Science.gov

Sample records for automated 3-d voxel

  1. Automated Coarse Registration of Point Clouds in 3d Urban Scenes Using Voxel Based Plane Constraint

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U.

    2017-09-01

    For obtaining a full coverage of 3D scans in a large-scale urban area, the registration between point clouds acquired via terrestrial laser scanning (TLS) is normally mandatory. However, due to the complex urban environment, the automatic registration of different scans is still a challenging problem. In this work, we propose an automatic marker free method for fast and coarse registration between point clouds using the geometric constrains of planar patches under a voxel structure. Our proposed method consists of four major steps: the voxelization of the point cloud, the approximation of planar patches, the matching of corresponding patches, and the estimation of transformation parameters. In the voxelization step, the point cloud of each scan is organized with a 3D voxel structure, by which the entire point cloud is partitioned into small individual patches. In the following step, we represent points of each voxel with the approximated plane function, and select those patches resembling planar surfaces. Afterwards, for matching the corresponding patches, a RANSAC-based strategy is applied. Among all the planar patches of a scan, we randomly select a planar patches set of three planar surfaces, in order to build a coordinate frame via their normal vectors and their intersection points. The transformation parameters between scans are calculated from these two coordinate frames. The planar patches set with its transformation parameters owning the largest number of coplanar patches are identified as the optimal candidate set for estimating the correct transformation parameters. The experimental results using TLS datasets of different scenes reveal that our proposed method can be both effective and efficient for the coarse registration task. Especially, for the fast orientation between scans, our proposed method can achieve a registration error of less than around 2 degrees using the testing datasets, and much more efficient than the classical baseline methods.

  2. Evaluation of brain perfusion in specific Brodmann areas in Frontotemporal dementia and Alzheimer disease using automated 3-D voxel based analysis

    NASA Astrophysics Data System (ADS)

    Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.

    2009-05-01

    Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.

  3. Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian–Eulerian PDE approach using partial volume maps

    PubMed Central

    Acosta, Oscar; Bourgeat, Pierrick; Zuluaga, Maria A.; Fripp, Jurgen; Salvado, Olivier; Ourselin, Sébastien

    2010-01-01

    Accurate cortical thickness estimation is important for the study of many neurodegenerative diseases. Many approaches have been previously proposed, which can be broadly categorised as mesh-based and voxel-based. While the mesh-based approaches can potentially achieve subvoxel resolution, they usually lack the computational efficiency needed for clinical applications and large database studies. In contrast, voxel-based approaches, are computationally efficient, but lack accuracy. The aim of this paper is to propose a novel voxel-based method based upon the Laplacian definition of thickness that is both accurate and computationally efficient. A framework was developed to estimate and integrate the partial volume information within the thickness estimation process. Firstly, in a Lagrangian step, the boundaries are initialized using the partial volume information. Subsequently, in an Eulerian step, a pair of partial differential equations are solved on the remaining voxels to finally compute the thickness. Using partial volume information significantly improved the accuracy of the thickness estimation on synthetic phantoms, and improved reproducibility on real data. Significant differences in the hippocampus and temporal lobe between healthy controls (NC), mild cognitive impaired (MCI) and Alzheimer’s disease (AD) patients were found on clinical data from the ADNI database. We compared our method in terms of precision, computational speed and statistical power against the Eulerian approach. With a slight increase in computation time, accuracy and precision were greatly improved. Power analysis demonstrated the ability of our method to yield statistically significant results when comparing AD and NC. Overall, with our method the number of samples is reduced by 25% to find significant differences between the two groups. PMID:19648050

  4. Voxel Datacubes for 3D Visualization in Blender

    NASA Astrophysics Data System (ADS)

    Gárate, Matías

    2017-05-01

    The growth of computational astrophysics and the complexity of multi-dimensional data sets evidences the need for new versatile visualization tools for both the analysis and presentation of the data. In this work, we show how to use the open-source software Blender as a three-dimensional (3D) visualization tool to study and visualize numerical simulation results, focusing on astrophysical hydrodynamic experiments. With a datacube as input, the software can generate a volume rendering of the 3D data, show the evolution of a simulation in time, and do a fly-around camera animation to highlight the points of interest. We explain the process to import simulation outputs into Blender using the voxel data format, and how to set up a visualization scene in the software interface. This method allows scientists to perform a complementary visual analysis of their data and display their results in an appealing way, both for outreach and science presentations.

  5. Voxel-coding method for quantification of vascular structure from 3D images

    NASA Astrophysics Data System (ADS)

    Soltanian-Zadeh, Hamid; Shahrokni, Ali; Zoroofi, Reza A.

    2001-05-01

    This paper presents an image processing method for information extraction from 3D images of vasculature. It automates the study of vascular structures by extracting quantitative information such as skeleton, length, diameter, and vessel-to- tissue ratio for different vessels as well as their branches. Furthermore, it generates 3D visualization of vessels based on desired anatomical characteristics such as vessel diameter or 3D connectivity. Steps of the proposed approach are as follows. (1) Preprocessing, in which intensity adjustment, optimal thresholding, and median filtering are done. (2) 3D thinning, in which medial axis and skeleton of the vessels are found. (3) Branch labeling, in which different branches are identified and each voxel is assigned to the corresponding branch. (4) Quantitation, in which length of each branch is estimated, based on the number of voxels assigned to it, and its diameter is calculated using the medial axis direction. (5) Visualization, in which vascular structure is shown in 3D, using color coding and surface rendering methods. We have tested and evaluated the proposed algorithms using simulated images of multi-branch vessels and real confocal microscopic images of the vessels in rat brains. Experimental results illustrate performance of the methods and usefulness of the results for medical image analysis applications.

  6. Real-time 3D human pose recognition from reconstructed volume via voxel classifiers

    NASA Astrophysics Data System (ADS)

    Yoo, ByungIn; Choi, Changkyu; Han, Jae-Joon; Lee, Changkyo; Kim, Wonjun; Suh, Sungjoo; Park, Dusik; Kim, Junmo

    2014-03-01

    This paper presents a human pose recognition method which simultaneously reconstructs a human volume based on ensemble of voxel classifiers from a single depth image in real-time. The human pose recognition is a difficult task since a single depth camera can capture only visible surfaces of a human body. In order to recognize invisible (self-occluded) surfaces of a human body, the proposed algorithm employs voxel classifiers trained with multi-layered synthetic voxels. Specifically, ray-casting onto a volumetric human model generates a synthetic voxel, where voxel consists of a 3D position and ID corresponding to the body part. The synthesized volumetric data which contain both visible and invisible body voxels are utilized to train the voxel classifiers. As a result, the voxel classifiers not only identify the visible voxels but also reconstruct the 3D positions and the IDs of the invisible voxels. The experimental results show improved performance on estimating the human poses due to the capability of inferring the invisible human body voxels. It is expected that the proposed algorithm can be applied to many fields such as telepresence, gaming, virtual fitting, wellness business, and real 3D contents control on real 3D displays.

  7. 3D-printed microfluidic automation.

    PubMed

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.

  8. 3D-Printed Microfluidic Automation

    PubMed Central

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  9. Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information

    NASA Astrophysics Data System (ADS)

    Hosoi, F.

    2014-12-01

    Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of

  10. Automated Serial Sectioning for 3D Reconstruction

    NASA Technical Reports Server (NTRS)

    Alkemper, Jen; Voorhees, Peter W.

    2003-01-01

    Some aspects of an apparatus and method for automated serial sectioning of a specimen of a solder, aluminum, or other relatively soft opaque material are discussed. The apparatus includes a small milling machine (micromiller) that takes precise, shallow cuts (increments of depth as small as 1 micron) to expose successive sections. A microscope equipped with an electronic camera, mounted in a fixed position on the micromiller, takes pictures of the newly exposed specimen surface at each increment of depth. The images are digitized, and the resulting data are subsequently processed to reconstruct three-dimensional (3D) features of the specimen.

  11. Automated modeling of RNA 3D structure.

    PubMed

    Rother, Kristian; Rother, Magdalena; Skiba, Pawel; Bujnicki, Janusz M

    2014-01-01

    This chapter gives an overview over the current methods for automated modeling of RNA structures, with emphasis on template-based methods. The currently used approaches to RNA modeling are presented with a side view on the protein world, where many similar ideas have been used. Two main programs for automated template-based modeling are presented: ModeRNA assembling structures from fragments and MacroMoleculeBuilder performing a simulation to satisfy spatial restraints. Both approaches have in common that they require an alignment of the target sequence to a known RNA structure that is used as a modeling template. As a way to find promising template structures and to align the target and template sequences, we propose a pipeline combining the ParAlign and Infernal programs on RNA family data from Rfam. We also briefly summarize template-free methods for RNA 3D structure prediction. Typically, RNA structures generated by automated modeling methods require local or global optimization. Thus, we also discuss methods that can be used for local or global refinement of RNA structures.

  12. 3D change detection in staggered voxels model for robotic sensing and navigation

    NASA Astrophysics Data System (ADS)

    Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.

    2016-05-01

    3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.

  13. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity.

    PubMed

    Cooper, David; Turinsky, Andrei; Sensen, Christoph; Hallgrimsson, Benedikt

    2007-03-01

    This study examines the impact of voxel size on 3D micro-CT analysis of human cortical bone porosity. The study is based on computed microtomography scans of 10 human anterior femoral midshaft specimens acquired at 5, 10, and 15 microm voxel sizes. Artificial voxel sizes (10, 20, and 40 microm) were generated from the smallest scan voxel size (5 microm) in order to compare actual scanning with artificial degradation, a method employed in other similar studies. Canal volume fraction (CaV/TV), canal surface to volume ratio (CaS/CaV), mean canal diameter (CaDm), mean canal separation (CaSp), canal number (CaN), degree of anisotropy (DA), and canal connectivity density (CaConnD) were calculated from matching volumes of interest for all datasets. Qualitatively, the clarity of the actual scan datasets deteriorated rapidly as voxel size increased. In contrast, within the artificially generated datasets, the clarity of cortical pores was better maintained until the largest voxel size (40 microm). Mean absolute percent error values, correlation coefficients, and paired t-tests revealed a pattern of increasing, and generally significant, differences between the smallest and progressively larger voxel sizes (both scanned and artificial). Relative to the actual scans, however, the artificial datasets were less sensitive to changing voxel size. These findings indicated that subtle changes in voxel size, within the range examined, have a considerable effect on human cortical porosity structural parameters. Additionally, the use of artificially increased voxel sizes should be viewed with caution as they may not reflect what can actually be obtained by scanning.

  14. Calculation of Dose Deposition in 3D Voxels by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to

  15. 3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method.

    PubMed

    Abella, V; Miró, R; Juste, B; Verdú, G

    2010-01-01

    The aim of this work is to provide the reconstruction of a real human voxelized phantom by means of a MatLab program and the simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) (60)Co radiotherapy unit, by using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project results in 3D dose mapping calculations inside the voxelized antropomorphic head phantom. The program provides the voxelization by first processing the CT slices; the process follows a two-dimensional pixel and material identification algorithm on each slice and three-dimensional interpolation in order to describe the phantom geometry via small cubic cells, resulting in an MCNP input deck format output. Dose rates are calculated by using the MCNP5 tool FMESH, superimposed mesh tally, which gives the track length estimation of the particle flux in units of particles/cm(2). Furthermore, the particle flux is converted into dose by using the conversion coefficients extracted from the NIST Physical Reference Data. The voxelization using a three-dimensional interpolation technique in combination with the use of the FMESH tool of the MCNP Monte Carlo code offers an optimal simulation which results in 3D dose mapping calculations inside anthropomorphic phantoms. This tool is very useful in radiation treatment assessments, in which voxelized phantoms are widely utilized. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Automated robust generation of compact 3D statistical shape models

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  17. Accuracy of Voxel-Based and Algebraic Formula-Based Methods in Quantifying Cerebral Aneurysm Volume by 3D-Rotational Digital Subtraction Angiography

    PubMed Central

    Fanning, N.F.; O'dwyer, H.M.; Bowden, J.A.B.; Brennan, P.R.; Thornton, J.

    2005-01-01

    Summary Accurate knowledge of cerebral aneurysm volume would be valuable in guiding the volume of embolized material required for optimal filling of an aneurysm sac and recording percentage volume filling. Algebraic volumes are frequently estimated by algebraic volume formulae. 3D digital subtraction angiography (DSA) aids endovascular treatment planning and yields volumetric data. Our aim was to define the accuracy of 3D-DSA in quantifying aneurysm volume using an automated voxel-based volumetric method (voxel volume method) and compare results to volumes calculated by ellipsoid and cylindrical algebraic formulae (algebraic volume method). We constructed 13 latex aneurysm moulds and measured their true volumes using a micro-pipette in-vitro. 3D-DSA was performed on contrast filled moulds and experimental volume estimated by both voxel and algebraic methods. In our in-vivo study we quantified the voxel and algebraic volumes from the 3D data sets of 75 cerebral aneurysms. The linear regression test provided correction values between voxel and algebraic methods. The in-vitro study showed that the voxel volume method was the most accurate (mean percentage deviation from true volume 3.7 ±3.5%; p = 0.9). The ellipsoid method significantly underestimated -11.2 ±13.6%; p<0.05) and the cylindrical method overestimated (42.6±35.7%; p<0.05) true aneurysm volume. Similar results were obtained in-vivo. While algebraic measurements could be corrected by an equation, the clinical usefulness of this equation is questionable due to the large volume range to achieve a 95% confidence interval. The voxel volume method is accurate in quantifying aneurysm volume. Aneurysms in-vivo do not conform to simple algebraic geometry. Aneurysm volume on 3D-DSA should be calculated by the voxel-based method and not by algebraic formulae. PMID:20584433

  18. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT

    PubMed Central

    Maret, D; Telmon, N; Peters, O A; Lepage, B; Treil, J; Inglèse, J M; Peyre, A; Kahn, J L; Sixou, M

    2012-01-01

    Objectives The various types of cone beam CT (CBCT) differ in several technical characteristics, notably their spatial resolution, which is defined by the acquisition voxel size. However, data are still lacking on the effects of voxel size on the metric accuracy of three-dimensional (3D) reconstructions. This study was designed to assess the effect of isotropic voxel size on the 3D reconstruction accuracy and reproducibility of CBCT data. Methods The study sample comprised 70 teeth (from the Institut d’Anatomie Normale, Strasbourg, France). The teeth were scanned with a KODAK 9500 3D® CBCT (Carestream Health, Inc., Marne-la-Vallée, France), which has two voxel sizes: 200 µm (CBCT 200 µm group) and 300 µm (CBCT 300 µm group). These teeth had also been scanned with the KODAK 9000 3D® CBCT (Carestream Health, Inc.) (CBCT 76 µm group) and the SCANCO Medical micro-CT XtremeCT (SCANCO Medical, Brüttisellen, Switzerland) (micro-CT 41 µm group) considered as references. After semi-automatic segmentation with AMIRA® software (Visualization Sciences Group, Burlington, MA), tooth volumetric measurements were obtained. Results The Bland–Altman method showed no difference in tooth volumes despite a slight underestimation for the CBCT 200 µm and 300 µm groups compared with the two reference groups. The underestimation was statistically significant for the volumetric measurements of the CBCT 300 µm group relative to the two reference groups (Passing–Bablok method). Conclusions CBCT is not only a tool that helps in diagnosis and detection but it has the complementary advantage of being a measuring instrument, the accuracy of which appears connected to the size of the voxels. Future applications of such measurements with CBCT are discussed. PMID:23166362

  19. 3D voxel modelling of the marine subsurface: the Belgian Continental Shelf case

    NASA Astrophysics Data System (ADS)

    Hademenos, Vasileios; Kint, Lars; Missiaen, Tine; Stafleu, Jan; Van Lancker, Vera

    2017-04-01

    The need for marine space grows bigger by the year. Dredging, wind farms, aggregate extraction and many other activities take up more space than ever before. As a result, the need for an accurate model that describes the properties of the areas in use is a priority. To address this need a 3D voxel model of the subsurface of the Belgian part of the North Sea has been created in the scope of the Belgian Science Policy project TILES ('Transnational and Integrated Long-term Marine Exploitation Strategies'). Since borehole data in the marine environment are a costly endeavour and therefore relatively scarce, seismic data have been incorporated in order to improve the data coverage. Lithostratigraphic units have been defined and lithoclasses are attributed to the voxels using a stochastic interpolation. As a result each voxel contains a unique value of one of 7 lithological classes (spanning in grain size from clay to gravel) in association with the geological layer it belongs to. In addition other forms of interpolation like sequential indicator simulation have allowed us to calculate the probability occurrence of each lithoclass, thus providing additional info from which the uncertainty of the model can be derived. The resulting 3D voxel model gives a detailed image of the distribution of different sediment types and provides valuable insight on the different geological settings. The voxel model also allows to estimate resource volumes (e.g. the availability of particular sand classes), enabling a more targeted exploitation. The primary information of the model is related to geology, but the model can additionally host any type of information.

  20. 3D sensitive voxel detector of ionizing radiation based on Timepix device

    NASA Astrophysics Data System (ADS)

    Soukup, P.; Jakubek, J.; Vykydal, Z.

    2011-01-01

    Position sensitive detectors are evolving towards higher segmentation geometries from 0D (single pad) over 1D (strip) to 2D (pixel) detectors. Each step has brought up substantial expansion in the field of applications. The next logical step in this evolution is to design a 3D, i.e. voxel detector. The voxel detector can be constructed from 2D volume element detectors arranged in layers forming a 3D matrix of sensitive elements — voxels. Such detectors can effectively record tracks of energetic particles. By proper analysis of these tracks it is possible to determine the type, direction and energy of the primary particle. One of the prominent applications of such device is in the localization and identification of gamma and neutron sources in the environment. It can be also used for emission and transmission radiography in many fields where standard imagers are currently utilized. The qualitative properties of current imagers such as: spatial resolution, efficiency, directional sensitivity, energy sensitivity and selectivity (background suppression) can be improved. The first prototype of a voxel detector was built using a number of Timepix devices. Timepix is hybrid semiconductor detector consisting of a segmented semiconductor sensor bump-bonded to a readout chip. Each sensor contains 256x256 square pixels of 55 μm size. The voxel detector prototype was successfully tested to prove the concept functionality. The detector has a modular architecture with a daisy chain connection of the individual detector layers. This permits easy rearrangement due to its modularity, while keeping a single readout system for a variable number of detector layers. A limitation of this approach is the relatively large inter-layer distance (4 mm) compared to the pixel thickness (0.3 mm). Therefore the next step in the design is to decrease the space between the 2D detectors.

  1. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT.

    PubMed

    Maret, D; Telmon, N; Peters, O A; Lepage, B; Treil, J; Inglèse, J M; Peyre, A; Kahn, J L; Sixou, M

    2012-12-01

    The various types of cone beam CT (CBCT) differ in several technical characteristics, notably their spatial resolution, which is defined by the acquisition voxel size. However, data are still lacking on the effects of voxel size on the metric accuracy of three-dimensional (3D) reconstructions. This study was designed to assess the effect of isotropic voxel size on the 3D reconstruction accuracy and reproducibility of CBCT data. The study sample comprised 70 teeth (from the Institut d'Anatomie Normale, Strasbourg, France). The teeth were scanned with a KODAK 9500 3D® CBCT (Carestream Health, Inc., Marne-la-Vallée, France), which has two voxel sizes: 200 µm (CBCT 200 µm group) and 300 µm (CBCT 300 µm group). These teeth had also been scanned with the KODAK 9000 3D® CBCT (Carestream Health, Inc.) (CBCT 76 µm group) and the SCANCO Medical micro-CT XtremeCT (SCANCO Medical, Brüttisellen, Switzerland) (micro-CT 41 µm group) considered as references. After semi-automatic segmentation with AMIRA® software (Visualization Sciences Group, Burlington, MA), tooth volumetric measurements were obtained. The Bland-Altman method showed no difference in tooth volumes despite a slight underestimation for the CBCT 200 µm and 300 µm groups compared with the two reference groups. The underestimation was statistically significant for the volumetric measurements of the CBCT 300 µm group relative to the two reference groups (Passing-Bablok method). CBCT is not only a tool that helps in diagnosis and detection but it has the complementary advantage of being a measuring instrument, the accuracy of which appears connected to the size of the voxels. Future applications of such measurements with CBCT are discussed.

