Ciliary Neurotrophic Factor Survival Pathway, Alleviates Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Jiang, Hong; Tian, Ke-Wei; Zhang, Fan; Wang, Beibei; Han, Shu

    2016-01-01

    Ciliary neurotrophic factor (CNTF), originally described as a neurocytokine that could support the survival of neurons, has been recently found to alleviate demyelination, prevent axon loss, and improve functional recovery in a rat model of acute experimental autoimmune encephalomyelitis (EAE). However, poor penetration into the brain parenchyma and unfavorable side effects limit the utility of CNTF. Here, we evaluated the therapeutic potential of a protein downstream of CNTF, regeneration gene protein 2 (Reg-2). Using multiple morphological, molecular biology, and electrophysiological methods to assess neuroinflammation, axonal loss, demyelination, and functional impairment, we observed that Reg-2 and CNTF exert similar effects in the acute phase of EAE. Both treatments attenuated axonal loss and demyelination, improved neuronal survival, and produced functional improvement. With a smaller molecular weight and improved penetration into the brain parenchyma, Reg-2 may be a useful substitute for CNTF therapy in EAE and multiple sclerosis (MS). PMID:27242448

  20. Peptide-functionalized polymeric nanoparticles for active targeting of damaged tissue in animals with experimental autoimmune encephalomyelitis.

    PubMed

    Führmann, Tobias; Ghosh, Mousumi; Otero, Anthony; Goss, Ben; Dargaville, Tim R; Pearse, Damien D; Dalton, Paul D

    2015-08-18

    Increased permeability of blood vessels is an indicator for various injuries and diseases, including multiple sclerosis (MS), of the central nervous system. Nanoparticles have the potential to deliver drugs locally to sites of tissue damage, reducing the drug administered and limiting associated side effects, but efficient accumulation still remains a challenge. We developed peptide-functionalized polymeric nanoparticles to target blood clots and the extracellular matrix molecule nidogen, which are associated with areas of tissue damage. Using the induction of experimental autoimmune encephalomyelitis in rats to provide a model of MS associated with tissue damage and blood vessel lesions, all targeted nanoparticles were delivered systemically. In vivo data demonstrates enhanced accumulation of peptide functionalized nanoparticles at the injury site compared to scrambled and naive controls, particularly for nanoparticles functionalized to target fibrin clots. This suggests that further investigations with drug laden, peptide functionalized nanoparticles might be of particular interest in the development of treatment strategies for MS. PMID:26141613

  1. Neuronal Surface Antibody-Mediated Autoimmune Encephalitis

    PubMed Central

    Linnoila, Jenny J.; Rosenfeld, Myrna R.; Dalmau, Josep

    2016-01-01

    In the past few years, many autoimmune encephalitides have been identified, with specific clinical syndromes and associated antibodies against neuronal surface antigens. There is compelling evidence that many of these antibodies are pathogenic and most of these encephalitides are highly responsive to immunotherapies. The clinical spectra of some of these antibody-mediated syndromes, especially those reported in only a few patients, are evolving. Others, such as anti-N-methyl-D-aspartate (NMDA) receptor encephalitis, are well characterized. Diagnosis involves recognizing the specific syndromes and identifying the antibody in a patient’s cerebrospinal fluid (CSF) and/or serum. These syndromes are associated with variable abnormalities in CSF, magnetic resonance imaging, and electroencephalography. Treatment is often multidisciplinary and should be focused upon neutralizing the effects of antibodies and eliminating their source. Overlapping disorders have been noted, with some patients having more than one neurologic autoimmune disease. In other patients, viral infections such as herpes simplex virus encephalitis trigger robust antineuronal autoimmune responses. PMID:25369441

  2. Cold agglutinin-mediated autoimmune hemolytic anemia.

    PubMed

    Berentsen, Sigbjørn; Randen, Ulla; Tjønnfjord, Geir E

    2015-06-01

    Cold antibody types account for about 25% of autoimmune hemolytic anemias. Primary chronic cold agglutinin disease (CAD) is characterized by a clonal lymphoproliferative disorder. Secondary cold agglutinin syndrome (CAS) complicates specific infections and malignancies. Hemolysis in CAD and CAS is mediated by the classical complement pathway and is predominantly extravascular. Not all patients require treatment. Successful CAD therapy targets the pathogenic B-cell clone. Complement modulation seems promising in both CAD and CAS. Further development and documentation are necessary before clinical use. We review options for possible complement-directed therapy. PMID:26043385

  3. AKP-11 - A Novel S1P1 Agonist with Favorable Safety Profile Attenuates Experimental Autoimmune Encephalomyelitis in Rat Model of Multiple Sclerosis.

    PubMed

    Samuvel, Devadoss J; Saxena, Nishant; Dhindsa, Jasdeep S; Singh, Avtar K; Gill, Gurmit S; Grobelny, Damian W; Singh, Inderjit

    2015-01-01

    Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders. PMID:26513477

  4. AKP-11 - A Novel S1P1 Agonist with Favorable Safety Profile Attenuates Experimental Autoimmune Encephalomyelitis in Rat Model of Multiple Sclerosis

    PubMed Central

    Samuvel, Devadoss J.; Saxena, Nishant; Dhindsa, Jasdeep S.; Singh, Avtar K.; Gill, Gurmit S.; Grobelny, Damian W.; Singh, Inderjit

    2015-01-01

    Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders. PMID:26513477

  5. Lipocalin-2 protein deficiency ameliorates experimental autoimmune encephalomyelitis: the pathogenic role of lipocalin-2 in the central nervous system and peripheral lymphoid tissues.

    PubMed

    Nam, Youngpyo; Kim, Jong-Heon; Seo, Minchul; Kim, Jae-Hong; Jin, Myungwon; Jeon, Sangmin; Seo, Jung-wan; Lee, Won-Ha; Bing, So Jin; Jee, Youngheun; Lee, Won Kee; Park, Dong Ho; Kook, Hyun; Suk, Kyoungho

    2014-06-13

    Lipocalin-2 (LCN2) plays an important role in cellular processes as diverse as cell growth, migration/invasion, differentiation, and death/survival. Furthermore, recent studies indicate that LCN2 expression and secretion by glial cells are induced by inflammatory stimuli in the central nervous system. The present study was undertaken to examine the regulation of LCN2 expression in experimental autoimmune encephalomyelitis (EAE) and to determine the role of LCN2 in the disease process. LCN2 expression was found to be strongly increased in spinal cord and secondary lymphoid tissues after EAE induction. In spinal cords astrocytes and microglia were the major cell types expressing LCN2 and its receptor 24p3R, respectively, whereas in spleens, LCN2 and 24p3R were highly expressed in neutrophils and dendritic cells, respectively. Furthermore, disease severity, inflammatory infiltration, demyelination, glial activation, the expression of inflammatory mediators, and the proliferation of MOG-specific T cells were significantly attenuated in Lcn2-deficient mice as compared with wild-type animals. Myelin oligodendrocyte glycoprotein-specific T cells in culture exhibited an increased expression of Il17a, Ifng, Rorc, and Tbet after treatment with recombinant LCN2 protein. Moreover, LCN2-treated glial cells expressed higher levels of proinflammatory cytokines, chemokines, and MMP-9. Adoptive transfer and recombinant LCN2 protein injection experiments suggested that LCN2 expression in spinal cord and peripheral immune organs contributes to EAE development. Taken together, these results imply LCN2 is a critical mediator of autoimmune inflammation and disease development in EAE and suggest that LCN2 be regarded a potential therapeutic target in multiple sclerosis. PMID:24808182

  6. Adeno-Associated Viral-Mediated Catalase Expression Suppresses Optic Neuritis in Experimental Allergic Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Guy, John; Qi, Xiaoping; Hauswirth, William W.

    1998-11-01

    Suppression of oxidative injury by viral-mediated transfer of the human catalase gene was tested in the optic nerves of animals with experimental allergic encephalomyelitis (EAE). EAE is an inflammatory autoimmune disorder of primary central nervous system demyelination that has been frequently used as an animal model for the human disease multiple sclerosis (MS). The optic nerve is a frequent site of involvement common to both EAE and MS. Recombinant adeno-associated virus containing the human gene for catalase was injected over the right optic nerve heads of SJL/J mice that were simultaneously sensitized for EAE. After 1 month, cell-specific catalase activity, evaluated by quantitation of catalase immunogold, was increased approximately 2-fold each in endothelia, oligodendroglia, astrocytes, and axons of the optic nerve. Effects of catalase on the histologic lesions of EAE were measured by computerized analysis of the myelin sheath area (for demyelination), optic disc area (for optic nerve head swelling), extent of the cellular infiltrate, extravasated serum albumin labeled by immunogold (for blood-brain barrier disruption), and in vivo H2O2 reaction product. Relative to control, contralateral optic nerves injected with the recombinant virus without a therapeutic gene, catalase gene inoculation reduced demyelination by 38%, optic nerve head swelling by 29%, cellular infiltration by 34%, disruption of the blood-brain barrier by 64%, and in vivo levels of H2O2 by 61%. Because the efficacy of potential treatments for MS are usually initially tested in the EAE animal model, this study suggests that catalase gene delivery by using viral vectors may be a therapeutic strategy for suppression of MS.

  7. Autoimmune myelopathies.

    PubMed

    Flanagan, Eoin P

    2016-01-01

    Autoimmune myelopathies are a heterogeneous group of immune-mediated spinal cord disorders with a broad differential diagnosis. They encompass myelopathies with an immune attack on the spinal cord (e.g., aquaporin-4-IgG (AQP4-IgG) seropositive neuromyelitis optica (NMO) and its spectrum disorders (NMOSD)), myelopathies occurring with systemic autoimmune disorders (which may also be due to coexisting NMO/NMOSD), paraneoplastic autoimmune myelopathies, postinfectious autoimmune myelopathies (e.g., acute disseminated encephalomyelitis), and myelopathies thought to be immune-related (e.g., multiple sclerosis and spinal cord sarcoidosis). Spine magnetic resonance imaging is extremely useful in the evaluation of autoimmune myelopathies as the location of signal change, length of the lesion, gadolinium enhancement pattern, and evolution over time narrow the differential diagnosis considerably. The recent discovery of multiple novel neural-specific autoantibodies accompanying autoimmune myelopathies has improved their classification. These autoantibodies may be pathogenic (e.g., AQP4-IgG) or nonpathogenic and more reflective of a cytotoxic T-cell-mediated autoimmune response (collapsin response mediator protein-5(CRMP5)-IgG). The presence of an autoantibody may help guide cancer search, assist treatment decisions, and predict outcome/relapse. With paraneoplastic myelopathies the initial goal is detection and treatment of the underlying cancer. The aim of immunotherapy in all autoimmune myelopathies is to maximize reversibility, maintain benefits (while preventing relapse), and minimize side effects. PMID:27112686

  8. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells.

    PubMed

    Rezende, Rafael M; Oliveira, Rafael P; Medeiros, Samara R; Gomes-Santos, Ana C; Alves, Andrea C; Loli, Flávia G; Guimarães, Mauro A F; Amaral, Sylvia S; da Cunha, André P; Weiner, Howard L; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M C

    2013-02-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  9. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells

    PubMed Central

    Rezende, Rafael M.; Oliveira, Rafael P.; Medeiros, Samara R.; Gomes-Santos, Ana C.; Alves, Andrea C.; Loli, Flávia G.; Guimarães, Mauro A.F.; Amaral, Sylvia S.; da Cunha, André P.; Weiner, Howard L.; Azevedo, Vasco; Miyoshi, Anderson; Faria, Ana M.C.

    2013-01-01

    Heat shock proteins (Hsps) participate in the cellular response to stress and they are hiperexpressed in inflammatory conditions. They are also known to play a major role in immune modulation, controlling, for instance, autoimmune responses. In this study, we showed that oral administration of a recombinant Lactococcus lactis strain that produces and releases LPS-free Hsp65 prevented the development of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. This was confirmed by the reduced inflammatory cell infiltrate and absence of injury signs in the spinal cord. The effect was associated with reduced IL-17 and increased IL-10 production in mesenteric lymph node and spleen cell cultures. Hsp65-producing-L. lactis-fed mice had a remarkable increase in the number of natural and inducible CD4+Foxp3+ regulatory T (Treg) cells and CD4+LAP+ (Latency-associated peptide) Tregs - which express the membrane-bound TGF-β - in spleen, inguinal and mesenteric lymph nodes as well as in spinal cord. Moreover, many Tregs co-expressed Foxp3 and LAP. In vivo depletion of LAP+ cells abrogated the effect of Hsp65-producing L. lactis in EAE prevention and worsened disease in medium-fed mice. Thus, Hsp65-L.lactis seems to boost this critical regulatory circuit involved in controlling EAE development in mice. PMID:22939403

  10. Galectin-1 is essential for the induction of MOG35-55 -based intravenous tolerance in experimental autoimmune encephalomyelitis.

    PubMed

    Mari, Elisabeth R; Rasouli, Javad; Ciric, Bogoljub; Moore, Jason N; Conejo-Garcia, José R; Rajasagi, Naveen; Zhang, Guang-Xian; Rabinovich, Gabriel A; Rostami, Abdolmohamad

    2016-07-01

    In experimental autoimmune encephalomyelitis (EAE), intravenous (i.v.) injection of the antigen, myelin oligodendrocyte glycoprotein-derived peptide, MOG35-55 , suppresses disease development, a phenomenon called i.v. tolerance. Galectin-1, an endogenous glycan-binding protein, is upregulated during autoimmune neuroinflammation and plays immunoregulatory roles by inducing tolerogenic dendritic cells (DCs) and IL-10 producing regulatory type 1 T (Tr1) cells. To examine the role of galectin-1 in i.v. tolerance, we administered MOG35-55 -i.v. to wild-type (WT) and galectin-1 deficient (Lgals1(-/-) ) mice with ongoing EAE. MOG35-55 suppressed disease in the WT, but not in the Lgals1(-/-) mice. The numbers of Tr1 cells and Treg cells were increased in the CNS and periphery of tolerized WT mice. In contrast, Lgals1(-/-) MOG-i.v. mice had reduced numbers of Tr1 cells and Treg cells in the CNS and periphery, and reduced IL-27, IL-10, and TGF-β1 expression in DCs in the periphery. DCs derived from i.v.-tolerized WT mice suppressed disease when adoptively transferred into mice with ongoing EAE, whereas DCs from Lgals1(-/-) MOG-i.v. mice were not suppressive. These findings demonstrate that galectin-1 is required for i.v. tolerance induction, likely via induction of tolerogenic DCs leading to enhanced development of Tr1 cells, Treg cells, and downregulation of proinflammatory responses. PMID:27151444

  11. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels.

    PubMed

    Liu, Yumei; Zou, Haifeng; Zhao, Ping; Sun, Bo; Wang, Jinghua; Kong, Qingfei; Mu, Lili; Zhao, Sihan; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Zhao, Jiaying; Yin, Pengqi; Liu, Lei; Zhao, Xiuli; Li, Hulun

    2016-08-25

    Multiple sclerosis (MS) is a common autoimmune disease that inevitably causes inflammatory nerve demyelination. However, an effective approach to prevent its course is still lacking and urgently needed. Recently, the adenosine A2A receptor (A2AR) has emerged as a novel inflammation regulator. Manipulation of A2AR activity may suppress the MS process and protect against nerve damage. To test this hypothesis, we treated murine experimental autoimmune encephalomyelitis (EAE), a model for MS, with the selective A2AR agonist, CGS21680 (CGS). We evaluated the effects of CGS on the pathological features of EAE progression, including CNS cellular infiltration, inflammatory cytokine expression, lymphocyte proliferation, and cell surface markers. Treatment with CGS significantly suppressed specific lymphocyte proliferation, reduced infiltration of CD4(+) T lymphocytes, and attenuated the expression of inflammatory cytokines, which in turn inhibited the EAE progression. For the first time, we demonstrate that CGS can increase the intracellular calcium concentration ([Ca(2+)]i) in murine lymphocytes, which may be the mechanism underlying the suppressive effects of CGS-induced A2AR activation on EAE progression. Our findings strongly suggest that A2AR is a potential therapeutic target for MS and provide insight into the mechanism of action of A2AR agonists, which may offer a therapeutic option for this disease. PMID:27217214

  12. Immune cell-specific transcriptional profiling highlights distinct molecular pathways controlled by Tob1 upon experimental autoimmune encephalomyelitis.

    PubMed

    Didonna, Alessandro; Cekanaviciute, Egle; Oksenberg, Jorge R; Baranzini, Sergio E

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by focal lymphocytic infiltration, demyelination and neurodegeneration. Despite the recent advances in understanding MS molecular basis, no reliable biomarkers have been identified yet to monitor disease progression. Our group has previously reported that low levels of TOB1 in CD4(+) T cells are strongly associated with a higher risk of MS conversion in individuals experiencing an initial demyelinating event. Consistently, Tob1 ablation in mice exacerbates the clinical phenotype of the MS model experimental autoimmune encephalomyelitis (EAE). To shed light on Tob1 molecular functions in the immune system, we have conducted the first cell-based transcriptomic analysis in Tob1(-/-) and wildtype mice upon EAE. Next-generation sequencing was employed to characterize the changes in gene expression in T and B cells at pre- and post-symptomatic EAE stages. Remarkably, we found only modest overlap among the different genetic signatures, suggesting that Tob1 may control distinct genetic programs in the different cytotypes. This hypothesis was corroborated by gene ontology and global interactome analyses, which highlighted specific cellular pathways in each cellular subset before and after EAE induction. In summary, our work pinpoints a multifaceted activity of Tob1 in both homeostasis and disease progression. PMID:27546286

  13. The Lactic Acid Bacterium Pediococcus acidilactici Suppresses Autoimmune Encephalomyelitis by Inducing IL-10-Producing Regulatory T Cells

    PubMed Central

    Takata, Kazushiro; Kinoshita, Makoto; Okuno, Tatsusada; Moriya, Masayuki; Kohda, Tohru; Honorat, Josephe A.; Sugimoto, Tomoyuki; Kumanogoh, Atsushi; Kayama, Hisako; Takeda, Kiyoshi; Sakoda, Saburo; Nakatsuji, Yuji

    2011-01-01

    Background Certain intestinal microflora are thought to regulate the systemic immune response. Lactic acid bacteria are one of the most studied bacteria in terms of their beneficial effects on health and autoimmune diseases; one of which is Multiple sclerosis (MS) which affects the central nervous system. We investigated whether the lactic acid bacterium Pediococcus acidilactici, which comprises human commensal bacteria, has beneficial effects on experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Methodology/Principal Findings P. acidilactici R037 was orally administered to EAE mice to investigate the effects of R037. R037 treatment suppressed clinical EAE severity as prophylaxis and therapy. The antigen-specific production of inflammatory cytokines was inhibited in R037-treated mice. A significant increase in the number of CD4+ Interleukin (IL)-10-producing cells was observed in the mesenteric lymph nodes (MLNs) and spleens isolated from R037-treated naive mice, while no increase was observed in the number of these cells in the lamina propria. Because only a slight increase in the CD4+Foxp3+ cells was observed in MLNs, R037 may primarily induce Foxp3− IL10-producing T regulatory type 1 (Tr1) cells in MLNs, which contribute to the beneficial effect of R037 on EAE. Conclusions/Significance An orally administered single strain of P. acidilactici R037 ameliorates EAE by inducing IL10-producing Tr1 cells. Our findings indicate the therapeutic potential of the oral administration of R037 for treating multiple sclerosis. PMID:22110705

  14. Neuroprotective effects of a polyphenolic white grape juice extract in a mouse model of experimental autoimmune encephalomyelitis.

    PubMed

    Giacoppo, Sabrina; Galuppo, Maria; Lombardo, Giovanni Enrico; Ulaszewska, Maria Malgorzata; Mattivi, Fulvio; Bramanti, Placido; Mazzon, Emanuela; Navarra, Michele

    2015-06-01

    In the last 20 years, wine phenolic compounds have received increasing interest since several epidemiological studies have suggested associations between regular consumption of moderate amount of wine and prevention of certain chronic pathologies, such as neurodegenerative diseases. This study was aimed to investigate the possible neuroprotective role of a polyphenolic white grape juice extract (WGJe) in an experimental mice model of autoimmune encephalomyelitis (EAE), the most commonly used model for multiple sclerosis (MS) in vivo. EAE mimics the main features of MS, including paralysis, weight loss, demyelination, central nervous system (CNS) inflammation and blood-brain barrier (BBB) breakdown. Our study demonstrated that oral administration of WGJe (20 and 40 mg/kg/day) may exert neuroprotective effects against MS, diminishing both clinical signs and histological score typical of disease (lymphocytic infiltration and demyelination). In particular, by western blot, histological evaluations and immunolocalization of the main markers of inflammation, oxidative stress and apoptosis (TNF-α, iNOS, Nitrotyrosine, PARP, Foxp3, Bcl-2, Caspase 3 and DNA fragmentation), we documented that WGJe counteracts the alteration of all these inflammatory and oxidative pathway, without any apparent sign of toxicity. On these bases, we propose this natural product as putative novel helpful tools for the prevention of autoimmune and neurodegenerative diseases such as MS. WGJe could have considerable implication for future therapies of MS, and this study may represents the starting point for further investigation on the role of WGJe in neuroinflammation. PMID:25863350

  15. CD27 natural killer cell subsets play different roles during the pre-onset stage of experimental autoimmune encephalomyelitis.

    PubMed

    Gao, Ming; Yang, Yan; Li, Daling; Ming, Bingxia; Chen, Huoying; Sun, Yan; Xiao, Yifan; Lai, Lin; Zou, Huijuan; Xu, Yong; Xiong, Ping; Tan, Zheng; Gong, Feili; Zheng, Fang

    2016-08-01

    NK cells participate in the development of human multiple sclerosis (MS) and mouse experimental autoimmune encephalomyelitis (EAE), but the roles of different NK cell subsets in disease onset remain poorly understood. In this study, murine NK cells were divided into CD27(high) and CD27(low/-) subsets. The CD27(high) subset was decreased and the CD27(low/-) subset was increased in lymphoid organs during the pre-onset stage of EAE. Compared with the counterpart in naïve mice, the CD27(high) subset showed lower expression of Ly49D, Ly49H and NKG2D, and less production of IFN-γ, whereas the CD27(low/-) subset showed similar expression of the above mentioned surface receptors but higher cytotoxic activity in EAE mice. Compared with the CD27(high) subset, the CD27(low/-) subset exhibited increased promotion of DC maturation and no significant inhibition of T cells proliferation and Th17 cells differentiation in vitro Additionally, adoptive transfer of the CD27(low/-) subset, but not the CD27(high) subset, exacerbated the severity of EAE. Collectively, our data suggest the CD27 NK cell subsets play different roles in controlling EAE onset, which provide a new understanding for the regulation of NK cell subsets in early autoimmune disease. PMID:27368310

  16. Immune cell-specific transcriptional profiling highlights distinct molecular pathways controlled by Tob1 upon experimental autoimmune encephalomyelitis

    PubMed Central

    Didonna, Alessandro; Cekanaviciute, Egle; Oksenberg, Jorge R.; Baranzini, Sergio E.

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by focal lymphocytic infiltration, demyelination and neurodegeneration. Despite the recent advances in understanding MS molecular basis, no reliable biomarkers have been identified yet to monitor disease progression. Our group has previously reported that low levels of TOB1 in CD4+ T cells are strongly associated with a higher risk of MS conversion in individuals experiencing an initial demyelinating event. Consistently, Tob1 ablation in mice exacerbates the clinical phenotype of the MS model experimental autoimmune encephalomyelitis (EAE). To shed light on Tob1 molecular functions in the immune system, we have conducted the first cell-based transcriptomic analysis in Tob1−/− and wildtype mice upon EAE. Next-generation sequencing was employed to characterize the changes in gene expression in T and B cells at pre- and post-symptomatic EAE stages. Remarkably, we found only modest overlap among the different genetic signatures, suggesting that Tob1 may control distinct genetic programs in the different cytotypes. This hypothesis was corroborated by gene ontology and global interactome analyses, which highlighted specific cellular pathways in each cellular subset before and after EAE induction. In summary, our work pinpoints a multifaceted activity of Tob1 in both homeostasis and disease progression. PMID:27546286

  17. High-affinity NGF receptor in the rat spinal cord during acute and chronic phases of experimental autoimmune encephalomyelitis: a possible functional significance.

    PubMed

    Oderfeld-Nowak, B; Zaremba, M; Lipkowski, A W; Kwiatkowska-Patzer, B; Triaca, V; Aloe, L

    2003-03-01

    The biological effects of Nerve Growth Factor (NGF) are primarily mediated via its high affinity receptor-TrkA. In the present study, we examined the effect of experimental autoimmune encephalomyelitis (EAE) upon the expression of TrkA in neuronal and non-neuronal cells of the spinal cord of Lewis rats during the acute (14 days postimmunization) and chronic (12 months postimmunization) phases of the disease. In the normal spinal cord, both of mature and aged rats, we found TrkA immunoreaction (TrkA-IR) in the motoneurons of the Rexed lamina IX and in both oligo- and astroglia cells. In the acute phase of the disease, we found a reduction of TrkA immunoreactivity in motoneurons and its up-regulation in oligodendroglia, mainly in the white matter. We also confirmed our previous findings concerning the up-regulation of TrkA-IR in astroglia. Both neuronal and non-neuronal changes of TrkA immunoreactivity had a transient character: they were not seen in the chronic phase of the disease. Our results suggest that both neuronal and glial TrkA expression changes depend on inflammation. Moreover, our data indicate that, during the acute phase of EAE, the glial cells become more receptive to NGF, pointing to glia as an important target for pharmacological manipulations, particularly for exogenously administered NGF. PMID:12825322

  18. Failure to Suppress the Expansion of the Activated Cd4 T Cell Population in Interferon γ–Deficient Mice Leads to Exacerbation of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Chu, Cong-Qiu; Wittmer, Susan; Dalton, Dyana K.

    2000-01-01

    Mice deficient in interferon (IFN)-γ or IFN-γ receptor develop progressive and fatal experimental autoimmune encephalomyelitis (EAE). We demonstrate that CD4 T cells lacking IFN-γ production were required to passively transfer EAE, indicating that they were disease-mediating cells in IFN-γ knockout (KO) mice. IFN-γ KO mice accumulated 10–16-fold more activated CD4 T cells (CD4+CD44hi) than wild-type mice in the central nervous system during EAE. CD4+CD44hi T cells in the spleen and central nervous system of IFN-γ KO mice during EAE showed markedly increased in vivo proliferation and significantly decreased ex vivo apoptosis compared with those of wild-type mice. IFN-γ KO CD4+CD44hi T cells proliferated extensively to antigen restimulation in vitro and accumulated larger numbers of live CD4+ CD44hi T cells. IFN-γ completely suppressed proliferation and significantly induced apoptosis of CD4+CD44hi T cells responding to antigen and hence inhibited accumulation of live, activated CD4 T cells. We thus present novel in vivo and in vitro evidence that IFN-γ may limit the extent of EAE by suppressing expansion of activated CD4 T cells. PMID:10880533

  19. SLAM-SAP signaling promotes differentiation of IL-17-producing T cells and progression of experimental autoimmune encephalomyelitis.

    PubMed

    Huang, Yu-Hsuan; Tsai, Kevin; Ma, Caixia; Vallance, Bruce A; Priatel, John J; Tan, Rusung

    2014-12-15

    IL-17 plays critical roles in host defenses, combating bacterial and fungal infections, as well as the pathogenesis of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE). The signaling adaptor SAP is essential for normal immune homeostasis and mutations within SH2D1A, the locus encoding this protein, result in serious and sometimes fatal syndromes, including X-linked lymphoproliferative disease and severe cases of common variable immunodeficiency. However, the precise cellular basis of how SAP deficiency contributes to immune dysfunction remains incompletely understood. In this study, we found that CD4 and CD8 T cells lacking SAP had a diminished capacity to differentiate into IL-17-producing Th17 and T cytotoxic (Tc17) cells relative to wild-type lymphocytes. The use of costimulating SLAM Abs was found to augment the differentiation of IL-17-secreting effectors in wild-type but not Sh2d1a(-/-) splenic T cells under IL-17-polarizing conditions. In addition, SAP's regulation of IL-17-secreting T cells was shown to be a T cell-intrinsic role, as purified naive Sh2d1a(-/-) CD4 and CD8 T cells were inherently defective at converting into Th17 and Tc17 cells in vitro and in vivo. Furthermore, Sh2d1a(-/-) mice were protected from EAE and exhibited greatly decreased numbers of CNS-infiltrating Th17 and Tc17 effector T cells and reduced disease severity. Collectively, these results suggest that SLAM-SAP signaling drives the differentiation and function of Th17 and Tc17 cells in vitro and in vivo and contributes to the pathogenesis of autoimmunity in EAE. PMID:25362182

  20. Orally administered myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals.

    PubMed

    Miller, A; Lider, O; Abramsky, O; Weiner, H L

    1994-05-01

    Antigen-driven tolerance is an effective method for suppression of autoimmune diseases. Adult animals can be tolerized against the induction of experimental autoimmune encephalomyelitis (EAE) by both oral and parenteral administration of myelin basic protein (MBP). We have found that in contrast to previous studies of neonatal tolerance in which parenterally administered autoantigens induced tolerance, the oral administration of MBP in neonatal rats did not result in tolerization to MBP, but instead, primed for immunologic responses. Proliferative responses to MBP and its encephalitogenic epitope were present in animals fed with MBP as neonates and co-culture of encephalitogenic T cells with cells from neonatal rats fed with MBP were associated with enhanced MBP responses rather than the suppression observed with cells from adult rats fed with MBP. Furthermore, neonates fed with MBP and immunized 6-8 weeks later with MBP in adjuvant to induce EAE revealed enhancement of disease severity, and were not protected from a second attack upon active reinduction of EAE. Subcutaneous injection of soluble MBP into neonates had no effect on EAE induction as adults, whereas intraperitoneal injection of MBP in neonates was associated with marked suppression of disease in adults. Suppression of EAE began to appear in animals fed with MBP at 4 weeks of age, and was similar to oral tolerance in adult animals when animals were fed at 6 weeks of age. These results suggest that immaturity of the immunoregulatory network associated with oral tolerance and sensitization to autoantigens via the gut in the neonatal period may contribute to the pathogenesis of autoimmune diseases. PMID:7514126

  1. Pituitary adenylyl cyclase-activating polypeptide is an intrinsic regulator of Treg abundance and protects against experimental autoimmune encephalomyelitis.

    PubMed

    Tan, Yossan-Var; Abad, Catalina; Lopez, Robert; Dong, Hongmei; Liu, Shen; Lee, Alice; Gomariz, Rosa P; Leceta, Javier; Waschek, James A

    2009-02-10

    Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a widely expressed neuropeptide originally discovered in the hypothalamus. It closely resembles vasoactive intestinal peptide (VIP), a neuropeptide well known to inhibit macrophage activity, promote Th2-type responses, and enhance regulatory T cell (Treg) production. Recent studies have shown that administration of PACAP, like VIP, can attenuate dramatically the clinical and pathological features of murine models of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE) and collagen-induced arthritis. However, specific roles (if any) of endogenous VIP and PACAP in the protection against autoimmune diseases have not been explored. Here, we subjected PACAP-deficient mice to myelin oligodendrocyte glycoprotein (MOG(35-55))-induced EAE. MOG immunization of PACAP-deficient mice triggered heightened clinical and pathological manifestations of EAE compared to wild-type mice. The increased sensitivity was accompanied by enhanced mRNA expression of proinflammatory cytokines (TNFalpha, IL-6, IFN-gamma, IL-12p35, IL-23p19, and IL-17), chemokines (MCP-1/CCL2, MIP-1alpha/CCL3, and RANTES/CCL5), and chemotactic factor receptors (CCR1, CCR2, and CCR5), but downregulation of the anti-inflammatory cytokines (IL-4, IL-10, and TGF-beta) in the spinal cord. Moreover, the abundance of CD4(+)CD25(+)FoxP3(+) Tregs in lymph nodes and levels of FoxP3 mRNA in the spinal cord were also diminished. The reduction in Tregs was associated with increased proliferation and decreased TGF-beta secretion in lymph node cultures stimulated with MOG. These results demonstrate that endogenous PACAP provides protection in EAE and identify PACAP as an intrinsic regulator of Treg abundance after inflammation. PMID:19190179

  2. Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice

    PubMed Central

    Dos Santos, Adriana C; Roffê, Ester; Arantes, Rosa ME; Juliano, Luiz; Pesquero, Jorge L; Pesquero, João B; Bader, Michael; Teixeira, Mauro M; Carvalho-Tavares, Juliana

    2008-01-01

    Background Kinins are important mediators of inflammation and act through stimulation of two receptor subtypes, B1 and B2. Leukocyte infiltration contributes to the pathogenesis of autoimmune inflammation in the central nervous system (CNS), occurring not only in multiple sclerosis (MS) but also in experimental autoimmune encephalomyelitis (EAE). We have previously shown that the chemokines CCL2 and CCL5 play an important role in the adhesion of leukocytes to the brain microcirculation in EAE. The aim of the present study was to evaluate the relevance of B2 receptors to leukocyte-endothelium interactions in the cerebral microcirculation, and its participation in CNS inflammation in the experimental model of myelin-oligodendrocyte-glycoprotein (MOG)35–55-induced EAE in mice. Methods In order to evaluate the role of B2 receptor in the cerebral microvasculature we used wild-type (WT) and kinin B2 receptor knockout (B2-/-) mice subjected to MOG35–55-induced EAE. Intravital microscopy was used to investigate leukocyte recruitment on pial matter vessels in B2-/- and WT EAE mice. Histological documentation of inflammatory infiltrates in brain and spinal cords was correlated with intravital findings. The expression of CCL5 and CCL2 in cerebral tissue was assessed by ELISA. Results Clinical parameters of disease were reduced in B2-/- mice in comparison to wild type EAE mice. At day 14 after EAE induction, there was a significant decrease in the number of adherent leukocytes, a reduction of cerebral CCL5 and CCL2 expressions, and smaller inflammatory and degenerative changes in B2-/- mice when compared to WT. Conclusion Our results suggest that B2 receptors have two major effects in the control of EAE severity: (i) B2 regulates the expression of chemokines, including CCL2 and CCL5, and (ii) B2 modulates leukocyte recruitment and inflammatory lesions in the CNS. PMID:18986535

  3. Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice.

    PubMed

    Imeri, Faik; Fallegger, Daniel; Zivkovic, Aleksandra; Schwalm, Stephanie; Enzmann, Gaby; Blankenbach, Kira; Meyer zu Heringdorf, Dagmar; Homann, Thomas; Kleuser, Burkhard; Pfeilschifter, Josef; Engelhardt, Britta; Stark, Holger; Huwiler, Andrea

    2014-10-01

    The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases. PMID:24863045

  4. The Critical Role of Antigen-Presentation-Induced Cytokine Crosstalk in the Central Nervous System in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Sosa, Rebecca A.

    2011-01-01

    Multiple sclerosis (MS) is a debilitating disease of the central nervous system (CNS) that has been extensively studied using the animal model experimental autoimmune encephalomyelitis (EAE). It is believed that CD4+ T lymphocytes play an important role in the pathogenesis of this disease by mediating the demyelination of neuronal axons via secretion of proinflammatory cytokines resulting in the clinical manifestations. Although a great deal of information has been gained in the last several decades about the cells involved in the inflammatory and disease mediating process, important questions have remained unanswered. It has long been held that initial neuroantigen presentation and T cell activation events occur in the immune periphery and then translocate to the CNS. However, an increasing body of evidence suggests that antigen (Ag) presentation might initiate within the CNS itself. Importantly, it has remained unresolved which antigen presenting cells (APCs) in the CNS are the first to acquire and present neuroantigens during EAE/MS to T cells, and what the conditions are under which this takes place, ie, whether this occurs in the healthy CNS or only during inflammatory conditions and what the related cytokine microenvironment is comprised of. In particular, the central role of interferon-γ as a primary mediator of CNS pathology during EAE has been challenged by the emergence of Th17 cells producing interleukin-17. This review describes our current understanding of potential APCs in the CNS and the contribution of these and other CNS-resident cells to disease pathology. Additionally, we discuss the question of where Ag presentation is initiated and under what conditions neuroantigens are made available to APCs with special emphasis on which cytokines may be important in this process. PMID:21919736

  5. T-T cellular interaction between CD4-CD8- regulatory T cells and T cell clones presenting TCR peptide. Its implication for TCR vaccination against experimental autoimmune encephalomyelitis.

    PubMed

    Kozovska, M F; Yamamura, T; Tabira, T

    1996-08-15

    Regulatory T cells recognizing TCR determinants presumably play a critical role in the control of experimental autoimmune encephalomyelitis, a prototype tissue-specific autoimmune disease. This study was initiated to determine whether regulatory T cells can be induced against a V beta 17a CDR2 peptide (residues 50-68) in SJL/J mice. Although the TCR peptide showed regulatory effects in vivo, the presence of T cells specific for the peptide could not be proven with conventional proliferation assays. Unexpectedly, in the presence of myelin basic protein-specific T clone cells (Tcc), the sensitized spleen cells vigorously proliferated in response to the TCR peptide. The subsequent experiment showed that this was due to the outstanding capability of the Tcc as APC for the exogenous TCR peptide. Using the Tcc as APC, we were able to establish V beta 17a50-68-specific T cell lines from in vivo primed spleen cells. The line cells were MHC class I restricted and dominated by T cells with a distinct surface phenotype (CD4-CD8-V beta 17a+). Presentation of the peptide by the Tcc was inhibited by treatment with gelonin that could block a MHC class I presentation pathway. The ability of T cells to present the TCR peptide was not related to their Ag specificity, but correlated with the expression levels of MHC class I molecules and adhesion molecules such as intercellular adhesion molecule-1 and B7-1 on their surface. The TCR peptide-specific T cells produced a soluble mediator(s) that is inhibitory for T cell activation and were protective against actively induced experimental autoimmune encephalomyelitis. These results show that V beta 17a50-68 vaccination induces regulatory CD4-CD8- T cells that could interact with T cells presenting relevant TCR fragments. PMID:8759768

  6. Oral Tolerance Induction in Experimental Autoimmune Encephalomyelitis with Candida utilis Expressing the Immunogenic MOG35-55 Peptide

    PubMed Central

    Heininger, Maximilian K.; Hartung, Hans-Peter; Kieseier, Bernd C.; Ernst, Joachim F.

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease that attacks myelinated axons in the central nervous system. Induction of oral tolerance is a potent mechanism to prevent autoimmunity. The food yeast Candida utilis was used to test the therapeutic potential of oral tolerance induction in an animal model of human multiple sclerosis (MS). We constructed a C. utilis strain, which displays a fusion peptide composed of the encephalitogenic MOG35-55 peptide and the C. utilis Gas1 cell wall protein on its surface.By immunizing mice with MOG35-55 peptide experimental autoimmune encephalomyelitis (EAE) was induced in a mouse model. Feeding of mice with C. utilis that expresses MOG35-55 peptide on its surface was started seven days prior to immunization and was continued for ten days. Control animals were treated with wild-type fungus or left untreated. Untreated mice developed first clinical symptoms ten days post immunization (p. i.) with an ascending paralysis reaching maximal clinical disability at day 18 to 20 p. i.. Treatment with the wild-type strain demonstrated comparable clinical symptoms. In contrast, oral gavage of MOG35-55-presenting fungus ameliorated the development of EAE. In addition, incidence as well as maximal clinical disease severity were significantly reduced. Interestingly, reduction of disease severity also occurred in animals treated with heat-inactivated C. utilis cells indicating that tolerance induction was independent of fungal viability. Better disease outcome correlated with reduced demyelination and cellular inflammation in the spinal cord, lower T cell proliferation against rechallenge with MOG35-55 and more regulatory T cells in the lymph nodes. Our data demonstrate successful that using the food approved fungus C. utilis presenting the immunogenic MOG35-55 peptide on its surface induced an oral tolerance against this epitope in EAE. Further studies will reveal the nature and extent of an anti-inflammatory environment established by the

  7. Cytokine switch and bystander suppression of autoimmune responses to multiple antigens in experimental autoimmune encephalomyelitis by a single recombinant T-cell receptor ligand.

