Sample records for automata linear rules

  1. Boolean linear differential operators on elementary cellular automata

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, Ángel

    2014-12-01

    In this paper, the notion of boolean linear differential operator (BLDO) on elementary cellular automata (ECA) is introduced and some of their more important properties are studied. Special attention is paid to those differential operators whose coefficients are the ECA with rule numbers 90 and 150.

  2. Inferring the Limit Behavior of Some Elementary Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.

    Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.

  3. Nonsynchronous updating in the multiverse of cellular automata

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Kinouchi, Osame

    2015-04-01

    In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities.

  4. Nonsynchronous updating in the multiverse of cellular automata.

    PubMed

    Reia, Sandro M; Kinouchi, Osame

    2015-04-01

    In this paper we study updating effects on cellular automata rule space. We consider a subset of 6144 order-3 automata from the space of 262144 bidimensional outer-totalistic rules. We compare synchronous to asynchronous and sequential updatings. Focusing on two automata, we discuss how update changes destroy typical structures of these rules. Besides, we show that the first-order phase transition in the multiverse of synchronous cellular automata, revealed with the use of a recently introduced control parameter, seems to be robust not only to changes in update schema but also to different initial densities.

  5. Cellular Automata

    NASA Astrophysics Data System (ADS)

    Gutowitz, Howard

    1991-08-01

    Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices. Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole. Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.

  6. Lempel-Ziv complexity analysis of one dimensional cellular automata.

    PubMed

    Estevez-Rams, E; Lora-Serrano, R; Nunes, C A J; Aragón-Fernández, B

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  7. Lempel-Ziv complexity analysis of one dimensional cellular automata

    NASA Astrophysics Data System (ADS)

    Estevez-Rams, E.; Lora-Serrano, R.; Nunes, C. A. J.; Aragón-Fernández, B.

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  8. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  9. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata

    PubMed Central

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-01-01

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664

  10. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.

    PubMed

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-03-29

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.

  11. Opinion evolution based on cellular automata rules in small world networks

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Ming; Shi, Lun; Zhang, Jie-Fang

    2010-03-01

    In this paper, we apply cellular automata rules, which can be given by a truth table, to human memory. We design each memory as a tracking survey mode that keeps the most recent three opinions. Each cellular automata rule, as a personal mechanism, gives the final ruling in one time period based on the data stored in one's memory. The key focus of the paper is to research the evolution of people's attitudes to the same question. Based on a great deal of empirical observations from computer simulations, all the rules can be classified into 20 groups. We highlight the fact that the phenomenon shown by some rules belonging to the same group will be altered within several steps by other rules in different groups. It is truly amazing that, compared with the last hundreds of presidential voting in America, the eras of important events in America's history coincide with the simulation results obtained by our model.

  12. Monitoring with Data Automata

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    We present a form of automaton, referred to as data automata, suited for monitoring sequences of data-carrying events, for example emitted by an executing software system. This form of automata allows states to be parameterized with data, forming named records, which are stored in an efficiently indexed data structure, a form of database. This very explicit approach differs from other automaton-based monitoring approaches. Data automata are also characterized by allowing transition conditions to refer to other parameterized states, and by allowing transitions sequences. The presented automaton concept is inspired by rule-based systems, especially the Rete algorithm, which is one of the well-established algorithms for executing rule-based systems. We present an optimized external DSL for data automata, as well as a comparable unoptimized internal DSL (API) in the Scala programming language, in order to compare the two solutions. An evaluation compares these two solutions to several other monitoring systems.

  13. Cellular Automata Generalized To An Inferential System

    NASA Astrophysics Data System (ADS)

    Blower, David J.

    2007-11-01

    Stephen Wolfram popularized elementary one-dimensional cellular automata in his book, A New Kind of Science. Among many remarkable things, he proved that one of these cellular automata was a Universal Turing Machine. Such cellular automata can be interpreted in a different way by viewing them within the context of the formal manipulation rules from probability theory. Bayes's Theorem is the most famous of such formal rules. As a prelude, we recapitulate Jaynes's presentation of how probability theory generalizes classical logic using modus ponens as the canonical example. We emphasize the important conceptual standing of Boolean Algebra for the formal rules of probability manipulation and give an alternative demonstration augmenting and complementing Jaynes's derivation. We show the complementary roles played in arguments of this kind by Bayes's Theorem and joint probability tables. A good explanation for all of this is afforded by the expansion of any particular logic function via the disjunctive normal form (DNF). The DNF expansion is a useful heuristic emphasized in this exposition because such expansions point out where relevant 0s should be placed in the joint probability tables for logic functions involving any number of variables. It then becomes a straightforward exercise to rely on Boolean Algebra, Bayes's Theorem, and joint probability tables in extrapolating to Wolfram's cellular automata. Cellular automata are seen as purely deductive systems, just like classical logic, which probability theory is then able to generalize. Thus, any uncertainties which we might like to introduce into the discussion about cellular automata are handled with ease via the familiar inferential path. Most importantly, the difficult problem of predicting what cellular automata will do in the far future is treated like any inferential prediction problem.

  14. Quantum cellular automata and free quantum field theory

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-02-01

    In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.

  15. Color image encryption based on hybrid hyper-chaotic system and cellular automata

    NASA Astrophysics Data System (ADS)

    Yaghouti Niyat, Abolfazl; Moattar, Mohammad Hossein; Niazi Torshiz, Masood

    2017-03-01

    This paper proposes an image encryption scheme based on Cellular Automata (CA). CA is a self-organizing structure with a set of cells in which each cell is updated by certain rules that are dependent on a limited number of neighboring cells. The major disadvantages of cellular automata in cryptography include limited number of reversal rules and inability to produce long sequences of states by these rules. In this paper, a non-uniform cellular automata framework is proposed to solve this problem. This proposed scheme consists of confusion and diffusion steps. In confusion step, the positions of the original image pixels are replaced by chaos mapping. Key image is created using non-uniform cellular automata and then the hyper-chaotic mapping is used to select random numbers from the image key for encryption. The main contribution of the paper is the application of hyper chaotic functions and non-uniform CA for robust key image generation. Security analysis and experimental results show that the proposed method has a very large key space and is resistive against noise and attacks. The correlation between adjacent pixels in the encrypted image is reduced and the amount of entropy is equal to 7.9991 which is very close to 8 which is ideal.

  16. Object Synthesis in Conway's Game of Life and Other Cellular Automata

    NASA Astrophysics Data System (ADS)

    Niemiec, Mark D.

    Of the very large number of cellular automata rules in existence, a relatively small number of rules may be considered interesting. Some of the features that make such rules interesting permit patterns to expand, contract, separate into multiple sub-patterns, or combine with other patterns. Such rules generally include still-lifes, oscillators, spaceships, spaceship guns, and puffer trains. Such structures can often be used to construct more complicated computational circuitry, and rules that contain them can often be shown to be computationally universal. Conway's Game of Life is one rule that has been well-studied for several decades, and has been shown to be very fruitful in this regard.

  17. Structure and Reversibility of 2D von Neumann Cellular Automata Over Triangular Lattice

    NASA Astrophysics Data System (ADS)

    Uguz, Selman; Redjepov, Shovkat; Acar, Ecem; Akin, Hasan

    2017-06-01

    Even though the fundamental main structure of cellular automata (CA) is a discrete special model, the global behaviors at many iterative times and on big scales could be a close, nearly a continuous, model system. CA theory is a very rich and useful phenomena of dynamical model that focuses on the local information being relayed to the neighboring cells to produce CA global behaviors. The mathematical points of the basic model imply the computable values of the mathematical structure of CA. After modeling the CA structure, an important problem is to be able to move forwards and backwards on CA to understand their behaviors in more elegant ways. A possible case is when CA is to be a reversible one. In this paper, we investigate the structure and the reversibility of two-dimensional (2D) finite, linear, triangular von Neumann CA with null boundary case. It is considered on ternary field ℤ3 (i.e. 3-state). We obtain their transition rule matrices for each special case. For given special triangular information (transition) rule matrices, we prove which triangular linear 2D von Neumann CAs are reversible or not. It is known that the reversibility cases of 2D CA are generally a much challenged problem. In the present study, the reversibility problem of 2D triangular, linear von Neumann CA with null boundary is resolved completely over ternary field. As far as we know, there is no structure and reversibility study of von Neumann 2D linear CA on triangular lattice in the literature. Due to the main CA structures being sufficiently simple to investigate in mathematical ways, and also very complex to obtain in chaotic systems, it is believed that the present construction can be applied to many areas related to these CA using any other transition rules.

  18. Probabilistic Cellular Automata

    PubMed Central

    Agapie, Alexandru; Giuclea, Marius

    2014-01-01

    Abstract Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case—connecting the probability of a configuration in the stationary distribution to its number of zero-one borders—the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata. PMID:24999557

  19. Probabilistic cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Giuclea, Marius

    2014-09-01

    Cellular automata are binary lattices used for modeling complex dynamical systems. The automaton evolves iteratively from one configuration to another, using some local transition rule based on the number of ones in the neighborhood of each cell. With respect to the number of cells allowed to change per iteration, we speak of either synchronous or asynchronous automata. If randomness is involved to some degree in the transition rule, we speak of probabilistic automata, otherwise they are called deterministic. With either type of cellular automaton we are dealing with, the main theoretical challenge stays the same: starting from an arbitrary initial configuration, predict (with highest accuracy) the end configuration. If the automaton is deterministic, the outcome simplifies to one of two configurations, all zeros or all ones. If the automaton is probabilistic, the whole process is modeled by a finite homogeneous Markov chain, and the outcome is the corresponding stationary distribution. Based on our previous results for the asynchronous case-connecting the probability of a configuration in the stationary distribution to its number of zero-one borders-the article offers both numerical and theoretical insight into the long-term behavior of synchronous cellular automata.

  20. Reversible elementary cellular automaton with rule number 150 and periodic boundary conditions over 𝔽p

    NASA Astrophysics Data System (ADS)

    Martín Del Rey, A.; Rodríguez Sánchez, G.

    2015-03-01

    The study of the reversibility of elementary cellular automata with rule number 150 over the finite state set 𝔽p and endowed with periodic boundary conditions is done. The dynamic of such discrete dynamical systems is characterized by means of characteristic circulant matrices, and their analysis allows us to state that the reversibility depends on the number of cells of the cellular space and to explicitly compute the corresponding inverse cellular automata.

  1. Agent-based modeling of the immune system: NetLogo, a promising framework.

    PubMed

    Chiacchio, Ferdinando; Pennisi, Marzio; Russo, Giulia; Motta, Santo; Pappalardo, Francesco

    2014-01-01

    Several components that interact with each other to evolve a complex, and, in some cases, unexpected behavior, represents one of the main and fascinating features of the mammalian immune system. Agent-based modeling and cellular automata belong to a class of discrete mathematical approaches in which entities (agents) sense local information and undertake actions over time according to predefined rules. The strength of this approach is characterized by the appearance of a global behavior that emerges from interactions among agents. This behavior is unpredictable, as it does not follow linear rules. There are a lot of works that investigates the immune system with agent-based modeling and cellular automata. They have shown the ability to see clearly and intuitively into the nature of immunological processes. NetLogo is a multiagent programming language and modeling environment for simulating complex phenomena. It is designed for both research and education and is used across a wide range of disciplines and education levels. In this paper, we summarize NetLogo applications to immunology and, particularly, how this framework can help in the development and formulation of hypotheses that might drive further experimental investigations of disease mechanisms.

  2. Analytical formulation of cellular automata rules using data models

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.

    2009-05-01

    We present a unique method for converting traditional cellular automata (CA) rules into analytical function form. CA rules have been successfully used for morphological image processing and volumetric shape recognition and classification. Further, the use of CA rules as analog models to the physical and biological sciences can be significantly extended if analytical (as opposed to discrete) models could be formulated. We show that such transformations are possible. We use as our example John Horton Conway's famous "Game of Life" rule set. We show that using Data Modeling, we are able to derive both polynomial and bi-spectrum models of the IF-THEN rules that yield equivalent results. Further, we demonstrate that the "Game of Life" rule set can be modeled using the multi-fluxion, yielding a closed form nth order derivative and integral. All of the demonstrated analytical forms of the CA rule are general and applicable to real-time use.

  3. A Cellular Automata-based Model for Simulating Restitution Property in a Single Heart Cell.

    PubMed

    Sabzpoushan, Seyed Hojjat; Pourhasanzade, Fateme

    2011-01-01

    Ventricular fibrillation is the cause of the most sudden mortalities. Restitution is one of the specific properties of ventricular cell. The recent findings have clearly proved the correlation between the slope of restitution curve with ventricular fibrillation. This; therefore, mandates the modeling of cellular restitution to gain high importance. A cellular automaton is a powerful tool for simulating complex phenomena in a simple language. A cellular automaton is a lattice of cells where the behavior of each cell is determined by the behavior of its neighboring cells as well as the automata rule. In this paper, a simple model is depicted for the simulation of the property of restitution in a single cardiac cell using cellular automata. At first, two state variables; action potential and recovery are introduced in the automata model. In second, automata rule is determined and then recovery variable is defined in such a way so that the restitution is developed. In order to evaluate the proposed model, the generated restitution curve in our study is compared with the restitution curves from the experimental findings of valid sources. Our findings indicate that the presented model is not only capable of simulating restitution in cardiac cell, but also possesses the capability of regulating the restitution curve.

  4. Generic framework for mining cellular automata models on protein-folding simulations.

    PubMed

    Diaz, N; Tischer, I

    2016-05-13

    Cellular automata model identification is an important way of building simplified simulation models. In this study, we describe a generic architectural framework to ease the development process of new metaheuristic-based algorithms for cellular automata model identification in protein-folding trajectories. Our framework was developed by a methodology based on design patterns that allow an improved experience for new algorithms development. The usefulness of the proposed framework is demonstrated by the implementation of four algorithms, able to obtain extremely precise cellular automata models of the protein-folding process with a protein contact map representation. Dynamic rules obtained by the proposed approach are discussed, and future use for the new tool is outlined.

  5. Runtime Analysis of Linear Temporal Logic Specifications

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Havelund, Klaus

    2001-01-01

    This report presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to B chi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.

  6. Using cellular automata to generate image representation for biological sequences.

    PubMed

    Xiao, X; Shao, S; Ding, Y; Huang, Z; Chen, X; Chou, K-C

    2005-02-01

    A novel approach to visualize biological sequences is developed based on cellular automata (Wolfram, S. Nature 1984, 311, 419-424), a set of discrete dynamical systems in which space and time are discrete. By transforming the symbolic sequence codes into the digital codes, and using some optimal space-time evolvement rules of cellular automata, a biological sequence can be represented by a unique image, the so-called cellular automata image. Many important features, which are originally hidden in a long and complicated biological sequence, can be clearly revealed thru its cellular automata image. With biological sequences entering into databanks rapidly increasing in the post-genomic era, it is anticipated that the cellular automata image will become a very useful vehicle for investigation into their key features, identification of their function, as well as revelation of their "fingerprint". It is anticipated that by using the concept of the pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43, 246-255), the cellular automata image approach can also be used to improve the quality of predicting protein attributes, such as structural class and subcellular location.

  7. A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata

    NASA Astrophysics Data System (ADS)

    Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi

    2015-08-01

    Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.

  8. Simulation of root forms using cellular automata model

    NASA Astrophysics Data System (ADS)

    Winarno, Nanang; Prima, Eka Cahya; Afifah, Ratih Mega Ayu

    2016-02-01

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled "A New Kind of Science" discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram's investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.

  9. Evolution of Cellular Automata toward a LIFE-Like Rule Guided by 1/ƒ Noise

    NASA Astrophysics Data System (ADS)

    Ninagawa, Shigeru

    There is evidence in favor of a relationship between the presence of 1/ƒ noise and computational universality in cellular automata. To confirm the relationship, we search for two-dimensional cellular automata with a 1/ƒ power spectrum by means of genetic algorithms. The power spectrum is calculated from the evolution of the state of the cell, starting from a random initial configuration. The fitness is estimated by the power spectrum with consideration of the spectral similarity to the 1/ƒ spectrum. The result shows that the rule with the highest fitness over the most runs exhibits a 1/ƒ type spectrum and its transition function and behavior are quite similar to those of the Game of Life, which is known to be a computationally universal cellular automaton. These results support the relationship between the presence of 1/ƒ noise and computational universality.

  10. Construction of living cellular automata using the Physarum plasmodium

    NASA Astrophysics Data System (ADS)

    Shirakawa, Tomohiro; Sato, Hiroshi; Ishiguro, Shinji

    2015-04-01

    The plasmodium of Physarum polycephalum is a unicellular and multinuclear giant amoeba that has an amorphous cell body. To clearly observe how the plasmodium makes decisions in its motile and exploratory behaviours, we developed a new experimental system to pseudo-discretize the motility of the organism. In our experimental space that has agar surfaces arranged in a two-dimensional lattice, the continuous and omnidirectional movement of the plasmodium was limited to the stepwise one, and the direction of the locomotion was also limited to four neighbours. In such an experimental system, a cellular automata-like system was constructed using the living cell. We further analysed the exploratory behaviours of the plasmodium by duplicating the experimental results in the simulation models of cellular automata. As a result, it was revealed that the behaviours of the plasmodium are not reproduced by only local state transition rules; and for the reproduction, a kind of historical rule setting is needed.

  11. Automata-Based Verification of Temporal Properties on Running Programs

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Havelund, Klaus; Lan, Sonie (Technical Monitor)

    2001-01-01

    This paper presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to Buchi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.

  12. Simulation of root forms using cellular automata model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winarno, Nanang, E-mail: nanang-winarno@upi.edu; Prima, Eka Cahya; Afifah, Ratih Mega Ayu

    This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled “A New Kind of Science” discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram’s investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation usedmore » four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.« less

  13. Parallel Implementation of Triangular Cellular Automata for Computing Two-Dimensional Elastodynamic Response on Arbitrary Domains

    NASA Astrophysics Data System (ADS)

    Leamy, Michael J.; Springer, Adam C.

    In this research we report parallel implementation of a Cellular Automata-based simulation tool for computing elastodynamic response on complex, two-dimensional domains. Elastodynamic simulation using Cellular Automata (CA) has recently been presented as an alternative, inherently object-oriented technique for accurately and efficiently computing linear and nonlinear wave propagation in arbitrarily-shaped geometries. The local, autonomous nature of the method should lead to straight-forward and efficient parallelization. We address this notion on symmetric multiprocessor (SMP) hardware using a Java-based object-oriented CA code implementing triangular state machines (i.e., automata) and the MPI bindings written in Java (MPJ Express). We use MPJ Express to reconfigure our existing CA code to distribute a domain's automata to cores present on a dual quad-core shared-memory system (eight total processors). We note that this message passing parallelization strategy is directly applicable to computer clustered computing, which will be the focus of follow-on research. Results on the shared memory platform indicate nearly-ideal, linear speed-up. We conclude that the CA-based elastodynamic simulator is easily configured to run in parallel, and yields excellent speed-up on SMP hardware.

  14. Linear System Control Using Stochastic Learning Automata

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  15. Self-organized perturbations enhance class IV behavior and 1/f power spectrum in elementary cellular automata.

    PubMed

    Nakajima, Kohei; Haruna, Taichi

    2011-09-01

    In this paper, we propose a new class of cellular automata based on the modification of its state space. It is introduced to model a computation which is exposed to an environment. We formalized the computation as extension and projection processes of its state space and resulting misidentifications of the state. This is motivated to embed the role of an environment into the system itself, which naturally induces self-organized internal perturbations rather than the usual external perturbations. Implementing this structure into the elementary cellular automata, we characterized its effect by means of input entropy and power spectral analysis. As a result, the cellular automata with this structure showed robust class IV behavior and a 1/f power spectrum in a wide range of rule space comparative to the notion of the edge of chaos. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Efficient Translation of LTL Formulae into Buchi Automata

    NASA Technical Reports Server (NTRS)

    Giannakopoulou, Dimitra; Lerda, Flavio

    2001-01-01

    Model checking is a fully automated technique for checking that a system satisfies a set of required properties. With explicit-state model checkers, properties are typically defined in linear-time temporal logic (LTL), and are translated into B chi automata in order to be checked. This report presents how we have combined and improved existing techniques to obtain an efficient LTL to B chi automata translator. In particular, we optimize the core of existing tableau-based approaches to generate significantly smaller automata. Our approach has been implemented and is being released as part of the Java PathFinder software (JPF), an explicit state model checker under development at the NASA Ames Research Center.

  17. Towards a voxel-based geographic automata for the simulation of geospatial processes

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  18. Minimal entropy approximation for cellular automata

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk

    2014-02-01

    We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.

  19. Fire and Heat Spreading Model Based on Cellular Automata Theory

    NASA Astrophysics Data System (ADS)

    Samartsev, A. A.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.

    2018-05-01

    The distinctive feature of the proposed fire and heat spreading model in premises is the reduction of the computational complexity due to the use of the theory of cellular automata with probability rules of behavior. The possibilities and prospects of using this model in practice are noted. The proposed model has a simple mechanism of integration with agent-based evacuation models. The joint use of these models could improve floor plans and reduce the time of evacuation from premises during fires.

  20. A cryptographic hash function based on chaotic network automata

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Bruno, Odemir M.

    2017-12-01

    Chaos theory has been used to develop several cryptographic methods relying on the pseudo-random properties extracted from simple nonlinear systems such as cellular automata (CA). Cryptographic hash functions (CHF) are commonly used to check data integrity. CHF “compress” arbitrary long messages (input) into much smaller representations called hash values or message digest (output), designed to prevent the ability to reverse the hash values into the original message. This paper proposes a chaos-based CHF inspired on an encryption method based on chaotic CA rule B1357-S2468. Here, we propose an hybrid model that combines CA and networks, called network automata (CNA), whose chaotic spatio-temporal outputs are used to compute a hash value. Following the Merkle and Damgård model of construction, a portion of the message is entered as the initial condition of the network automata, so that the rest parts of messages are iteratively entered to perturb the system. The chaotic network automata shuffles the message using flexible control parameters, so that the generated hash value is highly sensitive to the message. As demonstrated in our experiments, the proposed model has excellent pseudo-randomness and sensitivity properties with acceptable performance when compared to conventional hash functions.

  1. Failover in Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kumar, Shailesh; Rao, Shrisha

    This paper studies a phenomenon called failover, and shows that this phenomenon (in particular, stateless failover) can be modeled by Game of Life cellular automata. This is the first time that this sophisticated real-life system behavior has been modeled in abstract terms. A cellular automata (CA) configuration is constructed that exhibits emergent failover. The configuration is based on standard Game of Life rules. Gliders and glider-guns form the core messaging structure in the configuration. The blinker is represented as the basic computational unit, and it is shown how it can be recreated in case of a failure. Stateless failover using the primary-backup mechanism is demonstrated. The details of the CA components used in the configuration and its working are described, and a simulation of the complete configuration is also presented.

  2. The Neurona at Home project: Simulating a large-scale cellular automata brain in a distributed computing environment

    NASA Astrophysics Data System (ADS)

    Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.

    2013-01-01

    The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.

  3. PAM: Particle automata model in simulation of Fusarium graminearum pathogen expansion.

    PubMed

    Wcisło, Rafał; Miller, S Shea; Dzwinel, Witold

    2016-01-21

    The multi-scale nature and inherent complexity of biological systems are a great challenge for computer modeling and classical modeling paradigms. We present a novel particle automata modeling metaphor in the context of developing a 3D model of Fusarium graminearum infection in wheat. The system consisting of the host plant and Fusarium pathogen cells can be represented by an ensemble of discrete particles defined by a set of attributes. The cells-particles can interact with each other mimicking mechanical resistance of the cell walls and cell coalescence. The particles can move, while some of their attributes can be changed according to prescribed rules. The rules can represent cellular scales of a complex system, while the integrated particle automata model (PAM) simulates its overall multi-scale behavior. We show that due to the ability of mimicking mechanical interactions of Fusarium tip cells with the host tissue, the model is able to simulate realistic penetration properties of the colonization process reproducing both vertical and lateral Fusarium invasion scenarios. The comparison of simulation results with micrographs from laboratory experiments shows encouraging qualitative agreement between the two. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A study for bank effect on ship traffic in narrow water channels using cellular automata

    NASA Astrophysics Data System (ADS)

    Sun, Zhuo; Cong, Shuang; Pan, Junnan; Zheng, Jianfeng

    2017-12-01

    In narrow water channels, bank might affect nearby ships due to hydrodynamic forces (bank effect). To avoid accidents, different sailing rules (i.e., lane-changing, speed control) are required. In this paper, a two-lane cellular automata model is proposed to evaluate such phenomena. Numerical experiments show that ships will form a “slow-moving chunk” in the bank area, which will significantly block the flux. As further study demonstrated to alleviate bank effect, ship speed and bank length should be controlled.

  5. Cellular automata and epidemiological models with spatial dependence

    NASA Astrophysics Data System (ADS)

    Fuentes, M. A.; Kuperman, M. N.

    We present a cellular automata model developed to study the evolution of an infectivity nucleus in several conditions and for two kinds of epidemiologically different diseases. We analyse the role of the model parameters, concerning the epidemiological and demographic aspects of the problem, and of the evolution rules in relation to the spread of such infectious diseases, the arising of periodic temporal modulations related to the infectivity and recovery fronts, and the evolution of travelling waves. Among the obtained results we find analogies to endemic situations and pandemics.

  6. Cellular Automata for Spatiotemporal Pattern Formation from Reaction-Diffusion Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Ohmori, Shousuke; Yamazaki, Yoshihiro

    2016-01-01

    Ultradiscrete equations are derived from a set of reaction-diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction-diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction-diffusion equations.

  7. Configurable Cellular Automata for Pseudorandom Number Generation

    NASA Astrophysics Data System (ADS)

    Quieta, Marie Therese; Guan, Sheng-Uei

    This paper proposes a generalized structure of cellular automata (CA) — the configurable cellular automata (CoCA). With selected properties from programmable CA (PCA) and controllable CA (CCA), a new approach to cellular automata is developed. In CoCA, the cells are dynamically reconfigured at run-time via a control CA. Reconfiguration of a cell simply means varying the properties of that cell with time. Some examples of properties to be reconfigured are rule selection, boundary condition, and radius. While the objective of this paper is to propose CoCA as a new CA method, the main focus is to design a CoCA that can function as a good pseudorandom number generator (PRNG). As a PRNG, CoCA can be a suitable candidate as it can pass 17 out of 18 Diehard tests with 31 cells. CoCA PRNG's performance based on Diehard test is considered superior over other CA PRNG works. Moreover, CoCA opens new rooms for research not only in the field of random number generation, but in modeling complex systems as well.

  8. A 3-D model of tumor progression based on complex automata driven by particle dynamics.

    PubMed

    Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z

    2009-12-01

    The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.

  9. Cellular automata rule characterization and classification using texture descriptors

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.

    2018-05-01

    The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.

  10. Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues

    PubMed Central

    Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.

    2010-01-01

    Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040

  11. The role of the interaction network in the emergence of diversity of behavior

    PubMed Central

    Tabacof, Pedro; Von Zuben, Fernando J.

    2017-01-01

    How can systems in which individuals’ inner workings are very similar to each other, as neural networks or ant colonies, produce so many qualitatively different behaviors, giving rise to roles and specialization? In this work, we bring new perspectives to this question by focusing on the underlying network that defines how individuals in these systems interact. We applied a genetic algorithm to optimize rules and connections of cellular automata in order to solve the density classification task, a classical problem used to study emergent behaviors in decentralized computational systems. The networks used were all generated by the introduction of shortcuts in an originally regular topology, following the small-world model. Even though all cells follow the exact same rules, we observed the existence of different classes of cells’ behaviors in the best cellular automata found—most cells were responsible for memory and others for integration of information. Through the analysis of structural measures and patterns of connections (motifs) in successful cellular automata, we observed that the distribution of shortcuts between distant regions and the speed in which a cell can gather information from different parts of the system seem to be the main factors for the specialization we observed, demonstrating how heterogeneity in a network can create heterogeneity of behavior. PMID:28234962

  12. A new simulation system of traffic flow based on cellular automata principle

    NASA Astrophysics Data System (ADS)

    Shan, Junru

    2017-05-01

    Traffic flow is a complex system of multi-behavior so it is difficult to give a specific mathematical equation to express it. With the rapid development of computer technology, it is an important method to study the complex traffic behavior by simulating the interaction mechanism between vehicles and reproduce complex traffic behavior. Using the preset of multiple operating rules, cellular automata is a kind of power system which has discrete time and space. It can be a good simulation of the real traffic process and a good way to solve the traffic problems.

  13. Growth and Decay in Life-Like Cellular Automata

    NASA Astrophysics Data System (ADS)

    Eppstein, David

    Since the study of life began, many have asked: is it unique in the universe, or are there other interesting forms of life elsewhere? Before we can answer that question, we should ask others: What makes life special? If we happen across another system with life-like behavior, how would we be able to recognize it? We are speaking, of course, of the mathematical systems of cellular automata, of the fascinating patterns that have been discovered and engineered in Conway's Game of Life, and of the possible existence of other cellular automaton rules with equally complex behavior to that of Life.

  14. Potential field cellular automata model for pedestrian flow

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Jian, Xiao-Xia; Wong, S. C.; Choi, Keechoo

    2012-02-01

    This paper proposes a cellular automata model of pedestrian flow that defines a cost potential field, which takes into account the costs of travel time and discomfort, for a pedestrian to move to an empty neighboring cell. The formulation is based on a reconstruction of the density distribution and the underlying physics, including the rule for resolving conflicts, which is comparable to that in the floor field cellular automaton model. However, we assume that each pedestrian is familiar with the surroundings, thereby minimizing his or her instantaneous cost. This, in turn, helps reduce the randomness in selecting a target cell, which improves the existing cellular automata modelings, together with the computational efficiency. In the presence of two pedestrian groups, which are distinguished by their destinations, the cost distribution for each group is magnified due to the strong interaction between the two groups. As a typical phenomenon, the formation of lanes in the counter flow is reproduced.

  15. The Hpp Rule with Memory and the Density Classification Task

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón

    This article considers an extension to the standard framework of cellular automata by implementing memory capability in cells. It is shown that the important block HPP rule behaves as an excellent classifier of the density in the initial configuration when applied to cells endowed with pondered memory of their previous states. If the weighing is made so that the most recent state values are assigning the highest weights, the HPP rule surpasses the performance of the best two-dimensional density classifiers reported in the literature.

  16. On Matrices, Automata, and Double Counting

    NASA Astrophysics Data System (ADS)

    Beldiceanu, Nicolas; Carlsson, Mats; Flener, Pierre; Pearson, Justin

    Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables M, with the same constraint defined by a finite-state automaton A on each row of M and a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We evaluate the impact of our methods on a large set of nurse rostering problem instances.

  17. Generalized hydrodynamic transport in lattice-gas automata

    NASA Technical Reports Server (NTRS)

    Luo, Li-Shi; Chen, Hudong; Chen, Shiyi; Doolen, Gary D.; Lee, Yee-Chun

    1991-01-01

    The generalized hydrodynamics of two-dimensional lattice-gas automata is solved analytically in the linearized Boltzmann approximation. The dependence of the transport coefficients (kinematic viscosity, bulk viscosity, and sound speed) upon wave number k is obtained analytically. Anisotropy of these coefficients due to the lattice symmetry is studied for the entire range of wave number, k. Boundary effects due to a finite mean free path (Knudsen layer) are analyzed, and accurate comparisons are made with lattice-gas simulations.

  18. Phase transitions in coupled map lattices and in associated probabilistic cellular automata.

    PubMed

    Just, Wolfram

    2006-10-01

    Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting probabilistic cellular automaton for the critical behavior is pointed out.

  19. A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS

    EPA Science Inventory

    We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...

  20. On the effect of memory in one-dimensional K=4 automata on networks

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Cárdenas, Juan Pablo

    2008-12-01

    The effect of implementing memory in cells of one-dimensional CA, and on nodes of various types of automata on networks with increasing degrees of random rewiring is studied in this article, paying particular attention to the case of four inputs. As a rule, memory induces a moderation in the rate of changing nodes and in the damage spreading, albeit in the latter case memory turns out to be ineffective in the control of the damage as the wiring network moves away from the ordered structure that features proper one-dimensional CA. This article complements the previous work done in the two-dimensional context.

  1. a Predator-Prey Model Based on the Fully Parallel Cellular Automata

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Ruan, Hongbo; Yu, Changliang

    We presented a predator-prey lattice model containing moveable wolves and sheep, which are characterized by Penna double bit strings. Sexual reproduction and child-care strategies are considered. To implement this model in an efficient way, we build a fully parallel Cellular Automata based on a new definition of the neighborhood. We show the roles played by the initial densities of the populations, the mutation rate and the linear size of the lattice in the evolution of this model.

  2. Free Quantum Field Theory from Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).

  3. An authenticated image encryption scheme based on chaotic maps and memory cellular automata

    NASA Astrophysics Data System (ADS)

    Bakhshandeh, Atieh; Eslami, Ziba

    2013-06-01

    This paper introduces a new image encryption scheme based on chaotic maps, cellular automata and permutation-diffusion architecture. In the permutation phase, a piecewise linear chaotic map is utilized to confuse the plain-image and in the diffusion phase, we employ the Logistic map as well as a reversible memory cellular automata to obtain an efficient and secure cryptosystem. The proposed method admits advantages such as highly secure diffusion mechanism, computational efficiency and ease of implementation. A novel property of the proposed scheme is its authentication ability which can detect whether the image is tampered during the transmission or not. This is particularly important in applications where image data or part of it contains highly sensitive information. Results of various analyses manifest high security of this new method and its capability for practical image encryption.

  4. Computational Nonlinear Morphology with Emphasis on Semitic Languages. Studies in Natural Language Processing.

    ERIC Educational Resources Information Center

    Kiraz, George Anton

    This book presents a tractable computational model that can cope with complex morphological operations, especially in Semitic languages, and less complex morphological systems present in Western languages. It outlines a new generalized regular rewrite rule system that uses multiple finite-state automata to cater to root-and-pattern morphology,…

  5. Conway's Game of Life is a near-critical metastable state in the multiverse of cellular automata.

    PubMed

    Reia, Sandro M; Kinouchi, Osame

    2014-05-01

    Conway's cellular automaton Game of Life has been conjectured to be a critical (or quasicritical) dynamical system. This criticality is generally seen as a continuous order-disorder transition in cellular automata (CA) rule space. Life's mean-field return map predicts an absorbing vacuum phase (ρ = 0) and an active phase density, with ρ = 0.37, which contrasts with Life's absorbing states in a square lattice, which have a stationary density of ρ(2D) ≈ 0.03. Here, we study and classify mean-field maps for 6144 outer-totalistic CA and compare them with the corresponding behavior found in the square lattice. We show that the single-site mean-field approach gives qualitative (and even quantitative) predictions for most of them. The transition region in rule space seems to correspond to a nonequilibrium discontinuous absorbing phase transition instead of a continuous order-disorder one. We claim that Life is a quasicritical nucleation process where vacuum phase domains invade the alive phase. Therefore, Life is not at the "border of chaos," but thrives on the "border of extinction."

  6. Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space.

    PubMed

    Oliveira, G M; de Oliveira, P P; Omar, N

    2001-01-01

    Cellular automata (CA) are important as prototypical, spatially extended, discrete dynamical systems. Because the problem of forecasting dynamic behavior of CA is undecidable, various parameter-based approximations have been developed to address the problem. Out of the analysis of the most important parameters available to this end we proposed some guidelines that should be followed when defining a parameter of that kind. Based upon the guidelines, new parameters were proposed and a set of five parameters was selected; two of them were drawn from the literature and three are new ones, defined here. This article presents all of them and makes their qualities evident. Then, two results are described, related to the use of the parameter set in the Elementary Rule Space: a phase transition diagram, and some general heuristics for forecasting the dynamics of one-dimensional CA. Finally, as an example of the application of the selected parameters in high cardinality spaces, results are presented from experiments involving the evolution of radius-3 CA in the Density Classification Task, and radius-2 CA in the Synchronization Task.

  7. Conway's game of life is a near-critical metastable state in the multiverse of cellular automata

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Kinouchi, Osame

    2014-05-01

    Conway's cellular automaton Game of Life has been conjectured to be a critical (or quasicritical) dynamical system. This criticality is generally seen as a continuous order-disorder transition in cellular automata (CA) rule space. Life's mean-field return map predicts an absorbing vacuum phase (ρ =0) and an active phase density, with ρ =0.37, which contrasts with Life's absorbing states in a square lattice, which have a stationary density of ρ2D≈0.03. Here, we study and classify mean-field maps for 6144 outer-totalistic CA and compare them with the corresponding behavior found in the square lattice. We show that the single-site mean-field approach gives qualitative (and even quantitative) predictions for most of them. The transition region in rule space seems to correspond to a nonequilibrium discontinuous absorbing phase transition instead of a continuous order-disorder one. We claim that Life is a quasicritical nucleation process where vacuum phase domains invade the alive phase. Therefore, Life is not at the "border of chaos," but thrives on the "border of extinction."

  8. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  9. Collective Behaviors in Spatially Extended Systems with Local Interactions and Synchronous Updating

    NASA Astrophysics Data System (ADS)

    ChatÉ, H.; Manneville, P.

    1992-01-01

    Assessing the extent to which dynamical systems with many degrees of freedom can be described within a thermodynamics formalism is a problem that currently attracts much attention. In this context, synchronously updated regular lattices of identical, chaotic elements with local interactions are promising models for which statistical mechanics may be hoped to provide some insights. This article presents a large class of cellular automata rules and coupled map lattices of the above type in space dimensions d = 2 to 6.Such simple models can be approached by a mean-field approximation which usually reduces the dynamics to that of a map governing the evolution of some extensive density. While this approximation is exact in the d = infty limit, where macroscopic variables must display the time-dependent behavior of the mean-field map, basic intuition from equilibrium statistical mechanics rules out any such behavior in a low-dimensional systems, since it would involve the collective motion of locally disordered elements.The models studied are chosen to be as close as possible to mean-field conditions, i.e., rather high space dimension, large connectivity, and equal-weight coupling between sites. While the mean-field evolution is never observed, a new type of non-trivial collective behavior is found, at odds with the predictions of equilibrium statistical mechanics. Both in the cellular automata models and in the coupled map lattices, macroscopic variables frequently display a non-transient, time-dependent, low-dimensional dynamics emerging out of local disorder. Striking examples are period 3 cycles in two-state cellular automata and a Hopf bifurcation for a d = 5 lattice of coupled logistic maps. An extensive account of the phenomenology is given, including a catalog of behaviors, classification tables for the celular automata rules, and bifurcation diagrams for the coupled map lattices.The observed underlying dynamics is accompanied by an intrinsic quasi-Gaussian noise (stemming from the local disorder) which disappears in the infinite-size limit. The collective behaviors constitute a robust phenomenon, resisting external noise, small changes in the local dynamics, and modifications of the initial and boundary conditions. Synchronous updating, high space dimension and the regularity of connections are shown to be crucial ingredients in the subtle build-up of correlations giving rise to the collective motion. The discussion stresses the need for a theoretical understanding that neither equilibrium statistical mechanics nor higher-order mean-field approximations are able to provide.

  10. Emergent dynamic structures and statistical law in spherical lattice gas automata.

    PubMed

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  11. Emergent dynamic structures and statistical law in spherical lattice gas automata

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  12. Analysis of traffic congestion induced by the work zone

    NASA Astrophysics Data System (ADS)

    Fei, L.; Zhu, H. B.; Han, X. L.

    2016-05-01

    Based on the cellular automata model, a meticulous two-lane cellular automata model is proposed, in which the driving behavior difference and the difference of vehicles' accelerations between the moving state and the starting state are taken into account. Furthermore the vehicles' motion is refined by using the small cell of one meter long. Then accompanied by coming up with a traffic management measure, a two-lane highway traffic model containing a work zone is presented, in which the road is divided into normal area, merging area and work zone. The vehicles in different areas move forward according to different lane changing rules and position updating rules. After simulation it is found that when the density is small the cluster length in front of the work zone increases with the decrease of the merging probability. Then the suitable merging length and the appropriate speed limit value are recommended. The simulation result in the form of the speed-flow diagram is in good agreement with the empirical data. It indicates that the presented model is efficient and can partially reflect the real traffic. The results may be meaningful for traffic optimization and road construction management.

  13. An Asynchronous Cellular Automata-Based Adaptive Illumination Facility

    NASA Astrophysics Data System (ADS)

    Bandini, Stefania; Bonomi, Andrea; Vizzari, Giuseppe; Acconci, Vito

    The term Ambient Intelligence refers to electronic environments that are sensitive and responsive to the presence of people; in the described scenario the environment itself is endowed with a set of sensors (to perceive humans or other physical entities such as dogs, bicycles, etc.), interacting with a set of actuators (lights) that choose their actions (i.e. state of illumination) in an attempt improve the overall experience of these users. The model for the interaction and action of sensors and actuators is an asynchronous Cellular Automata (CA) with memory, supporting a self-organization of the system as a response to the presence and movements of people inside it. The paper will introduce the model, as well as an ad hoc user interface for the specification of the relevant parameters of the CA transition rule that determines the overall system behaviour.

  14. Jahn-Teller effect in molecular electronics: quantum cellular automata

    NASA Astrophysics Data System (ADS)

    Tsukerblat, B.; Palii, A.; Clemente-Juan, J. M.; Coronado, E.

    2017-05-01

    The article summarizes the main results of application of the theory of the Jahn-Teller (JT) and pseudo JT effects to the description of molecular quantum dot cellular automata (QCA), a new paradigm of quantum computing. The following issues are discussed: 1) QCA as a new paradigm of quantum computing, principles and advantages; 2) molecular implementation of QCA; 3) role of the JT effect in charge trapping, encoding of binary information in the quantum cell and non-linear cell-cell response; 4) spin-switching in molecular QCA based on mixed-valence cell; 5) intervalence optical absorption in tetrameric molecular mixed-valence cell through the symmetry assisted approach to the multimode/multilevel JT and pseudo JT problems.

  15. Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach

    PubMed Central

    2014-01-01

    Background The spread of an infectious disease is determined by biological and social factors. Models based on cellular automata are adequate to describe such natural systems consisting of a massive collection of simple interacting objects. They characterize the time evolution of the global system as the emergent behaviour resulting from the interaction of the objects, whose behaviour is defined through a set of simple rules that encode the individual behaviour and the transmission dynamic. Methods An epidemic is characterized trough an individual–based–model built upon cellular automata. In the proposed model, each individual of the population is represented by a cell of the automata. This way of modeling an epidemic situation allows to individually define the characteristic of each individual, establish different scenarios and implement control strategies. Results A cellular automata model to study the time evolution of a heterogeneous populations through the various stages of disease was proposed, allowing the inclusion of individual heterogeneity, geographical characteristics and social factors that determine the dynamic of the desease. Different assumptions made to built the classical model were evaluated, leading to following results: i) for low contact rate (like in quarantine process or low density population areas) the number of infective individuals is lower than other areas where the contact rate is higher, and ii) for different initial spacial distributions of infected individuals different epidemic dynamics are obtained due to its influence on the transition rate and the reproductive ratio of disease. Conclusions The contact rate and spatial distributions have a central role in the spread of a disease. For low density populations the spread is very low and the number of infected individuals is lower than in highly populated areas. The spacial distribution of the population and the disease focus as well as the geographical characteristic of the area play a central role in the dynamics of the desease. PMID:24725804

  16. Addressing population heterogeneity and distribution in epidemics models using a cellular automata approach.

    PubMed

    López, Leonardo; Burguerner, Germán; Giovanini, Leonardo

    2014-04-12

    The spread of an infectious disease is determined by biological and social factors. Models based on cellular automata are adequate to describe such natural systems consisting of a massive collection of simple interacting objects. They characterize the time evolution of the global system as the emergent behaviour resulting from the interaction of the objects, whose behaviour is defined through a set of simple rules that encode the individual behaviour and the transmission dynamic. An epidemic is characterized trough an individual-based-model built upon cellular automata. In the proposed model, each individual of the population is represented by a cell of the automata. This way of modeling an epidemic situation allows to individually define the characteristic of each individual, establish different scenarios and implement control strategies. A cellular automata model to study the time evolution of a heterogeneous populations through the various stages of disease was proposed, allowing the inclusion of individual heterogeneity, geographical characteristics and social factors that determine the dynamic of the desease. Different assumptions made to built the classical model were evaluated, leading to following results: i) for low contact rate (like in quarantine process or low density population areas) the number of infective individuals is lower than other areas where the contact rate is higher, and ii) for different initial spacial distributions of infected individuals different epidemic dynamics are obtained due to its influence on the transition rate and the reproductive ratio of disease. The contact rate and spatial distributions have a central role in the spread of a disease. For low density populations the spread is very low and the number of infected individuals is lower than in highly populated areas. The spacial distribution of the population and the disease focus as well as the geographical characteristic of the area play a central role in the dynamics of the desease.