  2. Voxel similarity measures for automated image registration

    NASA Astrophysics Data System (ADS)

    Hill, Derek L.; Studholme, Colin; Hawkes, David J.

    1994-09-01

    We present the concept of the feature space sequence: 2D distributions of voxel features of two images generated at registration and a sequence of misregistrations. We provide an explanation of the structure seen in these images. Feature space sequences have been generated for a pair of MR image volumes identical apart from the addition of Gaussian noise to one, MR image volumes with and without Gadolinium enhancement, MR and PET-FDG image volumes and MR and CT image volumes, all of the head. The structure seen in the feature space sequences was used to devise two new measures of similarity which in turn were used to produce plots of cost versus misregistration for the 6 degrees of freedom of rigid body motion. One of these, the third order moment of the feature space histogram, was used to register the MR image volumes with and without Gadolinium enhancement. These techniques have the potential for registration accuracy to within a small fraction of a voxel or resolution element and therefore interpolation errors in image transformation can be the dominant source of error in subtracted images. We present a method for removing these errors using sinc interpolation and show how interpolation errors can be reduced by over two orders of magnitude.

  3. Fast calculation of computer-generated holograms based on 3-D Fourier spectrum for omnidirectional diffraction from a 3-D voxel-based object.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko

    2012-09-10

    We have derived the basic spectral relation between a 3-D object and its 2-D diffracted wavefront by interpreting the diffraction calculation in the 3-D Fourier domain. Information on the 3-D object, which is inherent in the diffracted wavefront, becomes clear by using this relation. After the derivation, a method for obtaining the Fourier spectrum that is required to synthesize a hologram with a realistic sampling number for visible light is described. Finally, to verify the validity and the practicality of the above-mentioned spectral relation, fast calculation of a series of wavefronts radially diffracted from a 3-D voxel-based object is demonstrated.

  4. Automated 3D vascular segmentation in CT hepatic venography

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Lucidarme, Olivier; Preteux, Francoise

    2005-08-01

    In the framework of preoperative evaluation of the hepatic venous anatomy in living-donor liver transplantation or oncologic rejections, this paper proposes an automated approach for the 3D segmentation of the liver vascular structure from 3D CT hepatic venography data. The developed segmentation approach takes into account the specificities of anatomical structures in terms of spatial location, connectivity and morphometric properties. It implements basic and advanced morphological operators (closing, geodesic dilation, gray-level reconstruction, sup-constrained connection cost) in mono- and multi-resolution filtering schemes in order to achieve an automated 3D reconstruction of the opacified hepatic vessels. A thorough investigation of the venous anatomy including morphometric parameter estimation is then possible via computer-vision 3D rendering, interaction and navigation capabilities.

  5. Automated liver elasticity calculation for 3D MRE

    NASA Astrophysics Data System (ADS)

    Dzyubak, Bogdan; Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.

    2017-03-01

    Magnetic Resonance Elastography (MRE) is a phase-contrast MRI technique which calculates quantitative stiffness images, called elastograms, by imaging the propagation of acoustic waves in tissues. It is used clinically to diagnose liver fibrosis. Automated analysis of MRE is difficult as the corresponding MRI magnitude images (which contain anatomical information) are affected by intensity inhomogeneity, motion artifact, and poor tissue- and edge-contrast. Additionally, areas with low wave amplitude must be excluded. An automated algorithm has already been successfully developed and validated for clinical 2D MRE. 3D MRE acquires substantially more data and, due to accelerated acquisition, has exacerbated image artifacts. Also, the current 3D MRE processing does not yield a confidence map to indicate MRE wave quality and guide ROI selection, as is the case in 2D. In this study, extension of the 2D automated method, with a simple wave-amplitude metric, was developed and validated against an expert reader in a set of 57 patient exams with both 2D and 3D MRE. The stiffness discrepancy with the expert for 3D MRE was -0.8% +/- 9.45% and was better than discrepancy with the same reader for 2D MRE (-3.2% +/- 10.43%), and better than the inter-reader discrepancy observed in previous studies. There were no automated processing failures in this dataset. Thus, the automated liver elasticity calculation (ALEC) algorithm is able to calculate stiffness from 3D MRE data with minimal bias and good precision, while enabling stiffness measurements to be fully reproducible and to be easily performed on the large 3D MRE datasets.

  6. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  7. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    PubMed

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  8. Improving automated 3D reconstruction methods via vision metrology

    NASA Astrophysics Data System (ADS)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  9. An Automated 3d Indoor Topological Navigation Network Modelling

    NASA Astrophysics Data System (ADS)

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  10. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Automated building of organometallic complexes from 3D fragments.

    PubMed

    Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R

    2014-07-28

    A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry.

  12. Fully automated 2D-3D registration and verification.

    PubMed

    Varnavas, Andreas; Carrell, Tom; Penney, Graeme

    2015-12-01

    Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range.

  13. A voxelation-corrected non-stationary 3D cluster-size test based on random field theory.

    PubMed

    Li, Huanjie; Nickerson, Lisa D; Zhao, Xuna; Nichols, Thomas E; Gao, Jia-Hong

    2015-09-01

    Cluster-size tests (CSTs) based on random field theory (RFT) are commonly adopted to identify significant differences in brain images. However, the use of RFT in CSTs rests on the assumption of uniform smoothness (stationarity). When images are non-stationary, CSTs based on RFT will likely lead to increased false positives in smooth regions and reduced power in rough regions. An adjustment to the cluster size according to the local smoothness at each voxel has been proposed for the standard test based on RFT to address non-stationarity, however, this technique requires images with a large degree of spatial smoothing, large degrees of freedom and high intensity thresholding. Recently, we proposed a voxelation-corrected 3D CST based on Gaussian random field theory that does not place constraints on the degree of spatial smoothness. However, this approach is only applicable to stationary images, requiring further modification to enable use for non-stationary images. In this study, we present modifications of this method to develop a voxelation-corrected non-stationary 3D CST based on RFT. Both simulated and real data were used to compare the voxelation-corrected non-stationary CST to the standard cluster-size adjusted non-stationary CST based on RFT and the voxelation-corrected stationary CST. We found that voxelation-corrected stationary CST is liberal for non-stationary images and the voxelation-corrected non-stationary CST performs better than cluster-size adjusted non-stationary CST based on RFT under low smoothness, low intensity threshold and low degrees of freedom. Published by Elsevier Inc.

  14. Automating 3D reconstruction using a probabilistic grammar

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    3D reconstruction of objects from point clouds with a laser scanner is still a laborious task in many applications. Automating 3D process is an ongoing research topic and suffers from the complex structure of the data. The main difficulty is due to lack of knowledge of real world objects structure. In this paper, we accumulate such structure knowledge by a probabilistic grammar learned from examples in the same category. The rules of the grammar capture compositional structures at different levels, and a feature dependent probability function is attached for every rule. The learned grammar can be used to parse new 3D point clouds, organize segment patches in a hierarchal way, and assign them meaningful labels. The parsed semantics can be used to guide the reconstruction algorithms automatically. Some examples are given to explain the method.

  15. Computerized method for automated measurement of thickness of cerebral cortex for 3-D MR images

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Koga, Hiroshi; Sakai, Shuji; Mihara, Futoshi; Honda, Hiroshi; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2006-03-01

    Alzheimer's disease (AD) is associated with the degeneration of cerebral cortex, which results in focal volume change or thinning in the cerebral cortex in magnetic resonance imaging (MRI). Therefore, the measurement of the cortical thickness is important for detection of the atrophy related to AD. Our purpose was to develop a computerized method for automated measurement of the cortical thickness for three-dimensional (3-D) MRI. The cortical thickness was measured with normal vectors from white matter surface to cortical gray matter surface on a voxel-by-voxel basis. First, a head region was segmented by use of an automatic thresholding technique, and then the head region was separated into the cranium region and brain region by means of a multiple gray level thresholding with monitoring the ratio of the first maximum volume to the second one. Next, a fine white matter region was determined based on a level set method as a seed region of the rough white matter region extracted from the brain region. Finally, the cortical thickness was measured by extending normal vectors from the white matter surface to gray matter surface (brain surface) on a voxel-by-voxel basis. We applied the computerized method to high-resolution 3-D T1-weighted images of the whole brains from 7 clinically diagnosed AD patients and 8 healthy subjects. The average cortical thicknesses in the upper slices for AD patients were thinner than those for non-AD subjects, whereas the average cortical thicknesses in the lower slices for most AD patients were slightly thinner. Our preliminary results suggest that the MRI-based computerized measurement of gray matter atrophy is promising for detecting AD.

  16. Free and open-source automated 3-D microscope.

    PubMed

    Wijnen, Bas; Petersen, Emily E; Hunt, Emily J; Pearce, Joshua M

    2016-11-01

    Open-source technology not only has facilitated the expansion of the greater research community, but by lowering costs it has encouraged innovation and customizable design. The field of automated microscopy has continued to be a challenge in accessibility due the expense and inflexible, noninterchangeable stages. This paper presents a low-cost, open-source microscope 3-D stage. A RepRap 3-D printer was converted to an optical microscope equipped with a customized, 3-D printed holder for a USB microscope. Precision measurements were determined to have an average error of 10 μm at the maximum speed and 27 μm at the minimum recorded speed. Accuracy tests yielded an error of 0.15%. The machine is a true 3-D stage and thus able to operate with USB microscopes or conventional desktop microscopes. It is larger than all commercial alternatives, and is thus capable of high-depth images over unprecedented areas and complex geometries. The repeatability is below 2-D microscope stages, but testing shows that it is adequate for the majority of scientific applications. The open-source microscope stage costs less than 3-9% of the closest proprietary commercial stages. This extreme affordability vastly improves accessibility for 3-D microscopy throughout the world. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  17. Third generation anthropomorphic physical phantom for mammography and DBT: incorporating voxelized 3D printing and uniform chest wall QC region

    NASA Astrophysics Data System (ADS)

    Zhao, Christine; Solomon, Justin; Sturgeon, Gregory M.; Gehm, Michael E.; Catenacci, Matthew; Wiley, Benjamin J.; Samei, Ehsan; Lo, Joseph Y.

    2017-03-01

    Physical breast phantoms provide a standard method to test, optimize, and develop clinical mammography systems, including new digital breast tomosynthesis (DBT) systems. In previous work, we produced an anthropomorphic phantom based on 500x500x500 μm breast CT data using commercial 3D printing. We now introduce an improved phantom based on a new cohort of virtual models with 155x155x155 μm voxels and fabricated through voxelized 3D printing and dithering, which confer higher resolution and greater control over contrast. This new generation includes a uniform chest wall extension for evaluating conventional QC metrics. The uniform region contains a grayscale step wedge, chest wall coverage markers, fiducial markers, spheres, and metal ink stickers of line pairs and edges to assess contrast, resolution, artifact spread function, MTF, and other criteria. We also experimented with doping photopolymer material with calcium, iodine, and zinc to increase our current contrast. In particular, zinc was discovered to significantly increase attenuation beyond 100% breast density with a linear relationship between zinc concentration and attenuation or breast density. This linear relationship was retained when the zinc-doped material was applied in conjunction with 3D printing. As we move towards our long term goal of phantoms that are indistinguishable from patients, this new generation of anthropomorphic physical breast phantom validates our voxelized printing process, demonstrates the utility of a uniform QC region with features from 3D printing and metal ink stickers, and shows potential for improved contrast via doping.

  18. Automated Identification of Fiducial Points on 3D Torso Images

    PubMed Central

    Kawale, Manas M; Reece, Gregory P; Crosby, Melissa A; Beahm, Elisabeth K; Fingeret, Michelle C; Markey, Mia K; Merchant, Fatima A

    2013-01-01

    Breast reconstruction is an important part of the breast cancer treatment process for many women. Recently, 2D and 3D images have been used by plastic surgeons for evaluating surgical outcomes. Distances between different fiducial points are frequently used as quantitative measures for characterizing breast morphology. Fiducial points can be directly marked on subjects for direct anthropometry, or can be manually marked on images. This paper introduces novel algorithms to automate the identification of fiducial points in 3D images. Automating the process will make measurements of breast morphology more reliable, reducing the inter- and intra-observer bias. Algorithms to identify three fiducial points, the nipples, sternal notch, and umbilicus, are described. The algorithms used for localization of these fiducial points are formulated using a combination of surface curvature and 2D color information. Comparison of the 3D co-ordinates of automatically detected fiducial points and those identified manually, and geodesic distances between the fiducial points are used to validate algorithm performance. The algorithms reliably identified the location of all three of the fiducial points. We dedicate this article to our late colleague and friend, Dr. Elisabeth K. Beahm. Elisabeth was both a talented plastic surgeon and physician-scientist; we deeply miss her insight and her fellowship. PMID:25288903

  19. Automating the determination of 3D protein structure

    SciTech Connect

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  20. Automated multilayer segmentation and characterization in 3D spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wu, Xiaodong; Hariri, Amirhossein; Sadda, SriniVas R.

    2013-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a 3-D imaging technique, allowing direct visualization of retinal morphology and architecture. The various layers of the retina may be affected differentially by various diseases. In this study, an automated graph-based multilayer approach was developed to sequentially segment eleven retinal surfaces including the inner retinal bands to the outer retinal bands in normal SD-OCT volume scans at three different stages. For stage 1, the four most detectable and/or distinct surfaces were identified in the four-times-downsampled images and were used as a priori positional information to limit the graph search for other surfaces at stage 2. Eleven surfaces were then detected in the two-times-downsampled images at stage 2, and refined in the original image space at stage 3 using the graph search integrating the estimated morphological shape models. Twenty macular SD-OCT (Heidelberg Spectralis) volume scans from 20 normal subjects (one eye per subject) were used in this study. The overall mean and absolute mean differences in border positions between the automated and manual segmentation for all 11 segmented surfaces were -0.20 +/- 0.53 voxels (-0.76 +/- 2.06 μm) and 0.82 +/- 0.64 voxels (3.19 +/- 2.46 μm). Intensity and thickness properties in the resultant retinal layers were investigated. This investigation in normal subjects may provide a comparative reference for subsequent investigations in eyes with disease.

  1. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  2. Automated spatial alignment of 3D torso images.

    PubMed

    Bose, Arijit; Shah, Shishir K; Reece, Gregory P; Crosby, Melissa A; Beahm, Elisabeth K; Fingeret, Michelle C; Markey, Mia K; Merchant, Fatima A

    2011-01-01

    This paper describes an algorithm for automated spatial alignment of three-dimensional (3D) surface images in order to achieve a pre-defined orientation. Surface images of the torso are acquired from breast cancer patients undergoing reconstructive surgery to facilitate objective evaluation of breast morphology pre-operatively (for treatment planning) and/or post-operatively (for outcome assessment). Based on the viewing angle of the multiple cameras used for stereophotography, the orientation of the acquired torso in the images may vary from the normal upright position. Consequently, when translating this data into a standard 3D framework for visualization and analysis, the co-ordinate geometry differs from the upright position making robust and standardized comparison of images impractical. Moreover, manual manipulation and navigation of images to the desired upright position is subject to user bias. Automating the process of alignment and orientation removes operator bias and permits robust and repeatable adjustment of surface images to a pre-defined or desired spatial geometry.

  3. Automated 3D structure composition for large RNAs.

    PubMed

    Popenda, Mariusz; Szachniuk, Marta; Antczak, Maciej; Purzycka, Katarzyna J; Lukasiak, Piotr; Bartol, Natalia; Blazewicz, Jacek; Adamiak, Ryszard W

    2012-08-01

    Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues.

  4. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  5. Automated 3D structure composition for large RNAs

    PubMed Central

    Popenda, Mariusz; Szachniuk, Marta; Antczak, Maciej; Purzycka, Katarzyna J.; Lukasiak, Piotr; Bartol, Natalia; Blazewicz, Jacek; Adamiak, Ryszard W.

    2012-01-01

    Understanding the numerous functions that RNAs play in living cells depends critically on knowledge of their three-dimensional structure. Due to the difficulties in experimentally assessing structures of large RNAs, there is currently great demand for new high-resolution structure prediction methods. We present the novel method for the fully automated prediction of RNA 3D structures from a user-defined secondary structure. The concept is founded on the machine translation system. The translation engine operates on the RNA FRABASE database tailored to the dictionary relating the RNA secondary structure and tertiary structure elements. The translation algorithm is very fast. Initial 3D structure is composed in a range of seconds on a single processor. The method assures the prediction of large RNA 3D structures of high quality. Our approach needs neither structural templates nor RNA sequence alignment, required for comparative methods. This enables the building of unresolved yet native and artificial RNA structures. The method is implemented in a publicly available, user-friendly server RNAComposer. It works in an interactive mode and a batch mode. The batch mode is designed for large-scale modelling and accepts atomic distance restraints. Presently, the server is set to build RNA structures of up to 500 residues. PMID:22539264

  6. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  7. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    NASA Astrophysics Data System (ADS)

    Brücker, C.; Hess, D.; Kitzhofer, J.

    2013-02-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255-63, 1996a Appl. Sci. Res. 56 157-79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai-Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease while

  8. Retrieving Leaf Area Index and Foliage Profiles Through Voxelized 3-D Forest Reconstruction Using Terrestrial Full-Waveform and Dual-Wavelength Echidna Lidars

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yang, X.; Li, Z.; Schaaf, C.; Wang, Z.; Yao, T.; Zhao, F.; Saenz, E.; Paynter, I.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Martel, J.; Howe, G.; Hewawasam, K.; Jupp, D.; Culvenor, D.; Newnham, G.; Lowell, J.

    2013-12-01

    Measuring and monitoring canopy biophysical parameters provide a baseline for carbon flux studies related to deforestation and disturbance in forest ecosystems. Terrestrial full-waveform lidar systems, such as the Echidna Validation Instrument (EVI) and its successor Dual-Wavelength Echidna Lidar (DWEL), offer rapid, accurate, and automated characterization of forest structure. In this study, we apply a methodology based on voxelized 3-D forest reconstructions built from EVI and DWEL scans to directly estimate two important biophysical parameters: Leaf Area Index (LAI) and foliage profile. Gap probability, apparent reflectance, and volume associated with the laser pulse footprint at the observed range are assigned to the foliage scattering events in the reconstructed point cloud. Leaf angle distribution is accommodated with a simple model based on gap probability with zenith angle as observed in individual scans of the stand. The DWEL instrument, which emits simultaneous laser pulses at 1064 nm and 1548 nm wavelengths, provides a better capability to separate trunk and branch hits from foliage hits due to water absorption by leaf cellular contents at 1548 nm band. We generate voxel datasets of foliage points using a classification methodology solely based on pulse shape for scans collected by EVI and with pulse shape and band ratio for scans collected by DWEL. We then compare the LAIs and foliage profiles retrieved from the voxel datasets of the two instruments at the same red fir site in Sierra National Forest, CA, with each other and with observations from airborne and field measurements. This study further tests the voxelization methodology in obtaining LAI and foliage profiles that are largely free of clumping effects and returns from woody materials in the canopy. These retrievals can provide a valuable 'ground-truth' validation data source for large-footprint spaceborne or airborne lidar systems retrievals.

  9. Automated curved planar reformation of 3D spine images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-10-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks.