    PubMed

    Sinha, Sushmita; Subramanian, Sandhya; Miller, Lisa; Proctor, Thomas M; Roberts, Chris; Burrows, Gregory G; Vandenbark, Arthur A; Offner, Halina

    2009-03-25

    Recombinant T-cell receptor ligands (RTLs) can reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner, and are currently in clinical trials for treatment of subjects with multiple sclerosis (MS). Antigen specificity of RTL raises the question as to whether this treatment would be successful in MS patients where target antigens are unknown. Using spinal cord homogenate or combinations of two different peptides to induce disease, we found that treatment with single RTL could reverse EAE as long as targeted T-cells were present. Therapy with three different RTLs each caused a significant reduction in IL-17 and increases in IL-10 and IL-13 in peptide-activated splenocytes, reduced proliferation of both cognate and bystander specificities of lymph node cells, and reduced inflammatory lesions and secreted IL-17 and IL-2 from peptide-activated spinal cord cells. These results show that treatment with single RTLs can induce a cytokine switch in cognate T-cells that inhibits both the target and bystander T-cells, providing new evidence for the potential applicability of RTL therapy in MS. PMID:19321778

  8. Cytokine Switch and Bystander Suppression of Autoimmune Responses to Multiple Antigens in Experimental Autoimmune Encephalomyelitis by a Single Recombinant T-Cell Receptor Ligand

    PubMed Central

    Sinha, Sushmita; Subramanian, Sandhya; Miller, Lisa; Proctor, Thomas M.; Roberts, Chris; Burrows, Gregory G.; Vandenbark, Arthur A.; Offner, Halina

    2009-01-01

    Recombinant T-cell receptor ligands (RTLs) can reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner, and are currently in clinical trials for treatment of subjects with multiple sclerosis (MS). Antigen specificity of RTL raises the question as to whether this treatment would be successful in MS patients where target antigens are unknown. Using spinal cord homogenate or combinations of two different peptides to induce disease,we found that treatment with single RTL could reverse EAE as long as targeted T-cells were present. Therapy with three different RTLs each caused a significant reduction in IL-17 and increases in IL-10 and IL-13 in peptide-activated splenocytes, reduced proliferation of both cognate and bystander specificities of lymph node cells, and reduced inflammatory lesions and secreted IL-17 and IL-2 from peptide-activated spinal cord cells. These results show that treatment with single RTLs can induce a cytokine switch in cognate T-cells that inhibits both the target and bystander T-cells, providing new evidence for the potential applicability of RTL therapy in MS. PMID:19321778

  9. IL-13 Production by Regulatory T Cells Protects Against Experimental Autoimmune Encephalomyelitis (EAE) Independent of Auto-Antigen1

    PubMed Central

    Ochoa-Repáraz, Javier; Rynda, Agnieszka; Ascón, Miguel A.; Yang, Xinghong; Kochetkova, Irina; Riccardi, Carol; Callis, Gayle; Trunkle, Theresa; Pascual, David W.

    2008-01-01

    Treatment with an anti-inflammatory Salmonella vaccine expressing enterotoxigenic E. coli colonization factor antigen 1 (CFA/I) proved effective in stimulating protective, potent CD25+ CD4+ T (Treg) cells in susceptible mice challenged with experimental autoimmune encephalomyelitis (EAE). Since the Salmonella vector was considerably less protective, we questioned whether altering the fimbrial subunit expression to resemble conventional Salmonella expression may impact Treg cell potency. The Salmonella-CFA/I vaccine was modified to limit the fimbrial subunit expression to the intracellular compartment (Salmonella-CFA/IIC). SJL mice were challenged with proteolipid protein (PLP)139–151 to induce EAE and orally treated with one of three Salmonella vaccines six days post-challenge. Treatment with Salmonella-CFA/IIC greatly reduced clinical disease, similar to Salmonella-CFA/I, by subduing IL-17 and IL-21; however, mechanisms of protection differed, as evident by increased IL-13 and IFN-γ, but diminished TGF-β production by Treg cells from Salmonella-CFA/IIC-treated mice. Adoptive transfer of Treg cells from both CFA/I-expressing constructs was equivalent in protecting against EAE, showing minimal disease. While not as potent in its protection, CD25−CD4+ T cells from Salmonella-CFA/IIC showed minimal Th2 cells, but this vaccine did prime for Th2 cells subsequent EAE challenge. In vivo IL-13, but not IFN-γ neutralization, compromised protection conferred by adoptive transfer with Salmonella-CFA/IIC-induced Treg cells. Thus, the Salmonella-CFA/IIC vaccine elicits Treg cells with attributes from both the Salmonella vector and Salmonella-CFA/I vaccines. Importantly, these Treg cells can be induced to high potency by simply vaccinating against irrelevant Ags, offering a novel approach to treat autoimmune diseases independently of the auto-Ag. PMID:18606647

  10. Metallothionein I+II expression as an early sign of chronic relapsing experimental autoimmune encephalomyelitis in rats.

    PubMed

    Jakovac, Hrvoje; Tota, Marin; Grebic, Damir; Grubic-Kezele, Tanja; Barac-Latas, Vesna; Mrakovcic-Sutic, Ines; Milin, Cedomila; Radosevic-Stasic, Biserka

    2013-02-01

    Metallothioneins (MTs) are small, cysteine-rich proteins which have been implicated in various forms of stress providing cytoprotective action against oxidative injury, DNA damage and apoptosis. Owing to their high affinity for physiological metals, such as zinc and copper MTs are also critical components of regulatory proteins involved in cell growth and multiplication, as well as in the maintenance of immune homeostasis. To elucidate the role of MTs in the pathomechanisms of autoimmune CNS disorders we estimated the expression of MT I+II proteins and the content of free Zn ions in the brain, spinal cord and in the liver early in the course of chronic relapsing experimental autoimmune encephalomyelitis (CR-EAE) pathogenesis, i.e. before the onset of any clinical symptoms. Disease was induced in the genetically susceptible Dark Agouti (DA) rats by subcutaneous injection of bovine brain homogenate in CFA. Control animals were treated with CFA alone. The data, obtained by immuno-histochemistry and in situ fluorescent labeling of free zinc ions, have shown that in the presymptomatic phase of CR-EAE (on the seventh postimmunization day) MTs I+II were markedly upregulated in the cells that form blood-brain and blood-cerebrospinal fluid barriers, as well as in the cerebellar parenchyma and hippocampal dentate gyri. Furthermore, we found that the liver also becomes a site of extensive MTs I+II synthesis shortly after immunization. Simultaneously, tissue content of free zinc ions increased at the sites of MTs induction, reflecting their antioxidative activity. The data, described in this paper point to regulatory and neuroprotective role of MTs in the pathogenesis of CR-EAE. PMID:23895520

  11. Vasoactive intestinal peptide loss leads to impaired CNS parenchymal T-cell infiltration and resistance to experimental autoimmune encephalomyelitis.

    PubMed

    Abad, Catalina; Tan, Yossan-Var; Lopez, Robert; Nobuta, Hiroko; Dong, Hongmei; Phan, Phu; Feng, Ji-Ming; Campagnoni, Anthony T; Waschek, James A

    2010-11-01

    The neuropeptide vasoactive intestinal peptide (VIP) has been shown to inhibit macrophage proinflammatory actions, promote a positive Th2/Th1 balance, and stimulate regulatory T-cell production. The fact that this peptide is highly efficacious in animal models of inflammatory diseases such as collagen-induced arthritis and experimental autoimmune encephalomyelitis (EAE) suggests that the endogenous peptide might normally provide protection against such pathologies. We thus studied the response of VIP-deficient (i.e., VIP KO) mice to myelin oligodendrocyte protein-induced EAE. Surprisingly, VIP KO mice were almost completely resistant to EAE, with delayed onset and mild or absent clinical profile. Despite this, flow cytometric analyses and antigen-rechallenge experiments indicated that myelin oligodendrocyte protein-treated VIP KO mice exhibited robust Th1/Th17 cell inductions and antigen-specific proliferation and cytokine responses. Moreover, adoptive transfer of lymphocytes from immunized VIP KO mice to WT recipients resulted in full-blown EAE, supporting their encephalitogenic potential. In contrast, transfer of encephalitogenic WT cells to VIP KO hosts did not produce EAE, suggesting that loss of VIP specifically affected the effector phase of the disease. Histological analyses indicated that CD4 T cells entered the meningeal and perivascular areas of VIP-deficient mice, but that parenchymal infiltration was strongly impaired. Finally, VIP pretreatment of VIP KO mice before immunization was able to restore their sensitivity to EAE. These results indicate that VIP plays an unanticipated permissive and/or proinflammatory role in the propagation of the inflammatory response in the CNS, a finding with potential therapeutic relevance in autoimmune neuroinflammatory diseases such as multiple sclerosis. PMID:20978211

  12. Identification of Protein Networks Involved in the Disease Course of Experimental Autoimmune Encephalomyelitis, an Animal Model of Multiple Sclerosis

    PubMed Central

    Plaisance, Stéphane; Baeten, Kurt; Hendriks, Jerome J. A.; Leprince, Pierre; Dumont, Debora; Robben, Johan; Brône, Bert; Stinissen, Piet; Noben, Jean-Paul; Hellings, Niels

    2012-01-01

    A more detailed insight into disease mechanisms of multiple sclerosis (MS) is crucial for the development of new and more effective therapies. MS is a chronic inflammatory autoimmune disease of the central nervous system. The aim of this study is to identify novel disease associated proteins involved in the development of inflammatory brain lesions, to help unravel underlying disease processes. Brainstem proteins were obtained from rats with MBP induced acute experimental autoimmune encephalomyelitis (EAE), a well characterized disease model of MS. Samples were collected at different time points: just before onset of symptoms, at the top of the disease and following recovery. To analyze changes in the brainstem proteome during the disease course, a quantitative proteomics study was performed using two-dimensional difference in-gel electrophoresis (2D-DIGE) followed by mass spectrometry. We identified 75 unique proteins in 92 spots with a significant abundance difference between the experimental groups. To find disease-related networks, these regulated proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). The analysis revealed that 70% of these proteins have been described to take part in neurological disease. Furthermore, some focus networks were created by IPA. These networks suggest an integrated regulation of the identified proteins with the addition of some putative regulators. Post-synaptic density protein 95 (DLG4), a key player in neuronal signalling and calcium-activated potassium channel alpha 1 (KCNMA1), involved in neurotransmitter release, are 2 putative regulators connecting 64% of the identified proteins. Functional blocking of the KCNMA1 in macrophages was able to alter myelin phagocytosis, a disease mechanism highly involved in EAE and MS pathology. Quantitative analysis of differentially expressed brainstem proteins in an animal model of MS is a first step to identify disease-associated proteins and networks that

  13. Regulatory T Cell Dysfunction Acquiesces to BTLA+ Regulatory B Cells Subsequent to Oral Intervention in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Huarte, Eduardo; Jun, SangMu; Rynda-Apple, Agnieszka; Golden, Sara; Jackiw, Larissa; Hoffman, Carol; Maddaloni, Massimo; Pascual, David W

    2016-06-15

    Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein σ1 (MOG-pσ1), which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from EAE. Although inflammatory B cells contribute to EAE's pathogenesis, treatment of EAE mice with MOG-pσ1, but not OVA-pσ1, resulted in an influx of IL-10-producing B220(+)CD5(+) B regulatory cells (Bregs) enabling Tregs to recover their inhibitory activity, and in turn, leading to the rapid amelioration of EAE. These findings implicate direct interactions between Bregs and Tregs to facilitate this recovery. Adoptive transfer of B220(+)CD5(-) B cells from MOG-pσ1-treated EAE or Bregs from PBS-treated EAE mice did not resolve disease, whereas the adoptive transfer of MOG-pσ1-induced B220(+)CD5(+) Bregs greatly ameliorated EAE. MOG-pσ1-, but not OVA-pσ1-induced IL-10-producing Bregs, expressed elevated levels of B and T lymphocyte attenuator (BTLA) relative to CD5(-) B cells, as opposed to Tregs or effector T (Teff) cells, whose BTLA expression was not affected. These induced Bregs restored EAE Treg function in a BTLA-dependent manner. BTLA(-/-) mice showed more pronounced EAE with fewer Tregs, but upon adoptive transfer of MOG-pσ1-induced BTLA(+) Bregs, BTLA(-/-) mice were protected against EAE. Hence, this evidence shows the importance of BTLA in activating Tregs to facilitate recovery from EAE. PMID:27194787

  14. Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T cell subsets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies suggest that green tea component epigallocatechin-3-gallate (EGCG) may have a beneficial effect in reducing the pathogenesis of autoimmune diseases; however, the underlying mechanism(s) are not well understood. In this study, we determined the effect of EGCG on the development of experiment...

  15. Microwave & Magnetic (M2) Proteomics Reveals CNS-Specific Protein Expression Waves that Precede Clinical Symptoms of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.

    2014-09-01

    Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.

  16. A method for histopathological study of the multifocal nature of spinal cord lesions in murine experimental autoimmune encephalomyelitis

    PubMed Central

    Boyden, Alexander W.; Leidinger, Mariah R.; Lambertz, Allyn M.; Ofori-Amanfo, Georgina; Naumann, Paul W.; Goeken, J. Adam; Karandikar, Nitin J.

    2016-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a well-established mouse model for multiple sclerosis and is characterized by infiltration of mononuclear cells and demyelination within the central nervous system along with the clinical symptoms of paralysis. EAE is a multifocal and random disease, which sometimes makes histopathologic analysis of lesions difficult as it may not be possible to predict where lesions will occur, especially when evaluating cross sections of spinal cord. Consequently, lesions may be easily missed due to limited sampling in traditional approaches. To evaluate the entire length of the spinal cord while maintaining anatomic integrity, we have developed a method to section the cord within the decalcified spinal column, which allows for the study of the multifocal nature of this disease and also minimizes handling artifact. HE and Luxol fast blue staining of these spinal cord sections revealed a paucity of lesions in some areas, while others showed marked inflammation and demyelination. The percentage of spinal cord affected by EAE was evaluated at four separate areas of longitudinally sectioned cord and it varied greatly within each animal. Immunohistochemical staining of in situ spinal cords which had undergone decalcification was successful for key immuno-markers used in EAE research including CD3 for T cells, B220 for B cells and F4/80 for murine macrophages. This method will allow investigators to look at the entire spinal cord on a single slide and evaluate the spinal cord with and without classic EAE lesions. PMID:26855861

  17. Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo

    PubMed Central

    Boggio, Elena; Gigliotti, Casimiro Luca; Soluri, Maria Felicia; Clemente, Nausicaa; Toth, Erika; Raineri, Davide; Ferrara, Benedetta; Chiocchetti, Annalisa

    2016-01-01

    Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α4β1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases. PMID:27478856

  18. Sphingosine kinase 2 deficient mice exhibit reduced experimental autoimmune encephalomyelitis: Resistance to FTY720 but not ST-968 treatments.

    PubMed

    Imeri, Faik; Schwalm, Stephanie; Lyck, Ruth; Zivkovic, Aleksandra; Stark, Holger; Engelhardt, Britta; Pfeilschifter, Josef; Huwiler, Andrea

    2016-06-01

    The immunomodulatory drug FTY720 is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that requires activation by sphingosine kinase 2 (SK-2) to induce T cell homing to secondary lymphoid tissue. In this study, we have investigated the role of SK-2 in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. We show that SK-2 deficiency reduced clinical symptoms of EAE. Furthermore, in SK-2-deficient mice, the protective effect of FTY720 on EAE was abolished, while the non-prodrug FTY720-derivative ST-968 was still fully active. Protection was paralleled by reduced numbers of T-lymphocytes in blood and a reduced blood-brain-barrier leakage. This correlated with reduced mRNA expression of ICAM-1, VCAM-1, but enhanced expression of PECAM-1. A similar regulation of permeability and of PECAM-1 was seen in primary cultures of isolated mouse brain vascular endothelial cells and in a human immortalized cell line upon SK-2 knockdown. In summary, these data demonstrated that deletion of SK-2 exerts a protective effect on the pathogenesis of EAE in C57BL/6 mice and that SK-2 is essential for the protective effect of FTY720 but not of ST-968. Thus, ST-968 is a promising novel immunomodulatory compound that may be a valuable alternative to FTY720 under conditions where SK-2 activity is limited. PMID:26808312

  19. Prazosin treatment suppresses increased vascular permeability in both acute and passively transferred experimental autoimmune encephalomyelitis in the lewis rat

    SciTech Connect

    Goldmuntz, E.A.; Brosnan, C.F.; Norton, W.T.

    1986-12-01

    Prazosin, an antagonist of the ..cap alpha../sub 1/-adrenoceptor, has been found to suppress the clinical and histologic expression of experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. This effect appears to be specific for the ..cap alpha../sub 1/-receptor. To determine the effect of this drug on vascular permeability to serum proteins and inflammatory cells, leakage of serum proteins into the central nervous system (CNS) was measured with (/sup 125/I)albumin, and quantitation of cellular inflammation was determined by an estimation of total DNA. The results show that in both actively induced and passively transferred models of the disease, treatment with prazosin significantly suppresses leakage of serum proteins into the CNS but does not significantly suppress the increase of DNA. The results of the (/sup 125/I)albumin studies additionally support the conclusion that the extent of vascular permeability to serum proteins in the spinal cord is a significant correlate of clinical disease. The results of the DNA estimation were at variance with the histologic evidence of cellular infiltration. The authors conclude that treatment with prazosin has a significant effect on the development of vascular edema in EAE. These results additionally validate a role for the adrenergic receptor in the development of EAE, and support the hypothesis that the primary site of action of prazosin is on the vascular ..cap alpha../sub 1/-adrenoceptor.

  20. Deficiency of IκB Kinase β in Myeloid Cells Reduces Severity of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Hao, Wenlin; Decker, Yann; Schnöder, Laura; Schottek, Andrea; Li, Dong; Menger, Michael D; Fassbender, Klaus; Liu, Yang

    2016-05-01

    In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), peripherally developed myelin-reactive T lymphocytes stimulate myeloid cells (ie, microglia and infiltrated macrophages) to trigger an inflammatory reaction in the central nervous system, resulting in demyelination and neurodegeneration. IκB kinase β (IKKβ) is a kinase that modulates transcription of inflammatory genes. To investigate the pathogenic role of IKKβ in MS, we developed strains in which IKKβ was conditionally ablated in myeloid cells and established active or passive EAE in these animals. Deficiency of IKKβ in myeloid cells ameliorated EAE symptoms and suppressed neuroinflammation, as shown by decreased infiltration of T lymphocytes and macrophages and reduced inflammatory gene transcription in the spinal cord at the peak or end stage of EAE. Myeloid deficiency of IKKβ also reduced the transcription of Rorc or Il17 genes in T lymphocytes isolated from lymph nodes, spleen, and spinal cord of EAE mice. Moreover, cultured splenocytes isolated from myeloid IKKβ-deficient EAE mice released less IL-17, interferon-γ, and granulocyte-macrophage colony-stimulating factor after treatment with myelin peptide than splenocytes from IKKβ wild-type EAE mice. Thus, deficiency of myeloid IKKβ attenuates the severity of EAE by inhibiting both the neuroinflammatory activity and the activation of encephalitogenic T lymphocytes. These results suggest IKKβ may be a potential target for MS patients, especially when neuroinflammation is the primary problem. PMID:26968344

  1. In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis.

    PubMed

    Yousefi, Forouzan; Ebtekar, Massoumeh; Soudi, Sara; Soleimani, Masoud; Hashemi, Seyed Mahmoud

    2016-04-01

    Mesenchymal stem cells (MSCs) are well known to possess neuroprotective and immunomodulatory effects, due to cell-to-cell interaction and their soluble factors. We conducted a comparative analysis of the immunomodulatory properties of adipose tissue mesenchymal stem cells (AT-MSCs) and their conditioned media (CM), derived from C57/BL6 mice, for mitigating the adverse clinical course of experimental autoimmune encephalomyelitis (EAE). We measure IL4, IL17 and IFNɣ production of supernatant from spleen cells. We analyzed brain cell infiltration, splenocyte proliferation and evaluated the percentage of CD4+CD25+FOXP3+splenic cell population in all EAE C57/BL6 mice. AT-MSCs and its conditioned medium induced CD4+CD25+FOXP3+regulatory T cells after in vitro co-culture with naïve T cells. There is no significant difference in the clinical scores and body weight of EAE mice treated with AT-MSCs and CM. The reduction in proliferative responses and brain cell infiltration was more pronounced in mice injected with CM than other groups. It is found that the percentage of splenic CD4+CD25+FOXP3+ population as well as the level of IL4 production in mice administrated with AT-MSCs is increased compared to other animals. Our results suggest that AT-MSCs-derived CM is promising in stem cell therapy, due to their neuroprotective and immunomudulatory properties. PMID:26930038

  2. Low susceptibility to the induction of experimental autoimmune encephalomyelitis in a substrain of the otherwise susceptible Lewis rat.

    PubMed

    Källén, B; Lögdberg, L

    1982-07-01

    A substrain of the Lewis rat, Lew/Mol, differing from ordinary Lewis rats in that it is hardly susceptible to the induction of experimental autoimmune encephalomyelitis (EAE) is described. The Lew/Mol rats did not mount a host-vs.-graft response towards cells from an EAE-susceptible substrain of Lewis rats (Lew/Mai) and vice versa. This argues against the possibility that the origin of Lew/Mol rats involves accidental cross-breeding with other rat strains. Thus the EAE-resistance in Lew/Mol rats in interpreted as being due to a mutation(s) in a gene(s) regulating the susceptibility to EAE. Specific pathogen-free Lew/Mol rats were more resistant to EAE induction than Lew/Mol rats bred under conventional conditions, emphasizing the importance of environmental factors. Neither cyclophosphamide treatment nor increased age resulted in marked susceptibility in the Lew/Mol rats, although aging apparently had some effect, as a few animals did show neurological signs. Approximately half of (Lew/Mol x Lew/Mai)F1 hybrids developed EAE with neurological signs. In this respect, Lew/Mol rats differ from another recently described EAE-resistant substrain of the Lewis rat (LeR). PMID:6180908

  3. Four different synthetic peptides of proteolipid protein induce a distinct antibody response in MP4-induced experimental autoimmune encephalomyelitis.

    PubMed

    Recks, Mascha S; Grether, Nicolai B; van der Broeck, Franziska; Ganscher, Alla; Wagner, Nicole; Henke, Erik; Ergün, Süleyman; Schroeter, Michael; Kuerten, Stefanie

    2015-07-01

    Here we studied the autoantibody specificity elicited by proteolipid protein (PLP) in MP4-induced experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis (MS). In C57BL/6 (B6) mice, antibodies were induced by immunization with one of the two extracellular and by the intracellular PLP domain. Antibodies against extracellular PLP were myelin-reactive in oligodendrocyte cultures and induced mild spinal cord demyelination upon transfer into B cell-deficient J(H)T mice. Remarkably, also antibodies against intracellular PLP showed binding to intact oligodendrocytes and were capable of inducing myelin pathology upon transfer into J(H)T mice. In MP4-immunized mice peptide-specific T(H)1/T(H)17 responses were mainly directed against the extracellular PLP domains, but also involved the intracellular epitopes. These data suggest that both extracellular and intracellular epitopes of PLP contribute to the pathogenesis of MP4-induced EAE already in the setting of intact myelin. It remains to be elucidated if this concept also applies to MS itself. PMID:25959684

  4. Exacerbation of Experimental Autoimmune Encephalomyelitis in the Absence of Breast Regression Protein-39/Chitinase 3-like-1

    PubMed Central

    Bonneh-Barkay, Dafna; Wang, Guoji; LaFramboise, William A.; Wiley, Clayton A.; Bissel, Stephanie J.

    2012-01-01

    We previously reported that YKL-40, the human analog of mouse breast regression protein-39 (BRP-39; chitinase 3-like 1), is elevated in the cerebrospinal fluid of patients with a variety of neuroinflammatory conditions, such as multiple sclerosis and traumatic brain injury. YKL-40 expression in the CNS was predominantly associated with reactive astrocytes in the vicinity of inflammatory lesions. Because previous studies have shown that reactive astrocytes play a critical role in limiting immune infiltration in the mouse model of experimental autoimmune encephalomyelitis (EAE), we explored the role of BRP-39 in regulating neuroinflammation in EAE. Using BRP-39-deficient mice (BRP-39−/−), we demonstrate the importance of BRP-39 in modulating the severity of clinical EAE and CNS neuroinflammation. At disease onset, absence of BRP-39 had little effect on clinical disease or lymphocytic infiltrate, but by 14 days post-immunization (dpi), differences in clinical scores were evident. By 28 dpi, BRP-39−/− mice showed more severe and persistent clinical disease than BRP-39+/+ controls. Histopathological evaluation showed that BRP-39−/− mice had more marked lymphocytic and macrophage infiltrates and gliosis vs. BRP-39+/+ mice. These findings support the role of BRP-39 expression in limiting immune cell infiltration into the CNS and offer a new target to modulate neuroinflammation. PMID:23041842

  5. Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo.

    PubMed

    Boggio, Elena; Dianzani, Chiara; Gigliotti, Casimiro Luca; Soluri, Maria Felicia; Clemente, Nausicaa; Cappellano, Giuseppe; Toth, Erika; Raineri, Davide; Ferrara, Benedetta; Comi, Cristoforo; Dianzani, Umberto; Chiocchetti, Annalisa

    2016-01-01

    Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α 4 β 1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases. PMID:27478856

  6. Deletion of UCP2 in iNOS Deficient Mice Reduces the Severity of the Disease during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Aheng, Caroline; Ly, Nathalie; Kelly, Mairead; Ibrahim, Saleh; Ricquier, Daniel; Alves-Guerra, Marie-Clotilde; Miroux, Bruno

    2011-01-01

    Uncoupling protein 2 is a member of the mitochondrial anion carrier family that is widely expressed in neurons and the immune cells of humans. Deletion of Ucp2 gene in mice pre-activates the immune system leading to higher resistance toward infection and to an increased susceptibility to develop chronic inflammatory diseases as previously exemplified with the Experimental Autoimmune Encephalomyelitis (EAE), a mouse model for multiple sclerosis. Given that oxidative stress is enhanced in Ucp2−/− mice and that nitric oxide (NO) also plays a critical function in redox balance and in chronic inflammation, we generated mice deficient for both Ucp2 and iNos genes and submitted them to EAE. Mice lacking iNos gene exhibited the highest clinical score (3.4+/−0.5 p<0.05). Surprisingly, mice deficient for both genes developed milder disease with reduced immune cell infiltration, cytokines and ROS production as compared to iNos−/− mice. PMID:21857957

  7. Dependency of Experimental Autoimmune Encephalomyelitis Induction on MOG35-55 Properties Modulating Matrix Metalloproteinase-9 and Interleukin-6.

    PubMed

    Seo, Ji-Eun; Hasan, Mahbub; Han, Joon-Seung; Kim, Nak-Kyoon; Lee, Ji Eun; Lee, Kang Mi; Park, Ju-Hyung; Kim, Ho Jun; Son, Junghyun; Lee, Jaeick; Kwon, Oh-Seung

    2016-04-01

    Experimental autoimmune encephalomyelitis (EAE) is commonly induced with myelin oligodendrocyte glycoprotein (MOG)35-55; occasionally, EAE is not well induced despite MOG35-55 immunization. To confirm that EAE induction varies with difference in MOG35-55 properties, we compared three MOG35-55 from different commercial sources, which are MOG-A, MOG-B, and MOG-C. The peptides induced EAE disease with 100, 40, and 20 % incidence, respectively. Compared with others, MOG-A showed higher peptide purity (99.2 %) and content (92.2 %) and presented a sheet shape with additional sodium and chloride chemical elements. In MOG-A-treated group, MMP-9 activity and IL-6 levels were considerably higher than the other groups in CNS tissues, and significantly increased VCAM-1, IFN-γ, and decreased IL-4 were also shown compared to MOG-B- and/or MOG-C-treated group. In conclusion, the immunological and toxicological changes by the difference in MOG35-55 properties modulate EAE induction, and MOG35-55 which affects MMP-9 activity and IL-6 levels may be the most effective EAE-inducing antigen. This study can be potentially applied by researchers using MOG35-55 peptide and manufacturers for MOG35-55 synthesis. PMID:26464215

  8. Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Fu, Yan; Frederick, Terra J.; Huff, Terry B.; Goings, Gwendolyn E.; Miller, Stephen D.; Cheng, Ji-Xin

    2011-10-01

    How demyelination is initiated is a standing question for pathology of multiple sclerosis. By label-free coherent anti-Stokes Raman scattering (CARS) imaging of myelin lipids, we investigate myelin integrity in the lumbar spinal cord tissue isolated from naïve SJL mice, and from mice at the onset, peak acute, and remission stages of relapsing experimental autoimmune encephalomyelitis (EAE). Progressive demyelinating disease is initially characterized by the retraction of paranodal myelin both at the onset of disease and at the borders of acute demyelinating lesions. Myelin retraction is confirmed by elongated distribution of neurofascin proteins visualized by immunofluorescence. The disruption of paranodal myelin subsequently exposes Kv1.2 channels at the juxtaparanodes and lead to the displacement of Kv1.2 channels to the paranodal and nodal domains. Paranodal myelin is partially restored during disease remission, indicating spontaneous myelin regeneration. These findings suggest that paranodal domain injury precedes formation of internodal demyelinating lesions in relapsing EAE. Our results also demonstrate that CARS microscopy is an effective readout of myelin disease burden.

  9. PI3Kγ Drives Priming and Survival of Autoreactive CD4+ T Cells during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kara, Ervin; McColl, Shaun R.

    2012-01-01

    The class IB phosphoinositide 3-kinase gamma enzyme complex (PI3Kγ) functions in multiple signaling pathways involved in leukocyte activation and migration, making it an attractive target in complex human inflammatory diseases including MS. Here, using pik3cg−/− mice and a selective PI3Kγ inhibitor, we show that PI3Kγ promotes development of experimental autoimmune encephalomyelitis (EAE). In pik3cg−/− mice, EAE is markedly suppressed and fewer leukocytes including CD4+ and CD8+ T cells, granulocytes and mononuclear phagocytes infiltrate the CNS. CD4+ T cell priming in secondary lymphoid organs is reduced in pik3cg−/− mice following immunisation. This is attributable to defects in DC migration concomitant with a failure of full T cell activation following TCR ligation in the absence of p110γ. Together, this results in suppressed autoreactive T cell responses in pik3cg−/− mice, with more CD4+ T cells undergoing apoptosis and fewer cytokine-producing Th1 and Th17 cells in lymphoid organs and the CNS. When administered from onset of EAE, the orally active PI3Kγ inhibitor AS605240 caused inhibition and reversal of clinical disease, and demyelination and cellular pathology in the CNS was reduced. These results strongly suggest that inhibitors of PI3Kγ may be useful therapeutics for MS. PMID:23028778

  10. Gene Therapy With Mitochondrial Heat Shock Protein 70 Suppresses Visual Loss and Optic Atrophy in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Talla, Venu; Porciatti, Vittorio; Chiodo, Vince; Boye, Sanford L.; Hauswirth, William W.; Guy, John

    2014-01-01

    Purpose. To rescue visual loss and optic neuropathy in experimental autoimmune encephalomyelitis (EAE). Methods. Encephalomyelitis was induced in mice that received intravitreal injections of AAV2-mtHSP70Flag or AAV2-Cox8-mCherry. Additional mice were injected with AAV2-Cox8-mCherry, but not sensitized for EAE. Visual function was assessed by pattern electroretinograms (PERG) at 1, 3, and 6 months post injection (MPI). Optical coherence tomography (OCT) evaluated the thickness of the inner plexiform layer + nerve fiber layers at 1, 3, and 6 MPI. Retinas and optic nerves (ONs) of mice euthanized 6 MPI were processed for light and electron microscopy. Expression of mtHSP70Flag in the retina and ONs was evaluated by RT-PCR, immunofluorescence, and Western blotting. The activities of respiratory complexes I and III, as well as mitochondrial protein import were quantitated. Results. Expression: immunofluorescence revealed punctate and perinuclear expression of mtHSP70Flag that colocalized with mitochondrial porin in thy1.2 labeled retinal ganglion cells (RGCs). Immunoblotting and RT-PCR confirmed mtHSP70Flag expression in the retina and ON. Rescue: treatment with mtHSP70Flag resulted in a 44% increase in PERG amplitude and less delays in latency relative to the EAE-mCherry group that also showed progressive inner retinal thinning. At 6 MPI, the almost 50% loss of RGCs and optic nerve axons in EAE mice was suppressed by mtHSP70Flag. In addition, retinas of EAE-mtHSP70Flag mice showed nearly complete rescue of complex I and III activities that was reduced by one-third in the EAE-mCherry retinas. Lastly, reductions in import of COX8-mCherry into mitochondria of mice sensitized for EAE improved by 30% with mtHSP70Flag gene therapy. Conclusions. Mitochondrial HSP70 ameliorates mitochondrial dysfunction that culminates in irreversible visual loss and atrophy of the optic nerve in EAE suggesting that it may be useful to prevent irreversible disability in patients with optic

  11. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis.

    PubMed

    Sinha, Sushmita; Miller, Lisa; Subramanian, Sandhya; McCarty, Owen J T; Proctor, Thomas; Meza-Romero, Roberto; Huan, Jianya; Burrows, Gregory G; Vandenbark, Arthur A; Offner, Halina

    2010-08-25

    Recombinant T cell ligands (RTLs) ameliorate experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner. We evaluated effects of RTL401 (I-A(s) alpha1beta1+PLP-139-151) on splenocytes from SJL/J mice with EAE to study RTL-T cell tolerance-inducing mechanisms. RTLs bound to B, macrophages and DCs, through RTL-MHC-alpha1beta1 moiety. RTL binding reduced CD11b expression on splenic macrophages/DC, and RTL401-conditioned macrophages/DC, not B cells, inhibited T cell activation. Reduced ability of RTL- incubated splenocytes to transfer EAE was likely mediated through macrophages/DC, since B cells were unnecessary for RTL treatment of EAE. These results demonstrate a novel pathway of T cell regulation by RTL-bound APCs. PMID:20546940

  12. Binding of recombinant T cell receptor ligands (RTL) to antigen presenting cells prevents upregulation of CD11b and inhibits T cell activation and transfer of experimental autoimmune encephalomyelitis

    PubMed Central

    Sinha, Sushmita; Miller, Lisa; Subramanian, Sandhya; McCarty, Owen; Proctor, Thomas; Meza-Romero, Roberto; Burrows, Gregory G.; Vandenbark, Arthur A.; Offner, Halina

    2010-01-01

    Recombinant T cell ligands (RTLs) ameliorate experimental autoimmune encephalomyelitis (EAE) in antigen specific manner. We evaluated effects of RTL401 (I-As α1β1 + PLP-139-151) on splenocytes from mice with EAE to study RTL- T cell-tolerance-inducing mechanisms. RTLs bound to B, macrophages and DCs, through RTL-MHC-α1β1 moiety. RTL binding reduced CD11b expression on splenic macrophages/DC, and RTL401-conditioned macrophages/DC, not B cells, inhibited T cell activation. Reduced ability of RTL- incubated splenocytes to transfer EAE was likely mediated through macrophages/DC, since B cells were unnecessary for RTL treatment of EAE. These results demonstrate novel pathway of T cell regulation by RTL bound APCs. PMID:20546940

  13. Cutting Edge: Integrin α4 Is Required for Regulatory B Cell Control of Experimental Autoimmune Encephalomyelitis.

    PubMed

    Glatigny, Simon; Wagner, Catriona A; Bettelli, Estelle

    2016-05-01

    The neutralization of integrin α4 (Itga4) is currently used as treatment in multiple sclerosis. Although most studies have focused on its function on lymphocyte migration to the CNS, we have uncovered the importance of Itga4 for the generation of regulatory B cells in peripheral immune organs and their control of pathogenic T cell response and CNS pathology. Our study underscores the importance of looking at the dual role of B cells in CNS autoimmunity and provides important perspectives regarding the efficacy and side effects associated with Itga4 neutralization and other B cell-targeting therapies. PMID:27016608

  14. Intestinal Barrier Dysfunction Develops at the Onset of Experimental Autoimmune Encephalomyelitis, and Can Be Induced by Adoptive Transfer of Auto-Reactive T Cells

    PubMed Central

    Nouri, Mehrnaz; Bredberg, Anders; Weström, Björn; Lavasani, Shahram

    2014-01-01

    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system with a pathogenesis involving a dysfunctional blood-brain barrier and myelin-specific, autoreactive T cells. Although the commensal microbiota seems to affect its pathogenesis, regulation of the interactions between luminal antigens and mucosal immune elements remains unclear. Herein, we investigated whether the intestinal mucosal barrier is also targeted in this disease. Experimental autoimmune encephalomyelitis (EAE), the prototypic animal model of MS, was induced either by active immunization or by adoptive transfer of autoreactive T cells isolated from these mice. We show increased intestinal permeability, overexpression of the tight junction protein zonulin and alterations in intestinal morphology (increased crypt depth and thickness of the submucosa and muscularis layers). These intestinal manifestations were seen at 7 days (i.e., preceding the onset of neurological symptoms) and at 14 days (i.e., at the stage of paralysis) after immunization. We also demonstrate an increased infiltration of proinflammatory Th1/Th17 cells and a reduced regulatory T cell number in the gut lamina propria, Peyer's patches and mesenteric lymph nodes. Adoptive transfer to healthy mice of encephalitogenic T cells, isolated from EAE-diseased animals, led to intestinal changes similar to those resulting from the immunization procedure. Our findings show that disruption of intestinal homeostasis is an early and immune-mediated event in EAE. We propose that this intestinal dysfunction may act to support disease progression, and thus represent a potential therapeutic target in MS. In particular, an increased understanding of the regulation of tight junctions at the blood-brain barrier and in the intestinal wall may be crucial for design of future innovative therapies. PMID:25184418

  15. Studies in Experimental Autoimmune Encephalomyelitis Do Not Support Developmental Bisphenol A Exposure as an Environmental Factor in Increasing Multiple Sclerosis Risk

    PubMed Central

    Krementsov, Dimitry N.

    2013-01-01

    Multiple sclerosis (MS), a demyelinating immune-mediated central nervous system disease characterized by increasing female penetrance, is the leading cause of disability in young adults in the developed world. Epidemiological data strongly implicate an environmental factor, acting at the population level during gestation, in the increasing incidence of female MS observed over the last 50 years, yet the identity of this factor remains unknown. Gestational exposure to bisphenol A (BPA), an endocrine disruptor used in the manufacture of polycarbonate plastics since the 1950s, has been reported to alter a variety of physiological processes in adulthood. BPA has estrogenic activity, and we hypothesized that increased gestational exposure to environmental BPA may therefore contribute to the increasing female MS risk. To test this hypothesis, we utilized two different mouse models of MS, experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice (chronic progressive) and in SJL/J mice (relapsing-remitting). Dams were exposed to physiologically relevant levels of BPA in drinking water starting 2 weeks prior to mating and continuing until weaning of offspring. EAE was induced in adult offspring. No significant changes in EAE incidence, progression, or severity were observed with BPA exposure, despite changes in cytokine production by autoreactive T cells. However, endocrine disruption was evidenced by changes in testes development, and transcriptomic profiling revealed that BPA exposure altered the expression of several genes important for testes development, including Pdgfa, which was downregulated. Overall, our results do not support gestational BPA exposure as a significant contributor to the increasing female MS risk. PMID:23798566

  16. Complement inhibitors to treat IgM-mediated autoimmune hemolysis.

    PubMed

    Wouters, Diana; Zeerleder, Sacha

    2015-11-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia. PMID:26521297

  17. Complement inhibitors to treat IgM-mediated autoimmune hemolysis

    PubMed Central

    Wouters, Diana; Zeerleder, Sacha

    2015-01-01

    Complement activation in autoimmune hemolytic anemia may exacerbate extravascular hemolysis and may occasionally result in intravascular hemolysis. IgM autoantibodies as characteristically found in cold autoantibody autoimmune hemolytic anemia, in cold agglutinin disease but also in a considerable percentage of patients with warm autoantibodies are very likely to activate complement in vivo. Therapy of IgM-mediated autoimmune hemolytic anemia mainly aims to decrease autoantibody production. However, most of these treatments require time to become effective and will not stop immediate ongoing complement-mediated hemolysis nor prevent hemolysis of transfused red blood cells. Therefore pharmacological inhibition of the complement system might be a suitable approach to halt or at least attenuate ongoing hemolysis and improve the recovery of red blood cell transfusion in autoimmune hemolytic anemia. In recent years, several complement inhibitors have become available in the clinic, some of them with proven efficacy in autoimmune hemolytic anemia. In the present review, we give a short introduction on the pathogenesis of autoimmune hemolytic anemia, followed by an overview on the complement system with a special focus on its regulation. Finally, we will discuss complement inhibitors with regard to their potential efficacy to halt or attenuate hemolysis in complement-mediated autoimmune hemolytic anemia. PMID:26521297

  18. Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis.