  17. Does Life Resist Asynchrony?

    NASA Astrophysics Data System (ADS)

    Fatès, Nazim

    Undoubtedly, Conway's Game of Life — or simply Life — is one of the most amazing inventions in the field of cellular automata. Forty years after its discovery, the model still fascinates researchers as if it were an inexhaustible source of puzzles. One of the most intriguing questions is to determine what makes this rule so particular among the quasi-infinite set of rules one can search. In this chapter we analyse how the Game of Life is affected by the presence of two structural pertubations: a change in the synchrony of the updates and a modification of the links between the cells.

  18. Cellular automata models for diffusion of information and highway traffic flow

    NASA Astrophysics Data System (ADS)

    Fuks, Henryk

    In the first part of this work we study a family of deterministic models for highway traffic flow which generalize cellular automaton rule 184. This family is parameterized by the speed limit m and another parameter k that represents degree of 'anticipatory driving'. We compare two driving strategies with identical maximum throughput: 'conservative' driving with high speed limit and 'anticipatory' driving with low speed limit. Those two strategies are evaluated in terms of accident probability. We also discuss fundamental diagrams of generalized traffic rules and examine limitations of maximum achievable throughput. Possible modifications of the model are considered. For rule 184, we present exact calculations of the order parameter in a transition from the moving phase to the jammed phase using the method of preimage counting, and use this result to construct a solution to the density classification problem. In the second part we propose a probabilistic cellular automaton model for the spread of innovations, rumors, news, etc., in a social system. We start from simple deterministic models, for which exact expressions for the density of adopters are derived. For a more realistic model, based on probabilistic cellular automata, we study the influence of a range of interaction R on the shape of the adoption curve. When the probability of adoption is proportional to the local density of adopters, and individuals can drop the innovation with some probability p, the system exhibits a second order phase transition. Critical line separating regions of parameter space in which asymptotic density of adopters is positive from the region where it is equal to zero converges toward the mean-field line when the range of the interaction increases. In a region between R=1 critical line and the mean-field line asymptotic density of adopters depends on R, becoming zero if R is too small (smaller than some critical value). This result demonstrates the importance of connectivity in diffusion of information. We also define a new class of automata networks which incorporates non-local interactions, and discuss its applicability in modeling of diffusion of innovations.

  19. Deriving urban dynamic evolution rules from self-adaptive cellular automata with multi-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun

    2015-06-01

    Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.

  20. Strategies for using cellular automata to locate constrained layer damping on vibrating structures

    NASA Astrophysics Data System (ADS)

    Chia, C. M.; Rongong, J. A.; Worden, K.

    2009-01-01

    It is often hard to optimise constrained layer damping (CLD) for structures more complicated than simple beams and plates as its performance depends on its location, the shape of the applied patch, the mode shapes of the structure and the material properties. This paper considers the use of cellular automata (CA) in conjunction with finite element analysis to obtain an efficient coverage of CLD on structures. The effectiveness of several different sets of local rules governing the CA are compared against each other for a structure with known optimum coverage—namely a plate. The algorithm which attempts to replicate most closely known optimal configurations is considered the most successful. This algorithm is then used to generate an efficient CLD treatment that targets several modes of a curved composite panel. To validate the modelling approaches used, results are also presented of a comparison between theoretical and experimentally obtained modal properties of the damped curved panel.

  1. CATS - A process-based model for turbulent turbidite systems at the reservoir scale

    NASA Astrophysics Data System (ADS)

    Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher

    2016-09-01

    The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.

  2. Universal Computation and Construction in GoL Cellular Automata

    NASA Astrophysics Data System (ADS)

    Goucher, Adam P.

    This chapter is concerned with the developments of universal computation and construction within Conway's Game of Life (GoL). I will begin by describing the history of the concepts and mechanisms for universal computation and construction in GoL, before explaining how a Universal Computer-Constructor (UCC) would operate in this automaton. Moreover, I shall present the design of a working UCC in the rule. It is both capable of computing any calculation (i.e. it is Turing-complete) and constructing most, if not all, of the constructible configurations within the rule. It cannot construct patterns which have no predecessor; neither can any machine in the rule (for obvious reasons). As such, it is more accurately a general constructor, rather than a universal constructor.

  3. A new cellular automata model of traffic flow with negative exponential weighted look-ahead potential

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Zheng, Wei-Fan; Jiang, Bao-Shan; Zhang, Ji-Ye

    2016-10-01

    With the development of traffic systems, some issues such as traffic jams become more and more serious. Efficient traffic flow theory is needed to guide the overall controlling, organizing and management of traffic systems. On the basis of the cellular automata model and the traffic flow model with look-ahead potential, a new cellular automata traffic flow model with negative exponential weighted look-ahead potential is presented in this paper. By introducing the negative exponential weighting coefficient into the look-ahead potential and endowing the potential of vehicles closer to the driver with a greater coefficient, the modeling process is more suitable for the driver’s random decision-making process which is based on the traffic environment that the driver is facing. The fundamental diagrams for different weighting parameters are obtained by using numerical simulations which show that the negative exponential weighting coefficient has an obvious effect on high density traffic flux. The complex high density non-linear traffic behavior is also reproduced by numerical simulations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11572264, 11172247, 11402214, and 61373009).

  4. Cellular automata model for traffic flow at intersections in internet of vehicles

    NASA Astrophysics Data System (ADS)

    Zhao, Han-Tao; Liu, Xin-Ru; Chen, Xiao-Xu; Lu, Jian-Cheng

    2018-03-01

    Considering the effect of the front vehicle's speed, the influence of the brake light and the conflict of the traffic flow, we established a cellular automata model called CE-NS for traffic flow at the intersection in the non-vehicle networking environment. According to the information interaction of Internet of Vehicles (IoV), introducing parameters describing the congestion and the accurate speed of the front vehicle into the CE-NS model, we improved the rules of acceleration, deceleration and conflict, and finally established a cellular automata model for traffic flow at intersections of IoV. The relationship between traffic parameters such as vehicle speed, flow and average travel time is obtained by numerical simulation of two models. Based on this, we compared the traffic situation of the non-vehicle networking environment with conditions of IoV environment, and analyzed the influence of the different degree of IoV on the traffic flow. The results show that the traffic speed is increased, the travel time is reduced, the flux of intersections is increased and the traffic flow is more smoothly under IoV environment. After the vehicle which achieves IoV reaches a certain proportion, the operation effect of the traffic flow begins to improve obviously.

  5. Efficient Algorithms for Handling Nondeterministic Automata

    NASA Astrophysics Data System (ADS)

    Vojnar, Tomáš

    Finite (word, tree, or omega) automata play an important role in different areas of computer science, including, for instance, formal verification. Often, deterministic automata are used for which traditional algorithms for important operations such as minimisation and inclusion checking are available. However, the use of deterministic automata implies a need to determinise nondeterministic automata that often arise during various computations even when the computations start with deterministic automata. Unfortunately, determinisation is a very expensive step since deterministic automata may be exponentially bigger than the original nondeterministic automata. That is why, it appears advantageous to avoid determinisation and work directly with nondeterministic automata. This, however, brings a need to be able to implement operations traditionally done on deterministic automata on nondeterministic automata instead. In particular, this is the case of inclusion checking and minimisation (or rather reduction of the size of automata). In the talk, we review several recently proposed techniques for inclusion checking on nondeterministic finite word and tree automata as well as Büchi automata. These techniques are based on using the so called antichains, possibly combined with a use of suitable simulation relations (and, in the case of Büchi automata, the so called Ramsey-based or rank-based approaches). Further, we discuss techniques for reducing the size of nondeterministic word and tree automata using quotienting based on the recently proposed notion of mediated equivalences. The talk is based on several common works with Parosh Aziz Abdulla, Ahmed Bouajjani, Yu-Fang Chen, Peter Habermehl, Lisa Kaati, Richard Mayr, Tayssir Touili, Lorenzo Clemente, Lukáš Holík, and Chih-Duo Hong.

  6. Larger than Life's Extremes: Rigorous Results for Simplified Rules and Speculation on the Phase Boundaries

    NASA Astrophysics Data System (ADS)

    Evans, Kellie Michele

    Larger than Life (LtL), is a four-parameter family of two-dimensional cellular automata that generalizes John Conway's Game of Life (Life) to large neighborhoods and general birth and survival thresholds. LtL was proposed by David Griffeath in the early 1990s to explore whether Life might be a clue to a critical phase point in the threshold-range scaling limit. The LtL family of rules includes Life as well as a rich set of two-dimensional rules, some of which exhibit dynamics vastly different from Life. In this chapter we present rigorous results and conjectures about the ergodic classifications of several sets of "simplified" LtL rules, each of which has a property that makes the rule easier to analyze. For example, these include symmetric rules such as the threshold voter automaton and the anti-voter automaton, monotone rules such as the threshold growth models, and others. We also provide qualitative results and speculation about LtL rules on various phase boundaries and summarize results and open questions about our favorite "Life-like" LtL rules.

  7. Mammogram segmentation using maximal cell strength updation in cellular automata.

    PubMed

    Anitha, J; Peter, J Dinesh

    2015-08-01

    Breast cancer is the most frequently diagnosed type of cancer among women. Mammogram is one of the most effective tools for early detection of the breast cancer. Various computer-aided systems have been introduced to detect the breast cancer from mammogram images. In a computer-aided diagnosis system, detection and segmentation of breast masses from the background tissues is an important issue. In this paper, an automatic segmentation method is proposed to identify and segment the suspicious mass regions of mammogram using a modified transition rule named maximal cell strength updation in cellular automata (CA). In coarse-level segmentation, the proposed method performs an adaptive global thresholding based on the histogram peak analysis to obtain the rough region of interest. An automatic seed point selection is proposed using gray-level co-occurrence matrix-based sum average feature in the coarse segmented image. Finally, the method utilizes CA with the identified initial seed point and the modified transition rule to segment the mass region. The proposed approach is evaluated over the dataset of 70 mammograms with mass from mini-MIAS database. Experimental results show that the proposed approach yields promising results to segment the mass region in the mammograms with the sensitivity of 92.25% and accuracy of 93.48%.

  8. Reconstruction of DNA sequences using genetic algorithms and cellular automata: towards mutation prediction?

    PubMed

    Mizas, Ch; Sirakoulis, G Ch; Mardiris, V; Karafyllidis, I; Glykos, N; Sandaltzopoulos, R

    2008-04-01

    Change of DNA sequence that fuels evolution is, to a certain extent, a deterministic process because mutagenesis does not occur in an absolutely random manner. So far, it has not been possible to decipher the rules that govern DNA sequence evolution due to the extreme complexity of the entire process. In our attempt to approach this issue we focus solely on the mechanisms of mutagenesis and deliberately disregard the role of natural selection. Hence, in this analysis, evolution refers to the accumulation of genetic alterations that originate from mutations and are transmitted through generations without being subjected to natural selection. We have developed a software tool that allows modelling of a DNA sequence as a one-dimensional cellular automaton (CA) with four states per cell which correspond to the four DNA bases, i.e. A, C, T and G. The four states are represented by numbers of the quaternary number system. Moreover, we have developed genetic algorithms (GAs) in order to determine the rules of CA evolution that simulate the DNA evolution process. Linear evolution rules were considered and square matrices were used to represent them. If DNA sequences of different evolution steps are available, our approach allows the determination of the underlying evolution rule(s). Conversely, once the evolution rules are deciphered, our tool may reconstruct the DNA sequence in any previous evolution step for which the exact sequence information was unknown. The developed tool may be used to test various parameters that could influence evolution. We describe a paradigm relying on the assumption that mutagenesis is governed by a near-neighbour-dependent mechanism. Based on the satisfactory performance of our system in the deliberately simplified example, we propose that our approach could offer a starting point for future attempts to understand the mechanisms that govern evolution. The developed software is open-source and has a user-friendly graphical input interface.

  9. Preliminary cellular-automata forecast of permit activity from 1998 to 2010, Idaho and Western Montana

    USGS Publications Warehouse

    Raines, G.L.; Zientek, M.L.; Causey, J.D.; Boleneus, D.E.

    2002-01-01

    For public land management in Idaho and western Montana, the U.S. Forest Service (USFS) has requested that the U.S. Geological Survey (USGS) predict where mineral-related activity will occur in the next decade. Cellular automata provide an approach to simulation of this human activity. Cellular automata (CA) are defined by an array of cells, which evolve by a simple transition rule, the automaton. Based on exploration trends, we assume that future exploration will focus in areas of past exploration. Spatial-temporal information about mineral-related activity, that is permits issued by USFS and Bureau of Land Management (BLM) in the last decade, and spatial information about undiscovered resources, provide a basis to calibrate a CA. The CA implemented is a modified annealed voting rule that simulates mineral-related activity with spatial and temporal resolution of 1 mi2 and 1 year based on activity from 1989 to 1998. For this CA, the state of the economy and exploration technology is assumed constant for the next decade. The calibrated CA reproduces the 1989-1998-permit activity with an agreement of 94%, which increases to 98% within one year. Analysis of the confusion matrix and kappa correlation statistics indicates that the CA underestimates high activity and overestimates low activity. Spatially, the major differences between the actual and calculated activity are that the calculated activity occurs in a slightly larger number of small patches and is slightly more uneven than the actual activity. Using the calibrated CA in a Monte Carlo simulation projecting from 1998 to 2010, an estimate of the probability of mineral activity shows high levels of activity in Boise, Caribou, Elmore, Lincoln, and western Valley counties in Idaho and Beaverhead, Madison, and Stillwater counties in Montana, and generally low activity elsewhere. ?? 2002 International Association for Mathematical Geology.

  10. A Compositional Translation of Timed Automata with Deadlines to Uppaal Timed Automata

    NASA Astrophysics Data System (ADS)

    Gómez, Rodolfo

    Timed Automata with Deadlines (TAD) are a form of timed automata that admit a more natural representation of urgent actions, with the additional advantage of avoiding the most common form of timelocks. We offer a compositional translation of a practically useful subset of TAD to timed safety automata (the well-known variant of timed automata where time progress conditions are expressed by invariants). More precisely, we translate networks of TAD to the modeling language of Uppaal, a state-of-the-art verification tool for timed automata. We also describe an implementation of this translation, which allows Uppaal to aid the design and analysis of TAD models.

  11. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states

    NASA Astrophysics Data System (ADS)

    García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  12. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states.

    PubMed

    García-Morales, Vladimir; Manzanares, José A; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  13. Optimal placement of fast cut back units based on the theory of cellular automata and agent

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Yan, Feng

    2017-06-01

    The thermal power generation units with the function of fast cut back could serve power for auxiliary system and keep island operation after a major blackout, so they are excellent substitute for the traditional black-start power sources. Different placement schemes for FCB units have different influence on the subsequent restoration process. Considering the locality of the emergency dispatching rules, the unpredictability of specific dispatching instructions and unexpected situations like failure of transmission line energization, a novel deduction model for network reconfiguration based on the theory of cellular automata and agent is established. Several indexes are then defined for evaluating the placement schemes for FCB units. The attribute weights determination method based on subjective and objective integration and grey relational analysis are combinatorically used to determine the optimal placement scheme for FCB unit. The effectiveness of the proposed method is validated by the test results on the New England 10-unit 39-bus power system.

  14. Reasoning about real-time systems with temporal interval logic constraints on multi-state automata

    NASA Technical Reports Server (NTRS)

    Gabrielian, Armen

    1991-01-01

    Models of real-time systems using a single paradigm often turn out to be inadequate, whether the paradigm is based on states, rules, event sequences, or logic. A model-based approach to reasoning about real-time systems is presented in which a temporal interval logic called TIL is employed to define constraints on a new type of high level automata. The combination, called hierarchical multi-state (HMS) machines, can be used to model formally a real-time system, a dynamic set of requirements, the environment, heuristic knowledge about planning-related problem solving, and the computational states of the reasoning mechanism. In this framework, mathematical techniques were developed for: (1) proving the correctness of a representation; (2) planning of concurrent tasks to achieve goals; and (3) scheduling of plans to satisfy complex temporal constraints. HMS machines allow reasoning about a real-time system from a model of how truth arises instead of merely depending of what is true in a system.

  15. [Simulation of urban ecological security pattern based on cellular automata: a case of Dongguan City, Guangdong Province of South China].

    PubMed

    Yang, Qing-Sheng; Qiao, Ji-Gang; Ai, Bin

    2013-09-01

    Taking the Dongguan City with rapid urbanization as a case, and selecting landscape ecological security level as evaluation criterion, the urbanization cellular number of 1 km x 1 km ecological security cells was obtained, and imbedded into the transition rules of cellular automata (CA) as the restraint term to control urban development, establish ecological security urban CA, and simulate ecological security urban development pattern. The results showed the integrated landscape ecological security index of the City decreased from 0.497 in 1998 to 0.395 in 2005, indicating that the ecological security at landscape scale was decreased. The CA-simulated integrated ecological security index of the City in 2005 was increased from the measured 0.395 to 0.479, showing that the simulated urban landscape ecological pressure from human became lesser, ecological security became better, and integrated landscape ecological security became higher. CA could be used as an effective tool in researching urban ecological security.

  16. QM Automata: A New Class of Restricted Quantum Membrane Automata.

    PubMed

    Giannakis, Konstantinos; Singh, Alexandros; Kastampolidou, Kalliopi; Papalitsas, Christos; Andronikos, Theodore

    2017-01-01

    The term "Unconventional Computing" describes the use of non-standard methods and models in computing. It is a recently established field, with many interesting and promising results. In this work we combine notions from quantum computing with aspects of membrane computing to define what we call QM automata. Specifically, we introduce a variant of quantum membrane automata that operate in accordance with the principles of quantum computing. We explore the functionality and capabilities of the QM automata through indicative examples. Finally we suggest future directions for research on QM automata.

  17. Unstable vicinal crystal growth from cellular automata

    NASA Astrophysics Data System (ADS)

    Krasteva, A.; Popova, H.; KrzyŻewski, F.; Załuska-Kotur, M.; Tonchev, V.

    2016-03-01

    In order to study the unstable step motion on vicinal crystal surfaces we devise vicinal Cellular Automata. Each cell from the colony has value equal to its height in the vicinal, initially the steps are regularly distributed. Another array keeps the adatoms, initially distributed randomly over the surface. The growth rule defines that each adatom at right nearest neighbor position to a (multi-) step attaches to it. The update of whole colony is performed at once and then time increases. This execution of the growth rule is followed by compensation of the consumed particles and by diffusional update(s) of the adatom population. Two principal sources of instability are employed - biased diffusion and infinite inverse Ehrlich-Schwoebel barrier (iiSE). Since these factors are not opposed by step-step repulsion the formation of multi-steps is observed but in general the step bunches preserve a finite width. We monitor the developing surface patterns and quantify the observations by scaling laws with focus on the eventual transition from diffusion-limited to kinetics-limited phenomenon. The time-scaling exponent of the bunch size N is 1/2 for the case of biased diffusion and 1/3 for the case of iiSE. Additional distinction is possible based on the time-scaling exponents of the sizes of multi-step Nmulti, these are 0.36÷0.4 (for biased diffusion) and 1/4 (iiSE).

  18. Automated Support for Rapid Coordination of Joint UUV Operation

    DTIC Science & Technology

    2015-03-01

    automata , dead-reckoning, static plan, nmtime plan, rapid deployment, GPS 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY...STATE MACHINES, MOORE AUTOMATA ..........................................9 A. MOORE AUTOMATA ...9 B. UUV PLANS AS MOORE AUTOMATA ...................................................11 C. SAMPLING RATE

  19. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm.

    PubMed

    Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan

    2016-12-14

    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits.

  20. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm

    PubMed Central

    Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan

    2016-01-01

    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits. PMID:27983633

  1. Computational Modeling of Proteins based on Cellular Automata: A Method of HP Folding Approximation.

    PubMed

    Madain, Alia; Abu Dalhoum, Abdel Latif; Sleit, Azzam

    2018-06-01

    The design of a protein folding approximation algorithm is not straightforward even when a simplified model is used. The folding problem is a combinatorial problem, where approximation and heuristic algorithms are usually used to find near optimal folds of proteins primary structures. Approximation algorithms provide guarantees on the distance to the optimal solution. The folding approximation approach proposed here depends on two-dimensional cellular automata to fold proteins presented in a well-studied simplified model called the hydrophobic-hydrophilic model. Cellular automata are discrete computational models that rely on local rules to produce some overall global behavior. One-third and one-fourth approximation algorithms choose a subset of the hydrophobic amino acids to form H-H contacts. Those algorithms start with finding a point to fold the protein sequence into two sides where one side ignores H's at even positions and the other side ignores H's at odd positions. In addition, blocks or groups of amino acids fold the same way according to a predefined normal form. We intend to improve approximation algorithms by considering all hydrophobic amino acids and folding based on the local neighborhood instead of using normal forms. The CA does not assume a fixed folding point. The proposed approach guarantees one half approximation minus the H-H endpoints. This lower bound guaranteed applies to short sequences only. This is proved as the core and the folds of the protein will have two identical sides for all short sequences.

  2. Usage Automata

    NASA Astrophysics Data System (ADS)

    Bartoletti, Massimo

    Usage automata are an extension of finite stata automata, with some additional features (e.g. parameters and guards) that improve their expressivity. Usage automata are expressive enough to model security requirements of real-world applications; at the same time, they are simple enough to be statically amenable, e.g. they can be model-checked against abstractions of program usages. We study here some foundational aspects of usage automata. In particular, we discuss about their expressive power, and about their effective use in run-time mechanisms for enforcing usage policies.

  3. Classifying elementary cellular automata using compressibility, diversity and sensitivity measures

    NASA Astrophysics Data System (ADS)

    Ninagawa, Shigeru; Adamatzky, Andrew

    2014-10-01

    An elementary cellular automaton (ECA) is a one-dimensional, synchronous, binary automaton, where each cell update depends on its own state and states of its two closest neighbors. We attempt to uncover correlations between the following measures of ECA behavior: compressibility, sensitivity and diversity. The compressibility of ECA configurations is calculated using the Lempel-Ziv (LZ) compression algorithm LZ78. The sensitivity of ECA rules to initial conditions and perturbations is evaluated using Derrida coefficients. The generative morphological diversity shows how many different neighborhood states are produced from a single nonquiescent cell. We found no significant correlation between sensitivity and compressibility. There is a substantial correlation between generative diversity and compressibility. Using sensitivity, compressibility and diversity, we uncover and characterize novel groupings of rules.

  4. Characterizing emergent properties of immunological systems with multi-cellular rule-based computational modeling.

    PubMed

    Chavali, Arvind K; Gianchandani, Erwin P; Tung, Kenneth S; Lawrence, Michael B; Peirce, Shayn M; Papin, Jason A

    2008-12-01

    The immune system is comprised of numerous components that interact with one another to give rise to phenotypic behaviors that are sometimes unexpected. Agent-based modeling (ABM) and cellular automata (CA) belong to a class of discrete mathematical approaches in which autonomous entities detect local information and act over time according to logical rules. The power of this approach lies in the emergence of behavior that arises from interactions between agents, which would otherwise be impossible to know a priori. Recent work exploring the immune system with ABM and CA has revealed novel insights into immunological processes. Here, we summarize these applications to immunology and, particularly, how ABM can help formulate hypotheses that might drive further experimental investigations of disease mechanisms.

  5. Weighted Watson-Crick automata

    NASA Astrophysics Data System (ADS)

    Tamrin, Mohd Izzuddin Mohd; Turaev, Sherzod; Sembok, Tengku Mohd Tengku

    2014-07-01

    There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes and fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power.

  6. Quantitative Analysis of Intra Urban Growth Modeling using socio economic agents by combining cellular automata model with agent based model

    NASA Astrophysics Data System (ADS)

    Singh, V. K.; Jha, A. K.; Gupta, K.; Srivastav, S. K.

    2017-12-01

    Recent studies indicate that there is a significant improvement in the urban land use dynamics through modeling at finer spatial resolutions. Geo-computational models such as cellular automata and agent based model have given evident proof regarding the quantification of the urban growth pattern with urban boundary. In recent studies, socio- economic factors such as demography, education rate, household density, parcel price of the current year, distance to road, school, hospital, commercial centers and police station are considered to the major factors influencing the Land Use Land Cover (LULC) pattern of the city. These factors have unidirectional approach to land use pattern which makes it difficult to analyze the spatial aspects of model results both quantitatively and qualitatively. In this study, cellular automata model is combined with generic model known as Agent Based Model to evaluate the impact of socio economic factors on land use pattern. For this purpose, Dehradun an Indian city is selected as a case study. Socio economic factors were collected from field survey, Census of India, Directorate of economic census, Uttarakhand, India. A 3X3 simulating window is used to consider the impact on LULC. Cellular automata model results are examined for the identification of hot spot areas within the urban area and agent based model will be using logistic based regression approach where it will identify the correlation between each factor on LULC and classify the available area into low density, medium density, high density residential or commercial area. In the modeling phase, transition rule, neighborhood effect, cell change factors are used to improve the representation of built-up classes. Significant improvement is observed in the built-up classes from 84 % to 89 %. However after incorporating agent based model with cellular automata model the accuracy improved from 89 % to 94 % in 3 classes of urban i.e. low density, medium density and commercial classes. Sensitivity study of the model indicated that southern and south-west part of the city have shown improvement and small patches of growth are also observed in the north western part of the city.The study highlights the growing importance of socio economic factors and geo-computational modeling approach on changing LULC of newly growing cities of modern India.

  7. Simulation of miniature endplate potentials in neuromuscular junctions by using a cellular automaton

    NASA Astrophysics Data System (ADS)

    Avella, Oscar Javier; Muñoz, José Daniel; Fayad, Ramón

    2008-01-01

    Miniature endplate potentials are recorded in the neuromuscular junction when the acetylcholine contents of one or a few synaptic vesicles are spontaneously released into the synaptic cleft. Since their discovery by Fatt and Katz in 1952, they have been among the paradigms in neuroscience. Those potentials are usually simulated by means of numerical approaches, such as Brownian dynamics, finite differences and finite element methods. Hereby we propose that diffusion cellular automata can be a useful alternative for investigating them. To illustrate this point, we simulate a miniature endplate potential by using experimental parameters. Our model reproduces the potential shape, amplitude and time course. Since our automaton is able to track the history and interactions of each single particle, it is very easy to introduce non-linear effects with little computational effort. This makes cellular automata excellent candidates for simulating biological reaction-diffusion processes, where no other external forces are involved.

  8. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Cota, Ernesto; Ramírez, Felipe; Ulloa, Sergio E.

    1997-08-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  9. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Ramirez, Felipe; Cota, Ernesto; Ulloa, Sergio E.

    1997-03-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  10. Local Structure Theory for Cellular Automata.

    NASA Astrophysics Data System (ADS)

    Gutowitz, Howard Andrew

    The local structure theory (LST) is a generalization of the mean field theory for cellular automata (CA). The mean field theory makes the assumption that iterative application of the rule does not introduce correlations between the states of cells in different positions. This assumption allows the derivation of a simple formula for the limit density of each possible state of a cell. The most striking feature of CA is that they may well generate correlations between the states of cells as they evolve. The LST takes the generation of correlation explicitly into account. It thus has the potential to describe statistical characteristics in detail. The basic assumption of the LST is that though correlation may be generated by CA evolution, this correlation decays with distance. This assumption allows the derivation of formulas for the estimation of the probability of large blocks of states in terms of smaller blocks of states. Given the probabilities of blocks of size n, probabilities may be assigned to blocks of arbitrary size such that these probability assignments satisfy the Kolmogorov consistency conditions and hence may be used to define a measure on the set of all possible (infinite) configurations. Measures defined in this way are called finite (or n-) block measures. A function called the scramble operator of order n maps a measure to an approximating n-block measure. The action of a CA on configurations induces an action on measures on the set of all configurations. The scramble operator is combined with the CA map on measure to form the local structure operator (LSO). The LSO of order n maps the set of n-block measures into itself. It is hypothesised that the LSO applied to n-block measures approximates the rule itself on general measures, and does so increasingly well as n increases. The fundamental advantage of the LSO is that its action is explicitly computable from a finite system of rational recursion equations. Empirical study of a number of CA rules demonstrates the potential of the LST to describe the statistical features of CA. The behavior of some simple rules is derived analytically. Other rules have more complex, chaotic behavior. Even for these rules, the LST yields an accurate portrait of both small and large time statistics.

  11. The Distributed Air Wing

    DTIC Science & Technology

    2014-06-01

    Cruise Missile LCS Littoral Combat Ship LEO Low Earth Orbit LER Loss-Exchange-Ration LHA Landing Helicopter Assault LIDAR Laser Imaging Detection and...Ranging LOC Lines of Communication LP Linear Programming LRASM Long Range Anti-Ship Missile LT Long Ton MANA Map-Aware Non-uniform Automata ME...enemy’s spy satellites. Based on open source information, China currently has 25 satellites operating in Low Earth Orbit ( LEO ), each operates at an

  12. Cellular automata model for urban road traffic flow considering pedestrian crossing street

    NASA Astrophysics Data System (ADS)

    Zhao, Han-Tao; Yang, Shuo; Chen, Xiao-Xu

    2016-11-01

    In order to analyze the effect of pedestrians' crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space-time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow's characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

  13. Towards a Quantum Game of Life

    NASA Astrophysics Data System (ADS)

    Flitney, Adrian P.; Abbott, Derek

    Cellular automata provide a means of obtaining complex behaviour from a simple array of cells and a deterministic transition function. They supply a method of computation that dispenses with the need for manipulation of individual cells and they are computationally universal. Classical cellular automata have proved of great interest to computer scientists but the construction of quantum cellular automata pose particular difficulties. We present a version of John Conway's famous two-dimensional classical cellular automata Life that has some quantum-like features, including interference effects. Some basic structures in the new automata are given and comparisons are made with Conway's game.

  14. Self-organisation in Cellular Automata with Coalescent Particles: Qualitative and Quantitative Approaches

    NASA Astrophysics Data System (ADS)

    Hellouin de Menibus, Benjamin; Sablik, Mathieu

    2017-06-01

    This article introduces new tools to study self-organisation in a family of simple cellular automata which contain some particle-like objects with good collision properties (coalescence) in their time evolution. We draw an initial configuration at random according to some initial shift-ergodic measure, and use the limit measure to describe the asymptotic behaviour of the automata. We first take a qualitative approach, i.e. we obtain information on the limit measure(s). We prove that only particles moving in one particular direction can persist asymptotically. This provides some previously unknown information on the limit measures of various deterministic and probabilistic cellular automata: 3 and 4-cyclic cellular automata [introduced by Fisch (J Theor Probab 3(2):311-338, 1990; Phys D 45(1-3):19-25, 1990)], one-sided captive cellular automata [introduced by Theyssier (Captive Cellular Automata, 2004)], the majority-traffic cellular automaton, a self stabilisation process towards a discrete line [introduced by Regnault and Rémila (in: Mathematical Foundations of Computer Science 2015—40th International Symposium, MFCS 2015, Milan, Italy, Proceedings, Part I, 2015)]. In a second time we restrict our study to a subclass, the gliders cellular automata. For this class we show quantitative results, consisting in the asymptotic law of some parameters: the entry times [generalising K ůrka et al. (in: Proceedings of AUTOMATA, 2011)], the density of particles and the rate of convergence to the limit measure.

  15. Simulations of Forest Fires by the Cellular Automata Model "ABBAMPAU"

    NASA Astrophysics Data System (ADS)

    di Gregorio, S.; Bendicenti, E.

    2003-04-01

    Forest fires represent a serious environmental problem, whose negative impact is becoming day by day more worrisome. Forest fires are very complex phenomena; that need an interdisciplinary approach. The adopted method to modelling involves the definition of local rules, from which the global behaviour of the system can emerge. The paradigm of Cellular Automata was applied and the model ABBAMPAU was projected to simulate the evolution of forest fires. Cellular Automata features (parallelism and a-centrism) seem to match the system "forest fire"; the parameters, describing globally a forest fire, i.e. propagation rate, flame length and direction, fireline intensity, fire duration time et c. are mainly depending on some local characteristics i.e. vegetation type (live and dead fuel), relative humidity, fuel moisture, heat, territory morphology (altitude, slope), et c.. The only global characteristic is given by wind velocity and direction, but wind velocity and direction is locally altered according to the morphology; therefore wind has also to be considered at local level. ABBAMPAU accounts for the following aspects of the phenomenon: effects of combustion in surface and crown fire inside the cell, crown fire triggering off; surface and crown fire spread, determination of the local wind rate and direction. A validation of ABBAMPAU was tested on a real case of forest fire, in the territory of Villaputzu, Sardinia island, August 22nd, 1998. First simulations account for the main characteristics of the phenomenon and agree with the observations. The results show that the model could be applied for the forest fire preventions, the productions of risk scenarios and the evaluation of the forest fire environmental impact.

  16. Simulating Flaring Events via an Intelligent Cellular Automata Mechanism

    NASA Astrophysics Data System (ADS)

    Dimitropoulou, M.; Vlahos, L.; Isliker, H.; Georgoulis, M.

    2010-07-01

    We simulate flaring events through a Cellular Automaton (CA) model, in which, for the first time, we use observed vector magnetograms as initial conditions. After non-linear force free extrapolation of the magnetic field from the vector magnetograms, we identify magnetic discontinuities, using two alternative criteria: (1) the average magnetic field gradient, or (2) the normalized magnetic field curl (i.e. the current). Magnetic discontinuities are identified at the grid-sites where the magnetic field gradient or curl exceeds a specified threshold. We then relax the magnetic discontinuities according to the rules of Lu and Hamilton (1991) or Lu et al. (1993), i.e. we redistribute the magnetic field locally so that the discontinuities disappear. In order to simulate the flaring events, we consider several alternative scenarios with regard to: (1) The threshold above which magnetic discontinuities are identified (applying low, high, and height-dependent threshold values); (2) The driving process that occasionally causes new discontinuities (at randomly chosen grid sites, magnetic field increments are added that are perpendicular (or may-be also parallel) to the existing magnetic field). We address the question whether the coronal active region magnetic fields can indeed be considered to be in the state of self-organized criticality (SOC).

  17. Automatic Traffic-Based Internet Control Message Protocol (ICMP) Model Generation for ns-3

    DTIC Science & Technology

    2015-12-01

    through visiting the inferred automata o Fuzzing of an implementation by generating altered message formats We tested with 3 versions of Netzob. First...relationships. Afterwards, we used the Automata module to generate state machines using different functions: “generateChainedStateAutomata...The “generatePTAAutomata” takes as input several communication sessions and then identifies common paths and merges these into a single automata . The

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamrin, Mohd Izzuddin Mohd; Turaev, Sherzod; Sembok, Tengku Mohd Tengku

    There are tremendous works in biotechnology especially in area of DNA molecules. The computer society is attempting to develop smaller computing devices through computational models which are based on the operations performed on the DNA molecules. A Watson-Crick automaton, a theoretical model for DNA based computation, has two reading heads, and works on double-stranded sequences of the input related by a complementarity relation similar with the Watson-Crick complementarity of DNA nucleotides. Over the time, several variants of Watson-Crick automata have been introduced and investigated. However, they cannot be used as suitable DNA based computational models for molecular stochastic processes andmore » fuzzy processes that are related to important practical problems such as molecular parsing, gene disease detection, and food authentication. In this paper we define new variants of Watson-Crick automata, called weighted Watson-Crick automata, developing theoretical models for molecular stochastic and fuzzy processes. We define weighted Watson-Crick automata adapting weight restriction mechanisms associated with formal grammars and automata. We also study the generative capacities of weighted Watson-Crick automata, including probabilistic and fuzzy variants. We show that weighted variants of Watson-Crick automata increase their generative power.« less

  19. Using economy of means to evolve transition rules within 2D cellular automata.

    PubMed

    Ripps, David L

    2010-01-01

    Running a cellular automaton (CA) on a rectangular lattice is a time-honored method for studying artificial life on a digital computer. Commonly, the researcher wishes to investigate some specific or general mode of behavior, say, the ability of a coherent pattern of points to glide within the lattice, or to generate copies of itself. This technique has a problem: how to design the transitions table-the set of distinct rules that specify the next content of a cell from its current content and that of its near neighbors. Often the table is painstakingly designed manually, rule by rule. The problem is exacerbated by the potentially vast number of individual rules that need be specified to cover all combinations of center and neighbors when there are several symbols in the alphabet of the CA. In this article a method is presented to have the set of rules evolve automatically while running the CA. The transition table is initially empty, with rules being added as the need arises. A novel principle drives the evolution: maximum economy of means-maximizing the reuse of rules introduced on previous cycles. This method may not be a panacea applicable to all CA studies. Nevertheless, it is sufficiently potent to evolve sets of rules and associated patterns of points that glide (periodically regenerate themselves at another location) and to generate gliding "children" that then "mate" by collision.

  20. Observability of Automata Networks: Fixed and Switching Cases.

    PubMed

    Li, Rui; Hong, Yiguang; Wang, Xingyuan

    2018-04-01

    Automata networks are a class of fully discrete dynamical systems, which have received considerable interest in various different areas. This brief addresses the observability of automata networks and switched automata networks in a unified framework, and proposes simple necessary and sufficient conditions for observability. The results are achieved by employing methods from symbolic computation, and are suited for implementation using computer algebra systems. Several examples are presented to demonstrate the application of the results.

  1. Autonomous molecular cascades for evaluation of cell surfaces

    NASA Astrophysics Data System (ADS)

    Rudchenko, Maria; Taylor, Steven; Pallavi, Payal; Dechkovskaia, Alesia; Khan, Safana; Butler, Vincent P., Jr.; Rudchenko, Sergei; Stojanovic, Milan N.

    2013-08-01

    Molecular automata are mixtures of molecules that undergo precisely defined structural changes in response to sequential interactions with inputs. Previously studied nucleic acid-based automata include game-playing molecular devices (MAYA automata) and finite-state automata for the analysis of nucleic acids, with the latter inspiring circuits for the analysis of RNA species inside cells. Here, we describe automata based on strand-displacement cascades directed by antibodies that can analyse cells by using their surface markers as inputs. The final output of a molecular automaton that successfully completes its analysis is the presence of a unique molecular tag on the cell surface of a specific subpopulation of lymphocytes within human blood cells.

  2. A full computation-relevant topological dynamics classification of elementary cellular automata.

    PubMed

    Schüle, Martin; Stoop, Ruedi

    2012-12-01

    Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos."

  3. Analysis of the Use of Unmanned Combat Aerial Vehicles in Conjunction with Manned Aircraft to Counter Active Terrorists in Rough Terrain

    DTIC Science & Technology

    2015-06-01

    UCAVs) may enhance Turkey’s ability to counter active terrorists in that region. In this research, Map Aware Non-uniform Automata (MANA) is used to...Aerial Vehicles (UCAVs) may enhance Turkey’s ability to counter active terrorists in that region. In this research, Map Aware Non-uniform Automata (MANA...Attack Munition LOS Line-of-Sight MALE Medium-Altitude Long-Endurance MANA Map Aware Non-Uniform Automata MANA-V Map Aware Non-Uniform Automata

  4. Superposition-Based Analysis of First-Order Probabilistic Timed Automata

    NASA Astrophysics Data System (ADS)

    Fietzke, Arnaud; Hermanns, Holger; Weidenbach, Christoph

    This paper discusses the analysis of first-order probabilistic timed automata (FPTA) by a combination of hierarchic first-order superposition-based theorem proving and probabilistic model checking. We develop the overall semantics of FPTAs and prove soundness and completeness of our method for reachability properties. Basically, we decompose FPTAs into their time plus first-order logic aspects on the one hand, and their probabilistic aspects on the other hand. Then we exploit the time plus first-order behavior by hierarchic superposition over linear arithmetic. The result of this analysis is the basis for the construction of a reachability equivalent (to the original FPTA) probabilistic timed automaton to which probabilistic model checking is finally applied. The hierarchic superposition calculus required for the analysis is sound and complete on the first-order formulas generated from FPTAs. It even works well in practice. We illustrate the potential behind it with a real-life DHCP protocol example, which we analyze by means of tool chain support.

  5. A cellular automaton model for ship traffic flow in waterways

    NASA Astrophysics Data System (ADS)

    Qi, Le; Zheng, Zhongyi; Gang, Longhui

    2017-04-01

    With the development of marine traffic, waterways become congested and more complicated traffic phenomena in ship traffic flow are observed. It is important and necessary to build a ship traffic flow model based on cellular automata (CAs) to study the phenomena and improve marine transportation efficiency and safety. Spatial discretization rules for waterways and update rules for ship movement are two important issues that are very different from vehicle traffic. To solve these issues, a CA model for ship traffic flow, called a spatial-logical mapping (SLM) model, is presented. In this model, the spatial discretization rules are improved by adding a mapping rule. And the dynamic ship domain model is considered in the update rules to describe ships' interaction more exactly. Take the ship traffic flow in the Singapore Strait for example, some simulations were carried out and compared. The simulations show that the SLM model could avoid ship pseudo lane-change efficiently, which is caused by traditional spatial discretization rules. The ship velocity change in the SLM model is consistent with the measured data. At finally, from the fundamental diagram, the relationship between traffic ability and the lengths of ships is explored. The number of ships in the waterway declines when the proportion of large ships increases.

  6. Using Mobile TLA as a Logic for Dynamic I/O Automata

    NASA Astrophysics Data System (ADS)

    Kapus, Tatjana

    Input/Output (I/O) automata and the Temporal Logic of Actions (TLA) are two well-known techniques for the specification and verification of concurrent systems. Over the past few years, they have been extended to the so-called dynamic I/O automata and, respectively, Mobile TLA (MTLA) in order to be more appropriate for mobile agent systems. Dynamic I/O automata is just a mathematical model, whereas MTLA is a logic with a formally defined language. In this paper, therefore, we investigate how MTLA could be used as a formal language for the specification of dynamic I/O automata. We do this by writing an MTLA specification of a travel agent system which has been specified semi-formally in the literature on that model. In this specification, we deal with always existing agents as well as with an initially unknown number of dynamically created agents, with mobile and non-mobile agents, with I/O-automata-style communication, and with the changing communication capabilities of mobile agents. We have previously written a TLA specification of this system. This paper shows that an MTLA specification of such a system can be more elegant and faithful to the dynamic I/O automata definition because the agent existence and location can be expressed directly by using agent and location names instead of special variables as in TLA. It also shows how the reuse of names for dynamically created and destroyed agents within the dynamic I/O automata framework can be specified in MTLA.

  7. Predicting mining activity with parallel genetic algorithms

    USGS Publications Warehouse

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.; Beyer, H.G.; O'Reilly, U.M.; Banzhaf, Arnold D.; Blum, W.; Bonabeau, C.; Cantu-Paz, E.W.; ,; ,

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  8. Designing Composite Resins in the 21st Century: Ending the End Group Fallacy

    DTIC Science & Technology

    2015-09-30

    unlimited. Network Automata • In correspondence with cellular automata , a system of differential equations describes the evolution of structures...LLNL). 11Distribution A: Approved for public release; distribution is unlimited. “State of the Art” Network Automata Example • Cure kinetics

  9. Social interactions of eating behaviour among high school students: a cellular automata approach

    PubMed Central

    2012-01-01

    Background Overweight and obesity in children and adolescents is a global epidemic posing problems for both developed and developing nations. The prevalence is particularly alarming in developed nations, such as the United States, where approximately one in three school-aged adolescents (ages 12-19) are overweight or obese. Evidence suggests that weight gain in school-aged adolescents is related to energy imbalance exacerbated by the negative aspects of the school food environment, such as presence of unhealthy food choices. While a well-established connection exists between the food environment, presently there is a lack of studies investigating the impact of the social environment and associated interactions of school-age adolescents. This paper uses a mathematical modelling approach to explore how social interactions among high school adolescents can affect their eating behaviour and food choice. Methods In this paper we use a Cellular Automata (CA) modelling approach to explore how social interactions among school-age adolescents can affect eating behaviour, and food choice. Our CA model integrates social influences and transition rules to simulate the way individuals would interact in a social community (e.g., school cafeteria). To replicate these social interactions, we chose the Moore neighbourhood which allows all neighbours (eights cells in a two-dimensional square lattice) to influence the central cell. Our assumption is that individuals belong to any of four states; Bring Healthy, Bring Unhealthy, Purchase Healthy, and Purchase Unhealthy, and will influence each other according to parameter settings and transition rules. Simulations were run to explore how the different states interact under varying parameter settings. Results This study, through simulations, illustrates that students will change their eating behaviour from unhealthy to healthy as a result of positive social and environmental influences. In general, there is one common characteristic of changes across time; students with similar eating behaviours tend to form groups, represented by distinct clusters. Transition of healthy and unhealthy eating behaviour is non-linear and a sharp change is observed around a critical point where positive and negative influences are equal. Conclusions Conceptualizing the social environment of individuals is a crucial step to increasing our understanding of obesogenic environments of high-school students, and moreover, the general population. Incorporating both contextual, and individual determinants found in real datasets, in our model will greatly enhance calibration of future models. Complex mathematical modelling has a potential to contribute to the way public health data is collected and analyzed. PMID:23046793

  10. Topology Optimization - Engineering Contribution to Architectural Design

    NASA Astrophysics Data System (ADS)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2017-10-01

    The idea of the topology optimization is to find within a considered design domain the distribution of material that is optimal in some sense. Material, during optimization process, is redistributed and parts that are not necessary from objective point of view are removed. The result is a solid/void structure, for which an objective function is minimized. This paper presents an application of topology optimization to multi-material structures. The design domain defined by shape of a structure is divided into sub-regions, for which different materials are assigned. During design process material is relocated, but only within selected region. The proposed idea has been inspired by architectural designs like multi-material facades of buildings. The effectiveness of topology optimization is determined by proper choice of numerical optimization algorithm. This paper utilises very efficient heuristic method called Cellular Automata. Cellular Automata are mathematical, discrete idealization of a physical systems. Engineering implementation of Cellular Automata requires decomposition of the design domain into a uniform lattice of cells. It is assumed, that the interaction between cells takes place only within the neighbouring cells. The interaction is governed by simple, local update rules, which are based on heuristics or physical laws. The numerical studies show, that this method can be attractive alternative to traditional gradient-based algorithms. The proposed approach is evaluated by selected numerical examples of multi-material bridge structures, for which various material configurations are examined. The numerical studies demonstrated a significant influence the material sub-regions location on the final topologies. The influence of assumed volume fraction on final topologies for multi-material structures is also observed and discussed. The results of numerical calculations show, that this approach produces different results as compared with classical one-material problems.