  10. Automated Rapid Prototyping of 3D Ceramic Parts

    NASA Technical Reports Server (NTRS)

    McMillin, Scott G.; Griffin, Eugene A.; Griffin, Curtis W.; Coles, Peter W. H.; Engle, James D.

    2005-01-01

    An automated system of manufacturing equipment produces three-dimensional (3D) ceramic parts specified by computational models of the parts. The system implements an advanced, automated version of a generic rapid-prototyping process in which the fabrication of an object having a possibly complex 3D shape includes stacking of thin sheets, the outlines of which closely approximate the horizontal cross sections of the object at their respective heights. In this process, the thin sheets are made of a ceramic precursor material, and the stack is subsequently heated to transform it into a unitary ceramic object. In addition to the computer used to generate the computational model of the part to be fabricated, the equipment used in this process includes: 1) A commercially available laminated-object-manufacturing machine that was originally designed for building woodlike 3D objects from paper and was modified to accept sheets of ceramic precursor material, and 2) A machine designed specifically to feed single sheets of ceramic precursor material to the laminated-object-manufacturing machine. Like other rapid-prototyping processes that utilize stacking of thin sheets, this process begins with generation of the computational model of the part to be fabricated, followed by computational sectioning of the part into layers of predetermined thickness that collectively define the shape of the part. Information about each layer is transmitted to rapid-prototyping equipment, where the part is built layer by layer. What distinguishes this process from other rapid-prototyping processes that utilize stacking of thin sheets are the details of the machines and the actions that they perform. In this process, flexible sheets of ceramic precursor material (called "green" ceramic sheets) suitable for lamination are produced by tape casting. The binder used in the tape casting is specially formulated to enable lamination of layers with little or no applied heat or pressure. The tape is cut

  11. From pixel to voxel: a deeper view of biological tissue by 3D mass spectral imaging

    PubMed Central

    Ye, Hui; Greer, Tyler; Li, Lingjun

    2011-01-01

    Three dimensional mass spectral imaging (3D MSI) is an exciting field that grants the ability to study a broad mass range of molecular species ranging from small molecules to large proteins by creating lateral and vertical distribution maps of select compounds. Although the general premise behind 3D MSI is simple, factors such as choice of ionization method, sample handling, software considerations and many others must be taken into account for the successful design of a 3D MSI experiment. This review provides a brief overview of ionization methods, sample preparation, software types and technological advancements driving 3D MSI research of a wide range of low- to high-mass analytes. Future perspectives in this field are also provided to conclude that the positive and promises ever-growing applications in the biomedical field with continuous developments of this powerful analytical tool. PMID:21320052

  12. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a

  13. Incorporating a measure of local scale in voxel-based 3-D image registration.

    PubMed

    Nyúl, László G; Udupa, Jayaram K; Saha, Punam K

    2003-02-01

    We present a new class of approaches for rigid-body registration and their evaluation in studying multiple sclerosis (MS) via multiprotocol magnetic resonance imaging (MRI). Three pairs of rigid-body registration algorithms were implemented, using cross-correlation and mutual information (MI), operating on original gray-level images, and utilizing the intermediate images resulting from our new scale-based method. In the scale image, every voxel has the local "scale" value assigned to it, defined as the radius of the largest ball centered at the voxel with homogeneous intensities. Three-dimensional image data of the head were acquired from ten MS patients for each of six MRI protocols. Images in some of the protocols were acquired in registration. The registered pairs were used as ground truth. Accuracy and consistency of the six registration methods were measured within and between protocols for known amounts of misregistrations. Our analysis indicates that there is no "best" method. For medium misregistration, the method using MI, for small add large misregistration the method using normalized cross-correlation performs best. For high-resolution data the correlation method and for low-resolution data the MI method, both using the original gray-level images, are the most consistent. We have previously demonstrated the use of local scale information in fuzzy connectedness segmentation and image filtering. Scale may also have potential for image registration as suggested by this work.

  14. Shallow subsurface control on earthquake damage patterns: first results from a 3D geological voxel model study (Tokyo Lowland, Japan)

    NASA Astrophysics Data System (ADS)

    Stafleu, Jan; Busschers, Freek; Tanabe, Susumu

    2016-04-01

    The Tokyo Lowland is situated in a Neogene sedimentary basin near the triple junction of the North American, Pacific, and Philippine tectonic plates. The basin is filled with Neogene and Quaternary sediments up to a thickness of 3 km. In the upper 70 m of the basin, thick sequences of soft Holocene sediments occur which are assumed to have played a key role in the spatial variation of damage intensity during the 1923 Kanto earthquake (Magnitude 7.9 to 8.3). Historical records show this earthquake destroyed large parts of the Tokyo urban area which in that time was largely made up by wooden houses. Although the epicentre was 70 km to the southwest of Tokyo, severe damage occurred north of the city centre, presumably due to ground motion amplification in the soft Holocene sediments in the shallow subsurface. In order to assess the presumed relation between the damage pattern of the 1923 earthquake and the occurrence of soft Holocene sediments in the shallow subsurface, we constructed a 3D geological voxel model of the central part of the Tokyo Lowland. The model was constructed using a methodology originally developed for the lowlands of the Netherlands. The modelling workflow basically consists of three steps. First, some 10,000 borehole descriptions (gathered for geomechanical purposes), were subdivided into geological units that have uniform sediment characteristics, using both lithological and geomechanical (N-value) criteria. Second, 2D bounding surfaces were constructed, representing tops and bases of the geological units. These surfaces were used to place each voxel (100 by 100 by 1 m) within the correct geological unit. The N-values and lithological units in the borehole descriptions were subsequently used to perform a 3D stochastic interpolation of N-value and lithological class within each geological unit. Using a vertical voxel stack analysis, we were able to create a map showing the accumulated thickness of soft muds in the Holocene succession. A

  15. Automated 3-D analysis of Gravity Dam stability

    SciTech Connect

    Barrett, P.R.; Boggs, H.

    1995-12-31

    The safety and stability of nonfederal hydroelectric project dams in the U.S. is a responsibility of the Federal Energy Regulatory Commission (FERC). FERC requires dam owners to reevaluate their structure`s stability every five years. In spite of the fact that FERC guidelines allow owners to use a variety of analytical approaches, millions of dollars are spent each year on safety modifications based on sometimes very conservative analysis methods. Analysis methods are often limited to hand calculations that assume a 2-D rigid body bending response of the dam or automated 2-D finite element analyses which can sometimes predict smaller safety factors than the rigid body analyses. Evaluation of dam stability using 3-D finite element analyses can sometimes reduce the conservatism in evaluating a dam`s stability even when conventional wisdom suggests that a 2-D analysis is sufficient. Significant increases in stability obtained from the 3-D analyses come primarily from the confining stresses from the dam abutments and the redistribution of load along the dam`s length. Even when the confining stresses are relatively small, large changes in sliding safety factors can be seen, since most dams, stability is extremely sensitive to variations in dam-rock interface cracks. The confining stresses reduce the propagation of cracks. The length of crack controls the magnitude of uplift loads applied to the bottom of the dam which in turn potentially leads to longer crack lengths. Both crack length and magnitude of uplift load directly effect the sliding stability factor of safety.

  16. Cognitive 3D geological voxel modelling based on AEM and seismic data - a case from the southern part of Denmark

    NASA Astrophysics Data System (ADS)

    Jørgensen, Flemming; Møller, Rasmus R.; Sandersen, Peter B. E.; Høyer, Anne-Sophie

    2013-04-01

    high quality sediment samples and down-hole geophysical logs. A comprehensive geological overview and understanding of the area is gained by integrated and cognitive interpretation of the geophysical and geological data enabling a detailed and reliable 3D geological model to be built. The model covers the area on the Danish side of the border. In order to address the detailed information from the SkyTEM data, the model has been constructed as a voxel model combined with surfaces representing layer boundaries and unconformities. Lithofacies and interpretation uncertainty attributes have been added to each voxel. Geostatistic inversion has been used to distribute lithological parameters to voxels in the most complicated areas of the model (areas with glaciotectonism). Experiments with octree modelling giving a high resolution with a limited number of voxels have also been performed. The final 3D model is primarily intended to serve as an input for groundwater flow modelling. The voxel model will therefore be supplemented by another attribute, hydraulic conductivity.

  17. 3D Mandibular Superimposition: Comparison of Regions of Reference for Voxel-Based Registration

    PubMed Central

    Ruellas, Antonio Carlos de Oliveira; Yatabe, Marilia Sayako; Souki, Bernardo Quiroga; Benavides, Erika; Nguyen, Tung; Luiz, Ronir Raggio; Franchi, Lorenzo; Cevidanes, Lucia Helena Soares

    2016-01-01

    Introduction The aim was to evaluate three regions of reference (Björk, Modified Björk and mandibular Body) for mandibular registration testing them in a patients’ CBCT sample. Methods Mandibular 3D volumetric label maps were built from CBCTs taken before (T1) and after treatment (T2) in a sample of 16 growing subjects and labeled with eight landmarks. Registrations of T1 and T2 images relative to the different regions of reference were performed, and 3D surface models were generated. Seven mandibular dimensions were measured separately for each time-point (T1 and T2) in relation to a stable reference structure (lingual cortical of symphysis), and the T2-T1 differences were calculated. These differences were compared to differences measured between the superimposed T2 (generated from different regions of reference: Björk, Modified Björk and Mandibular Body) over T1 surface models. ICC and the Bland-Altman method tested the agreement of the changes obtained by nonsuperimposition measurements from the patients’ sample, and changes between the overlapped surfaces after registration using the different regions of reference. Results The Björk region of reference (or mask) did work properly only in 2 of 16 patients. Evaluating the two other masks (Modified Björk and Mandibular body) on patients’ scans registration, the concordance and agreement of the changes obtained from superimpositions (registered T2 over T1) compared to results obtained from non superimposed T1 and T2 separately, indicated that Mandibular Body mask displayed more consistent results. Conclusions The mandibular body mask (mandible without teeth, alveolar bone, rami and condyles) is a reliable reference for 3D regional registration. PMID:27336366

  18. Tracking tissue section surfaces for automated 3D confocal cytometry

    NASA Astrophysics Data System (ADS)

    Agustin, Ramses; Price, Jeffrey H.

    2002-05-01

    Three-dimensional cytometry, whereby large volumes of tissue would be measured automatically, requires a computerized method for detecting the upper and lower tissue boundaries. In conventional confocal microscopy, the user interactively sets limits for axial scanning for each field-of-view. Biological specimens vary in section thickness, thereby driving the requirement for setting vertical scan limits. Limits could be set arbitrarily large to ensure the entire tissue is scanned, but automatic surface identification would eliminate storing undue numbers of empty optical sections and forms the basis for incorporating lateral microscope stage motion to collect unlimited numbers of stacks. This walk-away automation of 3D confocal scanning for biological imaging is the first sep towards practical, computerized statistical sampling from arbitrarily large tissue volumes. Preliminary results for automatic tissue surface tracking were obtained for phase-contrast microscopy by measuring focus sharpness (previously used for high-speed autofocus by our group). Measurements were taken from 5X5 fields-of-view from hamster liver sections, varying from five to twenty microns in thickness, then smoothed to lessen variations of in-focus information at each axial position. Because image sharpness (as the power of high spatial frequency components) drops across the axial boundaries of a tissue section, mathematical quantities including the full-width at half-maximum, extrema in the first derivative, and second derivative were used to locate the proximal and distal surfaces of a tissue. Results from these tests were evaluated against manual (i.e., visual) determination of section boundaries.

  19. Measuring Complete 3D Vegetation Structure With Airborne Waveform Lidar: A Calibration and Validation With Terrestrial Lidar Derived Voxels

    NASA Astrophysics Data System (ADS)

    Hancock, S.; Anderson, K.; Disney, M.; Gaston, K. J.

    2015-12-01

    Accurate measurements of vegetation are vital to understand habitats and their provision of ecosystem services as well as having applications in satellite calibration, weather modelling and forestry. The majority of humans now live in urban areas and so understanding vegetation structure in these very heterogeneous areas is of importance. A number of previous studies have used airborne lidar (ALS) to characterise canopy height and canopy cover, but very few have fully characterised 3D vegetation, including understorey. Those that have either relied on leaf-off scans to allow unattenuated measurement of understorey or else did not validate. A method for creating a detailed voxel map of urban vegetation, in which the surface area of vegetation within a grid of cuboids (1.5m by 1.5m by 25 cm) is defined, from full-waveform ALS is presented. The ALS was processed with deconvolution and attenuation correction methods. The signal processing was calibrated and validated against synthetic waveforms generated from terrestrial laser scanning (TLS) data, taken as "truth". The TLS data was corrected for partial hits and attenuation using a voxel approach and these steps were validated and found to be accurate. The ALS results were benchmarked against the more common discrete return ALS products (produced automatically by the lidar manufacturer's algorithms) and Gaussian decomposition of full-waveform ALS. The true vegetation profile was accurately recreated by deconvolution. Far more detail was captured by the deconvolved waveform than either the discrete return or Gaussian decomposed ALS, particularly detail within the canopy; vital information for understanding habitats. In the paper, we will present the results with a focus on the methodological steps towards generating the voxel model, and the subsequent quantitative calibration and validation of the modelling approach using TLS. We will discuss the implications of the work for complete vegetation canopy descriptions in

  20. Evaluation of sub-voxel registration accuracy between MRI and 3D MR spectroscopy of the brain

    NASA Astrophysics Data System (ADS)

    Rousseau, Francois; Maudsley, Andrew; Ebel, Andreas; Darkazanli, Ammar; Weber, Patrice; Sivasankaran, Krishnakumar; Yu, Yingjian; Studholme, Colin

    2005-04-01

    The implementation of Magnetic Resonance Spectroscopic Imaging (MRSI) for diagnostic imaging benefits from close integration of the lower-spatial resolution MRSI information with information from high-resolution structural MRI. Since patients can commonly move between acquisitions, it is necessary to account for possible mis-registration between the datasets arising from differences in patient positioning. In this paper we evaluate the use of 4 common multi-modality registration criteria to recover alignment between high resolution structural MRI and 3D MRSI data of the brain with sub-voxel accuracy. We explore the use of alternative MRSI water reference images to provide different types of structural information for the alignment process. The alignment accuracy was evaluated using both synthetically created MRSI and MRI data and a set of carefully collected subject image data with known ground truth spatial transformation between image volumes. The final accuracy and precision of estimates were assessed using multiple random starts of the registration algorithm. Sub voxel accuracy was found by all four similarity criteria with normalized mutual information providing the lowest target registration error for the 7 subject images. This effort supports the ongoing development of a database of brain metabolite distributions in normal subjects, which will be used in the evaluation of metabolic changes in neurological diseases.

  1. Fully-3D PET image reconstruction using scanner-independent, adaptive projection data and highly rotation-symmetric voxel assemblies.

    PubMed

    Scheins, J J; Herzog, H; Shah, N J

    2011-03-01

    For iterative, fully 3D positron emission tomography (PET) image reconstruction intrinsic symmetries can be used to significantly reduce the size of the system matrix. The precalculation and beneficial memory-resident storage of all nonzero system matrix elements is possible where sufficient compression exists. Thus, reconstruction times can be minimized independently of the used projector and more elaborate weighting schemes, e.g., volume-of-intersection (VOI), are applicable. A novel organization of scanner-independent, adaptive 3D projection data is presented which can be advantageously combined with highly rotation-symmetric voxel assemblies. In this way, significant system matrix compression is achieved. Applications taking into account all physical lines-of-response (LORs) with individual VOI projectors are presented for the Siemens ECAT HR+ whole-body scanner and the Siemens BrainPET, the PET component of a novel hybrid-MR/PET imaging system. Measured and simulated data were reconstructed using the new method with ordered-subset-expectation-maximization (OSEM). Results are compared to those obtained by the sinogram-based OSEM reconstruction provided by the manufacturer. The higher computational effort due to the more accurate image space sampling provides significantly improved images in terms of resolution and noise.

  2. From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

    PubMed Central

    Tsai, Wen-Ting; Hassan, Ahmed; Sarkar, Purbasha; Correa, Joaquin; Metlagel, Zoltan; Jorgens, Danielle M.; Auer, Manfred

    2014-01-01

    Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data

  3. Automated 3D reconstruction of interiors with multiple scan views

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Ng, Kia C.; Wolfart, Erik; Goncalves, Joao G. M.; Hogg, David C.

    1998-12-01

    This paper presents two integrated solutions for realistic 3D model acquisition and reconstruction; an early prototype, in the form of a push trolley, and a later prototype in the form of an autonomous robot. The systems encompass all hardware and software required, from laser and video data acquisition, processing and output of texture-mapped 3D models in VRML format, to batteries for power supply and wireless network communications. The autonomous version is also equipped with a mobile platform and other sensors for the purpose of automatic navigation. The applications for such a system range from real estate and tourism (e.g., showing a 3D computer model of a property to a potential buyer or tenant) or as tool for content creation (e.g., creating 3D models of heritage buildings or producing broadcast quality virtual studios). The system can also be used in industrial environments as a reverse engineering tool to update the design of a plant, or as a 3D photo-archive for insurance purposes. The system is Internet compatible: the photo-realistic models can be accessed via the Internet and manipulated interactively in 3D using a common Web browser with a VRML plug-in. Further information and example reconstructed models are available on- line via the RESOLV web-page at http://www.scs.leeds.ac.uk/resolv/.

  4. The 3D Euler solutions using automated Cartesian grid generation

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.

    1993-01-01

    Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.

  5. Global brain atrophy and corticospinal tract alterations in ALS, as investigated by voxel-based morphometry of 3-D MRI.

    PubMed

    Kassubek, Jan; Unrath, Alexander; Huppertz, Hans-Jürgen; Lulé, Dorothée; Ethofer, Thomas; Sperfeld, Anne-Dorte; Ludolph, Albert C

    2005-12-01

    In ALS, advanced magnetic resonance imaging (MRI) techniques are increasingly used to investigate the underlying pathology. In this study, the technique of voxel-based morphometry (VBM) was applied to 3-D MRI data in ALS patients to localize regional grey and white matter changes. Twenty-two ALS patients (mean age 58+/-9 years) with clinically definite ALS by revised El Escorial criteria were studied. None of the patients had any signs of associated frontotemporal dementia. High-resolution 3-D MRI data sets of the whole brain, collected on a 1.5 T scanner, were analysed by statistical parametric mapping (SPM) and VBM in comparison to an age-matched normal data base consisting of 22 healthy volunteers (mean age 59+/-11 years), for grey matter and white matter segments separately. Global brain atrophy was assessed by calculation of brain parenchymal fractions (BPF). In ALS patients, BPF were significantly reduced compared to controls (p = 0.0003), indicating global brain atrophy. Regional decreases of grey matter density were found in the ALS patients at corrected p<0.01 in the right-hemispheric primary motor cortex (area of the highest Z-score) and in the left medial frontal gyrus. Furthermore, regional white matter alterations were observed along the corticospinal tracts bilaterally and in multiple smaller areas including corpus callosum, cerebellum, frontal and occipital subcortical regions. Besides considerable global atrophy in ALS, the topography of ALS-associated cerebral morphological changes could be mapped using VBM, in particular white matter signal changes along the bilateral corticospinal tracts, but also in extra-motor areas. VBM might be a potential tool to visualize disease progression in future longitudinal studies.

  6. Automated Finger Spelling by Highly Realistic 3D Animation

    ERIC Educational Resources Information Center

    Adamo-Villani, Nicoletta; Beni, Gerardo

    2004-01-01

    We present the design of a new 3D animation tool for self-teaching (signing and reading) finger spelling the first basic component in learning any sign language. We have designed a highly realistic hand with natural animation of the finger motions. Smoothness of motion (in real time) is achieved via programmable blending of animation segments. The…

  7. Automated reconstruction of 3D scenes from sequences of images

    NASA Astrophysics Data System (ADS)

    Pollefeys, M.; Koch, R.; Vergauwen, M.; Van Gool, L.