    PubMed

    Tseveleki, Vivian; Tselios, Theodore; Kanistras, Ioannis; Koutsoni, Olga; Karamita, Maria; Vamvakas, Sotiris-Spyros; Apostolopoulos, Vasso; Dotsika, Eleni; Matsoukas, John; Lassmann, Hans; Probert, Lesley

    2015-05-01

    Antigen presenting cells (APC) are critical for regulating immune responses. We tested mannan-peptide conjugates for targeting myelin peptides to APC to induce T cell tolerance and resistance to experimental autoimmune encephalomyelitis (EAE). Myelin peptides conjugated to mannan in oxidized (OM) or reduced (RM) forms protected mice against EAE in prophylactic and therapeutic protocols, with OM-conjugated peptides giving best results. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation, but not alterations in Th1, Th17 and Treg cell differentiation or T cell apoptosis compared to EAE controls. Bone marrow-derived dendritic cells (DC) loaded with OM-MOG showed up-regulated expression of co-stimulatory molecules, reduced PD-L1 expression and enhanced CD40-inducible IL-12 and IL-23 production compared to MOG DC, features consistent with immunogenic DC. OM-MOG induced active T cell tolerance because i.d. administration or passive transfer of OM-MOG DC suppressed ongoing EAE, while OM-MOG-vaccinated mice did not reduce the proliferation of transferred MOG-specific T cells. As in vivo, MOG-specific T cells cultured with OM-MOG DC showed reduced proliferation and equal Th1 and Th17 cell differentiation compared to those with MOG DC, but surprisingly cytokine production was unresponsive to CD40 engagement. Impaired effector T cell function was further evidenced in spinal cord sections from OM-MOG-vaccinated EAE mice, where markedly reduced numbers of CD3(+) T cells were present, restricted to leptomeninges and exceptional parenchymal lesions. Our results show that mannan-conjugated myelin peptides protect mice against EAE through the expansion of antigen-specific Th1 and Th17 cells with impaired proliferation responses and APC-induced co-stimulatory signals that are required for licensing them to become fully pathogenic T cells. PMID:25447934

  19. The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis.

    PubMed

    Dahl, Lisa Cm; Nasa, Zeyad; Chung, JieYu; Niego, Be'eri; Tarlac, Volga; Ho, Heidi; Galle, Adam; Petratos, Steven; Lee, Jae Young; Alderuccio, Frank; Medcalf, Robert L

    2016-01-01

    Tissue type plasminogen activator (t-PA) has been implicated in the development of multiple sclerosis (MS) and in rodent models of experimental autoimmune encephalomyelitis (EAE). We show that levels of t-PA mRNA and activity are increased ~4 fold in the spinal cords of wild-type mice that are mice subjected to EAE. This was also accompanied with a significant increase in the levels of pro-matrix metalloproteinase 9 (pro-MMP-9) and an influx of fibrinogen. We next compared EAE severity in wild-type mice, t-PA-/- mice and T4+ transgenic mice that selectively over-express (~14-fold) mouse t-PA in neurons of the central nervous system. Our results confirm that t-PA deficient mice have an earlier onset and more severe form of EAE. T4+ mice, despite expressing higher levels of endogenous t-PA, manifested a similar rate of onset and neurological severity of EAE. Levels of proMMP-9, and extravasated fibrinogen in spinal cord extracts were increased in mice following EAE onset regardless of the absence or over-expression of t-PA wild-type. Interestingly, MMP-2 levels also increased in spinal cord extracts of T4+ mice following EAE, but not in the other genotypes. Hence, while the absence of t-PA confers a more deleterious form of EAE, neuronal over-expression of t-PA does not overtly protect against this condition with regards to symptom onset or severity of EAE. PMID:27427941

  20. Myeloid cell transmigration across the CNS vasculature triggers IL-1β-driven neuroinflammation during autoimmune encephalomyelitis in mice.

    PubMed

    Lévesque, Sébastien A; Paré, Alexandre; Mailhot, Benoit; Bellver-Landete, Victor; Kébir, Hania; Lécuyer, Marc-André; Alvarez, Jorge Ivan; Prat, Alexandre; de Rivero Vaccari, Juan Pablo; Keane, Robert W; Lacroix, Steve

    2016-05-30

    Growing evidence supports a role for IL-1 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), but how it impacts neuroinflammation is poorly understood. We show that susceptibility to EAE requires activation of IL-1R1 on radiation-resistant cells via IL-1β secreted by bone marrow-derived cells. Neutrophils and monocyte-derived macrophages (MDMs) are the main source of IL-1β and produce this cytokine as a result of their transmigration across the inflamed blood-spinal cord barrier. IL-1R1 expression in the spinal cord is found in endothelial cells (ECs) of the pial venous plexus. Accordingly, leukocyte infiltration at EAE onset is restricted to IL-1R1(+) subpial and subarachnoid vessels. In response to IL-1β, primary cultures of central nervous system ECs produce GM-CSF, G-CSF, IL-6, Cxcl1, and Cxcl2. Initiation of EAE or subdural injection of IL-1β induces a similar cytokine/chemokine signature in spinal cord vessels. Furthermore, the transfer of Gr1(+) cells on the spinal cord is sufficient to induce illness in EAE-resistant IL-1β knockout (KO) mice. Notably, transfer of Gr1(+) cells isolated from C57BL/6 mice induce massive recruitment of recipient myeloid cells compared with cells from IL-1β KO donors, and this recruitment translates into more severe paralysis. These findings suggest that an IL-1β-dependent paracrine loop between infiltrated neutrophils/MDMs and ECs drives neuroinflammation. PMID:27139491

  1. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation.

    PubMed

    Zarruk, Juan G; Berard, Jennifer L; Passos dos Santos, Rosmarini; Kroner, Antje; Lee, Jaekwon; Arosio, Paolo; David, Samuel

    2015-09-01

    Iron accumulation occurs in the CNS in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). However, the mechanisms underlying such iron accumulation are not fully understood. We studied the expression and cellular localization of molecules involved in cellular iron influx, storage, and efflux. This was assessed in two mouse models of EAE: relapsing-remitting (RR-EAE) and chronic (CH-EAE). The expression of molecules involved in iron homeostasis was assessed at the onset, peak, remission/progressive and late stages of the disease. We provide several lines of evidence for iron accumulation in the EAE spinal cord which increases with disease progression and duration, is worse in CH-EAE, and is localized in macrophages and microglia. We also provide evidence that there is a disruption of the iron efflux mechanism in macrophages/microglia that underlie the iron accumulation seen in these cells. Macrophages/microglia also lack expression of the ferroxidases (ceruloplasmin and hephaestin) which have antioxidant effects. In contrast, astrocytes which do not accumulate iron, show robust expression of several iron influx and efflux proteins and the ferroxidase ceruloplasmin which detoxifies ferrous iron. Astrocytes therefore are capable of efficiently recycling iron from sites of EAE lesions likely into the circulation. We also provide evidence of marked dysregulation of mitochondrial function and energy metabolism genes, as well as of NADPH oxidase genes in the EAE spinal cord. This data provides the basis for the selective iron accumulation in macrophage/microglia and further evidence of severe mitochondrial dysfunction in EAE. It may provide insights into processes underling iron accumulation in MS and other neurodegenerative diseases in which iron accumulation occurs. PMID:25724358

  2. Multiple rodent models and behavioral measures reveal unexpected responses to FTY720 and DMF in experimental autoimmune encephalomyelitis.

    PubMed

    de Bruin, N M W J; Schmitz, K; Schiffmann, S; Tafferner, N; Schmidt, M; Jordan, H; Häußler, A; Tegeder, I; Geisslinger, G; Parnham, M J

    2016-03-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely-used rodent model for multiple sclerosis (MS), but a single model can hardly capture all features of MS. We investigated whether behavioral parameters in addition to clinical motor function scores could be used to assess treatment efficacy during score-free intervals in the relapsing-remitting EAE model in SJL/J mice. We studied the effects of the clinical reference compounds FTY720 (fingolimod, 0.5mg/kg/day) and dimethyl fumarate (DMF, 20-30 mg/kg/day) on clinical scores in several rodent EAE models in order to generate efficacy profiles. SJL/J mice with relapsing-remitting EAE were studied using behavioral tests, including rotarod, gait analysis, locomotor activity and grip strength. SJL/J mice were also examined according to Crawley's sociability and preference for social novelty test. Prophylactic treatment with FTY720 prevented clinical scores in three of the four EAE rodent models: Dark Agouti (DA) and Lewis rats and C57BL/6J mice. Neither prophylactic nor late-therapeutic treatment with FTY720 reduced clinical scores or reversed deficits in the rotarod test in SJL/J mice, but we observed effects on motor functions and sociability in the absence of clinical scores. Prophylactic treatment with FTY720 improved the gait of SJL/J mice whereas late-therapeutic treatment improved manifestations of reduced social (re)cognition or preference for social novelty. DMF was tested in three EAE models and did not improve clinical scores at the dose used. These data indicate that improvements in behavioral deficits can occur in absence of clinical scores, which indicate subtle drug effects and may have translational value for human MS. PMID:26692368

  3. The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Benson, Curtis A; Wong, Grace; Tenorio, Gustavo; Baker, Glen B; Kerr, Bradley J

    2013-09-01

    Many symptoms in multiple sclerosis (MS) can be related to changes in the levels of key neurotransmitters. These neurotransmitters have a direct role in the maintenance of neurons and also have immunomodulatory properties. Previously we have shown that when treatment began prior to the onset of clinical signs, daily treatment with the monoamine oxidase (MAO) inhibitor phenelzine (PLZ), which also elevates CNS levels of GABA, lead to substantial behavioral improvements in the experimental autoimmune encephalomyelitis (EAE), the animal model for MS. To determine whether PLZ could have beneficial effects in an already established disease state, we conducted experiments in which PLZ treatment only began when mice with EAE exhibited the first clinical signs of the disease. Using this more clinically relevant treatment approach, we find that PLZ treatment can reduce the severity of clinical signs and improve exploratory behaviors for the duration of the experiment in mice with EAE. Treatment with PLZ did not affect the infiltration of CD4+ T-cells into the spinal cord nor did it reduce the degree of reactive gliosis as measured by Iba1 immunostaining. Beginning PLZ treatment after the start of clinical signs did however lead to significantly better 5-HT innervation density in the ventral horn of the spinal cord and also resulted in higher levels of GABA, dopamine and norepinephrine in the brain and spinal cord. These results indicate that even in an established EAE disease state, PLZ can have clinical benefits. These benefits likely derive from PLZ's ability to normalize the innervation to ventral horn motor neuron pools as well as the elevations in GABA and biogenic amines that have been shown to have anti-inflammatory properties. PMID:23777648

  4. Inhibition of Vascular Endothelial Growth Factor Receptor 2 Exacerbates Loss of Lower Motor Neurons and Axons during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Lin, Yifeng; Stone, Sarrabeth; Cvetanovic, Marija; Lin, Wensheng

    2016-01-01

    Multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) are inflammatory demyelinating and neurodegenerative diseases in the central nervous system (CNS). It is believed that MS and EAE are initiated by autoreactive T lymphocytes that recognize myelin antigens; however, the mechanisms responsible for neurodegeneration in these diseases remain elusive. Data indicate that vascular endothelial growth factor A (VEGF-A) plays a role in the development of MS and EAE. Interestingly, VEGF-A is regarded as a neurotrophic factor in the CNS that promotes neuron survival and neurogenesis in various neurodegenerative diseases by activating VEGF receptor 2 (VEGFR2). In this study, we sought to explore the role of the VEGF-A/VEGFR2 signaling in neurodegeneration in MS and EAE. We showed that the expression of VEGF-A was decreased in the spinal cord during EAE and that VEGFR2 was activated in lower motor neurons in the spinal cord of EAE mice. Interestingly, we found that treatment with SU5416, a selective VEGFR2 inhibitor, starting after the onset of EAE clinical symptoms exacerbated lower motor neuron loss and axon loss in the lumbar spinal cord of mice undergoing EAE, but did not alter Purkinje neuron loss in the cerebellum or upper motor neuron loss in the cerebral cortex. Moreover, SU5416 treatment had a minimal effect on EAE clinical symptoms as well as inflammation, demyelination, and oligodendrocyte loss in the lumbar spinal cord. These results imply the protective effects of the VEGF-A/VEGFR2 signaling on lower motor neurons and axons in the spinal cord in MS and EAE. PMID:27466819

  5. The Influence of Differentially Expressed Tissue-Type Plasminogen Activator in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis

    PubMed Central

    Dahl, Lisa CM; Nasa, Zeyad; Chung, JieYu; Niego, Be’eri; Tarlac, Volga; Ho, Heidi; Galle, Adam; Petratos, Steven; Lee, Jae Young; Alderuccio, Frank; Medcalf, Robert L.

    2016-01-01

    Tissue type plasminogen activator (t-PA) has been implicated in the development of multiple sclerosis (MS) and in rodent models of experimental autoimmune encephalomyelitis (EAE). We show that levels of t-PA mRNA and activity are increased ~4 fold in the spinal cords of wild-type mice that are mice subjected to EAE. This was also accompanied with a significant increase in the levels of pro-matrix metalloproteinase 9 (pro-MMP-9) and an influx of fibrinogen. We next compared EAE severity in wild-type mice, t-PA-/- mice and T4+ transgenic mice that selectively over-express (~14-fold) mouse t-PA in neurons of the central nervous system. Our results confirm that t-PA deficient mice have an earlier onset and more severe form of EAE. T4+ mice, despite expressing higher levels of endogenous t-PA, manifested a similar rate of onset and neurological severity of EAE. Levels of proMMP-9, and extravasated fibrinogen in spinal cord extracts were increased in mice following EAE onset regardless of the absence or over-expression of t-PA wild-type. Interestingly, MMP-2 levels also increased in spinal cord extracts of T4+ mice following EAE, but not in the other genotypes. Hence, while the absence of t-PA confers a more deleterious form of EAE, neuronal over-expression of t-PA does not overtly protect against this condition with regards to symptom onset or severity of EAE. PMID:27427941

  6. The Extracellular Domain of Myelin Oligodendrocyte Glycoprotein Elicits Atypical Experimental Autoimmune Encephalomyelitis in Rat and Macaque Species

    PubMed Central

    Curtis, Alan D.; Taslim, Najla; Reece, Shaun P.; Grebenciucova, Elena; Ray, Richard H.; Rosenbaum, Matthew D.; Wardle, Robert L.; Van Scott, Michael R.; Mannie, Mark D.

    2014-01-01

    Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord

  7. ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis.

    PubMed

    Hussien, Yassir; Podojil, Joseph R; Robinson, Andrew P; Lee, Amy S; Miller, Steven D; Popko, Brian

    2015-12-01

    Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). During development, mice lacking functional BiP gene expression in oligodendrocytes developed tremors and ataxia and died before reaching maturity. When BiP gene inactivation in oligodendrocytes was initiated in adulthood, the mice displayed severe neurological symptoms including tremors and hind-limb paralysis. The inactivation of BiP in oligodendrocytes during development or in adulthood resulted in oligodendrocyte loss and corresponding severe myelin abnormalities. Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination. PMID:26631473

  8. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses.

    PubMed

    Lee, Min Jung; Jang, Minhee; Choi, Jonghee; Lee, Gihyun; Min, Hyun Jung; Chung, Won-Seok; Kim, Jong-In; Jee, Youngheun; Chae, Younbyoung; Kim, Sung-Hoon; Lee, Sung Joong; Cho, Ik-Hyun

    2016-04-01

    The protective and therapeutic mechanism of bee venom acupuncture (BVA) in neurodegenerative disorders is not clear. We investigated whether treatment with BVA (0.25 and 0.8 mg/kg) at the Zusanli (ST36) acupoints, located lateral from the anterior border of the tibia, has a beneficial effect in a myelin basic protein (MBP)(68-82)-induced acute experimental autoimmune encephalomyelitis (EAE) rat model. Pretreatment (every 3 days from 1 h before immunization) with BVA was more effective than posttreatment (daily after immunization) with BVA with respect to clinical signs (neurological impairment and loss of body weight) of acute EAE rats. Treatment with BVA at the ST36 acupoint in normal rats did not induce the clinical signs. Pretreatment with BVA suppressed demyelination, glial activation, expression of cytokines [interferon (IFN)-γ, IL-17, IL-17A, tumor necrosis factor-alpha (TNF-α), and IL-1β], chemokines [RANTES, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein (MIP)-1α], and inducible nitric oxide synthase (iNOS), and activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB (p65 and phospho-IκBα) signaling pathways in the spinal cord of acute EAE rats. Pretreatment with BVA decreased the number of CD4(+), CD4(+)/IFN-γ(+), and CD4(+)/IL-17(+) T cells, but increased the number of CD4(+)/Foxp3(+) T cells in the spinal cord and lymph nodes of acute EAE rats. Treatment with BVA at six placebo acupoints (SP9, GB39, and four non-acupoints) did not have a positive effect in acute EAE rats. Interestingly, onset and posttreatment with BVA at the ST36 acupoint markedly attenuated neurological impairment in myelin oligodendrocyte glycoprotein (MOG)(35-55)-induced chronic EAE mice compared to treatment with BVA at six placebo acupoints. Our findings strongly suggest that treatment with BVA with ST36 acupoint could delay or attenuate the development and progression of EAE by upregulating regulatory T cells and

  9. Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis.

    PubMed

    Hammer, Leslie A; Waldner, Hanspeter; Zagon, Ian S; McLaughlin, Patricia J

    2016-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by infiltrating myelin-reactive T lymphocytes and demyelinating lesions. Experimental autoimmune encephalomyelitis (EAE) is the animal model widely utilized to study MS. EAE is mediated by CD4(+) T cells and can be induced in EAE-susceptible mice through immunization with a myelin antigen, such as proteolipid protein 139-151 (PLP139-151) in SJL mice. In this PLP-induced EAE model, autoreactive CD4(+) T cells migrate from peripheral tissues into the CNS where they are reactivated resulting in CNS damage. Th1 and Th17 cells produce the pro-inflammatory cytokines IFNγ and IL-17, respectively, that have been shown to have pathogenic roles in EAE and MS. Anti-inflammatory Th2, IL-4 secreting cells, have been indicated to inhibit EAE exacerbation. However, given the inflammatory environment of EAE, Th2 effector cells are outnumbered by Th1/Th17 cells. Regulatory CD4(+) T cells suppress immune reactions and have been demonstrated to be dysfunctional in MS patients. Opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin, is a negative growth factor that interacts with the OGF receptor. The OGF-OGFr axis can be activated through exogenous administration of OGF or a low dosage of naltrexone (LDN), an opioid antagonist. We have previously demonstrated that modulation of the OGF-OGFr axis results in alleviation from relapse-remitting EAE, and that CNS-infiltrating CD3(+) T cells are diminished with exogenous OGF or intermittent blockade with LDN administration. In this paper, we aimed to determine whether OGF or LDN alter the Th effector responses of CD4(+) T lymphocytes within the CNS in established EAE. We report in these studies that the numbers of CD4(+) T lymphocytes in the CNS of EAE mice are decreased following treatment with OGF for five days but not LDN. However, modulation of the OGF-OGFr axis did not result in changes to CD4(+) Th effector cell responses

  10. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor) in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    PubMed

    Sisay, Sofia; Pryce, Gareth; Jackson, Samuel J; Tanner, Carolyn; Ross, Ruth A; Michael, Gregory J; Selwood, David L; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim)) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen)) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim) mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  11. Genetic Background Can Result in a Marked or Minimal Effect of Gene Knockout (GPR55 and CB2 Receptor) in Experimental Autoimmune Encephalomyelitis Models of Multiple Sclerosis

    PubMed Central

    Jackson, Samuel J.; Tanner, Carolyn; Ross, Ruth A.; Michael, Gregory J.; Selwood, David L.; Giovannoni, Gavin; Baker, David

    2013-01-01

    Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1) receptor and the orphan G protein receptor fifty-five (GPR55). Studies using C57BL/10 and C57BL/6 (Cnr2tm1Zim) CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2Dgen) receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational value of some

  12. Elevated Expression of Fractalkine (CX3CL1) and Fractalkine Receptor (CX3CR1) in the Dorsal Root Ganglia and Spinal Cord in Experimental Autoimmune Encephalomyelitis: Implications in Multiple Sclerosis-Induced Neuropathic Pain

    PubMed Central

    Intrater, Howard; Gong, Yuewen; Namaka, Mike

    2013-01-01

    Multiple sclerosis (MS) is a central nervous system (CNS) disease resulting from a targeted autoimmune-mediated attack on myelin proteins in the CNS. The release of Th1 inflammatory mediators in the CNS activates macrophages, antibodies, and microglia resulting in myelin damage and the induction of neuropathic pain (NPP). Molecular signaling through fractalkine (CX3CL1), a nociceptive chemokine, via its receptor (CX3CR1) is thought to be associated with MS-induced NPP. An experimental autoimmune encephalomyelitis (EAE) model of MS was utilized to assess time dependent gene and protein expression changes of CX3CL1 and CX3CR1. Results revealed significant increases in mRNA and the protein expression of CX3CL1 and CX3CR1 in the dorsal root ganglia (DRG) and spinal cord (SC) 12 days after EAE induction compared to controls. This increased expression correlated with behavioural thermal sensory abnormalities consistent with NPP. Furthermore, this increased expression correlated with the peak neurological disability caused by EAE induction. This is the first study to identify CX3CL1 signaling through CX3CR1 via the DRG /SC anatomical connection that represents a critical pathway involved in NPP induction in an EAE model of MS. PMID:24175290

  13. Instant effect of soluble antigen on effector T cells in peripheral immune organs during immunotherapy of autoimmune encephalomyelitis

    PubMed Central

    Odoardi, Francesca; Kawakami, Naoto; Li, Zhaoxia; Cordiglieri, Chiara; Streyl, Kristina; Nosov, Mikhail; Klinkert, Wolfgang E. F.; Ellwart, Joachim W.; Bauer, Jan; Lassmann, Hans; Wekerle, Hartmut; Flügel, Alexander

    2007-01-01

    i.v. infusion of native autoantigen or its altered peptide variants is an important therapeutic option for the treatment of autoimmune diseases, because it selectively targets the disease-inducing T cells. To learn more about the mechanisms and kinetics of this approach, we visualized the crucial initial effects of i.v. infusion of peptides or intact protein on GFP-tagged autoaggressive CD4+ effector T cells using live-video and two-photon in situ imaging of spleens in living animals. We found that the time interval between i.v. injection of intact protein to first changes in T cell behavior was extremely short; within 10 min after protein application, the motility of the T cells changed drastically. They slowed down and became tethered to local sessile stromal cells. A part of the cells aggregated to form clusters. Within the following 20 min, IFN-γ mRNA was massively (>100-fold) up-regulated; surface IL-2 receptor and OX-40 (CD 134) increased 1.5 h later. These processes depleted autoimmune T cells in the blood circulation, trapping the cells in the peripheral lymphoid organs and thus preventing them from invading the CNS. This specific blockage almost completely abrogated CNS inflammation and clinical disease. These findings highlight the speed and efficiency of antigen recognition in vivo and add to our understanding of T cell-mediated autoimmunity. PMID:17213317

  14. ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Hussien, Yassir; Podojil, Joseph R.; Robinson, Andrew P.; Lee, Amy S.; Miller, Steven D.

    2015-01-01

    Myelinating cells synthesize large amounts of membrane protein through the secretory pathway, which makes these cells particularly sensitive to perturbations of the endoplasmic reticulum (ER). Ig binding protein (BiP), also known as glucose-regulated protein 78 (GRP78), is a critical ER chaperone that also plays a pivotal role in controlling the cellular response to ER stress. To examine the potential importance of BiP to myelinating cells, we used a conditional knock-out approach to BiP gene inactivation in oligodendrocytes during development, in adulthood, and in response to experimental autoimmune encephalomyelitis (EAE), an animal model of the inflammatory demyelinating disorder multiple sclerosis (MS). During development, mice lacking functional BiP gene expression in oligodendrocytes developed tremors and ataxia and died before reaching maturity. When BiP gene inactivation in oligodendrocytes was initiated in adulthood, the mice displayed severe neurological symptoms including tremors and hind-limb paralysis. The inactivation of BiP in oligodendrocytes during development or in adulthood resulted in oligodendrocyte loss and corresponding severe myelin abnormalities. Mice heterozygous for the oligodendrocyte-specific inactivation of BiP, which were phenotypically normal without evidence of neuropathology, displayed an exacerbated response to EAE that correlated with an increased loss of oligodendrocytes. Furthermore, mice in which the BiP gene was specifically inactivated in developing Schwann cells displayed tremor that progressed to hindlimb paralysis, which correlated with diminished numbers of myelinating Schwann cells and severe PNS hypomyelination. These studies demonstrate that BiP is critical for myelinating cell survival and contributes to the protective response of oligodendrocyte against inflammatory demyelination. SIGNIFICANCE STATEMENT The myelinating cells, oligodendrocytes in the CNS and Schwann cells in the PNS, are responsible for synthesizing

  15. The complement system contributes to the pathology of experimental autoimmune encephalomyelitis by triggering demyelination and modifying the antigen-specific T and B cell response.

    PubMed

    Hundgeburth, Lorenz C; Wunsch, Marie; Rovituso, Damiano; Recks, Mascha S; Addicks, Klaus; Lehmann, Paul V; Kuerten, Stefanie

    2013-03-01

    So far, studies of the human autoimmune disease multiple sclerosis (MS) have largely been hampered by the absence of a pathogenic B cell component in its animal model, experimental autoimmune encephalomyelitis (EAE). To overcome this shortcoming, we have previously introduced the myelin basic protein (MBP)-proteolipid protein (PLP) MP4-induced EAE, which is B cell and autoantibody-dependent. Here we show that MP4-immunized wild-type C57BL/6 mice displayed a significantly lower disease incidence when their complement system was transiently depleted by a single injection of cobra venom factor (CVF) prior to immunization. Considering the underlying pathomechanism, our data suggest that the complement system is crucial for MP4-specific antibodies to trigger CNS pathology. Demyelinated lesions in the CNS were colocalized with complement depositions. In addition, B cell deficient JHT mice reconstituted with MP4-reactive serum showed significantly attenuated clinical and histological EAE after depletion of complement by CVF. The complement system was also critically involved in the generation of the MP4-specific T and B cell response: in MP4-immunized wild-type mice treated with CVF the MP4-specific cytokine and antibody response was significantly attenuated compared to untreated wild-type mice. Taken together, we propose two independent mechanisms by which the complement system can contribute to the pathology of autoimmune encephalomyelitis. Our data corroborate the role of complement in triggering antibody-dependent demyelination and antigen-specific T cell immunity and also provide first evidence that the complement system can modify the antigen-specific B cell response in EAE and possibly MS. PMID:23352967

  16. Suppression of Th1-Mediated Autoimmunity by Embryonic Stem Cell-Derived Dendritic Cells

    PubMed Central

    Ikeda, Tokunori; Hirata, Shinya; Takamatsu, Koutaro; Haruta, Miwa; Tsukamoto, Hirotake; Ito, Takaaki; Uchino, Makoto; Ando, Yukio; Nagafuchi, Seiho; Nishimura, Yasuharu; Senju, Satoru

    2014-01-01

    We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs) using two models of autoimmune disease, namely non-obese diabetic (NOD) mice and experimental autoimmune encephalomyelitis (EAE). Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases. PMID:25522369

  17. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells.

    PubMed

    Ikeda, Tokunori; Hirata, Shinya; Takamatsu, Koutaro; Haruta, Miwa; Tsukamoto, Hirotake; Ito, Takaaki; Uchino, Makoto; Ando, Yukio; Nagafuchi, Seiho; Nishimura, Yasuharu; Senju, Satoru

    2014-01-01

    We herein demonstrate the immune-regulatory effect of embryonic stem cell-derived dendritic cells (ES-DCs) using two models of autoimmune disease, namely non-obese diabetic (NOD) mice and experimental autoimmune encephalomyelitis (EAE). Treatment of pre-diabetic NOD mice with ES-DCs exerted almost complete suppression of diabetes development during the observation period for more than 40 weeks. The prevention of diabetes by ES-DCs was accompanied with significant reduction of insulitis and decreased number of Th1 and Th17 cells in the spleen. Development of EAE was also inhibited by the treatment with ES-DCs, and the therapeutic effect was obtained even if ES-DCs were administrated after the onset of clinical symptoms. Treatment of EAE-induced mice with ES-DCs reduced the infiltration of inflammatory cells into the spinal cord and suppressed the T cell response to the myelin antigen. Importantly, the ES-DC treatment did not affect T cell response to an exogenous antigen. As the mechanisms underlying the reduction of the number of infiltrating Th1 cells, we observed the inhibition of differentiation and proliferation of Th1 cells by ES-DCs. Furthermore, the expression of VLA-4α on Th1 cells was significantly inhibited by ES-DCs. Considering the recent advances in human induced pluripotent stem cell-related technologies, these results suggest a clinical application for pluripotent stem cell-derived dendritic cells as a therapy for T cell-mediated autoimmune diseases. PMID:25522369

  18. Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses

    PubMed Central

    Li, Yanchuan; Wang, Hui; Zhou, Xiaofei; Xie, Xiaoping; Chen, Xiang; Jie, Zuliang; Zou, Qiang; Hu, Hongbo; Zhu, Lele; Cheng, Xuhong; Brightbill, Hans D; Wu, Lawren C.; Wang, Linfang; Sun, Shao-Cong

    2016-01-01

    NF-κB inducing kinase (NIK) is a central component of the noncanonical NF-κB signaling pathway. Although NIK has been extensively studied for its function in the regulation of lymphoid organ development and B-cell maturation, the role of NIK in regulating T cell functions remains unclear and controversial. Using T cell-conditional NIK knockout mice, we here demonstrate that although NIK is dispensable for thymocyte development, it has a cell-intrinsic role in regulating the homeostasis and function of peripheral T cells. T cell-specific NIK ablation reduced the frequency of effector/memory-like T cells and impaired T cell responses to bacterial infection. The T cell-conditional NIK knockout mice were also defective in generation of inflammatory T cells and refractory to the induction of a T cell-dependent autoimmune disease, experimental autoimmune encephalomyelitis. Our data suggest a crucial role for NIK in mediating the generation of effector T cells and their recall responses to antigens. Together, these findings establish NIK as a cell-intrinsic mediator of T cell functions in both immune and autoimmune responses. PMID:26912039

  19. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases.

    PubMed

    Wu, Dayong; Wang, Junpeng; Pae, Munkyong; Meydani, Simin Nikbin

    2012-02-01

    One of the proposed health benefits of consuming green tea is its protective effect on autoimmune diseases. Research on the immunopathogenesis of autoimmune diseases has made significant progression in the past few years and several key concepts have been revised. T cells, particularly CD4(+) T helper (Th) cells, play a key role in mediating many aspects of autoimmune diseases. Upon antigenic stimulation, naïve CD4(+) T cells proliferate and differentiate into different effector subsets. Th1 and Th17 cells are the pro-inflammatory subsets of Th cells responsible for inducing autoimmunity whereas regulatory T cells (Treg) have an antagonistic effect. Green tea and its active ingredient, epigallocatechin-3-gallate (EGCG), have been shown to improve symptoms and reduce the pathology in some animal models of autoimmune diseases. Whether or not EGCG's effect is mediated through its impact on Th17 and Treg development has not been studied. We conducted a series of studies to investigate EGCG's effect on CD4(+) T cell proliferation and differentiation as well as its impact on the development of autoimmune disease. We first observed that EGCG inhibited CD4(+) T cell expansion in response to either polyclonal or antigen specific stimulation. We then determined how EGCG affects naïve CD4(+) T cell differentiation and found that it impeded Th1 and Th17 differentiation and prevented IL-6-induced inhibition on Treg development. We further demonstrated that EGCG inhibited Th1 and Th17 differentiation by downregulating their corresponding transcription factors (STAT1 and T-bet for Th1, and STAT3 and RORγt for Th17). These effects provide further explanation for previous findings that administration of EGCG by gavage to experimental autoimmune encephalomyelitis (EAE) mice, an animal model for human multiple sclerosis (MS), reduced the clinical symptoms, brain pathology, and proliferation and TNF-α production of encephalitogenic T cells. Upon further investigating the working

  20. Acute Disseminated Encephalomyelitis.

    PubMed

    Gray, Matthew Philip; Gorelick, Marc H

    2016-06-01

    Acute disseminated encephalomyelitis is a primarily pediatric, immune-mediated disease characterized by demyelination and polyfocal neurologic symptoms that typically occur after a preceding viral infection or recent immunization. This article presents the pathophysiology, diagnostic criteria, and magnetic resonance imaging characteristics of acute disseminated encephalomyelitis. We also present evaluation and management strategies. PMID:27253358

  1. Induction of Experimental Autoimmune Encephalomyelitis in Mice and Evaluation of the Disease-dependent Distribution of Immune Cells in Various Tissues.

    PubMed

    Barthelmes, Julia; Tafferner, Nadja; Kurz, Jennifer; de Bruin, Natasja; Parnham, Michael J; Geisslinger, Gerd; Schiffmann, Susanne

    2016-01-01

    Multiple sclerosis is presumed to be an inflammatory autoimmune disease, which is characterized by lesion formation in the central nervous system (CNS) resulting in cognitive and motor impairment. Experimental autoimmune encephalomyelitis (EAE) is a useful animal model of MS, because it is also characterized by lesion formation in the CNS, motor impairment and is also driven by autoimmune and inflammatory reactions. One of the EAE models is induced with a peptide derived from the myelin oligodendrocyte protein (MOG)35-55 in mice. The EAE mice develop a progressive disease course. This course is divided into three phases: the preclinical phase (day 0 - 9), the disease onset (day 10 - 11) and the acute phase (day 12 - 14). MS and EAE are induced by autoreactive T cells that infiltrate the CNS. These T cells secrete chemokines and cytokines which lead to the recruitment of further immune cells. Therefore, the immune cell distribution in the spinal cord during the three disease phases was investigated. To highlight the time point of the disease at which the activation/proliferation/accumulation of T cells, B cells and monocytes starts, the immune cell distribution in lymph nodes, spleen and blood was also assessed. Furthermore, the levels of several cytokines (IL-1β, IL-6, IL-23, TNFα, IFNγ) in the three disease phases were determined, to gain insight into the inflammatory processes of the disease. In conclusion, the data provide an overview of the functional profile of immune cells during EAE pathology. PMID:27214391

  2. Codelivery of antigen and an immune cell adhesion inhibitor is necessary for efficacy of soluble antigen arrays in experimental autoimmune encephalomyelitis

    PubMed Central

    Sestak, Joshua O; Sullivan, Bradley P; Thati, Sharadvi; Northrup, Laura; Hartwell, Brittany; Antunez, Lorena; Forrest, M Laird; Vines, Charlotte M; Siahaan, Teruna J; Berkland, Cory

    2014-01-01

    Autoimmune diseases such as multiple sclerosis (MS) are typified by the misrecognition of self-antigen and the clonal expansion of autoreactive T cells. Antigen-specific immunotherapies (antigen-SITs) have long been explored as a means to desensitize patients to offending self-antigen(s) with the potential to retolerize the immune response. Soluble antigen arrays (SAgAs) are composed of hyaluronic acid (HA) cografted with disease-specific autoantigen (proteolipid protein peptide) and an ICAM-1 inhibitor peptide (LABL). SAgAs were designed as an antigen-SIT that codeliver peptides to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Codelivery of antigen and cell adhesion inhibitor (LABL) conjugated to HA was essential for SAgA treatment of EAE. Individual SAgA components or mixtures thereof reduced proinflammatory cytokines in cultured splenocytes from EAE mice; however, these treatments showed minimal to no in vivo therapeutic effect in EAE mice. Thus, carriers that codeliver antigen and a secondary “context” signal (e.g., LABL) in vivo may be an important design criteria to consider when designing antigen-SIT for autoimmune therapy. PMID:26015953

  3. Intravenous Administration of Bone Marrow-Derived Mesenchymal Stem Cells Induces a Switch from Classical to Atypical Symptoms in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Kurte, Mónica; Bravo-Alegría, Javiera; Torres, Alexander; Carrasco, Vania; Ibáñez, Cristina; Vega-Letter, Ana María; Fernández-O'Ryan, Catalina; Irarrázabal, Carlos E.; Figueroa, Fernando E.; Fuentealba, Rodrigo A.; Riedel, Claudia; Carrión, Flavio

    2015-01-01

    Potent immunosuppressive and regenerative properties of mesenchymal stem cells (MSCs) position them as a novel therapy for autoimmune diseases. This research examines the therapeutic effect of MSCs administration at different disease stages in experimental autoimmune encephalomyelitis (EAE). Classical and atypical scores of EAE, associated with Th1 and Th17 response, respectively, and also Treg lymphocytes, were evaluated. MSCs administration at the onset (EAE+MSConset) induced an important amelioration of the clinical signs and less lasting effect at the peak of EAE (EAE+MSCpeak). No effect was observed when MSCs were applied after EAE stabilization (EAE+MSClate). Surprisingly, EAE atypical signs were detected in EAE+MSCpeak and EAE+MSClate mice. However, no correlation was found in Th17/Th1 ratio. Interestingly, regardless of time administration, MSCs significantly reduced IL-6 and also T-bet, RORγT, and Foxp3 mRNA levels in brain samples of EAE mice. The downregulation of IL-6 could restore the well-functioning of the blood-brain barrier of EAE mice, correlated with a decreased number of brain infiltrating leukocytes. These results suggest that the inflammatory status is important to be considered for administering MSCs in autoimmune pathologies, leading to a further research to clarify the effect of MSCs for multiple sclerosis. PMID:25838828

  4. Interferon-beta treatment of experimental autoimmune encephalomyelitis leads to rapid nonapoptotic termination of T cell infiltration.