  11. Dirac Cellular Automaton from Split-step Quantum Walk

    PubMed Central

    Mallick, Arindam; Chandrashekar, C. M.

    2016-01-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159

  12. Simulating the conversion of rural settlements to town land based on multi-agent systems and cellular automata.

    PubMed

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans.

  13. Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov-Zhabotinsky reaction.

    PubMed

    Dini, Paolo; Nehaniv, Chrystopher L; Egri-Nagy, Attila; Schilstra, Maria J

    2013-05-01

    Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Viewing hybrid systems as products of control systems and automata

    NASA Technical Reports Server (NTRS)

    Grossman, R. L.; Larson, R. G.

    1992-01-01

    The purpose of this note is to show how hybrid systems may be modeled as products of nonlinear control systems and finite state automata. By a hybrid system, we mean a network of consisting of continuous, nonlinear control system connected to discrete, finite state automata. Our point of view is that the automata switches between the control systems, and that this switching is a function of the discrete input symbols or letters that it receives. We show how a nonlinear control system may be viewed as a pair consisting of a bialgebra of operators coding the dynamics, and an algebra of observations coding the state space. We also show that a finite automata has a similar representation. A hybrid system is then modeled by taking suitable products of the bialgebras coding the dynamics and the observation algebras coding the state spaces.

  15. Iterons, fractals and computations of automata

    NASA Astrophysics Data System (ADS)

    Siwak, Paweł

    1999-03-01

    Processing of strings by some automata, when viewed on space-time (ST) diagrams, reveals characteristic soliton-like coherent periodic objects. They are inherently associated with iterations of automata mappings thus we call them the iterons. In the paper we present two classes of one-dimensional iterons: particles and filtrons. The particles are typical for parallel (cellular) processing, while filtrons, introduced in (32) are specific for serial processing of strings. In general, the images of iterated automata mappings exhibit not only coherent entities but also the fractals, and quasi-periodic and chaotic dynamics. We show typical images of such computations: fractals, multiplication by a number, and addition of binary numbers defined by a Turing machine. Then, the particles are presented as iterons generated by cellular automata in three computations: B/U code conversion (13, 29), majority classification (9), and in discrete version of the FPU (Fermi-Pasta-Ulam) dynamics (7, 23). We disclose particles by a technique of combinational recoding of ST diagrams (as opposed to sequential recoding). Subsequently, we recall the recursive filters based on FCA (filter cellular automata) window operators, and considered by Park (26), Ablowitz (1), Fokas (11), Fuchssteiner (12), Bruschi (5) and Jiang (20). We present the automata equivalents to these filters (33). Some of them belong to the class of filter automata introduced in (30). We also define and illustrate some properties of filtrons. Contrary to particles, the filtrons interact nonlocally in the sense that distant symbols may influence one another. Thus their interactions are very unusual. Some examples have been given in (32). Here we show new examples of filtron phenomena: multifiltron solitonic collisions, attracting and repelling filtrons, trapped bouncing filtrons (which behave like a resonance cavity) and quasi filtrons.

  16. Representing and computing regular languages on massively parallel networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.I.; O'Sullivan, J.A.; Boysam, B.

    1991-01-01

    This paper proposes a general method for incorporating rule-based constraints corresponding to regular languages into stochastic inference problems, thereby allowing for a unified representation of stochastic and syntactic pattern constraints. The authors' approach first established the formal connection of rules to Chomsky grammars, and generalizes the original work of Shannon on the encoding of rule-based channel sequences to Markov chains of maximum entropy. This maximum entropy probabilistic view leads to Gibb's representations with potentials which have their number of minima growing at precisely the exponential rate that the language of deterministically constrained sequences grow. These representations are coupled to stochasticmore » diffusion algorithms, which sample the language-constrained sequences by visiting the energy minima according to the underlying Gibbs' probability law. The coupling to stochastic search methods yields the all-important practical result that fully parallel stochastic cellular automata may be derived to generate samples from the rule-based constraint sets. The production rules and neighborhood state structure of the language of sequences directly determines the necessary connection structures of the required parallel computing surface. Representations of this type have been mapped to the DAP-510 massively-parallel processor consisting of 1024 mesh-connected bit-serial processing elements for performing automated segmentation of electron-micrograph images.« less

  17. Molecular implementation of simple logic programs.

    PubMed

    Ran, Tom; Kaplan, Shai; Shapiro, Ehud

    2009-10-01

    Autonomous programmable computing devices made of biomolecules could interact with a biological environment and be used in future biological and medical applications. Biomolecular implementations of finite automata and logic gates have already been developed. Here, we report an autonomous programmable molecular system based on the manipulation of DNA strands that is capable of performing simple logical deductions. Using molecular representations of facts such as Man(Socrates) and rules such as Mortal(X) <-- Man(X) (Every Man is Mortal), the system can answer molecular queries such as Mortal(Socrates)? (Is Socrates Mortal?) and Mortal(X)? (Who is Mortal?). This biomolecular computing system compares favourably with previous approaches in terms of expressive power, performance and precision. A compiler translates facts, rules and queries into their molecular representations and subsequently operates a robotic system that assembles the logical deductions and delivers the result. This prototype is the first simple programming language with a molecular-scale implementation.

  18. Automatic Methods and Tools for the Verification of Real Time Systems

    DTIC Science & Technology

    1997-11-30

    We developed formal methods and tools for the verification of real - time systems . This was accomplished by extending techniques, based on automata...embedded real - time systems , we introduced hybrid automata, which equip traditional discrete automata with real-numbered clock variables and continuous... real - time systems , and we identified the exact boundary between decidability and undecidability of real-time reasoning.

  19. Industry Strength Tool and Technology for Automated Synthesis of Safety-Critical Applications from Formal Specifications

    DTIC Science & Technology

    2015-11-01

    28 2.3.4 Input/Output Automata ...various other modeling frameworks such as I/O Automata , Kahn Process Networks, Petri-nets, Multi-dimensional SDF, etc. are also used for designing...Formal Ideally suited to model DSP applications 3 Petri Nets Graphical Formal Used for modeling distributed systems 4 I/O Automata Both Formal

  20. Soliton cellular automaton associated with Dn(1)-crystal B2,s

    NASA Astrophysics Data System (ADS)

    Misra, Kailash C.; Wilson, Evan A.

    2013-04-01

    A solvable vertex model in ferromagnetic regime gives rise to a soliton cellular automaton which is a discrete dynamical system in which site variables take on values in a finite set. We study the scattering of a class of soliton cellular automata associated with the U_q(D_n^{(1)})-perfect crystal B2, s. We calculate the combinatorial R matrix for all elements of B2, s ⊗ B2, 1. In particular, we show that the scattering rule for our soliton cellular automaton can be identified with the combinatorial R matrix for U_q(A_1^{(1)}) oplus U_q(D_{n-2}^{(1)})-crystals.

  1. Cellular automata model for drug release from binary matrix and reservoir polymeric devices.

    PubMed

    Johannes Laaksonen, Timo; Mikael Laaksonen, Hannu; Tapio Hirvonen, Jouni; Murtomäki, Lasse

    2009-04-01

    Kinetics of drug release from polymeric tablets, inserts and implants is an important and widely studied area. Here we present a new and widely applicable cellular automata model for diffusion and erosion processes occurring during drug release from polymeric drug release devices. The model divides a 2D representation of the release device into an array of cells. Each cell contains information about the material, drug, polymer or solvent that the domain contains. Cells are then allowed to rearrange according to statistical rules designed to match realistic drug release. Diffusion is modeled by a random walk of mobile cells and kinetics of chemical or physical processes by probabilities of conversion from one state to another. This is according to the basis of diffusion coefficients and kinetic rate constants, which are on fundamental level just probabilities for certain occurrences. The model is applied to three kinds of devices with different release mechanisms: erodable matrices, diffusion through channels or pores and membrane controlled release. The dissolution curves obtained are compared to analytical models from literature and the validity of the model is considered. The model is shown to be compatible with all three release devices, highlighting easy adaptability of the model to virtually any release system and geometry. Further extension and applications of the model are envisioned.

  2. Simulating the Conversion of Rural Settlements to Town Land Based on Multi-Agent Systems and Cellular Automata

    PubMed Central

    Liu, Yaolin; Kong, Xuesong; Liu, Yanfang; Chen, Yiyun

    2013-01-01

    Rapid urbanization in China has triggered the conversion of land from rural to urban use, particularly the conversion of rural settlements to town land. This conversion is the result of the joint effects of the geographic environment and agents involving the government, investors, and farmers. To understand the dynamic interaction dominated by agents and to predict the future landscape of town expansion, a small town land-planning model is proposed based on the integration of multi-agent systems (MAS) and cellular automata (CA). The MAS-CA model links the decision-making behaviors of agents with the neighbor effect of CA. The interaction rules are projected by analyzing the preference conflicts among agents. To better illustrate the effects of the geographic environment, neighborhood, and agent behavior, a comparative analysis between the CA and MAS-CA models in three different towns is presented, revealing interesting patterns in terms of quantity, spatial characteristics, and the coordinating process. The simulation of rural settlements conversion to town land through modeling agent decision and human-environment interaction is very useful for understanding the mechanisms of rural-urban land-use change in developing countries. This process can assist town planners in formulating appropriate development plans. PMID:24244472

  3. Integrating GIS, cellular automata, and genetic algorithm in urban spatial optimization: a case study of Lanzhou

    NASA Astrophysics Data System (ADS)

    Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian

    2006-10-01

    This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.

  4. A cognitive approach to classifying perceived behaviors

    NASA Astrophysics Data System (ADS)

    Benjamin, Dale Paul; Lyons, Damian

    2010-04-01

    This paper describes our work on integrating distributed, concurrent control in a cognitive architecture, and using it to classify perceived behaviors. We are implementing the Robot Schemas (RS) language in Soar. RS is a CSP-type programming language for robotics that controls a hierarchy of concurrently executing schemas. The behavior of every RS schema is defined using port automata. This provides precision to the semantics and also a constructive means of reasoning about the behavior and meaning of schemas. Our implementation uses Soar operators to build, instantiate and connect port automata as needed. Our approach is to use comprehension through generation (similar to NLSoar) to search for ways to construct port automata that model perceived behaviors. The generality of RS permits us to model dynamic, concurrent behaviors. A virtual world (Ogre) is used to test the accuracy of these automata. Soar's chunking mechanism is used to generalize and save these automata. In this way, the robot learns to recognize new behaviors.

  5. Maximizing the Adjacent Possible in Automata Chemistries.

    PubMed

    Hickinbotham, Simon; Clark, Edward; Nellis, Adam; Stepney, Susan; Clarke, Tim; Young, Peter

    2016-01-01

    Automata chemistries are good vehicles for experimentation in open-ended evolution, but they are by necessity complex systems whose low-level properties require careful design. To aid the process of designing automata chemistries, we develop an abstract model that classifies the features of a chemistry from a physical (bottom up) perspective and from a biological (top down) perspective. There are two levels: things that can evolve, and things that cannot. We equate the evolving level with biology and the non-evolving level with physics. We design our initial organisms in the biology, so they can evolve. We design the physics to facilitate evolvable biologies. This architecture leads to a set of design principles that should be observed when creating an instantiation of the architecture. These principles are Everything Evolves, Everything's Soft, and Everything Dies. To evaluate these ideas, we present experiments in the recently developed Stringmol automata chemistry. We examine the properties of Stringmol with respect to the principles, and so demonstrate the usefulness of the principles in designing automata chemistries.

  6. Asynchronous adaptive time step in quantitative cellular automata modeling

    PubMed Central

    Zhu, Hao; Pang, Peter YH; Sun, Yan; Dhar, Pawan

    2004-01-01

    Background The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. Results Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. Conclusions Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment. PMID:15222901

  7. YIP Formal Synthesis of Software-Based Control Protocols for Fractionated,Composable Autonomous Systems

    DTIC Science & Technology

    2016-07-08

    Systems Using Automata Theory and Barrier Certifi- cates We developed a sound but incomplete method for the computational verification of specifications...method merges ideas from automata -based model checking with those from control theory including so-called barrier certificates and optimization-based... Automata theory meets barrier certificates: Temporal logic verification of nonlinear systems,” IEEE Transactions on Automatic Control, 2015. [J2] R

  8. Analysis of Error Propagation Within Hierarchical Air Combat Models

    DTIC Science & Technology

    2016-06-01

    Model Simulation MANA Map Aware Non-Uniform Automata MCET Mine Warfare Capabilities and Effectiveness Tool MOE measure of effectiveness MOP measure of...model for a two-versus-two air engagement between jet fighters in the stochastic, agent-based Map Aware Non- uniform Automata (MANA) simulation...Master’s thesis, Naval Postgraduate School, Monterey, CA. McIntosh, G. C. (2009). MANA-V (Map aware non-uniform automata – Vector) supplementary manual

  9. Periodically-Scheduled Controller Analysis using Hybrid Systems Reachability and Continuization

    DTIC Science & Technology

    2015-12-01

    tools to verify specifications for hybrid automata do not perform well on such periodically scheduled models. This is due to a combination of the large...an additive nondeterministic input. Reachability tools for hybrid automata can better handle such systems. We further improve the analysis by...formally as a hybrid automaton. However, reachability tools to verify specifications for hybrid automata do not perform well on such periodically

  10. Experiments in Error Propagation within Hierarchal Combat Models

    DTIC Science & Technology

    2015-09-01

    Bayesian Information Criterion CNO Chief of Naval Operations DOE Design of Experiments DOD Department of Defense MANA Map Aware Non-uniform Automata ...ground up” approach. First, it develops a mission-level model for one on one submarine combat in Map Aware Non-uniform Automata (MANA) simulation, an... Automata (MANA), an agent based simulation that can model the different postures of submarines. It feeds the results from MANA into stochastic

  11. Activity Detection and Retrieval for Image and Video Data with Limited Training

    DTIC Science & Technology

    2015-06-10

    applications. Here we propose two techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a... automata . For our second approach to segmentation, we employ a region based segmentation technique that is capable of handling intensity inhomogeneity...techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a mixture of Gaussian is fitted to the

  12. Automatic Methods and Tools for the Verification of Real Time Systems

    DTIC Science & Technology

    1997-07-31

    real - time systems . This was accomplished by extending techniques, based on automata theory and temporal logic, that have been successful for the verification of time-independent reactive systems. As system specification lanmaage for embedded real - time systems , we introduced hybrid automata, which equip traditional discrete automata with real-numbered clock variables and continuous environment variables. As requirements specification languages, we introduced temporal logics with clock variables for expressing timing constraints.

  13. Literature Review on Systems of Systems (SoS): A Methodology With Preliminary Results

    DTIC Science & Technology

    2013-11-01

    Appendix H. The Enhanced ISAAC Neural Simulation Toolkit (EINSTein) 73  Appendix I. The Map Aware Nonuniform Automata (MANA) Agent-Based Model 81...83  Figure I-3. Quadrant chart addressing SoS and associated SoSA designs for the Map Aware Nonuniform Automata (MANA) agent...Map Aware Nonuniform Automata (MANA) agent-based model. 85  Table I-2. SoS and SoSA software component maturation scores associated with the Map

  14. Fuzzy tree automata and syntactic pattern recognition.

    PubMed

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.

  15. Algebraic Systems and Pushdown Automata

    NASA Astrophysics Data System (ADS)

    Petre, Ion; Salomaa, Arto

    We concentrate in this chapter on the core aspects of algebraic series, pushdown automata, and their relation to formal languages. We choose to follow here a presentation of their theory based on the concept of properness. We introduce in Sect. 2 some auxiliary notions and results needed throughout the chapter, in particular the notions of discrete convergence in semirings and C-cycle free infinite matrices. In Sect. 3 we introduce the algebraic power series in terms of algebraic systems of equations. We focus on interconnections with context-free grammars and on normal forms. We then conclude the section with a presentation of the theorems of Shamir and Chomsky-Schützenberger. We discuss in Sect. 4 the algebraic and the regulated rational transductions, as well as some representation results related to them. Section 5 is dedicated to pushdown automata and focuses on the interconnections with classical (non-weighted) pushdown automata and on the interconnections with algebraic systems. We then conclude the chapter with a brief discussion of some of the other topics related to algebraic systems and pushdown automata.

  16. Nonlinear adaptive networks: A little theory, a few applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Qian, S.; Barnes, C.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We than present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series tidal prediction in Venice Lagoon, sonar transient detection, control of nonlinear processes, balancing a double inverted pendulum and design advice for free electron lasers. 26 refs., 23 figs.

  17. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.

    PubMed

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-11-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.

  18. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo

    PubMed Central

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-01-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016

  19. Towards the simplest hydrodynamic lattice-gas model.

    PubMed

    Boghosian, Bruce M; Love, Peter J; Meyer, David A

    2002-03-15

    It has been known since 1986 that it is possible to construct simple lattice-gas cellular automata whose hydrodynamics are governed by the Navier-Stokes equations in two dimensions. The simplest such model heretofore known has six bits of state per site on a triangular lattice. In this work, we demonstrate that it is possible to construct a model with only five bits of state per site on a Kagome lattice. Moreover, the model has a simple, deterministic set of collision rules and is easily implemented on a computer. In this work, we derive the equilibrium distribution function for this lattice-gas automaton and carry out the Chapman-Enskog analysis to determine the form of the Navier-Stokes equations.

  20. Automated Assume-Guarantee Reasoning by Abstraction Refinement

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Giannakopoulous, Dimitra; Glannakopoulou, Dimitra

    2008-01-01

    Current automated approaches for compositional model checking in the assume-guarantee style are based on learning of assumptions as deterministic automata. We propose an alternative approach based on abstraction refinement. Our new method computes the assumptions for the assume-guarantee rules as conservative and not necessarily deterministic abstractions of some of the components, and refines those abstractions using counter-examples obtained from model checking them together with the other components. Our approach also exploits the alphabets of the interfaces between components and performs iterative refinement of those alphabets as well as of the abstractions. We show experimentally that our preliminary implementation of the proposed alternative achieves similar or better performance than a previous learning-based implementation.

  1. Encryption and display of multiple-image information using computer-generated holography with modified GS iterative algorithm

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Li, Xiaowei; Liu, Su-Juan; Wang, Qiong-Hua

    2018-03-01

    In this paper, a new scheme of multiple-image encryption and display based on computer-generated holography (CGH) and maximum length cellular automata (MLCA) is presented. With the scheme, the computer-generated hologram, which has the information of the three primitive images, is generated by modified Gerchberg-Saxton (GS) iterative algorithm using three different fractional orders in fractional Fourier domain firstly. Then the hologram is encrypted using MLCA mask. The ciphertext can be decrypted combined with the fractional orders and the rules of MLCA. Numerical simulations and experimental display results have been carried out to verify the validity and feasibility of the proposed scheme.

  2. Perceptions of teaching and learning automata theory in a college-level computer science course

    NASA Astrophysics Data System (ADS)

    Weidmann, Phoebe Kay

    This dissertation identifies and describes student and instructor perceptions that contribute to effective teaching and learning of Automata Theory in a competitive college-level Computer Science program. Effective teaching is the ability to create an appropriate learning environment in order to provide effective learning. We define effective learning as the ability of a student to meet instructor set learning objectives, demonstrating this by passing the course, while reporting a good learning experience. We conducted our investigation through a detailed qualitative case study of two sections (118 students) of Automata Theory (CS 341) at The University of Texas at Austin taught by Dr. Lily Quilt. Because Automata Theory has a fixed curriculum in the sense that many curricula and textbooks agree on what Automata Theory contains, differences being depth and amount of material to cover in a single course, a case study would allow for generalizable findings. Automata Theory is especially problematic in a Computer Science curriculum since students are not experienced in abstract thinking before taking this course, fail to understand the relevance of the theory, and prefer classes with more concrete activities such as programming. This creates a special challenge for any instructor of Automata Theory as motivation becomes critical for student learning. Through the use of student surveys, instructor interviews, classroom observation, material and course grade analysis we sought to understand what students perceived, what instructors expected of students, and how those perceptions played out in the classroom in terms of structure and instruction. Our goal was to create suggestions that would lead to a better designed course and thus a higher student success rate in Automata Theory. We created a unique theoretical basis, pedagogical positivism, on which to study college-level courses. Pedagogical positivism states that through examining instructor and student perceptions of teaching and learning, improvements to a course are possible. These improvements can eventually develop a "best practice" instructional environment. This view is not possible under a strictly constructivist learning theory as there is no way to teach a group of individuals in a "best" way. Using this theoretical basis, we examined the gathered data from CS 341. (Abstract shortened by UMI.)

  3. A multiphysics and multiscale model for low frequency electromagnetic direct-chill casting

    NASA Astrophysics Data System (ADS)

    Košnik, N.; Guštin, A. Z.; Mavrič, B.; Šarler, B.

    2016-03-01

    Simulation and control of macrosegregation, deformation and grain size in low frequency electromagnetic (EM) direct-chill casting (LFEMC) is important for downstream processing. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of LFEMC processed aluminum alloys, with focus on axisymmetric billets. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the coil. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated. A systematic study of the complicated influences of the process parameters can be investigated by the model, including intensity and frequency of the electromagnetic field. The meshless solution framework, with the implemented simplest physical models, will be further extended by including more sophisticated microsegregation and grain structure models, as well as a more realistic solid and solid-liquid phase rheology.

  4. The detection and stabilisation of limit cycle for deterministic finite automata

    NASA Astrophysics Data System (ADS)

    Han, Xiaoguang; Chen, Zengqiang; Liu, Zhongxin; Zhang, Qing

    2018-04-01

    In this paper, the topological structure properties of deterministic finite automata (DFA), under the framework of the semi-tensor product of matrices, are investigated. First, the dynamics of DFA are converted into a new algebraic form as a discrete-time linear system by means of Boolean algebra. Using this algebraic description, the approach of calculating the limit cycles of different lengths is given. Second, we present two fundamental concepts, namely, domain of attraction of limit cycle and prereachability set. Based on the prereachability set, an explicit solution of calculating domain of attraction of a limit cycle is completely characterised. Third, we define the globally attractive limit cycle, and then the necessary and sufficient condition for verifying whether all state trajectories of a DFA enter a given limit cycle in a finite number of transitions is given. Fourth, the problem of whether a DFA can be stabilised to a limit cycle by the state feedback controller is discussed. Criteria for limit cycle-stabilisation are established. All state feedback controllers which implement the minimal length trajectories from each state to the limit cycle are obtained by using the proposed algorithm. Finally, an illustrative example is presented to show the theoretical results.

  5. A Rewriting-Based Approach to Trace Analysis

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present a rewriting-based algorithm for efficiently evaluating future time Linear Temporal Logic (LTL) formulae on finite execution traces online. While the standard models of LTL are infinite traces, finite traces appear naturally when testing and/or monitoring red applications that only run for limited time periods. The presented algorithm is implemented in the Maude executable specification language and essentially consists of a set of equations establishing an executable semantics of LTL using a simple formula transforming approach. The algorithm is further improved to build automata on-the-fly from formulae, using memoization. The result is a very efficient and small Maude program that can be used to monitor program executions. We furthermore present an alternative algorithm for synthesizing probably minimal observer finite state machines (or automata) from LTL formulae, which can be used to analyze execution traces without the need for a rewriting system, and can hence be used by observers written in conventional programming languages. The presented work is part of an ambitious runtime verification and monitoring project at NASA Ames, called PATHEXPLORER, and demonstrates that rewriting can be a tractable and attractive means for experimenting and implementing program monitoring logics.

  6. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  7. A modular architecture for transparent computation in recurrent neural networks.

    PubMed

    Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim

    2017-01-01

    Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cellular-automata-based learning network for pattern recognition

    NASA Astrophysics Data System (ADS)

    Tzionas, Panagiotis G.; Tsalides, Phillippos G.; Thanailakis, Adonios

    1991-11-01

    Most classification techniques either adopt an approach based directly on the statistical characteristics of the pattern classes involved, or they transform the patterns in a feature space and try to separate the point clusters in this space. An alternative approach based on memory networks has been presented, its novelty being that it can be implemented in parallel and it utilizes direct features of the patterns rather than statistical characteristics. This study presents a new approach for pattern classification using pseudo 2-D binary cellular automata (CA). This approach resembles the memory network classifier in the sense that it is based on an adaptive knowledge based formed during a training phase, and also in the fact that both methods utilize pattern features that are directly available. The main advantage of this approach is that the sensitivity of the pattern classifier can be controlled. The proposed pattern classifier has been designed using 1.5 micrometers design rules for an N-well CMOS process. Layout has been achieved using SOLO 1400. Binary pseudo 2-D hybrid additive CA (HACA) is described in the second section of this paper. The third section describes the operation of the pattern classifier and the fourth section presents some possible applications. The VLSI implementation of the pattern classifier is presented in the fifth section and, finally, the sixth section draws conclusions from the results obtained.

  9. Formal methods for modeling and analysis of hybrid systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Ashish (Inventor); Lincoln, Patrick D. (Inventor)

    2009-01-01

    A technique based on the use of a quantifier elimination decision procedure for real closed fields and simple theorem proving to construct a series of successively finer qualitative abstractions of hybrid automata is taught. The resulting abstractions are always discrete transition systems which can then be used by any traditional analysis tool. The constructed abstractions are conservative and can be used to establish safety properties of the original system. The technique works on linear and non-linear polynomial hybrid systems: the guards on discrete transitions and the continuous flows in all modes can be specified using arbitrary polynomial expressions over the continuous variables. An exemplar tool in the SAL environment built over the theorem prover PVS is detailed. The technique scales well to large and complex hybrid systems.

  10. A Semi-quantum Version of the Game of Life

    NASA Astrophysics Data System (ADS)

    Flitney, Adrian P.; Abbott, Derek

    The following sections are included: * Background and Motivation * Classical cellular automata * Conway's game of life * Quantum cellular automata * Semi-quantum Life * The idea * A first model * A semi-quantum model * Discussion * Summary * References

  11. Estimation of daily Snow Cover Area combining MODIS and LANDSAT information by using cellular automata

    NASA Astrophysics Data System (ADS)

    Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David

    2016-04-01

    The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.

  12. A novel image encryption algorithm using chaos and reversible cellular automata

    NASA Astrophysics Data System (ADS)

    Wang, Xingyuan; Luan, Dapeng

    2013-11-01

    In this paper, a novel image encryption scheme is proposed based on reversible cellular automata (RCA) combining chaos. In this algorithm, an intertwining logistic map with complex behavior and periodic boundary reversible cellular automata are used. We split each pixel of image into units of 4 bits, then adopt pseudorandom key stream generated by the intertwining logistic map to permute these units in confusion stage. And in diffusion stage, two-dimensional reversible cellular automata which are discrete dynamical systems are applied to iterate many rounds to achieve diffusion on bit-level, in which we only consider the higher 4 bits in a pixel because the higher 4 bits carry almost the information of an image. Theoretical analysis and experimental results demonstrate the proposed algorithm achieves a high security level and processes good performance against common attacks like differential attack and statistical attack. This algorithm belongs to the class of symmetric systems.

  13. Predictability in cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  14. Prediction and control of chaotic processes using nonlinear adaptive networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Barnes, C.W.; Flake, G.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  15. Combining Static Model Checking with Dynamic Enforcement Using the Statecall Policy Language

    NASA Astrophysics Data System (ADS)

    Madhavapeddy, Anil

    Internet protocols encapsulate a significant amount of state, making implementing the host software complex. In this paper, we define the Statecall Policy Language (SPL) which provides a usable middle ground between ad-hoc coding and formal reasoning. It enables programmers to embed automata in their code which can be statically model-checked using SPIN and dynamically enforced. The performance overheads are minimal, and the automata also provide higher-level debugging capabilities. We also describe some practical uses of SPL by describing the automata used in an SSH server written entirely in OCaml/SPL.

  16. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  17. Cellular Automata Simulation for Wealth Distribution

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Ching

    2009-08-01

    Wealth distribution of a country is a complicate system. A model, which is based on the Epstein & Axtell's "Sugars cape" model, is presented in Netlogo. The model considers the income, age, working opportunity and salary as control variables. There are still other variables should be considered while an artificial society is established. In this study, a more complicate cellular automata model for wealth distribution model is proposed. The effects of social welfare, tax, economical investment and inheritance are considered and simulated. According to the cellular automata simulation for wealth distribution, we will have a deep insight of financial policy of the government.

  18. A cardiac electrical activity model based on a cellular automata system in comparison with neural network model.

    PubMed

    Khan, Muhammad Sadiq Ali; Yousuf, Sidrah

    2016-03-01

    Cardiac Electrical Activity is commonly distributed into three dimensions of Cardiac Tissue (Myocardium) and evolves with duration of time. The indicator of heart diseases can occur randomly at any time of a day. Heart rate, conduction and each electrical activity during cardiac cycle should be monitor non-invasively for the assessment of "Action Potential" (regular) and "Arrhythmia" (irregular) rhythms. Many heart diseases can easily be examined through Automata model like Cellular Automata concepts. This paper deals with the different states of cardiac rhythms using cellular automata with the comparison of neural network also provides fast and highly effective stimulation for the contraction of cardiac muscles on the Atria in the result of genesis of electrical spark or wave. The specific formulated model named as "States of automaton Proposed Model for CEA (Cardiac Electrical Activity)" by using Cellular Automata Methodology is commonly shows the three states of cardiac tissues conduction phenomena (i) Resting (Relax and Excitable state), (ii) ARP (Excited but Absolutely refractory Phase i.e. Excited but not able to excite neighboring cells) (iii) RRP (Excited but Relatively Refractory Phase i.e. Excited and able to excite neighboring cells). The result indicates most efficient modeling with few burden of computation and it is Action Potential during the pumping of blood in cardiac cycle.

  19. Data Automata in Scala

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    The field of runtime verification has during the last decade seen a multitude of systems for monitoring event sequences (traces) emitted by a running system. The objective is to ensure correctness of a system by checking its execution traces against formal specifications representing requirements. A special challenge is data parameterized events, where monitors have to keep track of the combination of control states as well as data constraints, relating events and the data they carry across time points. This poses a challenge wrt. efficiency of monitors, as well as expressiveness of logics. Data automata is a form of automata where states are parameterized with data, supporting monitoring of data parameterized events. We describe the full details of a very simple API in the Scala programming language, an internal DSL (Domain-Specific Language), implementing data automata. The small implementation suggests a design pattern. Data automata allow transition conditions to refer to other states than the source state, and allow target states of transitions to be inlined, offering a temporal logic flavored notation. An embedding of a logic in a high-level language like Scala in addition allows monitors to be programmed using all of Scala's language constructs, offering the full flexibility of a programming language. The framework is demonstrated on an XML processing scenario previously addressed in related work.

  20. Final State of Ecosystem Containing Grass, Sheep and Wolves with Aging

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Pan, Qiu-Hui; Wang, Shuang

    This paper describes a cellular automata model containing movable wolves, sheep and reproducible grass. Each wolf or sheep is characterized by Penna bitstrings. In addition, we introduce the energy rule and the predator-prey mechanism for wolf and sheep. With considering age-structured, genetic strings, minimum reproduction age, cycle of the reproduction, number of offspring, we get three possible states of a predator-prey system: the coexisting one with predators and prey, the absorbing one with prey only, and the empty one where no animal survived. In this paper, we mainly discuss the effect of the number of poor genes, the energy supply (food), the minimum reproduction age, the reproductive cycle and the birth rate on the above three possible final states.

  1. Maritime Tactical Command and Control Analysis of Alternatives

    DTIC Science & Technology

    2016-01-01

    JIIM joint, interagency, intergovernmental, and multinational LCC life-cycle cost MANA Map Aware Non-Uniform Automata MDA milestone decision authority...Map Aware Non-Uniform Automata (MANA), a combat and C4I, surveillance, and reconnaissance model developed by the New Zealand Defence Technology

  2. Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios

    NASA Astrophysics Data System (ADS)

    Avolio, MV; Di Gregorio, Salvatore; Mantovani, Franco; Pasuto, Alessandro; Rongo, Rocco; Silvano, Sandro; Spataro, William

    Cellular Automata are a powerful tool for modelling natural and artificial systems, which can be described in terms of local interactions of their constituent parts. Some types of landslides, such as debris/mud flows, match these requirements. The 1992 Tessina landslide has characteristics (slow mud flows) which make it appropriate for modelling by means of Cellular Automata, except for the initial phase of detachment, which is caused by a rotational movement that has no effect on the mud flow path. This paper presents the Cellular Automata approach for modelling slow mud/debris flows, the results of simulation of the 1992 Tessina landslide and future hazard scenarios based on the volumes of masses that could be mobilised in the future. They were obtained by adapting the Cellular Automata Model called SCIDDICA, which has been validated for very fast landslides. SCIDDICA was applied by modifying the general model to the peculiarities of the Tessina landslide. The simulations obtained by this initial model were satisfactory for forecasting the surface covered by mud. Calibration of the model, which was obtained from simulation of the 1992 event, was used for forecasting flow expansion during possible future reactivation. For this purpose two simulations concerning the collapse of about 1 million m 3 of material were tested. In one of these, the presence of a containment wall built in 1992 for the protection of the Tarcogna hamlet was inserted. The results obtained identified the conditions of high risk affecting the villages of Funes and Lamosano and show that this Cellular Automata approach can have a wide range of applications for different types of mud/debris flows.

  3. Robot Path Planning in Uncertain Environments: A Language-Measure-Theoretic Approach

    DTIC Science & Technology

    2015-03-01

    in the framework of probabilistic finite state automata (PFSA) and language measure from a control-theoretic perspective. The proposed concept has been...DOI: 10.1115/1.4027876] Keywords: path planning, language measure, probabilistic finite state automata 1 Motivation and Introduction In general

  4. Decentralized indirect methods for learning automata games.

    PubMed

    Tilak, Omkar; Martin, Ryan; Mukhopadhyay, Snehasis

    2011-10-01

    We discuss the application of indirect learning methods in zero-sum and identical payoff learning automata games. We propose a novel decentralized version of the well-known pursuit learning algorithm. Such a decentralized algorithm has significant computational advantages over its centralized counterpart. The theoretical study of such a decentralized algorithm requires the analysis to be carried out in a nonstationary environment. We use a novel bootstrapping argument to prove the convergence of the algorithm. To our knowledge, this is the first time that such analysis has been carried out for zero-sum and identical payoff games. Extensive simulation studies are reported, which demonstrate the proposed algorithm's fast and accurate convergence in a variety of game scenarios. We also introduce the framework of partial communication in the context of identical payoff games of learning automata. In such games, the automata may not communicate with each other or may communicate selectively. This comprehensive framework has the capability to model both centralized and decentralized games discussed in this paper.

  5. Wavefront cellular learning automata.

    PubMed

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  6. Predictability in Cellular Automata

    PubMed Central

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case. PMID:25271778

  7. Wavefront cellular learning automata

    NASA Astrophysics Data System (ADS)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2018-02-01

    This paper proposes a new cellular learning automaton, called a wavefront cellular learning automaton (WCLA). The proposed WCLA has a set of learning automata mapped to a connected structure and uses this structure to propagate the state changes of the learning automata over the structure using waves. In the WCLA, after one learning automaton chooses its action, if this chosen action is different from the previous action, it can send a wave to its neighbors and activate them. Each neighbor receiving the wave is activated and must choose a new action. This structure for the WCLA is necessary in many dynamic areas such as social networks, computer networks, grid computing, and web mining. In this paper, we introduce the WCLA framework as an optimization tool with diffusion capability, study its behavior over time using ordinary differential equation solutions, and present its accuracy using expediency analysis. To show the superiority of the proposed WCLA, we compare the proposed method with some other types of cellular learning automata using two benchmark problems.

  8. Unary probabilistic and quantum automata on promise problems

    NASA Astrophysics Data System (ADS)

    Gainutdinova, Aida; Yakaryılmaz, Abuzer

    2018-02-01

    We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error unary QFAs are more powerful than bounded-error unary PFAs, and, contrary to the binary language case, the computational power of Las-Vegas QFAs and bounded-error PFAs is equivalent to the computational power of deterministic finite automata (DFAs). Then, we present a new family of unary promise problems defined with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.

  9. A comparative analysis of electronic and molecular quantum dot cellular automata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umamahesvari, H., E-mail: umamaheswarihema@gmail.com, E-mail: ajithavijay1@gmail.com; Ajitha, D., E-mail: umamaheswarihema@gmail.com, E-mail: ajithavijay1@gmail.com

    This paper presents a comparative analysis of electronic quantum-dot cellular automata (EQCA) and Magnetic quantum dot Cellular Automata (MQCA). QCA is a computing paradigm that encodes and processes information by the position of individual electrons. To enhance the high dense and ultra-low power devices, various researches have been actively carried out to find an alternative way to continue and follow Moore’s law, so called “beyond CMOS technology”. There have been several proposals for physically implementing QCA, EQCA and MQCA are the two important QCAs reported so far. This paper provides a comparative study on these two QCAs.

  10. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.

  11. Simulation of interdiffusion and voids growth based on cellular automata

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Boyan; Zhang, Nan; Du, Haishun; Zhang, Xinhong

    2017-02-01

    In the interdiffusion of two solid-state materials, if the diffusion coefficients of the two materials are not the same, the interface of the two materials will shift to the material with the lower diffusion coefficient. This effect is known as the Kirkendall effect. The Kirkendall effect leads to Kirkendall porosity. The pores act as sinks for vacancies and become voids. In this paper, the movement of the Kirkendall plane at interdiffusion is simulated based on cellular automata. The number of vacancies, the critical radius of voids nucleation and the nucleation rate are analysed. The vacancies diffusion, vacancies aggregation and voids growth are also simulated based on cellular automata.

  12. Mitochondrial fusion through membrane automata.

    PubMed

    Giannakis, Konstantinos; Andronikos, Theodore

    2015-01-01

    Studies have shown that malfunctions in mitochondrial processes can be blamed for diseases. However, the mechanism behind these operations is yet not sufficiently clear. In this work we present a novel approach to describe a biomolecular model for mitochondrial fusion using notions from the membrane computing. We use a case study defined in BioAmbient calculus and we show how to translate it in terms of a P automata variant. We combine brane calculi with (mem)brane automata to produce a new scheme capable of describing simple, realistic models. We propose the further use of similar methods and the test of other biomolecular models with the same behaviour.

  13. A Comparison of Three Approaches to Model Human Behavior

    NASA Astrophysics Data System (ADS)

    Palmius, Joel; Persson-Slumpi, Thomas

    2010-11-01

    One way of studying social processes is through the use of simulations. The use of simulations for this purpose has been established as its own field, social simulations, and has been used for studying a variety of phenomena. A simulation of a social setting can serve as an aid for thinking about that social setting, and for experimenting with different parameters and studying the outcomes caused by them. When using the simulation as an aid for thinking and experimenting, the chosen simulation approach will implicitly steer the simulationist towards thinking in a certain fashion in order to fit the model. To study the implications of model choice on the understanding of a setting where human anticipation comes into play, a simulation scenario of a coffee room was constructed using three different simulation approaches: Cellular Automata, Systems Dynamics and Agent-based modeling. The practical implementations of the models were done in three different simulation packages: Stella for Systems Dynamic, CaFun for Cellular automata and SesAM for Agent-based modeling. The models were evaluated both using Randers' criteria for model evaluation, and through introspection where the authors reflected upon how their understanding of the scenario was steered through the model choice. Further the software used for implementing the simulation models was evaluated, and practical considerations for the choice of software package are listed. It is concluded that the models have very different strengths. The Agent-based modeling approach offers the most intuitive support for thinking about and modeling a social setting where the behavior of the individual is in focus. The Systems Dynamics model would be preferable in situations where populations and large groups would be studied as wholes, but where individual behavior is of less concern. The Cellular Automata models would be preferable where processes need to be studied from the basis of a small set of very simple rules. It is further concluded that in most social simulation settings the Agent-based modeling approach would be the probable choice. This since the other models does not offer much in the way of supporting the modeling of the anticipatory behavior of humans acting in an organization.

  14. Cellular Automata Ideas in Digital Circuits and Switching Theory.

    ERIC Educational Resources Information Center

    Siwak, Pawel P.

    1985-01-01

    Presents two examples which illustrate the usefulness of ideas from cellular automata. First, Lee's algorithm is recalled and its cellular nature shown. Then a problem from digraphs, which has arisen from analyzing predecessing configurations in the famous Conway's "game of life," is considered. (Author/JN)

  15. Cellular Automata and the Humanities.

    ERIC Educational Resources Information Center

    Gallo, Ernest

    1994-01-01

    The use of cellular automata to analyze several pre-Socratic hypotheses about the evolution of the physical world is discussed. These hypotheses combine characteristics of both rigorous and metaphoric language. Since the computer demands explicit instructions for each step in the evolution of the automaton, such models can reveal conceptual…

  16. Cellular automata with object-oriented features for parallel molecular network modeling.

    PubMed

    Zhu, Hao; Wu, Yinghui; Huang, Sui; Sun, Yan; Dhar, Pawan

    2005-06-01

    Cellular automata are an important modeling paradigm for studying the dynamics of large, parallel systems composed of multiple, interacting components. However, to model biological systems, cellular automata need to be extended beyond the large-scale parallelism and intensive communication in order to capture two fundamental properties characteristic of complex biological systems: hierarchy and heterogeneity. This paper proposes extensions to a cellular automata language, Cellang, to meet this purpose. The extended language, with object-oriented features, can be used to describe the structure and activity of parallel molecular networks within cells. Capabilities of this new programming language include object structure to define molecular programs within a cell, floating-point data type and mathematical functions to perform quantitative computation, message passing capability to describe molecular interactions, as well as new operators, statements, and built-in functions. We discuss relevant programming issues of these features, including the object-oriented description of molecular interactions with molecule encapsulation, message passing, and the description of heterogeneity and anisotropy at the cell and molecule levels. By enabling the integration of modeling at the molecular level with system behavior at cell, tissue, organ, or even organism levels, the program will help improve our understanding of how complex and dynamic biological activities are generated and controlled by parallel functioning of molecular networks. Index Terms-Cellular automata, modeling, molecular network, object-oriented.

  17. Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells.

    PubMed

    Garijo, N; Manzano, R; Osta, R; Perez, M A

    2012-12-07

    Cell migration and proliferation has been modelled in the literature as a process similar to diffusion. However, using diffusion models to simulate the proliferation and migration of cells tends to create a homogeneous distribution in the cell density that does not correlate to empirical observations. In fact, the mechanism of cell dispersal is not diffusion. Cells disperse by crawling or proliferation, or are transported in a moving fluid. The use of cellular automata, particle models or cell-based models can overcome this limitation. This paper presents a stochastic cellular automata model to simulate the proliferation, migration and differentiation of cells. These processes are considered as completely stochastic as well as discrete. The model developed was applied to predict the behaviour of in vitro cell cultures performed with adult muscle satellite cells. Moreover, non homogeneous distribution of cells has been observed inside the culture well and, using the above mentioned stochastic cellular automata model, we have been able to predict this heterogeneous cell distribution and compute accurate quantitative results. Differentiation was also incorporated into the computational simulation. The results predicted the myotube formation that typically occurs with adult muscle satellite cells. In conclusion, we have shown how a stochastic cellular automata model can be implemented and is capable of reproducing the in vitro behaviour of adult muscle satellite cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Reserch on Urban Spatial Expansion Model Based on Multi-Object Gray Decision-Making and Ca: a Case Study of Pidu District, Chengdu City

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Li, Y.