    Modelling of 3D objects from image sequences is a challenging problem and has been an important research topic in the areas of photogrammetry and computer vision for many years. In this paper, a system is presented which automatically extracts a textured 3D surface model from a sequence of images of a scene. The system can deal with unknown camera settings. In addition, the parameters of this camera are allowed to change during acquisition (e.g., by zooming or focusing). No prior knowledge about the scene is necessary to build the 3D models. Therefore, this system offers a high degree of flexibility. The system is based on state-of-the-art algorithms recently developed in computer vision. The 3D modelling task is decomposed into a number of successive steps. Gradually, more knowledge of the scene and the camera setup is retrieved. At this point, the obtained accuracy is not yet at the level required for most metrology applications, but the visual quality is very convincing. This system has been applied to a number of applications in archaeology. The Roman site of Sagalassos (southwest Turkey) was used as a test case to illustrate the potential of this new approach.

  8. 3-D ion distribution and evolution in storm-time RC Retrieved from TWINS ENA by differential voxel CT technique

    NASA Astrophysics Data System (ADS)

    Ma, S.; Yan, W.; Xu, L.

    2013-12-01

    The quantitative retrieval of the 3-D spatial distribution of the parent energetic ions of ENA from a 2-D ENA image is a quite challenge task. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission of NASA is the first constellation to perform stereoscopic magnetospheric imaging of energetic neutral atoms (ENA) from a pair of spacecraft flying on two widely-separated Molniya orbits. TWINS provides a unique opportunity to retrieve the 3-D distribution of ions in the ring current (RC) by using a volumetric pixel (voxel) CT inversion method. In this study the voxel CT method is implemented for a series of differential ENA fluxes averaged over about 6 to 7 sweeps (corresponding to a time period of about 9 min.) at different energy levels ranging from 5 to 100 keV, obtained simultaneously by the two satellites during the main phase of a great magnetic storm with minimum Sym-H of -156 nT on 24-25 October 2011. The data were selected to span a period about 50 minutes during which a large substorm was undergoing its expansion phase first and then recovery. The ENA species of O and H are distinguished for some time-segments by analyzing the signals of pulse heights of second electrons emitted from the carbon foil and impacted on the MCP detector in the TWINS sensors. In order to eliminate the possible influence on retrieval induced by instrument bias error, a differential voxel CT technique is applied. The flux intensity of the ENAs' parent ions in the RC has been obtained as a function of energy, L value, MLT sector and latitude, along with their time evolution during the storm-time substorm expansion phase. Forward calculations proved the reliability of the retrieved results. It shows that the RC is highly asymmetric, with a major concentration in the midnight to dawn sector for equatorial latitudes. Halfway through the substorm expansion there occurred a large enhancement of equatorial ion flux at lower energy (5 keV) in the dusk sector, with narrow extent

  9. 3D vision system for intelligent milking robot automation

    NASA Astrophysics Data System (ADS)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  10. Enabling quantitative screening in retinal organoids: 3D automated reporter quantification technology (3D-ARQ).

    PubMed

    Vergara, M Natalia; Flores-Bellver, Miguel; Aparicio-Domingo, Silvia; McNally, Minda; Wahlin, Karl J; Saxena, Meera T; Mumm, Jeff S; Canto-Soler, M Valeria

    2017-09-04

    The advent of stem cell-derived retinal organoids has brought forth unprecedented opportunities for developmental and physiological studies, while presenting new therapeutic promise for retinal degenerative diseases. From a translational perspective, organoid systems provide exciting new prospects for drug discovery, offering the possibility to perform compound screening in a 3-dimensional (3D) human tissue context that resembles the native histoarchitecture and cellular interactions. However, inherent variability issues and a general lack of robust quantitative technologies for analyzing organoids in large-scale pose severe limitations for their use in translational applications. To address this need, we have developed a screening platform that enables accurate quantification of fluorescent reporters in complex human iPSC-derived retinal organoids. This platform incorporates a fluorescence microplate reader that allows XYZ-dimensional detection and fine-tuned wavelength selection. We have established optimal parameters for fluorescent reporter signal detection, devised methods to compensate for organoid size variability, evaluated performance and sensitivity parameters, and validated this technology for functional applications. © 2017. Published by The Company of Biologists Ltd.

  11. Fast, Automated, 3D Modeling of Building Interiors

    DTIC Science & Technology

    2012-10-30

    of thermographies with laser scanning point clouds [6]. Given the heterogeneous nature of the two modalities, we propose a feature-based approach...extract 2D lines from thermographies , and 3D lines are extracted through segmentation of the point cloud. Feature- matching and the relative pose between... thermographies and point cloud are obtained from an iterative procedure applied to detect and reject outliers; this includes rotation matrix and

  12. Singularity-free finite element model of bone through automated voxel-based reconstruction.

    PubMed

    Esposito, L; Bifulco, P; Gargiulo, P; Fraldi, M

    2016-02-01

    Computed tomography (CT) provides both anatomical and density information about tissues. Bone is segmented by raw images and Finite Element Method (FEM) voxel-based meshing technique is achieved by matching each CT voxel to a single finite element (FE). As a consequence of the automated model reconstruction, unstable elements - i.e. elements insufficiently anchored to the whole model and thus potentially involved in partial rigid body motion - can be generated, a crucial problem in obtaining consistent FE models, hindering mechanical analyses. Through the classification of instabilities on topological connections between elements, a numerical procedure is proposed in order to avoid unconstrained models.

  13. Automated objective characterization of visual field defects in 3D

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor)

    2006-01-01

    A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

  14. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software.

    PubMed

    Cha, Yong Ho; Lee, Keun Ho; Ryu, Hong Jong; Joo, Il Won; Seo, Anna; Kim, Dong-Hyeon; Kim, Sang Jun

    2017-01-01

    We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient's lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the "STL" file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec) and 3D-printed AFO (56.5 cm/sec) compared to that without an AFO (42.2 cm/sec). The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software.

  15. Ankle-Foot Orthosis Made by 3D Printing Technique and Automated Design Software

    PubMed Central

    Cha, Yong Ho; Lee, Keun Ho; Ryu, Hong Jong; Joo, Il Won; Seo, Anna; Kim, Dong-Hyeon

    2017-01-01

    We described 3D printing technique and automated design software and clinical results after the application of this AFO to a patient with a foot drop. After acquiring a 3D modelling file of a patient's lower leg with peroneal neuropathy by a 3D scanner, we loaded this file on the automated orthosis software and created the “STL” file. The designed AFO was printed using a fused filament fabrication type 3D printer, and a mechanical stress test was performed. The patient alternated between the 3D-printed and conventional AFOs for 2 months. There was no crack or damage, and the shape and stiffness of the AFO did not change after the durability test. The gait speed increased after wearing the conventional AFO (56.5 cm/sec) and 3D-printed AFO (56.5 cm/sec) compared to that without an AFO (42.2 cm/sec). The patient was more satisfied with the 3D-printed AFO than the conventional AFO in terms of the weight and ease of use. The 3D-printed AFO exhibited similar functionality as the conventional AFO and considerably satisfied the patient in terms of the weight and ease of use. We suggest the possibility of the individualized AFO with 3D printing techniques and automated design software. PMID:28827977

  16. Automated linking of suspicious findings between automated 3D breast ultrasound volumes

    NASA Astrophysics Data System (ADS)

    Gubern-Mérida, Albert; Tan, Tao; van Zelst, Jan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Automated breast ultrasound (ABUS) is a 3D imaging technique which is rapidly emerging as a safe and relatively inexpensive modality for screening of women with dense breasts. However, reading ABUS examinations is very time consuming task since radiologists need to manually identify suspicious findings in all the different ABUS volumes available for each patient. Image analysis techniques to automatically link findings across volumes are required to speed up clinical workflow and make ABUS screening more efficient. In this study, we propose an automated system to, given the location in the ABUS volume being inspected (source), find the corresponding location in a target volume. The target volume can be a different view of the same study or the same view from a prior examination. The algorithm was evaluated using 118 linkages between suspicious abnormalities annotated in a dataset of ABUS images of 27 patients participating in a high risk screening program. The distance between the predicted location and the center of the annotated lesion in the target volume was computed for evaluation. The mean ± stdev and median distance error achieved by the presented algorithm for linkages between volumes of the same study was 7.75±6.71 mm and 5.16 mm, respectively. The performance was 9.54±7.87 and 8.00 mm (mean ± stdev and median) for linkages between volumes from current and prior examinations. The proposed approach has the potential to minimize user interaction for finding correspondences among ABUS volumes.

  17. Automating laser scanning of 3D surfaces for reverse engineering

    NASA Astrophysics Data System (ADS)

    Chan, Vincent H.; Bradley, Colin H.; Vickers, Geoffrey W.

    1997-12-01

    Application of current 3-D laser scanning systems to reverse engineering is limited by two obstacles. The meticulous guidance of the laser scanner over the surface of the object being scanned and the segmentation of the cloud data which is collected by the laser scanner. Presently, both obstacles are being manually solved. The guidance of the laser scanning sensor at the correct surface to sensor distance is dependent on operator judgement and the segmentation of the collected data is reliant on the user to manually define surface boundaries on a computer screen. By applying a 2-D CCD camera, both of these problems can be resolved. Depth information on the location of the object surface can be derived from a pair of stereo images from the CCD camera. Using this depth information, the scanner path can be automatically calculated. Segmentation of the object surface can be accomplished by employing a Kohonen neural network into the CCD image. Successful segmentation of the image is conditional on the locations selected to start neural nodes as well as the prevention of the neuron connectors from bleeding onto neighboring patches. Thus the CCD camera allows for the automatic path planning of the laser scanner as well as the segmentation of the surface into patches defined along its natural boundaries.

  18. Comparison of accelerated 3-D spiral chemical shift imaging and single-voxel spectroscopy at 3T in the pediatric age group.

    PubMed

    Yazbek, Sandrine; Prabhu, Sanjay P; Connaughton, Pauline; Grant, Patricia E; Gagoski, Borjan

    2015-08-01

    Single-voxel spectroscopy (SVS) is usually used in the pediatric population when a short acquisition time is crucial. To overcome the long acquisition time of 3-D phase-encoded chemical shift imaging (CSI) and lack of spatial coverage of single-voxel spectroscopy, efficient encoding schemes using spiral k-space trajectories have been successfully deployed, enabling acquisition of volumetric CSI in <5 min. We assessed feasibility of using 3-D spiral CSI sequence routinely in pediatric clinical settings by comparing its reconstructed spectra against SVS spectra. Volumetric spiral CSI obtained spectra from 2-cc isotropic voxels over a 16×16×10-cm region. SVS acquisition encoded a 3.4-cc (1.5-mm) isotropic voxel. Acquisition time was 3 min for every technique. Data were gathered prospectively from 11 random pediatric patients. Spectra from left basal ganglia were obtained using both techniques and were processed with post-processing software. The following metabolite ratios were calculated: N-acetylaspartate/creatine (NAA/Cr), choline/creatine (Cho/Cr), lactate/creatine (Lac/Cr) and N-acetylapartate/choline (NAA/Cho). We collected data on 11 children ages 4 days to 10 years. In 10/11 cases, spectral quality of both methods was acceptable. Considering 10/11 cases, we found a statistically significant difference between SVS and 3-D spiral CSI for all three ratios. However, this difference was fixed and was probably caused by a fixed bias. This means that 3-D spiral CSI can be used instead of SVS by removing the mean difference between the methods for each ratio. Accelerated 3-D CSI is feasible in pediatric patients and can potentially substitute for SVS.

  19. FIJI Macro 3D ART VeSElecT: 3D Automated Reconstruction Tool for Vesicle Structures of Electron Tomograms

    PubMed Central

    Kaltdorf, Kristin Verena; Schulze, Katja; Helmprobst, Frederik; Kollmannsberger, Philip; Stigloher, Christian

    2017-01-01

    Automatic image reconstruction is critical to cope with steadily increasing data from advanced microscopy. We describe here the Fiji macro 3D ART VeSElecT which we developed to study synaptic vesicles in electron tomograms. We apply this tool to quantify vesicle properties (i) in embryonic Danio rerio 4 and 8 days past fertilization (dpf) and (ii) to compare Caenorhabditis elegans N2 neuromuscular junctions (NMJ) wild-type and its septin mutant (unc-59(e261)). We demonstrate development-specific and mutant-specific changes in synaptic vesicle pools in both models. We confirm the functionality of our macro by applying our 3D ART VeSElecT on zebrafish NMJ showing smaller vesicles in 8 dpf embryos then 4 dpf, which was validated by manual reconstruction of the vesicle pool. Furthermore, we analyze the impact of C. elegans septin mutant unc-59(e261) on vesicle pool formation and vesicle size. Automated vesicle registration and characterization was implemented in Fiji as two macros (registration and measurement). This flexible arrangement allows in particular reducing false positives by an optional manual revision step. Preprocessing and contrast enhancement work on image-stacks of 1nm/pixel in x and y direction. Semi-automated cell selection was integrated. 3D ART VeSElecT removes interfering components, detects vesicles by 3D segmentation and calculates vesicle volume and diameter (spherical approximation, inner/outer diameter). Results are collected in color using the RoiManager plugin including the possibility of manual removal of non-matching confounder vesicles. Detailed evaluation considered performance (detected vesicles) and specificity (true vesicles) as well as precision and recall. We furthermore show gain in segmentation and morphological filtering compared to learning based methods and a large time gain compared to manual segmentation. 3D ART VeSElecT shows small error rates and its speed gain can be up to 68 times faster in comparison to manual annotation

  20. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements.

    PubMed

    van Pelt, Roy; Nguyen, Huy; ter Haar Romeny, Bart; Vilanova, Anna

    2012-03-01

    Quantitative analysis of vascular blood flow, acquired by phase-contrast MRI, requires accurate segmentation of the vessel lumen. In clinical practice, 2D-cine velocity-encoded slices are inspected, and the lumen is segmented manually. However, segmentation of time-resolved volumetric blood-flow measurements is a tedious and time-consuming task requiring automation. Automated segmentation of large thoracic arteries, based solely on the 3D-cine phase-contrast MRI (PC-MRI) blood-flow data, was done. An active surface model, which is fast and topologically stable, was used. The active surface model requires an initial surface, approximating the desired segmentation. A method to generate this surface was developed based on a voxel-wise temporal maximum of blood-flow velocities. The active surface model balances forces, based on the surface structure and image features derived from the blood-flow data. The segmentation results were validated using volunteer studies, including time-resolved 3D and 2D blood-flow data. The segmented surface was intersected with a velocity-encoded PC-MRI slice, resulting in a cross-sectional contour of the lumen. These cross-sections were compared to reference contours that were manually delineated on high-resolution 2D-cine slices. The automated approach closely approximates the manual blood-flow segmentations, with error distances on the order of the voxel size. The initial surface provides a close approximation of the desired luminal geometry. This improves the convergence time of the active surface and facilitates parametrization. An active surface approach for vessel lumen segmentation was developed, suitable for quantitative analysis of 3D-cine PC-MRI blood-flow data. As opposed to prior thresholding and level-set approaches, the active surface model is topologically stable. A method to generate an initial approximate surface was developed, and various features that influence the segmentation model were evaluated. The active surface

  1. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    SciTech Connect

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu; Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J.

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  2. Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.

    2011-01-01

    The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.

  3. Comparison of the effect of simple and complex acquisition trajectories on the 2D SPR and 3D voxelized differences for dedicated breast CT imaging

    NASA Astrophysics Data System (ADS)

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2014-03-01

    The 2D scatter-to-primary (SPR) ratios and 3D voxelized difference volumes were characterized for a cone beam breast CT scanner capable of arbitrary (non-traditional) 3D trajectories. The CT system uses a 30x30cm2 flat panel imager with 197 micron pixellation and a rotating tungsten anode x-ray source with 0.3mm focal spot, with an SID of 70cm. Data were acquired for two cylindrical phantoms (12.5cm and 15cm diameter) filled with three different combinations of water and methanol yielding a range of uniform densities. Projections were acquired with two acquisition trajectories: 1) simple-circular azimuthal orbit with fixed tilt; and 2) saddle orbit following a +/-15° sinusoidal trajectory around the object. Projection data were acquired in 2x2 binned mode. Projections were scatter corrected using a beam stop array method, and the 2D SPR was measured on the projections. The scatter corrected and uncorrected data were then reconstructed individually using an iterative ordered subsets convex algorithm, and the 3D difference volumes were calculated as the absolute difference between the two. Results indicate that the 2D SPR is ~7-15% higher on projections with greatest tilt for the saddle orbit, due to the longer x-ray path length through the volume, compared to the 0° tilt projections. Additionally, the 2D SPR increases with object diameter as well as density. The 3D voxelized difference volumes are an estimate of the scatter contribution to the reconstructed attenuation coefficients on a voxel level. They help visualize minor deficiencies and artifacts in the volumes due to correction methods.

  4. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  5. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Automated 3D Ultrasound Image Segmentation to Aid Breast Cancer Image Interpretation

    PubMed Central

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2015-01-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  7. Compact and field-portable 3D printed shearing digital holographic microscope for automated cell identification.

    PubMed

    Rawat, Siddharth; Komatsu, Satoru; Markman, Adam; Anand, Arun; Javidi, Bahram

    2017-03-20

    We propose a low-cost, compact, and field-portable 3D printed holographic microscope for automated cell identification based on a common path shearing interferometer setup. Once a hologram is captured from the portable setup, a 3D reconstructed height profile of the cell is created. We extract several morphological cell features from the reconstructed 3D height profiles, including mean physical cell thickness, coefficient of variation, optical volume (OV) of the cell, projected area of the cell (PA), ratio of PA to OV, cell thickness kurtosis, cell thickness skewness, and the dry mass of the cell for identification using the random forest (RF) classifier. The 3D printed prototype can serve as a low-cost alternative for the developing world, where access to laboratory facilities for disease diagnosis are limited. Additionally, a cell phone sensor is used to capture the digital holograms. This enables the user to send the acquired holograms over the internet to a computational device located remotely for cellular identification and classification (analysis). The 3D printed system presented in this paper can be used as a low-cost, stable, and field-portable digital holographic microscope as well as an automated cell identification system. To the best of our knowledge, this is the first research paper presenting automatic cell identification using a low-cost 3D printed digital holographic microscopy setup based on common path shearing interferometry.

  8. Automated Mosaicking of Multiple 3d Point Clouds Generated from a Depth Camera

    NASA Astrophysics Data System (ADS)

    Kim, H.; Yoon, W.; Kim, T.

    2016-06-01

    In this paper, we propose a method for automated mosaicking of multiple 3D point clouds generated from a depth camera. A depth camera generates depth data by using ToF (Time of Flight) method and intensity data by using intensity of returned signal. The depth camera used in this paper was a SR4000 from MESA Imaging. This camera generates a depth map and intensity map of 176 x 44 pixels. Generated depth map saves physical depth data with mm of precision. Generated intensity map contains texture data with many noises. We used texture maps for extracting tiepoints and depth maps for assigning z coordinates to tiepoints and point cloud mosaicking. There are four steps in the proposed mosaicking method. In the first step, we acquired multiple 3D point clouds by rotating depth camera and capturing data per rotation. In the second step, we estimated 3D-3D transformation relationships between subsequent point clouds. For this, 2D tiepoints were extracted automatically from the corresponding two intensity maps. They were converted into 3D tiepoints using depth maps. We used a 3D similarity transformation model for estimating the 3D-3D transformation relationships. In the third step, we converted local 3D-3D transformations into a global transformation for all point clouds with respect to a reference one. In the last step, the extent of single depth map mosaic was calculated and depth values per mosaic pixel were determined by a ray tracing method. For experiments, 8 depth maps and intensity maps were used. After the four steps, an output mosaicked depth map of 454x144 was generated. It is expected that the proposed method would be useful for developing an effective 3D indoor mapping method in future.