    PubMed

    Schmidt, J; Stürzebecher, S; Toyka, K V; Gold, R

    2001-07-01

    We investigated the possible mechanisms how interferon (IFN)-beta may control T cell infiltration in the CNS in experimental autoimmune encephalomyelitis (EAE). Adoptive transfer (AT) EAE was induced in groups of six female Lewis rats. Animals were treated with 3 x 10(5) units of recombinant rat IFN-beta s.c. once at 18 hr, or with 10 mg/kg methylprednisolone (MP) i.v. twice at 18 and 6 hr prior to dissection, or with a combination of both. T cell apoptosis was detected by immunohistochemistry on paraffin sections of spinal cord, using morphological criteria and TUNEL staining. Double labeling of immune cells was done for tumor necrosis factor (TNF)-alpha and metalloproteinase (MMP) 2. Disruption of the blood-brain barrier (BBB) was visualized by staining for albumin. In severe EAE, an increase of T cell apoptosis was seen after IFN-beta alone (all data presented as mean +/- SD: 24.5% +/- 2.2%, P < 0.05, vs. 19.4% +/- 3.1% in controls), and in combination with MP (29.4% +/- 7.3%, P < 0.05 vs. controls). Only the combination therapy decreased T cell infiltration (53.9 +/- 17.7 cells/mm(2), P < 0.05, vs. 99.5 +/- 35.2 cells/mm2 in controls). In moderate EAE, the rate of T cell apoptosis was slightly increased after IFN-beta (21.2% +/- 5.2% vs. 17.4% +/- 5.0% in controls), whereas MP alone (25.5% +/- 3.5%, P < 0.01 vs. controls) and the combination therapy (22.4% +/- 4.8%, P < 0.05 vs. controls) had a clear augmenting effect. IFN-beta tended to decrease T cell infiltration (46.1 +/- 12.7 cells/mm2) compared to controls (59.2 +/- 18.5 cells/mm2). The rate of TNF-alpha-expressing T cells was significantly decreased by IFN-beta and in combination with MP. Also, TNF-alpha expression in macrophages was significantly reduced by IFN-beta and by the combination therapy. The rate of MMP2-expressing macrophages was lower after IFN-beta but clearly decreased only in combination with MP. BBB disruption was ameliorated after IFN-beta but significantly only in combination with MP

  5. Cannabidiol Limits T Cell–Mediated Chronic Autoimmune Myocarditis: Implications to Autoimmune Disorders and Organ Transplantation

    PubMed Central

    Lee, Wen-Shin; Erdelyi, Katalin; Matyas, Csaba; Mukhopadhyay, Partha; Varga, Zoltan V; Liaudet, Lucas; Hask’, György; ’iháková, Daniela; Mechoulam, Raphael; Pacher, Pal

    2016-01-01

    Myocarditis is a major cause of heart failure and sudden cardiac death in young adults and adolescents. Many cases of myocarditis are associated with autoimmune processes in which cardiac myosin is a major autoantigen. Conventional immunosuppressive therapies often provide unsatisfactory results and are associated with adverse toxicities during the treatment of autoimmune myocarditis. Cannabidiol (CBD) is a nonpsychoactive constituent of marijuana that exerts antiinflammatory effects independent of classical cannabinoid receptors. Recently, 80 clinical trials have investigated the effects of CBD in various diseases from inflammatory bowel disease to graft versus host disease. CBD-based formulations are used for the management of multiple sclerosis in numerous countries, and CBD also received U.S. Food and Drug Administration approval for the treatment of refractory childhood epilepsy and glioblastoma multiforme. Herein, using a well-established mouse model of experimental autoimmune myocarditis (EAM) induced by immunization with cardiac myosin emmulsified in adjuvant resulting in T cell–mediated inflammation, cardiomyocyte cell death, fibrosis and myocardial dysfunction, we studied the potential beneficial effects of CBD. EAM was characterized by marked myocardial T-cell infiltration, profound inflammatory response and fibrosis (measured by quantitative real-time polymerase chain reaction, histology and immunohistochemistry analyses) accompanied by marked attenuation of both systolic and diastolic cardiac functions measured with a pressure-volume conductance catheter technique. Chronic treatment with CBD largely attenuated the CD3+ and CD4+ T cell–mediated inflammatory response and injury, myocardial fibrosis and cardiac dysfunction in mice. In conclusion, CBD may represent a promising novel treatment for managing autoimmune myocarditis and possibly other autoimmune disorders and organ transplantation. PMID:26772776

  6. ERβ in CD4+ T Cells Is Crucial for Ligand-Mediated Suppression of Central Nervous System Autoimmunity.

    PubMed

    Aggelakopoulou, Maria; Kourepini, Evangelia; Paschalidis, Nikolaos; Panoutsakopoulou, Vily

    2016-06-15

    The development of therapies for multiple sclerosis targeting pathogenic T cell responses remains imperative. Previous studies have shown that estrogen receptor (ER) β ligands could inhibit experimental autoimmune encephalomyelitis. However, the effects of ERβ-specific ligands on human or murine pathogenic immune cells, such as Th17, were not investigated. In this article, we show that the synthetic ERβ-specific ligand 4-(2-phenyl-5,7-bis[trifluoromethyl]pyrazolo[1,5-a]pyrimidin-3-yl)phenol (PHTPP) reversed established paralysis and CNS inflammation, characterized by a dramatic suppression of pathogenic Th responses as well as induction of IL-10-producing regulatory CD4(+) T cell subsets in vivo. Moreover, administration of PHTPP in symptomatic mice induced regulatory CD4(+) T cells that were suppressive in vivo. PHTPP-mediated experimental autoimmune encephalomyelitis amelioration was canceled in mice with ERβ-deficient CD4(+) T cells only, indicating that expression of ERβ by these cells is crucial for the observed therapeutic effect. Importantly, synthetic ERβ-specific ligands acting directly on CD4(+) T cells suppressed human and mouse Th17 cells, downregulating Th17 cell signature gene expression and expanding IL-10-producing T cells among them. TGF-β1 and aryl hydrocarbon receptor activation enhanced the ERβ ligand-mediated expansion of IL-10-producing T cells among Th17 cells. In addition, these ERβ-specific ligands promoted the induction and maintenance of Foxp3(+) T regulatory cells, as well as their in vitro suppressive function. Thus, ERβ-specific ligands targeting pathogenic Th17 cells and inducing functional regulatory cells represent a promising subset of therapeutic agents for multiple sclerosis. PMID:27183630

  7. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation.

    PubMed

    Garris, Christopher S; Wu, Linfeng; Acharya, Swati; Arac, Ahmet; Blaho, Victoria A; Huang, Yingxiang; Moon, Byoung San; Axtell, Robert C; Ho, Peggy P; Steinberg, Gary K; Lewis, David B; Sobel, Raymond A; Han, David K; Steinman, Lawrence; Snyder, Michael P; Hla, Timothy; Han, May H

    2013-11-01

    Sphingosine 1-phosphate (S1P) signaling regulates lymphocyte egress from lymphoid organs into systemic circulation. The sphingosine phosphate receptor 1 (S1P1) agonist FTY-720 (Gilenya) arrests immune trafficking and prevents multiple sclerosis (MS) relapses. However, alternative mechanisms of S1P-S1P1 signaling have been reported. Phosphoproteomic analysis of MS brain lesions revealed S1P1 phosphorylation on S351, a residue crucial for receptor internalization. Mutant mice harboring an S1pr1 gene encoding phosphorylation-deficient receptors (S1P1(S5A)) developed severe experimental autoimmune encephalomyelitis (EAE) due to autoimmunity mediated by interleukin 17 (IL-17)-producing helper T cells (TH17 cells) in the peripheral immune and nervous system. S1P1 directly activated the Jak-STAT3 signal-transduction pathway via IL-6. Impaired S1P1 phosphorylation enhances TH17 polarization and exacerbates autoimmune neuroinflammation. These mechanisms may be pathogenic in MS. PMID:24076635

  8. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis.

    PubMed

    Wang, Dong; Li, Shi-Ping; Fu, Jin-Sheng; Bai, Lin; Guo, Li

    2016-04-01

    Experimental autoimmune encephalitis (EAE) is an inflammatory demyelinating disease, which served as a useful model providing considerable insights into the pathogenesis of multiple sclerosis (MS). Mouse bone marrow mesenchymal stem cells (mBM-MSC) were shown to have neuroprotection capabilities in EAE. Resveratrol is a small polyphenolic compound and possess therapeutic activity in various immune-mediated diseases. The sensitivity of mBM-MSCs to resveratrol was determined by an established cell-viability assay. Resveratrol-treated mBM-MSCs were also characterized with flow cytometry using MSC-specific surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by immunization with MOG35-55. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct T helper type 1 (Th1) and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). In vivo efficacy experiments showed that mBM-MSCs or resveratrol alone led to a significant reduction in clinical scores, and combined treatment resulted in even more prominent reduction. The combined treatment with mBM-MSCs and resveratrol enhanced the immunomodulatory effects, showing suppressed proinflammatory cytokines (IFN-γ, TNF-α) and increased anti-inflammatory cytokines (IL-4, IL-10). The combination of mBM-MSCs and resveratrol provides a novel potential experimental protocol for alleviating EAE symptoms. PMID:26827767

  9. Antibody-Mediated Autoimmune Encephalopathies and Immunotherapies.

    PubMed

    Gastaldi, Matteo; Thouin, Anaïs; Vincent, Angela

    2016-01-01

    Over the last 15 years it has become clear that rare but highly recognizable diseases of the central nervous system (CNS), including newly identified forms of limbic encephalitis and other encephalopathies, are likely to be mediated by antibodies (Abs) to CNS proteins. The Abs are directed against membrane receptors and ion channel-associated proteins that are expressed on the surface of neurons in the CNS, such as N-methyl D-aspartate receptors and leucine-rich, glioma inactivated 1 protein and contactin-associated protein like 2, that are associated with voltage-gated potassium channels. The diseases are not invariably cancer-related and are therefore different from the classical paraneoplastic neurological diseases that are associated with, but not caused by, Abs to intracellular proteins. Most importantly, the new antibody-associated diseases almost invariably respond to immunotherapies with considerable and sometimes complete recovery, and there is convincing evidence of their pathogenicity in the relatively limited studies performed so far. Treatments include first-line steroids, intravenous immunoglobulins, and plasma exchange, and second-line rituximab and cyclophosphamide, followed in many cases by steroid-sparing agents in the long-term. This review focuses mainly on N-methyl D-aspartate receptor- and voltage-gated potassium channel complex-related Abs in adults, the clinical phenotypes, and treatment responses. Pediatric cases are referred to but not reviewed in detail. As there have been very few prospective studies, the conclusions regarding immunotherapies are based on retrospective studies. PMID:26692392

  10. Mature dendritic cells cause Th17/Treg imbalance by secreting TGF-β1 and IL-6 in the pathogenesis of experimental autoimmune encephalomyelitis

    PubMed Central

    Lu, Pingxia; Cao, Yingping; Wang, Meihua; Zheng, Peizheng; Hou, Juan; Zhu, Chanhong

    2016-01-01

    Multiple sclerosis (MS) is generally acknowledged to be an autoimmune disease, but its etiology remains unknown. The most intensively studied animal model of MS is experimental autoimmune encephalomyelitis (EAE). Dendritic cells (DCs), the professional antigen presenting cells (APCs), have gained increasing attention because they connect innate and adaptive immunity. The aim of this study was to determine the role of mature DCs in the pathogenesis of EAE. It was found that the number of mature DCs in the EAE spleen increased compared to the control group (p < 0.05). And there was an imbalance between Th17 (effector) and Treg (regulatory) in EAE. The data showed that mature DCs can regulate the differentiation of Th17 and Treg in EAE. In addition, there was a significant difference in secretion of TGF-β1 and IL-6 between mature DCs from mice with EAE and controls. The present data suggest that mature DCs cause an imbalance between Th17 and Treg by secreting TGF-β1 and IL-6 in the pathogenesis of EAE disease. Thus, targeting DC may be an effective strategy for treating MS. PMID:27536199

  11. The nuclear IκB family protein IκBNS influences the susceptibility to experimental autoimmune encephalomyelitis in a murine model.

    PubMed

    Kobayashi, Shuhei; Hara, Akira; Isagawa, Takayuki; Manabe, Ichiro; Takeda, Kiyoshi; MaruYama, Takashi

    2014-01-01

    The nuclear IκB family protein IκBNS is expressed in T cells and plays an important role in Interferon (IFN)-γ and Interleukin (IL)-2 production. IκB-ζ, the most similar homolog of IκBNS, plays an important role in the generation of T helper (Th)17 cells in cooperation with RORγt, a master regulator of Th17 cells. Thus, IκB-ζ deficient mice are resistant to Th17-dependent experimental autoimmune encephalomyelitis (EAE). However, IκB-ζ deficient mice develop the autoimmune-like Sjögren syndrome with aging. Here we found that IκBNS-deficient (Nfkbid-/-) mice show resistance against developing Th17-dependent EAE. We found that Nfkbid-/- T cells have decreased expression of IL-17-related genes and RORγt in response to Transforming Growth Factor (TGF)-β1 and IL-6 stimulation. Thus, IκBNS plays a pivotal role in the generation of Th17 cells and in the control of Th17-dependent EAE. PMID:25347393

  12. Melatonin enhances interleukin-10 expression and suppresses chemotaxis to inhibit inflammation in situ and reduce the severity of experimental autoimmune encephalomyelitis.

    PubMed

    Chen, Shyi-Jou; Huang, Shing-Hwa; Chen, Jing-Wun; Wang, Kai-Chen; Yang, Yung-Rong; Liu, Pi-Fang; Lin, Gu-Jiun; Sytwu, Huey-Kang

    2016-02-01

    Melatonin is the major product secreted by the pineal gland at night and displays multifunctional properties, including immunomodulatory functions. In this study, we investigated the therapeutic effect of melatonin in experimental autoimmune encephalomyelitis (EAE). We demonstrated that melatonin exhibits a therapeutic role by ameliorating the clinical severity and restricting the infiltration of inflammatory Th17 cells into the CNS of mice with myelin oligodendrocyte glycoprotein (MOG)-induced EAE. Furthermore, melatonin enhances splenic interleukin (IL)-10 expression in regulatory T cells by inducing IL-27 expression in the splenic DC; it also suppresses the expression of IFN-γ, IL-17, IL-6, and CCL20 in the CNS and inhibits antigen-specific T cell proliferation. However, there were no significant differences in the percentage of splenic regulatory T cells. These data provide the first evidence that the therapeutic administration of melatonin is effective in mice with EAE and modulates adaptive immunity centrally and peripherally. Thus, we suggest that melatonin could play an adjunct therapeutic role in treating human CNS autoimmune diseases such as multiple sclerosis. Melatonin merits further studies in animals and humans. PMID:26735612

  13. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice.

    PubMed

    Abramowski, Pierre; Krasemann, Susanne; Ernst, Thomas; Lange, Claudia; Ittrich, Harald; Schweizer, Michaela; Zander, Axel R; Martin, Roland; Fehse, Boris

    2016-08-01

    Mesenchymal stromal/stem cells (MSCs) constitute progenitor cells that can be isolated from different tissues. Based on their immunomodulatory and neuroprotective functions, MSC-based cell-therapy approaches have been suggested to antagonize inflammatory activity and neuronal damage associated with autoimmune disease of the central nervous system (CNS), for example, multiple sclerosis (MS). Intravenous MSC transplantation was reported to ameliorate experimental autoimmune encephalomyelitis (EAE), the murine model of MS, within days after transplantation. However, systemic distribution patterns and fate of MSCs after administration, especially their potential to migrate into inflammatory lesions within the CNS, remain to be elucidated. This question has of recent become particularly important, since therapeutic infusion of MSCs is now being tested in clinical trials with MS-affected patients. Here, we made use of the established EAE mouse model to investigate migration and therapeutic efficacy of murine bone marrow-derived MSCs. Applying a variety of techniques, including magnetic resonance imaging, immunohistochemistry, fluorescence in-situ hybridization, and quantitative polymerase chain reaction we found no evidence for immediate migration of infused MSC into the CNS of treated mice. Moreover, in contrast to other studies, transplanted MSCs did not ameliorate EAE. In conclusion, our data does not provide substantiation for a relevant migration of infused MSCs into the CNS of EAE mice supporting the hypothesis that potential therapeutic efficacy could be based on systemic effects. Evaluation of possible mechanisms underlying the observed discrepancies in MSC treatment outcomes between different EAE models demands further studies. PMID:27250994

  14. Genetic deficiency of Irgm1 (LRG-47) suppresses induction of experimental autoimmune encephalomyelitis by promoting apoptosis of activated CD4+ T cells

    PubMed Central

    Xu, Hongwei; Wu, Zhi-Ying; Fang, Fang; Guo, Lan; Chen, Doris; Chen, John Xi; Stern, David; Taylor, Gregory A.; Jiang, Hong; Yan, Shirley ShiDu

    2010-01-01

    The immunity-related GTPase Irgm1, also called LRG-47, is known to regulate host resistance to intracellular pathogens through multiple mechanisms that include controlling the survival of T lymphocytes. Here, we address whether Irgm1 also plays a role in the pathogenesis of experimental autoimmune encephalitis (EAE). We find that Irgm1/LRG-47 is a significant factor in the progression of EAE and multiple sclerosis (MS). Expression of Irgm1 was robustly elevated in MS-affected lesions and in the central nervous system (CNS) of myelin basic protein (MBP)-induced EAE mice, especially in cells of lymphoid and mononuclear phagocyte origin. Homozygous Irgm1 null mice were resistant to MBP-induced EAE, and CD4+ T cells in spleen and CNS of these mice displayed decreased proliferative capacity, increased apoptosis, and up-regulated interferon (IFN)-γ induction. Therefore, Irgm1-induced survival of autoreactive CD4+ T cells contributes significantly to the pathogenesis of EAE. Blockade of Irgm1 may be a potential therapeutic strategy for halting multiple sclerosis.—Xu, H., Wu, Z.-Y., Fang, F., Guo, L., Chen, D., Chen, J. X., Stern, D., Taylor, G. A., Jiang, H., Yan, S. S. Genetic deficiency of Irgm1 (LRG-47) suppresses induction of experimental autoimmune encephalomyelitis by promoting apoptosis of activated CD4+ T cells. PMID:20056715

  15. Neurodegeneration and inflammation in hippocampus in experimental autoimmune encephalomyelitis induced in rats by one--time administration of encephalitogenic T cells.

    PubMed

    Kurkowska-Jastrzębska, I; Swiątkiewicz, M; Zaremba, M; Cudna, A; Piechal, A; Pyrzanowska, J; Widy-Tyszkiewicz, E; Członkowska, A

    2013-09-17

    Cognitive dysfunction is relatively frequent in multiple sclerosis (MS) and it happens from the early stages of the disease. There is increasing evidence that the grey matter may be involved in autoimmune inflammation during relapses of MS. The purpose of this study was to evaluate if a single transfer of encephalitogenic T cells, mimicking a relapse of MS, may cause hippocampal damage and memory disturbances in rats. Lewis rats were injected with anti-MBP CD4+ T cells, that induced one-phase autoimmune encephalomyelitis (EAE) with full recovery from motor impairments at 10-15 days. The spatial learning and memory were tested by the Morris water maze test in control and EAE animals, 30 and 90 days post-induction (dpi). The neural injury and inflammation was investigated in the hippocampus by immunohistochemistry and quantitative analyses. There was a marked decrease in the number of CA1 and CA4 pyramidal neurons 5 dpi. The loss of neurons then aggravated till the 90 dpi. An increase in microglial and astroglial activation and in pro-inflammatory cytokines mRNA expression in the hippocampus, were present 30 and 90 dpi. Nerve growth factor and brain-derived neurotrophic factor mRNA levels were also significantly elevated. The water maze test, however, did not reveal memory deficits. The present data indicate that a single transfer of autoimmune T cells results in preserved inflammation and probable on-going neuronal injury in the hippocampus, long after recovery from motor disturbances. These findings suggest that any relapse of the MS may start the neurodegenerative process in the hippocampus, which is not necessarily connected with memory deficits. PMID:23806721

  16. Immunomodulation By Subchronic Low Dose 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Experimental Autoimmune Encephalomyelitis in the Absence of Pertussis Toxin.

    PubMed

    Yang, Eun-Ju; Stokes, John V; Kummari, Evangel; Eells, Jeffrey; Kaplan, Barbara L F

    2016-05-01

    Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder, characterized by demyelination of neurons in the central nervous system. To investigate the pathogenicity of various T cell types in MS, especially IFN-γ- or IL-17-producing CD4(+ )cells (TH1 or TH17 cells, respectively), the mouse model, experimental autoimmune encephalomyelitis (EAE), is commonly used. One method by which EAE is induced is immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (MOG35-55) followed by subsequent injections of pertussis toxin (PTX) as an adjuvant. We have an interest in the mechanisms by which EAE occurs in the absence of PTX because it induces a milder disease state more consistent with autoimmune disease onset and PTX inactivates Gi/o protein-coupled receptors, many of which contribute to immune homeostasis. Another receptor that plays a role in immune homeostasis is the aryl hydrocarbon receptor (AHR). In fact, the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to attenuate EAE pathogenesis by affecting CD4(+ )T and regulatory T (Treg) cells in an AHR-dependent manner. However, many of these studies have been conducted with an acute high dose TCDD. Thus, the goal of this work was to investigate the modulation of MOG-specific immune responses with subchronic low dose TCDD (0.1-1.0 μg/kg/d for 12 days) in EAE without PTX. The results demonstrate that subchronic, low dose exposure of TCDD attenuates the immune responses in EAE development in the absence of PTX, which is due in part to suppression of MOG-specific IL-17A and IFN-γ responses. PMID:26822306

  17. Inflammatory Bowel Disease: Autoimmune or Immune-mediated Pathogenesis?

    PubMed Central

    Wen, Zhonghui

    2004-01-01

    The pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), the two main forms of inflammatory bowel disease (IBD), is still unclear, but both autoimmune and immune-mediated phenomena are involved. Autoimmune phenomena include the presence of serum and mucosal autoantibodies against intestinal epithelial cells in either form of IBD, and against human tropomyosin fraction five selectively in UC. In addition, perinuclear antineutrophil cytoplasmic antibodies (pANCA) are common in UC, whereas antibodies against Saccharomyces cerevisiae (ASCA) are frequently found in CD. Immune-mediate phenomena include a variety of abnormalities of humoral and cell-mediated immunity, and a generalized enhanced reactivity against intestinal bacterial antigens in both CD and UC. It is currently believed that loss of tolerance against the indigenous enteric flora is the central event in IBD pathogenesis. Various complementary factors probably contribute to the loss of tolerance to commensal bacteria in IBD. They include defects in regulatory T-cell function, excessive stimulation of mucosal dendritic cells, infections or variants of proteins critically involved in bacterial antigen recognition, such as the products of CD-associated NOD2/CARD15 mutations. PMID:15559364

  18. Immune modulation by a tolerogenic myelin oligodendrocyte glycoprotein (MOG)10–60 containing fusion protein in the marmoset experimental autoimmune encephalomyelitis model

    PubMed Central

    Kap, Y S; van Driel, N; Arends, R; Rouwendal, G; Verolin, M; Blezer, E; Lycke, N; ‘t Hart, B A

    2015-01-01

    Current therapies for multiple sclerosis (MS), a chronic autoimmune neuroinflammatory disease, mostly target general cell populations or immune molecules, which may lead to a compromised immune system. A more directed strategy would be to re-enforce tolerance of the autoaggressive T cells that drive tissue inflammation and injury. In this study, we have investigated whether the course of experimental autoimmune encephalomyelitis (EAE) in mice and marmosets can be altered by a potent tolerizing fusion protein. In addition, a multi-parameter immunological analysis was performed in marmosets to assess whether the treatment induces modulation of EAE-associated cellular and humoral immune reactions. The fusion protein, CTA1R9K-hMOG10–60-DD, contains a mutated cholera toxin A1 subunit (CTA1R9K), a dimer of the Ig binding D region of Staphylococcus aureus protein A (DD), and the human myelin oligodendrocyte glycoprotein (hMOG) sequence 10–60. We observed that intranasal application of CTA1R9K-hMOG10–60-DD seems to skew the immune response against myelin oligodendrocyte glycoprotein (MOG) towards a regulatory function. We show a reduced number of circulating macrophages, reduced MOG-induced expansion of mononuclear cells in peripheral blood, reduced MOG-induced production of interleukin (IL)-17A in spleen, increased MOG-induced production of IL-4 and IL-10 and an increased percentage of cells expressing programmed cell death-1 (PD-1) and CC chemokine receptor 4 (CCR4). Nevertheless, the treatment did not detectably change the EAE course and pathology. Thus, despite a detectable effect on relevant immune parameters, the fusion protein failed to influence the clinical and pathological outcome of disease. This result warrants further development and improvement of this specifically targeted tolerance inducing therapy. PMID:25393803

  19. Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion.

    PubMed Central

    Liedtke, W.; Edelmann, W.; Chiu, F. C.; Kucherlapati, R.; Raine, C. S.

    1998-01-01

    Insights into the role of the astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP), have only recently emerged with reports on subtle abnormalities in GFAP-deficient mice, including the documentation of defective long-term maintenance of central nervous system myelination. Here, we extend these observations by examining the astroglial response in GFAP-/- mice with autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. Clinically, the monophasic disease was more severe in GFAP-/- mice than in wild-type littermates despite increased remyelination in the former. More in keeping with the clinical course was the observation of an infiltrative EAE lesion in GFAP-/- mice. GFAP-/- astrocytes had a reduced cytoarchitectural stability as evidenced by less abundant and irregularly spaced hemidesmosomes. The blunt GFAP-/- astrocyte processes possessed intermediate filaments consisting mainly of vimentin, though to a lesser degree than in the wild-type. In contrast, in wild-type littermates, GFAP was most abundant and nestin occurred at lower levels. Taken together, the present study introduces the novel concepts that GFAP plays an important role in the control of clinical disease associated with formation of a clearly defined edge to the EAE lesion and that GFAP is operative in the regulation of the intermediate filament components in reactive fibrillary astrogliosis. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:9422542

  20. Quantifying immunohistochemical staining of phospho-eIF2alpha, heme oxygenase-2 and NADPH cytochrome P450 reductase in oligodendrocytes during experimental autoimmune encephalomyelitis.

    PubMed

    Chakrabarty, Anuradha; Fleming, Kandace K; Marquis, Janet G; LeVine, Steven M

    2005-06-15

    As a consequence of inflammation associated with multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), stress responses are induced in many cells within the CNS, however, those that occur within the primary pathological target, the oligodendrocyte, are not fully established. Recently, we found that phosphorylated eukaryotic initiation factor-2alpha (eIF2alpha), an inhibitor of protein translation associated with the stress response, is expressed in a greater number of oligodendrocytes in EAE animals compared to controls. However, since numerous oligodendrocytes in control animals also expressed phospho-eIF2alpha, a method was developed to detect expression levels within oligodendrocytes that did not rely on the number of oligodendrocytes that were stained. This method utilized a high dilution of the primary antibody so that the staining density was kept below a maximum plateau which could eliminate expression differences. Furthermore, the staining density within oligodendrocytes, as determined by image analysis, was corrected by the background density or that within neurons. In either case, the density of staining was greater in oligodendrocytes from EAE animals versus controls. The expression of heme oxygenase-2 and NADPH cytochrome P450 reductase also were examined, but unlike phospho-eIF2alpha, neither was increased in oligodendrocytes from EAE animals compared to controls. In summary, a protocol involving a high dilution of primary antibody and image analysis revealed that the expression of phospho-eIF2alpha within oligodendrocytes was increased in EAE animals compared to control animals. PMID:15910982

  1. Enhancing the Ability of Experimental Autoimmune Encephalomyelitis to Serve as a More Rigorous Model of Multiple Sclerosis through Refinement of the Experimental Design

    PubMed Central

    Emerson, Mitchell R; Gallagher, Ryan J; Marquis, Janet G; LeVine, Steven M

    2009-01-01

    Advancing the understanding of the mechanisms involved in the pathogenesis of multiple sclerosis (MS) likely will lead to new and better therapeutics. Although important information about the disease process has been obtained from research on pathologic specimens, peripheral blood lymphocytes and MRI studies, the elucidation of detailed mechanisms has progressed largely through investigations using animal models of MS. In addition, animal models serve as an important tool for the testing of putative interventions. The most commonly studied model of MS is experimental autoimmune encephalomyelitis (EAE). This model can be induced in a variety of species and by various means, but there has been concern that the model may not accurately reflect the disease process, and more importantly, it may give rise to erroneous findings when it is used to test possible therapeutics. Several reasons have been given to explain the shortcomings of this model as a useful testing platform, but one idea provides a framework for improving the value of this model, and thus, it deserves careful consideration. In particular, the idea asserts that EAE studies are inadequately designed to enable appropriate evaluation of putative therapeutics. Here we discuss problem areas within EAE study designs and provide suggestions for their improvement. This paper is principally directed at investigators new to the field of EAE, although experienced investigators may find useful suggestions herein. PMID:19389303

  2. EphrinB1 and EphrinB2 regulate T cell chemotaxis and migration in experimental autoimmune encephalomyelitis and multiple sclerosis.

    PubMed

    Luo, Hongyu; Broux, Bieke; Wang, Xuehai; Hu, Yan; Ghannam, Soufiane; Jin, Wei; Larochelle, Catherine; Prat, Alexandre; Wu, Jiangping

    2016-07-01

    T cells are believed to be key effector cells in multiple sclerosis (MS). In this study, we examined the roles of T cell ephrinB1 (EFNB1) and ephrinB2 (EFNB2) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and MS. We provide evidence that animals with T cell specific double deletion of EFNB1 and EFNB2 (dKO) have reduced proliferation in response to MOG35-55, defective Th1 and Th17 differentiations and significantly lower scores of MOG-induced EAE. We further demonstrate that dKO T cells are compromised in their ability to migrate into the CNS of EAE animals in vivo and towards multiple chemokines in vitro. Using deletion mutations, we identified a critical 11-aa EFNB1 intracellular domain segment that controls T cell chemotaxis towards CCL21. In humans, EFNB1 and EFNB2 are highly expressed in Th1 and Th17 cells and EFNB1- and EFNB2-expressing T cells are found among immune cell infiltrates in MS lesions. Reverse signaling through EFNB1 and EFNB2 in human Th17 cells enhances their migration through a monolayer of blood brain barrier endothelial cells. Our study demonstrates that expression of EFNB1 and EFNB2 is implicated in Th cell differentiation and migration to inflammatory sites in both EAE and MS. PMID:27039370

  3. Rational design and synthesis of altered peptide ligands based on human myelin oligodendrocyte glycoprotein 35-55 epitope: inhibition of chronic experimental autoimmune encephalomyelitis in mice.

    PubMed

    Tselios, Theodore; Aggelidakis, Mihalis; Tapeinou, Anthi; Tseveleki, Vivian; Kanistras, Ioannis; Gatos, Dimitrios; Matsoukas, John

    2014-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a demyelinating disease of the central nervous system and is an animal model of multiple sclerosis (MS). Although the etiology of MS remains unclear, there is evidence T-cell recognition of immunodominant epitopes of myelin proteins, such as the 35-55 epitope of myelin oligodendrocyte glycoprotein (MOG), plays a pathogenic role in the induction of chronic EAE. Cyclization of peptides is of great interest since the limited stability of linear peptides restricts their potential use as therapeutic agents. Herein, we have designed and synthesized a number of linear and cyclic peptides by mutating crucial T cell receptor (TCR) contact residues of the human MOG35-55 epitope. In particular, we have designed and synthesized cyclic altered peptide ligands (APLs) by mutating Arg41 with Ala or Arg41 and Arg46 with Ala. The peptides were synthesized in solid phase on 2-chlorotrityl chloride resin (CLTR-Cl) using the Fmoc/t-Bu methodology. The purity of final products was verified by RP-HPLC and their identification was achieved by ESI-MS. It was found that the substitutions of Arg at positions 41 and 46 with Ala results in peptide analogues that reduce the severity of MOG-induced EAE clinical symptoms in C57BL/6 mice when co-administered with mouse MOG35-55 peptide at the time of immunization. PMID:25375337

  4. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis.

    PubMed

    Lim, Sangho; Kim, Won-Ju; Kim, Yeon-Ho; Lee, Sohee; Koo, Ja-Hyun; Lee, Jung-Ah; Yoon, Heeseok; Kim, Do-Hyun; Park, Hong-Jai; Kim, Hye-Mi; Lee, Hong-Gyun; Yun Kim, Ji; Lee, Jae-Ung; Hun Shin, Jae; Kyun Kim, Lark; Doh, Junsang; Kim, Hongtae; Lee, Sang-Kyou; Bothwell, Alfred L M; Suh, Minah; Choi, Je-Min

    2015-01-01

    Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood-brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood-brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS. PMID:26372309

  5. Protease activated receptor-1 antagonist ameliorates the clinical symptoms of experimental autoimmune encephalomyelitis via inhibiting breakdown of blood-brain barrier.

    PubMed

    Kim, Ha Neui; Kim, Yu Ri; Ahn, Sung Min; Lee, Sun Kyung; Shin, Hwa Kyoung; Choi, Byung Tae

    2015-11-01

    To evaluate the question of whether protease activated receptor-1 (PAR-1) antagonist is a potential therapeutic target in multiple sclerosis, we treated experimental autoimmune encephalomyelitis (EAE) mice with two PAR-1 antagonists, KC-A0590 and SCH-530348. Treatment with both antagonists resulted in a significant decrease in the clinical characteristics of EAE mice by suppressing demyelination and infiltration of inflammatory cells in the spinal cord and brain, as well as a significantly reducing the increased thrombin and tumor necrosis factor-α. Profound leakage of dextran was observed in the brain of EAE mice. However, treatment with PAR-1 antagonists resulted in the stabilization of vascular endothelial cells and reduced blood-brain barrier breakdown with suppression of inflammatory response. Treatment with PAR-1 antagonists also resulted in down-regulated expression of matrix metalloproteinase-9 and preserved expression of occludin and zonula occludens (ZO)-1 in the brain and their significant expression was confirmed in neurons, astrocytes, and vascular endothelial cells. Finally, endothelial cells and primary cultured astrocytes were treated with PAR-1 antagonists; both antagonists suppressed thrombin-induced breakdown of ZO-1 in endothelial cells and secretion of matrix metalloproteinase-9 in astrocytes. Collectively, our results suggest that PAR-1 antagonist is effective in attenuation of the clinical symptoms of EAE mice by stabilizing the blood-brain barrier and may have therapeutic potential for treatment of multiple sclerosis. PMID:26285165

  6. Tripchlorolide ameliorates experimental autoimmune encephalomyelitis by down-regulating ERK1/2-NF-κB and JAK/STAT signaling pathways.

    PubMed

    Zhang, Jian; Zeng, Yu-qi; Zhang, Jing; Pan, Xiao-dong; Kang, De-yong; Huang, Tian-wen; Chen, Xiao-chun

    2015-04-01

    Tripchlorolide (T4), an extract of the natural herb Tripterygium wilfordii Hook F, has been found to possess anti-inflammatory and immunosuppressive actions. In the current study, these actions were evaluated in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis by scoring the clinical signs, observing the infiltration of inflammatory cells and myelin sheath in the lumbar spinal cord of EAE mice. The results demonstrated that T4 (at a dose of 40 μg/kg) significantly reduced the severity of EAE and slowed down the ongoing EAE. Further analysis showed that T4 suppressed the mRNA and protein levels of the transcription factors T-bet and RoRrt and mRNA levels of IFN-γ and IL-17 in the spinal cords. Furthermore, T4 down-regulated the ERK1/2-NF-κB and JAK/STAT signaling pathways. At 40 μg/kg, T4 did not induce side effects on hematological parameters. These findings suggest that T4 ameliorates EAE by immunosuppression, providing a new insight into T4 application in multiple sclerosis treatment. PMID:25662403

  7. Protective effect of a novel Rho kinase inhibitor WAR-5 in experimental autoimmune encephalomyelitis by modulating inflammatory response and neurotrophic factors.

    PubMed

    Li, Yan-hua; Yu, Jie-zhong; Xin, Yan-le; Feng, Ling; Chai, Zhi; Liu, Jian-chun; Zhang, Hong-zhen; Zhang, Guang-Xian; Xiao, Bao-guo; Ma, Cun-gen

    2015-10-01

    The Rho-kinase (ROCK) inhibitor Fasudil has proven beneficial in experimental autoimmune encephalomyelitis (EAE). Given the small safety window of Fasudil, we are looking for novel ROCK inhibitors, which have similar or stronger effect on EAE with greater safety. In this study, we report that WAR-5, a Y-27632 derivative, alleviates the clinical symptoms, attenuates myelin damage and reduces CNS inflammatory responses in EAE C57BL/6 mice at an extent similar to Fasudil, while exhibits less vasodilator and adverse reaction in vivo. WAR-5 inhibits ROCK activity, and selectively suppresses the expression of ROCK II in spleen, brain and spinal cord of EAE mice, especially in spinal cord, accompanied by decreased expression of Nogo. WAR-5 also regulates the imbalance of Th1/Th17 T cells and regulatory T cells, inhibits inflammatory microenvironment induced with NF-κB-IL-1β pathway. Importantly, WAR-5 converts M1 toward M2 microglia/macrophages that are positively correlated with BDNF and NT-3 production. Taken together, WAR-5 exhibits therapeutic potential in EAE by more selectively inhibits ROCK II, with a greater safety than Fasudil, and is worthy of further clinical study to clarify its clinical value. PMID:26112093

  8. Infusion of Sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate-Conjugated MOG35–55-Coupled Spleen Cells Effectively Prevents and Reverses Experimental Autoimmune Encephalomyelitis in Mice

    PubMed Central

    Zhang, Lanfang; Guo, Yixian; Xia, Chang-Qing

    2015-01-01

    In this study, we have evaluated our recently developed method for antigen-cell coupling using sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) heterobifunctional crosslinker in prevention and reversal of experimental autoimmune encephalomyelitis (EAE). We demonstrate that infusion of MOG35–55-coupled spleen cells (MOG-SP) significantly prevents and reverses EAE. Further studies show that the protected animals exhibit significantly delayed EAE upon EAE reinduction. Moreover, adoptive transfer of CD4+ T cells from the protected mice to naïve syngeneic mice renders the recipient mice resistant to EAE induction. Unexpectedly, CD4+ T cell proliferation is similar upon ex vivo stimulation by MOG35–55 amongst all groups. However, further analysis of those proliferating CD4+ T cells shows remarkable differences in Foxp3+ regulatory T cells (70% in MOG-SP groups versus 10–25% in control groups) and in IL-17+ cells (2-3% in MOG-SP groups versus 6–9% in control groups). In addition, we discover that MOG-SP treatment also significantly attenuates MOG35–55-responding IFN-γ-producing Th1 cells. These findings suggest that MOG-SP treatment induces EAE protective MOG35–55-specific regulatory T cells and suppresses EAE pathogenic Th17 and Th1 cells. Our study provides a novel approach for antigen-based EAE immunotherapy, which can potentially be translated into clinical application for immunotherapy of multiple sclerosis. PMID:26258148

  9. dNP2 is a blood–brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis

    PubMed Central

    Lim, Sangho; Kim, Won-Ju; Kim, Yeon-Ho; Lee, Sohee; Koo, Ja-Hyun; Lee, Jung-Ah; Yoon, Heeseok; Kim, Do-Hyun; Park, Hong-Jai; Kim, Hye-Mi; Lee, Hong-Gyun; Yun Kim, Ji; Lee, Jae-Ung; Hun Shin, Jae; Kyun Kim, Lark; Doh, Junsang; Kim, Hongtae; Lee, Sang-Kyou; Bothwell, Alfred L. M.; Suh, Minah; Choi, Je-Min

    2015-01-01

    Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood–brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood–brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS. PMID:26372309

  10. Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations.

    PubMed

    Sheridan, Graham K; Dev, Kumlesh K

    2014-01-01

    Fingolimod (FTY720) is an oral therapy for relapsing remitting multiple sclerosis (MS) and targets sphingosine 1-phosphate receptors (S1PRs). FTY720 also rescues animals from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effects of FTY720 in EAE are primarily scored manually by examining weight loss and limb paralysis that begins around 10-12 days after immunisation. To our knowledge, pre-clinical effects of FTY720 on animal behaviour early in EAE have not been explored. Here, we developed an automated behaviour monitoring system to examine the early effects of FTY720 on subtle pre-symptomatic behaviour of mice induced with EAE. Our automated home-cage monitoring system (AHC-MS) enabled non-contact detection of movement and ultrasonic vocalisations (USVs) of mice induced with EAE, thus allowing detection of subtle changes in mouse behaviour before paralysis occurs. Mice receiving FTY720 emit longer USVs and display higher levels of motor activity than vehicle-treated EAE mice before clinical symptoms become apparent. Importantly, this study promotes the 3Rs ethics (replacement, reduction and refinement) in the EAE animal model and may also improve pre-screening of potentially novel MS therapies. In addition, this is the first report showing the early effects of FTY720 in EAE which underscores its protective effects. PMID:24851861

  11. The influence of glutamatergic receptor antagonists on biochemical and ultrastructural changes in myelin membranes of rats subjected to experimental autoimmune encephalomyelitis.