    2018-04-01

    This paper from the perspective of the Neighbor cellular space, Proposed a new urban space expansion model based on a new multi-objective gray decision and CA. The model solved the traditional cellular automata conversion rules is difficult to meet the needs of the inner space-time analysis of urban changes and to overcome the problem of uncertainty in the combination of urban drivers and urban cellular automata. At the same time, the study takes Pidu District as a research area and carries out urban spatial simulation prediction and analysis, and draws the following conclusions: (1) The design idea of the urban spatial expansion model proposed in this paper is that the urban driving factor and the neighborhood function are tightly coupled by the multi-objective grey decision method based on geographical conditions. The simulation results show that the simulation error of urban spatial expansion is less than 5.27 %. The Kappa coefficient is 0.84. It shows that the model can better capture the inner transformation mechanism of the city. (2) We made a simulation prediction for Pidu District of Chengdu by discussing Pidu District of Chengdu as a system instance.In this way, we analyzed the urban growth tendency of this area.presenting a contiguous increasing mode, which is called "urban intensive development". This expansion mode accorded with sustainable development theory and the ecological urbanization design theory.

  19. Critical edge between frozen extinction and chaotic life

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Albano, Ezequiel V.

    1995-12-01

    The cellular automata ``game of life'' (GL) proposed by J. Conway simulates the dynamic evolution of a society of living organisms. It has been extensively studied in order to understand the emergence of complexity and diversity from a set of local rules. More recently, the capability of GL to self-oranize into a critical state has opened an interesting debate. In this work we adopt a different approach: by introducing stochastic rules in the GL it is found that ``life'' exhibits a very rich critical behavior. Discontinuous (first-order) irreversible phase transitions (IPT's) between an extinct phase and a steady state supporting life are found. A precise location of the critical edge is achieved by means of an epidemic analysis, which also allows us to determine dynamic critical exponents. Furthermore, by means of a damage spreading study we conclude that the living phase is chaotic. The edge of the frozen-chaotic transition coincides with that of the IPT's life extinction. Close to the edge, fractal spreading of the damage is observed; however, deep inside the living phase such spreading becomes homogeneous. (c) 1995 The American Physical Society

  20. Quantum-dot cellular automata: Review and recent experiments (invited)

    NASA Astrophysics Data System (ADS)

    Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.

    1999-04-01

    An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.

  1. Modeling formalisms in Systems Biology

    PubMed Central

    2011-01-01

    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422

  2. Fuzzy cellular automata models in immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, E.

    1996-10-01

    The self-nonself character of antigens is considered to be fuzzy. The Chowdhury et al. cellular automata model is generalized accordingly. New steady states are found. The first corresponds to a below-normal help and suppression and is proposed to be related to autoimmune diseases. The second corresponds to a below-normal B-cell level.

  3. A cellular automata model of land cover change to integrate urban growth with open space conservation

    EPA Science Inventory

    The preservation of riparian zones and other environmentally sensitive areas has long been recognized as one of the most cost-effective methods of managing stormwater and providing a broad range of ecosystem services. In this research, a cellular automata (CA)—Markov chain model ...

  4. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  5. On the derivation of approximations to cellular automata models and the assumption of independence.

    PubMed

    Davies, K J; Green, J E F; Bean, N G; Binder, B J; Ross, J V

    2014-07-01

    Cellular automata are discrete agent-based models, generally used in cell-based applications. There is much interest in obtaining continuum models that describe the mean behaviour of the agents in these models. Previously, continuum models have been derived for agents undergoing motility and proliferation processes, however, these models only hold under restricted conditions. In order to narrow down the reason for these restrictions, we explore three possible sources of error in deriving the model. These sources are the choice of limiting arguments, the use of a discrete-time model as opposed to a continuous-time model and the assumption of independence between the state of sites. We present a rigorous analysis in order to gain a greater understanding of the significance of these three issues. By finding a limiting regime that accurately approximates the conservation equation for the cellular automata, we are able to conclude that the inaccuracy between our approximation and the cellular automata is completely based on the assumption of independence. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information.

    PubMed

    Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing

    2016-01-01

    Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft's algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms.

  7. Regulation Effects by Programmed Molecules for Transcription-Based Diagnostic Automata towards Therapeutic Use

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Miki; Ohashi, Hirotada; Kubo, Tai

    We have presented experimental analysis on the controllability of our transcription-based diagnostic biomolecular automata by programmed molecules. Focusing on the noninvasive transcriptome diagnosis by salivary mRNAs, we already proposed the novel concept of diagnostic device using DNA computation. This system consists of the main computational element which has a stem shaped promoter region and a pseudo-loop shaped read-only memory region for transcription regulation through the conformation change caused by the recognition of disease-related biomarkers. We utilize the transcription of malachite green aptamer sequence triggered by the target recognition for observation of detection. This algorithm makes it possible to release RNA-aptamer drugs multiply, different from the digestion-based systems by the restriction enzyme which was proposed previously, for the in-vivo use, however, the controllability of aptamer release is not enough at the previous stage. In this paper, we verified the regulation effect on aptamer transcription by programmed molecules in basic conditions towards the developm! ent of therapeutic automata. These results would bring us one step closer to the realization of new intelligent diagnostic and therapeutic automata based on molecular circuits.

  8. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    PubMed

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  9. Solving multiconstraint assignment problems using learning automata.

    PubMed

    Horn, Geir; Oommen, B John

    2010-02-01

    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the pioneering LA solutions to this problem, unequivocally demonstrates that LA can play an important role in solving complex combinatorial and integer optimization problems.

  10. Molecular Magnetic Quantum Cellular Automata

    DTIC Science & Technology

    2004-06-01

    Folting K, Gatteschi D, Christou G, Hendrickson D N 1993a, High-Spin Molecules - [Mn12O12(O2CR)16(H2O)4], J. Am. Chem. Soc. 115 1804 Sessoli R... Gatteschi D, Caneschi A and Novak M A 1993b, Magnetic bistability in a metal-ion cluster, Nature 365 141 Twamely J 2003, Quantum-cellular-automata

  11. Stimulus-Response Theory of Finite Automata, Technical Report No. 133.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    The central aim of this paper and its projected successors is to prove in detail that stimulus-response theory, or at least a mathematically precise version, can give an account of the learning of many phrase-structure grammars. Section 2 is concerned with standard notions of finite and probabilistic automata. An automaton is defined as a device…

  12. AUTO: An Automation Simulator.

    ERIC Educational Resources Information Center

    Gold, Bennett Alan

    In order to devise an aid for the teaching of formal languages and automata theory, a system was developed which allows a student to design, test, and change automata in an interactive manner. This process permits the user to observe the step-by-step operation of a defined automaton and to correct or alter its operation. Thus, the need for lengthy…

  13. A Methodology to Assess the Benefit of Operational or Tactic Adjustments to Reduce Marine Corps Fuel Consumption

    DTIC Science & Technology

    2015-12-01

    simulation M777A2 howitzer MAGTF Marine Air-Ground Task Force MANA Map Aware Non-Uniform Automata MCWL Marine Corps Warfighting Lab MEB Marine...met. The project developed a Map Aware Non-Uniform Automata (MANA) model for each SPMAGTF size. The MANA models simulated the maneuver and direct

  14. Is there more to communications technology than just information transfer

    NASA Astrophysics Data System (ADS)

    Kaltschmidt, H.

    1980-02-01

    In the present paper, communications is discussed in terms of information transfer among people, among automata, and among people and automata. Communications is treated as a cybernetics problem involving information sources and sinks. The principal signals and components of a communications system are examined, along with frequency- and time-multiplexing, optimal detection, correlators, etc.

  15. Symbolic LTL Compilation for Model Checking: Extended Abstract

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2007-01-01

    In Linear Temporal Logic (LTL) model checking, we check LTL formulas representing desired behaviors against a formal model of the system designed to exhibit these behaviors. To accomplish this task, the LTL formulas must be translated into automata [21]. We focus on LTL compilation by investigating LTL satisfiability checking via a reduction to model checking. Having shown that symbolic LTL compilation algorithms are superior to explicit automata construction algorithms for this task [16], we concentrate here on seeking a better symbolic algorithm.We present experimental data comparing algorithmic variations such as normal forms, encoding methods, and variable ordering and examine their effects on performance metrics including processing time and scalability. Safety critical systems, such as air traffic control, life support systems, hazardous environment controls, and automotive control systems, pervade our daily lives, yet testing and simulation alone cannot adequately verify their reliability [3]. Model checking is a promising approach to formal verification for safety critical systems which involves creating a formal mathematical model of the system and translating desired safety properties into a formal specification for this model. The complement of the specification is then checked against the system model. When the model does not satisfy the specification, model-checking tools accompany this negative answer with a counterexample, which points to an inconsistency between the system and the desired behaviors and aids debugging efforts.

  16. Using cellular automata to simulate forest fire propagation in Portugal

    NASA Astrophysics Data System (ADS)

    Freire, Joana; daCamara, Carlos

    2017-04-01

    Wildfires in the Mediterranean region have severe damaging effects mainly due to large fire events [1, 2]. When restricting to Portugal, wildfires have burned over 1:4 million ha in the last decade. Considering the increasing tendency in the extent and severity of wildfires [1, 2], the availability of modeling tools of fire episodes is of crucial importance. Two main types of mathematical models are generally available, namely deterministic and stochastic models. Deterministic models attempt a description of fires, fuel and atmosphere as multiphase continua prescribing mass, momentum and energy conservation, which typically leads to systems of coupled PDEs to be solved numerically on a grid. Simpler descriptions, such as FARSITE, neglect the interaction with atmosphere and propagate the fire front using wave techniques. One of the most important stochastic models are Cellular Automata (CA), in which space is discretized into cells, and physical quantities take on a finite set of values at each cell. The cells evolve in discrete time according to a set of transition rules, and the states of the neighboring cells. In the present work, we implement and then improve a simple and fast CA model designed to operationally simulate wildfires in Portugal. The reference CA model chosen [3] has the advantage of having been applied successfully in other Mediterranean ecosystems, namely to historical fires in Greece. The model is defined on a square grid with propagation to 8 nearest and next-nearest neighbors, where each cell is characterized by 4 possible discrete states, corresponding to burning, not-yet burned, fuel-free and completely burned cells, with 4 possible rules of evolution which take into account fuel properties, meteorological conditions, and topography. As a CA model, it offers the possibility to run a very high number of simulations in order to verify and apply the model, and is easily modified by implementing additional variables and different rules for the evolution of the fire spread. We present and discuss the application of the CA model to the "Tavira wildfire" in which approximately 24,800ha were burned. The event took place in summer 2012, between July 18 and 21, and spread in the Tavira and São Brás de Alportel municipalities of Algarve, a province in the southern coast of Portugal. [1] DaCamara et. al. (2014), International Journal of Wildland Fire 23. [2] Amraoui et. al. (2013), Forest Ecology and Management 294. [3] Alexandridis et. al. (2008), Applied Mathematics and Computation 204.

  17. A 2D flood inundation model based on cellular automata approach

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Todini, Ezio

    2010-05-01

    In the past years, the cellular automata approach has been successfully applied in two-dimensional modelling of flood events. When used in experimental applications, models based on such approach have provided good results, comparable to those obtained with more complex 2D models; moreover, CA models have proven significantly faster and easier to apply than most of existing models, and these features make them a valuable tool for flood analysis especially when dealing with large areas. However, to date the real degree of accuracy of such models has not been demonstrated, since they have been mainly used in experimental applications, while very few comparisons with theoretical solutions have been made. Also, the use of an explicit scheme of solution, which is inherent in cellular automata models, forces them to work only with small time steps, thus reducing model computation speed. The present work describes a cellular automata model based on the continuity and diffusive wave equations. Several model versions based on different solution schemes have been realized and tested in a number of numerical cases, both 1D and 2D, comparing the results with theoretical and numerical solutions. In all cases, the model performed well compared to the reference solutions, and proved to be both stable and accurate. Finally, the version providing the best results in terms of stability was tested in a real flood event and compared with different hydraulic models. Again, the cellular automata model provided very good results, both in term of computational speed and reproduction of the simulated event.

  18. A cellular automata model for traffic flow based on kinetics theory, vehicles capabilities and driver reactions

    NASA Astrophysics Data System (ADS)

    Guzmán, H. A.; Lárraga, M. E.; Alvarez-Icaza, L.; Carvajal, J.

    2018-02-01

    In this paper, a reliable cellular automata model oriented to faithfully reproduce deceleration and acceleration according to realistic reactions of drivers, when vehicles with different deceleration capabilities are considered is presented. The model focuses on describing complex traffic phenomena by coding in its rules the basic mechanisms of drivers behavior, vehicles capabilities and kinetics, while preserving simplicity. In particular, vehiclés kinetics is based on uniform accelerated motion, rather than in impulsive accelerated motion as in most existing CA models. Thus, the proposed model calculates in an analytic way three safe preserving distances to determine the best action a follower vehicle can take under a worst case scenario. Besides, the prediction analysis guarantees that under the proper assumptions, collision between vehicles may not happen at any future time. Simulations results indicate that all interactions of heterogeneous vehicles (i.e., car-truck, truck-car, car-car and truck-truck) are properly reproduced by the model. In addition, the model overcomes one of the major limitations of CA models for traffic modeling: the inability to perform smooth approach to slower or stopped vehicles. Moreover, the model is also capable of reproducing most empirical findings including the backward speed of the downstream front of the traffic jam, and different congested traffic patterns induced by a system with open boundary conditions with an on-ramp. Like most CA models, integer values are used to make the model run faster, which makes the proposed model suitable for real time traffic simulation of large networks.

  19. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  20. Exact results of 1D traffic cellular automata: The low-density behavior of the Fukui-Ishibashi model

    NASA Astrophysics Data System (ADS)

    Salcido, Alejandro; Hernández-Zapata, Ernesto; Carreón-Sierra, Susana

    2018-03-01

    The maximum entropy states of the cellular automata models for traffic flow in a single-lane with no anticipation are presented and discussed. The exact analytical solutions for the low-density behavior of the stochastic Fukui-Ishibashi traffic model were obtained and compared with computer simulations of the model. An excellent agreement was found.

  1. A stochastic cellular automata model of tautomer equilibria

    NASA Astrophysics Data System (ADS)

    Bowers, Gregory A.; Seybold, Paul G.

    2018-03-01

    Many chemical substances, including drugs and biomolecules, exist in solution not as a single species, but as a collection of tautomers and related species. Importantly, each of these species is an independent compoundwith its own specific biochemical and physicochemical properties. The species interconvert in a dynamic and often complicated manner, making modelling the overall species composition difficult. Agent-based cellular automata models are uniquely suited to meet this challenge, allowing the equilibria to be simulated using simple rulesand at the same time capturing the inherent stochasticity of the natural phenomenon. In the present example a stochastic cellular automata model is employed to simulate the tautomer equilibria of 9-anthrone and 9-anthrol in the presence of their common anion. The observed KE of the 9-anthrone ⇌ 9-anthrol tautomerisation along with the measured tautomer pKa values were used to model the equilibria at pH values 4, 7 and 10. At pH 4 and 7, the anthrone comprises >99% of the total species population, while at pH 10the anthrone and the anion each represent just under half of the total population. The advantages of the cellular automata approach over the customary coupled differential equation approach are discussed.

  2. Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information

    PubMed Central

    Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing

    2016-01-01

    Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft’s algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms. PMID:27806102

  3. Automata learning algorithms and processes for providing more complete systems requirements specification by scenario generation, CSP-based syntax-oriented model construction, and R2D2C system requirements transformation

    NASA Technical Reports Server (NTRS)

    Margaria, Tiziana (Inventor); Hinchey, Michael G. (Inventor); Rouff, Christopher A. (Inventor); Rash, James L. (Inventor); Steffen, Bernard (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments, automata learning algorithms and techniques are implemented to generate a more complete set of scenarios for requirements based programming. More specifically, a CSP-based, syntax-oriented model construction, which requires the support of a theorem prover, is complemented by model extrapolation, via automata learning. This may support the systematic completion of the requirements, the nature of the requirement being partial, which provides focus on the most prominent scenarios. This may generalize requirement skeletons by extrapolation and may indicate by way of automatically generated traces where the requirement specification is too loose and additional information is required.

  4. Abstraction and Assume-Guarantee Reasoning for Automated Software Verification

    NASA Technical Reports Server (NTRS)

    Chaki, S.; Clarke, E.; Giannakopoulou, D.; Pasareanu, C. S.

    2004-01-01

    Compositional verification and abstraction are the key techniques to address the state explosion problem associated with model checking of concurrent software. A promising compositional approach is to prove properties of a system by checking properties of its components in an assume-guarantee style. This article proposes a framework for performing abstraction and assume-guarantee reasoning of concurrent C code in an incremental and fully automated fashion. The framework uses predicate abstraction to extract and refine finite state models of software and it uses an automata learning algorithm to incrementally construct assumptions for the compositional verification of the abstract models. The framework can be instantiated with different assume-guarantee rules. We have implemented our approach in the COMFORT reasoning framework and we show how COMFORT out-performs several previous software model checking approaches when checking safety properties of non-trivial concurrent programs.

  5. An Automaton Analysis of the Learning of a Miniature System of Japanese. Psychology Series.

    ERIC Educational Resources Information Center

    Wexler, Kenneth Norman

    The purpose of the study reported here was to do an automata-theoretical and experimental investigation of the learning of the syntax and semantics of a second natural language. The main thrust of the work was to ask what kind of automaton a person can become. Various kinds of automata were considered, predictions were made from them, and these…

  6. Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata.

    PubMed

    Bahar, Ali Newaz; Rahman, Mohammad Maksudur; Nahid, Nur Mohammad; Hassan, Md Kamrul

    2017-02-01

    This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T =2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

  7. Specialized Silicon Compilers for Language Recognition.

    DTIC Science & Technology

    1984-07-01

    realizations of non-deterministic automata have been reported that solve these problems in diffierent ways. Floyd and Ullman [ 281 have presented a...in Applied Mathematics, pages 19-31. American Mathematical Society, 1967. [ 281 Floyd, R. W. and J. D. Ullman. The Compilation of Regular Expressions...Shannon (editor). Automata Studies, chapter 1, pages 3-41. Princeton University Press, Princeton. N. J., 1956. [44] Kohavi, Zwi . Switching and Finite

  8. Software Replica of Minimal Living Processes

    NASA Astrophysics Data System (ADS)

    Bersini, Hugues

    2010-04-01

    There is a long tradition of software simulations in theoretical biology to complement pure analytical mathematics which are often limited to reproduce and understand the self-organization phenomena resulting from the non-linear and spatially grounded interactions of the huge number of diverse biological objects. Since John Von Neumann and Alan Turing pioneering works on self-replication and morphogenesis, proponents of artificial life have chosen to resolutely neglecting a lot of materialistic and quantitative information deemed not indispensable and have focused on the rule-based mechanisms making life possible, supposedly neutral with respect to their underlying material embodiment. Minimal life begins at the intersection of a series of processes which need to be isolated, differentiated and duplicated as such in computers. Only software developments and running make possible to understand the way these processes are intimately interconnected in order for life to appear at the crossroad. In this paper, I will attempt to set out the history of life as the disciples of artificial life understand it, by placing these different lessons on a temporal and causal axis, showing which one is indispensable to the appearance of the next and how does it connect to the next. I will discuss the task of artificial life as setting up experimental software platforms where these different lessons, whether taken in isolation or together, are tested, simulated, and, more systematically, analyzed. I will sketch some of these existing software platforms: chemical reaction networks, Varela’s autopoietic cellular automata, Ganti’s chemoton model, whose running delivers interesting take home messages to open-minded biologists.

  9. Synchronization, TIGoRS, and Information Flow in Complex Systems: Dispositional Cellular Automata.

    PubMed

    Sulis, William H

    2016-04-01

    Synchronization has a long history in physics where it refers to the phase matching of two identical oscillators. This notion has been extensively studied in physics as well as in biology, where it has been applied to such widely varying phenomena as the flashing of fireflies and firing of neurons in the brain. Human behavior, however, may be recurrent but it is not oscillatory even though many physiological systems do exhibit oscillatory tendencies. Moreover, much of human behaviour is collaborative and cooperative, where the individual behaviours may be distinct yet contemporaneous (if not simultaneous) and taken collectively express some functionality. In the context of behaviour, the important aspect is the repeated co-occurrence in time of behaviours that facilitate the propagation of information or of functionality, regardless of whether or not these behaviours are similar or identical. An example of this weaker notion of synchronization is transient induced global response synchronization (TIGoRS). Previous work has shown that TIGoRS is a ubiquitous phenomenon among complex systems, enabling them to stably parse environmental transients into salient units to which they stably respond. This leads to the notion of Sulis machines, which emergently generate a primitive linguistic structure through their dynamics. This article reviews the notion of TIGoRS and its expression in several complex systems models including tempered neural networks, driven cellular automata and cocktail party automata. The emergent linguistics of Sulis machines are discussed. A new class of complex systems model, the dispositional cellular automaton is introduced. A new metric for TIGoRS, the excess synchronization, is introduced and applied to the study of TIGoRS in dispositional cellular automata. It is shown that these automata exhibit a nonlinear synchronization response to certain perturbing transients.

  10. Canalization and Control in Automata Networks: Body Segmentation in Drosophila melanogaster

    PubMed Central

    Marques-Pita, Manuel; Rocha, Luis M.

    2013-01-01

    We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics – a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity – with the ultimate goal of explaining how do cells and tissues ‘compute’. PMID:23520449

  11. Canalization and control in automata networks: body segmentation in Drosophila melanogaster.

    PubMed

    Marques-Pita, Manuel; Rocha, Luis M

    2013-01-01

    We present schema redescription as a methodology to characterize canalization in automata networks used to model biochemical regulation and signalling. In our formulation, canalization becomes synonymous with redundancy present in the logic of automata. This results in straightforward measures to quantify canalization in an automaton (micro-level), which is in turn integrated into a highly scalable framework to characterize the collective dynamics of large-scale automata networks (macro-level). This way, our approach provides a method to link micro- to macro-level dynamics--a crux of complexity. Several new results ensue from this methodology: uncovering of dynamical modularity (modules in the dynamics rather than in the structure of networks), identification of minimal conditions and critical nodes to control the convergence to attractors, simulation of dynamical behaviour from incomplete information about initial conditions, and measures of macro-level canalization and robustness to perturbations. We exemplify our methodology with a well-known model of the intra- and inter cellular genetic regulation of body segmentation in Drosophila melanogaster. We use this model to show that our analysis does not contradict any previous findings. But we also obtain new knowledge about its behaviour: a better understanding of the size of its wild-type attractor basin (larger than previously thought), the identification of novel minimal conditions and critical nodes that control wild-type behaviour, and the resilience of these to stochastic interventions. Our methodology is applicable to any complex network that can be modelled using automata, but we focus on biochemical regulation and signalling, towards a better understanding of the (decentralized) control that orchestrates cellular activity--with the ultimate goal of explaining how do cells and tissues 'compute'.

  12. Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour

    2018-06-01

    The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.

  13. A mission operations architecture for the 21st century

    NASA Technical Reports Server (NTRS)

    Tai, W.; Sweetnam, D.

    1996-01-01

    An operations architecture is proposed for low cost missions beyond the year 2000. The architecture consists of three elements: a service based architecture; a demand access automata; and distributed science hubs. The service based architecture is based on a set of standard multimission services that are defined, packaged and formalized by the deep space network and the advanced multi-mission operations system. The demand access automata is a suite of technologies which reduces the need to be in contact with the spacecraft, and thus reduces operating costs. The beacon signaling, the virtual emergency room, and the high efficiency tracking automata technologies are described. The distributed science hubs provide information system capabilities to the small science oriented flight teams: individual access to all traditional mission functions and services; multimedia intra-team communications, and automated direct transparent communications between the scientists and the instrument.

  14. Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour

    2018-03-01

    The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.

  15. Cellular automata approach for the dynamics of HIV infection under antiretroviral therapies: The role of the virus diffusion

    NASA Astrophysics Data System (ADS)

    González, Ramón E. R.; de Figueirêdo, Pedro Hugo; Coutinho, Sérgio

    2013-10-01

    We study a cellular automata model to test the timing of antiretroviral therapy strategies for the dynamics of infection with human immunodeficiency virus (HIV). We focus on the role of virus diffusion when its population is included in previous cellular automata model that describes the dynamics of the lymphocytes cells population during infection. This inclusion allows us to consider the spread of infection by the virus-cell interaction, beyond that which occurs by cell-cell contagion. The results show an acceleration of the infectious process in the absence of treatment, but show better efficiency in reducing the risk of the onset of AIDS when combined antiretroviral therapies are used even with drugs of low effectiveness. Comparison of results with clinical data supports the conclusions of this study.

  16. Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments

    DOE PAGES

    Nishawala, Vinesh V.; Ostoja-Starzewski, Martin; Leamy, Michael J.; ...

    2015-09-10

    Peridynamics is a non-local continuum mechanics formulation that can handle spatial discontinuities as the governing equations are integro-differential equations which do not involve gradients such as strains and deformation rates. This paper employs bond-based peridynamics. Cellular Automata is a local computational method which, in its rectangular variant on interior domains, is mathematically equivalent to the central difference finite difference method. However, cellular automata does not require the derivation of the governing partial differential equations and provides for common boundary conditions based on physical reasoning. Both methodologies are used to solve a half-space subjected to a normal load, known as Lamb’smore » Problem. The results are compared with theoretical solution from classical elasticity and experimental results. Furthermore, this paper is used to validate our implementation of these methods.« less

  17. MSuPDA: A Memory Efficient Algorithm for Sequence Alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2016-03-01

    Space complexity is a million dollar question in DNA sequence alignments. In this regard, memory saving under pushdown automata can help to reduce the occupied spaces in computer memory. Our proposed process is that anchor seed (AS) will be selected from given data set of nucleotide base pairs for local sequence alignment. Quick splitting techniques will separate the AS from all the DNA genome segments. Selected AS will be placed to pushdown automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. AS from input unit will be matched with the DNA genome segments from stack of PDA. Match, mismatch and indel of nucleotides will be popped from the stack under the control unit of pushdown automata. During the POP operation on stack, it will free the memory cell occupied by the nucleotide base pair.

  18. Refining Linear Fuzzy Rules by Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil

    1996-01-01

    Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.

  19. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukerblat, Boris, E-mail: tsuker@bgu.ac.il, E-mail: andrew.palii@uv.es; Palii, Andrew, E-mail: tsuker@bgu.ac.il, E-mail: andrew.palii@uv.es; Clemente-Juan, Juan Modesto

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(II) + 2Ru(III)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into accountmore » the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between the cells is considered and the influence of the vibronic coupling on the shape on the non-linear cell-cell response function is revealed.« less

  20. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response.

    PubMed

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between the cells is considered and the influence of the vibronic coupling on the shape on the non-linear cell-cell response function is revealed.

  1. Sociable Interfaces

    DTIC Science & Technology

    2005-01-01

    Interface Compatibility); the tool is written in Ocaml [10], and the symbolic algorithms for interface compatibility and refinement are built on top...automata for a fire detection and reporting system. be encoded in the input language of the tool TIC. The refinement of sociable interfaces is discussed...are closely related to the I/O Automata Language (IOA) of [11]. Interface models are games between Input and Output, and in the models, it is es

  2. Cellular automata in photonic cavity arrays.

    PubMed

    Li, Jing; Liew, T C H

    2016-10-31

    We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.

  3. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1980-01-01

    Simple procedures are presented for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is provided for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are provided for determining the two phases of life. The procedure involves two steps, each similar to the conventional application of the commonly used linear damage rule. When the sum of cycle ratios based on phase 1 lives reaches unity, phase 1 is presumed complete, and further loadings are summed as cycle ratios on phase 2 lives. When the phase 2 sum reaches unity, failure is presumed to occur. No other physical properties or material constants than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons of both methods are discussed.

  4. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.

    1981-01-01

    Simple procedures are given for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is given for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are given for determining the two phases of life. The procedure comprises two steps, each similar to the conventional application of the commonly used linear damage rule. Once the sum of cycle ratios based on Phase I lives reaches unity, Phase I is presumed complete, and further loadings are summed as cycle ratios based on Phase II lives. When the Phase II sum attains unity, failure is presumed to occur. It is noted that no physical properties or material constants other than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons are discussed for both methods.

  5. Field validation of a free-agent cellular automata model of fire spread with fire–atmosphere coupling

    Treesearch

    Gary Achtemeier

    2012-01-01

    A cellular automata fire model represents ‘elements’ of fire by autonomous agents. A few simple algebraic expressions substituted for complex physical and meteorological processes and solved iteratively yield simulations for ‘super-diffusive’ fire spread and coupled surface-layer (2-m) fire–atmosphere processes. Pressure anomalies, which are integrals of the thermal...

  6. A class of cellular automata modeling winnerless competition

    NASA Astrophysics Data System (ADS)

    Afraimovich, V.; Ordaz, F. C.; Urías, J.

    2002-06-01

    Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.

  7. On the spatial dynamics and oscillatory behavior of a predator-prey model based on cellular automata and local particle swarm optimization.

    PubMed

    Molina, Mario Martínez; Moreno-Armendáriz, Marco A; Carlos Seck Tuoh Mora, Juan

    2013-11-07

    A two-dimensional lattice model based on Cellular Automata theory and swarm intelligence is used to study the spatial and population dynamics of a theoretical ecosystem. It is found that the social interactions among predators provoke the formation of clusters, and that by increasing the mobility of predators the model enters into an oscillatory behavior. © 2013 Elsevier Ltd. All rights reserved.

  8. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  9. Modelling Team Adversarial Actions in UAV Operations

    DTIC Science & Technology

    2007-11-01

    support for the dynamic creation and destruction of entities is the history dependent automata ( HDA ) [9] which evolved from an algorithmic structure for...checking bi-similarity of π- calculus agents. The authors define HDA as automata which perform actions that can carry information generated in the...past history of the system. The states, transitions and labels of the HDA are enriched with sets of local names. Thus, each transition can refer to the

  10. Local numerical modelling of ultrasonic guided waves in linear and nonlinear media

    NASA Astrophysics Data System (ADS)

    Packo, Pawel; Radecki, Rafal; Kijanka, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.

    2017-04-01

    Nonlinear ultrasonic techniques provide improved damage sensitivity compared to linear approaches. The combination of attractive properties of guided waves, such as Lamb waves, with unique features of higher harmonic generation provides great potential for characterization of incipient damage, particularly in plate-like structures. Nonlinear ultrasonic structural health monitoring techniques use interrogation signals at frequencies other than the excitation frequency to detect changes in structural integrity. Signal processing techniques used in non-destructive evaluation are frequently supported by modeling and numerical simulations in order to facilitate problem solution. This paper discusses known and newly-developed local computational strategies for simulating elastic waves, and attempts characterization of their numerical properties in the context of linear and nonlinear media. A hybrid numerical approach combining advantages of the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE) is proposed for unique treatment of arbitrary strain-stress relations. The iteration equations of the method are derived directly from physical principles employing stress and displacement continuity, leading to an accurate description of the propagation in arbitrarily complex media. Numerical analysis of guided wave propagation, based on the newly developed hybrid approach, is presented and discussed in the paper for linear and nonlinear media. Comparisons to Finite Elements (FE) are also discussed.

  11. Three-dimensional cellular automata as a model of a seismic fault

    NASA Astrophysics Data System (ADS)

    Gálvez, G.; Muñoz, A.

    2017-01-01

    The Earth's crust is broken into a series of plates, whose borders are the seismic fault lines and it is where most of the earthquakes occur. This plating system can in principle be described by a set of nonlinear coupled equations describing the motion of the plates, its stresses, strains and other characteristics. Such a system of equations is very difficult to solve, and nonlinear parts leads to a chaotic behavior, which is not predictable. In 1989, Bak and Tang presented an earthquake model based on the sand pile cellular automata. The model though simple, provides similar results to those observed in actual earthquakes. In this work the cellular automata in three dimensions is proposed as a best model to approximate a seismic fault. It is noted that the three-dimensional model reproduces similar properties to those observed in real seismicity, especially, the Gutenberg-Richter law.

  12. Modeling of urban growth using cellular automata (CA) optimized by Particle Swarm Optimization (PSO)

    NASA Astrophysics Data System (ADS)

    Khalilnia, M. H.; Ghaemirad, T.; Abbaspour, R. A.

    2013-09-01

    In this paper, two satellite images of Tehran, the capital city of Iran, which were taken by TM and ETM+ for years 1988 and 2010 are used as the base information layers to study the changes in urban patterns of this metropolis. The patterns of urban growth for the city of Tehran are extracted in a period of twelve years using cellular automata setting the logistic regression functions as transition functions. Furthermore, the weighting coefficients of parameters affecting the urban growth, i.e. distance from urban centers, distance from rural centers, distance from agricultural centers, and neighborhood effects were selected using PSO. In order to evaluate the results of the prediction, the percent correct match index is calculated. According to the results, by combining optimization techniques with cellular automata model, the urban growth patterns can be predicted with accuracy up to 75 %.

  13. A dynamically reconfigurable logic cell: from artificial neural networks to quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Naqvi, Syed Rameez; Akram, Tallha; Iqbal, Saba; Haider, Sajjad Ali; Kamran, Muhammad; Muhammad, Nazeer

    2018-02-01

    Considering the lack of optimization support for Quantum-dot Cellular Automata, we propose a dynamically reconfigurable logic cell capable of implementing various logic operations by means of artificial neural networks. The cell can be reconfigured to any 2-input combinational logic gate by altering the strength of connections, called weights and biases. We demonstrate how these cells may appositely be organized to perform multi-bit arithmetic and logic operations. The proposed work is important in that it gives a standard implementation of an 8-bit arithmetic and logic unit for quantum-dot cellular automata with minimal area and latency overhead. We also compare the proposed design with a few existing arithmetic and logic units, and show that it is more area efficient than any equivalent available in literature. Furthermore, the design is adaptable to 16, 32, and 64 bit architectures.

  14. MSuPDA: A memory efficient algorithm for sequence alignment.

    PubMed

    Khan, Mohammad Ibrahim; Kamal, Md Sarwar; Chowdhury, Linkon

    2015-01-16

    Space complexity is a million dollar question in DNA sequence alignments. In this regards, MSuPDA (Memory Saving under Pushdown Automata) can help to reduce the occupied spaces in computer memory. Our proposed process is that Anchor Seed (AS) will be selected from given data set of Nucleotides base pairs for local sequence alignment. Quick Splitting (QS) techniques will separate the Anchor Seed from all the DNA genome segments. Selected Anchor Seed will be placed to pushdown Automata's (PDA) input unit. Whole DNA genome segments will be placed into PDA's stack. Anchor Seed from input unit will be matched with the DNA genome segments from stack of PDA. Whatever matches, mismatches or Indel, of Nucleotides will be POP from the stack under the control of control unit of Pushdown Automata. During the POP operation on stack it will free the memory cell occupied by the Nucleotide base pair.

  15. Early warning of illegal development for protected areas by integrating cellular automata with neural networks.

    PubMed

    Li, Xia; Lao, Chunhua; Liu, Yilun; Liu, Xiaoping; Chen, Yimin; Li, Shaoying; Ai, Bing; He, Zijian

    2013-11-30

    Ecological security has become a major issue under fast urbanization in China. As the first two cities in this country, Shenzhen and Dongguan issued the ordinance of Eco-designated Line of Control (ELC) to "wire" ecologically important areas for strict protection in 2005 and 2009 respectively. Early warning systems (EWS) are a useful tool for assisting the implementation ELC. In this study, a multi-model approach is proposed for the early warning of illegal development by integrating cellular automata (CA) and artificial neural networks (ANN). The objective is to prevent the ecological risks or catastrophe caused by such development at an early stage. The integrated model is calibrated by using the empirical information from both remote sensing and handheld GPS (global positioning systems). The MAR indicator which is the ratio of missing alarms to all the warnings is proposed for better assessment of the model performance. It is found that the fast urban development has caused significant threats to natural-area protection in the study area. The integration of CA, ANN and GPS provides a powerful tool for describing and predicting illegal development which is in highly non-linear and fragmented forms. The comparison shows that this multi-model approach has much better performances than the single-model approach for the early warning. Compared with the single models of CA and ANN, this integrated multi-model can improve the value of MAR by 65.48% and 5.17% respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Simulation of changes in heavy metal contamination in farmland soils of a typical manufacturing center through logistic-based cellular automata modeling.

    PubMed

    Qiu, Menglong; Wang, Qi; Li, Fangbai; Chen, Junjian; Yang, Guoyi; Liu, Liming

    2016-01-01

    A customized logistic-based cellular automata (CA) model was developed to simulate changes in heavy metal contamination (HMC) in farmland soils of Dongguan, a manufacturing center in Southern China, and to discover the relationship between HMC and related explanatory variables (continuous and categorical). The model was calibrated through the simulation and validation of HMC in 2012. Thereafter, the model was implemented for the scenario simulation of development alternatives for HMC in 2022. The HMC in 2002 and 2012 was determined through soil tests and cokriging. Continuous variables were divided into two groups by odds ratios. Positive variables (odds ratios >1) included the Nemerow synthetic pollution index in 2002, linear drainage density, distance from the city center, distance from the railway, slope, and secondary industrial output per unit of land. Negative variables (odds ratios <1) included elevation, distance from the road, distance from the key polluting enterprises, distance from the town center, soil pH, and distance from bodies of water. Categorical variables, including soil type, parent material type, organic content grade, and land use type, also significantly influenced HMC according to Wald statistics. The relative operating characteristic and kappa coefficients were 0.91 and 0.64, respectively, which proved the validity and accuracy of the model. The scenario simulation shows that the government should not only implement stricter environmental regulation but also strengthen the remediation of the current polluted area to effectively mitigate HMC.

  17. Identifying Flow Networks in a Karstified Aquifer by Application of the Cellular Automata-Based Deterministic Inversion Method (Lez Aquifer, France)

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Wang, X.; Jourde, H.; Lecoq, N.

    2017-12-01

    The distributed modeling of flow paths within karstic and fractured fields remains a complex task because of the high dependence of the hydraulic responses to the relative locations between observational boreholes and interconnected fractures and karstic conduits that control the main flow of the hydrosystem. The inverse problem in a distributed model is one alternative approach to interpret the hydraulic test data by mapping the karstic networks and fractured areas. In this work, we developed a Bayesian inversion approach, the Cellular Automata-based Deterministic Inversion (CADI) algorithm to infer the spatial distribution of hydraulic properties in a structurally constrained model. This method distributes hydraulic properties along linear structures (i.e., flow conduits) and iteratively modifies the structural geometry of this conduit network to progressively match the observed hydraulic data to the modeled ones. As a result, this method produces a conductivity model that is composed of a discrete conduit network embedded in the background matrix, capable of producing the same flow behavior as the investigated hydrologic system. The method is applied to invert a set of multiborehole hydraulic tests collected from a hydraulic tomography experiment conducted at the Terrieu field site in the Lez aquifer, Southern France. The emergent model shows a high consistency to field observation of hydraulic connections between boreholes. Furthermore, it provides a geologically realistic pattern of flow conduits. This method is therefore of considerable value toward an enhanced distributed modeling of the fractured and karstified aquifers.

  18. Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.

    PubMed

    Cannas, Sergio A; Marco, Diana E; Páez, Sergio A

    2003-05-01

    In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.

  19. Eliminating the mystery from the concept of emergence

    PubMed Central

    2010-01-01

    While some branches of complexity theory are advancing rapidly, the same cannot be said for our understanding of emergence. Despite a complete knowledge of the rules underlying the interactions between the parts of many systems, we are often baffled by their sudden transitions from simple to complex. Here I propose a solution to this conceptual problem. Given that emergence is often the result of many interactions occurring simultaneously in time and space, an ability to intuitively grasp it would require the ability to consciously think in parallel. A simple exercise is used to demonstrate that we do not possess this ability. Our surprise at the behaviour of cellular automata models, and the natural cases of pattern formation they mimic, is then explained from this perspective. This work suggests that the cognitive limitations of the mind can be as significant a barrier to scientific progress as the limitations of our senses. PMID:21212824

  20. Origin of Pareto-like spatial distributions in ecosystems.

    PubMed

    Manor, Alon; Shnerb, Nadav M

    2008-12-31

    Recent studies of cluster distribution in various ecosystems revealed Pareto statistics for the size of spatial colonies. These results were supported by cellular automata simulations that yield robust criticality for endogenous pattern formation based on positive feedback. We show that this patch statistics is a manifestation of the law of proportionate effect. Mapping the stochastic model to a Markov birth-death process, the transition rates are shown to scale linearly with cluster size. This mapping provides a connection between patch statistics and the dynamics of the ecosystem; the "first passage time" for different colonies emerges as a powerful tool that discriminates between endogenous and exogenous clustering mechanisms. Imminent catastrophic shifts (such as desertification) manifest themselves in a drastic change of the stability properties of spatial colonies.

  1. A note on probabilistic models over strings: the linear algebra approach.

    PubMed

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  2. Fashion, Cooperation, and Social Interactions

    PubMed Central

    Cao, Zhigang; Gao, Haoyu; Qu, Xinglong; Yang, Mingmin; Yang, Xiaoguang

    2013-01-01

    Fashion plays such a crucial rule in the evolution of culture and society that it is regarded as a second nature to the human being. Also, its impact on economy is quite nontrivial. On what is fashionable, interestingly, there are two viewpoints that are both extremely widespread but almost opposite: conformists think that what is popular is fashionable, while rebels believe that being different is the essence. Fashion color is fashionable in the first sense, and Lady Gaga in the second. We investigate a model where the population consists of the afore-mentioned two groups of people that are located on social networks (a spatial cellular automata network and small-world networks). This model captures two fundamental kinds of social interactions (coordination and anti-coordination) simultaneously, and also has its own interest to game theory: it is a hybrid model of pure competition and pure cooperation. This is true because when a conformist meets a rebel, they play the zero sum matching pennies game, which is pure competition. When two conformists (rebels) meet, they play the (anti-) coordination game, which is pure cooperation. Simulation shows that simple social interactions greatly promote cooperation: in most cases people can reach an extraordinarily high level of cooperation, through a selfish, myopic, naive, and local interacting dynamic (the best response dynamic). We find that degree of synchronization also plays a critical role, but mostly on the negative side. Four indices, namely cooperation degree, average satisfaction degree, equilibrium ratio and complete ratio, are defined and applied to measure people’s cooperation levels from various angles. Phase transition, as well as emergence of many interesting geographic patterns in the cellular automata network, is also observed. PMID:23382799

  3. Supervisory control of (max,+) automata: extensions towards applications

    NASA Astrophysics Data System (ADS)

    Lahaye, Sébastien; Komenda, Jan; Boimond, Jean-Louis

    2015-12-01

    In this paper, supervisory control of (max,+) automata is studied. The synthesis of maximally permissive and just-in-time supervisor, as well as the synthesis of minimally permissive and just-after-time supervisor, are proposed. Results are also specialised to non-decreasing solutions, because only such supervisors can be realised in practice. The inherent issue of rationality raised recently is discussed. An illustration of concepts and results is presented through an example of a flexible manufacturing system.

  4. Query Monitoring and Analysis for Database Privacy - A Security Automata Model Approach

    PubMed Central

    Kumar, Anand; Ligatti, Jay; Tu, Yi-Cheng

    2015-01-01

    Privacy and usage restriction issues are important when valuable data are exchanged or acquired by different organizations. Standard access control mechanisms either restrict or completely grant access to valuable data. On the other hand, data obfuscation limits the overall usability and may result in loss of total value. There are no standard policy enforcement mechanisms for data acquired through mutual and copyright agreements. In practice, many different types of policies can be enforced in protecting data privacy. Hence there is the need for an unified framework that encapsulates multiple suites of policies to protect the data. We present our vision of an architecture named security automata model (SAM) to enforce privacy-preserving policies and usage restrictions. SAM analyzes the input queries and their outputs to enforce various policies, liberating data owners from the burden of monitoring data access. SAM allows administrators to specify various policies and enforces them to monitor queries and control the data access. Our goal is to address the problems of data usage control and protection through privacy policies that can be defined, enforced, and integrated with the existing access control mechanisms using SAM. In this paper, we lay out the theoretical foundation of SAM, which is based on an automata named Mandatory Result Automata. We also discuss the major challenges of implementing SAM in a real-world database environment as well as ideas to meet such challenges. PMID:26997936

  5. Modeling biological pathway dynamics with timed automata.

    PubMed

    Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N

    2014-05-01

    Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience.