  9. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    NASA Astrophysics Data System (ADS)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  10. Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties

    PubMed Central

    Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.

    2014-01-01

    Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D

  11. Integrating Online and Offline 3D Deep Learning for Automated Polyp Detection in Colonoscopy Videos.

    PubMed

    Yu, Lequan; Chen, Hao; Dou, Qi; Qin, Jing; Heng, Pheng Ann

    2016-12-07

    Automated polyp detection in colonoscopy videos has been demonstrated to be a promising way for colorectal cancer (CRC) prevention and diagnosis. Traditional manual screening is time-consuming, operator-dependent and error-prone; hence, automated detection approach is highly demanded in clinical practice. However, automated polyp detection is very challenging due to high intra-class variations in polyp size, color, shape and texture and low inter-class variations between polyps and hard mimics. In this paper, we propose a novel offline and online 3D deep learning integration framework by leveraging the 3D fully convolutional network (3D-FCN) to tackle this challenging problem. Compared with previous methods employing hand-crafted features or 2D-CNNs, the 3D-FCN is capable of learning more representative spatio-temporal features from colonoscopy videos, and hence has more powerful discrimination capability. More importantly, we propose a novel online learning scheme to deal with the problem of limited training data by harnessing the specific information of an input video in the learning process. We integrate offline and online learning to effectively reduce the number of false positives generated by the offline network and further improve the detection performance. Extensive experiments on the dataset of MICCAI 2015 Challenge on Polyp Detection demonstrated the better performance of our method when compared with other competitors.

  12. Automated Reconstruction Algorithm for Identification of 3D Architectures of Cribriform Ductal Carcinoma In Situ

    PubMed Central

    Norton, Kerri-Ann; Namazi, Sameera; Barnard, Nicola; Fujibayashi, Mariko; Bhanot, Gyan; Ganesan, Shridar; Iyatomi, Hitoshi; Ogawa, Koichi; Shinbrot, Troy

    2012-01-01

    Ductal carcinoma in situ (DCIS) is a pre-invasive carcinoma of the breast that exhibits several distinct morphologies but the link between morphology and patient outcome is not clear. We hypothesize that different mechanisms of growth may still result in similar 2D morphologies, which may look different in 3D. To elucidate the connection between growth and 3D morphology, we reconstruct the 3D architecture of cribriform DCIS from resected patient material. We produce a fully automated algorithm that aligns, segments, and reconstructs 3D architectures from microscopy images of 2D serial sections from human specimens. The alignment algorithm is based on normalized cross correlation, the segmentation algorithm uses histogram equilization, Otsu's thresholding, and morphology techniques to segment the duct and cribra. The reconstruction method combines these images in 3D. We show that two distinct 3D architectures are indeed found in samples whose 2D histological sections are similarly identified as cribriform DCIS. These differences in architecture support the hypothesis that luminal spaces may form due to different mechanisms, either isolated cell death or merging fronds, leading to the different architectures. We find that out of 15 samples, 6 were found to have ‘bubble-like’ cribra, 6 were found to have ‘tube-like’ criba and 3 were ‘unknown.’ We propose that the 3D architectures found, ‘bubbles’ and ‘tubes’, account for some of the heterogeneity of the disease and may be prognostic indicators of different patient outcomes. PMID:22970156

  13. Automated interpretation of 3D laserscanned point clouds for plant organ segmentation.

    PubMed

    Wahabzada, Mirwaes; Paulus, Stefan; Kersting, Kristian; Mahlein, Anne-Katrin

    2015-08-08

    Plant organ segmentation from 3D point clouds is a relevant task for plant phenotyping and plant growth observation. Automated solutions are required to increase the efficiency of recent high-throughput plant phenotyping pipelines. However, plant geometrical properties vary with time, among observation scales and different plant types. The main objective of the present research is to develop a fully automated, fast and reliable data driven approach for plant organ segmentation. The automated segmentation of plant organs using unsupervised, clustering methods is crucial in cases where the goal is to get fast insights into the data or no labeled data is available or costly to achieve. For this we propose and compare data driven approaches that are easy-to-realize and make the use of standard algorithms possible. Since normalized histograms, acquired from 3D point clouds, can be seen as samples from a probability simplex, we propose to map the data from the simplex space into Euclidean space using Aitchisons log ratio transformation, or into the positive quadrant of the unit sphere using square root transformation. This, in turn, paves the way to a wide range of commonly used analysis techniques that are based on measuring the similarities between data points using Euclidean distance. We investigate the performance of the resulting approaches in the practical context of grouping 3D point clouds and demonstrate empirically that they lead to clustering results with high accuracy for monocotyledonous and dicotyledonous plant species with diverse shoot architecture. An automated segmentation of 3D point clouds is demonstrated in the present work. Within seconds first insights into plant data can be deviated - even from non-labelled data. This approach is applicable to different plant species with high accuracy. The analysis cascade can be implemented in future high-throughput phenotyping scenarios and will support the evaluation of the performance of different plant

  14. Alignment, segmentation and 3-D reconstruction of serial sections based on automated algorithm

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Tang, Shaojie; Xu, Qiong; Lian, Qin; Wang, Jin; Li, Dichen

    2012-12-01

    A well-defined three-dimensional (3-D) reconstruction of bone-cartilage transitional structures is crucial for the osteochondral restoration. This paper presents an accurate, computationally efficient and fully-automated algorithm for the alignment and segmentation of two-dimensional (2-D) serial to construct the 3-D model of bone-cartilage transitional structures. Entire system includes the following five components: (1) image harvest, (2) image registration, (3) image segmentation, (4) 3-D reconstruction and visualization, and (5) evaluation. A computer program was developed in the environment of Matlab for the automatic alignment and segmentation of serial sections. Automatic alignment algorithm based on the position's cross-correlation of the anatomical characteristic feature points of two sequential sections. A method combining an automatic segmentation and an image threshold processing was applied to capture the regions and structures of interest. SEM micrograph and 3-D model reconstructed directly in digital microscope were used to evaluate the reliability and accuracy of this strategy. The morphology of 3-D model constructed by serial sections is consistent with the results of SEM micrograph and 3-D model of digital microscope.

  15. 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution.

    PubMed

    Wu, Jingpeng; He, Yong; Yang, Zhongqin; Guo, Congdi; Luo, Qingming; Zhou, Wei; Chen, Shangbin; Li, Anan; Xiong, Benyi; Jiang, Tao; Gong, Hui

    2014-02-15

    Systematic cellular and vascular configurations are essential for understanding fundamental brain anatomy and metabolism. We demonstrated a 3D brainwide cellular and vascular (called 3D BrainCV) visualization and quantitative protocol for a whole mouse brain. We developed a modified Nissl staining method that quickly labeled the cells and blood vessels simultaneously in an entire mouse brain. Terabytes 3D datasets of the whole mouse brains, with unprecedented details of both individual cells and blood vessels, including capillaries, were simultaneously imaged at 1-μm voxel resolution using micro-optical sectioning tomography (MOST). For quantitative analysis, we proposed an automatic image-processing pipeline to perform brainwide vectorization and analysis of cells and blood vessels. Six representative brain regions from the cortex to the deep, including FrA, M1, PMBSF, V1, striatum, and amygdala, and six parameters, including cell number density, vascular length density, fractional vascular volume, distance from the cells to the nearest microvessel, microvascular length density, and fractional microvascular volume, had been quantitatively analyzed. The results showed that the proximity of cells to blood vessels was linearly correlated with vascular length density, rather than the cell number density. The 3D BrainCV made overall snapshots of the detailed picture of the whole brain architecture, which could be beneficial for the state comparison of the developing and diseased brain.

  16. Reproducibility of a novel echocardiographic 3D automated software for the assessment of mitral valve anatomy.

    PubMed

    Aquila, Iolanda; González, Ariana; Fernández-Golfín, Covadonga; Rincón, Luis Miguel; Casas, Eduardo; García, Ana; Hinojar, Rocio; Jiménez-Nacher, José Julio; Zamorano, José Luis

    2016-05-17

    3D transesophageal echocardiography (TEE) is superior to 2D TEE in quantitative anatomic evaluation of the mitral valve (MV) but it shows limitations regarding automatic quantification. Here, we tested the inter-/intra-observer reproducibility of a novel full-automated software in the evaluation of MV anatomy compared to manual 3D assessment. Thirty-six out of 61 screened patients referred to our Cardiac Imaging Unit for TEE were retrospectively included. 3D TEE analysis was performed both manually and with the automated software by two independent operators. Mitral annular area, intercommissural distance, anterior leaflet length and posterior leaflet length were assessed. A significant correlation between both methods was found for all variables: intercommissural diameter (r = 0.84, p < 0.01), mitral annular area (r = 0.94, p > 0, 01), anterior leaflet length (r = 0.83, p < 0.01) and posterior leaflet length (r = 0.67, p < 0.01). Interobserver variability assessed by the intraclass correlation coefficient was superior for the automatic software: intercommisural distance 0.997 vs. 0.76; mitral annular area 0.957 vs. 0.858; anterior leaflet length 0.963 vs. 0.734 and posterior leaflet length 0.936 vs. 0.838. Intraobserver variability was good for both methods with a better level of agreement with the automatic software. The novel 3D automated software is reproducible in MV anatomy assessment. The incorporation of this new tool in clinical MV assessment may improve patient selection and outcomes for MV interventions as well as patient diagnosis and prognosis stratification. Yet, high-quality 3D images are indispensable.

  17. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  18. Recognition of 3D objects for autonomous mobile robot's navigation in automated shipbuilding

    NASA Astrophysics Data System (ADS)

    Lee, Hyunki; Cho, Hyungsuck

    2007-10-01

    Nowadays many parts of shipbuilding process are automated, but the painting process is not, because of the difficulty of automated on-line painting quality measurement, harsh painting environment and the difficulty of robot navigation. However, the painting automation is necessary, because it can provide consistent performance of painting film thickness. Furthermore, autonomous mobile robots are strongly required for flexible painting work. However, the main problem of autonomous mobile robot's navigation is that there are many obstacles which are not expressed in the CAD data. To overcome this problem, obstacle detection and recognition are necessary to avoid obstacles and painting work effectively. Until now many object recognition algorithms have been studied, especially 2D object recognition methods using intensity image have been widely studied. However, in our case environmental illumination does not exist, so these methods cannot be used. To overcome this, to use 3D range data must be used, but the problem of using 3D range data is high computational cost and long estimation time of recognition due to huge data base. In this paper, we propose a 3D object recognition algorithm based on PCA (Principle Component Analysis) and NN (Neural Network). In the algorithm, the novelty is that the measured 3D range data is transformed into intensity information, and then adopts the PCA and NN algorithm for transformed intensity information to reduce the processing time and make the data easy to handle which are disadvantages of previous researches of 3D object recognition. A set of experimental results are shown to verify the effectiveness of the proposed algorithm.

  19. An Accuracy Assessment of Automated Photogrammetric Techniques for 3d Modeling of Complex Interiors

    NASA Astrophysics Data System (ADS)

    Georgantas, A.; Brédif, M.; Pierrot-Desseilligny, M.

    2012-07-01

    This paper presents a comparison of automatic photogrammetric techniques to terrestrial laser scanning for 3D modelling of complex interior spaces. We try to evaluate the automated photogrammetric techniques not only in terms of their geometric quality compared to laser scanning but also in terms of cost in money, acquisition and computational time. To this purpose we chose as test site a modern building's stairway. APERO/MICMAC ( ©IGN )which is an Open Source photogrammetric software was used for the production of the 3D photogrammetric point cloud which was compared to the one acquired by a Leica Scanstation 2 laser scanner. After performing various qualitative and quantitative controls we present the advantages and disadvantages of each 3D modelling method applied in a complex interior of a modern building.

  20. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data

    PubMed Central

    Khorshed, Reema A.; Hawkins, Edwin D.; Duarte, Delfim; Scott, Mark K.; Akinduro, Olufolake A.; Rashidi, Narges M.; Spitaler, Martin; Lo Celso, Cristina

    2015-01-01

    Summary Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components. PMID:26120058

  1. Framework for Automated GD&T Inspection Using 3D Scanner

    NASA Astrophysics Data System (ADS)

    Pathak, Vimal Kumar; Singh, Amit Kumar; Sivadasan, M.; Singh, N. K.

    2016-08-01

    Geometric Dimensioning and Tolerancing (GD&T) is a typical dialect that helps designers, production faculty and quality monitors to convey design specifications in an effective and efficient manner. GD&T has been practiced since the start of machine component assembly but without overly naming it. However, in recent times industries have started increasingly emphasizing on it. One prominent area where most of the industries struggle with is quality inspection. Complete inspection process is mostly human intensive. Also, the use of conventional gauges and templates for inspection purpose highly depends on skill of workers and quality inspectors. In industries, the concept of 3D scanning is not new but is used only for creating 3D drawings or modelling of physical parts. However, the potential of 3D scanning as a powerful inspection tool is hardly explored. This study is centred on designing a procedure for automated inspection using 3D scanner. Linear, geometric and dimensional inspection of the most popular test bar-stepped bar, as a simple example was also carried out as per the new framework. The new generation engineering industries would definitely welcome this automated inspection procedure being quick and reliable with reduced human intervention.

  2. Automated seed localization for intraoperative prostate brachytherapy based on 3D line segment patterns

    NASA Astrophysics Data System (ADS)

    Ding, Mingyue; Wei, Zhouping; Downey, Donal B.; Fenster, Aaron

    2005-04-01

    Transrectal ultrasound (TRUS)-guided brachytherapy is a treatment option for localized prostate cancer, in which 125I or 103Pd radioactive seeds are implanted into the prostate. In this procedure, automated seed localization is important for intra-operative evaluation of dose delivery, which permits the identification of under-dosed regions and remedial seed placement, and ensures that the entire prostate receives the prescribed dose. In this paper, we describe the development of an automated seed segmentation method for use with 3D TRUS images. It is composed of five steps: 1) 3D needle segmentation; 2) volume cropping along the detected needle; 3) non-seed structure removal based on tri-bar model projection; 4) seed candidate recognition using 3D line segment detection; and 5) localization of seed positions. Experiments with the agar and chicken phantom images demonstrated that our method could segment 93% of the seeds in the 3D TRUS images with a mean distance error of 1.0 mm in an agar phantom and 1.7 mm in a chicken phantom, both with respect to manual segmented seed positions. The false positive rate was 7% while the segmentation time on a PC computer with dual AMD Athlon 1.8GHz processor was 280 seconds.

  3. Automated 3D Damaged Cavity Model Builder for Lower Surface Acreage Tile on Orbiter

    NASA Technical Reports Server (NTRS)

    Belknap, Shannon; Zhang, Michael

    2013-01-01

    The 3D Automated Thermal Tool for Damaged Acreage Tile Math Model builder was developed to perform quickly and accurately 3D thermal analyses on damaged lower surface acreage tiles and structures beneath the damaged locations on a Space Shuttle Orbiter. The 3D model builder created both TRASYS geometric math models (GMMs) and SINDA thermal math models (TMMs) to simulate an idealized damaged cavity in the damaged tile(s). The GMMs are processed in TRASYS to generate radiation conductors between the surfaces in the cavity. The radiation conductors are inserted into the TMMs, which are processed in SINDA to generate temperature histories for all of the nodes on each layer of the TMM. The invention allows a thermal analyst to create quickly and accurately a 3D model of a damaged lower surface tile on the orbiter. The 3D model builder can generate a GMM and the correspond ing TMM in one or two minutes, with the damaged cavity included in the tile material. A separate program creates a configuration file, which would take a couple of minutes to edit. This configuration file is read by the model builder program to determine the location of the damage, the correct tile type, tile thickness, structure thickness, and SIP thickness of the damage, so that the model builder program can build an accurate model at the specified location. Once the models are built, they are processed by the TRASYS and SINDA.

  4. Design, fabrication, and implementation of voxel-based 3D printed textured phantoms for task-based image quality assessment in CT

    NASA Astrophysics Data System (ADS)

    Solomon, Justin; Ba, Alexandre; Diao, Andrew; Lo, Joseph; Bier, Elianna; Bochud, François; Gehm, Michael; Samei, Ehsan

    2016-03-01

    In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2

  5. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT

    NASA Astrophysics Data System (ADS)

    Pacilio, Massimiliano; Amato, Ernesto; Lanconelli, Nico; Basile, Chiara; Torres, Leonel Alberto; Botta, Francesca; Ferrari, Mahila; Cornejo Diaz, Nestor; Coca Perez, Marco; Fernández, María; Lassmann, Michael; Vergara Gil, Alex; Cremonesi, Marta

    2015-03-01

    This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with 131I, 177Lu, 188Re or 90Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with 90Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles. For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for 177Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED. The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs

  6. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT.

    PubMed

    Pacilio, Massimiliano; Amato, Ernesto; Lanconelli, Nico; Basile, Chiara; Torres, Leonel Alberto; Botta, Francesca; Ferrari, Mahila; Diaz, Nestor Cornejo; Perez, Marco Coca; Fernández, María; Lassmann, Michael; Gil, Alex Vergara; Cremonesi, Marta

    2015-03-07

    This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with (131)I, (177)Lu, (188)Re or (90)Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with (90)Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles.For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for (177)Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED.The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs

  7. Automated 3D modelling of buildings from aerial and space imagery using image understanding techniques

    NASA Astrophysics Data System (ADS)

    Kim, Taejung

    The development of a fully automated mapping system is one of the fundamental goals in photogrammetry and remote sensing. As an approach towards this goal, this thesis describes the work carried out in the automated 3D modelling of buildings in urban scenes. The whole work is divided into three parts: the development of an automated height extraction system, the development of an automated building detection system, and the combination of these two systems. After an analysis of the key problems of urban-area imagery for stereo matching, buildings were found to create isolated regions and blunders. From these findings, an automated building height extraction system was developed. This stereoscopic system is based on a pyramidal (area-based) matching algorithm with automatic seed points and a tile-based control strategy. To remove possible blunders and extract buildings from other background objects, a series of "smart" operations using linear elements from buildings were also applied. A new monoscopic building detection system was developed based on a graph constructed from extracted lines and their relations. After extracting lines from a single image using low-level image processing techniques, line relations are searched for and a graph constructed. By finding closed loops in the graph, building hypotheses are generated. These are then merged and verified using shadow analysis and perspective geometry. After verification, each building hypothesis indicates either a building or a part of a building. By combining results from these two systems, 3D building roofs can be modelled automatically. The modelling is performed using height information obtained from the height extraction system and interpolation boundaries obtained from the building detection system. Other fusion techniques and the potential improvements due to these are also discussed. Quantitative analysis was performed for each algorithm presented in this thesis and the results support the newly

  8. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing

    PubMed Central

    2014-01-01

    Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. Results Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns. Conclusions The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods. PMID:24886511

  9. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data.

    PubMed

    Lee, Woonghee; Petit, Chad M; Cornilescu, Gabriel; Stark, Jaime L; Markley, John L

    2016-06-01

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27-98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  10. Automated Atom-By-Atom Three-Dimensional (3D) Reconstruction of Field Ion Microscopy Data.