    PubMed

    Dąbrowska-Bouta, Beata; Strużyńska, Lidia; Chalimoniuk, Małgorzata; Frontczak-Baniewicz, Małgorzata; Sulkowski, Grzegorz

    2015-01-01

    Elevated extracellular glutamate in the synaptic cleft causes overactivation of glutamate receptors and kills neurons by an excitotoxic mechanism. Recent studies have shown that glutamate can also lead to toxic injury of white matter oligodendrocytes in myelin sheaths and consequently to axon demyelination. The present study was performed using the rodent model of multiple sclerosis known as experimental autoimmune encephalomyelitis (EAE). The aim of the study was to test the effects of the glutamatergic receptor antagonists amantadine and memantine (antagonists of NMDA receptors), LY 367384 (an antagonist of mGluR1), and MPEP (an mGluR5 antagonist) on the development of neurological symptoms in immunized animals, morphological changes in cerebral myelin, and expression of mRNA of the principal myelin proteins PLP, MBP, MOG, MAG, and CNPase. Pharmacological inhibition of NMDA receptors by amantadine and memantine was found to suppress neurological symptoms in EAE rats, whereas antagonists of the group I metabotropic glutamate receptors (mGluRs G I) did not function positively. In the symptomatic phase of the disease we observed destruction of myelin sheaths via electron microscopy and decreased levels of mRNA for all of the principal myelin proteins. The results reveal that glutamate receptor antagonists have a positive effect on the expression of mRNA MBP and glycoproteins MAG and MOG but not on myelin ultrastructure. PMID:26785366

  12. Evaluation of the co-registration capabilities of a MRI/PET compatible bed in an Experimental autoimmune encephalomyelitis (EAE) model

    NASA Astrophysics Data System (ADS)

    Esposito, Giovanna; D'angeli, Luca; Bartoli, Antonietta; Chaabane, Linda; Terreno, Enzo

    2013-02-01

    Positron Emission Tomography (PET) with 18F-FDG is a promising tool for the detection and evaluation of active inflammation in animal models of neuroinflammation. MRI is a complementary imaging technique with high resolution and contrast suitable to obtain the anatomical data required to analyze PET data. To combine PET and MRI modalities, we developed a support bed system compatible for both scanners that allowed to perform imaging exams without animal repositioning. With this approach, MRI and PET data were acquired in mice with Experimental autoimmune encephalomyelitis (EAE). In this model, it was possible to measure a variation of 18F-FDG uptake proportional to the degree of disease severity which is mainly related to Central Nervous System (CNS) inflammation. Against the low resolved PET images, the co-registered MRI/PET images allowed to distinguish the different brain structures and to obtain a more accurate tracer evaluation. This is essential in particular for brain regions whose size is of the order of the spatial resolution of PET.

  13. Inhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis

    PubMed Central

    Farjam, Mojtaba; Beigi Zarandi, Faegheh Baha'addini; Farjadian, Shirin; Geramizadeh, Bita; Nikseresht, Ali Reza; Panjehshahin, Mohammad Reza

    2014-01-01

    Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal role in neurodegeneration, has not been tested in MS. In this study inhibition of NR2B-containing NMDAR was evaluated on the animal model of MS, experimental autoimmune encephalomyelitis (EAE). EAE induction was done using MOG in C57BL/6 mice. Therapeutic administration of different doses of highly selective NR2B-containing NMDAR inhibitor (RO25-6981) was compared with memantine (non-selective NMDAR antagonist) and vehicle. Neurological deficits in EAE animals were more efficiently decreased by selective inhibition of NR2B-containing NMDARs. Histological studies of the spinal cords also showed decreased inflammation, myelin degradation and neuro-axonal degeneration when RO25-6981was administered with higher doses. The effects were dose dependent. Regarding the role of NR2B-containing NMDARs in excitotoxicity, selective inhibition of these receptor subtypes seems to modulate the neurological disabilities and pathological changes in EAE. Further elucidation of the exact mechanism of action as well as more experimental studies can suggest NR2B-containing NMDAR inhibition as a potentially effective treatment strategy for slowing down the clinical deterioration of disability in MS. PMID:25237366

  14. Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs.

    PubMed

    Fiebiger, Benjamin M; Maamary, Jad; Pincetic, Andrew; Ravetch, Jeffrey V

    2015-05-01

    The antiinflammatory activity of intravenous immunoglobulin (IVIG) is dependent on the presence of sialic acid in the core IgG fragment crystallizable domain (Fc) glycan, resulting in increased conformational flexibility of the CH2 domain with corresponding modulation of Fc receptor (FcR) binding specificity from type I to type II receptors. Sialylated IgG Fc (sFc) increases the activation threshold of innate effector cells to immune complexes by stimulating the up-regulation of the inhibitory receptor FcγRIIB. We have found that the structural alterations induced by sialylation can be mimicked by specific amino acid modifications to the CH2 domain. An IgG Fc variant with a point mutation at position 241 (F→A) exhibits antiinflammatory activity even in the absence of sialylation. F241A and sFc protect mice from arthritis in the K/BxN-induced model and, in the T cell-mediated experimental autoimmune encephalomyelitis (EAE) mouse model, suppress disease by specifically activating regulatory T cells (Treg cells). Protection by these antiinflammatory Fcs in both antibody- and T cell-mediated autoimmune diseases required type II FcRs and the induction of IL-33. These results further clarify the mechanism of action of IVIG in both antibody- and T cell-mediated inflammatory diseases and demonstrate that Fc variants that mimic the structural alterations induced by sialylation, such as F241A, can be promising therapeutic candidates for the treatment of various autoimmune disorders. PMID:25870292

  15. Protection in antibody- and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs

    PubMed Central

    Fiebiger, Benjamin M.; Maamary, Jad; Pincetic, Andrew; Ravetch, Jeffrey V.

    2015-01-01

    The antiinflammatory activity of intravenous immunoglobulin (IVIG) is dependent on the presence of sialic acid in the core IgG fragment crystallizable domain (Fc) glycan, resulting in increased conformational flexibility of the CH2 domain with corresponding modulation of Fc receptor (FcR) binding specificity from type I to type II receptors. Sialylated IgG Fc (sFc) increases the activation threshold of innate effector cells to immune complexes by stimulating the up-regulation of the inhibitory receptor FcγRIIB. We have found that the structural alterations induced by sialylation can be mimicked by specific amino acid modifications to the CH2 domain. An IgG Fc variant with a point mutation at position 241 (F→A) exhibits antiinflammatory activity even in the absence of sialylation. F241A and sFc protect mice from arthritis in the K/BxN-induced model and, in the T cell-mediated experimental autoimmune encephalomyelitis (EAE) mouse model, suppress disease by specifically activating regulatory T cells (Treg cells). Protection by these antiinflammatory Fcs in both antibody- and T cell-mediated autoimmune diseases required type II FcRs and the induction of IL-33. These results further clarify the mechanism of action of IVIG in both antibody- and T cell-mediated inflammatory diseases and demonstrate that Fc variants that mimic the structural alterations induced by sialylation, such as F241A, can be promising therapeutic candidates for the treatment of various autoimmune disorders. PMID:25870292

  16. Korean Red Ginseng and Ginsenoside-Rb1/-Rg1 Alleviate Experimental Autoimmune Encephalomyelitis by Suppressing Th1 and Th17 Cells and Upregulating Regulatory T Cells.

    PubMed

    Lee, Min Jung; Jang, Minhee; Choi, Jonghee; Chang, Byung Soo; Kim, Do Young; Kim, Sung-Hoon; Kwak, Yi-Seong; Oh, Seikwan; Lee, Jong-Hwan; Chang, Byung-Joon; Nah, Seung-Yeol; Cho, Ik-Hyun

    2016-04-01

    The effects of Korean red ginseng extract (KRGE) on autoimmune disorders of the nervous system are not clear. We investigated whether KRGE has a beneficial effect on acute and chronic experimental autoimmune encephalomyelitis (EAE). Pretreatment (daily from 10 days before immunization with myelin basic protein peptide) with KRGE significantly attenuated clinical signs and loss of body weight and was associated with the suppression of spinal demyelination and glial activation in acute EAE rats, while onset treatment (daily after the appearance of clinical symptoms) did not. The suppressive effect of KRGE corresponded to the messenger RNA (mRNA) expression of proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin [IL]-1β), chemokines (RANTES, monocyte chemotactic protein-1 [MCP-1], and macrophage inflammatory protein-1α [MIP-1α]), adhesion molecules (intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1], and platelet endothelial cell adhesion molecule [PECAM-1]), and inducible nitric oxide synthase in the spinal cord after immunization. Interestingly, in acute EAE rats, pretreatment with KRGE significantly reduced the population of CD4(+), CD4(+)/IFN-γ(+), and CD4(+)/IL-17(+) T cells in the spinal cord and lymph nodes, corresponding to the downregulation of mRNA expression of IFN-γ, IL-17, and IL-23 in the spinal cord. On the other hand, KRGE pretreatment increased the population of CD4(+)/Foxp3(+) T cells in the spinal cord and lymph nodes of these rats, corresponding to the upregulation of mRNA expression of Foxp3 in the spinal cord. Interestingly, intrathecal pretreatment of rats with ginsenosides (Rg1 and Rb1) significantly decreased behavioral impairment. These results strongly indicate that KRGE has a beneficial effect on the development and progression of EAE by suppressing T helper 1 (Th1) and Th17 T cells and upregulating regulatory T cells. Additionally, pre- and onset treatment with KRGE

  17. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen.

    PubMed

    Kinzel, Silke; Lehmann-Horn, Klaus; Torke, Sebastian; Häusler, Darius; Winkler, Anne; Stadelmann, Christine; Payne, Natalie; Feldmann, Linda; Saiz, Albert; Reindl, Markus; Lalive, Patrice H; Bernard, Claude C; Brück, Wolfgang; Weber, Martin S

    2016-07-01

    In the pathogenesis of central nervous system (CNS) demyelinating disorders, antigen-specific B cells are implicated to act as potent antigen-presenting cells (APC), eliciting waves of inflammatory CNS infiltration. Here, we provide the first evidence that CNS-reactive antibodies (Ab) are similarly capable of initiating an encephalitogenic immune response by targeting endogenous CNS antigen to otherwise inert myeloid APC. In a transgenic mouse model, constitutive production of Ab against myelin oligodendrocyte glycoprotein (MOG) was sufficient to promote spontaneous experimental autoimmune encephalomyelitis (EAE) in the absence of B cells, when mice endogenously contained MOG-recognizing T cells. Adoptive transfer studies corroborated that anti-MOG Ab triggered activation and expansion of peripheral MOG-specific T cells in an Fc-dependent manner, subsequently causing EAE. To evaluate the underlying mechanism, anti-MOG Ab were added to a co-culture of myeloid APC and MOG-specific T cells. At otherwise undetected concentrations, anti-MOG Ab enabled Fc-mediated APC recognition of intact MOG; internalized, processed and presented MOG activated naïve T cells to differentiate in an encephalitogenic manner. In a series of translational experiments, anti-MOG Ab from two patients with an acute flare of CNS inflammation likewise facilitated detection of human MOG. Jointly, these observations highlight Ab-mediated opsonization of endogenous CNS auto-antigen as a novel disease- and/or relapse-triggering mechanism in CNS demyelinating disorders. PMID:27022743

  18. microRNA-17–92 Regulates IL-10 Production by Regulatory T Cells and Control of Experimental Autoimmune Encephalomyelitis

    PubMed Central

    de Kouchkovsky, Dimitri; Esensten, Jonathan H.; Rosenthal, Wendy L.; Morar, Malika M.; Bluestone, Jeffrey A.; Jeker, Lukas T.

    2014-01-01

    microRNAs (miRNA) are essential for regulatory T cell (Treg) function but little is known about the functional relevance of individual miRNA loci. We identified the miR-17–92 cluster as CD28 costimulation dependent, suggesting that it may be key for Treg development and function. Although overall immune homeostasis was maintained in mice with miR-17–92–deficient Tregs, expression of the miR-17–92 miRNA cluster was critical for Treg accumulation and function during an acute organ-specific autoimmune disease in vivo. Treg-specific loss of miR-17–92 expression resulted in exacerbated experimental autoimmune encephalitis and failure to establish clinical remission. Using peptide-MHC tetramers, we demonstrate that the miR-17–92 cluster was specifically required for the accumulation of activated Ag-specific Treg and for differentiation into IL-10–producing effector Treg. PMID:23858035

  19. B7-H1 Selectively Controls TH17 Differentiation and Central Nervous System Autoimmunity via a Novel Non-PD-1-Mediated Pathway.

    PubMed

    Herold, Martin; Posevitz, Vilmos; Chudyka, Daria; Hucke, Stephanie; Groß, Catharina; Kurth, Frank; Leder, Christoph; Loser, Karin; Kurts, Christian; Knolle, Percy; Klotz, Luisa; Wiendl, Heinz

    2015-10-15

    It is currently acknowledged that TH17 cells are critically involved in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). In this article, we demonstrate that signals delivered by the coinhibitory molecule B7-homologue 1 (B7-H1) via a B7-homologue 1 mouse-IgG2aFc (B7-H1-Ig) fusion protein nearly abolish TH17, but not TH1 and TH2, differentiation via direct interaction with the T cell. These effects were equally pronounced in the absence of programmed death-1 or B7.1 and B7.2 on the T cell side, thus providing clear evidence that B7-H1 modulates T cell differentiation via a novel receptor. Mechanistically, B7-H1 interfered with early TCR-mediated signaling and cytokine-mediated induction of the TH17-determining transcription factors retinoic acid-related orphan receptor γ t and IFN regulator factor-4 in a programmed death-1 and B7-independent fashion. In an animal model of MS, active myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, B7-H1-Ig exhibited a significant and long-lasting effect on disease severity upon administration during the first 5 d of the priming phase, which was accompanied by reduced TH17 responses in the periphery and within the CNS. Importantly, B7-H1-Ig was even capable of interfering with T cell encephalitogenicity when interaction with the T cells occurred after priming using an adoptive transfer experimental autoimmune encephalomyelitis model. In line with this, both naive human CD4(+) T cells and differentiated TH17 effector cells from MS patients were highly sensitive toward B7-H1-Ig-mediated TH17 suppression. Together, we propose the existence of a novel B7-H1-mediated immune-regulatory pathway in T cells, which selectively limits murine and human TH17 cell responses and might be therapeutically exploited to control TH17-mediated autoimmunity. PMID:26378076

  20. Evaluation of locomotor function and microscopic structure of the spinal cord in a mouse model of experimental autoimmune encephalomyelitis following treatment with syngeneic mesenchymal stem cells.

    PubMed

    Mitra, Nilesh Kumar; Bindal, Umesh; Eng Hwa, Wong; Chua, Caroline L L; Tan, Chek Ying

    2015-01-01

    Out of the minor myelin proteins, most significant one is myelin oligodendrocyte glycoprotein (MOG). Mesenchymal stem cells (MSCs) have proven immunoregulatory capacity. The objective of this study was to investigate the effects of syngeneic MSCs on mouse model of experimental autoimmune encephalomyelitis (EAE) through observation of locomotion by footprint analysis, histological analysis of spinal cord and estimation IL-17. C57BL/6 mice (10 weeks, n = 16) were immunized with 300 µg of MOG35-55 and 200 µL of complete Freund's adjuvant (CFA) to produce EAE model. Sham-treated control (n = 8) were injected with CFA. Half of immunized mice were given 100 µL of PBS (n = 8) and next half (n = 8) received 1 × 10(5) MSCs on day 11 through the tail veins. Clinical scoring showed development of EAE (loss of tonicity of tail and weakness of hind limb) on day 10. Following MSC treatment, clinical scores and hindlimb stride length showed significant improvement on day 15 onwards, compared to day 10 (P < 0.05). Under LFB staining, while PBS-treated group of EAE mice showed pale and degenerated axons in anterolateral white column of lumbar spinal cord, MSC-treated group showed numerous normal-looking axons. H&E staining showed normal axons in anterolateral white column and reduction of macrophages in MSC-treated EAE mice group. A lower level of IL-17 was observed in MSC treated EAE mice, compared to PBS-treated EAE mice. Our results suggest that Intravenous MSC has the potential to improve the locomotion and regeneration of axons in spinal cord in MOG-induced EAE model. PMID:26722389

  1. Increased severity of experimental autoimmune encephalomyelitis in rats tolerized as adults but not neonatally to a protective TCR V beta 8 CDR2 idiotope.

    PubMed

    Offner, H; Malotky, M K; Pope, L; Vainiene, M; Celnik, B; Miller, S D; Vandenbark, A A

    1995-01-15

    The ability of synthetic V region peptides to induce regulatory T cells and Abs in rodents and humans provides clear evidence that these idiotopes do not naturally induce tolerance. In this study, we investigated the ability of TCR V beta 8.2 peptides to experimentally induce specific T cell tolerance, as measured by loss of Ag-specific proliferation and delayed-type hypersensitivity responses, and by increased susceptibility to experimental autoimmune encephalomyelitis (EAE). We found that both neonatal and adult exposure to V beta 8.2-39-59 or V beta 8-44-54 peptides could induce efficient T cell tolerance, resulting in a significant inhibition of peptide-specific proliferative responses. In addition, neonatal tolerance resulted in a partial reduction in delayed-type hypersensitivity response and an inability to vaccinate against EAE after adult immunization with the tolerizing peptide. We further evaluated the contribution of naturally induced TCR-specific responses to EAE resistance induced by challenging neonatally or adult tolerized rats with myelin basic protein in adjuvant. The clinical course of EAE was not significantly altered in rats tolerized neonatally to V beta 8.2 peptides, but both the severity and incidence of mortality from EAE was increased in rats tolerized as adults with V beta 8.2 peptides conjugated to syngeneic splenocytes. These results demonstrate that V beta 8.2 peptides are tolerogenic as well as immunogenic. Moreover, the observation of different effects of neonatal vs adult tolerization on the course of EAE suggests either the emergence of additional protective idiotopes after neonatal tolerization and/or mechanistic differences in the two tolerance-inducing protocols. Most importantly, the enhancement of clinical EAE in rats tolerized as adults with V beta 8.2 peptides provides evidence for an innate regulatory role of the CDR2 idiotope in recovery from EAE. PMID:7529291

  2. Age of the donor reduces the ability of human adipose-derived stem cells to alleviate symptoms in the experimental autoimmune encephalomyelitis mouse model.

    PubMed

    Scruggs, Brittni A; Semon, Julie A; Zhang, Xiujuan; Zhang, Shijia; Bowles, Annie C; Pandey, Amitabh C; Imhof, Kathleen M P; Kalueff, Allan V; Gimble, Jeffrey M; Bunnell, Bruce A

    2013-10-01

    There is a significant clinical need for effective therapies for primary progressive multiple sclerosis, which presents later in life (i.e., older than 50 years) and has symptoms that increase in severity without remission. With autologous mesenchymal stem cell therapy now in the early phases of clinical trials for all forms of multiple sclerosis (MS), it is necessary to determine whether autologous stem cells from older donors have therapeutic effectiveness. In this study, the therapeutic efficacy of human adipose-derived mesenchymal stem cells (ASCs) from older donors was directly compared with that of cells from younger donors for disease prevention. Mice were induced with chronic experimental autoimmune encephalomyelitis (EAE) using the myelin oligodendrocyte glycoprotein35-55 peptide and treated before disease onset with ASCs derived from younger (<35 years) or older (>60 years) donors. ASCs from older donors failed to ameliorate the neurodegeneration associated with EAE, and mice treated with older donor cells had increased central nervous system inflammation, demyelination, and splenocyte proliferation in vitro compared with the mice receiving cells from younger donors. Therefore, the results of this study demonstrated that donor age significantly affects the ability of human ASCs to provide neuroprotection, immunomodulation, and/or remyelination in EAE mice. The age-related therapeutic differences corroborate recent findings that biologic aging occurs in stem cells, and the differences are supported by evidence in this study that older ASCs, compared with younger donor cells, secrete less hepatocyte growth factor and other bioactive molecules when stimulated in vitro. These results highlight the need for evaluation of autologous ASCs derived from older patients when used as therapy for MS. PMID:24018793

  3. N-acetylglucosamine inhibits T-helper 1 (Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis.

    PubMed

    Grigorian, Ani; Araujo, Lindsey; Naidu, Nandita N; Place, Dylan J; Choudhury, Biswa; Demetriou, Michael

    2011-11-18

    Current treatments and emerging oral therapies for multiple sclerosis (MS) are limited by effectiveness, cost, and/or toxicity. Genetic and environmental factors that alter the branching of Asn (N)-linked glycans result in T cell hyperactivity, promote spontaneous inflammatory demyelination and neurodegeneration in mice, and converge to regulate the risk of MS. The sugar N-acetylglucosamine (GlcNAc) enhances N-glycan branching and inhibits T cell activity and adoptive transfer experimental autoimmune encephalomyelitis (EAE). Here, we report that oral GlcNAc inhibits T-helper 1 (Th1) and T-helper 17 (Th17) responses and attenuates the clinical severity of myelin oligodendrocyte glycoprotein (MOG)-induced EAE when administered after disease onset. Oral GlcNAc increased expression of branched N-glycans in T cells in vivo as shown by high pH anion exchange chromatography, MALDI-TOF mass spectroscopy and FACS analysis with the plant lectin l-phytohemagglutinin. Initiating oral GlcNAc treatment on the second day of clinical disease inhibited MOG-induced EAE as well as secretion of interferon-γ, tumor necrosis factor-α, interleukin-17, and interleukin-22. In the more severe 2D2 T cell receptor transgenic EAE model, oral GlcNAc initiated after disease onset also inhibits clinical disease, except for those with rapid lethal progression. These data suggest that oral GlcNAc may provide an inexpensive and nontoxic oral therapeutic agent for MS that directly targets an underlying molecular mechanism causal of disease. PMID:21965673

  4. Effects of prophylactic and therapeutic teriflunomide in transcranial magnetic stimulation-induced motor-evoked potentials in the dark agouti rat model of experimental autoimmune encephalomyelitis.

    PubMed

    Iglesias-Bregna, Deborah; Hanak, Susan; Ji, Zhongqi; Petty, Margaret; Liu, Li; Zhang, Donghui; McMonagle-Strucko, Kathleen

    2013-10-01

    Teriflunomide is a once-daily oral immunomodulatory agent recently approved in the United States for the treatment of relapsing multiple sclerosis (RMS). This study investigated neurophysiological deficits in descending spinal cord motor tracts during experimental autoimmune encephalomyelitis (EAE; a model of multiple sclerosis) and the functional effectiveness of prophylactic or therapeutic teriflunomide treatment in preventing the debilitating paralysis observed in this model. Relapsing-remitting EAE was induced in Dark Agouti rats using rat spinal cord homogenate. Animals were treated with oral teriflunomide (10 mg/kg daily) prophylactically, therapeutically, or with vehicle (control). Transcranial magnetic motor-evoked potentials were measured throughout the disease to provide quantitative assessment of the neurophysiological status of descending motor tracts. Axonal damage was quantified histologically by silver staining. Both prophylactic and therapeutic teriflunomide treatment significantly reduced maximum EAE disease scores (P < 0.0001 and P = 0.0001, respectively) compared with vehicle-treated rats. Electrophysiological recordings demonstrated that both teriflunomide treatment regimens prevented a delay in wave-form latency and a decrease in wave-form amplitude compared with that observed in vehicle-treated animals. A significant reduction in axonal loss was observed with both teriflunomide treatment regimens compared with vehicle (P < 0.0001 and P = 0.0014, respectively). The results of this study suggest that therapeutic teriflunomide can prevent the deficits observed in this animal model in descending spinal cord motor tracts. The mechanism behind reduced axonal loss and improved motor function may be primarily the reduced inflammation and consequent demyelination observed in these animals through the known effects of teriflunomide on impairing proliferation of stimulated T cells. These findings may have significant implications for patients with RMS

  5. Increased levels of brain serotonin correlated with MMP-9 activity and IL-4 levels resulted in severe experimental autoimmune encephalomyelitis (EAE) in obese mice.

    PubMed

    Hasan, M; Seo, J-E; Rahaman, K A; Kang, M-J; Jung, B-H; Kwon, O-S

    2016-04-01

    The aim of this study was to investigate the role of monoamine neurotransmitters on the severity of experimental autoimmune encephalomyelitis (EAE) in obese mice. EAE was induced in mice with normal diets (ND-EAE) and obese mice with high-fat diets (HFD-EAE) through the immune response to myelin oligodendrocyte glycoprotein (MOG) (35-55). The levels of dopamine (DA), serotonin (5-HT) and their metabolites in different anatomical brain regions were measured by high-performance liquid chromatography. The plasma and tissue NADPH oxidase and matrix metalloproteinases (MMP)-9 activities were analyzed by fluorescence spectrophotometry. The cumulative disease index and disease peaks were significantly higher in HFD-EAE compared with those in ND-EAE. Significantly higher 5-HT levels and lower 5-HT turnovers 5-hydroxyindole acetic acid ((5-HIAA)/5-HT) were found in the brains of HFD-EAE mice compared with those found in the HFD-CON and ND-EAE mice brains. Moreover, increased DA levels were observed in the caudate nucleus of the HFD-EAE mice compared with the control and ND-EAE mice. The NADPH oxidase and MMP-9 activities in the plasma and tissues were significantly higher in both the ND-EAE and HFD-EAE groups than in their respective controls. The cytokine levels in the plasma, tissues, and cultured splenocytes were found to be significantly altered in EAE mice compared with control mice. Moreover, HFD-EAE mice exhibited significantly higher MMP-9 activity and lower IL-4 levels than ND-EAE mice and were significantly correlated with brain 5-HT levels. In conclusion, the increased 5-HT levels in the brain significantly correlated with MMP-9 activity and IL-4 levels play an important role in the exacerbation of disease severity in HFD-EAE mice. PMID:26820599

  6. Evaluation of locomotor function and microscopic structure of the spinal cord in a mouse model of experimental autoimmune encephalomyelitis following treatment with syngeneic mesenchymal stem cells

    PubMed Central

    Mitra, Nilesh Kumar; Bindal, Umesh; Eng Hwa, Wong; Chua, Caroline LL; Tan, Chek Ying

    2015-01-01

    Out of the minor myelin proteins, most significant one is myelin oligodendrocyte glycoprotein (MOG). Mesenchymal stem cells (MSCs) have proven immunoregulatory capacity. The objective of this study was to investigate the effects of syngeneic MSCs on mouse model of experimental autoimmune encephalomyelitis (EAE) through observation of locomotion by footprint analysis, histological analysis of spinal cord and estimation IL-17. C57BL/6 mice (10 weeks, n = 16) were immunized with 300 µg of MOG35-55 and 200 µL of complete Freund’s adjuvant (CFA) to produce EAE model. Sham-treated control (n = 8) were injected with CFA. Half of immunized mice were given 100 µL of PBS (n = 8) and next half (n = 8) received 1 × 105 MSCs on day 11 through the tail veins. Clinical scoring showed development of EAE (loss of tonicity of tail and weakness of hind limb) on day 10. Following MSC treatment, clinical scores and hindlimb stride length showed significant improvement on day 15 onwards, compared to day 10 (P < 0.05). Under LFB staining, while PBS-treated group of EAE mice showed pale and degenerated axons in anterolateral white column of lumbar spinal cord, MSC-treated group showed numerous normal-looking axons. H&E staining showed normal axons in anterolateral white column and reduction of macrophages in MSC-treated EAE mice group. A lower level of IL-17 was observed in MSC treated EAE mice, compared to PBS-treated EAE mice. Our results suggest that Intravenous MSC has the potential to improve the locomotion and regeneration of axons in spinal cord in MOG-induced EAE model. PMID:26722389

  7. The Synergistic Local Immunosuppressive Effects of Neural Stem Cells Expressing Indoleamine 2,3-Dioxygenase (IDO) in an Experimental Autoimmune Encephalomyelitis (EAE) Animal Model

    PubMed Central

    Lee, Kee-Hang; Kim, Sung Su; Song, Hye Jin; Pyeon, Heejang; Nam, Hyun; Kang, Kyeongjin; Joo, Kyeung Min

    2015-01-01

    Neurodegenerative diseases provoke robust immunological reactions in the central nervous system (CNS), which further deteriorate the neural tissue damage. We hypothesized that the expression levels of indoleamine 2,3-dioxygenase (IDO), an enzyme that has potent immune suppressive activities, in neural stem cells (NSCs) would have synergistic therapeutic effects against neurodegenerative diseases, since NSCs themselves have low IDO expression. In this study, the synergistic immune suppressive effects of rat fetal NSCs expressing IDO (rfNSCs-IDO) were validated by mixed leukocyte reaction (MLR) in vitro and an experimental autoimmune encephalomyelitis (EAE) animal model in vivo. rfNSCs-IDO showed significantly more suppressive effects on T cell proliferation in the MLR compared to control rfNSCs (rfNSCs-Cont). Importantly, IDO inhibition using 1-methyl-DL-tryptophan (1-MT), an IDO inhibitor, reversed the synergistic effects, confirming IDO-specific effects in rfNSCs-IDO. In the EAE animal model, systemic rfNSCs-IDO injections resulted in significant local immune suppression in the cervical lymph nodes and CNS, evidenced by a reduction in the number of activated T lymphocytes and an increase in regulatory T cell numbers, which induced significantly fewer clinical symptoms and faster recovery. In contrast, rfNSCs-Cont failed to reduce symptoms in the EAE animal models, although they showed local immune suppression, which was significantly less than that in rfNSCs-IDO. Taken together, IDO expression in NSCs synergistically potentiates the immune suppression activities of NSCs and could be applicable for the development of therapeutic modalities against various neurodegenerative diseases. PMID:26636969

  8. Acute treatment with valproic acid and l-thyroxine ameliorates clinical signs of experimental autoimmune encephalomyelitis and prevents brain pathology in DA rats.

    PubMed

    Castelo-Branco, Gonçalo; Stridh, Pernilla; Guerreiro-Cacais, André Ortlieb; Adzemovic, Milena Z; Falcão, Ana Mendanha; Marta, Monica; Berglund, Rasmus; Gillett, Alan; Hamza, Kedir Hussen; Lassmann, Hans; Hermanson, Ola; Jagodic, Maja

    2014-11-01

    Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the central nervous system (CNS) in young adults. Chronic treatments with histone deacetylase inhibitors (HDACis) have been reported to ameliorate experimental autoimmune encephalomyelitis (EAE), a rodent model of MS, by targeting immune responses. We have recently shown that the HDAC inhibition/knockdown in the presence of thyroid hormone (T3) can also promote oligodendrocyte (OL) differentiation and expression of myelin genes in neural stem cells (NSCs) and oligodendrocyte precursors (OPCs). In this study, we found that treatment with an HDACi, valproic acid (VPA), and T3, alone or in combination, directly affects encephalitogenic CD4+ T cells. VPA, but not T3, compromised their proliferation, while both molecules reduced the frequency of IL-17-producing cells. Transfer of T3, VPA and VPA/T3 treated encephalitogenic CD4+ T cells into naïve rats induced less severe EAE, indicating that the effects of these molecules are persistent and do not require their maintenance after the initial stimuli. Thus, we investigated the effect of acute treatment with VPA and l-thyroxine (T4), a precursor of T3, on myelin oligodendrocyte glycoprotein-induced EAE in Dark Agouti rats, a close mimic of MS. We found that a brief treatment after disease onset led to sustained amelioration of EAE and prevention of inflammatory demyelination in the CNS accompanied with a higher expression of myelin-related genes in the brain. Furthermore, the treatment modulated immune responses, reduced the number of CD4+ T cells and affected the Th1 differentiation program in the brain. Our data indicate that an acute treatment with VPA and T4 after the onset of EAE can produce persistent clinically relevant therapeutic effects by limiting the pathogenic immune reactions while promoting myelin gene expression. PMID:25149263

  9. Immunomodulatory Effect of Combination Therapy with Lovastatin and 5-Aminoimidazole-4-Carboxamide-1-β-d-Ribofuranoside Alleviates Neurodegeneration in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Paintlia, Ajaib S.; Paintlia, Manjeet K.; Singh, Inderjit; Singh, Avtar K.

    2006-01-01

    Combination therapy with multiple sclerosis (MS) therapeutics is gaining momentum over monotherapy for improving MS. Lovastatin, an HMG-CoA reductase inhibitor (statin), was immunomodulatory in an experimental autoimmune encephalomyelitis (EAE) model of MS. Lovastatin biases the immune response from Th1 to a protective Th2 response in EAE by a different mechanism than 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, an immunomodulating agent that activates AMP-activated protein kinase. Here we tested these agents in combination in an EAE model of MS. Suboptimal doses of these drugs in combination were additive in efficacy against the induction of EAE; clinical symptoms were delayed and severity and duration of disease was reduced. In the central nervous system, the cellular infiltration and proinflammatory immune response was decreased while the anti-inflammatory immune response was increased. Combination treatment biased the class of elicited myelin basic protein antibodies from IgG2a to IgG1 and IgG2b, suggesting a shift from Th1 to Th2 response. In addition, combination therapy lessened inflammation-associated neurodegeneration in the central nervous system of EAE animals. These effects were absent in EAE animals treated with either drug alone at the same dose. Thus, our data suggest that agents with different mechanisms of action such as lovastatin and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside, when used in combination, could improve therapy for central nervous system demyelinating diseases and provide a rationale for testing them in MS patients. PMID:16936274

  10. In Vivo Quantification of Inflammation in Experimental Autoimmune Encephalomyelitis Rats Using Fluorine-19 Magnetic Resonance Imaging Reveals Immune Cell Recruitment outside the Nervous System

    PubMed Central

    Zhong, Jia; Narsinh, Kazim; Morel, Penelope A.; Xu, Hongyan; Ahrens, Eric T.

    2015-01-01

    Progress in identifying new therapies for multiple sclerosis (MS) can be accelerated by using imaging biomarkers of disease progression or abatement in model systems. In this study, we evaluate the ability to noninvasively image and quantitate disease pathology using emerging “hot-spot” 19F MRI methods in an experimental autoimmune encephalomyelitis (EAE) rat, a model of MS. Rats with clinical symptoms of EAE were compared to control rats without EAE, as well as to EAE rats that received daily prophylactic treatments with cyclophosphamide. Perfluorocarbon (PFC) nanoemulsion was injected intravenously, which labels predominately monocytes and macrophages in situ. Analysis of the spin-density weighted 19F MRI data enabled quantification of the apparent macrophage burden in the central nervous system and other tissues. The in vivo MRI results were confirmed by extremely high-resolution 19F/1H magnetic resonance microscopy in excised tissue samples and histopathologic analyses. Additionally, 19F nuclear magnetic resonance spectroscopy of intact tissue samples was used to assay the PFC biodistribution in EAE and control rats. In vivo hot-spot 19F signals were detected predominantly in the EAE spinal cord, consistent with the presence of inflammatory infiltrates. Surprising, prominent 19F hot-spots were observed in bone-marrow cavities adjacent to spinal cord lesions; these were not observed in control animals. Quantitative evaluation of cohorts receiving cyclophosphamide treatment displayed significant reduction in 19F signal within the spinal cord and bone marrow of EAE rats. Overall, 19F MRI can be used to quantitatively monitored EAE disease burden, discover unexpected sites of inflammatory activity, and may serve as a sensitive biomarker for the discovery and preclinical assessment of novel MS therapeutic interventions. PMID:26485716

  11. Experimental autoimmune encephalomyelitis: Association with mutual regulation of RelA (p65)/NF-{kappa}B and phospho-I{kappa}B in the CNS

    SciTech Connect

    Hwang, Insun; Ha, Danbee; Ahn, Ginnae; Park, Eunjin; Joo, Haejin; Jee, Youngheun

    2011-07-29

    Highlights: {yields} The phosphorylation of RelA's inhibitory factor I{kappa}B and subsequent RelA activation are important to the disease process of EAE. {yields} The expression of RelA and phospho-I{kappa}B was markedly increased in the initiation and during the progression of EAE. {yields} TPCK-treated EAE mice showed lower incidence of EAE with less severe symptoms and quicker recovery than vehicle-treated EAE mice. {yields} TPCK significantly suppressed the MOG{sub 35-55}-specific T cell proliferation by reducing the production of IFN-{gamma} and IL-17 cytokines in EAE. {yields} The NF-{kappa}B cascade's activity increased gradually with the development of symptoms and brain pathology of EAE. -- Abstract: Recently emerging evidence that the NF-{kappa}B family plays an important role in autoimmune disease has produced very broad and sometimes paradoxical conclusions. In the present study, we elucidated that the activation of RelA (p65) of NF-{kappa}B and I{kappa}B dissociation assumes a distinct role in experimental autoimmune encephalomyelitis (EAE) progression by altering I{kappa}B phosphorylation and/or degradation. In the present study of factors that govern EAE, the presence and immunoreactivity of nuclear RelA and phospho-I{kappa}B were recorded at the initiation and peak stage, and degradation of I{kappa}B{alpha} progressed rapidly at an early stage then stabilized during recovery. The immunoreactivity to RelA and phospho-I{kappa}B occurred mainly in inflammatory cells and microglial cells but only slightly in astrocytes. Subsequently, the blockade of I{kappa}B dissociation from NF-{kappa}B reduced the severity of disease by decreasing antigen-specific T cell response and production of IL-17 in EAE. Thus, blocking the dissociation of I{kappa}B from NF-{kappa}B can be utilized as a strategy to inhibit the NF-{kappa}B signal pathway thereby to reduce the initiation, progression, and severity of EAE.

  12. Autoimmune movement disorders.

    PubMed

    Mckeon, Andrew; Vincent, Angela

    2016-01-01

    Autoimmune movement disorders encapsulate a large and diverse group of neurologic disorders occurring either in isolation or accompanying more diffuse autoimmune encephalitic illnesses. The full range of movement phenomena has been described and, as they often occur in adults, many of the presentations can mimic neurodegenerative disorders, such as Huntington disease. Disorders may be ataxic, hypokinetic (parkinsonism), or hyperkinetic (myoclonus, chorea, tics, and other dyskinetic disorders). The autoantibody targets are diverse and include neuronal surface proteins such as leucine-rich, glioma-inactivated 1 (LGI1) and glycine receptors, as well as antibodies (such as intracellular antigens) that are markers of a central nervous system process mediated by CD8+ cytotoxic T cells. However, there are two conditions, stiff-person syndrome (also known as stiff-man syndrome) and progressive encephalomyelitis with rigidity and myoclonus (PERM), that are always autoimmune movement disorders. In some instances (such as Purkinje cell cytoplasmic antibody-1 (PCA-1) autoimmunity), antibodies detected in serum and cerebrospinal fluid can be indicative of a paraneoplastic cause, and may direct the cancer search. In other instances (such as 65kDa isoform of glutamic acid decarboxylase (GAD65) autoimmunity), a paraneoplastic cause is very unlikely, and early treatment with immunotherapy may promote improvement or recovery. Here we describe the different types of movement disorder and the clinical features and antibodies associated with them, and discuss treatment. PMID:27112684

  13. Therapeutic Potential of IL-17-Mediated Signaling Pathway in Autoimmune Liver Diseases

    PubMed Central

    Zhang, Haiyan; Bernuzzi, Francesca; Lleo, Ana; Ma, Xiong; Invernizzi, Pietro

    2015-01-01

    Emerging evidence reveals that various cytokines and tissue microenvironments contribute to liver inflammation and autoimmunity, and IL-17 family is one of highlights acknowledged. Although the implication of IL-17 family in most common autoimmune diseases (such as psoriasis, inflammatory bowel disease, and rheumatoid arthritis) has been extensively characterized, the role of this critical family in pathophysiology of autoimmune liver diseases (AILD) still needs to be clarified. In the review, we look into the intriguing biology of IL-17 family and further dissect on the intricate role of IL-17-mediated pathway in AILD. Considering encouraging data from preclinical and clinical trials, IL-17 targeted therapy has shown promises in several certain autoimmune conditions. However, blocking IL-17-mediated pathway is just beginning, and more fully investigation and reflection are required. Taking together, targeting IL-17-mediated responses may open up new areas of potential clinical treatment for AILD. PMID:26146463

  14. The immunomodulatory effect of laquinimod in CNS autoimmunity is mediated by the aryl hydrocarbon receptor.

    PubMed

    Berg, Johannes; Mahmoudjanlou, Yasaman; Duscha, Alexander; Massa, Megan G; Thöne, Jan; Esser, Charlotte; Gold, Ralf; Haghikia, Aiden

    2016-09-15

    Though several functional properties of laquinimod have been identified, our understanding of the underlying mechanisms is still incomplete. Since the compound elicits similar immunomodulatory effects to ligands of the aryl hydrocarbon receptor (AhR), we compared the efficacy of laquinimod in experimental autoimmune encephalomyelitis (EAE)-afflicted wild-type and AhR-deficient mice. Laquinimod failed to ameliorate clinical symptoms and leukocyte infiltration in AhR-deficient mice; however, treatment exerted neuroprotection by elevation of brain-derived neurotrophic factor (BDNF) independent of genetic profile. Thus, our data identify the AhR pathway in these mutant mice as crucial for the immunomodulatory, but not neuroprotective, efficacy of laquinimod in EAE. PMID:27609269

  15. The role of endogenous steroid hormones in the generation of T helper 2‐mediated autoimmunity in mercuric chloride‐treated Brown–Norway rats

    PubMed Central

    Macphee, I A M; Turner, D R; Oliveira, D B G

    2000-01-01

    Injection of Brown–Norway rats with mercuric chloride (HgCl2) activates a T helper type 2 (Th2) autoimmune response, with production of a number of autoantibodies and vasculitis primarily affecting the gut. Glucocorticoids have been shown to suppress Th1 and to promote the development of Th2‐type responses. Conversely dehydroepiandrosterone (DHEA) promotes Th1 responses with suppression of Th2 responses. This study set out to define the role of these hormones in this animal model. Rats were adrenalectomized (Adx) with no steroid replacement (n = 11), Adx with basal steroid replacement given by a 25 mg corticosterone pellet inserted subcutaneously (n = 13), or sham‐Adx (n = 14) prior to administration of HgCl2. In both groups of Adx animals there was a delay in the production of immunoglobulin E (IgE) and serum concentrations on day 9 were marginally lower (P = 0·035, repeated measures anova). All of the animals Adx with no steroid replacement and two Adx animals with steroid replacement died between 10 and 14 days after HgCl2 challenge. There was no difference in the severity of caecal vasculitis between the groups. A significant increase in adrenal size was noted following administration of HgCl2. Administration of subcutaneous DHEA implants (100 mg and 200 mg) had no significant effect on IgE concentrations or severity of vasculitis. These observations do not support the hypothesis that corticosterone and DHEA play a central role in setting the Th1/Th2 balance in this experimental Th2‐mediated autoimmune disease; in contrast with the Th1‐mediated autoimmune disease experimental allergic encephalomyelitis where corticosterone plays a key role in immunoregulation. PMID:10651952

  16. Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation.