  6. Query Monitoring and Analysis for Database Privacy - A Security Automata Model Approach.

    PubMed

    Kumar, Anand; Ligatti, Jay; Tu, Yi-Cheng

    2015-11-01

    Privacy and usage restriction issues are important when valuable data are exchanged or acquired by different organizations. Standard access control mechanisms either restrict or completely grant access to valuable data. On the other hand, data obfuscation limits the overall usability and may result in loss of total value. There are no standard policy enforcement mechanisms for data acquired through mutual and copyright agreements. In practice, many different types of policies can be enforced in protecting data privacy. Hence there is the need for an unified framework that encapsulates multiple suites of policies to protect the data. We present our vision of an architecture named security automata model (SAM) to enforce privacy-preserving policies and usage restrictions. SAM analyzes the input queries and their outputs to enforce various policies, liberating data owners from the burden of monitoring data access. SAM allows administrators to specify various policies and enforces them to monitor queries and control the data access. Our goal is to address the problems of data usage control and protection through privacy policies that can be defined, enforced, and integrated with the existing access control mechanisms using SAM. In this paper, we lay out the theoretical foundation of SAM, which is based on an automata named Mandatory Result Automata. We also discuss the major challenges of implementing SAM in a real-world database environment as well as ideas to meet such challenges.

  7. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters.

    PubMed

    He, ZeFang; Zhao, Long

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement.

  8. Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Mozumder, Chandan K.

    The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety regulations. Design for prescribed FD response by minimizing the error between the actual response and desired FD curve is implemented. With the use of HCA rules, manufacturability constraints (e.g., rolling) and structures which can be manufactured by special techniques, such as, tailor-welded blanks (TWB), have also been implemented. This methodology is applied to shock-absorbing structural components for passengers in a crashing vehicle. These results are compared to previous designs showing the benefits of the method introduced in this work.

  9. The influence of heavy vehicles on traffic dynamics around on-ramp system: Cellular automata approach

    NASA Astrophysics Data System (ADS)

    Kong, Dewen; Guo, Xiucheng; Wu, Dingxin

    Although the on-ramp system has been widely studied, the influence of heavy vehicles is unknown because researchers only investigate the traffic dynamics around on-ramp system under homogeneous traffic conditions, which is different in real-world settings. This paper uses an improved cellular automaton model to study the heterogeneous traffic around on-ramp system. The forward motion rules are improved by considering the differences of driving behavior in different vehicle combinations. The lane change rules are improved by reflecting the aggressive behavior in mandatory lane changes. The phase diagram, traffic flow, capacity and spatial-temporal diagram are analyzed under the influences of heavy vehicles. The results show that by increasing the percentage of heavy vehicles, there will be more severe traffic congestion around on-ramp system, lower saturated flow and capacity. Also, the interactions between main road and on-ramp have been investigated. Increasing the percentage of heavy vehicles at the upstream of the conflict area on the main road or restricting heavy vehicles on the outside lane of the main road will deteriorate the performance of on-ramp. While the main road will have better performance as the percentage of heavy vehicles on the on-ramp increases when the on-ramp inflow rate is not low.

  10. An agent-based method for simulating porous fluid-saturated structures with indistinguishable components

    NASA Astrophysics Data System (ADS)

    Kashani, Jamal; Pettet, Graeme John; Gu, YuanTong; Zhang, Lihai; Oloyede, Adekunle

    2017-10-01

    Single-phase porous materials contain multiple components that intermingle up to the ultramicroscopic level. Although the structures of the porous materials have been simulated with agent-based methods, the results of the available methods continue to provide patterns of distinguishable solid and fluid agents which do not represent materials with indistinguishable phases. This paper introduces a new agent (hybrid agent) and category of rules (intra-agent rule) that can be used to create emergent structures that would more accurately represent single-phase structures and materials. The novel hybrid agent carries the characteristics of system's elements and it is capable of changing within itself, while also responding to its neighbours as they also change. As an example, the hybrid agent under one-dimensional cellular automata formalism in a two-dimensional domain is used to generate patterns that demonstrate the striking morphological and characteristic similarities with the porous saturated single-phase structures where each agent of the ;structure; carries semi-permeability property and consists of both fluid and solid in space and at all times. We conclude that the ability of the hybrid agent to change locally provides an enhanced protocol to simulate complex porous structures such as biological tissues which could facilitate models for agent-based techniques and numerical methods.

  11. Cellular automata and its applications in protein bioinformatics.

    PubMed

    Xiao, Xuan; Wang, Pu; Chou, Kuo-Chen

    2011-09-01

    With the explosion of protein sequences generated in the postgenomic era, it is highly desirable to develop high-throughput tools for rapidly and reliably identifying various attributes of uncharacterized proteins based on their sequence information alone. The knowledge thus obtained can help us timely utilize these newly found protein sequences for both basic research and drug discovery. Many bioinformatics tools have been developed by means of machine learning methods. This review is focused on the applications of a new kind of science (cellular automata) in protein bioinformatics. A cellular automaton (CA) is an open, flexible and discrete dynamic model that holds enormous potentials in modeling complex systems, in spite of the simplicity of the model itself. Researchers, scientists and practitioners from different fields have utilized cellular automata for visualizing protein sequences, investigating their evolution processes, and predicting their various attributes. Owing to its impressive power, intuitiveness and relative simplicity, the CA approach has great potential for use as a tool for bioinformatics.

  12. Creating Clinical Fuzzy Automata with Fuzzy Arden Syntax.

    PubMed

    de Bruin, Jeroen S; Steltzer, Heinz; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2017-01-01

    Formal constructs for fuzzy sets and fuzzy logic are incorporated into Arden Syntax version 2.9 (Fuzzy Arden Syntax). With fuzzy sets, the relationships between measured or observed data and linguistic terms are expressed as degrees of compatibility that model the unsharpness of the boundaries of linguistic terms. Propositional uncertainty due to incomplete knowledge of relationships between clinical linguistic concepts is modeled with fuzzy logic. Fuzzy Arden Syntax also supports the construction of fuzzy state monitors. The latter are defined as monitors that employ fuzzy automata to observe gradual transitions between different stages of disease. As a use case, we re-implemented FuzzyARDS, a previously published clinical monitoring system for patients suffering from acute respiratory distress syndrome (ARDS). Using the re-implementation as an example, we show how key concepts of fuzzy automata, i.e., fuzzy states and parallel fuzzy state transitions, can be implemented in Fuzzy Arden Syntax. The results showed that fuzzy state monitors can be implemented in a straightforward manner.

  13. From QCA (Quantum Cellular Automata) to Organocatalytic Reactions with Stabilized Carbenium Ions.

    PubMed

    Gualandi, Andrea; Mengozzi, Luca; Manoni, Elisabetta; Giorgio Cozzi, Pier

    2016-06-01

    What do quantum cellular automata (QCA), "on water" reactions, and SN 1-type organocatalytic transformations have in common? The link between these distant arguments is the practical access to useful intermediates and key products through the use of stabilized carbenium ions. Over 10 years, starting with a carbenium ion bearing a ferrocenyl group, to the 1,3-benzodithiolylium carbenium ion, our group has exploited the use of these intermediates in useful and practical synthetic transformations. In particular, we have applied the use of carbenium ions to stereoselective organocatalytic alkylation reactions, showing a possible solution for the "holy grail of organocatalysis". Examples of the use of these quite stabilized intermediates are now also considered in organometallic chemistry. On the other hand, the stable carbenium ions are also applied to tailored molecules adapted to quantum cellular automata, a new possible paradigm for computation. Carbenium ions are not a problem, they can be a/the solution! © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Towards mechanism-based simulation of impact damage using exascale computing

    NASA Astrophysics Data System (ADS)

    Shterenlikht, Anton; Margetts, Lee; McDonald, Samuel; Bourne, Neil K.

    2017-01-01

    Over the past 60 years, the finite element method has been very successful in modelling deformation in engineering structures. However the method requires the definition of constitutive models that represent the response of the material to applied loads. There are two issues. Firstly, the models are often difficult to define. Secondly, there is often no physical connection between the models and the mechanisms that accommodate deformation. In this paper, we present a potentially disruptive two-level strategy which couples the finite element method at the macroscale with cellular automata at the mesoscale. The cellular automata are used to simulate mechanisms, such as crack propagation. The stress-strain relationship emerges as a continuum mechanics scale interpretation of changes at the micro- and meso-scales. Iterative two-way updating between the cellular automata and finite elements drives the simulation forward as the material undergoes progressive damage at high strain rates. The strategy is particularly attractive on large-scale computing platforms as both methods scale well on tens of thousands of CPUs.

  15. Distributed learning automata-based algorithm for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Khomami, Mohammad Mehdi Daliri; Rezvanian, Alireza; Meybodi, Mohammad Reza

    2016-03-01

    Community structure is an important and universal topological property of many complex networks such as social and information networks. The detection of communities of a network is a significant technique for understanding the structure and function of networks. In this paper, we propose an algorithm based on distributed learning automata for community detection (DLACD) in complex networks. In the proposed algorithm, each vertex of network is equipped with a learning automation. According to the cooperation among network of learning automata and updating action probabilities of each automaton, the algorithm interactively tries to identify high-density local communities. The performance of the proposed algorithm is investigated through a number of simulations on popular synthetic and real networks. Experimental results in comparison with popular community detection algorithms such as walk trap, Danon greedy optimization, Fuzzy community detection, Multi-resolution community detection and label propagation demonstrated the superiority of DLACD in terms of modularity, NMI, performance, min-max-cut and coverage.

  16. Astrobiological complexity with probabilistic cellular automata.

    PubMed

    Vukotić, Branislav; Ćirković, Milan M

    2012-08-01

    The search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling the astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous space of the input parameters. We perform a simple clustering analysis of typical astrobiological histories with "Copernican" choice of input parameters and discuss the relevant boundary conditions of practical importance for planning and guiding empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.

  17. A Simple Attitude Control of Quadrotor Helicopter Based on Ziegler-Nichols Rules for Tuning PD Parameters

    PubMed Central

    He, ZeFang

    2014-01-01

    An attitude control strategy based on Ziegler-Nichols rules for tuning PD (proportional-derivative) parameters of quadrotor helicopters is presented to solve the problem that quadrotor tends to be instable. This problem is caused by the narrow definition domain of attitude angles of quadrotor helicopters. The proposed controller is nonlinear and consists of a linear part and a nonlinear part. The linear part is a PD controller with PD parameters tuned by Ziegler-Nichols rules and acts on the quadrotor decoupled linear system after feedback linearization; the nonlinear part is a feedback linearization item which converts a nonlinear system into a linear system. It can be seen from the simulation results that the attitude controller proposed in this paper is highly robust, and its control effect is better than the other two nonlinear controllers. The nonlinear parts of the other two nonlinear controllers are the same as the attitude controller proposed in this paper. The linear part involves a PID (proportional-integral-derivative) controller with the PID controller parameters tuned by Ziegler-Nichols rules and a PD controller with the PD controller parameters tuned by GA (genetic algorithms). Moreover, this attitude controller is simple and easy to implement. PMID:25614879

  18. A Cellular Automata Model for the Study of Landslides

    NASA Astrophysics Data System (ADS)

    Liucci, Luisa; Suteanu, Cristian; Melelli, Laura

    2016-04-01

    Power-law scaling has been observed in the frequency distribution of landslide sizes in many regions of the world, for landslides triggered by different factors, and in both multi-temporal and post-event datasets, thus indicating the universal character of this property of landslides and suggesting that the same mechanisms drive the dynamics of mass wasting processes. The reasons for the scaling behavior of landslide sizes are widely debated, since their understanding would improve our knowledge of the spatial and temporal evolution of this phenomenon. Self-Organized Critical (SOC) dynamics and the key role of topography have been suggested as possible explanations. The scaling exponent of the landslide size-frequency distribution defines the probability of landslide magnitudes and it thus represents an important parameter for hazard assessment. Therefore, another - still unanswered - important question concerns the factors on which its value depends. This paper investigates these issues using a Cellular Automata (CA) model. The CA uses a real topographic surface acquired from a Digital Elevation Model to represent the initial state of the system, where the states of cells are defined in terms of altitude. The stability criterion is based on the slope gradient. The system is driven to instability through a temporal decrease of the stability condition of cells, which may be thought of as representing the temporal weakening of soil caused by factors like rainfall. A transition rule defines the way in which instabilities lead to discharge from unstable cells to the neighboring cells, deciding upon the landslide direction and the quantity of mass involved. Both the direction and the transferred mass depend on the local topographic features. The scaling properties of the area-frequency distributions of the resulting landslide series are investigated for several rates of weakening and for different time windows, in order to explore the response of the system to model parameters, and its temporal behavior. Results show that the model reproduces the scaling behavior of real landslide areas; while the value of the scaling exponent is stable over time, it linearly decreases with increasing rate of weakening. This suggests that it is the intensity of the triggering mechanism rather than its duration that affects the probability of landslide magnitudes. A quantitative relationship between the scaling exponent of the area frequency distribution of the generated landslides, on one hand, and the changes regarding the topographic surface affected by landslides, on the other hand, is established. The fact that a similar behavior could be observed in real systems may have useful implications in the context of landslide hazard assessment. These results support the hypotheses that landslides are driven by SOC dynamics, and that topography plays a key role in the scaling properties of their size distribution.

  19. Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study

    NASA Astrophysics Data System (ADS)

    Li, Jun; Fu, Siyao; He, Haibo; Jia, Hongfei; Li, Yanzhong; Guo, Yi

    2015-11-01

    Large-scale regional evacuation is an important part of national security emergency response plan. Large commercial shopping area, as the typical service system, its emergency evacuation is one of the hot research topics. A systematic methodology based on Cellular Automata with the Dynamic Floor Field and event driven model has been proposed, and the methodology has been examined within context of a case study involving the evacuation within a commercial shopping mall. Pedestrians walking is based on Cellular Automata and event driven model. In this paper, the event driven model is adopted to simulate the pedestrian movement patterns, the simulation process is divided into normal situation and emergency evacuation. The model is composed of four layers: environment layer, customer layer, clerk layer and trajectory layer. For the simulation of movement route of pedestrians, the model takes into account purchase intention of customers and density of pedestrians. Based on evacuation model of Cellular Automata with Dynamic Floor Field and event driven model, we can reflect behavior characteristics of customers and clerks at the situations of normal and emergency evacuation. The distribution of individual evacuation time as a function of initial positions and the dynamics of the evacuation process is studied. Our results indicate that the evacuation model using the combination of Cellular Automata with Dynamic Floor Field and event driven scheduling can be used to simulate the evacuation of pedestrian flows in indoor areas with complicated surroundings and to investigate the layout of shopping mall.

  20. The Design of Fault Tolerant Quantum Dot Cellular Automata Based Logic

    NASA Technical Reports Server (NTRS)

    Armstrong, C. Duane; Humphreys, William M.; Fijany, Amir

    2002-01-01

    As transistor geometries are reduced, quantum effects begin to dominate device performance. At some point, transistors cease to have the properties that make them useful computational components. New computing elements must be developed in order to keep pace with Moore s Law. Quantum dot cellular automata (QCA) represent an alternative paradigm to transistor-based logic. QCA architectures that are robust to manufacturing tolerances and defects must be developed. We are developing software that allows the exploration of fault tolerant QCA gate architectures by automating the specification, simulation, analysis and documentation processes.

  1. Using the automata processor for fast pattern recognition in high energy physics experiments. A proof of concept

    DOE PAGES

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher; ...

    2016-06-25

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  2. Using the automata processor for fast pattern recognition in high energy physics experiments. A proof of concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael H. L. S. Wang; Cancelo, Gustavo; Green, Christopher

    Here, we explore the Micron Automata Processor (AP) as a suitable commodity technology that can address the growing computational needs of pattern recognition in High Energy Physics (HEP) experiments. A toy detector model is developed for which an electron track confirmation trigger based on the Micron AP serves as a test case. Although primarily meant for high speed text-based searches, we demonstrate a proof of concept for the use of the Micron AP in a HEP trigger application.

  3. Universal map for cellular automata

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2012-08-01

    A universal map is derived for all deterministic 1D cellular automata (CAs) containing no freely adjustable parameters and valid for any alphabet size and any neighborhood range (including non-symmetrical neighborhoods). The map can be extended to an arbitrary number of dimensions and topologies and to arbitrary order in time. Specific CA maps for the famous Conway's Game of Life and Wolfram's 256 elementary CAs are given. An induction method for CAs, based in the universal map, allows mathematical expressions for the orbits of a wide variety of elementary CAs to be systematically derived.

  4. Cellular Automata with Anticipation: Examples and Presumable Applications

    NASA Astrophysics Data System (ADS)

    Krushinsky, Dmitry; Makarenko, Alexander

    2010-11-01

    One of the most prospective new methodologies for modelling is the so-called cellular automata (CA) approach. According to this paradigm, the models are built from simple elements connected into regular structures with local interaction between neighbours. The patterns of connections usually have a simple geometry (lattices). As one of the classical examples of CA we mention the game `Life' by J. Conway. This paper presents two examples of CA with anticipation property. These examples include a modification of the game `Life' and a cellular model of crowd movement.

  5. Constraint-Based Abstract Semantics for Temporal Logic: A Direct Approach to Design and Implementation

    NASA Astrophysics Data System (ADS)

    Banda, Gourinath; Gallagher, John P.

    interpretation provides a practical approach to verifying properties of infinite-state systems. We apply the framework of abstract interpretation to derive an abstract semantic function for the modal μ-calculus, which is the basis for abstract model checking. The abstract semantic function is constructed directly from the standard concrete semantics together with a Galois connection between the concrete state-space and an abstract domain. There is no need for mixed or modal transition systems to abstract arbitrary temporal properties, as in previous work in the area of abstract model checking. Using the modal μ-calculus to implement CTL, the abstract semantics gives an over-approximation of the set of states in which an arbitrary CTL formula holds. Then we show that this leads directly to an effective implementation of an abstract model checking algorithm for CTL using abstract domains based on linear constraints. The implementation of the abstract semantic function makes use of an SMT solver. We describe an implemented system for proving properties of linear hybrid automata and give some experimental results.

  6. The quasi-optimality criterion in the linear functional strategy

    NASA Astrophysics Data System (ADS)

    Kindermann, Stefan; Pereverzyev, Sergiy, Jr.; Pilipenko, Andrey

    2018-07-01

    The linear functional strategy for the regularization of inverse problems is considered. For selecting the regularization parameter therein, we propose the heuristic quasi-optimality principle and some modifications including the smoothness of the linear functionals. We prove convergence rates for the linear functional strategy with these heuristic rules taking into account the smoothness of the solution and the functionals and imposing a structural condition on the noise. Furthermore, we study these noise conditions in both a deterministic and stochastic setup and verify that for mildly-ill-posed problems and Gaussian noise, these conditions are satisfied almost surely, where on the contrary, in the severely-ill-posed case and in a similar setup, the corresponding noise condition fails to hold. Moreover, we propose an aggregation method for adaptively optimizing the parameter choice rule by making use of improved rates for linear functionals. Numerical results indicate that this method yields better results than the standard heuristic rule.

  7. Cellular automata model for human articular chondrocytes migration, proliferation and cell death: An in vitro validation.

    PubMed

    Vaca-González, J J; Gutiérrez, M L; Guevara, J M; Garzón-Alvarado, D A

    2017-01-01

    Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation. To improve the efficiency of this procedure, it is necessary to assess cell dynamics such as migration, proliferation and cell death during culture. Computational models such as cellular automata can be used to simulate cell dynamics in order to enhance the result of cell culture procedures. This methodology has been implemented for several cell types; however, an experimental validation is required for each one. For this reason, in this research a cellular automata model, based on random-walk theory, was devised in order to predict articular chondrocyte behavior in monolayer culture during cell expansion. Results demonstrated that the cellular automata model corresponded to cell dynamics and computed-accurate quantitative results. Moreover, it was possible to observe that cell dynamics depend on weighted probabilities derived from experimental data and cell behavior varies according to the cell culture period. Thus, depending on whether cells were just seeded or proliferated exponentially, culture time probabilities differed in percentages in the CA model. Furthermore, in the experimental assessment a decreased chondrocyte proliferation was observed along with increased passage number. This approach is expected to having other uses as in enhancing articular cartilage therapies based on tissue engineering and regenerative medicine.

  8. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

    PubMed Central

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308

  9. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR.

    PubMed

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.

  10. Automatic User Interface Generation for Visualizing Big Geoscience Data

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wu, J.; Zhou, Y.; Tang, Z.; Kuo, K. S.

    2016-12-01

    Along with advanced computing and observation technologies, geoscience and its related fields have been generating a large amount of data at an unprecedented growth rate. Visualization becomes an increasingly attractive and feasible means for researchers to effectively and efficiently access and explore data to gain new understandings and discoveries. However, visualization has been challenging due to a lack of effective data models and visual representations to tackle the heterogeneity of geoscience data. We propose a new geoscience data visualization framework by leveraging the interface automata theory to automatically generate user interface (UI). Our study has the following three main contributions. First, geoscience data has its unique hierarchy data structure and complex formats, and therefore it is relatively easy for users to get lost or confused during their exploration of the data. By applying interface automata model to the UI design, users can be clearly guided to find the exact visualization and analysis that they want. In addition, from a development perspective, interface automaton is also easier to understand than conditional statements, which can simplify the development process. Second, it is common that geoscience data has discontinuity in its hierarchy structure. The application of interface automata can prevent users from suffering automation surprises, and enhance user experience. Third, for supporting a variety of different data visualization and analysis, our design with interface automata could also make applications become extendable in that a new visualization function or a new data group could be easily added to an existing application, which reduces the overhead of maintenance significantly. We demonstrate the effectiveness of our framework using real-world applications.

  11. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.

    PubMed

    Branke, Jürgen; Hildebrandt, Torsten; Scholz-Reiter, Bernd

    2015-01-01

    Dispatching rules are frequently used for real-time, online scheduling in complex manufacturing systems. Design of such rules is usually done by experts in a time consuming trial-and-error process. Recently, evolutionary algorithms have been proposed to automate the design process. There are several possibilities to represent rules for this hyper-heuristic search. Because the representation determines the search neighborhood and the complexity of the rules that can be evolved, a suitable choice of representation is key for a successful evolutionary algorithm. In this paper we empirically compare three different representations, both numeric and symbolic, for automated rule design: A linear combination of attributes, a representation based on artificial neural networks, and a tree representation. Using appropriate evolutionary algorithms (CMA-ES for the neural network and linear representations, genetic programming for the tree representation), we empirically investigate the suitability of each representation in a dynamic stochastic job shop scenario. We also examine the robustness of the evolved dispatching rules against variations in the underlying job shop scenario, and visualize what the rules do, in order to get an intuitive understanding of their inner workings. Results indicate that the tree representation using an improved version of genetic programming gives the best results if many candidate rules can be evaluated, closely followed by the neural network representation that already leads to good results for small to moderate computational budgets. The linear representation is found to be competitive only for extremely small computational budgets.

  12. Microgravity and Charge Transfer in the Neuronal Membrane: Implications for Computational Neurobiology

    NASA Technical Reports Server (NTRS)

    Wallace, Ron

    1995-01-01

    Evidence from natural and artificial membranes indicates that the neural membrane is a liquid crystal. A liquid-to-gel phase transition caused by the application of superposed electromagnetic fields to the outer membrane surface releases spin-correlated electron pairs which propagate through a charge transfer complex. The propagation generates Rydberg atoms in the lipid bilayer lattice. In the present model, charge density configurations in promoted orbitals interact as cellular automata and perform computations in Hilbert space. Due to the small binding energies of promoted orbitals, their automata are highly sensitive to microgravitational perturbations. It is proposed that spacetime is classical on the Rydberg scale, but formed of contiguous moving segments, each of which displays topological equivalence. This stochasticity is reflected in randomized Riemannian tensor values. Spacetime segments interact with charge automata as components of a computational process. At the termination of the algorithm, an orbital of high probability density is embedded in a more stabilized microscopic spacetime. This state permits the opening of an ion channel and the conversion of a quantum algorithm into a macroscopic frequency code.

  13. Achieving microaggregation for secure statistical databases using fixed-structure partitioning-based learning automata.

    PubMed

    Fayyoumi, Ebaa; Oommen, B John

    2009-10-01

    We consider the microaggregation problem (MAP) that involves partitioning a set of individual records in a microdata file into a number of mutually exclusive and exhaustive groups. This problem, which seeks for the best partition of the microdata file, is known to be NP-hard and has been tackled using many heuristic solutions. In this paper, we present the first reported fixed-structure-stochastic-automata-based solution to this problem. The newly proposed method leads to a lower value of the information loss (IL), obtains a better tradeoff between the IL and the disclosure risk (DR) when compared with state-of-the-art methods, and leads to a superior value of the scoring index, which is a criterion involving a combination of the IL and the DR. The scheme has been implemented, tested, and evaluated for different real-life and simulated data sets. The results clearly demonstrate the applicability of learning automata to the MAP and its ability to yield a solution that obtains the best tradeoff between IL and DR when compared with the state of the art.

  14. Sampling from complex networks using distributed learning automata

    NASA Astrophysics Data System (ADS)

    Rezvanian, Alireza; Rahmati, Mohammad; Meybodi, Mohammad Reza

    2014-02-01

    A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due to a growing trend in analysis of online social networks as dynamic complex large-scale graphs. Due to the large scale and limited access of real networks, the network model is characterized using an appropriate part of a network by sampling approaches. In this paper, a new sampling algorithm based on distributed learning automata has been proposed for sampling from complex networks. In the proposed algorithm, a set of distributed learning automata cooperate with each other in order to take appropriate samples from the given network. To investigate the performance of the proposed algorithm, several simulation experiments are conducted on well-known complex networks. Experimental results are compared with several sampling methods in terms of different measures. The experimental results demonstrate the superiority of the proposed algorithm over the others.

  15. Stair evacuation simulation based on cellular automata considering evacuees’ walk preferences

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Zhang, Hui; Chen, Tao; Peter, B. Luh

    2015-06-01

    As a physical model, the cellular automata (CA) model is widely used in many areas, such as stair evacuation. However, existing CA models do not consider evacuees’ walk preferences nor psychological status, and the structure of the basic model is unapplicable for the stair structure. This paper is to improve the stair evacuation simulation by addressing these issues, and a new cellular automata model is established. Several evacuees’ walk preference and how evacuee’s psychology influences their behaviors are introduced into this model. Evacuees’ speeds will be influenced by these features. To validate this simulation, two fire drills held in two high-rise buildings are video-recorded. It is found that the simulation results are similar to the fire drill results. The structure of this model is simple, and it is easy to further develop and utilize in different buildings with various kinds of occupants. Project supported by the National Basic Research Program of China (Grant No. 2012CB719705) and the National Natural Science Foundation of China (Grant Nos. 91224008, 91024032, and 71373139).

  16. Dengue fever spreading based on probabilistic cellular automata with two lattices

    NASA Astrophysics Data System (ADS)

    Pereira, F. M. M.; Schimit, P. H. T.

    2018-06-01

    Modeling and simulation of mosquito-borne diseases have gained attention due to a growing incidence in tropical countries in the past few years. Here, we study the dengue spreading in a population modeled by cellular automata, where there are two lattices to model the human-mosquitointeraction: one lattice for human individuals, and one lattice for mosquitoes in order to enable different dynamics in populations. The disease considered is the dengue fever with one, two or three different serotypes coexisting in population. Although many regions exhibit the incidence of only one serotype, here we set a complete framework to also study the occurrence of two and three serotypes at the same time in a population. Furthermore, the flexibility of the model allows its use to other mosquito-borne diseases, like chikungunya, yellow fever and malaria. An approximation of the cellular automata is proposed in terms of ordinary differential equations; the spreading of mosquitoes is studied and the influence of some model parameters are analyzed with numerical simulations. Finally, a method to combat dengue spreading is simulated based on a reduction of mosquito birth and mosquito bites in population.

  17. Quantifying a cellular automata simulation of electric vehicles

    NASA Astrophysics Data System (ADS)

    Hill, Graeme; Bell, Margaret; Blythe, Phil

    2014-12-01

    Within this work the Nagel-Schreckenberg (NS) cellular automata is used to simulate a basic cyclic road network. Results from SwitchEV, a real world Electric Vehicle trial which has collected more than two years of detailed electric vehicle data, are used to quantify the results of the NS automata, demonstrating similar power consumption behavior to that observed in the experimental results. In particular the efficiency of the electric vehicles reduces as the vehicle density increases, due in part to the reduced efficiency of EVs at low speeds, but also due to the energy consumption inherent in changing speeds. Further work shows the results from introducing spatially restricted speed restriction. In general it can be seen that induced congestion from spatially transient events propagates back through the road network and alters the energy and efficiency profile of the simulated vehicles, both before and after the speed restriction. Vehicles upstream from the restriction show a reduced energy usage and an increased efficiency, and vehicles downstream show an initial large increase in energy usage as they accelerate away from the speed restriction.

  18. Reasoning about Probabilistic Security Using Task-PIOAs

    NASA Astrophysics Data System (ADS)

    Jaggard, Aaron D.; Meadows, Catherine; Mislove, Michael; Segala, Roberto

    Task-structured probabilistic input/output automata (Task-PIOAs) are concurrent probabilistic automata that, among other things, have been used to provide a formal framework for the universal composability paradigms of protocol security. One of their advantages is that that they allow one to distinguish high-level nondeterminism that can affect the outcome of the protocol, from low-level choices, which can't. We present an alternative approach to analyzing the structure of Task-PIOAs that relies on ordered sets. We focus on two of the components that are required to define and apply Task-PIOAs: discrete probability theory and automata theory. We believe our development gives insight into the structure of Task-PIOAs and how they can be utilized to model crypto-protocols. We illustrate our approach with an example from anonymity, an area that has not previously been addressed using Task-PIOAs. We model Chaum's Dining Cryptographers Protocol at a level that does not require cryptographic primitives in the analysis. We show via this example how our approach can leverage a proof of security in the case a principal behaves deterministically to prove security when that principal behaves probabilistically.

  19. Algebraic properties of automata associated to Petri nets and applications to computation in biological systems.

    PubMed

    Egri-Nagy, Attila; Nehaniv, Chrystopher L

    2008-01-01

    Biochemical and genetic regulatory networks are often modeled by Petri nets. We study the algebraic structure of the computations carried out by Petri nets from the viewpoint of algebraic automata theory. Petri nets comprise a formalized graphical modeling language, often used to describe computation occurring within biochemical and genetic regulatory networks, but the semantics may be interpreted in different ways in the realm of automata. Therefore, there are several different ways to turn a Petri net into a state-transition automaton. Here, we systematically investigate different conversion methods and describe cases where they may yield radically different algebraic structures. We focus on the existence of group components of the corresponding transformation semigroups, as these reflect symmetries of the computation occurring within the biological system under study. Results are illustrated by applications to the Petri net modelling of intermediary metabolism. Petri nets with inhibition are shown to be computationally rich, regardless of the particular interpretation method. Along these lines we provide a mathematical argument suggesting a reason for the apparent all-pervasiveness of inhibitory connections in living systems.

  20. Symbolic Computation Using Cellular Automata-Based Hyperdimensional Computing.

    PubMed

    Yilmaz, Ozgur

    2015-12-01

    This letter introduces a novel framework of reservoir computing that is capable of both connectionist machine intelligence and symbolic computation. A cellular automaton is used as the reservoir of dynamical systems. Input is randomly projected onto the initial conditions of automaton cells, and nonlinear computation is performed on the input via application of a rule in the automaton for a period of time. The evolution of the automaton creates a space-time volume of the automaton state space, and it is used as the reservoir. The proposed framework is shown to be capable of long-term memory, and it requires orders of magnitude less computation compared to echo state networks. As the focus of the letter, we suggest that binary reservoir feature vectors can be combined using Boolean operations as in hyperdimensional computing, paving a direct way for concept building and symbolic processing. To demonstrate the capability of the proposed system, we make analogies directly on image data by asking, What is the automobile of air?

  1. Cancerous tumor: the high frequency of a rare event.

    PubMed

    Galam, S; Radomski, J P

    2001-05-01

    A simple model for cancer growth is presented using cellular automata. Cells diffuse randomly on a two-dimensional square lattice. Individual cells can turn cancerous at a very low rate. During each diffusive step, local fights may occur between healthy and cancerous cells. Associated outcomes depend on some biased local rules, which are independent of the overall cancerous cell density. The models unique ingredients are the frequency of local fights and the bias amplitude. While each isolated cancerous cell is eventually destroyed, an initial two-cell tumor cluster is found to have a nonzero probabilty to spread over the whole system. The associated phase diagram for survival or death is obtained as a function of both the rate of fight and the bias distribution. Within the model, although the occurrence of a killing cluster is a very rare event, it turns out to happen almost systematically over long periods of time, e.g., on the order of an adults life span. Thus, after some age, survival from tumorous cancer becomes random.

  2. Modelling the effect of urbanization on the transmission of an infectious disease.

    PubMed

    Zhang, Ping; Atkinson, Peter M

    2008-01-01

    This paper models the impact of urbanization on infectious disease transmission by integrating a CA land use development model, population projection matrix model and CA epidemic model in S-Plus. The innovative feature of this model lies in both its explicit treatment of spatial land use development, demographic changes, infectious disease transmission and their combination in a dynamic, stochastic model. Heuristically-defined transition rules in cellular automata (CA) were used to capture the processes of both land use development with urban sprawl and infectious disease transmission. A population surface model and dwelling distribution surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling influenza transmission in Southampton, a dynamically evolving city in the UK. The simulation results for Southampton over a 30-year period show that the pattern of the average number of infection cases per day can depend on land use and demographic changes. The modelling framework presents a useful tool that may be of use in planning applications.

  3. Production of Supra-regular Spatial Sequences by Macaque Monkeys.

    PubMed

    Jiang, Xinjian; Long, Tenghai; Cao, Weicong; Li, Junru; Dehaene, Stanislas; Wang, Liping

    2018-06-18

    Understanding and producing embedded sequences in language, music, or mathematics, is a central characteristic of our species. These domains are hypothesized to involve a human-specific competence for supra-regular grammars, which can generate embedded sequences that go beyond the regular sequences engendered by finite-state automata. However, is this capacity truly unique to humans? Using a production task, we show that macaque monkeys can be trained to produce time-symmetrical embedded spatial sequences whose formal description requires supra-regular grammars or, equivalently, a push-down stack automaton. Monkeys spontaneously generalized the learned grammar to novel sequences, including longer ones, and could generate hierarchical sequences formed by an embedding of two levels of abstract rules. Compared to monkeys, however, preschool children learned the grammars much faster using a chunking strategy. While supra-regular grammars are accessible to nonhuman primates through extensive training, human uniqueness may lie in the speed and learning strategy with which they are acquired. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Model and Dynamic Behavior of Malware Propagation over Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Song, Yurong; Jiang, Guo-Ping

    Based on the inherent characteristics of wireless sensor networks (WSN), the dynamic behavior of malware propagation in flat WSN is analyzed and investigated. A new model is proposed using 2-D cellular automata (CA), which extends the traditional definition of CA and establishes whole transition rules for malware propagation in WSN. Meanwhile, the validations of the model are proved through theoretical analysis and simulations. The theoretical analysis yields closed-form expressions which show good agreement with the simulation results of the proposed model. It is shown that the malware propaga-tion in WSN unfolds neighborhood saturation, which dominates the effects of increasing infectivity and limits the spread of the malware. MAC mechanism of wireless sensor networks greatly slows down the speed of malware propagation and reduces the risk of large-scale malware prevalence in these networks. The proposed model can describe accurately the dynamic behavior of malware propagation over WSN, which can be applied in developing robust and efficient defense system on WSN.

  5. A Practical Measure for the Complexity of Evolving Seismicity Patterns

    NASA Astrophysics Data System (ADS)

    Goltz, C.

    2005-12-01

    Earthquakes are a "complex" phenomenon. There is, however, no clear definition of what complexity actually is. Yet, it is important to distinguish between what is merely complicated and what is complex in the sense that simple rules can give rise to very rich behaviour. Seismicity is certainly a complicated phenomenon (difficult to understand) but simple models such as cellular automata indicate that earthquakes are truly complex. From the observational point of view, there exists the problem of quantification of complexity in real world seismicity patterns. Such a measurement is desirable, not only for fundamental understanding but also for monitoring and possibly for forecasting. Maybe the most workable definitions of complexity exist in informatics, summarised under the topic of algorithmic complexity. Here, after introducing the concepts, I apply such a measure of complexity to temporally evolving real-world seismicity patterns. Finally, I discuss the usefulness of the approach and regard the results in view of the occurrence of large earthquakes.

  6. A comparison of Heuristic method and Llewellyn’s rules for identification of redundant constraints

    NASA Astrophysics Data System (ADS)

    Estiningsih, Y.; Farikhin; Tjahjana, R. H.

    2018-03-01

    Important techniques in linear programming is modelling and solving practical optimization. Redundant constraints are consider for their effects on general linear programming problems. Identification and reduce redundant constraints are for avoidance of all the calculations associated when solving an associated linear programming problems. Many researchers have been proposed for identification redundant constraints. This paper a compararison of Heuristic method and Llewellyn’s rules for identification of redundant constraints.

  7. A Multi-Encoding Approach for LTL Symbolic Satisfiability Checking

    NASA Technical Reports Server (NTRS)

    Rozier, Kristin Y.; Vardi, Moshe Y.

    2011-01-01

    Formal behavioral specifications written early in the system-design process and communicated across all design phases have been shown to increase the efficiency, consistency, and quality of the system under development. To prevent introducing design or verification errors, it is crucial to test specifications for satisfiability. Our focus here is on specifications expressed in linear temporal logic (LTL). We introduce a novel encoding of symbolic transition-based Buchi automata and a novel, "sloppy," transition encoding, both of which result in improved scalability. We also define novel BDD variable orders based on tree decomposition of formula parse trees. We describe and extensively test a new multi-encoding approach utilizing these novel encoding techniques to create 30 encoding variations. We show that our novel encodings translate to significant, sometimes exponential, improvement over the current standard encoding for symbolic LTL satisfiability checking.

  8. Self-organizing intelligent network of smart electrical heating devices as an alternative to traditional ways of heating

    NASA Astrophysics Data System (ADS)

    Zaslavsky, Aleksander M.; Tkachov, Viktor V.; Protsenko, Stanislav M.; Bublikov, Andrii V.; Suleimenov, Batyrbek; Orshubekov, Nurbek; Gromaszek, Konrad

    2017-08-01

    The paper considers the problem of automated decentralized distribution of the electric energy among unlimited-power electric heaters providing the given temperature distribution within the zones of monitored object heating in the context of maximum use of electric power which limiting level is time-dependent randomly. Principles of collective selforganization automata for solving the problem are analyzed. It has been shown that after all the automata make decision, equilibrium of Nash type is attained when unused power within the electric network is not more than a power of any non-energized electric heater.

  9. A Cellular Automata Model of Infection Control on Medical Implants

    PubMed Central

    Prieto-Langarica, Alicia; Kojouharov, Hristo; Chen-Charpentier, Benito; Tang, Liping

    2011-01-01

    S. epidermidis infections on medically implanted devices are a common problem in modern medicine due to the abundance of the bacteria. Once inside the body, S. epidermidis gather in communities called biofilms and can become extremely hard to eradicate, causing the patient serious complications. We simulate the complex S. epidermidis-Neutrophils interactions in order to determine the optimum conditions for the immune system to be able to contain the infection and avoid implant rejection. Our cellular automata model can also be used as a tool for determining the optimal amount of antibiotics for combating biofilm formation on medical implants. PMID:23543851

  10. All-DNA finite-state automata with finite memory

    PubMed Central

    Wang, Zhen-Gang; Elbaz, Johann; Remacle, F.; Levine, R. D.; Willner, Itamar

    2010-01-01

    Biomolecular logic devices can be applied for sensing and nano-medicine. We built three DNA tweezers that are activated by the inputs H+/OH-; ; nucleic acid linker/complementary antilinker to yield a 16-states finite-state automaton. The outputs of the automata are the configuration of the respective tweezers (opened or closed) determined by observing fluorescence from a fluorophore/quencher pair at the end of the arms of the tweezers. The system exhibits a memory because each current state and output depend not only on the source configuration but also on past states and inputs. PMID:21135212

  11. Partial information decomposition as a spatiotemporal filter.

    PubMed

    Flecker, Benjamin; Alford, Wesley; Beggs, John M; Williams, Paul L; Beer, Randall D

    2011-09-01

    Understanding the mechanisms of distributed computation in cellular automata requires techniques for characterizing the emergent structures that underlie information processing in such systems. Recently, techniques from information theory have been brought to bear on this problem. Building on this work, we utilize the new technique of partial information decomposition to show that previous information-theoretic measures can confound distinct sources of information. We then propose a new set of filters and demonstrate that they more cleanly separate out the background domains, particles, and collisions that are typically associated with information storage, transfer, and modification in cellular automata.

  12. Automation Rover for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Sauder, Jonathan; Hilgemann, Evan; Johnson, Michael; Parness, Aaron; Hall, Jeffrey; Kawata, Jessie; Stack, Kathryn

    2017-01-01

    Almost 2,300 years ago the ancient Greeks built the Antikythera automaton. This purely mechanical computer accurately predicted past and future astronomical events long before electronics existed1. Automata have been credibly used for hundreds of years as computers, art pieces, and clocks. However, in the past several decades automata have become less popular as the capabilities of electronics increased, leaving them an unexplored solution for robotic spacecraft. The Automaton Rover for Extreme Environments (AREE) proposes an exciting paradigm shift from electronics to a fully mechanical system, enabling longitudinal exploration of the most extreme environments within the solar system.

  13. [Daedalus sive mechanicus--automated equipment and machines at the interface between mechanics and medicine].

    PubMed

    Bondio, Mariacarla Gadebusch

    2009-01-01

    Automata have always held a particular fascination. Their history leads back to their mythical ancestors, whose destinies raise considerable ethical questions about the sense of technology and about the boundaries between nature and art. In the 16th century engineers, architects and also physicians discussed the status of the ,artes mechanicae' and the machines they produced or used. Useful, sometimes dangerous, amusing and elaborate artefacts liven up their texts. Together with wonderful automata we find there also orthopaedic stretching machines and artificial limbs, whose acceptance by medical practice was anything but a matter of course.

  14. Understanding the complex dynamics of stock markets through cellular automata

    NASA Astrophysics Data System (ADS)

    Qiu, G.; Kandhai, D.; Sloot, P. M. A.

    2007-04-01

    We present a cellular automaton (CA) model for simulating the complex dynamics of stock markets. Within this model, a stock market is represented by a two-dimensional lattice, of which each vertex stands for a trader. According to typical trading behavior in real stock markets, agents of only two types are adopted: fundamentalists and imitators. Our CA model is based on local interactions, adopting simple rules for representing the behavior of traders and a simple rule for price updating. This model can reproduce, in a simple and robust manner, the main characteristics observed in empirical financial time series. Heavy-tailed return distributions due to large price variations can be generated through the imitating behavior of agents. In contrast to other microscopic simulation (MS) models, our results suggest that it is not necessary to assume a certain network topology in which agents group together, e.g., a random graph or a percolation network. That is, long-range interactions can emerge from local interactions. Volatility clustering, which also leads to heavy tails, seems to be related to the combined effect of a fast and a slow process: the evolution of the influence of news and the evolution of agents’ activity, respectively. In a general sense, these causes of heavy tails and volatility clustering appear to be common among some notable MS models that can confirm the main characteristics of financial markets.

  15. Loading Deformation Characteristic Simulation Study of Engineering Vehicle Refurbished Tire

    NASA Astrophysics Data System (ADS)

    Qiang, Wang; Xiaojie, Qi; Zhao, Yang; Yunlong, Wang; Guotian, Wang; Degang, Lv

    2018-05-01

    The paper constructed engineering vehicle refurbished tire computer geometry model, mechanics model, contact model, finite element analysis model, did simulation study on load-deformation property of engineering vehicle refurbished tire by comparing with that of the new and the same type tire, got load-deformation of engineering vehicle refurbished tire under the working condition of static state and ground contact. The analysis result shows that change rules of radial-direction deformation and side-direction deformation of engineering vehicle refurbished tire are close to that of the new tire, radial-direction and side-direction deformation value is a little less than that of the new tire. When air inflation pressure was certain, radial-direction deformation linear rule of engineer vehicle refurbished tire would increase with load adding, however, side-direction deformation showed linear change rule, when air inflation pressure was low; and it would show increase of non-linear change rule, when air inflation pressure was very high.

  16. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  17. Coupling Cellular Automata Land Use Change with Distributed Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Shu, L.; Duffy, C.