    PubMed

    Dagan, Michal; Gault, Baptiste; Smith, George D W; Bagot, Paul A J; Moody, Michael P

    2017-03-20

    An automated procedure has been developed for the reconstruction of field ion microscopy (FIM) data that maintains its atomistic nature. FIM characterizes individual atoms on the specimen's surface, evolving subject to field evaporation, in a series of two-dimensional (2D) images. Its unique spatial resolution enables direct imaging of crystal defects as small as single vacancies. To fully exploit FIM's potential, automated analysis tools are required. The reconstruction algorithm developed here relies on minimal assumptions and is sensitive to atomic coordinates of all imaged atoms. It tracks the atoms across a sequence of images, allocating each to its respective crystallographic plane. The result is a highly accurate 3D lattice-resolved reconstruction. The procedure is applied to over 2000 tungsten atoms, including ion-implanted planes. The approach is further adapted to analyze carbides in a steel matrix, demonstrating its applicability to a range of materials. A vast amount of information is collected during the experiment that can underpin advanced analyses such as automated detection of "out of sequence" events, subangstrom surface displacements and defects effects on neighboring atoms. These analyses have the potential to reveal new insights into the field evaporation process and contribute to improving accuracy and scope of 3D FIM and atom probe characterization.

  11. Second generation anthropomorphic physical phantom for mammography and DBT: Incorporating voxelized 3D printing and inkjet printing of iodinated lesion inserts

    NASA Astrophysics Data System (ADS)

    Sikaria, Dhiraj; Musinsky, Stephanie; Sturgeon, Gregory M.; Solomon, Justin; Diao, Andrew; Gehm, Michael E.; Samei, Ehsan; Glick, Stephen J.; Lo, Joseph Y.

    2016-03-01

    Physical phantoms are needed for the evaluation and optimization of new digital breast tomosynthesis (DBT) systems. Previously, we developed an anthropomorphic phantom based on human subject breast CT data and fabricated using commercial 3D printing. We now present three key advancements: voxelized 3D printing, photopolymer material doping, and 2D inkjet printing of lesion inserts. First, we bypassed the printer's control software in order to print in voxelized form instead of conventional STL surfaces, thus improving resolution and allowing dithering to mix the two photopolymer materials into arbitrary proportions. We demonstrated ability to print details as small as 150μm, and dithering to combine VeroWhitePlus and TangoPlus in 10% increments. Second, to address the limited attenuation difference among commercial photopolymers, we evaluated a beta sample from Stratasys with increased TiO2 doping concentration up to 2.5%, which corresponded to 98% breast density. By spanning 36% to 98% breast density, this doubles our previous contrast. Third, using inkjet printers modified to print with iopamidol, we created 2D lesion patterns on paper that can be sandwiched into the phantom. Inkjet printing has advantages of being inexpensive and easy, and more contrast can be delivered through overprinting. Printing resolution was maintained at 210 μm horizontally and 330 μm vertically even after 10 overprints. Contrast increased linearly with overprinting at 0.7% per overprint. Together, these three new features provide the basis for creating a new anthropomorphic physical breast phantom with improved resolution and contrast, as well as the ability to insert 2D lesions for task-based assessment of performance.

  12. A review of automated image understanding within 3D baggage computed tomography security screening.

    PubMed

    Mouton, Andre; Breckon, Toby P

    2015-01-01

    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT.

  13. 3-D image pre-processing algorithms for improved automated tracing of neuronal arbors.

    PubMed

    Narayanaswamy, Arunachalam; Wang, Yu; Roysam, Badrinath

    2011-09-01

    The accuracy and reliability of automated neurite tracing systems is ultimately limited by image quality as reflected in the signal-to-noise ratio, contrast, and image variability. This paper describes a novel combination of image processing methods that operate on images of neurites captured by confocal and widefield microscopy, and produce synthetic images that are better suited to automated tracing. The algorithms are based on the curvelet transform (for denoising curvilinear structures and local orientation estimation), perceptual grouping by scalar voting (for elimination of non-tubular structures and improvement of neurite continuity while preserving branch points), adaptive focus detection, and depth estimation (for handling widefield images without deconvolution). The proposed methods are fast, and capable of handling large images. Their ability to handle images of unlimited size derives from automated tiling of large images along the lateral dimension, and processing of 3-D images one optical slice at a time. Their speed derives in part from the fact that the core computations are formulated in terms of the Fast Fourier Transform (FFT), and in part from parallel computation on multi-core computers. The methods are simple to apply to new images since they require very few adjustable parameters, all of which are intuitive. Examples of pre-processing DIADEM Challenge images are used to illustrate improved automated tracing resulting from our pre-processing methods.

  14. Accuracy and efficiency of computer-aided anatomical analysis using 3D visualization software based on semi-automated and automated segmentations.

    PubMed

    An, Gao; Hong, Li; Zhou, Xiao-Bing; Yang, Qiong; Li, Mei-Qing; Tang, Xiang-Yang

    2017-03-01

    We investigated and compared the functionality of two 3D visualization software provided by a CT vendor and a third-party vendor, respectively. Using surgical anatomical measurement as baseline, we evaluated the accuracy of 3D visualization and verified their utility in computer-aided anatomical analysis. The study cohort consisted of 50 adult cadavers fixed with the classical formaldehyde method. The computer-aided anatomical analysis was based on CT images (in DICOM format) acquired by helical scan with contrast enhancement, using a CT vendor provided 3D visualization workstation (Syngo) and a third-party 3D visualization software (Mimics) that was installed on a PC. Automated and semi-automated segmentations were utilized in the 3D visualization workstation and software, respectively. The functionality and efficiency of automated and semi-automated segmentation methods were compared. Using surgical anatomical measurement as a baseline, the accuracy of 3D visualization based on automated and semi-automated segmentations was quantitatively compared. In semi-automated segmentation, the Mimics 3D visualization software outperformed the Syngo 3D visualization workstation. No significant difference was observed in anatomical data measurement by the Syngo 3D visualization workstation and the Mimics 3D visualization software (P>0.05). Both the Syngo 3D visualization workstation provided by a CT vendor and the Mimics 3D visualization software by a third-party vendor possessed the needed functionality, efficiency and accuracy for computer-aided anatomical analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. a Semi-Automated Point Cloud Processing Methodology for 3d Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Kıvılcım, C. Ö.; Duran, Z.

    2016-06-01

    The preliminary phase in any architectural heritage project is to obtain metric measurements and documentation of the building and its individual elements. On the other hand, conventional measurement techniques require tremendous resources and lengthy project completion times for architectural surveys and 3D model production. Over the past two decades, the widespread use of laser scanning and digital photogrammetry have significantly altered the heritage documentation process. Furthermore, advances in these technologies have enabled robust data collection and reduced user workload for generating various levels of products, from single buildings to expansive cityscapes. More recently, the use of procedural modelling methods and BIM relevant applications for historic building documentation purposes has become an active area of research, however fully automated systems in cultural heritage documentation still remains open. In this paper, we present a semi-automated methodology, for 3D façade modelling of cultural heritage assets based on parametric and procedural modelling techniques and using airborne and terrestrial laser scanning data. We present the contribution of our methodology, which we implemented in an open source software environment using the example project of a 16th century early classical era Ottoman structure, Sinan the Architect's Şehzade Mosque in Istanbul, Turkey.

  16. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation

    PubMed Central

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D

    2017-01-01

    Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis. PMID:28228852

  17. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    NASA Astrophysics Data System (ADS)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  18. An integrated 3D-printed platform for the automated isolation of N-glycans.

    PubMed

    Wang, Mao-Mao; Laborda, Pedro; Conway, Louis Patrick; Duan, Xu-Chu; Huang, Kun; Liu, Li; Voglmeir, Josef

    2016-10-04

    The development of techniques for the rapid analysis of N-glycans is a key step in enabling the roles of glycoproteins in biological processes to be studied. Analysis is usually performed through the liberation of the carbohydrate moieties from proteins, followed by fluorescent labeling and identification using either standardized HPLC or mass spectrometry techniques. A simple and robust automated process for the release and isolation of N-glycans would greatly improve analytical throughput and reproducibility, and is thus highly desirable. Inspired by the increasing number of reported projects involving open source labware, which allows the design and construction of otherwise inaccessible laboratory equipment using low-cost 3D printers, we used this technique to fabricate a platform for the automated isolation of N-glycans. As a proof of concept, we demonstrated the successful recovery of glycan samples from the glycoprotein model fetuin using our self-made 3D-printed equipment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 3D printed fluidics with embedded analytic functionality for automated reaction optimisation.

    PubMed

    Capel, Andrew J; Wright, Andrew; Harding, Matthew J; Weaver, George W; Li, Yuqi; Harris, Russell A; Edmondson, Steve; Goodridge, Ruth D; Christie, Steven D R

    2017-01-01

    Additive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis.

  20. Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data.

    PubMed

    Khorshed, Reema A; Hawkins, Edwin D; Duarte, Delfim; Scott, Mark K; Akinduro, Olufolake A; Rashidi, Narges M; Spitaler, Martin; Lo Celso, Cristina

    2015-07-14

    Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data

    PubMed Central

    Kajić, Vedran; Esmaeelpour, Marieh; Glittenberg, Carl; Kraus, Martin F.; Honegger, Joachim; Othara, Richu; Binder, Susanne; Fujimoto, James G.; Drexler, Wolfgang

    2012-01-01

    A fully automated, robust vessel segmentation algorithm has been developed for choroidal OCT, employing multiscale 3D edge filtering and projection of “probability cones” to determine the vessel “core”, even in the tomograms with low signal-to-noise ratio (SNR). Based on the ideal vessel response after registration and multiscale filtering, with computed depth related SNR, the vessel core estimate is dilated to quantify the full vessel diameter. As a consequence, various statistics can be computed using the 3D choroidal vessel information, such as ratios of inner (smaller) to outer (larger) choroidal vessels or the absolute/relative volume of choroid vessels. Choroidal vessel quantification can be displayed in various forms, focused and averaged within a special region of interest, or analyzed as the function of image depth. In this way, the proposed algorithm enables unique visualization of choroidal watershed zones, as well as the vessel size reduction when investigating the choroid from the sclera towards the retinal pigment epithelium (RPE). To the best of our knowledge, this is the first time that an automatic choroidal vessel segmentation algorithm is successfully applied to 1060 nm 3D OCT of healthy and diseased eyes. PMID:23304653

  2. Automated segmentation and geometrical modeling of the tricuspid aortic valve in 3D echocardiographic images.

    PubMed

    Pouch, Alison M; Wang, Hongzhi; Takabe, Manabu; Jackson, Benjamin M; Sehgal, Chandra M; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2013-01-01

    The aortic valve has been described with variable anatomical definitions, and the consistency of 2D manual measurement of valve dimensions in medical image data has been questionable. Given the importance of image-based morphological assessment in the diagnosis and surgical treatment of aortic valve disease, there is considerable need to develop a standardized framework for 3D valve segmentation and shape representation. Towards this goal, this work integrates template-based medial modeling and multi-atlas label fusion techniques to automatically delineate and quantitatively describe aortic leaflet geometry in 3D echocardiographic (3DE) images, a challenging task that has been explored only to a limited extent. The method makes use of expert knowledge of aortic leaflet image appearance, generates segmentations with consistent topology, and establishes a shape-based coordinate system on the aortic leaflets that enables standardized automated measurements. In this study, the algorithm is evaluated on 11 3DE images of normal human aortic leaflets acquired at mid systole. The clinical relevance of the method is its ability to capture leaflet geometry in 3DE image data with minimal user interaction while producing consistent measurements of 3D aortic leaflet geometry.

  3. Automated White Matter Hyperintensity Detection in Multiple Sclerosis Using 3D T2 FLAIR

    PubMed Central

    Zhong, Yi; Wang, Ying; Kang, Yan; Haacke, E. Mark

    2014-01-01

    White matter hyperintensities (WMH) seen on T2WI are a hallmark of multiple sclerosis (MS) as it indicates inflammation associated with the disease. Automatic detection of the WMH can be valuable in diagnosing and monitoring of treatment effectiveness. T2 fluid attenuated inversion recovery (FLAIR) MR images provided good contrast between the lesions and other tissue; however the signal intensity of gray matter tissue was close to the lesions in FLAIR images that may cause more false positives in the segment result. We developed and evaluated a tool for automated WMH detection only using high resolution 3D T2 fluid attenuated inversion recovery (FLAIR) MR images. We use a high spatial frequency suppression method to reduce the gray matter area signal intensity. We evaluate our method in 26 MS patients and 26 age matched health controls. The data from the automated algorithm showed good agreement with that from the manual segmentation. The linear correlation between these two approaches in comparing WMH volumes was found to be Y = 1.04X + 1.74  (R2 = 0.96). The automated algorithm estimates the number, volume, and category of WMH. PMID:25136355

  4. Automated torso organ segmentation from 3D CT images using conditional random field

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2016-03-01

    This paper presents a segmentation method for torso organs using conditional random field (CRF) from medical images. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. In this paper, we propose an organ segmentation method using structured output learning which is based on probabilistic graphical model. The proposed method utilizes CRF on three-dimensional grids as probabilistic graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weight parameters of the CRF using stochastic gradient descent algorithm and estimate organ labels for a given image by maximum a posteriori (MAP) estimation. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 6.6%. The DICE coefficients of right lung, left lung, heart, liver, spleen, right kidney, and left kidney are 0.94, 0.92, 0.65, 0.67, 0.36, 0.38, and 0.37, respectively.

  5. Automated torso organ segmentation from 3D CT images using structured perceptron and dual decomposition

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku

    2015-03-01

    This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.

  6. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Purdie, Thomas G.

    2017-01-01

    Automating the radiotherapy treatment planning process is a technically challenging problem. The majority of automated approaches have focused on customizing and inferring dose volume objectives to be used in plan optimization. In this work we outline a multi-patient atlas-based dose prediction approach that learns to predict the dose-per-voxel for a novel patient directly from the computed tomography planning scan without the requirement of specifying any objectives. Our method learns to automatically select the most effective atlases for a novel patient, and then map the dose from those atlases onto the novel patient. We extend our previous work to include a conditional random field for the optimization of a joint distribution prior that matches the complementary goals of an accurately spatially distributed dose distribution while still adhering to the desired dose volume histograms. The resulting distribution can then be used for inverse-planning with a new spatial dose objective, or to create typical dose volume objectives for the canonical optimization pipeline. We investigated six treatment sites (633 patients for training and 113 patients for testing) and evaluated the mean absolute difference in all DVHs for the clinical and predicted dose distribution. The results on average are favorable in comparison to our previous approach (1.91 versus 2.57). Comparing our method with and without atlas-selection further validates that atlas-selection improved dose prediction on average in whole breast (0.64 versus 1.59), prostate (2.13 versus 4.07), and rectum (1.46 versus 3.29) while it is less important in breast cavity (0.79 versus 0.92) and lung (1.33 versus 1.27) for which there is high conformity and minimal dose shaping. In CNS brain, atlas-selection has the potential to be impactful (3.65 versus 5.09), but selecting the ideal atlas is the most challenging.

  7. Determining Tooth Occlusal Surface Relief Indicator by Means of Automated 3d Shape Analysis

    NASA Astrophysics Data System (ADS)

    Gaboutchian, A. V.; Knyaz, V. A.

    2017-05-01

    Determining occlusal surface relief indicator plays an important role in odontometric tooth shape analysis. An analysis of the parameters of surface relief indicators provides valuable information about closure of dental arches (occlusion) and changes in structure of teeth in lifetime. Such data is relevant for dentistry or anthropology applications. Descriptive techniques commonly used for surface relief evaluation have limited precision which, as a result, does not provide for reliability of conclusions about structure and functioning of teeth. Parametric techniques developed for such applications need special facilities and are time-consuming which limits their spread and ease to access. Nevertheless the use of 3D models, obtained by photogrammetric techniques, allows attaining required measurements accuracy and has a potential for process automation. We introduce new approaches for determining tooth occlusal surface relief indicator and provide data on efficiency in use of different indicators in natural attrition evaluation.

  8. An automated tool for 3D tracking of single molecules in living cells

    NASA Astrophysics Data System (ADS)

    Gardini, L.; Capitanio, M.; Pavone, F. S.

    2015-07-01

    Recently, tremendous improvements have been achieved in the precision of localization of single fluorescent molecules, allowing localization and tracking of biomolecules at the nm level. Since the behaviour of proteins and biological molecules is tightly influenced by the cell's environment, a growing number of microscopy techniques are moving from in vitro to live cell experiments. Looking at both diffusion and active transportation processes inside a cell requires three-dimensional localization over a few microns range, high SNR images and high temporal resolution (ms order of magnitude). To satisfy these requirements we developed an automated routine that allow 3D tracking of single fluorescent molecules in living cells with nanometer accuracy, by exploiting the properties of the point-spread-function of out-of-focus Quantum Dots bound to the protein of interest.

  9. Towards automated 3D finite element modeling of direct fiber reinforced composite dental bridge.

    PubMed

    Li, Wei; Swain, Michael V; Li, Qing; Steven, Grant P

    2005-07-01

    An automated 3D finite element (FE) modeling procedure for direct fiber reinforced dental bridge is established on the basis of computer tomography (CT) scan data. The model presented herein represents a two-unit anterior cantilever bridge that includes a maxillary right incisor as an abutment and a maxillary left incisor as a cantilever pontic bonded by adhesive and reinforced fibers. The study aims at gathering fundamental knowledge for design optimization of this type of innovative composite dental bridges. To promote the automatic level of numerical analysis and computational design of new dental biomaterials, this report pays particular attention to the mathematical modeling, mesh generation, and validation of numerical models. To assess the numerical accuracy and to validate the model established, a convergence test and experimental verification are also presented.

  10. Detection of infarct lesions from single MRI modality using inconsistency between voxel intensity and spatial location--a 3-D automatic approach.

    PubMed

    Shen, Shan; Szameitat, André J; Sterr, Annette

    2008-07-01

    Detection of infarct lesions using traditional segmentation methods is always problematic due to intensity similarity between lesions and normal tissues, so that multispectral MRI modalities were often employed for this purpose. However, the high costs of MRI scan and the severity of patient conditions restrict the collection of multiple images. Therefore, in this paper, a new 3-D automatic lesion detection approach was proposed, which required only a single type of anatomical MRI scan. It was developed on a theory that, when lesions were present, the voxel-intensity-based segmentation and the spatial-location-based tissue distribution should be inconsistent in the regions of lesions. The degree of this inconsistency was calculated, which indicated the likelihood of tissue abnormality. Lesions were identified when the inconsistency exceeded a defined threshold. In this approach, the intensity-based segmentation was implemented by the conventional fuzzy c-mean (FCM) algorithm, while the spatial location of tissues was provided by prior tissue probability maps. The use of simulated MRI lesions allowed us to quantitatively evaluate the performance of the proposed method, as the size and location of lesions were prespecified. The results showed that our method effectively detected lesions with 40-80% signal reduction compared to normal tissues (similarity index > 0.7). The capability of the proposed method in practice was also demonstrated on real infarct lesions from 15 stroke patients, where the lesions detected were in broad agreement with true lesions. Furthermore, a comparison to a statistical segmentation approach presented in the literature suggested that our 3-D lesion detection approach was more reliable. Future work will focus on adapting the current method to multiple sclerosis lesion detection.

  11. Automated identification of neurons in 3D confocal datasets from zebrafish brainstem

    PubMed Central

    KAMALI, M.; DAY, L. J.; BROOKS, D. H.; ZHOU, X.; O’MALLEY, D. M.