    PubMed

    Kumar, Pawan; Monin, Leticia; Castillo, Patricia; Elsegeiny, Waleed; Horne, William; Eddens, Taylor; Vikram, Amit; Good, Misty; Schoenborn, Alexi A; Bibby, Kyle; Montelaro, Ronald C; Metzger, Dennis W; Gulati, Ajay S; Kolls, Jay K

    2016-03-15

    Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr, and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R-signaling-deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 cell development, and regulated the susceptibility to autoimmune inflammation. PMID:26982366

  17. [Immunopathogenesis of cytotoxic antibody-mediated autoimmune diseases].

    PubMed

    Morenz, J

    1980-01-15

    This review deals with autoantibodies, autoantigens, immunopathogenetic mechanisms and their consequences in autoimmune diseases caused by cytotoxic antibodies. Findings demonstrating the pathogenicity and pathogenic potency of antibodies, the involvement of complement and polymorphonuclears, and the chain of events leading from the start of immune reactions to clinical signs and symptoms are stressed. It is shown that the immunopathogenesis of this group of diseases can be deduced from only a few related immune mechanisms while the heterogeneity of clinical syndromes can be explained primarily by the function and localization of autoantigens. Questions still open and findings not yet understood are pointed out. From the progress of immunology in recent years further diseases can be expected to be recognized as type II autoimmune diseases in the years ahead notably by the combined application of immunological and physiological or pharmacological methods. PMID:6996350

  18. Desferrioxamine modulates chemically induced T helper 2-mediated autoimmunity in the rat

    PubMed Central

    WU, Z; HOLWILL, S D J; OLIVEIRA, D B G

    2004-01-01

    A rise in interleukin (IL) 4-dependent immunoglobulin E (IgE) is a hallmark of the mercuric chloride (HgCl2)-induced Th2-mediated autoimmune syndrome in the Brown Norway (BN) rat, and one of the mediators in allergic asthma in human. Oxidative stress, a potential factor related to the pathogenesis of allergy and asthma, has been shown to up-regulate IL-4 in mast cells and predispose to degranulation in vitro. However, it remains unknown whether oxidative/antioxidative imbalance plays a role in this Th2-driven model of autoimmunity in the rat. Here we show that administration of the non-sulphydryl-containing antioxidant desferrioxamine i.p. and s.c. to BN rats reduces HgCl2-enhanced IL-4 gene expression and inhibits HgCl2-induced Th2-mediated autoimmunity. Desferrioxamine treatment suppresses significantly IgE production and lymphoproliferation, and reduces tissue injury in the form of caecal vasculitis in the HgCl2-induced autoimmune syndrome. These results support a role for oxidative stress in the pathogenesis of the HgCl2-induced Th2-dominated autoimmune syndrome. This finding might have implications for understanding the mechanisms involved in Th2 cell responses as seen in allergy and asthma and thereby aid the development of new therapeutic strategies for these diseases. PMID:14738445

  19. Cutting Edge: CD99 Is a Novel Therapeutic Target for Control of T Cell-Mediated Central Nervous System Autoimmune Disease.

    PubMed

    Winger, Ryan C; Harp, Christopher T; Chiang, Ming-Yi; Sullivan, David P; Watson, Richard L; Weber, Evan W; Podojil, Joseph R; Miller, Stephen D; Muller, William A

    2016-02-15

    Leukocyte trafficking into the CNS is a prominent feature driving the immunopathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Blocking the recruitment of inflammatory leukocytes into the CNS represents an exploitable therapeutic target; however, the adhesion molecules that specifically regulate the step of leukocyte diapedesis into the CNS remain poorly understood. We report that CD99 is critical for lymphocyte transmigration without affecting adhesion in a human blood-brain barrier model. CD99 blockade in vivo ameliorated experimental autoimmune encephalomyelitis and decreased the accumulation of CNS inflammatory infiltrates, including dendritic cells, B cells, and CD4(+) and CD8(+) T cells. Anti-CD99 therapy was effective when administered after the onset of disease symptoms and blocked relapse when administered therapeutically after disease symptoms had recurred. These findings underscore an important role for CD99 in the pathogenesis of CNS autoimmunity and suggest that it may serve as a novel therapeutic target for controlling neuroinflammation. PMID:26773145

  20. Diagnosis and treatment of cold agglutinin mediated autoimmune hemolytic anemia.

    PubMed

    Berentsen, Sigbjørn; Tjønnfjord, Geir E

    2012-05-01

    Exact diagnosis of the subtype has essential therapeutic consequences in autoimmune hemolytic anemia. Cold-antibody types include primary chronic cold agglutinin disease (CAD) and rare cases of cold agglutinin syndrome (CAS) secondary to cancer or acute infection. Primary CAD is a clonal lymphoproliferative disorder. Not all patients require pharmacological therapy, but treatment seems indicated more often than previously thought. Corticosteroids should not be used to treat primary CAD. Half of the patients respond to rituximab monotherapy; median response duration is 11 months. The most efficient treatment to date is fludarabine and rituximab in combination, resulting in responses in 75%, complete responses in 20% and median response duration of more than 66 months. Toxicity may be a concern, and an individualized approach is discussed. Erythrocyte transfusions can be given provided specific precautions are undertaken. No evidence-based therapy exists in secondary CAS, but optimal treatment of the underlying disorder is essential when feasible. PMID:22330255

  1. B cell autophagy mediates TLR7-dependent autoimmunity and inflammation

    PubMed Central

    Weindel, Chi G; Richey, Lauren J; Bolland, Silvia; Mehta, Abhiruchi J; Kearney, John F; Huber, Brigitte T

    2015-01-01

    Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease, defined by loss of B cell self-tolerance that results in production of antinuclear antibodies (ANA) and chronic inflammation. While the initiating events in lupus development are not well defined, overexpression of the RNA-recognizing toll-like receptor (TLR)7 has been linked to SLE in humans and mice. We postulated that autophagy plays an essential role in TLR7 activation of B cells for the induction of SLE by delivering RNA ligands to the endosomes, where this innate immune receptor resides. To test this hypothesis, we compared SLE development in Tlr7 transgenic (Tg) mice with or without B cell-specific ablation of autophagy (Cd19-Cre Atg5f/f). We observed that in the absence of B cell autophagy the 2 hallmarks of SLE, ANA and inflammation, were eliminated, thus curing these mice of lupus. This was also evident in the significantly extended survival of the autophagy-deficient mice compared to Tlr7.1 Tg mice. Furthermore, glomerulonephritis was ameliorated, and the serum levels of inflammatory cytokines in the knockout (KO) mice were indistinguishable from those of control mice. These data provide direct evidence that B cells require TLR7-dependent priming through an autophagy-dependent mechanism before autoimmunity is induced, thereafter involving many cell types. Surprisingly, hyper-IgM production persisted in Tlr7.1 Tg mice in the absence of autophagy, likely involving a different activation pathway than the production of autoantibodies. Furthermore, these mice still presented with anemia, but responded with a striking increase in extramedullary hematopoiesis (EMH), possibly due to the absence of pro-inflammatory cytokines. PMID:26120731

  2. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    SciTech Connect

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  3. Vaccination with BV8S2 protein amplifies TCR-specific regulation and protection against experimental autoimmune encephalomyelitis in TCR BV8S2 transgenic mice.

    PubMed

    Offner, H; Adlard, K; Bebo, B F; Schuster, J; Burrows, G G; Buenafe, A C; Vandenbark, A A

    1998-09-01

    TCR determinants overexpressed by autopathogenic Th1 cells can naturally induce a second set of TCR-specific regulatory T cells. We addressed the question of whether immune regulation could be induced naturally in a genetically restricted model in which a major portion of TCR-specific regulatory T cells expressed the same target TCR BV8S2 chain as the pathogenic T cells specific for myelin basic protein (MBP). We found vigorous T cell responses to BV8S2 determinants in naive mice that could be further potentiated by vaccination with heterologous BV8S2 proteins, resulting in the selective inhibition of MBP-specific Th1 cells and protection against experimental encephalomyelitis. Moreover, coculture with BV8S2-specific T cells or their supernatants reduced proliferation, IFN-gamma secretion, and encephalitogenic activity of MBP-specific T cells. These results suggest that immune regulation occurs through a nondeletional cytokine-driven suppressive mechanism. PMID:9725209

  4. Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis

    PubMed Central

    2012-01-01

    Background DNA vaccines represent promising therapeutic strategies in autoimmune disorders such as multiple sclerosis (MS). However, the precise mechanisms by which DNA vaccines induce immune regulation remain largely unknown. Here, we aimed to expand previous knowledge existing on the mechanisms of action of DNA vaccines in the animal model of MS, experimental autoimmune encephalomyelitis (EAE), by treating EAE mice with a DNA vaccine encoding the myelin oligodendrocyte glycoprotein (MOG), and exploring the therapeutic effects on the disease-induced inflammatory and neurodegenerative changes. Methods EAE was induced in C57BL6/J mice by immunization with MOG35-55 peptide. Mice were intramuscularly treated with a MOG-DNA vaccine or vehicle in prophylactic and therapeutic approaches. Histological studies were performed in central nervous system (CNS) tissue. Cytokine production and regulatory T cell (Treg) quantification were achieved by flow cytometry. Gene expression patterns were determined using microarrays, and the main findings were validated by real-time PCR. Results MOG-DNA treatment reduced the clinical and histopathological signs of EAE when administered in both prophylactic and therapeutic settings. Suppression of clinical EAE was associated with dampening of antigen (Ag)-specific proinflammatory Th1 and Th17 immune responses and, interestingly, expansion of Treg in the periphery and upregulation in the CNS of genes encoding neurotrophic factors and proteins involved in remyelination. Conclusions These results suggest for the first time that the beneficial effects of DNA vaccines in EAE are not limited to anti-inflammatory mechanisms, and DNA vaccines may also exert positive effects through hitherto unknown neuroprotective mechanisms. PMID:22727044

  5. Protection from experimental autoimmune encephalomyelitis (EAE): non-depleting anti-CD4 mAb treatment induces peripheral T-cell tolerance to MBP in PL/J mice.

    PubMed

    Biasi, G; Facchinetti, A; Monastra, G; Mezzalira, S; Sivieri, S; Tavolato, B; Gallo, P

    1997-03-01

    Following pre-treatment with a non-depleting anti-CD4 mAb (H129.19) that produces long-lasting receptor saturation, PL/J mice were fully protected from experimental auto-immune encephalomyelitis (EAE) induced by injection of myelin basic protein (MBP). These mice did not develop EAE following MBP re-challenge 5-10 weeks later when the CD4+ cells were no longer coated by the mAb and their lymph node cells were specifically unresponsive to MBP stimulation in vitro. Moreover, superantigen staphylococcal enterotoxin B (SEB) inoculation, which re-induces EAE in MBP immunized mice, failed to activate encephalitogenic T-cells in anti-CD4 + MBP treated mice, even after MBP re-challenge, indicating that tolerance in the peripheral T-cell compartment was achieved. However, MBP re-challenge 16 weeks later, but not SEB, produced an acute episode of EAE in these mice, while it failed to induce disease in a parallel group of adult thymectomized mice. These results indicate that no memory of the first priming exists at this time and that new MBP-specific T-cell precursors are peripheralized and produce EAE after MBP recognition. PMID:9058767

  6. Two-domain MHC class II molecules form stable complexes with myelin basic protein 69-89 peptide that detect and inhibit rat encephalitogenic T cells and treat experimental autoimmune encephalomyelitis.

    PubMed

    Burrows, G G; Bebo, B F; Adlard, K L; Vandenbark, A A; Offner, H

    1998-12-01

    We designed and expressed in bacteria a single-chain two-domain MHC class II molecule capable of binding and forming stable complexes with antigenic peptide. The prototype "beta1alpha1" molecule included the beta1 domain of the rat RT1.B class II molecule covalently linked to the amino terminus of the alpha1 domain. In association with the encephalitogenic myelin basic protein (MBP) 69-89 peptide recognized by Lewis rat T cells, the beta1alpha1/MBP-69-89 complex specifically labeled and inhibited activation of MBP-69-89 reactive T cells in an IL-2-reversible manner. Moreover, this complex both suppressed and treated clinical signs of experimental autoimmune encephalomyelitis and inhibited delayed-type hypersensitivity reactions and lymphocyte proliferation in an Ag-specific manner. These data indicate that the beta1alpha1/MBP-69-89 complex functions as a simplified natural TCR ligand with potent inhibitory activity that does not require additional signaling from the beta2 and alpha2 domains. This new class of small soluble polypeptide may provide a template for designing human homologues useful in detecting and regulating potentially autopathogenic T cells. PMID:9834080

  7. Exploring mechanisms of IgE-mediated autoimmunity through the lens of bullous pemphigoid.

    PubMed

    Messingham, Kelly N; Randall, Grant; Fairley, Janet

    2016-04-01

    Bullous pemphigoid (BP) is the most common autoimmune blistering disease characterized by pathogenic autoantibodies targeting collagen XVII (col XVII), a hemidesmosomal adhesion molecule. Early studies utilizing IgG were critical for establishing col XVII-specific antibodies as primary mediators of blister formation; however, these studies lacked key features of the disease, including urticarial erythema and eosinophilic infiltration, which are often associated with IgE. Although it was recognized that BP patients often had elevated circulating IgE, investigations into the pathogenicity of these antibodies was delayed until discovery of col XVII-specific IgE in BP sera. Since then, a variety of in-vivo and in-vitro studies have provided clear evidence that IgE autoantibodies are a key component of BP. Furthermore, studies utilizing IgE receptor blockade in BP patients were the first to confirm a pathogenic role of IgE autoantibodies in human autoimmunity. In this review we will utilize BP as a prototypical autoimmune disease to better understand how IgE autoantibodies participate in human autoimmunity. PMID:26959553

  8. Evaluation of the Effects of Sativex (THC BDS: CBD BDS) on Inhibition of Spasticity in a Chronic Relapsing Experimental Allergic Autoimmune Encephalomyelitis: A Model of Multiple Sclerosis.

    PubMed

    Hilliard, A; Stott, C; Wright, S; Guy, G; Pryce, G; Al-Izki, S; Bolton, C; Giovannoni, G

    2012-01-01

    This study investigated the antispasticity potential of Sativex in mice. Chronic relapsing experimental allergic encephalomyelitis was induced in adult ABH mice resulting in hind limb spasticity development. Vehicle, Sativex, and baclofen (as a positive control) were injected intravenously and the "stiffness" of limbs assessed by the resistance force against hind limb flexion. Vehicle alone caused no significant change in spasticity. Baclofen (5 mg/kg) induced approximately a 40% peak reduction in spasticity. Sativex dose dependently reduced spasticity; 5 mg/kg THC + 5 mg/kg CBD induced approximately a 20% peak reduction; 10 mg/kg THC + 10 mg/kg CBD produced approximately a 40% peak reduction in spasticity. Sativex has the potential to reduce spasticity in an experimental mouse model of multiple sclerosis (MS). Baclofen reduced spasticity and served as a positive control. Sativex (10 mg/kg) was just as effective as baclofen, providing supportive evidence for Sativex use in the treatment of spasticity in MS. PMID:22928118

  9. Utility of Plasmapheresis in Autoimmune-Mediated Encephalopathy in Children: Potentials and Challenges

    PubMed Central

    Khair, Abdulhafeez M.

    2016-01-01

    Autoimmune-mediated encephalopathy in children continues to constitute a diagnostic and therapeutic challenge in pediatric population. Utility and usefulness in this clinical setting of plasmapheresis have seldom been evaluated in current pediatric literature. Children with immune-mediated encephalopathies represent a uniquely different group among patients presenting to intensive care units or neurological services worldwide. Arriving at a final diagnosis is not an easy task for treating physicians. It is very crucial to consider early use of first-line immunotherapy modalities, save those children's lives and improve outcomes. Plasmapheresis is an emerging, potentially beneficial first-line therapy in such patients. However, indications, value, logistics, and procedural difficulties are often faced. This study is mainly meant to review the current knowledge in regard to the clinical value of plasmapheresis in children with immune-mediated encephalopathy. PMID:27239341

  10. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2.

    PubMed

    Yeste, Ada; Takenaka, Maisa C; Mascanfroni, Ivan D; Nadeau, Meghan; Kenison, Jessica E; Patel, Bonny; Tukpah, Ann-Marcia; Babon, Jenny Aurielle B; DeNicola, Megan; Kent, Sally C; Pozo, David; Quintana, Francisco J

    2016-01-01

    Type 1 diabetes (T1D) is a T cell-dependent autoimmune disease that is characterized by the destruction of insulin-producing β cells in the pancreas. The administration to patients of ex vivo-differentiated FoxP3(+) regulatory T (Treg) cells or tolerogenic dendritic cells (DCs) that promote Treg cell differentiation is considered a potential therapy for T1D; however, cell-based therapies cannot be easily translated into clinical practice. We engineered nanoparticles (NPs) to deliver both a tolerogenic molecule, the aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), and the β cell antigen proinsulin (NPITE+Ins) to induce a tolerogenic phenotype in DCs and promote Treg cell generation in vivo. NPITE+Ins administration to 8-week-old nonobese diabetic mice suppressed autoimmune diabetes. NPITE+Ins induced a tolerogenic phenotype in DCs, which was characterized by a decreased ability to activate inflammatory effector T cells and was concomitant with the increased differentiation of FoxP3(+) Treg cells. The induction of a tolerogenic phenotype in DCs by NPs was mediated by the AhR-dependent induction of Socs2, which resulted in inhibition of nuclear factor κB activation and proinflammatory cytokine production (properties of tolerogenic DCs). Together, these data suggest that NPs constitute a potential tool to reestablish tolerance in T1D and potentially other autoimmune disorders. PMID:27330188

  11. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease.

    PubMed

    Penberthy, W Todd

    2007-04-01

    Cells at the maternal-fetal interface express indoleamine 2,3 dioxygenase (IDO) to consume all local tryptophan for the express purpose of starving adjacent maternal T cells of this most limiting and essential amino acid. This stops local T cell proliferation to ultimately result in the most dramatic example of immune tolerance, acceptance of the fetus. By contrast, inhibition of IDO using 1-methyl-tryptophan causes a sudden catastrophic rejection of the mammalian fetus. Immunomodulatory factors including IFNgamma, TNFalpha, IL-1, and LPS use IDO induction in responsive antigen presenting cells (APCs) also to transmit tolerogenic signals to T cells. Thus it makes sense to consider IDO induction towards tolerance for autoimmune diseases in general. Approaches to cell specific therapeutic IDO induction with NAD precursor supplementation to prevent the collateral non-T cell pathogenesis due to chronic TNFalpha-IDO activated tryptophan depletion in autoimmune diseases are reviewed. Tryptophan is an essential amino acid most immediately because it is the only precursor for the endogenous biosynthesis of nicotinamide adenine dinucleotide (NAD). Both autoimmune disease and the NAD deficiency disease pellagra occur in women at greater than twice the frequency of occurrence in men. The importance of IDO dysregulation manifest as autoimmune pellagric dementia is genetically illustrated for Nasu-Hakola Disease (or PLOSL), which is caused by a mutation in the IDO antagonizing genes TYROBP/DAP12 or TREM2. Loss of function leads to psychotic symptoms rapidly progressing to presenile dementia likely due to unchecked increases in microglial IDO expression, which depletes neurons of tryptophan causing neurodegeneration. Administration of NAD precursors rescued entire mental hospitals of dementia patients literally overnight in the 1930's and NAD precursors should help Nasu-Hakola patients as well. NAD depletion mediated by peroxynitrate PARP1 activation is one of the few

  12. A promising therapeutic approach for multiple sclerosis: recombinant T-cell receptor ligands modulate experimental autoimmune encephalomyelitis by reducing interleukin-17 production and inhibiting migration of encephalitogenic cells into the CNS.

    PubMed

    Sinha, Sushmita; Subramanian, Sandhya; Proctor, Thomas M; Kaler, Laurie J; Grafe, Marjorie; Dahan, Rony; Huan, Jianya; Vandenbark, Arthur A; Burrows, Gregory G; Offner, Halina

    2007-11-14

    Recombinant T-cell receptor ligands (RTLs) can prevent and reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner and are currently in clinical trials for treatment of subjects with multiple sclerosis (MS). To evaluate regulatory mechanisms, we designed and tested RTL551, containing the alpha1 and beta1 domains of the I-A(b) class II molecule covalently linked to the encephalitogenic MOG-35-55 peptide in C57BL/6 mice. Treatment of active or passive EAE with RTL551 after disease onset significantly reduced clinical signs and spinal cord lesions. Moreover, RTL551 treatment strongly and selectively reduced secretion of interleukin-17 and tumor necrosis factor alpha by transferred green fluorescent protein-positive (GFP+) MOG-35-55-reactive T-cells and almost completely abrogated existent GFP+ cellular infiltrates in affected spinal cord sections. Reduced inflammation in spinal cords of RTL551-treated mice was accompanied by a highly significant downregulation of chemokines and their receptors and inhibition of VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) expression by endothelial cells. Thus, RTL therapy cannot only inhibit systemic production of encephalitogenic cytokines by the targeted myelin oligodendrocyte glycoprotein-reactive T-cells but also impedes downstream local recruitment and retention of inflammatory cells in the CNS. These findings indicate that targeted immunotherapy of antigen-specific T-cells can result in a reversal of CNS lesion formation and lend strong support to the application of the RTL approach for therapy in MS. PMID:18003831

  13. Recombinant TCR ligand induces tolerance to myelin oligodendrocyte glycoprotein 35-55 peptide and reverses clinical and histological signs of chronic experimental autoimmune encephalomyelitis in HLA-DR2 transgenic mice.

    PubMed

    Vandenbark, Arthur A; Rich, Cathleen; Mooney, Jeff; Zamora, Alex; Wang, Chunhe; Huan, Jianya; Fugger, Lars; Offner, Halina; Jones, Richard; Burrows, Gregory G

    2003-07-01

    In a previous study, we demonstrated that myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide could induce severe chronic experimental autoimmune encephalomyelitis (EAE) in HLA-DR2(+) transgenic mice lacking all mouse MHC class II genes. We used this model to evaluate clinical efficacy and mechanism of action of a novel recombinant TCR ligand (RTL) comprised of the alpha(1) and beta(1) domains of DR2 (DRB1*1501) covalently linked to the encephalitogenic MOG-35-55 peptide (VG312). We found that the MOG/DR2 VG312 RTL could induce long-term tolerance to MOG-35-55 peptide and reverse clinical and histological signs of EAE in a dose- and peptide-dependent manner. Some mice treated with lower doses of VG312 relapsed after cessation of daily treatment, but the mice could be successfully re-treated with a higher dose of VG312. Treatment with VG312 strongly reduced secretion of Th1 cytokines (TNF-alpha and IFN-gamma) produced in response to MOG-35-55 peptide, and to a lesser degree purified protein derivative and Con A, but had no inhibitory effect on serum Ab levels to MOG-35-55 peptide. Abs specific for both the peptide and MHC moieties of the RTLs were also present after treatment with EAE, but these Abs had only a minor enhancing effect on T cell activation in vitro. These data demonstrate the powerful tolerance-inducing therapeutic effects of VG312 on MOG peptide-induced EAE in transgenic DR2 mice and support the potential of this approach to inhibit myelin Ag-specific responses in multiple sclerosis patients. PMID:12816990

  14. Apoptosis of V beta 8.2+ T lymphocytes in the spinal cord during recovery from experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein.

    PubMed

    McCombe, P A; Nickson, I; Tabi, Z; Pender, M P

    1996-07-01

    To study T cell apoptosis during spontaneous recovery from experimental autoimmune encephalomyelitis (EAE), we extracted lymphocytes from the spinal cords of Lewis rats with EAE induced by inoculation with myelin basic protein (MBP) and adjuvants. Using flow cytometry we assessed the numbers of CD5+ and TCR alpha beta + lymphocytes, as well as V beta 8.2+ lymphocytes, which constitute the predominant encephalitogenic MBP-reactive cells in Lewis rats. Rats developed neurological signs of disease 10-12 days after inoculation. The peak of disease was on day 14 after inoculation and was followed by clinical recovery. The numbers of CD5+, TCR alpha beta + and V beta 8.2+ cells obtained from the spinal cord were greatest on day 13. During spontaneous clinical recovery, there was a decline in the numbers of all the cells studied, with a selective loss of V beta 8.2+ cells from the CD5+ and TCR alpha beta + populations. To determine whether the decline in lymphocyte numbers was due to apoptosis, we used simultaneous surface labelling and propidium iodide staining of the DNA of the cells extracted from the spinal cord. From day 14 onwards, there was selective enrichment of V beta 8.2+ cells in the apoptotic population, and the percentage of V beta 8.2+ cells undergoing apoptosis was greater than the percentages of CD5+ and TCR alpha beta + cells undergoing apoptosis. These findings indicate that recovery from acute EAE is associated with the selective apoptosis, in the central nervous system, of these disease-relevant cells. The findings in this study of actively induced EAE are similar to those of our previous study of EAE induced by transfer of encephalitogenic MBP-specific T cells (Z. Tabi et al., Eur. J. Immunol. 24: 2609-2617, 1994) and further support the hypothesis that selective apoptosis of autoreactive T cells in the central nervous system is of primary importance in spontaneous recovery from EAE. PMID:8836965

  15. Regulation of Signal Transducer and Activator of Transcription and Suppressor of Cytokine-Signaling Gene Expression in the Brain of Mice with Astrocyte-Targeted Production of Interleukin-12 or Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Maier, Joachim; Kincaid, Carrie; Pagenstecher, Axel; Campbell, Iain L.

    2002-01-01

    Interleukin (IL)-12 and interferon (IFN)-γ are implicated in the pathogenesis of immune disorders of the central nervous system (CNS). To define the basis for the actions of these cytokines in the CNS, we examined the temporal and spatial regulation of key signal transducers and activators of transcription (STATs) and suppressors of cytokine signaling (SOCS) in the brain of transgenic mice with astrocyte production of IL-12 or in mice with experimental autoimmune encephalomyelitis (EAE). In healthy mice, with the exception of STAT4 and STAT6, the expression of a number of STAT and SOCS genes was detectable. However, in symptomatic transgenic mice and in EAE significant up-regulation of STAT1, STAT2, STAT3, STAT4, IRF9, and SOCS1 and SOCS3 RNA transcripts was observed. Although the increased expression of STAT1 RNA was widely distributed and included neurons, astrocytes, and microglia, STAT4 and STAT3 and SOCS1 and SOCS3 RNA was primarily restricted to the infiltrating mononuclear cell population. The level and location of the STAT1, STAT3, and STAT4 proteins overlapped with their corresponding RNA and additionally showed nuclear localization indicative of activation of these molecules. Thus, in both the glial fibrillary acidic protein-IL-12 mice and in EAE the CNS expression of key STAT and SOCS genes that regulate IL-12 (STAT4) and IFN-γ (STAT1, SOCS1, and SOCS3) receptor signaling is highly regulated and compartmentalized. We conclude the interaction between these positive and negative signaling circuits and their distinct cellular locations likely play a defining role in coordinating the actions of IL-12 and IFN-γ during the pathogenesis of type 1 immune responses in the CNS. PMID:11786421

  16. Tellurium compound AS101 ameliorates experimental autoimmune encephalomyelitis by VLA-4 inhibition and suppression of monocyte and T cell infiltration into the CNS.

    PubMed

    Lee, Jun-Ho; Halperin-Sheinfeld, Meital; Baatar, Dolgar; Mughal, Mohamed R; Tae, Hyun-Jin; Kim, Jie-Wan; Carter, Arnell; Lustig, Ana; Snir, Omri; Lavie, Gad; Okun, Eitan; Mattson, Mark P; Sredni, Benjamin; Taub, Dennis D

    2014-06-01

    Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) involving demyelinating and neurodegenerative processes. Several of the major pathological CNS alterations and behavioral deficits of MS are recapitulated in the experimental autoimmune encephalitis (EAE) mouse model in which the disease process is induced by administration of myelin peptides. Development of EAE requires infiltration of inflammatory cytokine-generating monocytes and macrophages, and auto-reactive T cells, into the CNS. Very late antigen-4 (VLA-4, α4β1) is an integrin molecule that plays a role in inflammatory responses by facilitating the migration of leukocytes across the blood-brain barrier during inflammatory disease, and antibodies against VLA-4 exhibit therapeutic efficacy in mouse and monkey MS models. Here, we report that the tellurium compound AS101 (ammonium trichloro (dioxoethylene-o,o') tellurate) ameliorates EAE by inhibiting monocyte and T cell infiltration into the CNS. CD49d is an alpha subunit of the VLA-4 (α4β1) integrin. During the peak stage of EAE, AS101 treatment effectively ameliorated the disease process by reducing the number of CD49d(+) inflammatory monocyte/macrophage cells in the spinal cord. AS101 treatment markedly reduced the pro-inflammatory cytokine levels, while increasing anti-inflammatory cytokine levels. In contrast, AS101 treatment did not affect the peripheral populations of CD11b(+) monocytes and macrophages. AS101 treatment reduced the infiltration of CD4(+) and CD49(+)/VLA4 T cells. In addition, treatment of T cells from MS patients with AS101 resulted in apoptosis, while such treatment did not affect T cells from healthy donors. These results suggest that AS101 reduces accumulation of leukocytes in the CNS by inhibiting the activity of the VLA-4 integrin and provide a rationale for the potential use of Tellurium IV compounds for the treatment of MS. PMID:24272426

  17. Skewed B cell differentiation affects lymphoid organogenesis but not T cell-mediated autoimmunity.

    PubMed

    Colombo, E; Tentorio, P; Musio, S; Rajewsky, K; Pedotti, R; Casola, S; Farina, C

    2014-04-01

    B cell receptor (BCR) signalling determines B cell differentiation and may potentially alter T cell-mediated immune responses. In this study we used two transgenic strains of BCR-deficient mice expressing Epstein-Barr virus latent membrane protein (LMP)2A in B cells, where either follicular and marginal zone differentiation (D(H)LMP2A mice) or B-1 cell development (V(H)LMP2A mice) were supported, and evaluated the effects of skewed B lymphocyte differentiation on lymphoid organogenesis and T cell responses in vivo. Compared to wild-type animals, both transgenic strains displayed alterations in the composition of lymphoid organs and in the dynamics of distinct immune cell subsets following immunization with the self-antigen PLP₁₈₅₋₂₀₆. However, ex-vivo T cell proliferation to PLP₁₈₅₋₂₀₆ peptide measured in immunized D(H)LMP2A and V(H)LMP2A mice was similar to that detected in immunized control mice. Further, clinical expression of experimental autoimmune encephalitis in both LMP2A strains was identical to that of wild-type mice. In conclusion, mice with skewed B cell differentiation driven by LMP2A expression in BCR-negative B cells do not show changes in the development of a T cell mediated disease model of autoimmunity, suggesting that compensatory mechanisms support the generation of T cell responses. PMID:24325711

  18. Fas-mediated elimination of antigen-presenting cells and autoreactive T cells contribute to prevention of autoimmunity

    PubMed Central

    Stranges, Peter. B.; Watson, Jessica; Cooper, Cristie J.; Choisy-Rossi, Caroline-Morgane; Stonebraker, Austin C.; Beighton, Ryan A.; Hartig, Heather; Sundberg, John P.; Servick, Stein; Kaufmann, Gunnar; Fink, Pamela J.; Chervonsky, Alexander V.

    2008-01-01

    Summary Fas (Apo-1, CD95) receptor has been suggested to control T cell expansion by triggering T cell-autonomous apoptosis. This paradigm is based on the extensive lymphoproliferation and systemic autoimmunity in mice and humans lacking Fas or its ligand. However, with systemic loss of Fas, it is unclear whether T cell-extrinsic mechanisms contribute to autoimmunity. We found that tissue-specific deletion of Fas in mouse antigen presenting cells (APC) was sufficient to cause systemic autoimmunity, implying that normally APC are destroyed during immune responses via a Fas-mediated mechanism. Fas expression by APC was increased by exposure to microbial stimuli. Analysis of mice with Fas loss restricted to T cells revealed that Fas indeed controls autoimmune T cells, but not T cells responding to strong antigenic stimulation. Thus, Fas-dependent elimination of APC is a major regulatory mechanism curbing autoimmune responses and acts in concert with Fas-mediated regulation of chronically activated autoimmune T cells. PMID:17509906

  19. Genetic deficiency of Irgm1 (LRG-47) suppresses induction of experimental autoimmune encephalomyelitis by promoting apoptosis of activated CD4+ T cells.

    PubMed

    Xu, Hongwei; Wu, Zhi-Ying; Fang, Fang; Guo, Lan; Chen, Doris; Chen, John Xi; Stern, David; Taylor, Gregory A; Jiang, Hong; Yan, Shirley ShiDu

    2010-05-01

    The immunity-related GTPase Irgm1, also called LRG-47, is known to regulate host resistance to intracellular pathogens through multiple mechanisms that include controlling the survival of T lymphocytes. Here, we address whether Irgm1 also plays a role in the pathogenesis of experimental autoimmune encephalitis (EAE). We find that Irgm1/LRG-47 is a significant factor in the progression of EAE and multiple sclerosis (MS). Expression of Irgm1 was robustly elevated in MS-affected lesions and in the central nervous system (CNS) of myelin basic protein (MBP)-induced EAE mice, especially in cells of lymphoid and mononuclear phagocyte origin. Homozygous Irgm1 null mice were resistant to MBP-induced EAE, and CD4(+) T cells in spleen and CNS of these mice displayed decreased proliferative capacity, increased apoptosis, and up-regulated interferon (IFN)-gamma induction. Therefore, Irgm1-induced survival of autoreactive CD4(+) T cells contributes significantly to the pathogenesis of EAE. Blockade of Irgm1 may be a potential therapeutic strategy for halting multiple sclerosis. PMID:20056715

  20. Homologies between T cell receptor junctional sequences unique to multiple sclerosis and T cells mediating experimental allergic encephalomyelitis.

    PubMed Central

    Allegretta, M; Albertini, R J; Howell, M D; Smith, L R; Martin, R; McFarland, H F; Sriram, S; Brostoff, S; Steinman, L

    1994-01-01

    The selection of T cell clones with mutations in the hypoxanthine guanine phosphoribosyltransferase (hprt) gene has been used to isolate T cells reactive to myelin basic protein (MBP) in patients with multiple sclerosis (MS). These T cell clones are activated in vivo, and are not found in healthy individuals. The third complementarity determining regions (CDR3) of the T cell receptor (TCR) alpha and beta chains are the putative contact sites for peptide fragments of MBP bound in the groove of the HLA molecule. The TCR V gene usage and CDR3s of these MBP-reactive hprt-T cell clones are homologous to TCRs from other T cells relevant to MS, including T cells causing experimental allergic encephalomyelitis (EAE) and T cells found in brain lesions and in the cerebrospinal fluid (CSF) of MS patients. In vivo activated MBP-reactive T cells in MS patients may be critical in the pathogenesis of MS. PMID:8040252

  1. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease.

    PubMed

    Hinks, Timothy S C

    2016-05-01

    Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers. PMID:26778581

  2. LRP1 expression in microglia is protective during CNS autoimmunity.

    PubMed

    Chuang, Tzu-Ying; Guo, Yong; Seki, Scott M; Rosen, Abagail M; Johanson, David M; Mandell, James W; Lucchinetti, Claudia F; Gaultier, Alban

    2016-01-01

    Multiple sclerosis is a devastating neurological disorder characterized by the autoimmune destruction of the central nervous system myelin. While T cells are known orchestrators of the immune response leading to MS pathology, the precise contribution of CNS resident and peripheral infiltrating myeloid cells is less well described. Here, we explore the myeloid cell function of Low-density lipoprotein receptor-related protein-1 (LRP1), a scavenger receptor involved in myelin clearance and the inflammatory response, in the context of Multiple sclerosis. Supporting its central role in Multiple sclerosis pathology, we find that LRP1 expression is increased in Multiple sclerosis lesions in comparison to the surrounding healthy tissue. Using two genetic mouse models, we show that deletion of LRP1 in microglia, but not in peripheral macrophages, negatively impacts the progression of experimental autoimmune encephalomyelitis, an animal model of Multiple sclerosis. We further show that the increased disease severity in experimental autoimmune encephalomyelitis is not due to haplodeficiency of the Cx3cr1 locus. At the cellular level, microglia lacking LRP1 adopt a pro-inflammatory phenotype characterized by amoeboid morphology and increased production of the inflammatory mediator TNF-α. We also show that LRP1 functions as a robust inhibitor of NF-kB activation in myeloid cells via a MyD88 dependent pathway, potentially explaining the increase in disease severity observed in mice lacking LRP1 expression in microglia. Taken together, our data suggest that the function of LRP1 in microglia is to keep these cells in an anti-inflammatory and neuroprotective status during inflammatory insult, including experimental autoimmune encephalomyelitis and potentially in Multiple sclerosis. PMID:27400748

  3. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    PubMed Central

    Erkes, Dan A.; Selvan, Senthamil R.

    2014-01-01

    Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD) using animal contact hypersensitivity (CHS) models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD) to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1) ex vivo haptenation, (2) in situ haptenation, (3) epifocal hapten application, and (4) antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field. PMID:24949488

  4. Proteasome immunosubunits protect against the development of CD8 T-cell-mediated autoimmune diseases

    PubMed Central

    Zaiss, Dietmar M.W.; Bekker, Cornelis P.J.; Gröne, Andrea; Lie, Benedicte A.; Sijts, Alice J.A.M.