    2017-12-01

    There has been extensive research on LUC modeling with broad applications to simulating urban growth and changing demographic patterns across multiple scales. The importance of land conversion is a critical issue in watershed scale studies and is generally not treated in most watershed modeling approaches. In this study we apply spatially explicit hydrologic and landuse change models and the Conestoga Watershed in Lancaster County, Pennsylvania. The Penn State Integrated Hydrologic Model (PIHM) partitions the water balance in space and time over the urban catchment, the coupled Cellular Automata Land Use Change model (CALUC) dynamically simulates the evolution of land use classes based on physical measures associated with population change and land use demand factors. The CALUC model is based on iteratively applying discrete rules to each individual spatial cell. The essence the CA modeling involves calculation of the Transition Potential (TP) for conversion of a grid cell from one land use class to another. This potential includes five factors: random perturbation, suitability, accessibility, neighborhood effect, inertia effects and zonal factors. In spite of simplicity, this CALUC model has been shown to be very effective for simulating LUC leading to the emergence of complex spatial patterns. The components of TP are derived from present land use data for landuse reanalysis and for realistic future land use scenarios. For the CALUC we use early-settlement (circa 1790) initial land class values and final or present-day (2010) land classes to calibrate the model. CALUC- PIHM dynamically simulates the hydrologic response of conversion from pre-settlement to present landuse. The simulations highlight the capability and value of dynamic coupling of catchment hydrology with land use change over long time periods. Analysis of the simulation uses various metrics such as the distributed water balance, flow duration curves, etc. to show how deforestation, urbanization and agricultural land development interact for the period 1790- present.

  18. CREATIVE COMPUTATION.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , RECURSIVE FUNCTIONS), (*RECURSIVE FUNCTIONS, ARTIFICIAL INTELLIGENCE ), (*MATHEMATICAL LOGIC, ARTIFICIAL INTELLIGENCE ), METAMATHEMATICS, AUTOMATA, NUMBER THEORY, INFORMATION THEORY, COMBINATORIAL ANALYSIS

  19. A verification strategy for web services composition using enhanced stacked automata model.

    PubMed

    Nagamouttou, Danapaquiame; Egambaram, Ilavarasan; Krishnan, Muthumanickam; Narasingam, Poonkuzhali

    2015-01-01

    Currently, Service-Oriented Architecture (SOA) is becoming the most popular software architecture of contemporary enterprise applications, and one crucial technique of its implementation is web services. Individual service offered by some service providers may symbolize limited business functionality; however, by composing individual services from different service providers, a composite service describing the intact business process of an enterprise can be made. Many new standards have been defined to decipher web service composition problem namely Business Process Execution Language (BPEL). BPEL provides an initial work for forming an Extended Markup Language (XML) specification language for defining and implementing business practice workflows for web services. The problems with most realistic approaches to service composition are the verification of composed web services. It has to depend on formal verification method to ensure the correctness of composed services. A few research works has been carried out in the literature survey for verification of web services for deterministic system. Moreover the existing models did not address the verification properties like dead transition, deadlock, reachability and safetyness. In this paper, a new model to verify the composed web services using Enhanced Stacked Automata Model (ESAM) has been proposed. The correctness properties of the non-deterministic system have been evaluated based on the properties like dead transition, deadlock, safetyness, liveness and reachability. Initially web services are composed using Business Process Execution Language for Web Service (BPEL4WS) and it is converted into ESAM (combination of Muller Automata (MA) and Push Down Automata (PDA)) and it is transformed into Promela language, an input language for Simple ProMeLa Interpreter (SPIN) tool. The model is verified using SPIN tool and the results revealed better recital in terms of finding dead transition and deadlock in contrast to the existing models.

  20. Modeling the Land Use/Cover Change in an Arid Region Oasis City Constrained by Water Resource and Environmental Policy Change using Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Hu, X.; Li, X.; Lu, L.

    2017-12-01

    Land use/cover change (LUCC) is an important subject in the research of global environmental change and sustainable development, while spatial simulation on land use/cover change is one of the key content of LUCC and is also difficult due to the complexity of the system. The cellular automata (CA) model had an irreplaceable role in simulating of land use/cover change process due to the powerful spatial computing power. However, the majority of current CA land use/cover models were binary-state model that could not provide more general information about the overall spatial pattern of land use/cover change. Here, a multi-state logistic-regression-based Markov cellular automata (MLRMCA) model and a multi-state artificial-neural-network-based Markov cellular automata (MANNMCA) model were developed and were used to simulate complex land use/cover evolutionary process in an arid region oasis city constrained by water resource and environmental policy change, the Zhangye city during the period of 1990-2010. The results indicated that the MANNMCA model was superior to MLRMCA model in simulated accuracy. These indicated that by combining the artificial neural network with CA could more effectively capture the complex relationships between the land use/cover change and a set of spatial variables. Although the MLRMCA model were also some advantages, the MANNMCA model was more appropriate for simulating complex land use/cover dynamics. The two proposed models were effective and reliable, and could reflect the spatial evolution of regional land use/cover changes. These have also potential implications for the impact assessment of water resources, ecological restoration, and the sustainable urban development in arid areas.

  1. Scalable asynchronous execution of cellular automata

    NASA Astrophysics Data System (ADS)

    Folino, Gianluigi; Giordano, Andrea; Mastroianni, Carlo

    2016-10-01

    The performance and scalability of cellular automata, when executed on parallel/distributed machines, are limited by the necessity of synchronizing all the nodes at each time step, i.e., a node can execute only after the execution of the previous step at all the other nodes. However, these synchronization requirements can be relaxed: a node can execute one step after synchronizing only with the adjacent nodes. In this fashion, different nodes can execute different time steps. This can be a notable advantageous in many novel and increasingly popular applications of cellular automata, such as smart city applications, simulation of natural phenomena, etc., in which the execution times can be different and variable, due to the heterogeneity of machines and/or data and/or executed functions. Indeed, a longer execution time at a node does not slow down the execution at all the other nodes but only at the neighboring nodes. This is particularly advantageous when the nodes that act as bottlenecks vary during the application execution. The goal of the paper is to analyze the benefits that can be achieved with the described asynchronous implementation of cellular automata, when compared to the classical all-to-all synchronization pattern. The performance and scalability have been evaluated through a Petri net model, as this model is very useful to represent the synchronization barrier among nodes. We examined the usual case in which the territory is partitioned into a number of regions, and the computation associated with a region is assigned to a computing node. We considered both the cases of mono-dimensional and two-dimensional partitioning. The results show that the advantage obtained through the asynchronous execution, when compared to the all-to-all synchronous approach is notable, and it can be as large as 90% in terms of speedup.

  2. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  3. Simple rules for a "simple" nervous system? Molecular and biomathematical approaches to enteric nervous system formation and malformation.

    PubMed

    Newgreen, Donald F; Dufour, Sylvie; Howard, Marthe J; Landman, Kerry A

    2013-10-01

    We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins. © 2013 Elsevier Inc. All rights reserved.

  4. Stochastic computing with biomolecular automata

    PubMed Central

    Adar, Rivka; Benenson, Yaakov; Linshiz, Gregory; Rosner, Amit; Tishby, Naftali; Shapiro, Ehud

    2004-01-01

    Stochastic computing has a broad range of applications, yet electronic computers realize its basic step, stochastic choice between alternative computation paths, in a cumbersome way. Biomolecular computers use a different computational paradigm and hence afford novel designs. We constructed a stochastic molecular automaton in which stochastic choice is realized by means of competition between alternative biochemical pathways, and choice probabilities are programmed by the relative molar concentrations of the software molecules coding for the alternatives. Programmable and autonomous stochastic molecular automata have been shown to perform direct analysis of disease-related molecular indicators in vitro and may have the potential to provide in situ medical diagnosis and cure. PMID:15215499

  5. Multilane Traffic Flow Modeling Using Cellular Automata Theory

    NASA Astrophysics Data System (ADS)

    Chechina, Antonina; Churbanova, Natalia; Trapeznikova, Marina

    2018-02-01

    The paper deals with the mathematical modeling of traffic flows on urban road networks using microscopic approach. The model is based on the cellular automata theory and presents a generalization of the Nagel-Schreckenberg model to a multilane case. The created program package allows to simulate traffic on various types of road fragments (T or X type intersection, strait road elements, etc.) and on road networks that consist of these elements. Besides that, it allows to predict the consequences of various decisions regarding road infrastructure changes, such as: number of lanes increasing/decreasing, putting new traffic lights into operation, building new roads, entrances/exits, road junctions.

  6. Game of Life Music

    NASA Astrophysics Data System (ADS)

    Miranda, Eduardo R.; Kirke, Alexis

    At the time when the first author was post-graduate student, in the evenings he used to entertain himself with the equipment in the electronic music studio at the University of York until dawn. It must have been around three o'clock in the morning of a rather cold winter night in the late 1980s, when he connected his Atari 1040ST computer to a synthesizer to test the first prototype of a system, which he was developing for his thesis. The system, named CAMUS (short for Cellular Automata Music), implemented a method that he invented to render music from the behaviour of the Game of Life (GoL) cellular automata (CA).

  7. Computing aggregate properties of preimages for 2D cellular automata.

    PubMed

    Beer, Randall D

    2017-11-01

    Computing properties of the set of precursors of a given configuration is a common problem underlying many important questions about cellular automata. Unfortunately, such computations quickly become intractable in dimension greater than one. This paper presents an algorithm-incremental aggregation-that can compute aggregate properties of the set of precursors exponentially faster than naïve approaches. The incremental aggregation algorithm is demonstrated on two problems from the two-dimensional binary Game of Life cellular automaton: precursor count distributions and higher-order mean field theory coefficients. In both cases, incremental aggregation allows us to obtain new results that were previously beyond reach.

  8. The Development of Design Tools for Fault Tolerant Quantum Dot Cellular Automata Based Logic

    NASA Technical Reports Server (NTRS)

    Armstrong, Curtis D.; Humphreys, William M.

    2003-01-01

    We are developing software to explore the fault tolerance of quantum dot cellular automata gate architectures in the presence of manufacturing variations and device defects. The Topology Optimization Methodology using Applied Statistics (TOMAS) framework extends the capabilities of the A Quantum Interconnected Network Array Simulator (AQUINAS) by adding front-end and back-end software and creating an environment that integrates all of these components. The front-end tools establish all simulation parameters, configure the simulation system, automate the Monte Carlo generation of simulation files, and execute the simulation of these files. The back-end tools perform automated data parsing, statistical analysis and report generation.

  9. Reversible Flip-Flops in Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Rad, Samaneh Kazemi; Heikalabad, Saeed Rasouli

    2017-09-01

    Quantum-dot cellular automata is a new technology to design the efficient combinational and sequential circuits at the nano-scale. This technology has many desirable advantages compared to the CMOS technology such as low power consumption, less occupation area and low latency. These features make it suitable for use in flip-flop design. In this paper, with knowing the characteristics of reversible logic, we design new structures for flip-flops. The operations of these structures are evaluated with QCADesigner Version 2.0.3 simulator. In addition, we calculate the power dissipation of these structures by QCAPro tool. The results illustrated that proposed structures are efficient compared to the previous ones.

  10. Modelling robot's behaviour using finite automata

    NASA Astrophysics Data System (ADS)

    Janošek, Michal; Žáček, Jaroslav

    2017-07-01

    This paper proposes a model of a robot's behaviour described by finite automata. We split robot's knowledge into several knowledge bases which are used by the inference mechanism of the robot's expert system to make a logic deduction. Each knowledgebase is dedicated to the particular behaviour domain and the finite automaton helps us switching among these knowledge bases with the respect of actual situation. Our goal is to simplify and reduce complexity of one big knowledgebase splitting it into several pieces. The advantage of this model is that we can easily add new behaviour by adding new knowledgebase and add this behaviour into the finite automaton and define necessary states and transitions.

  11. Computing aggregate properties of preimages for 2D cellular automata

    NASA Astrophysics Data System (ADS)

    Beer, Randall D.

    2017-11-01

    Computing properties of the set of precursors of a given configuration is a common problem underlying many important questions about cellular automata. Unfortunately, such computations quickly become intractable in dimension greater than one. This paper presents an algorithm—incremental aggregation—that can compute aggregate properties of the set of precursors exponentially faster than naïve approaches. The incremental aggregation algorithm is demonstrated on two problems from the two-dimensional binary Game of Life cellular automaton: precursor count distributions and higher-order mean field theory coefficients. In both cases, incremental aggregation allows us to obtain new results that were previously beyond reach.

  12. Wolfram's class IV automata and a good life

    NASA Astrophysics Data System (ADS)

    McIntosh, Harold V.

    1990-09-01

    A comprehensive discussion of Wolfram's four classes of cellular automata is given, with the intention of relating them to Conway's criteria for a good game of Life. Although it is known that such classifications cannot be entirely rigorous, much information about the behavior of an automaton can be gleaned from the statistical properties of its transition table. Still more information can be deduced from the mean field approximation to its state densities, in particular, from the distribution of horizontal and diagonal tangents of the latter. In turn these characteristics can be related to the presence or absence of certain loops in the de Bruijn diagram of the automaton.

  13. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  14. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  15. Petri Net controller synthesis based on decomposed manufacturing models.

    PubMed

    Dideban, Abbas; Zeraatkar, Hashem

    2018-06-01

    Utilizing of supervisory control theory on the real systems in many modeling tools such as Petri Net (PN) becomes challenging in recent years due to the significant states in the automata models or uncontrollable events. The uncontrollable events initiate the forbidden states which might be removed by employing some linear constraints. Although there are many methods which have been proposed to reduce these constraints, enforcing them to a large-scale system is very difficult and complicated. This paper proposes a new method for controller synthesis based on PN modeling. In this approach, the original PN model is broken down into some smaller models in which the computational cost reduces significantly. Using this method, it is easy to reduce and enforce the constraints to a Petri net model. The appropriate results of our proposed method on the PN models denote worthy controller synthesis for the large scale systems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Linear discriminant analysis with misallocation in training samples

    NASA Technical Reports Server (NTRS)

    Chhikara, R. (Principal Investigator); Mckeon, J.

    1982-01-01

    Linear discriminant analysis for a two-class case is studied in the presence of misallocation in training samples. A general appraoch to modeling of mislocation is formulated, and the mean vectors and covariance matrices of the mixture distributions are derived. The asymptotic distribution of the discriminant boundary is obtained and the asymptotic first two moments of the two types of error rate given. Certain numerical results for the error rates are presented by considering the random and two non-random misallocation models. It is shown that when the allocation procedure for training samples is objectively formulated, the effect of misallocation on the error rates of the Bayes linear discriminant rule can almost be eliminated. If, however, this is not possible, the use of Fisher rule may be preferred over the Bayes rule.

  17. Diffusive Public Goods and Coexistence of Cooperators and Cheaters on a 1D Lattice

    PubMed Central

    Scheuring, István

    2014-01-01

    Many populations of cells cooperate through the production of extracellular materials. These materials (enzymes, siderophores) spread by diffusion and can be applied by both the cooperator and cheater (non-producer) cells. In this paper the problem of coexistence of cooperator and cheater cells is studied on a 1D lattice where cooperator cells produce a diffusive material which is beneficial to the individuals according to the local concentration of this public good. The reproduction success of a cell increases linearly with the benefit in the first model version and increases non-linearly (saturates) in the second version. Two types of update rules are considered; either the cooperative cell stops producing material before death (death-production-birth, DpB) or it produces the common material before it is selected to die (production-death-birth, pDB). The empty space is occupied by its neighbors according to their replication rates. By using analytical and numerical methods I have shown that coexistence of the cooperator and cheater cells is possible although atypical in the linear version of this 1D model if either DpB or pDB update rule is assumed. While coexistence is impossible in the non-linear model with pDB update rule, it is one of the typical behaviors in case of the non-linear model with DpB update rule. PMID:25025985

  18. Intelligent Distributed Systems

    DTIC Science & Technology

    2015-10-23

    periodic gossiping algorithms by using convex combination rules rather than standard averaging rules. On a ring graph, we have discovered how to sequence...the gossips within a period to achieve the best possible convergence rate and we have related this optimal value to the classic edge coloring problem...consensus. There are three different approaches to distributed averaging: linear iterations, gossiping , and dou- ble linear iterations which are also known as

  19. Non-Condon nonequilibrium Fermi’s golden rule rates from the linearized semiclassical method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiang; Geva, Eitan

    2016-08-14

    The nonequilibrium Fermi’s golden rule describes the transition between a photoexcited bright donor electronic state and a dark acceptor electronic state, when the nuclear degrees of freedom start out in a nonequilibrium state. In a previous paper [X. Sun and E. Geva, J. Chem. Theory Comput. 12, 2926 (2016)], we proposed a new expression for the nonequilibrium Fermi’s golden rule within the framework of the linearized semiclassical approximation and based on the Condon approximation, according to which the electronic coupling between donor and acceptor is assumed constant. In this paper we propose a more general expression, which is applicable tomore » the case of non-Condon electronic coupling. We test the accuracy of the new non-Condon nonequilibrium Fermi’s golden rule linearized semiclassical expression on a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering the following: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary-mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions, in both normal and inverted regions, and over a wide range of initial nonequilibrium states, temperatures, and frictions.« less

  20. Amplitudes for multiphoton quantum processes in linear optics

    NASA Astrophysics Data System (ADS)

    Urías, Jesús

    2011-07-01

    The prominent role that linear optical networks have acquired in the engineering of photon states calls for physically intuitive and automatic methods to compute the probability amplitudes for the multiphoton quantum processes occurring in linear optics. A version of Wick's theorem for the expectation value, on any vector state, of products of linear operators, in general, is proved. We use it to extract the combinatorics of any multiphoton quantum processes in linear optics. The result is presented as a concise rule to write down directly explicit formulae for the probability amplitude of any multiphoton process in linear optics. The rule achieves a considerable simplification and provides an intuitive physical insight about quantum multiphoton processes. The methodology is applied to the generation of high-photon-number entangled states by interferometrically mixing coherent light with spontaneously down-converted light.

  1. Mosquito population dynamics from cellular automata-based simulation

    NASA Astrophysics Data System (ADS)

    Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning

    2016-02-01

    In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.

  2. Stochastic modeling for dynamics of HIV-1 infection using cellular automata: A review.

    PubMed

    Precharattana, Monamorn

    2016-02-01

    Recently, the description of immune response by discrete models has emerged to play an important role to study the problems in the area of human immunodeficiency virus type 1 (HIV-1) infection, leading to AIDS. As infection of target immune cells by HIV-1 mainly takes place in the lymphoid tissue, cellular automata (CA) models thus represent a significant step in understanding when the infected population is dispersed. Motivated by these, the studies of the dynamics of HIV-1 infection using CA in memory have been presented to recognize how CA have been developed for HIV-1 dynamics, which issues have been studied already and which issues still are objectives in future studies.

  3. Collective dynamics in heterogeneous networks of neuronal cellular automata

    NASA Astrophysics Data System (ADS)

    Manchanda, Kaustubh; Bose, Amitabha; Ramaswamy, Ramakrishna

    2017-12-01

    We examine the collective dynamics of heterogeneous random networks of model neuronal cellular automata. Each automaton has b active states, a single silent state and r - b - 1 refractory states, and can show 'spiking' or 'bursting' behavior, depending on the values of b. We show that phase transitions that occur in the dynamical activity can be related to phase transitions in the structure of Erdõs-Rényi graphs as a function of edge probability. Different forms of heterogeneity allow distinct structural phase transitions to become relevant. We also show that the dynamics on the network can be described by a semi-annealed process and, as a result, can be related to the Boolean Lyapunov exponent.

  4. The two populations’ cellular automata model with predation based on the Penna model

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Lin, Jing; Jiang, Heng; Liu, Xin

    2002-09-01

    In Penna's single-species asexual bit-string model of biological ageing, the Verhulst factor has too strong a restraining effect on the development of the population. Danuta Makowiec gave an improved model based on the lattice, where the restraining factor of the four neighbours take the place of the Verhulst factor. Here, we discuss the two populations’ Penna model with predation on the planar lattice of two dimensions. A cellular automata model containing movable wolves and sheep has been built. The results show that both the quantity of the wolves and the sheep fluctuate in accordance with the law that one quantity increases while the other one decreases.

  5. A cellular automata model of SARS epidemic spreading

    NASA Astrophysics Data System (ADS)

    Xu, Tian; Zhang, Peipei; Su, Beibei; Jiang, Yumai; He, Da-Ren

    2004-03-01

    We suggest a cellular automata model for a simulation on the process of SARS spreading in Beijing. Suppose a number of people are located in a two-dimensional lattice, in which a certain portion belongs to immune and others belong to acceptive. In every time step each of the acceptive people may become ill with a certain probability if one of his 8 neighbors is a SARS patient. At same time all the people have another possibility to change their positions. Each patient will recover or die after different number of days. A recovered patient becomes immune. The numerical simulation by this model leads to the results, which are in a good agreement with the practical statistical data.

  6. Coupling of Markov chains and cellular automata spatial models to predict land cover changes (case study: upper Ci Leungsi catchment area)

    NASA Astrophysics Data System (ADS)

    Marko, K.; Zulkarnain, F.; Kusratmoko, E.

    2016-11-01

    Land cover changes particular in urban catchment area has been rapidly occur. Land cover changes occur as a result of increasing demand for built-up area. Various kinds of environmental and hydrological problems e.g. floods and urban heat island can happen if the changes are uncontrolled. This study aims to predict land cover changes using coupling of Markov chains and cellular automata. One of the most rapid land cover changes is occurs at upper Ci Leungsi catchment area that located near Bekasi City and Jakarta Metropolitan Area. Markov chains has a good ability to predict the probability of change statistically while cellular automata believed as a powerful method in reading the spatial patterns of change. Temporal land cover data was obtained by remote sensing satellite imageries. In addition, this study also used multi-criteria analysis to determine which driving factor that could stimulate the changes such as proximity, elevation, and slope. Coupling of these two methods could give better prediction model rather than just using it separately. The prediction model was validated using existing 2015 land cover data and shown a satisfactory kappa coefficient. The most significant increasing land cover is built-up area from 24% to 53%.

  7. Primitive robotic procedures: automotions for medical liquids in 12th century Asia minor.

    PubMed

    Penbegul, Necmettin; Atar, Murat; Kendirci, Muammer; Bozkurt, Yasar; Hatipoglu, Namık Kemal; Verit, Ayhan; Kadıoglu, Ates

    2014-12-30

    In recent years, day by day, robotic surgery applications have increase their role in our medical life. In this article, we reported the discovery of the first primitive robotic applications as automatic machines for the sensitive calculation of liquids such as blood in the literature. Al-Jazari who wrote the book "Elcâmi 'Beyne'l - 'ilm ve'l - 'amel en-nâfi 'fi es-sınaâ 'ti'l - hiyel", lived in Anatolian territory between 1136 and 1206. In this book that was written in the twelfth century, Al-Jazari described nearly fifty graphics of robotic machines and six of them that were designed for medical purposes. We found that some of the robots mentioned in this book are related to medical applications. This book reviews approximately 50 devices, including water clocks, candle clocks, ewers, various automata used for amusement in drink assemblies, automata used for ablution, blood collection tanks, fountains, music devices, devices for water lifting, locks, a protractor, a boat-shaped water clock, and the gate of Diyarbakir City in south-east of Turkey, actually in northern Mesopotamia. We found that automata used for ablution and blood collection tanks were related with medical applications; therefore, we will describe these robots.

  8. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks.

    PubMed

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-22

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  9. Dynamic and quantitative method of analyzing service consistency evolution based on extended hierarchical finite state automata.

    PubMed

    Fan, Linjun; Tang, Jun; Ling, Yunxiang; Li, Benxian

    2014-01-01

    This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA). Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service's evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA) is constructed based on finite state automata (FSA), which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs) based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average) is the biggest influential factor, the noncomposition of atomic services (13.12%) is the second biggest one, and the service version's confusion (1.2%) is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA.

  10. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    PubMed Central

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-01-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability. PMID:27874024

  11. On complexity and homogeneity measures in predicting biological aggressiveness of prostate cancer; Implication of the cellular automata model of tumor growth.

    PubMed

    Tanase, Mihai; Waliszewski, Przemyslaw

    2015-12-01

    We propose a novel approach for the quantitative evaluation of aggressiveness in prostate carcinomas. The spatial distribution of cancer cell nuclei was characterized by the global spatial fractal dimensions D0, D1, and D2. Two hundred eighteen prostate carcinomas were stratified into the classes of equivalence using results of ROC analysis. A simulation of the cellular automata mix defined a theoretical frame for a specific geometric representation of the cell nuclei distribution called a local structure correlation diagram (LSCD). The LSCD and dispersion Hd were computed for each carcinoma. Data mining generated some quantitative criteria describing tumor aggressiveness. Alterations in tumor architecture along progression were associated with some changes in both shape and the quantitative characteristics of the LSCD consistent with those in the automata mix model. Low-grade prostate carcinomas with low complexity and very low biological aggressiveness are defined by the condition D0 < 1.545 and Hd < 38. High-grade carcinomas with high complexity and very high biological aggressiveness are defined by the condition D0 > 1.764 and Hd < 38. The novel homogeneity measure Hd identifies carcinomas with very low aggressiveness within the class of complexity C1 or carcinomas with very high aggressiveness in the class C7. © 2015 Wiley Periodicals, Inc.

  12. Distribution functions of probabilistic automata

    NASA Technical Reports Server (NTRS)

    Vatan, F.

    2001-01-01

    Each probabilistic automaton M over an alphabet A defines a probability measure Prob sub(M) on the set of all finite and infinite words over A. We can identify a k letter alphabet A with the set {0, 1,..., k-1}, and, hence, we can consider every finite or infinite word w over A as a radix k expansion of a real number X(w) in the interval [0, 1]. This makes X(w) a random variable and the distribution function of M is defined as usual: F(x) := Prob sub(M) { w: X(w) < x }. Utilizing the fixed-point semantics (denotational semantics), extended to probabilistic computations, we investigate the distribution functions of probabilistic automata in detail. Automata with continuous distribution functions are characterized. By a new, and much more easier method, it is shown that the distribution function F(x) is an analytic function if it is a polynomial. Finally, answering a question posed by D. Knuth and A. Yao, we show that a polynomial distribution function F(x) on [0, 1] can be generated by a prob abilistic automaton iff all the roots of F'(x) = 0 in this interval, if any, are rational numbers. For this, we define two dynamical systems on the set of polynomial distributions and study attracting fixed points of random composition of these two systems.

  13. Subgrouping Automata: automatic sequence subgrouping using phylogenetic tree-based optimum subgrouping algorithm.

    PubMed

    Seo, Joo-Hyun; Park, Jihyang; Kim, Eun-Mi; Kim, Juhan; Joo, Keehyoung; Lee, Jooyoung; Kim, Byung-Gee

    2014-02-01

    Sequence subgrouping for a given sequence set can enable various informative tasks such as the functional discrimination of sequence subsets and the functional inference of unknown sequences. Because an identity threshold for sequence subgrouping may vary according to the given sequence set, it is highly desirable to construct a robust subgrouping algorithm which automatically identifies an optimal identity threshold and generates subgroups for a given sequence set. To meet this end, an automatic sequence subgrouping method, named 'Subgrouping Automata' was constructed. Firstly, tree analysis module analyzes the structure of tree and calculates the all possible subgroups in each node. Sequence similarity analysis module calculates average sequence similarity for all subgroups in each node. Representative sequence generation module finds a representative sequence using profile analysis and self-scoring for each subgroup. For all nodes, average sequence similarities are calculated and 'Subgrouping Automata' searches a node showing statistically maximum sequence similarity increase using Student's t-value. A node showing the maximum t-value, which gives the most significant differences in average sequence similarity between two adjacent nodes, is determined as an optimum subgrouping node in the phylogenetic tree. Further analysis showed that the optimum subgrouping node from SA prevents under-subgrouping and over-subgrouping. Copyright © 2013. Published by Elsevier Ltd.

  14. A Programmable Cellular-Automata Polarized Dirac Vacuum

    NASA Astrophysics Data System (ADS)

    Osoroma, Drahcir S.

    2013-09-01

    We explore properties of a `Least Cosmological Unit' (LCU) as an inherent spacetime raster tiling or tessellating the unique backcloth of Holographic Anthropic Multiverse (HAM) cosmology as an array of programmable cellular automata. The HAM vacuum is a scale-invariant HD extension of a covariant polarized Dirac vacuum with `bumps' and `holes' typically described by extended electromagnetic theory corresponding to an Einstein energy-dependent spacetime metric admitting a periodic photon mass. The new cosmology incorporates a unique form of M-Theoretic Calabi-Yau-Poincaré Dodecadedral-AdS5-DS5space (PDS) with mirror symmetry best described by an HD extension of Cramer's Transactional Interpretation when integrated also with an HD extension of the de Broglie-Bohm-Vigier causal interpretation of quantum theory. We incorporate a unique form of large-scale additional dimensionality (LSXD) bearing some similarity to that conceived by Randall and Sundrum; and extend the fundamental basis of our model to the Unified Field, UF. A Sagnac Effect rf-pulsed incursive resonance hierarchy is utilized to manipulate and ballistically program the geometric-topological properties of this putative LSXD space-spacetime network. The model is empirically testable; and it is proposed that a variety of new technologies will arise from ballistic programming of tessellated LCU vacuum cellular automata.

  15. Dynamic and Quantitative Method of Analyzing Service Consistency Evolution Based on Extended Hierarchical Finite State Automata

    PubMed Central

    Fan, Linjun; Tang, Jun; Ling, Yunxiang; Li, Benxian

    2014-01-01

    This paper is concerned with the dynamic evolution analysis and quantitative measurement of primary factors that cause service inconsistency in service-oriented distributed simulation applications (SODSA). Traditional methods are mostly qualitative and empirical, and they do not consider the dynamic disturbances among factors in service's evolution behaviors such as producing, publishing, calling, and maintenance. Moreover, SODSA are rapidly evolving in terms of large-scale, reusable, compositional, pervasive, and flexible features, which presents difficulties in the usage of traditional analysis methods. To resolve these problems, a novel dynamic evolution model extended hierarchical service-finite state automata (EHS-FSA) is constructed based on finite state automata (FSA), which formally depict overall changing processes of service consistency states. And also the service consistency evolution algorithms (SCEAs) based on EHS-FSA are developed to quantitatively assess these impact factors. Experimental results show that the bad reusability (17.93% on average) is the biggest influential factor, the noncomposition of atomic services (13.12%) is the second biggest one, and the service version's confusion (1.2%) is the smallest one. Compared with previous qualitative analysis, SCEAs present good effectiveness and feasibility. This research can guide the engineers of service consistency technologies toward obtaining a higher level of consistency in SODSA. PMID:24772033

  16. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    NASA Astrophysics Data System (ADS)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  17. Understanding lizard's microhabitat use based on a mechanistic model of behavioral thermoregulation

    NASA Astrophysics Data System (ADS)

    Fei, Teng; Venus, Valentijn; Toxopeus, Bert; Skidmore, Andrew K.; Schlerf, Martin; Liu, Yaolin; van Overdijk, Sjef; Bian, Meng

    2008-12-01

    Lizards are an "excellent group of organisms" to examine the habitat and microhabitat use mainly because their ecology and physiology is well studied. Due to their behavioral body temperature regulation, the thermal environment is especially linked with their habitat use. In this study, for mapping and understanding lizard's distribution at microhabitat scale, an individual of Timon Lepidus was kept and monitored in a terrarium (245×120×115cm) in which sand, rocks, burrows, hatching chambers, UV-lamps, fog generators and heating devices were placed to simulate its natural habitat. Optical cameras, thermal cameras and other data loggers were fixed and recording the lizard's body temperature, ground surface temperature, air temperature, radiation and other important environmental parameters. By analysis the data collected, we propose a Cellular Automata (CA) model by which the movement of lizards is simulated and translated into their distribution. This paper explores the capabilities of applying GIS techniques to thermoregulatory activity studies in a microhabitat-scale. We conclude that microhabitat use of lizards can be explained in some degree by the rule based CA model.

  18. A living mesoscopic cellular automaton made of skin scales.

    PubMed

    Manukyan, Liana; Montandon, Sophie A; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C

    2017-04-12

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  19. Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chuvakova, M. A.; Dolbilov, M. A.; Zelenovskiy, P. S.; Lobov, A. I.

    2017-03-01

    We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z- one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones.

  20. Why do lab-scale experiments ever resemble geological scale patterning?

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Behrooz; Jones, Brandon C.; Stein, Jeremy L.; Shinbrot, Troy

    2017-11-01

    The Earth and other planets are abundant with curious and poorly understood surface patterns. Examples include sand dunes, periodic and aperiodic ridges and valleys, and networks of river and submarine channels. We make the minimalist proposition that the dominant mechanism governing these varied patterns is mass conservation: notwithstanding detailed particulars, the universal rule is mass conservation and there are only a finite number of surface patterns that can result from this process. To test this minimalist proposition, we perform experiments in a vertically vibrated bed of fine grains, and we show that every one of a wide variety of patterns seen in the laboratory is also seen in recorded geomorphologies. We explore a range of experimental driving frequencies and amplitudes, and we complement these experimental results with a non-local cellular automata model that reproduces the surface patterns seen using a minimalist approach that allows a free surface to deform subject to mass conservation and simple known forces such as gravity. These results suggest a common cause for the effectiveness of lab-scale models for geological scale patterning that otherwise ought to have no reasonable correspondence.

  1. A living mesoscopic cellular automaton made of skin scales

    NASA Astrophysics Data System (ADS)

    Manukyan, Liana; Montandon, Sophie A.; Fofonjka, Anamarija; Smirnov, Stanislav; Milinkovitch, Michel C.

    2017-04-01

    In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction-diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction-diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution.

  2. Measuring the Complexity of Seismicity Pattern Evolution

    NASA Astrophysics Data System (ADS)

    Goltz, C.

    2004-12-01

    ``Complexity'' has become an ubiquitous term in science. However, there is, much as with ``fractality'', no clear definition of what complexity actually means. Yet, it is important to distinguish between what is merely complicated and what is complex in the sense that simple rules can give rise to very rich behaviour. Seismicity is certainly a complicated phenomenon (difficult to understand) but simple models such as cellular automata indicate that earthquakes are truly complex. From the observational point of view, there exists the problem of quantification of complexity in real world seismicity patterns (in the absence of even a rigid definition of complexity). Such a measurement is desirable, however, not only for fundamental understanding but also for monitoring and possibly for prediction purposes. Maybe the most workable definitions of complexity exist in informatics, summarised under the topic of algorithmic complexity. Here, after introducing the concepts, I apply such measures of complexity to temporally evolving seismicity patterns from different geographic regions. Finally, I discuss the usefulness of the approach and discuss results in view of the occurrence of large earthquakes.

  3. Towards implementation of cellular automata in Microbial Fuel Cells.

    PubMed

    Tsompanas, Michail-Antisthenis I; Adamatzky, Andrew; Sirakoulis, Georgios Ch; Greenman, John; Ieropoulos, Ioannis

    2017-01-01

    The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway's Game of Life as the 'benchmark' CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions-compared to silicon circuitry-between the different states during computation.

  4. Towards implementation of cellular automata in Microbial Fuel Cells

    PubMed Central

    Adamatzky, Andrew; Sirakoulis, Georgios Ch.; Greenman, John; Ieropoulos, Ioannis

    2017-01-01

    The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway’s Game of Life as the ‘benchmark’ CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions—compared to silicon circuitry—between the different states during computation. PMID:28498871

  5. A Pathophysiological Model-Driven Communication for Dynamic Distributed Medical Best Practice Guidance Systems.

    PubMed

    Hosseini, Mohammad; Jiang, Yu; Wu, Poliang; Berlin, Richard B; Ren, Shangping; Sha, Lui

    2016-11-01

    There is a great divide between rural and urban areas, particularly in medical emergency care. Although medical best practice guidelines exist and are in hospital handbooks, they are often lengthy and difficult to apply clinically. The challenges are exaggerated for doctors in rural areas and emergency medical technicians (EMT) during patient transport. In this paper, we propose the concept of distributed executable medical best practice guidance systems to assist adherence to best practice from the time that a patient first presents at a rural hospital, through diagnosis and ambulance transfer to arrival and treatment at a regional tertiary hospital center. We codify complex medical knowledge in the form of simplified distributed executable disease automata, from the thin automata at rural hospitals to the rich automata in the regional center hospitals. However, a main challenge is how to efficiently and safely synchronize distributed best practice models as the communication among medical facilities, devices, and professionals generates a large number of messages. This complex problem of patient diagnosis and transport from rural to center facility is also fraught with many uncertainties and changes resulting in a high degree of dynamism. A critically ill patient's medical conditions can change abruptly in addition to changes in the wireless bandwidth during the ambulance transfer. Such dynamics have yet to be addressed in existing literature on telemedicine. To address this situation, we propose a pathophysiological model-driven message exchange communication architecture that ensures the real-time and dynamic requirements of synchronization among distributed emergency best practice models are met in a reliable and safe manner. Taking the signs, symptoms, and progress of stroke patients transported across a geographically distributed healthcare network as the motivating use case, we implement our communication system and apply it to our developed best practice automata using laboratory simulations. Our proof-of-concept experiments shows there is potential for the use of our system in a wide variety of domains.

  6. A Bayesian model averaging method for the derivation of reservoir operating rules

    NASA Astrophysics Data System (ADS)

    Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai

    2015-09-01

    Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.

  7. Electoral surveys’ influence on the voting processes: a cellular automata model

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Oliveira Neto, N. M.; Martins, M. L.

    2002-12-01

    Nowadays, in societies threatened by atomization, selfishness, short-term thinking, and alienation from political life, there is a renewed debate about classical questions concerning the quality of democratic decision making. In this work a cellular automata model for the dynamics of free elections, based on the social impact theory is proposed. By using computer simulations, power-law distributions for the size of electoral clusters and decision time have been obtained. The major role of broadcasted electoral surveys in guiding opinion formation and stabilizing the “status quo” was demonstrated. Furthermore, it was shown that in societies where these surveys are manipulated within the universally accepted statistical error bars, even a majoritary opposition could be hindered from reaching power through the electoral path.

  8. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    NASA Astrophysics Data System (ADS)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  9. Application of stochastic automata networks for creation of continuous time Markov chain models of voltage gating of gap junction channels.

    PubMed

    Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.

  10. Towards Time Automata and Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Hutzler, G.; Klaudel, H.; Wang, D. Y.

    2004-01-01

    The design of reactive systems must comply with logical correctness (the system does what it is supposed to do) and timeliness (the system has to satisfy a set of temporal constraints) criteria. In this paper, we propose a global approach for the design of adaptive reactive systems, i.e., systems that dynamically adapt their architecture depending on the context. We use the timed automata formalism for the design of the agents' behavior. This allows evaluating beforehand the properties of the system (regarding logical correctness and timeliness), thanks to model-checking and simulation techniques. This model is enhanced with tools that we developed for the automatic generation of code, allowing to produce very quickly a running multi-agent prototype satisfying the properties of the model.

  11. History dependent quantum random walks as quantum lattice gas automata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakeel, Asif, E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Love, Peter J., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu; Meyer, David A., E-mail: asif.shakeel@gmail.com, E-mail: dmeyer@math.ucsd.edu, E-mail: plove@haverford.edu

    Quantum Random Walks (QRW) were first defined as one-particle sectors of Quantum Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states or on previous position states. These models have the goal of studying the transition to classicality, or more generally, changes in the performance of quantum walks in algorithmic applications. We show that several history dependent QRW can be identified as one-particle sectors of QLGA. This provides a unifying conceptual framework for these models in which the extra degrees of freedom required to store the historymore » information arise naturally as geometrical degrees of freedom on the lattice.« less

  12. Traffic jam dynamics in stochastic cellular automata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagel, K.; Schreckenberg, M.

    1995-09-01

    Simple models for particles hopping on a grid (cellular automata) are used to simulate (single lane) traffic flow. Despite their simplicity, these models are astonishingly realistic in reproducing start-stop-waves and realistic fundamental diagrams. One can use these models to investigate traffic phenomena near maximum flow. A so-called phase transition at average maximum flow is visible in the life-times of jams. The resulting dynamic picture is consistent with recent fluid-dynamical results by Kuehne/Kerner/Konhaeuser, and with Treiterer`s hysteresis description. This places CA models between car-following models and fluid-dynamical models for traffic flow. CA models are tested in projects in Los Alamos (USA)more » and in NRW (Germany) for large scale microsimulations of network traffic.« less

  13. Landslides, forest fires, and earthquakes: examples of self-organized critical behavior

    NASA Astrophysics Data System (ADS)

    Turcotte, Donald L.; Malamud, Bruce D.

    2004-09-01

    Per Bak conceived self-organized criticality as an explanation for the behavior of the sandpile model. Subsequently, many cellular automata models were found to exhibit similar behavior. Two examples are the forest-fire and slider-block models. Each of these models can be associated with a serious natural hazard: the sandpile model with landslides, the forest-fire model with actual forest fires, and the slider-block model with earthquakes. We examine the noncumulative frequency-area statistics for each natural hazard, and show that each has a robust power-law (fractal) distribution. We propose an inverse-cascade model as a general explanation for the power-law frequency-area statistics of the three cellular-automata models and their ‘associated’ natural hazards.

  14. Evaluating a Novel Cellular Automata-Based Distributed Power Management Approach for Mobile Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Adabi, Sepideh; Adabi, Sahar; Rezaee, Ali

    According to the traditional definition of Wireless Sensor Networks (WSNs), static sensors have limited the feasibility of WSNs in some kind of approaches, so the mobility was introduced in WSN. Mobile nodes in a WSN come equipped with battery and from the point of deployment, this battery reserve becomes a valuable resource since it cannot be replenished. Hence, maximizing the network lifetime by minimizing the energy is an important challenge in Mobile WSN. Energy conservation can be accomplished by different approaches. In this paper, we presented an energy conservation solution based on Cellular Automata. The main objective of this solution is based on dynamically adjusting the transmission range and switching between operational states of the sensor nodes.

  15. Linear solvation energy relationships: "rule of thumb" for estimation of variable values

    USGS Publications Warehouse

    Hickey, James P.; Passino-Reader, Dora R.

    1991-01-01

    For the linear solvation energy relationship (LSER), values are listed for each of the variables (Vi/100, π*, &betam, αm) for fundamental organic structures and functional groups. We give the guidelines to estimate LSER variable values quickly for a vast array of possible organic compounds such as those found in the environment. The difficulty in generating these variables has greatly discouraged the application of this quantitative structure-activity relationship (QSAR) method. This paper present the first compilation of molecular functional group values together with a utilitarian set of the LSER variable estimation rules. The availability of these variable values and rules should facilitate widespread application of LSER for hazard evaluation of environmental contaminants.

  16. Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects

    NASA Astrophysics Data System (ADS)

    Iovine, G.; D'Ambrosio, D.; Di Gregorio, S.

    2005-03-01

    In modelling complex a-centric phenomena which evolve through local interactions within a discrete time-space, cellular automata (CA) represent a valid alternative to standard solution methods based on differential equations. Flow-type phenomena (such as lava flows, pyroclastic flows, earth flows, and debris flows) can be viewed as a-centric dynamical systems, and they can therefore be properly investigated in CA terms. SCIDDICA S 4a is the last release of a two-dimensional hexagonal CA model for simulating debris flows characterised by strong inertial effects. S 4a has been obtained by progressively enriching an initial simplified model, originally derived for simulating very simple cases of slow-moving flow-type landslides. Using an empirical strategy, in S 4a, the inertial character of the flowing mass is translated into CA terms by means of local rules. In particular, in the transition function of the model, the distribution of landslide debris among the cells is obtained through a double cycle of computation. In the first phase, the inertial character of the landslide debris is taken into account by considering indicators of momentum. In the second phase, any remaining debris in the central cell is distributed among the adjacent cells, according to the principle of maximum possible equilibrium. The complexities of the model and of the phenomena to be simulated suggested the need for an automated technique of evaluation for the determination of the best set of global parameters. Accordingly, the model is calibrated using a genetic algorithm and by considering the May 1998 Curti-Sarno (Southern Italy) debris flow. The boundaries of the area affected by the debris flow are simulated well with the model. Errors computed by comparing the simulations with the mapped areal extent of the actual landslide are smaller than those previously obtained without genetic algorithms. As the experiments have been realised in a sequential computing environment, they could be improved by adopting a parallel environment, which allows the performance of a great number of tests in reasonable times.