    2009-01-01

    Summary Many kinds of neuroscience data are being acquired regarding the dynamic behaviour and phenotypic diversity of nerve cells. But as the size, complexity and numbers of 3D neuroanatomical datasets grow ever larger, the need for automated detection and analysis of individual neurons takes on greater importance. We describe here a method that detects and identifies neurons within confocal image stacks acquired from the zebrafish brainstem. The first step is to create a template that incorporates the location of all known neurons within a population – in this case the population of reticulospinal cells. Once created, the template is used in conjunction with a sequence of algorithms to determine the 3D location and identity of all fluorescent neurons in each confocal dataset. After an image registration step, neurons are segmented within the confocal image stack and subsequently localized to specific locations within the brainstem template – in many instances identifying neurons as specific, individual reticulospinal cells. This image-processing sequence is fully automated except for the initial selection of three registration points on a maximum projection image. In analysing confocal image stacks that ranged considerably in image quality, we found that this method correctly identified on average ~80% of the neurons (if we assume that manual detection by experts constitutes ‘ground truth’). Because this identification can be generated approximately 100 times faster than manual identification, it offers a considerable time savings for the investigation of zebrafish reticulospinal neurons. In addition to its cell identification function, this protocol might also be integrated with stereological techniques to enhance quantification of neurons in larger databases. Our focus has been on zebrafish brainstem systems, but the methods described should be applicable to diverse neural architectures including retina, hippocampus and cerebral cortex. PMID:19196418

  12. Towards Automated Seismic Moment Tensor Inversion in Australia Using 3D Structural Model

    NASA Astrophysics Data System (ADS)

    Hingee, M.; Tkalcic, H.; Fichtner, A.; Sambridge, M.; Kennett, B. L.; Gorbatov, A.

    2009-12-01

    functions. Implementation of this 3D model will improve warning systems, and we present results that are an important step towards automated MT inversion in Australia. [1] Fichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.-P., 2009. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys. J. Int., in press.

  13. Automated 3D dendritic spine detection and analysis from two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Koh, Ingrid Y. Y.; Lindquist, W. Brent

    2001-04-01

    The functional significance of dendritic spines and their plasticity to a wide spectrum of developmental and pathological conditions has led to extensive studies based on spine morphology. The advances in image acquisition techniques and the associated generation of large 3D data sets of optical micrographs have not been accompanied by comparable advances in data analysis techniques. We present an automated 3D spine detection and quantification procedure suitable for images obtained by laser scanning microscopy. The image is first processed by deconvolution and the dendritic phase consisting of the neuronal cytoplasm is extracted by segmentation. Spines are detected as geometrical protrusions relative to the dendritic backbone. As very thin necks may not be imaged, some spine `heads' may be detached from the dendrite and are detected as detached components. These detected heads are merged with spine `bases' where appropriate. Morphological characterizations on spine length, volume, density and shape classifications are obtained. For time-lapse data, images are registered and individual spines are traced through the image sequence. Successful comparison results on spine lengths and densities with manual analysis are obtained. This method is highly automatic and allows detailed and objective quantification of the structure and dynamics of dendritic spines, which can be important predictors for the function of neural networks.

  14. Advances in automated 3-D image analyses of cell populations imaged by confocal microscopy.

    PubMed

    Ancin, H; Roysam, B; Dufresne, T E; Chestnut, M M; Ridder, G M; Szarowski, D H; Turner, J N

    1996-11-01

    Automated three-dimensional (3-D) image analysis methods are presented for rapid and effective analysis of populations of fluorescently labeled cells or nuclei in thick tissue sections that have been imaged three dimensionally using a confocal microscope. The methods presented here greatly improve upon our earlier work (Roysam et al.:J Microsc 173: 115-126, 1994). The principal advances reported are: algorithms for efficient data pre-processing and adaptive segmentation, effective handling of image anisotrophy, and fast 3-D morphological algorithms for separating overlapping or connected clusters utilizing image gradient information whenever available. A particular feature of this method is its ability to separate densely packed and connected clusters of cell nuclei. Some of the challenges overcome in this work include the efficient and effective handling of imaging noise, anisotrophy, and large variations in image parameters such as intensity, object size, and shape. The method is able to handle significant inter-cell, intra-cell, inter-image, and intra-image variations. Studies indicate that this method is rapid, robust, and adaptable. Examples were presented to illustrate the applicability of this approach to analyzing images of nuclei from densely packed regions in thick sections of rat liver, and brain that were labeled with a fluorescent Schiff reagent.

  15. Automated Segmentation of the Right Ventricle in 3D Echocardiography: A Kalman Filter State Estimation Approach.

    PubMed

    Bersvendsen, Jorn; Orderud, Fredrik; Massey, Richard John; Fosså, Kristian; Gerard, Olivier; Urheim, Stig; Samset, Eigil

    2016-01-01

    As the right ventricle's (RV) role in cardiovascular diseases is being more widely recognized, interest in RV imaging, function and quantification is growing. However, there are currently few RV quantification methods for 3D echocardiography presented in the literature or commercially available. In this paper we propose an automated RV segmentation method for 3D echocardiographic images. We represent the RV geometry by a Doo-Sabin subdivision surface with deformation modes derived from a training set of manual segmentations. The segmentation is then represented as a state estimation problem and solved with an extended Kalman filter by combining the RV geometry with a motion model and edge detection. Validation was performed by comparing surface-surface distances, volumes and ejection fractions in 17 patients with aortic insufficiency between the proposed method, magnetic resonance imaging (MRI), and a manual echocardiographic reference. The algorithm was efficient with a mean computation time of 2.0 s. The mean absolute distances between the proposed and manual segmentations were 3.6 ± 0.7 mm. Good agreements of end diastolic volume, end systolic volume and ejection fraction with respect to MRI ( -26±24 mL , -16±26 mL and 0 ± 10%, respectively) and a manual echocardiographic reference (7 ± 30 mL, 13 ± 17 mL and -5±7% , respectively) were observed.

  16. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.

    PubMed

    Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner

    2016-12-15

    In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter.

  17. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions

    PubMed Central

    Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner

    2016-01-01

    In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter. PMID:27983669

  18. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  19. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  20. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  1. Automated 3D ultrasound elastography of the breast: a phantom validation study

    NASA Astrophysics Data System (ADS)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.

    2016-04-01

    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  2. Fully automated treatment planning for head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method

    NASA Astrophysics Data System (ADS)

    McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.

    2017-08-01

    Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment

  3. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  4. Multiplanar Reconstructions of 3D Automated Breast Ultrasound Improve Lesion Differentiation by Radiologists.

    PubMed

    Van Zelst, Jan C M; Platel, Bram; Karssemeijer, Nico; Mann, Ritse M

    2015-12-01

    To investigate the value of multiplanar reconstructions (MPRs) of automated three-dimensional (3D) breast ultrasound (ABUS) compared to transverse evaluation only, in differentiation of benign and malignant breast lesions. Five breast radiologists evaluated ABUS scans of 96 female patients with biopsy-proven abnormalities (36 malignant and 60 benign). They classified the most suspicious lesion based on the breast imaging reporting and data system (BI-RADS) lexicon using the transverse scans only. A likelihood-of-malignancy (LOM) score (0-100) and a BI-RADS final assessment were assigned. Thereafter, the MPR was provided and readers scored the cases again. In addition, they rated the presence of spiculation and retraction in the coronal plane on a five-point scale called Spiculation and Retraction Severity Index (SRSI). Reader performance was analyzed with receiver-operating characteristics analysis. The area under the curve increased from 0.82 to 0.87 (P = .01) after readers were shown the reconstructed planes. The SRSI scores are highly correlated (Spearman's r) with the final LOM scores (range, r = 0.808-0.872) and ΔLOM scores (range, r = 0.525-0.836). Readers downgraded 3%-18% of the biopsied benign lesions to BI-RADS 2 after MPR evaluation. Inter-reader agreement for SRSI was substantial (intraclass correlation coefficient, 0.617). Inter-reader agreement of the BI-RADS final assessment improved from 0.367 to 0.536 after MPRs were read. Full 3D evaluation of ABUS using MPR improves differentiation of breast lesions in comparison to evaluating only transverse planes. Results suggest that the added value of MPR might be related to visualization of spiculation and retraction patterns in the coronal reconstructions. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  5. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    PubMed

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  6. Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions

    SciTech Connect

    Kurugol, Sila Come, Carolyn E.; Diaz, Alejandro A.; Ross, James C.; Washko, George R.; San Jose Estepar, Raul; Kinney, Greg L.; Black-Shinn, Jennifer L.; Hokanson, John E.; Budoff, Matthew J.

    2015-09-15

    Purpose: The purpose of this work is to develop a fully automated pipeline to compute aorta morphology and calcification measures in large cohorts of CT scans that can be used to investigate the potential of these measures as imaging biomarkers of cardiovascular disease. Methods: The first step of the automated pipeline is aorta segmentation. The algorithm the authors propose first detects an initial aorta boundary by exploiting cross-sectional circularity of aorta in axial slices and aortic arch in reformatted oblique slices. This boundary is then refined by a 3D level-set segmentation that evolves the boundary to the location of nearby edges. The authors then detect the aortic calcifications with thresholding and filter out the false positive regions due to nearby high intensity structures based on their anatomical location. The authors extract the centerline and oblique cross sections of the segmented aortas and compute the aorta morphology and calcification measures of the first 2500 subjects from COPDGene study. These measures include volume and number of calcified plaques and measures of vessel morphology such as average cross-sectional area, tortuosity, and arch width. Results: The authors computed the agreement between the algorithm and expert segmentations on 45 CT scans and obtained a closest point mean error of 0.62 ± 0.09 mm and a Dice coefficient of 0.92 ± 0.01. The calcification detection algorithm resulted in an improved true positive detection rate of 0.96 compared to previous work. The measurements of aorta size agreed with the measurements reported in previous work. The initial results showed associations of aorta morphology with calcification and with aging. These results may indicate aorta stiffening and unwrapping with calcification and aging. Conclusions: The authors have developed an objective tool to assess aorta morphology and aortic calcium plaques on CT scans that may be used to provide information about the presence of cardiovascular

  7. TOBAGO — a semi-automated approach for the generation of 3-D building models

    NASA Astrophysics Data System (ADS)

    Gruen, Armin

    3-D city models are in increasing demand for a great number of applications. Photogrammetry is a relevant technology that can provide an abundance of geometric, topologic and semantic information concerning these models. The pressure to generate a large amount of data with high degree of accuracy and completeness poses a great challenge to phtogrammetry. The development of automated and semi-automated methods for the generation of those data sets is therefore a key issue in photogrammetric research. We present in this article a strategy and methodology for an efficient generation of even fairly complex building models. Within this concept we request the operator to measure the house roofs from a stereomodel in form of an unstructured point cloud. According to our experience this can be done very quickly. Even a non-experienced operator can measure several hundred roofs or roof units per day. In a second step we fit generic building models fully automatically to these point clouds. The structure information is inherently included in these building models. In such a way geometric, topologic and even semantic data can be handed over to a CAD-system, in our case AutoCad, for further visualization and manipulation. The structuring is achieved in three steps. In a first step a classifier is initiated which recognizes the class of houses a particular roof point cloud belongs to. This recognition step is primarily based on the analysis of the number of ridge points. In the second and third steps the concrete topological relations between roof points are investigated and generic building models are fitted to the point clouds. Based on the technique of constraint-based reasoning two geometrical parsers are solving this problem. We have tested the methodology under a variety of different conditions in several pilot projects. The results will indicate the good performance of our approach. In addition we will demonstrate how the results can be used for visualization (texture

  8. Cartesia: automated 3-point setup for metrology instruments in 3D CAD space

    NASA Astrophysics Data System (ADS)

    Bierre, Pierre

    2005-02-01

    CAD-driven metrology applications using laser guns, scanners or cameras require situating the instruments in CAD coordinates, both positionally and rotationally. The new Cartesia instrument setup technique overcomes the requirement for surveying skill. The CAD coordinate system is pinned to the site by emplacing point emitters or retroreflectors at 3 CAD-specified reference points. Then, instruments may be set out at unknown locations and orientations. No leveling is required. An instrument interacts directionally with each reference point, acquiring raw, instrument-based polar angles. The Cartesia algorithm processes these observations to solve for the instrument's 3D position and rotational attitude. These data enable the instrument to think and work in CAD coordinates for data acquisition and point shooting. Correlation of data from multiple instruments may be solved elegantly at the outset, by setting up on a common reference pointset. This work uses recent advances in algorithmic geometry. The Cartesia system shifts the role of surveying expertise toward one-time emplacement of optical reference points, and away from daily instrument operation. The major benefit is that future automated metrology instruments can be designed for less technically skilled workers, lowering daily operational costs, and serving a broader base of users and applications.

  9. Automated analysis of barley organs using 3D laser scanning: an approach for high throughput phenotyping.

    PubMed

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-07-15

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R(2) = 0:99 for the leaf area and R(2) = 0:98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored.

  10. Semi-automated DIRSIG scene modeling from 3D LIDAR and passive imaging sources

    NASA Astrophysics Data System (ADS)

    Lach, S. R.; Brown, S. D.; Kerekes, J. P.

    2006-05-01

    The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is an established, first-principles based scene simulation tool that produces synthetic multispectral and hyperspectral images from the visible to long wave infrared (0.4 to 20 microns). Over the last few years, significant enhancements such as spectral polarimetric and active Light Detection and Ranging (LIDAR) models have also been incorporated into the software, providing an extremely powerful tool for algorithm testing and sensor evaluation. However, the extensive time required to create large-scale scenes has limited DIRSIG's ability to generate scenes "on demand." To date, scene generation has been a laborious, time-intensive process, as the terrain model, CAD objects and background maps have to be created and attributed manually. To shorten the time required for this process, we are initiating a research effort that aims to reduce the man-in-the-loop requirements for several aspects of synthetic hyperspectral scene construction. Through a fusion of 3D LIDAR data with passive imagery, we are working to semi-automate several of the required tasks in the DIRSIG scene creation process. Additionally, many of the remaining tasks will also realize a shortened implementation time through this application of multi-modal imagery. This paper reports on the progress made thus far in achieving these objectives.

  11. Automated foveola localization in retinal 3D-OCT images using structural support vector machine prediction.

    PubMed

    Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Schuman, Joel S; Rehg, James M

    2012-01-01

    We develop an automated method to determine the foveola location in macular 3D-OCT images in either healthy or pathological conditions. Structural Support Vector Machine (S-SVM) is trained to directly predict the location of the foveola, such that the score at the ground truth position is higher than that at any other position by a margin scaling with the associated localization loss. This S-SVM formulation directly minimizes the empirical risk of localization error, and makes efficient use of all available training data. It deals with the localization problem in a more principled way compared to the conventional binary classifier learning that uses zero-one loss and random sampling of negative examples. A total of 170 scans were collected for the experiment. Our method localized 95.1% of testing scans within the anatomical area of the foveola. Our experimental results show that the proposed method can effectively identify the location of the foveola, facilitating diagnosis around this important landmark.

  12. Automated 3-D Printed Arrays to Evaluate Genotoxic Chemistry: E-Cigarettes and Water Samples.

    PubMed

    Kadimisetty, Karteek; Malla, Spundana; Rusling, James F

    2017-05-26

    A novel, automated, low cost, three-dimensional (3-D) printed microfluidic array was developed to detect DNA damage from metabolites of chemicals in environmental samples. The electrochemiluminescent (ECL) detection platform incorporates layer-by-layer (LbL) assembled films of microsomal enzymes, DNA and an ECL-emitting ruthenium metallopolymer in ∼10 nm deep microwells. Liquid samples are introduced into the array, metabolized by the human enzymes, products react with DNA if possible, and DNA damage is detected by ECL with a camera. Measurements of relative DNA damage by the array assess the genotoxic potential of the samples. The array analyzes three samples simultaneously in 5 min. Measurement of cigarette and e-cigarette smoke extracts and polluted water samples was used to establish proof of concept. Potentially genotoxic reactions from e-cigarette vapor similar to smoke from conventional cigarettes were demonstrated. Untreated wastewater showed a high genotoxic potential compared to negligible values for treated wastewater from a pollution control treatment plant. Reactivity of chemicals known to produce high rates of metabolite-related DNA damage were measured, and array results for environmental samples were expressed in terms of equivalent responses from these standards to assess severity of possible DNA damage. Genotoxic assessment of wastewater samples during processing also highlighted future on-site monitoring applications.

  13. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    NASA Astrophysics Data System (ADS)

    Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.

    2016-03-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  14. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    NASA Astrophysics Data System (ADS)

    Wellmann, J. F.; Thiele, S. T.; Lindsay, M. D.; Jessell, M. W.

    2015-11-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  15. Automated Sensor for 3-D Reconstruction of Optical Emission from RF Plasmas

    NASA Astrophysics Data System (ADS)

    Collard, Corey; Shannon, S.; Brake, M. L.; Holloway, James Paul

    1999-10-01

    Three dimensional images are obtained by using an automated scanning sensor which collects optical emission from a RF (13.56 MHz) discharge in a capacitively coupled GEC cell. The sensor scans a plane parallel to the electrode surface and transmits the plasma spectral emission through a fiber optic cable to a monochromator. The fiber optic is attached to a motorized rotational stage attached to a manual vertical translational stage. Wedges of light (argon at 750.4 nm) are collected as the fiber scans across the plasma. The data is digitized and stored so that it can be input into an algorithm, which uses a Tikhonov regularization method to reconstruct the emissivity as a function of radial position. By varying the height of the sensor, a 3-D plot of the plasma emission can be obtained. Three dimensional plots of plasmas run at 75, 100, 150 and 200 peak to peak voltage at pressures of 100, 250, 500 and 1000 mTorr were obtained. The non-uniformity of the light emission as a function of pressure and power will be discussed.

  16. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  17. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot

    PubMed Central

    Kitson, Philip J; Glatzel, Stefan

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis. PMID:28144350

  18. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.

    PubMed

    Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.

  19. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging.

    PubMed

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng

    2016-05-01

    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.

  20. Development of a semi-automated method for mitral valve modeling with medial axis representation using 3D ultrasound.

    PubMed

    Pouch, Alison M; Yushkevich, Paul A; Jackson, Benjamin M; Jassar, Arminder S; Vergnat, Mathieu; Gorman, Joseph H; Gorman, Robert C; Sehgal, Chandra M

    2012-02-01

    Precise 3D modeling of the mitral valve has the potential to improve our understanding of valve morphology, particularly in the setting of mitral regurgitation (MR). Toward this goal, the authors have developed a user-initialized algorithm for reconstructing valve geometry from transesophageal 3D ultrasound (3D US) image data. Semi-automated image analysis was performed on transesophageal 3D US images obtained from 14 subjects with MR ranging from trace to severe. Image analysis of the mitral valve at midsystole had two stages: user-initialized segmentation and 3D deformable modeling with continuous medial representation (cm-rep). Semi-automated segmentation began with user-identification of valve location in 2D projection images generated from 3D US data. The mitral leaflets were then automatically segmented in 3D using the level set method. Second, a bileaflet deformable medial model was fitted to the binary valve segmentation by Bayesian optimization. The resulting cm-rep provided a visual reconstruction of the mitral valve, from which localized measurements of valve morphology were automatically derived. The features extracted from the fitted cm-rep included annular area, annular circumference, annular height, intercommissural width, septolateral length, total tenting volume, and percent anterior tenting volume. These measurements were compared to those obtained by expert manual tracing. Regurgitant orifice area (ROA) measurements were compared to qualitative assessments of MR severity. The accuracy of valve shape representation with cm-rep was evaluated in terms of the Dice overlap between the fitted cm-rep and its target segmentation. The morphological features and anatomic ROA derived from semi-automated image analysis were consistent with manual tracing of 3D US image data and with qualitative assessments of MR severity made on clinical radiology. The fitted cm-reps accurately captured valve shape and demonstrated patient-specific differences in valve

  1. Automated 3D coronary sinus catheter detection using a scanning-beam digital x-ray system

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Slagowski, Jordan M.; Bodart, Lindsay E.; Speidel, Michael A.