    2011-01-01

    Exposure of cells to inflammatory cytokines induces the expression of three proteasome immunosubunits, two of which are encoded in the MHC-II region. The induced subunits replace their constitutive homologues in newly formed, so called immunoproteasomes. Immunosubunit incorporation enhances the proteasome’ proteolytic activity and modifies the proteasome’ cleavage site preferences, which improves the generation of many MHC-I presented peptides and shapes the fine-specificity of pathogen-specific CD8 T cell responses. We here report on a second effect of immunoproteasome formation on CD8 T cell responses. We show that mice deficient for the immunosubunits β5i/LMP7 and β2i/MECL-1 develop early-stage multi-organ autoimmunity following irradiation and BM transplantation. Disease symptoms are caused by CD8 T cells and transferrable into immunosubunit-deficient, RAG1-deficient mice. Moreover, using the human Type 1 Diabetes Genetics Consortium (T1DGC) MHC dataset, we identified two SNPs within the β5i/LMP7-encoding gene sequences, that were in strong linkage disequilibrium (LD), as independent genetic risk factors for T1D development in humans. Strikingly, these SNPs significantly enhanced the risk conferred by HLA haplotypes that were formerly shown to predispose for T1D. These data suggest that inflammation-induced immunosubunit expression in peripheral tissues constitutes a mechanism that prevents the development of CD8 T cell mediated autoimmune diseases. PMID:21804012

  5. Time course and cellular localization of interleukin-10 mRNA and protein expression in autoimmune inflammation of the rat central nervous system.

    PubMed Central

    Jander, S.; Pohl, J.; D'Urso, D.; Gillen, C.; Stoll, G.

    1998-01-01

    Experimental autoimmune encephalomyelitis of the Lewis rat is a T-cell-mediated autoimmune disease of the central nervous system characterized by a self-limiting monophasic course. In this study, we analyzed the expression of the anti-inflammatory cytokine interleukin (IL)-10 at the mRNA and protein level in experimental autoimmune encephalomyelitis actively induced with the encephalitogenic 68-86 peptide of guinea pig myelin basic protein. Semiquantitative reverse transcriptase-polymerase chain reaction revealed that IL-10 mRNA expression peaked during the acute phase of the disease at days 11 and 13. IL-10 mRNA was synchronously induced with mRNA for the proinflammatory cytokine interferon-gamma. Immunocytochemistry with a monoclonal antibody against rat IL-10 showed that the peak of IL-10 mRNA was accompanied by an abundant expression of IL-10 protein during the acute stage of the disease. Both in situ hybridization and double labeling immunocytochemistry in combination with confocal microscopy identified T cells, macrophages/microglia, and astrocytes as major cellular sources of IL-10 in vivo. The early peak of IL-10 production was unexpected in light of its well-documented anti-inflammatory properties. Additional studies are required to determine whether endogenous IL-10 contributes to rapid clinical remission typical for Lewis rat experimental autoimmune encephalomyelitis or if it plays other, yet undefined, roles in central nervous system autoimmunity. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9546358

  6. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18.

    PubMed

    Im, S H; Barchan, D; Maiti, P K; Raveh, L; Souroujon, M C; Fuchs, S

    2001-10-01

    Interleukin-18 (IL-18) is a pleiotropic proinflammatory cytokine that plays an important role in interferon gamma (IFN-gamma) production and IL-12-driven Th1 phenotype polarization. Increased expression of IL-18 has been observed in several autoimmune diseases. In this study we have analyzed the role of IL-18 in an antibody-mediated autoimmune disease and elucidated the mechanisms involved in disease suppression mediated by blockade of IL-18, using experimental autoimmune myasthenia gravis (EAMG) as a model. EAMG is a T cell-regulated, antibody-mediated autoimmune disease in which the nicotinic acetylcholine receptor (AChR) is the major autoantigen. Th1- and Th2-type responses are both implicated in EAMG development. We show that treatment by anti-IL-18 during ongoing EAMG suppresses disease progression. The protective effect can be adoptively transferred to naive recipients and is mediated by increased levels of the immunosuppressive Th3-type cytokine TGF-beta and decreased AChR-specific Th1-type cellular responses. Suppression of EAMG is accompanied by down-regulation of the costimulatory factor CD40L and up-regulation of CTLA-4, a key negative immunomodulator. Our results suggest that IL-18 blockade may potentially be applied for immunointervention in myasthenia gravis. PMID:11641240

  7. T-cell receptor (TCR) usage in Lewis rat experimental autoimmune encephalomyelitis: TCR beta-chain-variable-region V beta 8.2-positive T cells are not essential for induction and course of disease.

    PubMed Central

    Gold, R; Giegerich, G; Hartung, H P; Toyka, K V

    1995-01-01

    Predominant usage of V beta 8.2 gene segments, encoding a T-cell receptor (TCR) beta chain variable region, has been reported for pathogenic Lewis rat T cells reactive to myelin basic protein (MBP). However, up to 75% of the alpha/beta T cells in a panel of MBP-specific T-cell lines did not display TCR V beta 8.2, V beta 8.5, V beta 10, or V beta 16 elements. To further investigate TCR usage, we sorted the T-cell lines for V beta 8.2- and V beta 10-positive T cells or depleted the lines of cells with these TCRs. V beta 8.2-positive T cells and one of the depleted T-cell lines strongly reacted against the MBP peptide MBP-(68-88). The depleted T-cell line caused marked experimental autoimmune encephalomyelitis (EAE) even in Lewis rats in which endogenous V beta 8.2-positive T cells had been eliminated by neonatal treatment with anti-V beta 8.2 monoclonal antibodies. T-cell hybridomas generated from this line predominantly used V beta 3 TCR genes coexpressed with TCR V alpha 2 transcripts, which were also used by V beta 8.2-positive T cells. Furthermore, V beta 10-positive T cells reactive to MBP-(44-67) were encephalitogenic when injected immediately after positive selection. After induction of EAE by sorted V beta 8.2- or V beta 10-positive T-cell lines, immunocytochemical analysis of the spinal cord tissue showed a predominance of the injected TCR or of nontypable alpha/beta T cells after injection of the depleted line. Our results demonstrate heterogeneity of TCR beta-chain usage even for a single autoantigen in an inbred strain. Moreover, V beta 8.2-positive T cells are not essential for the induction and progression of adoptive-transfer EAE. Images Fig. 4 Fig. 5 PMID:7597040

  8. Antigen-specific down-regulation of myelin basic protein-reactive T cells during spontaneous recovery from experimental autoimmune encephalomyelitis: further evidence of apoptotic deletion of autoreactive T cells in the central nervous system.

    PubMed

    Tabi, Z; McCombe, P A; Pender, M P

    1995-06-01

    Experimental autoimmune encephalomyelitis (EAE) was induced in Lewis rats by the i.v. injection of 10(7) cloned V beta 8.2+ T cells specific for the 72-89 peptide of guinea pig myelin basic protein (MBP). Some animals were injected simultaneously with 10(7) cloned T cells specific for ovalbumin (OVA). Lymphocytes were isolated from the spinal cord and from the peripheral lymphoid organs of these rats and the frequencies of MBP-peptide-specific or OVA-specific proliferating cells were estimated by limiting dilution analysis at different times after cell transfer. The frequencies of cells specific for MBP72-89 or OVA in the spinal cord were highest 5 days after cell transfer (MBP72-89, 1 in 1149; OVA, 1 in 1116). On day 7, when the rats were recovering, the frequency of cells specific for MBP72-89 in the spinal cord fell dramatically to < 1 in 10(5), while that of OVA-specific cells decreased to a much lesser extent (1 in 7001). The frequencies of MBP72-89-specific cells in the peripheral lymphoid organs during and after recovery were also much lower than those of OVA-specific cells. A similar pattern of down-regulation of the MBP-peptide-specific, but not the OVA-specific, T cell response was observed in the spleen and mesenteric lymph nodes (MLN) of rats 38 days after the active induction of EAE by immunization with equal amounts of MBP and OVA in adjuvants. In the passively transferred model, cells isolated from the spinal cord and MLN on day 7 did not regain responsiveness to MBP72-89 after incubation with high levels of IL-2, indicating that the unresponsiveness was not due to T cell anergy. Thus this study demonstrates that there is a specific down-regulation of the MBP72-89-specific T cell response during spontaneous recovery from EAE.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7577805

  9. Manipulating Autophagic Processes in Autoimmune Diseases: A Special Focus on Modulating Chaperone-Mediated Autophagy, an Emerging Therapeutic Target

    PubMed Central

    Wang, Fengjuan; Muller, Sylviane

    2015-01-01

    Autophagy, a constitutive intracellular degradation pathway, displays essential role in the homeostasis of immune cells, antigen processing and presentation, and many other immune processes. Perturbation of autophagy has been shown to be related to several autoimmune syndromes, including systemic lupus erythematosus. Therefore, modulating autophagy processes appears most promising for therapy of such autoimmune diseases. Autophagy can be said non-selective or selective; it is classified into three main forms, namely macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA), the former process being by far the most intensively investigated. The role of CMA remains largely underappreciated in autoimmune diseases, even though CMA has been claimed to play pivotal functions into major histocompatibility complex class II-mediated antigen processing and presentation. Therefore, hereby, we give a special focus on CMA as a therapeutic target in autoimmune diseases, based in particular on our most recent experimental results where a phosphopeptide modulates lupus disease by interacting with CMA regulators. We propose that specifically targeting lysosomes and lysosomal pathways, which are central in autophagy processes and seem to be altered in certain autoimmune diseases such as lupus, could be an innovative approach of efficient and personalized treatment. PMID:26042127

  10. Reversible postvaccination paraneoplastic encephalomyelitis in a patient with lung adenocarcinoma.

    PubMed

    Wu, Yi-Jen; Lai, Ming-Liang; Huang, Chin-Wei

    2010-12-01

    Encephalomyelitis occurs in paraneoplastic syndrome and acute disseminated encephalomyelitis through different autoimmune mechanisms. No postvaccinal encephalomyelitis other than acute disseminated encephalomyelitis has been reported in patients with malignancy. A 68-year-old woman was admitted because of a headache followed by a gait disturbance and psychomotor retardation 2 days after she had received an influenza vaccination followed by abulia, limb rigidity and hyperreflexia of both legs, and meningeal irritation. Cerebrospinal fluid studies showed increased intracranial pressure, elevated immunoglobulins G and A, and pleocytosis. Contrasted brain magnetic resonance imaging revealed ventriculomegaly and multiple symmetric leptomeningeal enhancement, without demyelinating changes or cortical ribbon signs. Somatosensory evoked potentials and nerve conduction velocity studies suggested myelitis. Encephalomyelitis was diagnosed on the basis of clinical and laboratory examinations. The etiological survey identified a lung adenocarcinoma. Both the encephalomyelitis and the lung adenocarcinoma simultaneously progressed after the vaccination and then, after targeted therapy for lung cancer, simultaneously subsided. In conclusion, postinfluenza-vaccination paraneoplastic encephalomyelitis may occur in patients with lung adenocarcinoma. PMID:20964557

  11. Characterisation of Transcriptional Changes in the Spinal Cord of the Progressive Experimental Autoimmune Encephalomyelitis Biozzi ABH Mouse Model by RNA Sequencing

    PubMed Central

    Pryce, Gareth; Baker, David; Selwood, David L.

    2016-01-01

    Multiple sclerosis (MS) is a debilitating immune-mediated neurological disorder affecting young adults. MS is primarily relapsing-remitting, but neurodegeneration and disability accumulate from disease onset. The most commonly used mouse MS models exhibit a monophasic immune response with fast accumulation of neurological damage that does not allow the study of progressive neurodegeneration. The chronic relapsing and secondary progressive EAE (pEAE) Biozzi ABH mouse model of MS exhibits a reproducible relapsing-remitting disease course that slowly accumulates permanent neurological deficit and develops a post-relapsing progressive disease that permits the study of demyelination and neurodegeneration. RNA sequencing (RNAseq) was used to explore global gene expression in the pEAE Biozzi ABH mouse. Spinal cord tissue RNA from pEAE Biozzi ABH mice and healthy age-matched controls was sequenced. 2,072 genes were differentially expressed (q<0.05) from which 1,397 were significantly upregulated and 675 were significantly downregulated. This hypothesis-free investigation characterised the genomic changes that describe the pEAE mouse model. The differentially expressed genes revealed a persistent immunoreactant phenotype, combined with downregulation of the cholesterol biosynthesis superpathway and the LXR/RXR activation pathway. Genes differentially expressed include the myelination genes Slc17a7, Ugt8A and Opalin, the neuroprotective genes Sprr1A, Osm and Wisp2, as well as genes identified as MS risk factors, including RGs14 and Scap2. Novel genes with unestablished roles in EAE or MS were also identified. The identification of differentially expressed novel genes and genes involved in MS pathology, opens the door to their functional study in the pEAE mouse model which recapitulates some of the important clinical features of progressive MS. PMID:27355629

  12. Tinospora cordifolia inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage.

    PubMed

    Sannegowda, K M; Venkatesha, S H; Moudgil, K D

    2015-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints leading to tissue damage. Despite the availability of potent drugs including the biologics, many patients fail to respond to them, whereas others suffer adverse effects following long-term use of these drugs. Accordingly, the use of natural herbal products by RA patients has been increasing over the years. However, limited information about the mechanism of action of these natural products is a major shortcoming that prevents the widespread acceptance of herbal therapy by professionals and patients alike. In this study, we demonstrated the anti-arthritic activity of Tinospora cordifolia extract (TCE) using the rat adjuvant-induced arthritis model of human RA and elaborated the immune mechanisms underlying this effect. TCE treatment suppressed arthritic inflammation and bone and cartilage damage. The anti-inflammatory effect of TCE was mediated via reduction of the pro-inflammatory cytokines such as: IL-1β, TNF-α, IL-6, and IL-17; the frequency of IL-17-producing T cells; and the production of chemokines such as RANTES. Furthermore, TCE treatment limited bone damage by shifting the balance of mediators of bone remodeling (e.g., receptor activator of nuclear factor-kB ligand [RANKL] and MMP-9) in favor of anti-osteoclastic activity. Our results suggest that TCE and its bioactive components should be evaluated for their utility as therapeutic adjuncts to conventional drugs against RA. PMID:26467057

  13. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation

    PubMed Central

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  14. Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation.

    PubMed

    Takagi, Hideaki; Arimura, Keiichi; Uto, Tomofumi; Fukaya, Tomohiro; Nakamura, Takeshi; Choijookhuu, Narantsog; Hishikawa, Yoshitaka; Sato, Katsuaki

    2016-01-01

    Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs, and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation. PMID:27075414

  15. Chemokine-mediated redirection of T cells constitutes a critical mechanism of glucocorticoid therapy in autoimmune CNS responses

    PubMed Central

    Schweingruber, Nils; Fischer, Henrike J.; Fischer, Lisa; van den Brandt, Jens; Karabinskaya, Anna; Labi, Verena; Villunger, Andreas; Kretzschmar, Benedikt; Huppke, Peter; Simons, Mikael; Tuckermann, Jan P.; Flügel, Alexander

    2016-01-01

    Glucocorticoids (GCs) are the standard therapy for treating multiple sclerosis (MS) patients suffering from an acute relapse. One of the main mechanisms of gC action is held to be the induction of T cell apoptosis leading to reduced lymphocyte infiltration into the CNS, yet our analysis of experimental autoimmune encephalomyelitis (EAE) in three different strains of genetically manipulated mice has revealed that the induction of T cell apoptosis is not essential for the therapeutic efficacy of GCs. Instead, we identified the redirection of T cell migration in response to chemokines as a new therapeutic principle of GC action. GCs inhibited the migration of T cells towards CCL19 while they enhanced their responsiveness towards CXCL12. Importantly, blocking CXCR4 signaling in vivo by applying Plerixafor® strongly impaired the capacity of GCs to interfere with EAE, as revealed by an aggravated disease course, more pronounced CNS infiltration and a more dispersed distribution of the infiltrating T cells throughout the parenchyma. Our observation that T cells lacking the GC receptor were refractory to CXCL12 further underscores the importance of this pathway for the treatment of EAE by GCs. Importantly, methylprednisolone pulse therapy strongly increased the capacity of peripheral blood T cells from MS patients of different subtypes to migrate towards CXCL12. This indicates that modulation of T cell migration is an important mechanistic principle responsible for the efficacy of high-dose GC therapy not only of EAE but also of MS. PMID:24488308

  16. Nonviral-Mediated Hepatic Expression of IGF-I Increases Treg Levels and Suppresses Autoimmune Diabetes in Mice

    PubMed Central

    Anguela, Xavier M.; Tafuro, Sabrina; Roca, Carles; Callejas, David; Agudo, Judith; Obach, Mercè; Ribera, Albert; Ruzo, Albert; Mann, Christopher J.; Casellas, Alba; Bosch, Fatima

    2013-01-01

    In type 1 diabetes, loss of tolerance to β-cell antigens results in T-cell–dependent autoimmune destruction of β cells. The abrogation of autoreactive T-cell responses is a prerequisite to achieve long-lasting correction of the disease. The liver has unique immunomodulatory properties and hepatic gene transfer results in tolerance induction and suppression of autoimmune diseases, in part by regulatory T-cell (Treg) activation. Hence, the liver could be manipulated to treat or prevent diabetes onset through expression of key genes. IGF-I may be an immunomodulatory candidate because it prevents autoimmune diabetes when expressed in β cells or subcutaneously injected. Here, we demonstrate that transient, plasmid-derived IGF-I expression in mouse liver suppressed autoimmune diabetes progression. Suppression was associated with decreased islet inflammation and β-cell apoptosis, increased β-cell replication, and normalized β-cell mass. Permanent protection depended on exogenous IGF-I expression in liver nonparenchymal cells and was associated with increased percentage of intrapancreatic Tregs. Importantly, Treg depletion completely abolished IGF-I-mediated protection confirming the therapeutic potential of these cells in autoimmune diabetes. This study demonstrates that a nonviral gene therapy combining the immunological properties of the liver and IGF-I could be beneficial in the treatment of the disease. PMID:23099863

  17. The role of cytokines and chemokines in the T-cell-mediated autoimmune process in alopecia areata.

    PubMed

    Ito, Taisuke; Tokura, Yoshiki

    2014-11-01

    The aetiology of alopecia areata (AA) is still not fully understood. However, recent clinical and experimental studies have provided insights into the pathomechanisms of AA and revealed that it is an organ-specific and cell-mediated autoimmune disease. Some triggers, such as viral infections, trauma, hormones and emotional/physical stressors, may cause activation of autoreactive T cells that target hair follicle (HF) autoantigens. In these immunological responses, cytokines and chemokines are regarded as key players that mediate the autoimmune inflammation. This results in the collapse of HF immune privilege, which is central to the pathogenesis of AA. This essay will focus on how cytokines and chemokines contribute to the immunological aspects of AA. The management of AA often remains difficult in a number of cases. Our review suggests that novel therapies for AA may involve targeting cytokines and chemokines. PMID:25040075

  18. Small molecule mediated inhibition of RORγ-dependent gene expression and autoimmune disease pathology in vivo.

    PubMed

    Banerjee, Daliya; Zhao, Linlin; Wu, Lan; Palanichamy, Arumugam; Ergun, Ayla; Peng, Liaomin; Quigley, Catherine; Hamann, Stefan; Dunstan, Robert; Cullen, Patrick; Allaire, Norm; Guertin, Kevin; Wang, Tao; Chao, Jianhua; Loh, Christine; Fontenot, Jason D

    2016-04-01

    Retinoic acid receptor-related orphan nuclear receptor γ (RORγ) orchestrates a pro-inflammatory gene expression programme in multiple lymphocyte lineages including T helper type 17 (Th17) cells, γδ T cells, innate lymphoid cells and lymphoid tissue inducer cells. There is compelling evidence that RORγ-expressing cells are relevant targets for therapeutic intervention in the treatment of autoimmune and inflammatory diseases. Unlike Th17 cells, where RORγ expression is induced under specific pro-inflammatory conditions, γδ T cells and other innate-like immune cells express RORγ in the steady state. Small molecule mediated disruption of RORγ function in cells with pre-existing RORγ transcriptional complexes represents a significant and challenging pharmacological hurdle. We present data demonstrating that a novel, selective and potent small molecule RORγ inhibitor can block the RORγ-dependent gene expression programme in both Th17 cells and RORγ-expressing γδ T cells as well as a disease-relevant subset of human RORγ-expressing memory T cells. Importantly, systemic administration of this inhibitor in vivo limits pathology in an innate lymphocyte-driven mouse model of psoriasis. PMID:26694902

  19. Mannose-binding Lectin Mediated Complement Pathway in Autoimmune Neurological Disorders.

    PubMed

    Farrokhi, Mehrdad; Dabirzadeh, Mehrnoosh; Dastravan, Nastaran; Etemadifar, Masoud; Ghadimi, Keyvan; Saadatpour, Zahra; Rezaei, Ali

    2016-06-01

    Multiple sclerosis (MS) is a complex, demyelinating disease of the central nervous system (CNS) with variable phenotypic presentations, while Guillain-Barre Syndrome (GBS) is the prototypic acute inflammatory disorder that affects the peripheral nervous system. Myasthenia gravis (MG) is a T cell dependent and antibody mediated autoimmune disease. Although it has been shown that complement plays a critical role in the pathogenesis of MS, GBS, and MG, the role of mannose-binding lectin (MBL) as a biomarker of immunopathogensis of these diseases and also its association with the severity of them have been poorly investigated. Therefore, in this study we aimed to measure plasma levels of MBL in patients with MS, GBS, and MG. In a case-control study, plasma was obtained from healthy controls (n=100) and also patients with MS (n=120), GBS (n=30), and MG (n=30). Plasma level measurement of MBL was performed using enzyme-linked immunosorbent assay (ELISA). The mean serum level of MBL was significantly different between groups of patients and healthy controls (p<0.001). We also found a positive correlation between plasma levels of MBL and severity scores of MS, MG, and GBS patients including: expanded disability status scale (EDSS) (r=+0.60 and p=<0.001), quantitative myasthenia gravis score (QMGS) (r=+0.56 and p=0.01), and GBS disability scale (GDS) (r=+0.37 and p=0.04). Taken together, our findings suggest that complement activation mediated by MBL contributes to the pathogenesis and also severity of MS, MG, and GBS. However, because the lectin pathway can be involved in several phases of the immune response, further evidence will be required to elucidate the underlying mechanism. PMID:27424141

  20. Ameliorating Role Exerted by Al-Hijamah in Autoimmune Diseases: Effect on Serum Autoantibodies and Inflammatory Mediators

    PubMed Central

    Baghdadi, Hussam; Abdel-Aziz, Nada; Ahmed, Nagwa Sayed; Mahmoud, Hany Salah; Barghash, Ayman; Nasrat, Abdullah; Nabo, Manal Mohamed Helmy; El Sayed, Salah Mohamed

    2015-01-01

    Autoimmune diseases have common properties characterized by abnormal blood chemistry with high serum autoimmune antibodies, and inflammatory mediators. Those causative pathological substances (CPS) cannot be excreted by physiological mechanisms. Current treatments for autoimmune diseases involve steroids, cytotoxic drugs, plasmapheresis and monoclonal antibodies. Wet cupping therapy (WCT) of prophetic medicine is called Al-hijamah that treats numerous diseases having different etiology and pathogenesis via a pressure-dependent and size-dependent non-specific filtration then excretion of CPS causing clearance of blood and interstitial fluids. Al-hijamah clears blood passing through the fenestrated skin capillaries. Medical bases of Al-hijamah were reported in the evidence-based Taibah mechanism (Taibah theory). Al-hijamah was reported to be an excellent treatment for rheumatoid arthritis that improved patients’ blood chemistry and induced significant clinical improvement and pharmacological potentiation. Al-hijamah improved the natural immunity and suppressed the pathological immunity through decreasing the serum level of autoantibodies, inflammatory mediators, and serum ferritin (a key player in autoimmunity). Al-hijamah reduced significantly pain severity, number of swollen joints and disease activity with no significant side effects. Main steps of Al-hijamah are skin suction (cupping), scarification (sharatmihjam in Arabic) and second suction (triple S technique) that is better therapeutically than the traditional WCT (double S technique). Whenever an excess noxious substance is to be removed from patients’ blood and interstitial fluids, Al-hijamah is indicated. Shartatmihjam is a curative treatment in prophetic teachings according to the prophetic hadeeth: “Cure is in three: in shartatmihjam, oral honey and cauterization. I do not recommend my nation to cauterize”. Al-hijamah may have better therapeutic benefits than plasmapheresis. Al-hijamah may be

  1. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the proposed health benefits of consuming green tea is its protective effect on autoimmune diseases. Research on the immunopathogenesis of autoimmune diseases has made significant progression in the past few years and several key concepts have been revised. T cells, particularly CD4+ T helper...

  2. Isolation of Antagonists of Antigen-Specific Autoimmune T Cell Proliferation

    PubMed Central

    Gocke, Anne R.; Udugamasooriya, D. Gomika; Archer, Chase T.; Lee, Jiyong; Kodadek, Thomas

    2009-01-01

    Antigen-specific T cells play a major role in mediating the pathogenesis of a variety of autoimmune conditions as well as other diseases. In the context of experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis, we present here a general approach to the discovery of highly specific ligands for autoreactive cells. These ligands are obtained from a combinatorial library of hundreds of thousands of synthetic peptoids that is screened simultaneously against two populations of CD4+ T cells. Peptoids that recognize autoreactive T cells with extremely high specificity can be identified in the library. Since no specific knowledge is required regarding the nature of the native antigens recognized by the autoreactive T cells, this technology provides a powerful tool for the enrichment and inhibition of autoimmune cells in a variety of disease states. PMID:19942136

  3. The phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and autoimmunity by inactivating Lck.

    PubMed

    Li, Ju-Pi; Yang, Chia-Yu; Chuang, Huai-Chia; Lan, Joung-Liang; Chen, Der-Yuan; Chen, Yi-Ming; Wang, Xiaohong; Chen, Alice J; Belmont, John W; Tan, Tse-Hua

    2014-01-01

    JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and cytokine production. JKAP-knockout mice show enhanced T-cell-mediated immune responses and are more susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, the recipient mice that are adoptively transferred with JKAP-knockout T cells show exacerbated EAE symptoms. Aged JKAP-knockout mice spontaneously develop inflammation and autoimmunity. Thus, our results indicate that JKAP is an important phosphatase that inactivates Lck in the TCR signalling turn-off stage, leading to suppression of T-cell-mediated immunity and autoimmunity. PMID:24714587

  4. Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome.

    PubMed

    Pohl, Daniela; Alper, Gulay; Van Haren, Keith; Kornberg, Andrew J; Lucchinetti, Claudia F; Tenembaum, Silvia; Belman, Anita L

    2016-08-30

    Acute disseminated encephalomyelitis (ADEM) is an immune-mediated demyelinating CNS disorder with predilection to early childhood. ADEM is generally considered a monophasic disease. However, recurrent ADEM has been described and defined as multiphasic disseminated encephalomyelitis. ADEM often occurs postinfectiously, although a causal relationship has never been established. ADEM and multiple sclerosis are currently viewed as distinct entities, generally distinguishable even at disease onset. However, pathologic studies have demonstrated transitional cases of yet unclear significance. ADEM is clinically defined by acute polyfocal neurologic deficits including encephalopathy. MRI typically demonstrates reversible, ill-defined white matter lesions of the brain and often also the spinal cord, along with frequent involvement of thalami and basal ganglia. CSF analysis may reveal a mild pleocytosis and elevated protein, but is generally negative for intrathecal oligoclonal immunoglobulin G synthesis. In the absence of a specific diagnostic test, ADEM is considered a diagnosis of exclusion, and ADEM mimics, especially those requiring a different treatment approach, have to be carefully ruled out. The role of biomarkers, including autoantibodies like anti-myelin oligodendrocyte glycoprotein, in the pathogenesis and diagnosis of ADEM is currently under debate. Based on the presumed autoimmune etiology of ADEM, the current treatment approach consists of early immunotherapy. Outcome of ADEM in pediatric patients is generally favorable, but cognitive deficits have been reported even in the absence of other neurologic sequelae. This review summarizes the current knowledge on epidemiology, pathology, clinical presentation, neuroimaging features, CSF findings, differential diagnosis, therapy, and outcome, with a focus on recent advances and controversies. PMID:27572859

  5. Inflammasomes and human autoimmunity: A comprehensive review.

    PubMed

    Yang, Chin-An; Chiang, Bor-Luen

    2015-07-01

    Inflammasomes are multi-protein complexes composed of a NOD-like receptor (NLR)/an AIM-like receptor (ALR), the adapter molecule apoptosis-associated speck-like protein that contains a CARD (ASC), and caspase-1. Active caspase-1 cleaves pro-IL-1β and pro-IL-18 to IL-1β and IL-18, resulting in inflammation. Genetic mutations in inflammasomes were first recognized to result in autoinflammatory diseases, which are characterized by the absence of both autoantibodies and autoreactive-T/B cells. However, there is increasing attention being placed on genetic polymorphisms that are involved in the components of inflammasomes, and these have implications for innate immunity and the natural history of autoimmune diseases. For example, while the NOD-like receptor family, pyrin domain containing 1 (NLRP1) haplotypes contributes to susceptibility to developing vitiligo; there are other single nucleotide polymorphisms (SNPs) that alters the susceptibility and severity of rheumatoid arthritis (RA) and juvenile idiopathic arthritis. Indeed, there are multiple factors that contribute to lowering the threshold of immunity and inflammasomes play a key role in this threshold. For example, IL-1β and IL-18 further perpetuate Th17 responses and endothelial cell damage, which potentiate a number of autoimmune diseases, including synovitis in RA, cardiovascular disease, and systemic lupus erythematosus (SLE). There is also increasing data on the role of innate immunity in experimental autoimmune encephalomyelitis (EAE), in lupus nephritis, and in a variety of autoimmune pathologies in which activation of the innate immune system is the driver for the adaptive system. Indeed, it is likely that the chronic pathology of autoimmunity is mediated in part by otherwise innocent bystander cells, augmented by inflammasomes. PMID:26005048

  6. G-CSF and Neutrophils Are Nonredundant Mediators of Murine Experimental Autoimmune Uveoretinitis.

    PubMed

    Goldberg, Gabrielle L; Cornish, Ann L; Murphy, Jane; Pang, Ee Shan; Lim, Lyndell L; Campbell, Ian K; Scalzo-Inguanti, Karen; Chen, Xiangting; McMenamin, Paul G; Maraskovsky, Eugene; McKenzie, Brent S; Wicks, Ian P

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a regulator of neutrophil production, function, and survival. Herein, we investigated the role of G-CSF in a murine model of human uveitis-experimental autoimmune uveoretinitis. Experimental autoimmune uveoretinitis was dramatically reduced in G-CSF-deficient mice and in anti-G-CSF monoclonal antibody-treated, wild-type (WT) mice. Flow cytometric analysis of the ocular infiltrate in WT mice with experimental autoimmune uveoretinitis showed a mixed population, comprising neutrophils, macrophages, and T cells. The eyes of G-CSF-deficient and anti-G-CSF monoclonal antibody-treated WT mice had minimal neutrophil infiltrate, but no change in other myeloid-derived inflammatory cells. Antigen-specific T-cell responses were maintained, but the differentiation of pathogenic type 17 helper T cells in experimental autoimmune uveoretinitis was reduced with G-CSF deficiency. We show that G-CSF controls the ocular neutrophil infiltrate by modulating the expression of C-X-C chemokine receptors 2 and 4 on peripheral blood neutrophils, as well as actin polymerization and migration. These data reveal an integral role for G-CSF-driven neutrophil responses in ocular autoimmunity, operating within and outside of the bone marrow, and also identify G-CSF as a potential therapeutic target in the treatment of human uveoretinitis. PMID:26718978

  7. Immunomodulatory vaccines against autoimmune diseases.

    PubMed

    Sela, Michael

    2006-01-01

    Vaccines are for healthy people, to prevent them from becoming ill. Such prophylactic vaccines have been a great success. Therapeutic vaccines become more and more important, especially as life expectancy increases. Efforts to develop vaccines against such diseases as cancer, AIDS, hepatitis, tuberculosis, Alzheimer disease, and mad cow disease have not yet reached the stage where they can be successfully used on a daily basis. However, significant progress has been made in the realm of autoimmune diseases, resulting (at least in one case) in an immunomodulatory vaccine against multiple sclerosis that was developed in the author's laboratory, and that is in daily use by about 100,000 patients. The drug or therapeutic vaccine against the exacerbating-remitting type of multiple sclerosis is a copolymer of four amino acid residues, denoted Copaxone, which are related to myelin basic protein. This paper discusses Copaxone as well as a candidate immunomodulatory vaccine against myasthenia gravis, a peptide derived from the nicotinic acetylcholine receptor. Copolymer 1 (Cop 1, glatiramer acetate, Copaxone) is a synthetic amino acid random copolymer that is immunologically cross-reactive with myelin basic protein and suppresses experimental allergic encephalomyelitis in several animal species. Cop 1 slows the progression of disability and reduces the relapse rate in exacerbating-remitting multiple sclerosis patients. Cop 1 is a potent inducer of T helper 2 (Th2) regulatory cells in mice and humans; and Th2 cells are found in both the brains and spinal cords of Cop 1-treated mice and humans. MG and experimental autoimmune MG are T cell-regulated, antibody-mediated autoimmune diseases. Two peptides, representing sequences of the human AChR-alpha-subunit, p195-212 and p259-271, are immunodominant T-cell epitopes in MG patients and two strains of mice. Altered peptide ligand, composed of the randomly arranged two single amino acid analogs inhibits in vitro and in vivo MG

  8. Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses.

    PubMed

    Toscano, Marta A; Commodaro, Alessandra G; Ilarregui, Juan M; Bianco, Germán A; Liberman, Ana; Serra, Horacio M; Hirabayashi, Jun; Rizzo, Luiz V; Rabinovich, Gabriel A

    2006-05-15

    Intraocular inflammatory diseases are a common cause of severe visual impairment and blindness. In this study, we investigated the immunoregulatory role of galectin-1 (Gal-1), an endogenous lectin found at sites of T cell activation and immune privilege, in experimental autoimmune uveitis (EAU), a Th1-mediated model of retinal disease. Treatment with rGal-1 either early or late during the course of interphotoreceptor retinoid-binding protein-induced EAU was sufficient to suppress ocular pathology, inhibit leukocyte infiltration, and counteract pathogenic Th1 cells. Administration of rGal-1 at the early or late phases of EAU ameliorated disease by skewing the uveitogenic response toward nonpathogenic Th2 or T regulatory-mediated anti-inflammatory responses. Consistently, adoptive transfer of CD4(+) regulatory T cells obtained from rGal-1-treated mice prevented the development of active EAU in syngeneic recipients. In addition, increased levels of apoptosis were detected in lymph nodes from mice treated with rGal-1 during the efferent phase of the disease. Our results underscore the ability of Gal-1 to counteract Th1-mediated responses through different, but potentially overlapping anti-inflammatory mechanisms and suggest a possible therapeutic use of this protein for the treatment of human uveitic diseases of autoimmune etiology. PMID:16670344

  9. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases.

    PubMed

    Dragin, Nadine; Bismuth, Jacky; Cizeron-Clairac, Géraldine; Biferi, Maria Grazia; Berthault, Claire; Serraf, Alain; Nottin, Rémi; Klatzmann, David; Cumano, Ana; Barkats, Martine; Le Panse, Rozen; Berrih-Aknin, Sonia

    2016-04-01

    Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α-deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases. PMID:26999605

  10. Estrogen-mediated downregulation of AIRE influences sexual dimorphism in autoimmune diseases

    PubMed Central

    Dragin, Nadine; Bismuth, Jacky; Cizeron-Clairac, Géraldine; Biferi, Maria Grazia; Berthault, Claire; Serraf, Alain; Nottin, Rémi; Klatzmann, David; Cumano, Ana; Barkats, Martine; Le Panse, Rozen

    2016-01-01

    Autoimmune diseases affect 5% to 8% of the population, and females are more susceptible to these diseases than males. Here, we analyzed human thymic transcriptome and revealed sex-associated differences in the expression of tissue-specific antigens that are controlled by the autoimmune regulator (AIRE), a key factor in central tolerance. We hypothesized that the level of AIRE is linked to sexual dimorphism susceptibility to autoimmune diseases. In human and mouse thymus, females expressed less AIRE (mRNA and protein) than males after puberty. These results were confirmed in purified murine thymic epithelial cells (TECs). We also demonstrated that AIRE expression is related to sexual hormones, as male castration decreased AIRE thymic expression and estrogen receptor α–deficient mice did not show a sex disparity for AIRE expression. Moreover, estrogen treatment resulted in downregulation of AIRE expression in cultured human TECs, human thymic tissue grafted to immunodeficient mice, and murine fetal thymus organ cultures. AIRE levels in human thymus grafted in immunodeficient mice depended upon the sex of the recipient. Estrogen also upregulated the number of methylated CpG sites in the AIRE promoter. Together, our results indicate that in females, estrogen induces epigenetic changes in the AIRE gene, leading to reduced AIRE expression under a threshold that increases female susceptibility to autoimmune diseases. PMID:26999605

  11. Dimethyl Fumarate Ameliorates Lewis Rat Experimental Autoimmune Neuritis and Mediates Axonal Protection

    PubMed Central

    Pitarokoili, Kalliopi; Ambrosius, Björn; Meyer, Daniela; Schrewe, Lisa; Gold, Ralf

    2015-01-01

    Background Dimethyl fumarate is an immunomodulatory and neuroprotective drug, approved recently for the treatment of relapsing-remitting multiple sclerosis. In view of the limited therapeutic options for human acute and chronic polyneuritis, we used the animal model of experimental autoimmune neuritis in the Lewis rat to study the effects of dimethyl fumarate on autoimmune inflammation and neuroprotection in the peripheral nervous system. Methods and Findings Experimental autoimmune neuritis was induced by immunization with the neuritogenic peptide (amino acids 53–78) of P2 myelin protein. Preventive treatment with dimethyl fumarate given at 45 mg/kg twice daily by oral gavage significantly ameliorated clinical neuritis by reducing demyelination and axonal degeneration in the nerve conduction studies. Histology revealed a significantly lower degree of inflammatory infiltrates in the sciatic nerves. In addition, we detected a reduction of early signs of axonal degeneration through a reduction of amyloid precursor protein expressed in axons of the peripheral nerves. This reduction correlated with an increase of nuclear factor (erythroid derived 2)-related factor 2 positive axons, supporting the neuroprotective potential of dimethyl fumarate. Furthermore, nuclear factor (erythroid derived 2)-related factor 2 expression in Schwann cells was only rarely detected and there was no increase of Schwann cells death during EAN. Conclusions We conclude that immunmodulatory and neuroprotective dimethyl fumarate may represent an innovative therapeutic option in human autoimmune neuropathies. PMID:26618510

  12. Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation

    PubMed Central

    Ryu, Jae Kyu; Petersen, Mark A.; Murray, Sara G.; Baeten, Kim M.; Meyer-Franke, Anke; Chan, Justin P.; Vagena, Eirini; Bedard, Catherine; Machado, Michael R.; Coronado, Pamela E. Rios; Prod'homme, Thomas; Charo, Israel F.; Lassmann, Hans; Degen, Jay L.; Zamvil, Scott S.; Akassoglou, Katerina

    2015-01-01

    Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood–brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b+ antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity. PMID:26353940

  13. T-bet or not T-bet: taking the last bow on the autoimmunity stage.

    PubMed

    Spath, Sabine; Becher, Burkhard

    2013-11-01

    The search for the encephalitogenic factor driving pathogenic T cells in autoimmune diseases such as rheumatoid arthritis, multiple sclerosis (MS), and psoriasis has proven to be a long and difficult mission, which is not yet completed. In this issue of the European Journal of Immunology, the importance of the transcription factor T-bet, previously shown to be essential for the induction of autoimmune disease in mice, is challenged. Two independent groups, O'Connor et al. [Eur. J. Immunol. 2013. 43:2818-2823] report] and Grifka-Walk et al. [Eur. J. Immunol. 2013. 43:2824-2831], report that T-bet is not mandatory for T cells to cause experimental autoimmune encephalomyelitis (EAE), which serves as a paradigmatic T-cell-mediated autoimmune disease. Both groups found that T-bet KO mice were fully susceptible to develop EAE, both after immunization with self-antigen and after adoptive transfer of IL-23-polarized autoaggressive T cells. T-bet deficiency mediated the loss of IFN-γ expression but retained or even enhanced GM-CSF and IL-17 production by central nervous system (CNS)-infiltrating T cells. These findings indicate that we have lost the last transcriptional regulator previously held to be required for the generation of autoimmune pathogenic T cells. PMID:24142468

  14. Prevention of autoimmune recurrence and rejection by adenovirus-mediated CTLA4Ig gene transfer to the pancreatic graft in BB rat.