  17. Hybrid lattice gas simulations of flow through porous media

    NASA Astrophysics Data System (ADS)

    Becklehimer, Jeffrey Lynn

    1997-10-01

    This study introduces a suite of models designed to investigate transport phenomena in simulated porous media such as rigid or quenched sediment and clay-like deformable environments. This is achieved by using a variety of techniques that are borrowed from the field of statistical physics. These techniques include percolation, lattice gas, and cellular automata. A percolation-based model is used to study a porous medium by using rods and chains of various shapes and sizes to model the porous media formed by sediments. This is further extended to model clay-like deformable media by interacting heavy sediment particles. An interacting lattice gas computer simulation model based on the Metropolis algorithm is used to study the transport properties of fluid particles and permeability of a porous sediment. Finally, a hybrid lattice gas model is introduced by combining the Metropolis Monte Carlo method with a direct simulation which involves the collision rules as in cellular automata. This model is then used to study shock propagation in a fluid filled porous medium. This study is then extended to study shock propagation through in a fluid filled elastic porous medium. Several interesting and new results were obtained. These results show that for rigid chain percolation the percolation threshold shows a dependence on the chain length of pc~ Lc-1/2 and the jamming coverage decreases with the chain length as Lc- 1/3. For the random SAW-like chains the percolation threshold decays with the chain length as Lc- 0.01 and the jamming coverage as Lc-1/3. The fluid flow model shows that permeability depends nonmonotonically on the concentration of the fluid. For some fluids at a fixed porosity, the permeability increases on increasing the bias until a certain value Bc above which it decreases. Also, it was found that a shock propagates in a drift-like fashion when in a rigid porous medium when the porosity is high; low porosity damps out the shock front very quickly. For a shock propagating in a clay-like porous medium an unusually super-fast power-law behavior is observed for the RMS displacements of the fluid and clay particles.

  18. Probabilistic arithmetic automata and their applications.

    PubMed

    Marschall, Tobias; Herms, Inke; Kaltenbach, Hans-Michael; Rahmann, Sven

    2012-01-01

    We present a comprehensive review on probabilistic arithmetic automata (PAAs), a general model to describe chains of operations whose operands depend on chance, along with two algorithms to numerically compute the distribution of the results of such probabilistic calculations. PAAs provide a unifying framework to approach many problems arising in computational biology and elsewhere. We present five different applications, namely 1) pattern matching statistics on random texts, including the computation of the distribution of occurrence counts, waiting times, and clump sizes under hidden Markov background models; 2) exact analysis of window-based pattern matching algorithms; 3) sensitivity of filtration seeds used to detect candidate sequence alignments; 4) length and mass statistics of peptide fragments resulting from enzymatic cleavage reactions; and 5) read length statistics of 454 and IonTorrent sequencing reads. The diversity of these applications indicates the flexibility and unifying character of the presented framework. While the construction of a PAA depends on the particular application, we single out a frequently applicable construction method: We introduce deterministic arithmetic automata (DAAs) to model deterministic calculations on sequences, and demonstrate how to construct a PAA from a given DAA and a finite-memory random text model. This procedure is used for all five discussed applications and greatly simplifies the construction of PAAs. Implementations are available as part of the MoSDi package. Its application programming interface facilitates the rapid development of new applications based on the PAA framework.

  19. Simple and Flexible Self-Reproducing Structures in Asynchronous Cellular Automata and Their Dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Lee, Jia; Yang, Rui-Long; Zhu, Qing-Sheng

    2013-03-01

    Self-reproduction on asynchronous cellular automata (ACAs) has attracted wide attention due to the evident artifacts induced by synchronous updating. Asynchronous updating, which allows cells to undergo transitions independently at random times, might be more compatible with the natural processes occurring at micro-scale, but the dark side of the coin is the increment in the complexity of an ACA in order to accomplish stable self-reproduction. This paper proposes a novel model of self-timed cellular automata (STCAs), a special type of ACAs, where unsheathed loops are able to duplicate themselves reliably in parallel. The removal of sheath cannot only allow various loops with more flexible and compact structures to replicate themselves, but also reduce the number of cell states of the STCA as compared to the previous model adopting sheathed loops [Y. Takada, T. Isokawa, F. Peper and N. Matsui, Physica D227, 26 (2007)]. The lack of sheath, on the other hand, often tends to cause much more complicated interactions among loops, when all of them struggle independently to stretch out their constructing arms at the same time. In particular, such intense collisions may even cause the emergence of a mess of twisted constructing arms in the cellular space. By using a simple and natural method, our self-reproducing loops (SRLs) are able to retract their arms successively, thereby disentangling from the mess successfully.

  20. Algebraic Semantics for Narrative

    ERIC Educational Resources Information Center

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  1. Modelling and analyzing the watershed dynamics using Cellular Automata (CA)-Markov model - A geo-information based approach

    NASA Astrophysics Data System (ADS)

    Behera, Mukunda D.; Borate, Santosh N.; Panda, Sudhindra N.; Behera, Priti R.; Roy, Partha S.

    2012-08-01

    Improper practices of land use and land cover (LULC) including deforestation, expansion of agriculture and infrastructure development are deteriorating watershed conditions. Here, we have utilized remote sensing and GIS tools to study LULC dynamics using Cellular Automata (CA)-Markov model and predicted the future LULC scenario, in terms of magnitude and direction, based on past trend in a hydrological unit, Choudwar watershed, India. By analyzing the LULC pattern during 1972, 1990, 1999 and 2005 using satellite-derived maps, we observed that the biophysical and socio-economic drivers including residential/industrial development, road-rail and settlement proximity have influenced the spatial pattern of the watershed LULC, leading to an accretive linear growth of agricultural and settlement areas. The annual rate of increase from 1972 to 2004 in agriculture land, settlement was observed to be 181.96, 9.89 ha/year, respectively, while decrease in forest, wetland and marshy land were 91.22, 27.56 and 39.52 ha/year, respectively. Transition probability and transition area matrix derived using inputs of (i) residential/industrial development and (ii) proximity to transportation network as the major causes. The predicted LULC scenario for the year 2014, with reasonably good accuracy would provide useful inputs to the LULC planners for effective management of the watershed. The study is a maiden attempt that revealed agricultural expansion is the main driving force for loss of forest, wetland and marshy land in the Choudwar watershed and has the potential to continue in future. The forest in lower slopes has been converted to agricultural land and may soon take a call on forests occurring on higher slopes. Our study utilizes three time period changes to better account for the trend and the modelling exercise; thereby advocates for better agricultural practices with additional energy subsidy to arrest further forest loss and LULC alternations.

  2. A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets

    DTIC Science & Technology

    2014-11-01

    linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010. [19] E. W. Mayr. Membership in polynomial...383–394, 2009. [31] A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951. [32] A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU

  3. Run charts revisited: a simulation study of run chart rules for detection of non-random variation in health care processes.

    PubMed

    Anhøj, Jacob; Olesen, Anne Vingaard

    2014-01-01

    A run chart is a line graph of a measure plotted over time with the median as a horizontal line. The main purpose of the run chart is to identify process improvement or degradation, which may be detected by statistical tests for non-random patterns in the data sequence. We studied the sensitivity to shifts and linear drifts in simulated processes using the shift, crossings and trend rules for detecting non-random variation in run charts. The shift and crossings rules are effective in detecting shifts and drifts in process centre over time while keeping the false signal rate constant around 5% and independent of the number of data points in the chart. The trend rule is virtually useless for detection of linear drift over time, the purpose it was intended for.

  4. Integrating the ECG power-line interference removal methods with rule-based system.

    PubMed

    Kumaravel, N; Senthil, A; Sridhar, K S; Nithiyanandam, N

    1995-01-01

    The power-line frequency interference in electrocardiographic signals is eliminated to enhance the signal characteristics for diagnosis. The power-line frequency normally varies +/- 1.5 Hz from its standard value of 50 Hz. In the present work, the performances of the linear FIR filter, Wave digital filter (WDF) and adaptive filter for the power-line frequency variations from 48.5 to 51.5 Hz in steps of 0.5 Hz are studied. The advantage of the LMS adaptive filter in the removal of power-line frequency interference even if the frequency of interference varies by +/- 1.5 Hz from its normal value of 50 Hz over other fixed frequency filters is very well justified. A novel method of integrating rule-based system approach with linear FIR filter and also with Wave digital filter are proposed. The performances of Rule-based FIR filter and Rule-based Wave digital filter are compared with the LMS adaptive filter.

  5. Game-theoretic cooperativity in networks of self-interested units

    NASA Astrophysics Data System (ADS)

    Barto, Andrew G.

    1986-08-01

    The behavior of theoretical neural networks is often described in terms of competition and cooperation. I present an approach to network learning that is related to game and team problems in which competition and cooperation have more technical meanings. I briefly describe the application of stochastic learning automata to game and team problems and then present an adaptive element that is a synthesis of aspects of stochastic learning automata and typical neuron-like adaptive elements. These elements act as self-interested agents that work toward improving their performance with respect to their individual preference orderings. Networks of these elements can solve a variety of team decision problems, some of which take the form of layered networks in which the ``hidden units'' become appropriate functional components as they attempt to improve their own payoffs.

  6. Approximate probabilistic cellular automata for the dynamics of single-species populations under discrete logisticlike growth with and without weak Allee effects.

    PubMed

    Mendonça, J Ricardo G; Gevorgyan, Yeva

    2017-05-01

    We investigate one-dimensional elementary probabilistic cellular automata (PCA) whose dynamics in first-order mean-field approximation yields discrete logisticlike growth models for a single-species unstructured population with nonoverlapping generations. Beginning with a general six-parameter model, we find constraints on the transition probabilities of the PCA that guarantee that the ensuing approximations make sense in terms of population dynamics and classify the valid combinations thereof. Several possible models display a negative cubic term that can be interpreted as a weak Allee factor. We also investigate the conditions under which a one-parameter PCA derived from the more general six-parameter model can generate valid population growth dynamics. Numerical simulations illustrate the behavior of some of the PCA found.

  7. Application of Stochastic Automata Networks for Creation of Continuous Time Markov Chain Models of Voltage Gating of Gap Junction Channels

    PubMed Central

    Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Bukauskas, Feliksas F.

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times. PMID:25705700

  8. Dynamic Simulation of 1D Cellular Automata in the Active aTAM.

    PubMed

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2015-07-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location.

  9. Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kuc, Dariusz; Gawąd, Jerzy

    2011-01-01

    The paper is focused on application of multi-scale 2D method. Model approach consists of Cellular Automata (CA) model of microstructure development and the finite element code to solve thermo-mechanical problem. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the model were validated with the experimental data. In the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final microstructures was carried out, using light microscopy and transmission electron microscopy.

  10. Dynamics of HIV infection on 2D cellular automata

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; HafidAllah, N. El; ElKenz, A.; Ez-Zahraouy, H.; Loulidi, M.

    2003-05-01

    We use a cellular automata approach to describe the interactions of the immune system with the human immunodeficiency virus (HIV). We study the evolution of HIV infection, particularly in the clinical latency period. The results we have obtained show the existence of four different behaviours in the plane of death rate of virus-death rate of infected T cell. These regions meet at a critical point, where the virus density and the infected T cell density remain invariant during the evolution of disease. We have introduced two kinds of treatments, the protease inhibitors and the RT inhibitors, in order to study their effects on the evolution of HIV infection. These treatments are powerful in decreasing the density of the virus in the blood and the delay of the AIDS onset.

  11. Dynamic Simulation of 1D Cellular Automata in the Active aTAM

    PubMed Central

    Jonoska, Nataša; Karpenko, Daria; Seki, Shinnosuke

    2016-01-01

    The Active aTAM is a tile based model for self-assembly where tiles are able to transfer signals and change identities according to the signals received. We extend Active aTAM to include deactivation signals and thereby allow detachment of tiles. We show that the model allows a dynamic simulation of cellular automata with assemblies that do not record the entire computational history but only the current updates of the states, and thus provide a way for (a) algorithmic dynamical structural changes in the assembly and (b) reusable space in self-assembly. The simulation is such that at a given location the sequence of tiles that attach and detach corresponds precisely to the sequence of states the synchronous cellular automaton generates at that location. PMID:27789918

  12. Congestion and communication in confined ant traffic

    NASA Astrophysics Data System (ADS)

    Gravish, Nick; Gold, Gregory; Zangwill, Andrew; Goodisman, Michael A. D.; Goldman, Daniel I.

    2014-03-01

    Many social animals move and communicate within confined spaces. In subterranean fire ants Solenopsis invicta, mobility within crowded nest tunnels is important for resource and information transport. Within confined tunnels, communication and traffic flow are at odds: trafficking ants communicate through tactile interactions while stopped, yet ants that stop to communicate impose physical obstacles on the traffic. We monitor the bi-directional flow of fire ant workers in laboratory tunnels of varied diameter D. The persistence time of communicating ant aggregations, τ, increases approximately linearly with the number of participating ants, n. The sensitivity of traffic flow increases as D decreases and diverges at a minimum diameter, Dc. A cellular automata model incorporating minimal traffic features--excluded volume and communication duration--reproduces features of the experiment. From the model we identify a competition between information transfer and the need to maintain jam-free traffic flow. We show that by balancing information transfer and traffic flow demands, an optimum group strategy exists which maximizes information throughput. We acknowledge funding from NSF PoLS #0957659 and #PHY-1205878.

  13. A smart sensor architecture based on emergent computation in an array of outer-totalistic cells

    NASA Astrophysics Data System (ADS)

    Dogaru, Radu; Dogaru, Ioana; Glesner, Manfred

    2005-06-01

    A novel smart-sensor architecture is proposed, capable to segment and recognize characters in a monochrome image. It is capable to provide a list of ASCII codes representing the recognized characters from the monochrome visual field. It can operate as a blind's aid or for industrial applications. A bio-inspired cellular model with simple linear neurons was found the best to perform the nontrivial task of cropping isolated compact objects such as handwritten digits or characters. By attaching a simple outer-totalistic cell to each pixel sensor, emergent computation in the resulting cellular automata lattice provides a straightforward and compact solution to the otherwise computationally intensive problem of character segmentation. A simple and robust recognition algorithm is built in a compact sequential controller accessing the array of cells so that the integrated device can provide directly a list of codes of the recognized characters. Preliminary simulation tests indicate good performance and robustness to various distortions of the visual field.

  14. Computational complexity of symbolic dynamics at the onset of chaos

    NASA Astrophysics Data System (ADS)

    Lakdawala, Porus

    1996-05-01

    In a variety of studies of dynamical systems, the edge of order and chaos has been singled out as a region of complexity. It was suggested by Wolfram, on the basis of qualitative behavior of cellular automata, that the computational basis for modeling this region is the universal Turing machine. In this paper, following a suggestion of Crutchfield, we try to show that the Turing machine model may often be too powerful as a computational model to describe the boundary of order and chaos. In particular we study the region of the first accumulation of period doubling in unimodal and bimodal maps of the interval, from the point of view of language theory. We show that in relation to the ``extended'' Chomsky hierarchy, the relevant computational model in the unimodal case is the nested stack automaton or the related indexed languages, while the bimodal case is modeled by the linear bounded automaton or the related context-sensitive languages.

  15. A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor

    NASA Astrophysics Data System (ADS)

    Ji, Xiangfeng; Zhou, Xuemei; Ran, Bin

    2013-04-01

    Pedestrian speed in a transfer station corridor is faster than usual and sometimes running can be found among some of them. In this paper, pedestrians are divided into two categories. The first one is aggressive, and the other is conservative. Aggressive pedestrians weaving their way through crowd in the corridor are the study object of this paper. During recent decades, much attention has been paid to the pedestrians' behavior, such as overtaking (also deceleration) and collision avoidance, and that continues in this paper. After sufficiently analyzing the characteristics of pedestrian flow in transfer station corridor, a cell-based model is presented in this paper, including the acceleration (also deceleration) and overtaking analysis. Acceleration (also deceleration) in a corridor is fixed according to Newton's Law and then speed calculated with a kinematic formula is discretized into cells based on the fuzzy logic. After the speed is updated, overtaking is analyzed based on updated speed and force explicitly, compared to rule-based models, which herein we call implicit ones. During the analysis of overtaking, a threshold value to determine the overtaking direction is introduced. Actually, model in this paper is a two-step one. The first step is to update speed, which is the cells the pedestrian can move in one time interval and the other is to analyze the overtaking. Finally, a comparison between the rule-based cellular automata, the model in this paper and data in HCM 2000 is made to demonstrate our model can be used to achieve reasonable simulation of acceleration (also deceleration) and overtaking among pedestrians.

  16. Magnetohydrodynamic cellular automata

    NASA Technical Reports Server (NTRS)

    Montgomery, David; Doolen, Gary D.

    1987-01-01

    A generalization of the hexagonal lattice gas model of Frisch, Hasslacher and Pomeau is shown to lead to two-dimensional magnetohydrodynamics. The method relies on the ideal point-wise conservation law for vector potential.

  17. Mathematical programming models for the economic design and assessment of wind energy conversion systems

    NASA Astrophysics Data System (ADS)

    Reinert, K. A.

    The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.

  18. Assessing Performance of Multipurpose Reservoir System Using Two-Point Linear Hedging Rule

    NASA Astrophysics Data System (ADS)

    Sasireka, K.; Neelakantan, T. R.

    2017-07-01

    Reservoir operation is the one of the important filed of water resource management. Innovative techniques in water resource management are focussed at optimizing the available water and in decreasing the environmental impact of water utilization on the natural environment. In the operation of multi reservoir system, efficient regulation of the release to satisfy the demand for various purpose like domestic, irrigation and hydropower can lead to increase the benefit from the reservoir as well as significantly reduces the damage due to floods. Hedging rule is one of the emerging techniques in reservoir operation, which reduce the severity of drought by accepting number of smaller shortages. The key objective of this paper is to maximize the minimum power production and improve the reliability of water supply for municipal and irrigation purpose by using hedging rule. In this paper, Type II two-point linear hedging rule is attempted to improve the operation of Bargi reservoir in the Narmada basin in India. The results obtained from simulation of hedging rule is compared with results from Standard Operating Policy, the result shows that the application of hedging rule significantly improved the reliability of water supply and reliability of irrigation release and firm power production.

  19. Modeling Land Use/Cover Changes in an African Rural Landscape

    NASA Astrophysics Data System (ADS)

    Kamusoko, C.; Aniya, M.

    2006-12-01

    Land use/cover changes are analyzed in the Bindura district of Zimbabwe, Africa through the integration of data from a time series of Landsat imagery (1973, 1989 and 2000), a household survey and GIS coverages. We employed a hybrid supervised/unsupervised classification approach to generate land use/cover maps from which landscape metrics were calculated. Population and other household variables were derived from a sample of surveyed villages, while road accessibility and slope were obtained from topographic maps and digital elevation model, respectively. Markov-cellular automata modeling approach that incorporates Markov chain analysis, cellular automata and multi-criteria evaluation (MCE) / multi-objective allocation (MOLA) procedures was used to simulate land use/cover changes. A GIS-based MCE technique computed transition potential maps, whereas transition areas were derived from the 1973-2000 land use/cover maps using the Markov chain analysis. A 5 x 5 cellular automata filter was used to develop a spatially explicit contiguity- weighting factor to change the cells based on its previous state and those of its neighbors, while MOLA resolved land use/cover class allocation conflicts. The kappa index of agreement was used for model validation. Observed trends in land use/cover changes indicate that deforestation and the encroachment of cultivation in woodland areas is a continuous trend in the study area. This suggests that economic activities driven by agricultural expansion were the main causes of landscape fragmentation, leading to landscape degradation. Rigorous calibration of transition potential maps done by a MCE algorithm and Markovian transition probabilities produced accurate inputs for the simulation of land use/cover changes. Overall standard kappa index of agreement ranged from 0.73 to 0.83, which is sufficient for simulating land use/cover changes in the study area. Land use/cover simulations under the 1989 and 2000 scenario indicated further landscape degradation in the rural areas of the Bindura district. Keywords: Zimbabwe, land use/cover changes, landscape fragmentation, GIS, land use/cover change modeling, multi-criteria evaluation/multi-objective allocation procedures, Markov-cellular automata

  20. Constructing Compact Takagi-Sugeno Rule Systems: Identification of Complex Interactions in Epidemiological Data

    PubMed Central

    Zhou, Shang-Ming; Lyons, Ronan A.; Brophy, Sinead; Gravenor, Mike B.

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data. PMID:23272108

  1. Constructing compact Takagi-Sugeno rule systems: identification of complex interactions in epidemiological data.

    PubMed

    Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B

    2012-01-01

    The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.

  2. Extending Linear Models to Non-Linear Contexts: An In-Depth Study about Two University Students' Mathematical Productions

    ERIC Educational Resources Information Center

    Esteley, Cristina; Villarreal, Monica; Alagia, Humberto

    2004-01-01

    This research report presents a study of the work of agronomy majors in which an extension of linear models to non-linear contexts can be observed. By linear models we mean the model y=a.x+b, some particular representations of direct proportionality and the diagram for the rule of three. Its presence and persistence in different types of problems…

  3. BUDEM: an urban growth simulation model using CA for Beijing metropolitan area

    NASA Astrophysics Data System (ADS)

    Long, Ying; Shen, Zhenjiang; Du, Liqun; Mao, Qizhi; Gao, Zhanping

    2008-10-01

    It is in great need of identifying the future urban form of Beijing, which faces challenges of rapid growth in urban development projects implemented in Beijing. We develop Beijing Urban Developing Model (BUDEM in short) to support urban planning and corresponding policies evaluation. BUDEM is the spatio-temporal dynamic model for simulating urban growth in Beijing metropolitan area, using cellular automata (CA) and Multi-agent system (MAS) approaches. In this phase, the computer simulation using CA in Beijing metropolitan area is conducted, which attempts to provide a premise of urban activities including different kinds of urban development projects for industrial plants, shopping facilities, houses. In the paper, concept model of BUDEM is introduced, which is established basing on prevalent urban growth theories. The method integrating logistic regression and MonoLoop is used to retrieve weights in the transition rule by MCE. After model sensibility analysis, we apply BUDEM into three aspects of urban planning practices: (1) Identifying urban growth mechanism in various historical phases since 1986; (2) Identifying urban growth policies needed to implement desired urban form (BEIJING2020), namely planned urban form; (3) Simulating urban growth scenarios of 2049 (BEIJING2049) basing on the urban form and parameter set of BEIJING2020.

  4. Best response game of traffic on road network of non-signalized intersections

    NASA Astrophysics Data System (ADS)

    Yao, Wang; Jia, Ning; Zhong, Shiquan; Li, Liying

    2018-01-01

    This paper studies the traffic flow in a grid road network with non-signalized intersections. The nature of the drivers in the network is simulated such that they play an iterative snowdrift game with other drivers. A cellular automata model is applied to study the characteristics of the traffic flow and the evolution of the behaviour of the drivers during the game. The drivers use best-response as their strategy to update rules. Three major findings are revealed. First, the cooperation rate in simulation experiences staircase-shaped drop as cost to benefit ratio r increases, and cooperation rate can be derived analytically as a function of cost to benefit ratio r. Second, we find that higher cooperation rate corresponds to higher average speed, lower density and higher flow. This reveals that defectors deteriorate the efficiency of traffic on non-signalized intersections. Third, the system experiences more randomness when the density is low because the drivers will not have much opportunity to update strategy when the density is low. These findings help to show how the strategy of drivers in a traffic network evolves and how their interactions influence the overall performance of the traffic system.

  5. Sandpile-based model for capturing magnitude distributions and spatiotemporal clustering and separation in regional earthquakes

    NASA Astrophysics Data System (ADS)

    Batac, Rene C.; Paguirigan, Antonino A., Jr.; Tarun, Anjali B.; Longjas, Anthony G.

    2017-04-01

    We propose a cellular automata model for earthquake occurrences patterned after the sandpile model of self-organized criticality (SOC). By incorporating a single parameter describing the probability to target the most susceptible site, the model successfully reproduces the statistical signatures of seismicity. The energy distributions closely follow power-law probability density functions (PDFs) with a scaling exponent of around -1. 6, consistent with the expectations of the Gutenberg-Richter (GR) law, for a wide range of the targeted triggering probability values. Additionally, for targeted triggering probabilities within the range 0.004-0.007, we observe spatiotemporal distributions that show bimodal behavior, which is not observed previously for the original sandpile. For this critical range of values for the probability, model statistics show remarkable comparison with long-period empirical data from earthquakes from different seismogenic regions. The proposed model has key advantages, the foremost of which is the fact that it simultaneously captures the energy, space, and time statistics of earthquakes by just introducing a single parameter, while introducing minimal parameters in the simple rules of the sandpile. We believe that the critical targeting probability parameterizes the memory that is inherently present in earthquake-generating regions.

  6. Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic

    PubMed Central

    Demongeot, Jacques; Ben Amor, Hedi; Elena, Adrien; Gillois, Pierre; Noual, Mathilde; Sené, Sylvain

    2009-01-01

    Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability). We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode) of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression). We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime) or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control. PMID:20057955

  7. Decomposition of timed automata for solving scheduling problems

    NASA Astrophysics Data System (ADS)

    Nishi, Tatsushi; Wakatake, Masato

    2014-03-01

    A decomposition algorithm for scheduling problems based on timed automata (TA) model is proposed. The problem is represented as an optimal state transition problem for TA. The model comprises of the parallel composition of submodels such as jobs and resources. The procedure of the proposed methodology can be divided into two steps. The first step is to decompose the TA model into several submodels by using decomposable condition. The second step is to combine individual solution of subproblems for the decomposed submodels by the penalty function method. A feasible solution for the entire model is derived through the iterated computation of solving the subproblem for each submodel. The proposed methodology is applied to solve flowshop and jobshop scheduling problems. Computational experiments demonstrate the effectiveness of the proposed algorithm compared with a conventional TA scheduling algorithm without decomposition.

  8. A probabilistic cellular automata model for the dynamics of a population driven by logistic growth and weak Allee effect

    NASA Astrophysics Data System (ADS)

    Mendonça, J. R. G.

    2018-04-01

    We propose and investigate a one-parameter probabilistic mixture of one-dimensional elementary cellular automata under the guise of a model for the dynamics of a single-species unstructured population with nonoverlapping generations in which individuals have smaller probability of reproducing and surviving in a crowded neighbourhood but also suffer from isolation and dispersal. Remarkably, the first-order mean field approximation to the dynamics of the model yields a cubic map containing terms representing both logistic and weak Allee effects. The model has a single absorbing state devoid of individuals, but depending on the reproduction and survival probabilities can achieve a stable population. We determine the critical probability separating these two phases and find that the phase transition between them is in the directed percolation universality class of critical behaviour.

  9. A novel FPGA-programmable switch matrix interconnection element in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Hashemi, Sara; Rahimi Azghadi, Mostafa; Zakerolhosseini, Ali; Navi, Keivan

    2015-04-01

    The Quantum-dot cellular automata (QCA) is a novel nanotechnology, promising extra low-power, extremely dense and very high-speed structure for the construction of logical circuits at a nanoscale. In this paper, initially previous works on QCA-based FPGA's routing elements are investigated, and then an efficient, symmetric and reliable QCA programmable switch matrix (PSM) interconnection element is introduced. This element has a simple structure and offers a complete routing capability. It is implemented using a bottom-up design approach that starts from a dense and high-speed 2:1 multiplexer and utilise it to build the target PSM interconnection element. In this study, simulations of the proposed circuits are carried out using QCAdesigner, a layout and simulation tool for QCA circuits. The results demonstrate high efficiency of the proposed designs in QCA-based FPGA routing.

  10. Real-Time Extended Interface Automata for Software Testing Cases Generation

    PubMed Central

    Yang, Shunkun; Xu, Jiaqi; Man, Tianlong; Liu, Bin

    2014-01-01

    Testing and verification of the interface between software components are particularly important due to the large number of complex interactions, which requires the traditional modeling languages to overcome the existing shortcomings in the aspects of temporal information description and software testing input controlling. This paper presents the real-time extended interface automata (RTEIA) which adds clearer and more detailed temporal information description by the application of time words. We also establish the input interface automaton for every input in order to solve the problems of input controlling and interface covering nimbly when applied in the software testing field. Detailed definitions of the RTEIA and the testing cases generation algorithm are provided in this paper. The feasibility and efficiency of this method have been verified in the testing of one real aircraft braking system. PMID:24892080

  11. Evolution of cellular automata with memory: The Density Classification Task.

    PubMed

    Stone, Christopher; Bull, Larry

    2009-08-01

    The Density Classification Task is a well known test problem for two-state discrete dynamical systems. For many years researchers have used a variety of evolutionary computation approaches to evolve solutions to this problem. In this paper, we investigate the evolvability of solutions when the underlying Cellular Automaton is augmented with a type of memory based on the Least Mean Square algorithm. To obtain high performance solutions using a simple non-hybrid genetic algorithm, we design a novel representation based on the ternary representation used for Learning Classifier Systems. The new representation is found able to produce superior performance to the bit string traditionally used for representing Cellular automata. Moreover, memory is shown to improve evolvability of solutions and appropriate memory settings are able to be evolved as a component part of these solutions.

  12. Does Geophysics Need "A new kind of Science"?

    NASA Astrophysics Data System (ADS)

    Turcotte, D. L.; Rundle, J. B.

    2002-12-01

    Stephen Wolfram's book "A New Kind of Science" has received a great deal of attention in the last six months, both positive and negative. The theme of the book is that "cellular automata", which arise from spatial and temporal coarse-graining of equations of motion, provide the foundations for a new nonlinear science of "complexity". The old science is the science of partial differential equations. Some of the major contributions of this old science have been in geophysics, i.e. gravity, magnetics, seismic waves, heat flow. The basis of the new science is the use of massive computing and numerical simulations. The new science is motivated by the observations that many physical systems display a vast multiplicity of space and time scales, and have hidden dynamics that in many cases are impossible to directly observe. An example would be molecular dynamics. Statistical physics derives continuum equations from the discrete interactions between atoms and molecules, in the modern world the continuum equations are then discretized using finite differences, finite elements, etc. in order to obtain numerical solutions. Examples of widely used cellular automata models include diffusion limited aggregation and site percolation. Also the class of models that are said to exhibit self-organized criticality, the sand-pile model, the slider-block model, the forest-fire model. Applications of these models include drainage networks, seismicity, distributions of minerals,and the evolution of landforms and coastlines. Simple cellular automata models generate deterministic chaos, i.e. the logistic map.

  13. A Cellular Automata Model of Bone Formation

    PubMed Central

    Van Scoy, Gabrielle K.; George, Estee L.; Asantewaa, Flora Opoku; Kerns, Lucy; Saunders, Marnie M.; Prieto-Langarica, Alicia

    2017-01-01

    Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. PMID:28189632

  14. Programmable and autonomous computing machine made of biomolecules

    PubMed Central

    Benenson, Yaakov; Paz-Elizur, Tamar; Adar, Rivka; Keinan, Ehud; Livneh, Zvi; Shapiro, Ehud

    2013-01-01

    Devices that convert information from one form into another according to a definite procedure are known as automata. One such hypothetical device is the universal Turing machine1, which stimulated work leading to the development of modern computers. The Turing machine and its special cases2, including finite automata3, operate by scanning a data tape, whose striking analogy to information-encoding biopolymers inspired several designs for molecular DNA computers4–8. Laboratory-scale computing using DNA and human-assisted protocols has been demonstrated9–15, but the realization of computing devices operating autonomously on the molecular scale remains rare16–20. Here we describe a programmable finite automaton comprising DNA and DNA-manipulating enzymes that solves computational problems autonomously. The automaton’s hardware consists of a restriction nuclease and ligase, the software and input are encoded by double-stranded DNA, and programming amounts to choosing appropriate software molecules. Upon mixing solutions containing these components, the automaton processes the input molecule via a cascade of restriction, hybridization and ligation cycles, producing a detectable output molecule that encodes the automaton’s final state, and thus the computational result. In our implementation 1012 automata sharing the same software run independently and in parallel on inputs (which could, in principle, be distinct) in 120 μl solution at room temperature at a combined rate of 109 transitions per second with a transition fidelity greater than 99.8%, consuming less than 10−10 W. PMID:11719800

  15. Index Theory of One Dimensional Quantum Walks and Cellular Automata

    NASA Astrophysics Data System (ADS)

    Gross, D.; Nesme, V.; Vogts, H.; Werner, R. F.

    2012-03-01

    If a one-dimensional quantum lattice system is subject to one step of a reversible discrete-time dynamics, it is intuitive that as much "quantum information" as moves into any given block of cells from the left, has to exit that block to the right. For two types of such systems — namely quantum walks and cellular automata — we make this intuition precise by defining an index, a quantity that measures the "net flow of quantum information" through the system. The index supplies a complete characterization of two properties of the discrete dynamics. First, two systems S 1, S 2 can be "pieced together", in the sense that there is a system S which acts like S 1 in one region and like S 2 in some other region, if and only if S 1 and S 2 have the same index. Second, the index labels connected components of such systems: equality of the index is necessary and sufficient for the existence of a continuous deformation of S 1 into S 2. In the case of quantum walks, the index is integer-valued, whereas for cellular automata, it takes values in the group of positive rationals. In both cases, the map {S mapsto ind S} is a group homomorphism if composition of the discrete dynamics is taken as the group law of the quantum systems. Systems with trivial index are precisely those which can be realized by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.

  16. Optimal Sequential Rules for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    1998-01-01

    Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…

  17. Memory-Augmented Cellular Automata for Image Analysis.

    DTIC Science & Technology

    1978-11-01

    case in which each cell has memory size proportional to the logarithm of the input size, showing the increased capabilities of these machines for executing a variety of basic image analysis and recognition tasks. (Author)

  18. Evolution, learning, and cognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.C.

    1988-01-01

    The book comprises more than fifteen articles in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.

  19. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  20. Complexity Theory

    USGS Publications Warehouse

    Lee, William H K.

    2016-01-01

    A complex system consists of many interacting parts, generates new collective behavior through self organization, and adaptively evolves through time. Many theories have been developed to study complex systems, including chaos, fractals, cellular automata, self organization, stochastic processes, turbulence, and genetic algorithms.

  1. CAM: A high-performance cellular-automaton machine

    NASA Astrophysics Data System (ADS)

    Toffoli, Tommaso

    1984-01-01

    CAM is a high-performance machine dedicated to the simulation of cellular automata and other distributed dynamical systems. Its speed is about one-thousand times greater than that of a general-purpose computer programmed to do the same task; in practical terms, this means that CAM can show the evolution of cellular automata on a color monitor with an update rate, dynamic range, and spatial resolution comparable to those of a Super-8 movie, thus permitting intensive interactive experimentation. Machines of this kind can open up novel fields of research, and in this context it is important that results be easy to obtain, reproduce, and transmit. For these reasons, in designing CAM it was important to achieve functional simplicity, high flexibility, and moderate production cost. We expect that many research groups will be able to own their own copy of the machine to do research with.

  2. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks

    PubMed Central

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-01-01

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162

  3. Fuzzy automata and pattern matching

    NASA Technical Reports Server (NTRS)

    Setzer, C. B.; Warsi, N. A.

    1986-01-01

    A wide-ranging search for articles and books concerned with fuzzy automata and syntactic pattern recognition is presented. A number of survey articles on image processing and feature detection were included. Hough's algorithm is presented to illustrate the way in which knowledge about an image can be used to interpret the details of the image. It was found that in hand generated pictures, the algorithm worked well on following the straight lines, but had great difficulty turning corners. An algorithm was developed which produces a minimal finite automaton recognizing a given finite set of strings. One difficulty of the construction is that, in some cases, this minimal automaton is not unique for a given set of strings and a given maximum length. This algorithm compares favorably with other inference algorithms. More importantly, the algorithm produces an automaton with a rigorously described relationship to the original set of strings that does not depend on the algorithm itself.

  4. Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata.

    PubMed

    Bahar, Ali Newaz; Waheed, Sajjad

    2016-01-01

    The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit.

  5. Hybrid automata models of cardiac ventricular electrophysiology for real-time computational applications.

    PubMed

    Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L

    2016-08-01

    Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.

  6. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    PubMed

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-12-04

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches.

  7. A Study of Chaos in Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kamilya, Supreeti; Das, Sukanta

    This paper presents a study of chaos in one-dimensional cellular automata (CAs). The communication of information from one part of the system to another has been taken into consideration in this study. This communication is formalized as a binary relation over the set of cells. It is shown that this relation is an equivalence relation and all the cells form a single equivalence class when the cellular automaton (CA) is chaotic. However, the communication between two cells is sometimes blocked in some CAs by a subconfiguration which appears in between the cells during evolution. This blocking of communication by a subconfiguration has been analyzed in this paper with the help of de Bruijn graph. We identify two types of blocking — full and partial. Finally a parameter has been developed for the CAs. We show that the proposed parameter performs better than the existing parameters.

  8. Construction of phase diagrams for nanoscaled Ising thin films on the honeycomb lattice using cellular automata simulation approach

    NASA Astrophysics Data System (ADS)

    Ghaemi, Mehrdad; Javadi, Nabi

    2017-11-01

    The phase diagrams of the three-layer Ising model on the honeycomb lattice with a diluted surface have been constructed using the probabilistic cellular automata based on Glauber algorithm. The effects of the exchange interactions on the phase diagrams have been investigated. A general mathematical expression for the critical temperature is obtained in terms of relative coupling r = J1/J and Δs = (Js/J) - 1, where J and Js represent the nearest neighbor coupling within inner- and surface-layers, respectively, and each magnetic site in the surface-layer is coupled with the nearest neighbor site in the inner-layer via the exchange coupling J1. In the case of antiferromagnetic coupling between surface-layer and inner-layer, system reveals many interesting phenomena, such as the possibility of existence of compensation line before the critical temperature.

  9. Temperature Effects on Olive Fruit Fly Infestation in the FlySim Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Bruno, Vincenzo; Baldacchini, Valerio; di Gregorio, Salvatore

    FlySim is a Cellular Automata model developed for simulating infestation of olive fruit flies (Bactrocera Oleae) on olive (Olea europaea) groves. The flies move into the groves looking for mature olives where eggs are spawn. This serious agricultural problem is mainly tackled by using chemical agents at the first signs of the infestation, but organic productions with no or few chemicals are strongly requested by the market. Oil made with infested olives is poor in quality, nor olives are suitable for selling in stores. The FlySim model simulates the diffusion of flies looking for mature olives and the growing of flies due to atmospheric conditions. Foreseeing an infestation is the best way to prevent it and to reduce the need of chemicals in agriculture. In this work we investigated the effects of temperature on olive fruit flies and resulting infestation during late spring and summer.

  10. Study on queueing behavior in pedestrian evacuation by extended cellular automata model

    NASA Astrophysics Data System (ADS)

    Hu, Jun; You, Lei; Zhang, Hong; Wei, Juan; Guo, Yangyong

    2018-01-01

    This paper proposes a pedestrian evacuation model for effective simulation of evacuation efficiency based on extended cellular automata. In the model, pedestrians' momentary transition probability to a target position is defined in terms of the floor field and queueing time, and the critical time is defined as the waiting time threshold in a queue. Queueing time and critical time are derived using Fractal Brownian Motion through analysis of pedestrian arrival characteristics. Simulations using the platform and actual evacuations were conducted to study the relationships among system evacuation time, average system velocity, pedestrian density, flow rate, and critical time. The results demonstrate that at low pedestrian density, evacuation efficiency can be improved through adoption of the shortest route strategy, and critical time has an inverse relationship with average system velocity. Conversely, at higher pedestrian densities, it is better to adopt the shortest queueing time strategy, and critical time is inversely related to flow rate.

  11. Design of a fault-tolerant reversible control unit in molecular quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Bahadori, Golnaz; Houshmand, Monireh; Zomorodi-Moghadam, Mariam

    Quantum-dot cellular automata (QCA) is a promising emerging nanotechnology that has been attracting considerable attention due to its small feature size, ultra-low power consuming, and high clock frequency. Therefore, there have been many efforts to design computational units based on this technology. Despite these advantages of the QCA-based nanotechnologies, their implementation is susceptible to a high error rate. On the other hand, using the reversible computing leads to zero bit erasures and no energy dissipation. As the reversible computation does not lose information, the fault detection happens with a high probability. In this paper, first we propose a fault-tolerant control unit using reversible gates which improves on the previous design. The proposed design is then synthesized to the QCA technology and is simulated by the QCADesigner tool. Evaluation results indicate the performance of the proposed approach.

  12. Optical nonlinearities of excitons in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Rogers, Christopher; Gray, Dodd J.; Chatterjee, Eric; Mabuchi, Hideo

    2018-04-01

    We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of monolayer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second-order harmonic generation in monolayer MoS2 and find that the third-order harmonic process is efficient only for linearly polarized input light while the third-order two-photon process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for coherent nonlinear photonics.

  13. High-cycle fatigue characterization of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Xin, Yu T.; Jeelani, S.

    1993-01-01

    High-cycle fatigue behavior of titanium 5Al 2.5Sn alloy at room temperature has been studied. S-N curve characterization is performed at different stress ratios ranging from 0 to 0.9 on a subsized fatigue specimen. Both two-stress and three-stress level tests are conducted at different stress ratios to study the cumulative fatigue damage. Life prediction techniques of linear damage rule, double linear damage rule and damage curve approaches are applied, and results are compared with the experimental data. The agreement between prediction and experiment is found to be excellent.

  14. Cramer's Rule Revisited

    ERIC Educational Resources Information Center

    Ayoub, Ayoub B.

    2005-01-01

    In 1750, the Swiss mathematician Gabriel Cramer published a well-written algebra book entitled "Introduction a l'Analyse des Lignes Courbes Algebriques." In the appendix to this book, Cramer gave, without proof, the rule named after him for solving a linear system of equations using determinants (Kosinki, 2001). Since then several derivations of…

  15. Simulations of Living Cell Origins Using a Cellular Automata Model

    NASA Astrophysics Data System (ADS)

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  16. A cellular automata model of bone formation.

    PubMed

    Van Scoy, Gabrielle K; George, Estee L; Opoku Asantewaa, Flora; Kerns, Lucy; Saunders, Marnie M; Prieto-Langarica, Alicia

    2017-04-01

    Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Simulations of living cell origins using a cellular automata model.

    PubMed

    Ishida, Takeshi

    2014-04-01

    Understanding the generalized mechanisms of cell self-assembly is fundamental for applications in various fields, such as mass producing molecular machines in nanotechnology. Thus, the details of real cellular reaction networks and the necessary conditions for self-organized cells must be elucidated. We constructed a 2-dimensional cellular automata model to investigate the emergence of biological cell formation, which incorporated a looped membrane and a membrane-bound information system (akin to a genetic code and gene expression system). In particular, with an artificial reaction system coupled with a thermal system, the simultaneous formation of a looped membrane and an inner reaction process resulted in a more stable structure. These double structures inspired the primitive biological cell formation process from chemical evolution stage. With a model to simulate cellular self-organization in a 2-dimensional cellular automata model, 3 phenomena could be realized: (1) an inner reaction system developed as an information carrier precursor (akin to DNA); (2) a cell border emerged (akin to a cell membrane); and (3) these cell structures could divide into 2. This double-structured cell was considered to be a primary biological cell. The outer loop evolved toward a lipid bilayer membrane, and inner polymeric particles evolved toward precursor information carriers (evolved toward DNA). This model did not completely clarify all the necessary and sufficient conditions for biological cell self-organization. Further, our virtual cells remained unstable and fragile. However, the "garbage bag model" of Dyson proposed that the first living cells were deficient; thus, it would be reasonable that the earliest cells were more unstable and fragile than the simplest current unicellular organisms.

  18. Complexity in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  19. Combining cellular automata and Lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition.

    PubMed

    Alemani, Davide; Pappalardo, Francesco; Pennisi, Marzio; Motta, Santo; Brusic, Vladimir

    2012-02-28

    In the last decades the Lattice Boltzmann method (LB) has been successfully used to simulate a variety of processes. The LB model describes the microscopic processes occurring at the cellular level and the macroscopic processes occurring at the continuum level with a unique function, the probability distribution function. Recently, it has been tried to couple deterministic approaches with probabilistic cellular automata (probabilistic CA) methods with the aim to model temporal evolution of tumor growths and three dimensional spatial evolution, obtaining hybrid methodologies. Despite the good results attained by CA-PDE methods, there is one important issue which has not been completely solved: the intrinsic stochastic nature of the interactions at the interface between cellular (microscopic) and continuum (macroscopic) level. CA methods are able to cope with the stochastic phenomena because of their probabilistic nature, while PDE methods are fully deterministic. Even if the coupling is mathematically correct, there could be important statistical effects that could be missed by the PDE approach. For such a reason, to be able to develop and manage a model that takes into account all these three level of complexity (cellular, molecular and continuum), we believe that PDE should be replaced with a statistic and stochastic model based on the numerical discretization of the Boltzmann equation: The Lattice Boltzmann (LB) method. In this work we introduce a new hybrid method to simulate tumor growth and immune system, by applying Cellular Automata Lattice Boltzmann (CA-LB) approach. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Cellular automata model for use with real freeway data

    DOT National Transportation Integrated Search

    2002-01-01

    The exponential rate of increase in freeway traffic is expanding the need for accurate and : realistic methods to model and predict traffic flow. Traffic modeling and simulation facilitates an : examination of both microscopic and macroscopic views o...