    PubMed

    Uchikoshi, F; Yang, Z D; Rostami, S; Yokoi, Y; Capocci, P; Barker, C F; Naji, A

    1999-03-01

    Type 1 diabetes is the result of a selective destruction of pancreatic islets by autoreactive T-cells. Therefore, in the context of islet or pancreas transplantation, newly transplanted beta-cells are threatened by both recurrent autoimmune and alloimmune responses in recipients with type 1 diabetes. In the present study, using spontaneously diabetic BB rats, we demonstrate that whereas isolated islets are susceptible to autoimmune recurrence and rejection, pancreaticoduodenal grafts are resistant to these biological processes. This resistance is mediated by lymphohematopoietic cells transplanted with the graft, since inactivation of these passenger cells by irradiation uniformly rendered the pancreaticoduodenal grafts susceptible to recurrent autoimmunity. We further studied the impact of local immunomodulation on autoimmune recurrence and rejection by ex vivo adenovirus-mediated CTLA4Ig gene transfer to pancreaticoduodenal grafts. Syngeneic DR-BB pancreaticoduodenal grafts transduced with AdmCTLA4Ig were rescued from recurrent autoimmunity. In fully histoincompatible LEW-->BB transplants, in which rejection and recurrence should be able to act synergistically, AdmCTLA4Ig transduced LEW-pancreaticoduodenal allografts enjoyed markedly prolonged survival in diabetic BB recipients. In situ reverse transcription-polymerase chain reaction revealed that transferred CTLA4Ig gene was strongly expressed in both endocrine and exocrine tissues on day 3. These results indicate the potential utility of local CD28-B7 costimulatory blockade for prevention of alloimmune and autoimmune destruction of pancreatic grafts in type 1 diabetic hosts. PMID:10078573

  15. [Autoimmune encephalitis].

    PubMed

    Günther, Albrecht; Schubert, Julia; Brämer, Dirk; Witte, Otto Wilhelm

    2016-08-01

    Autoimmune encephalitis, an inflammatory disease of the brain, is usually attributed to antibody-mediated damage and dysfunction of neuronal structures. A distinction is made between onconeuronal antibodies (directed against intracellular neuronal antigens with resulting paraneoplastic neurological syndromes) and antibodies directed against neuronal cell surface proteins (with resulting synaptic encephalopathies). Anti-NMDA-Receptor-Encephalitis, the most common form of autoimmune encephalopathy, is characterized by a phased course of disease. Early disease phase involves nonspecific prodromes (fatigue, fever, headache) which lead to family doctor or emergency department consultation. Subsequently, neuropsychiatric behavioural problems, seizures, disturbance of memory and finally coma, dysautonomia and respiratory insufficiency often result in major complications (e.g. status epilepticus) necessitating intensive care treatment. The diagnosis is secured by detection of auto-antibodies in serum or cerebrospinal fluid. An intensive search for tumors is also recommended. The treatment of autoimmune encephalitis comprises of immunomodulatory and immunosuppessive strategies. Tumor therapy is the most important treatment of autoimmune encephalitis by onconeuronal antibodies. PMID:27557073

  16. The IgG-specific endoglycosidase EndoS inhibits both cellular and complement-mediated autoimmune hemolysis

    PubMed Central

    Briceño, Juana G.; Baudino, Lucie; Lood, Christian; Olsson, Martin L.; Izui, Shozo; Collin, Mattias

    2010-01-01

    EndoS from Streptococcus pyogenes is an immunomodulating enzyme that specifically hydrolyzes glycans from human immunoglobulin G and thereby affects antibody effector functions. Autoimmune hemolytic anemia is caused by antibody-mediated red blood cell (RBC) destruction and often resists treatment with corticosteroids that also cause frequent adverse effects. We show here that anti-RhD (anti-D) and rabbit anti–human-RBC antibodies (anti-RBC) mediated destruction of RBC, ie, phagocytosis, complement activation, and hemolysis in vitro and in vivo was inhibited by EndoS. Phagocytosis by monocytes in vitro was inhibited by pretreatment of anti-D with EndoS before sensitization of RBCs and abrogated by direct addition of EndoS to blood containing sensitized RBCs. The toxic effects of monocytes stimulated with anti-D–sensitized RBCs, as measured by interleukin-8 secretion and oxygen metabolite production, was restrained by EndoS. Agglutination of RBCs and complement-mediated hemolysis in vitro in whole human blood caused by rabbit anti-RBCs was inhibited by EndoS. Development of anemia in mice caused by a murine anti-RBC immunoglobulin G2a monoclonal autoantibody and complement activation and erythrophagocytosis by Kupffer cells in the liver were reduced by EndoS. Our data indicate that EndoS is a potential therapeutic agent that might be evaluated as an alternative to current treatment regimens against antibody-mediated destruction of RBCs. PMID:20357243

  17. Durable pharmacological responses from the peptide ShK-186, a specific Kv1.3 channel inhibitor that suppresses T cell mediators of autoimmune disease.

    PubMed

    Tarcha, Eric J; Chi, Victor; Muñoz-Elías, Ernesto J; Bailey, David; Londono, Luz M; Upadhyay, Sanjeev K; Norton, Kayla; Banks, Amy; Tjong, Indra; Nguyen, Hai; Hu, Xueyou; Ruppert, Greg W; Boley, Scott E; Slauter, Richard; Sams, James; Knapp, Brian; Kentala, Dustin; Hansen, Zachary; Pennington, Michael W; Beeton, Christine; Chandy, K George; Iadonato, Shawn P

    2012-09-01

    The Kv1.3 channel is a recognized target for pharmaceutical development to treat autoimmune diseases and organ rejection. ShK-186, a specific peptide inhibitor of Kv1.3, has shown promise in animal models of multiple sclerosis and rheumatoid arthritis. Here, we describe the pharmacokinetic-pharmacodynamic relationship for ShK-186 in rats and monkeys. The pharmacokinetic profile of ShK-186 was evaluated with a validated high-performance liquid chromatography-tandem mass spectrometry method to measure the peptide's concentration in plasma. These results were compared with single-photon emission computed tomography/computed tomography data collected with an ¹¹¹In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugate of ShK-186 to assess whole-blood pharmacokinetic parameters as well as the peptide's absorption, distribution, and excretion. Analysis of these data support a model wherein ShK-186 is absorbed slowly from the injection site, resulting in blood concentrations above the Kv1.3 channel-blocking IC₅₀ value for up to 7 days in monkeys. Pharmacodynamic studies on human peripheral blood mononuclear cells showed that brief exposure to ShK-186 resulted in sustained suppression of cytokine responses and may contribute to prolonged drug effects. In delayed-type hypersensitivity, chronic relapsing-remitting experimental autoimmune encephalomyelitis, and pristane-induced arthritis rat models, a single dose of ShK-186 every 2 to 5 days was as effective as daily administration. ShK-186's slow distribution from the injection site and its long residence time on the Kv1.3 channel contribute to the prolonged therapeutic effect of ShK-186 in animal models of autoimmune disease. PMID:22637724

  18. Interleukin-7 is required for CD4(+) T cell activation and autoimmune neuroinflammation.

    PubMed

    Lawson, Brian R; Gonzalez-Quintial, Rosana; Eleftheriadis, Theodoros; Farrar, Michael A; Miller, Stephen D; Sauer, Karsten; McGavern, Dorian B; Kono, Dwight H; Baccala, Roberto; Theofilopoulos, Argyrios N

    2015-12-01

    IL-7 is known to be vital for T cell homeostasis but has previously been presumed to be dispensable for TCR-induced activation. Here, we show that IL-7 is critical for the initial activation of CD4(+) T cells in that it provides some of the necessary early signaling components, such as activated STAT5 and Akt. Accordingly, short-term in vivo IL-7Rα blockade inhibited the activation and expansion of autoantigen-specific CD4(+) T cells and, when used to treat experimental autoimmune encephalomyelitis (EAE), prevented and ameliorated disease. Our studies demonstrate that IL-7 signaling is a prerequisite for optimal CD4(+) T cell activation and that IL-7R antagonism may be effective in treating CD4(+) T cell-mediated neuroinflammation and other autoimmune inflammatory conditions. PMID:26319414

  19. Age-dependent T cell tolerance and autoimmunity to myelin basic protein.

    PubMed

    Huseby, E S; Sather, B; Huseby, P G; Goverman, J

    2001-04-01

    Experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, is induced by activating a subset of myelin basic protein (MBP)-specific T cells that have escaped tolerance induction. Here, we define the tolerance mechanisms that eliminate the majority of MBP-specific T cells from the periphery. We show that MBP-specific T cells undergo central tolerance mediated by bone marrow-derived antigen-presenting cells presenting exogenously derived MBP epitopes. The efficiency of tolerance is age dependent, reflecting the developmentally regulated expression of MBP. Dependence of tolerance on the amount of MBP expressed in vivo results in an age window of susceptibility to EAE in mice that peaks during puberty. These results suggest that factors regulating expression of self-antigens in vivo can influence susceptibility to autoimmunity. PMID:11336692

  20. Cell-mediated Immunity to Human Tamm-Horsfall Glycoprotein in Autoimmune Liver Disease with Renal Tubular Acidosis

    PubMed Central

    Tsantoulas, D. C.; McFarlane, I. G.; Portmann, B.; Eddleston, A. L. W. F.; Williams, Roger

    1974-01-01

    Cell-mediated immune responses to Tamm-Horsfall glycoprotein isolated from human urine were investigated using the leucocyte migration test. Abnormal responses were found in 91% of patients with active chronic hepatitis or primary biliary cirrhosis with an associated renal tubular acidosis (R.T.A.) but in only 19% of those without R.T.A. In nearly all of a group of patients without autoimmune liver disease and in a control group of normal subjects results were within normal limits. In addition, using an immunofluorescent technique with rabbit antibody to human Tamm-Horsfall glycoprotein, it was possible to show the presence in human liver cell membrane of material reacting immunologically as Tamm-Horsfall. These findings suggest that the development of an immune response to this glycoprotein, initiated by release of cross-reacting antigens from damaged hepatocytes, could be the mechanism underlying the occurrence of R.T.A. in some patients with autoimmune liver disease. ImagesFIG. 3 PMID:4611578

  1. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    PubMed Central

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  2. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells.

    PubMed

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F; Breuer, Johanna; Herold, Martin; Gross, Catharina C; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein-kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  3. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity

    PubMed Central

    Goudy, Kevin; Aydin, Didem; Barzaghi, Federica; Gambineri, Eleonora; Vignoli, Marina; Mannurita, Sara Ciullini; Doglioni, Claudio; Ponzoni, Maurilio; Cicalese, Maria Pia; Assanelli, Andrea; Tommasini, Alberto; Brigida, Immacolata; Dellepiane, Rosa Maria; Martino, Silvana; Olek, Sven; Aiuti, Alessandro; Ciceri, Fabio; Roncarolo, Maria Grazia; Bacchetta, Rosa

    2013-01-01

    Cell-surface CD25 expression is critical for maintaining immune function and homeostasis. As in few reported cases, CD25 deficiency manifests with severe autoimmune enteritis and viral infections. To dissect the underlying immunological mechanisms driving these symptoms, we analyzed the regulatory and effector T cell functions in a CD25 deficient patient harboring a novel IL2RA mutation. Pronounced lymphoproliferation, mainly of the CD8+ T cells, was detected together with an increase in T cell activation markers and elevated serum cytokines. However, Ag-specific responses were impaired in vivo and in vitro. Activated CD8+STAT5+ T cells with lytic potential infiltrated the skin, even though FOXP3+ Tregs were present and maintained a higher capacity to respond to IL-2 compared to other T-cell subsets. Thus, the complex pathogenesis of CD25 deficiency provides invaluable insight into the role of IL2/IL-2RA-dependent regulation in autoimmunity and inflammatory diseases. PMID:23416241

  4. New approaches for predicting T cell-mediated drug reactions: A role for inducible and potentially preventable autoimmunity.

    PubMed

    Michels, Aaron W; Ostrov, David A

    2015-08-01

    Adverse drug reactions (ADRs) are commonplace and occur when a drug binds to its intended pharmacologic target (type A ADR) or an unintended target (type B ADR). Immunologically mediated type B ADRs, such as drug hypersensitivity syndrome, drug reaction with eosinophilia and systemic symptoms syndrome, and Stevens-Johnson syndrome/toxic epidermal necrolysis, can be severe and result in a diverse set of clinical manifestations that include fever and rash, as well as multiple organ failure (liver, kidney, lungs, and/or heart) in the case of drug hypersensitivity syndrome. There is increasing evidence that specific HLA alleles influence the risk of drug reactions. Several features of T cell-mediated ADRs are strikingly similar to those displayed by patients with autoimmune diseases like type I diabetes, such as strong HLA association, organ-specific adaptive immune responses, viral involvement, and activation of innate immunity. There is a need to better predict patient populations at risk for immunologically mediated type B ADRs. Because methods to predict type 1 diabetes by using genetic and immunologic biomarkers have been developed to a high level of accuracy (predicting 100% of subjects likely to progress), new research strategies based on these methods might also improve the ability to predict drug hypersensitivity. PMID:26254052

  5. Heat shock protein 90: a pathophysiological factor and novel treatment target in autoimmune bullous skin diseases.

    PubMed

    Tukaj, Stefan; Zillikens, Detlef; Kasperkiewicz, Michael

    2015-08-01

    The chaperone heat shock protein 90 (Hsp90), a cell stress-inducible molecule that regulates activity of many client proteins responsible for cellular growth, differentiation and apoptosis, has been proposed as an important therapeutic target in patients with malignancies. More recently, its active participation in (auto)immune processes has been recognized as evidenced by amelioration of inflammatory disease pathways through pharmacological inhibition of Hsp90 in rodent models of autoimmune encephalomyelitis, rheumatoid arthritis and systemic lupus erythematosus. Based on own current research results, this viewpoint essay provides important insights that Hsp90 is also involved as a notable pathophysiological factor in autoimmune blistering dermatoses including epidermolysis bullosa acquisita, bullous pemphigoid and possibly dermatitis herpetiformis. The observed in vitro, ex vivo and in vivo efficacy of anti-Hsp90 treatment in experimental models of autoimmune bullous diseases and its underlying multimodal anti-inflammatory mechanisms of interference with key contributors to autoimmune-mediated blister formation supports the introduction of selective non-toxic Hsp90 inhibitors into the clinical setting for the treatment of patients with these disorders. PMID:25980533

  6. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine.

    PubMed

    Haghikia, Aiden; Jörg, Stefanie; Duscha, Alexander; Berg, Johannes; Manzel, Arndt; Waschbisch, Anne; Hammer, Anna; Lee, De-Hyung; May, Caroline; Wilck, Nicola; Balogh, Andras; Ostermann, Annika I; Schebb, Nils Helge; Akkad, Denis A; Grohme, Diana A; Kleinewietfeld, Markus; Kempa, Stefan; Thöne, Jan; Demir, Seray; Müller, Dominik N; Gold, Ralf; Linker, Ralf A

    2015-10-20

    Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis. PMID:26488817

  7. Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases

    PubMed Central

    2016-01-01

    Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs. PMID:27429513

  8. Treatment of Relapsing Paralysis in Experimental Encephalomyelitis by Targeting Th1 Cells through Atorvastatin

    PubMed Central

    Aktas, Orhan; Waiczies, Sonia; Smorodchenko, Alina; Dörr, Jan; Seeger, Bibiane; Prozorovski, Timour; Sallach, Stephanie; Endres, Matthias; Brocke, Stefan; Nitsch, Robert; Zipp, Frauke

    2003-01-01

    Statins, known as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, exhibit numerous functions related to inflammation, such as MHC class II down-regulation, interference with T cell adhesion, and induction of apoptosis. Here we demonstrate that both subcutaneous and oral administration of atorvastatin inhibit the development of actively induced chronic experimental autoimmune encephalomyelitis in SJL/J mice and significantly reduce the inflammatory infiltration into the central nervous system (CNS). When treatment was started after disease onset, atorvastatin reduced the incidence of relapses and protected from the development of further disability. Both the reduced autoreactive T cell response measured by proliferation toward the encephalitogenic peptide PLP139–151 and the cytokine profile indicate a potent blockade of T helper cell type 1 immune response. In in vitro assays atorvastatin not only inhibited antigen-specific responses, but also decreased T cell proliferation mediated by direct TCR engagement independently of MHC class II and LFA-1. Inhibition of proliferation was not due to apoptosis induction, but linked to a negative regulation on cell cycle progression. However, early T cell activation was unaffected, as reflected by unaltered calcium fluxes. Thus, our results provide evidence for a beneficial role of statins in the treatment of autoimmune attack on the CNS. PMID:12629065

  9. Cellular and molecular aspects of the pathomechanism and therapy of murine experimental allergic encephalomyelitis.

    PubMed

    Tabira, T

    1989-01-01

    Experimental allergic encephalomyelitis (EAE) is an autoimmune disease of the central nervous system (CNS). Its immune mechanism is well understood at the cellular and molecular levels, which is herein reviewed. Susceptibility to EAE is under the control of the genes partially inside and partially outside the H-2 complex. There are two myelin constituents known to be encephalitogenic, myelin basic protein and proteolipid apoprotein. EAE is mediated by effector T cells sensitized to the encephalitogen. Effector T cells bear surface phenotypes of Lyt1+2-, L3T4+, and they are activated by the encephalitogen/self Ia complex or certain alloantigens and acquire encephalitogenic activity. By unknown homing mechanisms, the effector T cells invade the CNS and induce the target phase phenomena, which include Ia-antigen expression in the local tissue, activation of procoagulant activity, breakdown of the blood-brain barrier, and excretion of lymphokines which induce inflammation and demyelination, resulting in functional alteration. Possibility of specific immune therapy is postulated as a model for human autoimmune disease. PMID:2484301

  10. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  11. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    PubMed Central

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C.; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis. PMID:24477292

  12. [Autoimmune hemolytic anemia in children].

    PubMed

    Becheur, M; Bouslama, B; Slama, H; Toumi, N E H

    2015-01-01

    Autoimmune hemolytic anemia is a rare condition in children which differs from the adult form. It is defined by immune-mediated destruction of red blood cells caused by autoantibodies. Characteristics of the autoantibodies are responsible for the various clinical entities. Classifications of autoimmune hemolytic anemia include warm autoimmune hemolytic anemia, cold autoimmune hemolytic anemia, and paroxysmal cold hemoglobinuria. For each classification, this review discusses the epidemiology, etiology, clinical presentation, laboratory evaluation, and treatment options. PMID:26575109

  13. [Retinoid therapy for autoimmune diseases].

    PubMed

    Fukasawa, Hiroshi; Kagechika, Hiroyuki; Shudo, Koichi

    2006-06-01

    Retinoid is a collective term for compounds which bind to and activate retinoic acid receptors (RARalpha, beta, gamma and RXRalpha, beta, gamma), members of nuclear hormone receptor superfamily. The most important endogeneous retinoid is all-trans-retinoic acid (ATRA) which is an RARalpha, beta and gamma ligand. ATRA and its mimics have been in clinical use for treatment of acute promyelocytic leukemia (APL) and some skin diseases. Many synthetic retinoids have been developed and attempts to improve their medicinal properties have been made. Among them, tamibarotene (Am80) is an RARalpha- and RARbeta-specific (but RARgamma- and RXRs-nonbinding) synthetic retinoid that is effective in the treatment of psoriasis patients and relapsed APL. Experimentally, this compound is also active in animal models of rheumatoid arthritis and experimental autoimmune encephalomyelitis. On this background, possible application of retinoids for the treatment of autoimmune diseases was discussed. In particular, Th1 dominant autoimmune diseases may be the targets of the retinoids. PMID:16819260

  14. Moesin is activated in cardiomyocytes in experimental autoimmune myocarditis and mediates cytoskeletal reorganization with protrusion formation.

    PubMed

    Miyawaki, Akimitsu; Mitsuhara, Yusuke; Orimoto, Aya; Nakayasu, Yusuke; Tsunoda, Shin-Ichi; Obana, Masanori; Maeda, Makiko; Nakayama, Hiroyuki; Yoshioka, Yasuo; Tsutsumi, Yasuo; Fujio, Yasushi

    2016-08-01

    Acute myocarditis is a self-limiting disease. Most patients with myocarditis recover without cardiac dysfunction in spite of limited capacity of myocardial regeneration. Therefore, to address intrinsic reparative machinery of inflamed hearts, we investigated the cellular dynamics of cardiomyocytes in response to inflammation using experimental autoimmune myocarditis (EAM) model. EAM was induced by immunization of BALB/c mice with α-myosin heavy chain peptides twice. The inflammatory reaction was evoked with myocardial damage with the peak at 3 wk after the first immunization (EAM3w). Morphological and functional restoration started from EAM3w, when active protrusion formation, a critical process of myocardial healing, was observed in cardiomyocytes. Shotgun proteomics revealed that cytoskeletal proteins were preferentially increased in cardiomyocytes at EAM3w, compared with preimmunized (EAM0w) hearts, and that moesin was the most remarkably upregulated among them. Immunoblot analyses demonstrated that the expression of both total and phosphorylated moesin was upregulated in isolated cardiomyocytes from EAM3w hearts. Immunofluorescence staining showed that moesin was localized at cardiomyocyte protrusions at EAM3w. Adenoviral vectors expressing wild-type, constitutively active and inactive form of moesin (wtMoesin, caMoesin, and iaMoesin, respectively) were transfected in neonatal rat cardiomyocytes. The overexpression of wtMoesin and caMoesin resulted in protrusion formation, while not iaMoesin. Finally, we found that cardiomyocyte protrusions were accompanied by cell-cell contact formation. The expression of moesin was upregulated in cardiomyocytes under inflammation, inducing protrusion formation in a phosphorylation-dependent fashion. Moesin signal could be a novel therapeutic target that stimulates myocardial repair by promoting contact formation of cardiomyocytes. PMID:27342875

  15. CD8 T cells mediate direct biliary ductule damage in NOD autoimmune biliary disease

    PubMed Central

    Yang, Guo-Xiang; Wu, Yuehong; Tsukamoto, Hiroki; Leung, Patrick S.; Lian, Zhe-Xiong; Rainbow, Daniel B.; Hunter, Kara M.; Morris, Gerard A.; Lyons, Paul A.; Peterson, Laurence B.; Wicker, Linda S.; Gershwin, M.E.; Ridgway, William M.

    2016-01-01

    We previously described the NOD.c3c4 mouse, which is protected from type 1 diabetes (T1D) due to protective alleles at multiple insulin-dependent diabetes (Idd) genes, but develops autoimmune biliary disease (ABD) resembling primary biliary cirrhosis (PBC). Here we characterize the NOD.ABD strain, which is genetically-related to the NOD.c3c4 strain but develops both ABD and T1D. Histologically, NOD.ABD biliary disease is indistinguishable from that in NOD.c3c4 mice. The frequency of effector memory (CD44+CD62L-) and central memory (CD44+CD62L+) CD8 T cells is significantly increased in the intrahepatic lymphocyte fraction of NOD.ABD mice, and NOD.ABD CD8 T cells produce more IFN-γ and TNF-α, compared to controls. NOD.ABD splenocytes can transfer ABD and T1D to NOD.c3c4 scid mice, but only T1D to NOD scid mice, suggesting that the genetic origin of the target organ and/or its innate immune cells is critical to disease pathogenesis. The disease transfer model, importantly, shows that biliary duct damage (characteristic of PBC) and inflammation precede biliary epithelial cell proliferation. Unlike T1D where both CD4 and CD8 T cells are required for disease transfer, purified NOD.ABD CD8 T cells can transfer liver inflammation into NOD.c3c4 scid recipients, and disease transfer is ameliorated by co-transferring T regulatory cells. Unlike NOD.c3c4 mice, NOD.ABD mice do not develop antinuclear or anti-Smith autoantibodies; however, NOD.ABD mice do develop the anti-pyruvate dehydrogenase antibodies typical of human PBC. The NOD.ABD strain is a model of immune dysregulation affecting two organ systems, most likely by mechanisms that do not completely coincide. PMID:21169553

  16. Corticosteroid treatment of experimental autoimmune encephalomyelitis in the Lewis rat results in loss of V beta 8.2+ and myelin basic protein-reactive cells from the spinal cord, with increased total T-cell apoptosis but reduced apoptosis of V beta 8.2+ cells.

    PubMed

    McCombe, P A; Nickson, I; Tabi, Z; Pender, M P

    1996-11-01

    We have studied the effects of corticosteroid treatment on the numbers of lymphocytes obtained from the spinal cords of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE) induced by inoculation with myelin basic protein (MBP) and adjuvants. Flow cytometric studies showed that treatment with dexamethasone (4 mg/kg) 8-12 h prior to study on day 14 after inoculation resulted in a reduction in the numbers of CD5+, TCR alpha beta + and V beta 8.2+ cells in the spinal cord. Limiting dilution analysis indicated that dexamethasone treatment 12 h prior to study on day 12 after inoculation reduced the frequencies of MBP-reactive and interleukin-2-responsive lymphocytes in the spinal cord to low levels, but reduced the frequency of concanavalin-A-responsive lymphocytes to a lesser extent. Using propidium iodide staining of nuclear chromatin we also studied lymphocyte apoptosis. Greater numbers of apoptotic cells were found in the cells extracted from the spinal cords of rats, examined on day 14, that had been treated 1-12 h previously with dexamethasone, than in saline-treated controls. This increased level of apoptosis was observed in the CD5+ and TCR alpha beta + cell populations. At 1-4 h after dexamethasone treatment there was a reduction in the selective apoptosis of V beta 8.2+ cells that normally occurs during spontaneous recovery from EAE. Therefore apoptosis of V beta 8.2+ cells cannot explain the reduction in the numbers of V beta 8.2+ cells and MBP-reactive cells in the CNS after dexamethasone treatment. By 8-12 h after dexamethasone treatment the selectivity of the apoptotic process was restored. These studies suggest that a reduction in the number of T-lymphocytes in the central nervous system contributes to the beneficial effects of corticosteroids in EAE. PMID:8898717

  17. Absence of IFN-γ increases brain pathology in experimental autoimmune encephalomyelitis-susceptible DRB1*0301.DQ8 HLA transgenic mice through secretion of proinflammatory cytokine IL-17 and induction of pathogenic monocytes/microglia into the central nervous system.

    PubMed

    Mangalam, Ashutosh K; Luo, Ningling; Luckey, David; Papke, Louisa; Hubbard, Alyssa; Wussow, Arika; Smart, Michele; Giri, Shailendra; Rodriguez, Moses; David, Chella

    2014-11-15

    Multiple sclerosis is an inflammatory, demyelinating disease of the CNS of presumed autoimmune origin. Of all the genetic factors linked with multiple sclerosis, MHC class II molecules have the strongest association. Generation of HLA class II transgenic (Tg) mice has helped to elucidate the role of HLA class II genes in chronic inflammatory and demyelinating diseases. We have shown that the human HLA-DRB1*0301 gene predisposes to proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE), whereas HLA-DQβ1*0601 (DQ6) was resistant. We also showed that the DQ6 molecule protects from EAE in DRB1*0301.DQ6 double-Tg mice by producing anti-inflammatory IFN-γ. HLA-DQβ1*0302 (DQ8) Tg mice were also resistant to PLP(91-110)-induced EAE, but production of proinflammatory IL-17 exacerbated disease in DRB1*0301.DQ8 mice. To further confirm the role of IFN-γ in protection, we generated DRB1*0301.DQ8 mice lacking IFN-γ (DRB1*0301.DQ8.IFN-γ(-/-)). Immunization with PLP(91-110) peptide caused atypical EAE in DRB1*0301.DQ8.IFN-γ(-/-) mice characterized by ataxia, spasticity, and dystonia, hallmarks of brain-specific disease. Severe brain-specific inflammation and demyelination in DRB1*0301.DQ8.IFN-γ(-/-) mice with minimal spinal cord pathology further confirmed brain-specific pathology. Atypical EAE in DRB1*0301.DQ8.IFN-γ(-/-) mice was associated with increased encephalitogenicity of CD4 T cells and their ability to produce greater levels of IL-17 and GM-CSF compared with DRB1*0301.DQ8 mice. Further, areas with demyelination showed increased presence of CD68(+) inflammatory cells, suggesting an important role for monocytes/microglia in causing brain pathology. Thus, our study supports a protective role for IFN-γ in the demyelination of brain through downregulation of IL-17/GM-CSF and induction of neuroprotective factors in the brain by monocytes/microglial cells. PMID:25339670

  18. Autoimmune Hepatitis

    MedlinePlus

    ... Organizations ​​ (PDF, 341 KB)​​​​​ Alternate Language URL Autoimmune Hepatitis Page Content On this page: What is autoimmune ... Points to Remember Clinical Trials What is autoimmune hepatitis? Autoimmune hepatitis is a chronic—or long lasting— ...

  19. Link between Organ-specific Antigen Processing by 20S Proteasomes and CD8+ T Cell–mediated Autoimmunity

    PubMed Central

    Kuckelkorn, Ulrike; Ruppert, Thomas; Strehl, Britta; Jungblut, Peter R.; Zimny-Arndt, Ursula; Lamer, Stephanie; Prinz, Immo; Drung, Ilse; Kloetzel, Peter-M.; Kaufmann, Stefan H.E.; Steinhoff, Ulrich

    2002-01-01

    Adoptive transfer of cross-reactive HSP60-specific CD8+ T cells into immunodeficient mice causes autoimmune intestinal pathology restricted to the small intestine. We wondered whether local immunopathology induced by CD8+ T cells can be explained by tissue-specific differences in proteasome-mediated processing of major histocompatibility complex class I T cell epitopes. Our experiments demonstrate that 20S proteasomes of different organs display a characteristic composition of α and β chain subunits and produce distinct peptide fragments with respect to both quality and quantity. Digests of HSP60 polypeptides by 20S proteasomes show most efficient generation of the pathology related CD8+ T cell epitope in the small intestine. Further, we demonstrate that the organ-specific potential to produce defined T cell epitopes reflects quantities that are relevant for cytotoxic T lymphocyte recognition. We propose tissue-specific antigen processing by 20S proteasomes as a potential mechanism to control organ-specific immune responses. PMID:11956289

  20. Inhibition of experimental autoimmune uveoretinitis by systemic and subconjunctival adenovirus-mediated transfer of the viral IL-10 gene

    PubMed Central

    De Kozak, Y; Thillaye-Goldenberg, B; Naud, M -C; Viana Da Costa, A; Auriault, C; Verwaerde, C

    2002-01-01

    Pathological ocular manifestations result from a dysregulation in the balance between proinflammatory type 1 cytokines and regulatory type 2 cytokines. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with potent immunosuppressive effects. We have examined the efficiency of viral IL-10 adenovirus (Ad-vIL-10)-mediated gene transfer on experimental autoimmune uveoretinitis (EAU) induced in mice and rats by purified retinal autoantigens, respectively, interphotoreceptor binding protein (IRBP) and S-antigen (S-Ag). B10-A mice that received a single unilateral injection of Ad-vIL-10 in the retro-orbital sinus venosus performed 1 day before immunization with IRBP in the footpads showed high levels of circulating vIL-10 in their sera and a significant reduction in pathological ocular manifestations. Lower levels of IFN-γ and IL-2 were found in cellular supernatants from IRBP-stimulated splenic cells in these treated mice. The local effect on ocular disease of vIL-10 was neutralized completely by injection of a monoclonal anti-vIL-10 antibody, demonstrating the specificity of the treatment. To determine whether the transfer of the vIL-10 gene within the periocular tissues of the eye could prevent acute EAU, a subconjunctival injection of Ad-vIL-10 was performed in Lewis rats simultaneously with S-antigen in the footpads. This injection determined in situ vIL-10 expression with very low circulating vIL-10 and led to a significant reduction of EAU without affecting the systemic immune response. The present results suggest that Ad-mediated gene transfer resulting in systemic and local expression of vIL-10 provide a promising approach for the treatment of uveitis. PMID:12390308

  1. Herbal medicinal products target defined biochemical and molecular mediators of inflammatory autoimmune arthritis

    PubMed Central

    Venkatesha, Shivaprasad H.; Berman, Brian M.; Moudgil, Kamal D.

    2010-01-01

    Rheumatoid arthritis (RA) is a chronic debilitating disease characterized by synovial inflammation, damage to cartilage and bone, and deformities of the joints. Several drugs possessing anti-inflammatory and immunomodulatory properties are being used in the conventional (allopathic) system of medicine to treat RA. However, the long-term use of these drugs is associated with harmful side effects. Therefore, newer drugs with low or no toxicity for the treatment of RA are actively being sought. Interestingly, several herbs demonstrate anti-inflammatory and anti-arthritic activity. In this review, we describe the role of the major biochemical and molecular mediators in the pathogenesis of RA, and highlight the sites of action of herbal medicinal products that have anti-arthritic activity. With the rapidly increasing use of CAM products by patients with RA and other inflammation-related disorders, our review presents timely information validating the scientific rationale for the use of natural therapeutic products. PMID:21115252

  2. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  3. Tc17 CD8+ T cells potentiate Th1-mediated autoimmune diabetes in a mouse model.

    PubMed

    Saxena, Amit; Desbois, Sabine; Carrié, Nadège; Lawand, Myriam; Mars, Lennart T; Liblau, Roland S

    2012-09-15

    An increase in IL-17-producing CD8+ T (Tc17) cells has been reported in the peripheral blood of children with recent onset type 1 diabetes (T1D), but their contribution to disease pathogenesis is still unknown. To directly study the pathogenic potential of β cell-specific Tc17 cells, we used an experimental model of T1D based on the expression of the neo-self Ag hemagglutinin (HA) in the β cells of the pancreas. When transferred alone, the IL-17-producing HA-specific CD8+ T cells homed to the pancreatic lymph nodes without causing any pancreatic infiltration or tissue destruction. When transferred together with small numbers of diabetogenic HA-specific CD4+ T cells, a strikingly different phenotype developed. Under these conditions, Tc17 cells sustained disease progression, driving the destruction of β-islet cells, causing hyperglycemia and ultimately death. Disease progression did not correlate with functional or numerical alterations among the HA-specific CD4+ T cells. Rather, the transferred CD8+ T cells accumulated in the pancreatic islets and a considerable fraction converted, under the control of IL-12, to an IFN-γ-producing phenotype. Our data indicate that Tc17 cells are not diabetogenic but can potentiate a Th1-mediated disease. Plasticity of the Tc17 lineage is associated with transition to overt disease in this experimental model of T1D. PMID:22904307

  4. TLR2 dependent induction of vitamin A metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits TH-17 mediated autoimmunity

    PubMed Central

    Manicassamy, Santhakumar; Ravindran, Rajesh; Deng, Jiusheng; Oluoch, Herold; Denning, Timothy L; Kasturi, Sudhir Pai; Rosenthal, Kristen M.; Evavold, Brian D.; Pulendran, Bali

    2009-01-01

    Immune sensing of a microbe occurs via multiple receptors. How signals from different receptors are coordinated to yield a specific immune response is poorly understood. We demonstrate that the different pathogen recognition receptors, TLR2 and dectin-1, recognizing the same microbial stimulus, stimulate distinct innate and adaptive responses. TLR2 signaling induced splenic dendritic cells (DCs) to express the retinoic acid (RA) metabolizing enzyme Raldh2 and IL-10, and to metabolize vitamin A and stimulate Foxp3+ T regulatory cells (Treg cells). RA acted on DCs to induce Socs3 expression, which suppressed activation of p38 MAPK and pro-inflammatory cytokines. Consistent with this, TLR2 signaling induced Treg cells, and suppressed IL-23 and TH-17/ TH-1 mediated autoimmune responses in vivo. In contrast, dectin-1 signaling mostly induced IL-23 and pro-inflammatory cytokines, and augmented TH-17/ TH-1 mediated autoimmune responses in vivo. These data define a new mechanism for the systemic induction of RA and immune suppression against autoimmunity. PMID:19252500

  5. The disease-modifying effects of a Sativex-like combination of phytocannabinoids in mice with experimental autoimmune encephalomyelitis are preferentially due to Δ9-tetrahydrocannabinol acting through CB1 receptors.

    PubMed

    Moreno-Martet, Miguel; Feliú, Ana; Espejo-Porras, Francisco; Mecha, Miriam; Carrillo-Salinas, Francisco J; Fernández-Ruiz, Javier; Guaza, Carmen; de Lago, Eva

    2015-11-01

    Sativex(®), an equimolecular combination of Δ(9)-tetrahydrocannabinol-botanical drug substance (Δ(9)-THC-BDS) and cannabidiol-botanical drug substance (CBD-BDS), is a licensed medicine that may be prescribed for alleviating specific symptoms of multiple sclerosis (MS) such as spasticity and pain. However, further evidence suggest that it could be also active as disease-modifying therapy given the immunomodulatory, anti-inflammatory and cytoprotective properties of their two major components. In this study, we investigated this potential in the experimental autoimmune encephalitis (EAE) model of MS in mice. We compared the effect of a Sativex-like combination of Δ(9)-THC-BDS (10 mg/kg) and CBD-BDS (10 mg/kg) with Δ(9)-THC-BDS (20 mg/kg) or CBD-BDS (20 mg/kg) administered separately by intraperitoneal administration to EAE mice. Treatments were initiated at the time that symptoms appear and continued up to the first relapse of the disease. The results show that the treatment with a Sativex-like combination significantly improved the neurological deficits typical of EAE mice, in parallel with a reduction in the number and extent of cell aggregates present in the spinal cord which derived from cell infiltration to the CNS. These effects were completely reproduced by the treatment with Δ(9)-THC-BDS alone, but not by CBD-BDS alone which only delayed the onset of the disease without improving disease progression and reducing the cell infiltrates in the spinal cord. Next, we investigated the potential targets involved in the effects of Δ(9)-THC-BDS by selectively blocking CB(1) or PPAR-γ receptors, and we found a complete reversion of neurological benefits and the reduction in cell aggregates only with rimonabant, a selective CB(1) receptor antagonist. Collectively, our data support the therapeutic potential of Sativex as a phytocannabinoid formulation capable of attenuating EAE progression, and that the active compound was Δ(9)-THC-BDS acting through CB(1

  6. The role of dendritic cells in CNS autoimmunity

    PubMed Central

    Zozulya, Alla L.; Clarkson, Benjamin D.; Ortler, Sonja; Fabry, Zsuzsanna

    2010-01-01

    Multiple sclerosis (MS) is a chronic immune-mediated, central nervous system (CNS) demyelinating disease. Clinical and histopathological features suggest an inflammatory etiology involving resident CNS innate cells as well as invading adaptive immune cells. Encephalitogenic myelin-reactive T cells have been implicated in the initiation of an inflammatory cascade, eventually resulting in demyelination and axonal damage (the histological hallmarks of MS). Dendritic cells (DC) have recently emerged as key modulators of this immunopathological cascade, as supported by studies in humans and experimental disease models. In one such model, experimental autoimmune encephalomyelitis (EAE), CNS microvessel-associated DC have been shown to be essential for local antigen recognition by myelin-reactive T cells. Moreover, the functional state and compartmental distribution of DC derived from CNS and associated lymphatics seem to be limiting factors in both the induction and effector phases of EAE. Moreover, DC modulate and balance the recruitment of encephalitogenic and regulatory T cells into CNS tissue. This capacity is critically influenced by DC surface expression of co-stimulatory or co-inhibitory molecules. The fact that DC accumulate in the CNS before T cells and can direct T-cell responses suggests that they are key determinants of CNS autoimmune outcomes. Here we provide a comprehensive review of recent advances in our understanding of CNS-derived DC and their relevance to neuroinflammation. PMID:20217033

  7. Autoimmunity in 2013.

    PubMed

    Selmi, Carlo