  1. A cellular automata approach for modeling surface water runoff

    NASA Astrophysics Data System (ADS)

    Jozefik, Zoltan; Nanu Frechen, Tobias; Hinz, Christoph; Schmidt, Heiko

    2015-04-01

    This abstract reports the development and application of a two-dimensional cellular automata based model, which couples the dynamics of overland flow, infiltration processes and surface evolution through sediment transport. The natural hill slopes are represented by their topographic elevation and spatially varying soil properties infiltration rates and surface roughness coefficients. This model allows modeling of Hortonian overland flow and infiltration during complex rainfall events. An advantage of the cellular automata approach over the kinematic wave equations is that wet/dry interfaces that often appear with rainfall overland flows can be accurately captured and are not a source of numerical instabilities. An adaptive explicit time stepping scheme allows for rainfall events to be adequately resolved in time, while large time steps are taken during dry periods to provide for simulation run time efficiency. The time step is constrained by the CFL condition and mass conservation considerations. The spatial discretization is shown to be first-order accurate. For validation purposes, hydrographs for non-infiltrating and infiltrating plates are compared to the kinematic wave analytic solutions and data taken from literature [1,2]. Results show that our cellular automata model quantitatively accurately reproduces hydrograph patterns. However, recent works have showed that even through the hydrograph is satisfyingly reproduced, the flow field within the plot might be inaccurate [3]. For a more stringent validation, we compare steady state velocity, water flux, and water depth fields to rainfall simulation experiments conducted in Thies, Senegal [3]. Comparisons show that our model is able to accurately capture these flow properties. Currently, a sediment transport and deposition module is being implemented and tested. [1] M. Rousseau, O. Cerdan, O. Delestre, F. Dupros, F. James, S. Cordier. Overland flow modeling with the Shallow Water Equation using a well balanced numerical scheme: Adding efficiency or sum more complexity?. 2012. [2] Fritz R. Fiedler, J. A. Ramirez. A numerical method for simulating discontinuous shallow flow over an infiltrating surface. In. J. Numer. Mech. Fluids 200: 32: 219-240. [3] C. Mügler, O. Planchon, J. Patin, S. Weill, N. Silvera, P. Richard, E. Mouche. Comparison of Roughness models to simulate overland flow and tracer transport experiments under simulated rainfall at plot scale. Journal of Hydrology. 402 (2011) 25-40.

  2. Prediction of Land use changes using CA in GIS Environment

    NASA Astrophysics Data System (ADS)

    Kiavarz Moghaddam, H.; Samadzadegan, F.

    2009-04-01

    Urban growth is a typical self-organized system that results from the interaction between three defined systems; developed urban system, natural non-urban system and planned urban system. Urban growth simulation for an artificial city is carried out first. It evaluates a number of urban sprawl parameters including the size and shape of neighborhood besides testing different types of constraints on urban growth simulation. The results indicate that circular-type neighborhood shows smoother but faster urban growth as compared to nine-cell Moore neighborhood. Cellular Automata is proved to be very efficient in simulating the urban growth simulation over time. The strength of this technology comes from the ability of urban modeler to implement the growth simulation model, evaluating the results and presenting the output simulation results in visual interpretable environment. Artificial city simulation model provides an excellent environment to test a number of simulation parameters such as neighborhood influence on growth results and constraints role in driving the urban growth .Also, CA rules definition is critical stage in simulating the urban growth pattern in a close manner to reality. CA urban growth simulation and prediction of Tehran over the last four decades succeeds to simulate specified tested growth years at a high accuracy level. Some real data layer have been used in the CA simulation training phase such as 1995 while others used for testing the prediction results such as 2002. Tuning the CA growth rules is important through comparing the simulated images with the real data to obtain feedback. An important notice is that CA rules need also to be modified over time to adapt to the urban growth pattern. The evaluation method used on region basis has its advantage in covering the spatial distribution component of the urban growth process. Next step includes running the developed CA simulation over classified raster data for three years in a developed ArcGIS extention. A set of crisp rules are defined and calibrated based on real urban growth pattern. Uncertainty analysis is performed to evaluate the accuracy of the simulated results as compared to the historical real data. Evaluation shows promising results represented by the high average accuracies achieved. The average accuracy for the predicted growth images 1964 and 2002 is over 80 %. Modifying CA growth rules over time to match the growth pattern changes is important to obtain accurate simulation. This modification is based on the urban growth relationship for Tehran over time as can be seen in the historical raster data. The feedback obtained from comparing the simulated and real data is crucial in identifying the optimal set of CA rules for reliable simulation and calibrating growth steps.

  3. Comparison of proposed countermeasures for dilemma zone at signalized intersections based on cellular automata simulations.

    PubMed

    Wu, Yina; Abdel-Aty, Mohamed; Ding, Yaoxian; Jia, Bin; Shi, Qi; Yan, Xuedong

    2018-07-01

    The Type II dilemma zone describes the road segment to a signalized intersection where drivers have difficulties to decide either stop or go at the onset of yellow signal. Such phenomenon can result in an increased crash risk at signalized intersections. Different types of warning systems have been proposed to help drivers make decisions. Although the warning systems help to improve drivers' behavior, they also have several disadvantages such as increasing rear-end crashes or red-light running (RLR) violations. In this study, a new warning system called pavement marking with auxiliary countermeasure (PMAIC) is proposed to reduce the dilemma zone and enhance the traffic safety at signalized intersections. The proposed warning system integrates the pavement marking and flashing yellow system which can provide drivers with better suggestions about stop/go decisions based on their arriving time and speed. In order to evaluate the performance of the proposed warning system, this paper presents a cellular automata (CA) simulation study. The CA simulations are conducted for four different scenarios in total, including the typical intersection without warning system, the intersection with flashing green countermeasure, the intersection with pavement marking, and the intersection with the PMAIC warning system. Before the specific CA simulation analysis, a logistic regression model is calibrated based on field video data to predict drivers' general stop/go decisions. Also, the rules of vehicle movements in the CA models under the influence by different warning systems are proposed. The proxy indicators of rear-end crash and potential RLR violations were estimated and used to evaluate safety levels for the different scenarios. The simulation results showed that the PMAIC countermeasure consistently offered best performance to reduce rear-end crash and RLR violation. Meanwhile, the results indicate that the flashing-green countermeasure could not effectively reduce either rear-end crash risk or RLR violations. Also, it is found that the pavement-marking countermeasure has positive effects on reducing the rear-end risk while it may increase the probability of RLR violation. Lastly, the implementation of the proposed warning system is discussed with the consideration of connected-vehicle technology. It is expected that the dilemma zone issues can be efficiently addressed if the proposed countermeasure can be employed within connected vehicle technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Choreographing Patterns and Functions

    ERIC Educational Resources Information Center

    Hawes, Zachary; Moss, Joan; Finch, Heather; Katz, Jacques

    2012-01-01

    In this article, the authors begin with a description of an algebraic dance--the translation of composite linear growing patterns into choreographed movement--which was the last component of a research-based instructional unit that focused on fostering an understanding of linear functional rules through geometric growing patterns and…

  5. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network.

    PubMed

    Gilra, Aditya; Gerstner, Wulfram

    2017-11-27

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically.

  6. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network

    PubMed Central

    Gerstner, Wulfram

    2017-01-01

    The brain needs to predict how the body reacts to motor commands, but how a network of spiking neurons can learn non-linear body dynamics using local, online and stable learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and recurrent connections in a network of heterogeneous spiking neurons. The error in the output is fed back through fixed random connections with a negative gain, causing the network to follow the desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is local in the sense that weight changes depend on the presynaptic activity and the error signal projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going to zero asymptotically. PMID:29173280

  7. An Automation Framework for Neural Nets that Learn

    ERIC Educational Resources Information Center

    Kilmer, W. L.; Arbib, M. A.

    1973-01-01

    A discussion of several types of formal neurons, many of whose functions are modifiable by their own input stimuli. The language of finite automata is used to mathematicize the problem of adaptation sufficiently to remove some ambiguities of Brindley's approach. (Author)

  8. Mining Distance Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule

    NASA Technical Reports Server (NTRS)

    Bay, Stephen D.; Schwabacher, Mark

    2003-01-01

    Defining outliers by their distance to neighboring examples is a popular approach to finding unusual examples in a data set. Recently, much work has been conducted with the goal of finding fast algorithms for this task. We show that a simple nested loop algorithm that in the worst case is quadratic can give near linear time performance when the data is in random order and a simple pruning rule is used. We test our algorithm on real high-dimensional data sets with millions of examples and show that the near linear scaling holds over several orders of magnitude. Our average case analysis suggests that much of the efficiency is because the time to process non-outliers, which are the majority of examples, does not depend on the size of the data set.

  9. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  10. Allocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection

    DOEpatents

    Leung, Vitus J [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM; Bender, Michael A [East Northport, NY; Bunde, David P [Urbana, IL

    2009-07-21

    In a multiple processor computing apparatus, directional routing restrictions and a logical channel construct permit fault tolerant, deadlock-free routing. Processor allocation can be performed by creating a linear ordering of the processors based on routing rules used for routing communications between the processors. The linear ordering can assume a loop configuration, and bin-packing is applied to this loop configuration. The interconnection of the processors can be conceptualized as a generally rectangular 3-dimensional grid, and the MC allocation algorithm is applied with respect to the 3-dimensional grid.

  11. Developing Novel Reservoir Rule Curves Using Seasonal Inflow Projections

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-yi; Tung, Ching-pin

    2015-04-01

    Due to significant seasonal rainfall variations, reservoirs and their flexible operational rules are indispensable to Taiwan. Furthermore, with the intensifying impacts of climate change on extreme climate, the frequency of droughts in Taiwan has been increasing in recent years. Drought is a creeping phenomenon, the slow onset character of drought makes it difficult to detect at an early stage, and causes delays on making the best decision of allocating water. For these reasons, novel reservoir rule curves using projected seasonal streamflow are proposed in this study, which can potentially reduce the adverse effects of drought. This study dedicated establishing new rule curves which consider both current available storage and anticipated monthly inflows with leading time of two months to reduce the risk of water shortage. The monthly inflows are projected based on the seasonal climate forecasts from Central Weather Bureau (CWB), which a weather generation model is used to produce daily weather data for the hydrological component of the GWLF. To incorporate future monthly inflow projections into rule curves, this study designs a decision flow index which is a linear combination of current available storage and inflow projections with leading time of 2 months. By optimizing linear relationship coefficients of decision flow index, the shape of rule curves and the percent of water supply in each zone, the best rule curves to decrease water shortage risk and impacts can be developed. The Shimen Reservoir in the northern Taiwan is used as a case study to demonstrate the proposed method. Existing rule curves (M5 curves) of Shimen Reservoir are compared with two cases of new rule curves, including hindcast simulations and historic seasonal forecasts. The results show new rule curves can decrease the total water shortage ratio, and in addition, it can also allocate shortage amount to preceding months to avoid extreme shortage events. Even though some uncertainties in historic forecasts would result unnecessary discounts of water supply, it still performs better than M5 curves during droughts.

  12. Quantum cloning by cellular automata

    NASA Astrophysics Data System (ADS)

    D'Ariano, G. M.; Macchiavello, C.; Rossi, M.

    2013-03-01

    We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1→2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.

  13. Long-Term Memory: A State-Space Approach

    ERIC Educational Resources Information Center

    Kiss, George R.

    1972-01-01

    Some salient concepts derived from the information sciences and currently used in theories of human memory are critically reviewed. The application of automata theory is proposed as a new approach in this field. The approach is illustrated by applying it to verbal memory. (Author)

  14. On the Equivalence of Formal Grammars and Machines.

    ERIC Educational Resources Information Center

    Lund, Bruce

    1991-01-01

    Explores concepts of formal language and automata theory underlying computational linguistics. A computational formalism is described known as a "logic grammar," with which computational systems process linguistic data, with examples in declarative and procedural semantics and definite clause grammars. (13 references) (CB)

  15. Automatic Management of Parallel and Distributed System Resources

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Ngai, Tin Fook; Lundstrom, Stephen F.

    1990-01-01

    Viewgraphs on automatic management of parallel and distributed system resources are presented. Topics covered include: parallel applications; intelligent management of multiprocessing systems; performance evaluation of parallel architecture; dynamic concurrent programs; compiler-directed system approach; lattice gaseous cellular automata; and sparse matrix Cholesky factorization.

  16. Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems.

    PubMed

    Adams, Alyssa; Zenil, Hector; Davies, Paul C W; Walker, Sara Imari

    2017-04-20

    Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.

  17. Traffic flow behavior at a single-lane urban roundabout

    NASA Astrophysics Data System (ADS)

    Lakouari, N.; Oubram, O.; Ez-Zahraouy, H.; Cisneros-Villalobos, L.; Velásquez-Aguilar, J. G.

    In this paper, we propose a stochastic cellular automata model to study the traffic behavior at a single-lane roundabout. Vehicles can enter the interior lane or exit from it via N intersecting lane, the boundary conditions are stochastic. The traffic is controlled by a self-organized scheme. It has turned out that depending on the rules of insertion to the roundabout, five distinct traffic phases can appear, namely, free flow, congestion, maximum current, jammed and gridlock. The transition between the free flow and the gridlock is forbidden. The density profiles are used to study the traffic pattern at the interior lane of the roundabout. In order to quantify the interactions between vehicles in the interior lane of the roundabout, the velocity correlation coefficient (VCC) is also studied. Besides, the spatiotemporal diagrams corresponding to the entry/exit lanes are derived numerically. Furthermore, we have investigated the effect of displaying signal (PIn), as the PIn decreases, the maximum current increases at the expense of the free flow and the jamming phase. Finally, we have investigated the effect of the braking probability P on the interior lane of the roundabout. We have found that the increase of P raises the spontaneous jam formation on the ring. Thus, enlarges the maximum current and the jamming phase while the free flow phase decreases.

  18. Simulation of urban land surface temperature based on sub-pixel land cover in a coastal city

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofeng; Deng, Lei; Feng, Huihui; Zhao, Yanchuang

    2014-11-01

    The sub-pixel urban land cover has been proved to have obvious correlations with land surface temperature (LST). Yet these relationships have seldom been used to simulate LST. In this study we provided a new approach of urban LST simulation based on sub-pixel land cover modeling. Landsat TM/ETM+ images of Xiamen city, China on both the January of 2002 and 2007 were used to acquire land cover and then extract the transformation rule using logistic regression. The transformation possibility was taken as its percent in the same pixel after normalization. And cellular automata were used to acquire simulated sub-pixel land cover on 2007 and 2017. On the other hand, the correlations between retrieved LST and sub-pixel land cover achieved by spectral mixture analysis in 2002 were examined and a regression model was built. Then the regression model was used on simulated 2007 land cover to model the LST of 2007. Finally the LST of 2017 was simulated for urban planning and management. The results showed that our method is useful in LST simulation. Although the simulation accuracy is not quite satisfactory, it provides an important idea and a good start in the modeling of urban LST.

  19. Simulated interactions of pedestrian crossings and motorized vehicles in residential areas

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Peng, Zhongyi; Chen, Qun

    2018-01-01

    To evaluate whether motorized vehicles can travel through a residential area, this paper develops a cellular automata (CA) model to simulate the interactions between pedestrian crossings and motorized vehicles in a residential area. In this paper, pedestrians determine their crossing speed according to their judgments of the position and velocity of the upcoming vehicles. The pedestrians may walk slowly or quickly or even run, and the pedestrian crossing time influences the vehicle movement. In addition, the proposed model considers the safety margin time needed for pedestrians to cross, and pedestrian-vehicle conflict is considered using the vehicle collision avoidance rule. Through simulations of interactions of pedestrian crossings with motorized vehicles' movement on a typical road in a residential area, the average wait time for pedestrians to cross and the average vehicle velocity under different pedestrian crossing volumes, different vehicle flows and different maximum vehicle velocities are obtained. To avoid an excessive waiting time for pedestrians to cross, the vehicle flow should be less than 180 veh/h, which allows an average of less than 10 s of waiting time; if the vehicle flow rate is less than 36 veh/h, then the waiting time is approximately 1 s. Field observations are conducted to validate the simulation results.

  20. Stochastic cellular automata model of neurosphere growth: Roles of proliferative potential, contact inhibition, cell death, and phagocytosis.

    PubMed

    Sipahi, Rifat; Zupanc, Günther K H

    2018-05-14

    Neural stem and progenitor cells isolated from the central nervous system form, under specific culture conditions, clonal cell clusters known as neurospheres. The neurosphere assay has proven to be a powerful in vitro system to study the behavior of such cells and the development of their progeny. However, the theory of neurosphere growth has remained poorly understood. To overcome this limitation, we have, in the present paper, developed a cellular automata model, with which we examined the effects of proliferative potential, contact inhibition, cell death, and clearance of dead cells on growth rate, final size, and composition of neurospheres. Simulations based on this model indicated that the proliferative potential of the founder cell and its progenitors has a major influence on neurosphere size. On the other hand, contact inhibition of proliferation limits the final size, and reduces the growth rate, of neurospheres. The effect of this inhibition is particularly dramatic when a stem cell becomes encapsulated by differentiated or other non-proliferating cells, thereby suppressing any further mitotic division - despite the existing proliferative potential of the stem cell. Conversely, clearance of dead cells through phagocytosis is predicted to accelerate growth by reducing contact inhibition. A surprising prediction derived from our model is that cell death, while resulting in a decrease in growth rate and final size of neurospheres, increases the degree of differentiation of neurosphere cells. It is likely that the cellular automata model developed as part of the present investigation is applicable to the study of tissue growth in a wide range of systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running

    PubMed Central

    Zhu, Hao; Sun, Yan; Rajagopal, Gunaretnam; Mondry, Adrian; Dhar, Pawan

    2004-01-01

    Background Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. Methods We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. Results We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. Conclusions Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described. PMID:15339335

  2. Cellular automata simulation of topological effects on the dynamics of feed-forward motifs

    PubMed Central

    Apte, Advait A; Cain, John W; Bonchev, Danail G; Fong, Stephen S

    2008-01-01

    Background Feed-forward motifs are important functional modules in biological and other complex networks. The functionality of feed-forward motifs and other network motifs is largely dictated by the connectivity of the individual network components. While studies on the dynamics of motifs and networks are usually devoted to the temporal or spatial description of processes, this study focuses on the relationship between the specific architecture and the overall rate of the processes of the feed-forward family of motifs, including double and triple feed-forward loops. The search for the most efficient network architecture could be of particular interest for regulatory or signaling pathways in biology, as well as in computational and communication systems. Results Feed-forward motif dynamics were studied using cellular automata and compared with differential equation modeling. The number of cellular automata iterations needed for a 100% conversion of a substrate into a target product was used as an inverse measure of the transformation rate. Several basic topological patterns were identified that order the specific feed-forward constructions according to the rate of dynamics they enable. At the same number of network nodes and constant other parameters, the bi-parallel and tri-parallel motifs provide higher network efficacy than single feed-forward motifs. Additionally, a topological property of isodynamicity was identified for feed-forward motifs where different network architectures resulted in the same overall rate of the target production. Conclusion It was shown for classes of structural motifs with feed-forward architecture that network topology affects the overall rate of a process in a quantitatively predictable manner. These fundamental results can be used as a basis for simulating larger networks as combinations of smaller network modules with implications on studying synthetic gene circuits, small regulatory systems, and eventually dynamic whole-cell models. PMID:18304325

  3. Adolescents' as Active Agents in the Socialization Process: Legitimacy of Parental Authority and Obligation to Obey as Predictors of Obedience

    ERIC Educational Resources Information Center

    Darling, Nancy; Cumsille, Patricio; Loreto Martinez, M.

    2007-01-01

    Adolescents' agreement with parental standards and beliefs about the legitimacy of parental authority and their own obligation to obey were used to predict adolescents' obedience, controlling for parental monitoring, rules, and rule enforcement. Hierarchical linear models were used to predict both between-adolescent and within-adolescent,…

  4. Visualizing the Chain Rule (for Functions over R and C) and More

    ERIC Educational Resources Information Center

    Kreminski, Rick

    2009-01-01

    A visual approach to understanding the chain rule and related derivative formulae, for functions from R to R and from C to C, is presented. This apparently novel approach has been successfully used with several audiences: students first studying calculus, students with some background in linear algebra, students beginning study of functions of a…

  5. 78 FR 36797 - Self-Regulatory Organizations; Fixed Income Clearing Corporation; Notice of Designation of Longer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... NYPC. In the proposed rule change, FICC acknowledged that it will have to alter its risk management framework to account for the non- linear risks presented by options on interest rate futures.\\6\\ The... rule change so that it has sufficient time to evaluate the risk management implications of the proposed...

  6. Simultaneous Optimization of Decisions Using a Linear Utility Function.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    1990-01-01

    An approach is presented to simultaneously optimize decision rules for combinations of elementary decisions through a framework derived from Bayesian decision theory. The developed linear utility model for selection-mastery decisions was applied to a sample of 43 first year medical students to illustrate the procedure. (SLD)

  7. From Feynman rules to conserved quantum numbers, I

    NASA Astrophysics Data System (ADS)

    Nogueira, P.

    2017-05-01

    In the context of Quantum Field Theory (QFT) there is often the need to find sets of graph-like diagrams (the so-called Feynman diagrams) for a given physical model. If negative, the answer to the related problem 'Are there any diagrams with this set of external fields?' may settle certain physical questions at once. Here the latter problem is formulated in terms of a system of linear diophantine equations derived from the Lagrangian density, from which necessary conditions for the existence of the required diagrams may be obtained. Those conditions are equalities that look like either linear diophantine equations or linear modular (i.e. congruence) equations, and may be found by means of fairly simple algorithms that involve integer computations. The diophantine equations so obtained represent (particle) number conservation rules, and are related to the conserved (additive) quantum numbers that may be assigned to the fields of the model.

  8. Preconditioned alternating direction method of multipliers for inverse problems with constraints

    NASA Astrophysics Data System (ADS)

    Jiao, Yuling; Jin, Qinian; Lu, Xiliang; Wang, Weijie

    2017-02-01

    We propose a preconditioned alternating direction method of multipliers (ADMM) to solve linear inverse problems in Hilbert spaces with constraints, where the feature of the sought solution under a linear transformation is captured by a possibly non-smooth convex function. During each iteration step, our method avoids solving large linear systems by choosing a suitable preconditioning operator. In case the data is given exactly, we prove the convergence of our preconditioned ADMM without assuming the existence of a Lagrange multiplier. In case the data is corrupted by noise, we propose a stopping rule using information on noise level and show that our preconditioned ADMM is a regularization method; we also propose a heuristic rule when the information on noise level is unavailable or unreliable and give its detailed analysis. Numerical examples are presented to test the performance of the proposed method.

  9. Formal Verification of Quasi-Synchronous Systems

    DTIC Science & Technology

    2015-07-01

    pg. 215-226, Springer-Verlag: London, UK, 2001. [4] Nicolas Halbwachs and Louis Mandel, Simulation and Verification of Asynchronous Systems by...Huang, S. A. Smolka, W. Tan , and S. Tripakis, Deep Random Search for Efficient Model Checking of Timed Automata, in Proceedings of the 13th Monterey

  10. THE USE OF CELLULAR AUTOMATA MODELING APPROACHES TO UNDERSTAND POTENTIAL IMPACTS OF GM PLANTS ON PLANT COMMUNITIES

    EPA Science Inventory

    The development of models is of interest to ecologists, regulators and developers, since it may assist theoretical understanding, decision making in experimental design, product development and risk assessment. A successful modeling methodology for investigating such characteris...

  11. Project Solo; Newsletter Number Twenty.

    ERIC Educational Resources Information Center

    Pittsburgh Univ., PA. Project Solo.

    Three Project Solo modules are presented. They are designed to teach the concepts of elementary matrix operation, matrix multiplication, and finite-state automata. Together with the module on communication matrices from Newsletter #17 they form a well motivated but structured path to expertise in this area. (JY)

  12. Research 1970/1971: Annual Progress Report.

    ERIC Educational Resources Information Center

    Georgia Inst. of Tech., Atlanta. Science Information Research Center.

    The report presents a summary of science information research activities of the School of Information and Computer Science, Georgia Institute of Technology. Included are project reports on interrelated studies in science information, information processing and systems design, automata and systems theories, and semiotics and linguistics. Also…

  13. Semiotics, Information Science, Documents and Computers.

    ERIC Educational Resources Information Center

    Warner, Julian

    1990-01-01

    Discusses the relationship and value of semiotics to the established domains of information science. Highlights include documentation; computer operations; the language of computing; automata theory; linguistics; speech and writing; and the written language as a unifying principle for the document and the computer. (93 references) (LRW)

  14. Compositional schedulability analysis of real-time actor-based systems.

    PubMed

    Jaghoori, Mohammad Mahdi; de Boer, Frank; Longuet, Delphine; Chothia, Tom; Sirjani, Marjan

    2017-01-01

    We present an extension of the actor model with real-time, including deadlines associated with messages, and explicit application-level scheduling policies, e.g.,"earliest deadline first" which can be associated with individual actors. Schedulability analysis in this setting amounts to checking whether, given a scheduling policy for each actor, every task is processed within its designated deadline. To check schedulability, we introduce a compositional automata-theoretic approach, based on maximal use of model checking combined with testing. Behavioral interfaces define what an actor expects from the environment, and the deadlines for messages given these assumptions. We use model checking to verify that actors match their behavioral interfaces. We extend timed automata refinement with the notion of deadlines and use it to define compatibility of actor environments with the behavioral interfaces. Model checking of compatibility is computationally hard, so we propose a special testing process. We show that the analyses are decidable and automate the process using the Uppaal model checker.

  15. Modeling of the competition life cycle using the software complex of cellular automata PyCAlab

    NASA Astrophysics Data System (ADS)

    Berg, D. B.; Beklemishev, K. A.; Medvedev, A. N.; Medvedeva, M. A.

    2015-11-01

    The aim of the work is to develop a numerical model of the life cycle of competition on the basis of software complex cellular automata PyCAlab. The model is based on the general patterns of growth of various systems in resource-limited settings. At examples it is shown that the period of transition from an unlimited growth of the market agents to the stage of competitive growth takes quite a long time and may be characterized as monotonic. During this period two main strategies of competitive selection coexist: 1) capture of maximum market space with any reasonable costs; 2) saving by reducing costs. The obtained results allow concluding that the competitive strategies of companies must combine two mentioned types of behavior, and this issue needs to be given adequate attention in the academic literature on management. The created numerical model may be used for market research when developing of the strategies for promotion of new goods and services.

  16. Using learning automata to determine proper subset size in high-dimensional spaces

    NASA Astrophysics Data System (ADS)

    Seyyedi, Seyyed Hossein; Minaei-Bidgoli, Behrouz

    2017-03-01

    In this paper, we offer a new method called FSLA (Finding the best candidate Subset using Learning Automata), which combines the filter and wrapper approaches for feature selection in high-dimensional spaces. Considering the difficulties of dimension reduction in high-dimensional spaces, FSLA's multi-objective functionality is to determine, in an efficient manner, a feature subset that leads to an appropriate tradeoff between the learning algorithm's accuracy and efficiency. First, using an existing weighting function, the feature list is sorted and selected subsets of the list of different sizes are considered. Then, a learning automaton verifies the performance of each subset when it is used as the input space of the learning algorithm and estimates its fitness upon the algorithm's accuracy and the subset size, which determines the algorithm's efficiency. Finally, FSLA introduces the fittest subset as the best choice. We tested FSLA in the framework of text classification. The results confirm its promising performance of attaining the identified goal.

  17. Implementation of Basic and Universal Gates In a single Circuit Based On Quantum-dot Cellular Automata Using Multi-Layer Crossbar Wire

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim

    2017-08-01

    Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.

  18. A cellular automaton for the signed particle formulation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sellier, J. M.; Kapanova, K. G.; Dimov, I.

    2017-02-01

    Recently, a new formulation of quantum mechanics, based on the concept of signed particles, has been suggested. In this paper, we introduce a cellular automaton which mimics the dynamics of quantum objects in the phase-space in a time-dependent fashion. This is twofold: it provides a simplified and accessible language to non-physicists who wants to simulate quantum mechanical systems, at the same time it enables a different way to explore the laws of Physics. Moreover, it opens the way towards hybrid simulations of quantum systems by combining full quantum models with cellular automata when the former fail. In order to show the validity of the suggested cellular automaton and its combination with the signed particle formalism, several numerical experiments are performed, showing very promising results. Being this article a preliminary study on quantum simulations in phase-space by means of cellular automata, some conclusions are drawn about the encouraging results obtained so far and the possible future developments.

  19. A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization.

    PubMed

    Vafaee Sharbaf, Fatemeh; Mosafer, Sara; Moattar, Mohammad Hossein

    2016-06-01

    This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [A Cellular Automata Model for a Community Comprising Two Plant Species of Different Growth Forms].

    PubMed

    Frolov, P V; Zubkova, E V; Komarov, A S

    2015-01-01

    A cellular automata computer model for the interactions between two plant species of different growth forms--the lime hairgrass Deschampsia caespitosa (L.) P. Beauv., a sod cereal, and the moneywort Lysimachia nummularia L., a ground creeping perennial herb--is considered. Computer experiments on the self-maintenance of the populations of each species against the background of a gradual increase in the share of randomly eliminated individuals, coexistence of the populations of two species, and the effect of the phytogenous field have been conducted. As has been shown, all the studied factors determine the number of individuals and self-sustainability of the simulated populations by the degree of their impact. The limits of action have been determined for individual factors; within these limits, the specific features in plant reproduction and dispersal provide sustainable coexistence of the simulated populations. It has been demonstrated that the constructed model allows for studying the long-term developmental dynamics of the plants belonging to the selected growth forms.

  1. Behavioral Modeling Based on Probabilistic Finite Automata: An Empirical Study.

    PubMed

    Tîrnăucă, Cristina; Montaña, José L; Ontañón, Santiago; González, Avelino J; Pardo, Luis M

    2016-06-24

    Imagine an agent that performs tasks according to different strategies. The goal of Behavioral Recognition (BR) is to identify which of the available strategies is the one being used by the agent, by simply observing the agent's actions and the environmental conditions during a certain period of time. The goal of Behavioral Cloning (BC) is more ambitious. In this last case, the learner must be able to build a model of the behavior of the agent. In both settings, the only assumption is that the learner has access to a training set that contains instances of observed behavioral traces for each available strategy. This paper studies a machine learning approach based on Probabilistic Finite Automata (PFAs), capable of achieving both the recognition and cloning tasks. We evaluate the performance of PFAs in the context of a simulated learning environment (in this case, a virtual Roomba vacuum cleaner robot), and compare it with a collection of other machine learning approaches.

  2. Fast and Epsilon-Optimal Discretized Pursuit Learning Automata.

    PubMed

    Zhang, JunQi; Wang, Cheng; Zhou, MengChu

    2015-10-01

    Learning automata (LA) are powerful tools for reinforcement learning. A discretized pursuit LA is the most popular one among them. During an iteration its operation consists of three basic phases: 1) selecting the next action; 2) finding the optimal estimated action; and 3) updating the state probability. However, when the number of actions is large, the learning becomes extremely slow because there are too many updates to be made at each iteration. The increased updates are mostly from phases 1 and 3. A new fast discretized pursuit LA with assured ε -optimality is proposed to perform both phases 1 and 3 with the computational complexity independent of the number of actions. Apart from its low computational complexity, it achieves faster convergence speed than the classical one when operating in stationary environments. This paper can promote the applications of LA toward the large-scale-action oriented area that requires efficient reinforcement learning tools with assured ε -optimality, fast convergence speed, and low computational complexity for each iteration.

  3. Synthesis of a Neutral Mixed-Valence Diferrocenyl Carborane for Molecular Quantum-Dot Cellular Automata Applications.

    PubMed

    Christie, John A; Forrest, Ryan P; Corcelli, Steven A; Wasio, Natalie A; Quardokus, Rebecca C; Brown, Ryan; Kandel, S Alex; Lu, Yuhui; Lent, Craig S; Henderson, Kenneth W

    2015-12-14

    The preparation of 7-Fc(+) -8-Fc-7,8-nido-[C2 B9 H10 ](-) (Fc(+) FcC2 B9 (-) ) demonstrates the successful incorporation of a carborane cage as an internal counteranion bridging between ferrocene and ferrocenium units. This neutral mixed-valence Fe(II) /Fe(III) complex overcomes the proximal electronic bias imposed by external counterions, a practical limitation in the use of molecular switches. A combination of UV/Vis-NIR spectroscopic and TD-DFT computational studies indicate that electron transfer within Fc(+) FcC2 B9 (-) is achieved through a bridge-mediated mechanism. This electronic framework therefore provides the possibility of an all-neutral null state, a key requirement for the implementation of quantum-dot cellular automata (QCA) molecular computing. The adhesion, ordering, and characterization of Fc(+) FcC2 B9 (-) on Au(111) has been observed by scanning tunneling microscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Authorship attribution based on Life-Like Network Automata.

    PubMed

    Machicao, Jeaneth; Corrêa, Edilson A; Miranda, Gisele H B; Amancio, Diego R; Bruno, Odemir M

    2018-01-01

    The authorship attribution is a problem of considerable practical and technical interest. Several methods have been designed to infer the authorship of disputed documents in multiple contexts. While traditional statistical methods based solely on word counts and related measurements have provided a simple, yet effective solution in particular cases; they are prone to manipulation. Recently, texts have been successfully modeled as networks, where words are represented by nodes linked according to textual similarity measurements. Such models are useful to identify informative topological patterns for the authorship recognition task. However, there is no consensus on which measurements should be used. Thus, we proposed a novel method to characterize text networks, by considering both topological and dynamical aspects of networks. Using concepts and methods from cellular automata theory, we devised a strategy to grasp informative spatio-temporal patterns from this model. Our experiments revealed an outperformance over structural analysis relying only on topological measurements, such as clustering coefficient, betweenness and shortest paths. The optimized results obtained here pave the way for a better characterization of textual networks.

  5. Computer simulation of a cellular automata model for the immune response in a retrovirus system

    NASA Astrophysics Data System (ADS)

    Pandey, R. B.

    1989-02-01

    Immune response in a retrovirus system is modeled by a network of three binary cell elements to take into account some of the main functional features of T4 cells, T8 cells, and viruses. Two different intercell interactions are introduced, one of which leads to three fixed points while the other yields bistable fixed points oscillating between a healthy state and a sick state in a mean field treatment. Evolution of these cells is studied for quenched and annealed random interactions on a simple cubic lattice with a nearest neighbor interaction using inhomogenous cellular automata. Populations of T4 cells and viral cells oscillate together with damping (with constant amplitude) for annealed (quenched) interaction on increasing the value of mixing probability B from zero to a characteristic value B ca ( B cq). For higher B, the average number of T4 cells increases while that of the viral infected cells decreases monotonically on increasing B, suggesting a phase transition at B ca ( B cq).

  6. Critical Behavior in Cellular Automata Animal Disease Transmission Model

    NASA Astrophysics Data System (ADS)

    Morley, P. D.; Chang, Julius

    Using cellular automata model, we simulate the British Government Policy (BGP) in the 2001 foot and mouth epidemic in Great Britain. When clinical symptoms of the disease appeared in a farm, there is mandatory slaughter (culling) of all livestock in an infected premise (IP). Those farms in the neighboring of an IP (contiguous premise, CP), are also culled, aka nearest neighbor interaction. Farms where the disease may be prevalent from animal, human, vehicle or airborne transmission (dangerous contact, DC), are additionally culled, aka next-to-nearest neighbor interactions and lightning factor. The resulting mathematical model possesses a phase transition, whereupon if the physical disease transmission kernel exceeds a critical value, catastrophic loss of animals ensues. The nonlocal disease transport probability can be as low as 0.01% per day and the disease can still be in the high mortality phase. We show that the fundamental equation for sustainable disease transport is the criticality equation for neutron fission cascade. Finally, we calculate that the percentage of culled animals that are actually healthy is ≈30%.

  7. Statistical learning and the challenge of syntax: Beyond finite state automata

    NASA Astrophysics Data System (ADS)

    Elman, Jeff

    2003-10-01

    Over the past decade, it has been clear that even very young infants are sensitive to the statistical structure of language input presented to them, and use the distributional regularities to induce simple grammars. But can such statistically-driven learning also explain the acquisition of more complex grammar, particularly when the grammar includes recursion? Recent claims (e.g., Hauser, Chomsky, and Fitch, 2002) have suggested that the answer is no, and that at least recursion must be an innate capacity of the human language acquisition device. In this talk evidence will be presented that indicates that, in fact, statistically-driven learning (embodied in recurrent neural networks) can indeed enable the learning of complex grammatical patterns, including those that involve recursion. When the results are generalized to idealized machines, it is found that the networks are at least equivalent to Push Down Automata. Perhaps more interestingly, with limited and finite resources (such as are presumed to exist in the human brain) these systems demonstrate patterns of performance that resemble those in humans.

  8. Modeling Reality - How Computers Mirror Life

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Iwona

    2005-01-01

    The bookModeling Reality covers a wide range of fascinating subjects, accessible to anyone who wants to learn about the use of computer modeling to solve a diverse range of problems, but who does not possess a specialized training in mathematics or computer science. The material presented is pitched at the level of high-school graduates, even though it covers some advanced topics (cellular automata, Shannon's measure of information, deterministic chaos, fractals, game theory, neural networks, genetic algorithms, and Turing machines). These advanced topics are explained in terms of well known simple concepts: Cellular automata - Game of Life, Shannon's formula - Game of twenty questions, Game theory - Television quiz, etc. The book is unique in explaining in a straightforward, yet complete, fashion many important ideas, related to various models of reality and their applications. Twenty-five programs, written especially for this book, are provided on an accompanying CD. They greatly enhance its pedagogical value and make learning of even the more complex topics an enjoyable pleasure.

  9. Experimental Studies of Quasi-Adiabatic Quantum-dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Orlov, Alexei; Amlani, Islamshah; Kummamuru, Ravi; Toth, Geza; Bernstein, Gary; Lent, Craig; Snider, Gregory

    2000-03-01

    The computational approach known as Quantum-dot Cellular Automata (QCA) uses interacting quantum dots to encode and process binary information. The first realization of a functioning QCA cell has already been reported. Recently, quasi-adiabatic switching of QCA in a metal dot system near the instantaneous ground state was proposed [1]. The advantage if this approach is that it allows both logic and addressable memory to be implemented within the QCA framework. We report on the fabrication and measurement of such a device in the Al-AlOx tunnel junction system. This basic building block consists of three metal islands connected in series by tunnel junctions, where an electron can be moved between islands by means of electrostatic perturbation on either control electrodes or adjacent cells. The cell can have three operational modes, i.e. active, locked and null, which provide a solution for ground state computing that is not susceptible to metastable states. [1] G. Toth and C. S. Lent, J. appl. Phys. 85 5, 2977-2984, 1999.

  10. A Model-Driven Development Method for Management Information Systems

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  11. Ca-Pri a Cellular Automata Phenomenological Research Investigation: Simulation Results

    NASA Astrophysics Data System (ADS)

    Iannone, G.; Troisi, A.

    2013-05-01

    Following the introduction of a phenomenological cellular automata (CA) model capable to reproduce city growth and urban sprawl, we develop a toy model simulation considering a realistic framework. The main characteristic of our approach is an evolution algorithm based on inhabitants preferences. The control of grown cells is obtained by means of suitable functions which depend on the initial condition of the simulation. New born urban settlements are achieved by means of a logistic evolution of the urban pattern while urban sprawl is controlled by means of the population evolution function. In order to compare model results with a realistic urban framework we have considered, as the area of study, the island of Capri (Italy) in the Mediterranean Sea. Two different phases of the urban evolution on the island have been taken into account: a new born initial growth as induced by geographic suitability and the simulation of urban spread after 1943 induced by the population evolution after this date.

  12. Stochastic cellular automata model for stock market dynamics

    NASA Astrophysics Data System (ADS)

    Bartolozzi, M.; Thomas, A. W.

    2004-04-01

    In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a two-dimensional grid. Active traders are characterized by the decision to buy, σi (t)=+1 , or sell, σi (t)=-1 , a stock at a certain discrete time step. The remaining cells are inactive, σi (t)=0 . The trading dynamics is then determined by the stochastic interaction between traders belonging to the same cluster. Extreme, intermittent events, such as crashes or bubbles, are triggered by a phase transition in the state of the bigger clusters present on the grid, where almost all the active traders come to share the same spin orientation. Most of the stylized aspects of the financial market time series, including multifractal proprieties, are reproduced by the model. A direct comparison is made with the daily closures of the S&P500 index.

  13. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  14. An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Seyedi, Saeid; Navimipour, Nima Jafari

    2018-03-01

    Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal-Oxide-Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.

  15. Discovering Sentinel Rules for Business Intelligence

    NASA Astrophysics Data System (ADS)

    Middelfart, Morten; Pedersen, Torben Bach

    This paper proposes the concept of sentinel rules for multi-dimensional data that warns users when measure data concerning the external environment changes. For instance, a surge in negative blogging about a company could trigger a sentinel rule warning that revenue will decrease within two months, so a new course of action can be taken. Hereby, we expand the window of opportunity for organizations and facilitate successful navigation even though the world behaves chaotically. Since sentinel rules are at the schema level as opposed to the data level, and operate on data changes as opposed to absolute data values, we are able to discover strong and useful sentinel rules that would otherwise be hidden when using sequential pattern mining or correlation techniques. We present a method for sentinel rule discovery and an implementation of this method that scales linearly on large data volumes.

  16. Atmospheric Downscaling using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Zerenner, Tanja; Venema, Victor; Simmer, Clemens

    2013-04-01

    Coupling models for the different components of the Soil-Vegetation-Atmosphere-System requires up-and downscaling procedures. Subject of our work is the downscaling scheme used to derive high resolution forcing data for land-surface and subsurface models from coarser atmospheric model output. The current downscaling scheme [Schomburg et. al. 2010, 2012] combines a bi-quadratic spline interpolation, deterministic rules and autoregressive noise. For the development of the scheme, training and validation data sets have been created by carrying out high-resolution runs of the atmospheric model. The deterministic rules in this scheme are partly based on known physical relations and partly determined by an automated search for linear relationships between the high resolution fields of the atmospheric model output and high resolution data on surface characteristics. Up to now deterministic rules are available for downscaling surface pressure and partially, depending on the prevailing weather conditions, for near surface temperature and radiation. Aim of our work is to improve those rules and to find deterministic rules for the remaining variables, which require downscaling, e.g. precipitation or near surface specifc humidity. To accomplish that, we broaden the search by allowing for interdependencies between different atmospheric parameters, non-linear relations, non-local and time-lagged relations. To cope with the vast number of possible solutions, we use genetic programming, a method from machine learning, which is based on the principles of natural evolution. We are currently working with GPLAB, a Genetic Programming toolbox for Matlab. At first we have tested the GP system to retrieve the known physical rule for downscaling surface pressure, i.e. the hydrostatic equation, from our training data. We have found this to be a simple task to the GP system. Furthermore we have improved accuracy and efficiency of the GP solution by implementing constant variation and optimization as genetic operators. Next we have worked on an improvement of the downscaling rule for the two-meter-temperature. We have added an if-function with four input arguments to the function set. Since this has shown to increase bloat we have additionally modified our fitness function by including penalty terms for both the size of the solutions and the number intron nodes, i.e program parts that are never evaluated. Starting from the known downscaling rule for the two-meter temperature, which linearly exploits the orography anomalies allowed or disallowed by a certain temperature gradient, our GP system has been able to find an improvement. The rule produced by the GP clearly shows a better performance concerning the reproduced small-scale variability.

  17. A fuzzy controller with nonlinear control rules is the sum of a global nonlinear controller and a local nonlinear PI-like controller

    NASA Technical Reports Server (NTRS)

    Ying, Hao

    1993-01-01

    The fuzzy controllers studied in this paper are the ones that employ N trapezoidal-shaped members for input fuzzy sets, Zadeh fuzzy logic and a centroid defuzzification algorithm for output fuzzy set. The author analytically proves that the structure of the fuzzy controllers is the sum of a global nonlinear controller and a local nonlinear proportional-integral-like controller. If N approaches infinity, the global controller becomes a nonlinear controller while the local controller disappears. If linear control rules are used, the global controller becomes a global two-dimensional multilevel relay which approaches a global linear proportional-integral (PI) controller as N approaches infinity.

  18. Modified Kramers-Kronig relations and sum rules for meromorphic total refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peiponen, Kai-Erik; Saarinen, Jarkko J.; Vartiainen, Erik M.

    2003-08-01

    Modified Kramers-Kronig relations and corresponding sum rules are shown to hold for the total refractive index that can be presented as a sum of complex linear and nonlinear refractive indices, respectively. It is suggested that a self-action process, involving the degenerate third-order nonlinear susceptibility, can yield a negative total refractive index at some spectral range.

  19. A Brief Historical Introduction to Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  20. The Synthesis of Intelligent Real-Time Systems

    DTIC Science & Technology

    1990-11-09

    Synthesis of Intelligent Real - Time Systems . The purpose of the effort was to develop and extend theories and techniques that facilitate the design and...implementation of intelligent real - time systems . In particular, Teleos has extended situated-automata theory to apply to situations in which the system has

Top