    2017-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D tracking of catheter electrodes concurrent with fluoroscopic display. To facilitate respiratory motion-compensated 3D catheter tracking, an automated coronary sinus (CS) catheter detection algorithm for SBDX was developed. The technique uses the 3D localization capability of SBDX and prior knowledge of the catheter shape. Candidate groups of points representing the CS catheter are obtained from a 3D shape-constrained search. A cost function is then minimized over the groups to select the most probable CS catheter candidate. The algorithm was implemented in MATLAB and tested offline using recorded image sequences of a chest phantom containing a CS catheter, ablation catheter, and fiducial clutter. Fiducial placement was varied to create challenging detection scenarios. Table panning and elevation was used to simulate motion. The CS catheter detection method had 98.1% true positive rate and 100% true negative rate in 2755 frames of imaging. Average processing time was 12.7 ms/frame on a PC with a 3.4 GHz CPU and 8 GB memory. Motion compensation based on 3D CS catheter tracking was demonstrated in a moving chest phantom with a fixed CS catheter and an ablation catheter pulled along a fixed trajectory. The RMS error in the tracked ablation catheter trajectory was 1.41 mm, versus 10.35 mm without motion compensation. A computationally efficient method of automated 3D CS catheter detection has been developed to assist with motion-compensated 3D catheter tracking and registration of 3D cardiac models to tracked catheters.

  2. Automating the segmentation of medical images for the production of voxel tomographic computational models.

    PubMed

    Caon, M; Mohyla, J

    2001-12-01

    Radiation dosimetry for the diagnostic medical imaging procedures performed on humans requires anatomically accurate, computational models. These may be constructed from medical images as voxel-based tomographic models. However, they are time consuming to produce and as a consequence, there are few available. This paper discusses the emergence of semi-automatic segmentation techniques and describes an application (iRAD) written in Microsoft Visual Basic that allows the bitmap of a medical image to be segmented interactively and semi-automatically while displayed in Microsoft Excel. iRAD will decrease the time required to construct voxel models.

  3. Left atrial volumetric assessment using a novel automated framework for 3D echocardiography: a multi-centre analysis.

    PubMed

    Almeida, Nuno; Papachristidis, Alexandros; Pearson, Peter; Sarvari, Sebastian Imre; Engvall, Jan; Edvardsen, Thor; Monaghan, Mark; Gérard, Olivier; Samset, Eigil; D'hooge, Jan

    2016-08-22

    This study aims at validating a software tool for automated segmentation and quantification of the left atrium (LA) from 3D echocardiography. The LA segmentation tool uses a dual-chamber model of the left side of the heart to automatically detect and track the atrio-ventricular plane and the LA endocardium in transthoracic 3D echocardiography. The tool was tested in a dataset of 121 ultrasound images from patients with several cardiovascular pathologies (in a multi-centre setting), and the resulting volumes were compared with those assessed manually by experts in a blinded analysis using conventional contouring. Bland-Altman analysis showed good agreement between the automated method and the manual references, with differences (mean ± 1.96 SD) of 0.5 ± 5.7 mL for LA minimum volume and -1.6 ± 9.7 mL for LA maximum volume (comparable to the inter-observer variability of manual tracings). The automated tool required no user interaction in 93% of the recordings, while 4% required a single click and only 2% required contour adjustments, reducing considerably the amount of time and effort required for LA volumetric analysis. The automated tool was validated in a multi-centre setting, providing quantification of the LA volume over the cardiac cycle with minimal user interaction. The results of the automated analysis were in agreement with those estimated manually by experts. This study shows that such approach has clinical utility for the assessment of the LA morphology and function, automating and facilitating the time-consuming task of analysing 3D echocardiographic recordings. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  4. Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events

    NASA Astrophysics Data System (ADS)

    Javidi, Bahram; Yeom, Seokwon; Moon, Inkyu; Daneshpanah, Mehdi

    2006-05-01

    In this paper, we present an overview of three-dimensional (3D) optical imaging techniques for real-time automated sensing, visualization, and recognition of dynamic biological microorganisms. Real time sensing and 3D reconstruction of the dynamic biological microscopic objects can be performed by single-exposure on-line (SEOL) digital holographic microscopy. A coherent 3D microscope-based interferometer is constructed to record digital holograms of dynamic micro biological events. Complex amplitude 3D images of the biological microorganisms are computationally reconstructed at different depths by digital signal processing. Bayesian segmentation algorithms are applied to identify regions of interest for further processing. A number of pattern recognition approaches are addressed to identify and recognize the microorganisms. One uses 3D morphology of the microorganisms by analyzing 3D geometrical shapes which is composed of magnitude and phase. Segmentation, feature extraction, graph matching, feature selection, and training and decision rules are used to recognize the biological microorganisms. In a different approach, 3D technique is used that are tolerant to the varying shapes of the non-rigid biological microorganisms. After segmentation, a number of sampling patches are arbitrarily extracted from the complex amplitudes of the reconstructed 3D biological microorganism. These patches are processed using a number of cost functions and statistical inference theory for the equality of means and equality of variances between the sampling segments. Also, we discuss the possibility of employing computational integral imaging for 3D sensing, visualization, and recognition of biological microorganisms illuminated under incoherent light. Experimental results with several biological microorganisms are presented to illustrate detection, segmentation, and identification of micro biological events.

  5. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting.

    PubMed

    Schmitz, Christoph; Eastwood, Brian S; Tappan, Susan J; Glaser, Jack R; Peterson, Daniel A; Hof, Patrick R

    2014-01-01

    Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) "cell counting" approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections.

  6. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting

    PubMed Central

    Schmitz, Christoph; Eastwood, Brian S.; Tappan, Susan J.; Glaser, Jack R.; Peterson, Daniel A.; Hof, Patrick R.

    2014-01-01

    Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) “cell counting” approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections. PMID:24847213

  7. Single cell-based automated quantification of therapy responses of invasive cancer spheroids in organotypic 3D culture.

    PubMed

    Veelken, Cornelia; Bakker, Gert-Jan; Drell, David; Friedl, Peter

    2017-09-01

    Organotypic in vitro culture of 3D spheroids in an extracellular matrix represent a promising cancer therapy prediction model for personalized medicine screens due to their controlled experimental conditions and physiological similarities to in vivo conditions. As in tumors in vivo, 3D invasion cultures identify intratumor heterogeneity of growth, invasion and apoptosis induction by cytotoxic therapy. We here combine in vitro 3D spheroid invasion culture with irradiation and automated nucleus-based segmentation for single cell analysis to quantify growth, survival, apoptosis and invasion response during experimental radiation therapy. As output, multi-parameter histogram-based representations deliver an integrated insight into therapy response and resistance. This workflow may be suited for high-throughput screening and identification of invasive and therapy-resistant tumor sub-populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. From SFM to 3d Print: Automated Workflow Addressed to Practitioner Aimed at the Conservation and Restauration

    NASA Astrophysics Data System (ADS)

    Inzerillo, L.; Di Paola, F.

    2017-08-01

    In In the last years there has been an increasing use of digital techniques for conservation and restoration purposes. Among these, a very dominant rule is played by the use of digital photogrammetry packages (Agisoft Photoscan, 3D Zephir) which allow to obtain in few steps 3D textured models of real objects. Combined with digital documentation technologies digital fabrication technologies can be employed in a variety of ways to assist in heritage documentation, conservation and dissemination. This paper will give to practitioners an overview on the state of the art available technologies and a feasible workflow for optimizing point cloud and polygon mesh datasets for the purpose of fabrication using 3D printing. The goal is to give an important contribute to confer an automation aspect at the whole processing. We tried to individuate a workflow that should be applicable to several types of cases apart from small precautions. In our experimentation we used a DELTA WASP 2040 printer with PLA easyfil.

  9. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  10. Semi-automated segmentation and quantification of mitral annulus and leaflets from transesophageal 3-D echocardiographic images.

    PubMed

    Sotaquira, Miguel; Pepi, Mauro; Fusini, Laura; Maffessanti, Francesco; Lang, Roberto M; Caiani, Enrico G

    2015-01-01

    Quantification of three-dimensional (3-D) morphology of the mitral valve (MV) using real-time 3-D transesophageal echocardiography (RT3-D TEE) has proved to be a valuable tool for the assessment of MV pathologies, but of limited use in clinical practice because it relies on user-intensive approaches. This study presents a new algorithm for the segmentation and morphologic quantification of the mitral annulus (MA) and mitral leaflets (ML) in closed valve configuration from RT3-D TEE volumes. Following initialization, the MA and the ML and the coaptation line (CL) are automatically obtained in 3-D. Validation with manual tracings was performed on 33 patients, resulting in segmentation errors in the order of 0.7 mm and 0.6 mm for the MA and ML segmentation, in addition to good intra- and inter-observer reproducibility (coefficients of variation below 12% and 15%, respectively). The ability of the algorithm to assess different MV pathologies as well as repaired valves with implanted annular rings was also explored. The reported performance of the proposed fast, semi-automated MA and ML quantification makes it promising for future applications in clinical settings such as the operating room, where obtaining results in short time is important. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection

    PubMed Central

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  12. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    PubMed

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.

  13. Ultrasonic 3D imaging system for the automated application in milling machines

    NASA Astrophysics Data System (ADS)

    Schmitt, Robert; Hafner, Philip

    2007-04-01

    In order to meet the requirements of rising flexibility and an automated material inspection in a small batch production environment, an automatically changeable ultrasound sensor tool for milling machines has been developed. This system enables an automated ultrasonic inspection of varying parts to be carried out directly on a machining center and visualizes hidden geometries and material imperfections three-dimensionally. The sensor tool is based on commercialized ultrasonic squirter-probes, which are able to use the cooling lubricant for sound coupling. During the measurement recordings, the milling machine's axes move the sensor numerical-controlled across the workpiece. By this means, automated material inspection tasks can be performed very cost-effectively without setting up separate testing facilities. 4- or 5-axes kinematics capacitates the system to check even very complex-shaped parts.

  14. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds.

    PubMed

    Dorninger, Peter; Pfeifer, Norbert

    2008-11-17

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  15. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    PubMed Central

    Dorninger, Peter; Pfeifer, Norbert

    2008-01-01

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects. PMID:27873931

  16. Automated 3D trajectory measuring of large numbers of moving particles.

    PubMed

    Wu, Hai Shan; Zhao, Qi; Zou, Danping; Chen, Yan Qiu

    2011-04-11

    Complex dynamics of natural particle systems, such as insect swarms, bird flocks, fish schools, has attracted great attention of scientists for years. Measuring 3D trajectory of each individual in a group is vital for quantitative study of their dynamic properties, yet such empirical data is rare mainly due to the challenges of maintaining the identities of large numbers of individuals with similar visual features and frequent occlusions. We here present an automatic and efficient algorithm to track 3D motion trajectories of large numbers of moving particles using two video cameras. Our method solves this problem by formulating it as three linear assignment problems (LAP). For each video sequence, the first LAP obtains 2D tracks of moving targets and is able to maintain target identities in the presence of occlusions; the second one matches the visually similar targets across two views via a novel technique named maximum epipolar co-motion length (MECL), which is not only able to effectively reduce matching ambiguity but also further diminish the influence of frequent occlusions; the last one links 3D track segments into complete trajectories via computing a globally optimal assignment based on temporal and kinematic cues. Experiment results on simulated particle swarms with various particle densities validated the accuracy and robustness of the proposed method. As real-world case, our method successfully acquired 3D flight paths of fruit fly (Drosophila melanogaster) group comprising hundreds of freely flying individuals.

  17. Automated Voxel Model from Point Clouds for Structural Analysis of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Bitelli, G.; Castellazzi, G.; D'Altri, A. M.; De Miranda, S.; Lambertini, A.; Selvaggi, I.

    2016-06-01

    In the context of cultural heritage, an accurate and comprehensive digital survey of a historical building is today essential in order to measure its geometry in detail for documentation or restoration purposes, for supporting special studies regarding materials and constructive characteristics, and finally for structural analysis. Some proven geomatic techniques, such as photogrammetry and terrestrial laser scanning, are increasingly used to survey buildings with different complexity and dimensions; one typical product is in form of point clouds. We developed a semi-automatic procedure to convert point clouds, acquired from laserscan or digital photogrammetry, to a filled volume model of the whole structure. The filled volume model, in a voxel format, can be useful for further analysis and also for the generation of a Finite Element Model (FEM) of the surveyed building. In this paper a new approach is presented with the aim to decrease operator intervention in the workflow and obtain a better description of the structure. In order to achieve this result a voxel model with variable resolution is produced. Different parameters are compared and different steps of the procedure are tested and validated in the case study of the North tower of the San Felice sul Panaro Fortress, a monumental historical building located in San Felice sul Panaro (Modena, Italy) that was hit by an earthquake in 2012.

  18. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    SciTech Connect

    Sels, Seppe Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve

    2016-06-28

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  19. Automated and integrated mask generation from a CAD constructed 3D model.

    SciTech Connect

    Schiek, Richard Louis; Schmidt, Rodney Cannon

    2005-03-01

    We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micromachining. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology to the model. The 3D model is first separated into bodies that are non-intersecting, made from different materials or only linked through a ground plane. Next, for each body unique horizontal cross sections are located and arranged into a tree based on their topological relationship. A branch-wise search of the tree uncovers locations where deposition boundaries must lie and identifies candidate masks creating a generic mask set for the 3D model. Finally, in the last step specific process requirements are considered that may constrain the generic mask set.

  20. Automated and Accurate Detection of Soma Location and Surface Morphology in Large-Scale 3D Neuron Images

    PubMed Central

    Yan, Cheng; Li, Anan; Zhang, Bin; Ding, Wenxiang; Luo, Qingming; Gong, Hui

    2013-01-01

    Automated and accurate localization and morphometry of somas in 3D neuron images is essential for quantitative studies of neural networks in the brain. However, previous methods are limited in obtaining the location and surface morphology of somas with variable size and uneven staining in large-scale 3D neuron images. In this work, we proposed a method for automated soma locating in large-scale 3D neuron images that contain relatively sparse soma distributions. This method involves three steps: (i) deblocking the image with overlap between adjacent sub-stacks; (ii) locating the somas in each small sub-stack using multi-scale morphological close and adaptive thresholds; and (iii) fusion of the repeatedly located somas in all sub-stacks. We also describe a new method for the accurate detection of the surface morphology of somas containing hollowness; this was achieved by improving the classical Rayburst Sampling with a new gradient-based criteria. Three 3D neuron image stacks of different sizes were used to quantitatively validate our methods. For the soma localization algorithm, the average recall and precision were greater than 93% and 96%, respectively. For the soma surface detection algorithm, the overlap of the volumes created by automatic detection of soma surfaces and manually segmenting soma volumes was more than 84% for 89% of all correctly detected somas. Our method for locating somas can reveal the soma distributions in large-scale neural networks more efficiently. The method for soma surface detection will serve as a valuable tool for systematic studies of neuron types based on neuron structure. PMID:23638117

  1. Automated 3D quantitative assessment and measurement of alpha angles from the femoral head-neck junction using MR imaging

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Walker, Duncan; Crozier, Stuart; Engstrom, Craig

    2015-10-01

    To develop an automated approach for 3D quantitative assessment and measurement of alpha angles from the femoral head-neck (FHN) junction using bone models derived from magnetic resonance (MR) images of the hip joint. Bilateral MR images of the hip joints were acquired from 30 male volunteers (healthy active individuals and high-performance athletes, aged 18-49 years) using a water-excited 3D dual echo steady state (DESS) sequence. In a subset of these subjects (18 water-polo players), additional True Fast Imaging with Steady-state Precession (TrueFISP) images were acquired from the right hip joint. For both MR image sets, an active shape model based algorithm was used to generate automated 3D bone reconstructions of the proximal femur. Subsequently, a local coordinate system of the femur was constructed to compute a 2D shape map to project femoral head sphericity for calculation of alpha angles around the FHN junction. To evaluate automated alpha angle measures, manual analyses were performed on anterosuperior and anterior radial MR slices from the FHN junction that were automatically reformatted using the constructed coordinate system. High intra- and inter-rater reliability (intra-class correlation coefficients  >  0.95) was found for manual alpha angle measurements from the auto-extracted anterosuperior and anterior radial slices. Strong correlations were observed between manual and automatic measures of alpha angles for anterosuperior (r  =  0.84) and anterior (r  =  0.92) FHN positions. For matched DESS and TrueFISP images, there were no significant differences between automated alpha angle measures obtained from the upper anterior quadrant of the FHN junction (two-way repeated measures ANOVA, F  <  0.01, p  =  0.98). Our automatic 3D method analysed MR images of the hip joints to generate alpha angle measures around the FHN junction circumference with very good reliability and reproducibility. This work has the

  2. Automated localization of implanted seeds in 3D TRUS images used for prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2006-07-15

    An algorithm has been developed in this paper to localize implanted radioactive seeds in 3D ultrasound images for a dynamic intraoperative brachytherapy procedure. Segmentation of the seeds is difficult, due to their small size in relatively low quality of transrectal ultrasound (TRUS) images. In this paper, intraoperative seed segmentation in 3D TRUS images is achieved by performing a subtraction of the image before the needle has been inserted, and the image after the seeds have been implanted. The seeds are searched in a 'local' space determined by the needle position and orientation information, which are obtained from a needle segmentation algorithm. To test this approach, 3D TRUS images of the agar and chicken tissue phantoms were obtained. Within these phantoms, dummy seeds were implanted. The seed locations determined by the seed segmentation algorithm were compared with those obtained from a volumetric cone-beam flat-panel micro-CT scanner and human observers. Evaluation of the algorithm showed that the rms error in determining the seed locations using the seed segmentation algorithm was 0.98 mm in agar phantoms and 1.02 mm in chicken phantoms.

  3. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    PubMed Central

    Morón, Carlos; Portilla, Marina P.; Somolinos, José A.; Morales, Rafael

    2015-01-01

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing) the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach. PMID:26029951

  4. Low-cost impact detection and location for automated inspections of 3D metallic based structures.

    PubMed

    Morón, Carlos; Portilla, Marina P; Somolinos, José A; Morales, Rafael

    2015-05-28

    This paper describes a new low-cost means to detect and locate mechanical impacts (collisions) on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing) the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach.

  5. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies.

    PubMed

    Wan, Yinan; Long, Fuhui; Qu, Lei; Xiao, Hang; Hawrylycz, Michael; Myers, Eugene W; Peng, Hanchuan

    2015-10-01

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

  6. Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks.

    PubMed

    Singh, P K; Hernandez-Herrera, P; Labate, D; Papadakis, M

    2017-07-14

    Despite the significant advances in the development of automated image analysis algorithms for the detection and extraction of neuronal structures, current software tools still have numerous limitations when it comes to the detection and analysis of dendritic spines. The problem is especially challenging in in vivo imaging, where the difficulty of extracting morphometric properties of spines is compounded by lower image resolution and contrast levels native to two-photon laser microscopy. To address this challenge, we introduce a new computational framework for the automated detection and quantitative analysis of dendritic spines in vivo multi-photon imaging. This framework includes: (i) a novel preprocessing algorithm enhancing spines in a way that they are included in the binarized volume produced during the segmentation of foreground from background; (ii) the mathematical foundation of this algorithm, and (iii) an algorithm for the detection of spine locations in reference to centerline trace and separating them from the branches to whom spines are attached to. This framework enables the computation of a wide range of geometric features such as spine length, spatial distribution and spine volume in a high-throughput fashion. We illustrate our approach for the automated extraction of dendritic spine features in time-series multi-photon images of layer 5 cortical excitatory neurons from the mouse visual cortex.

  7. LDRD final report: Automated planning and programming of assembly of fully 3D mechanisms

    SciTech Connect

    Kaufman, S.G.; Wilson, R.H.; Jones, R.E.; Calton, T.L.; Ames, A.L.

    1996-11-01

    This report describes the results of assembly planning research under the LDRD. The assembly planning problem is that of finding a sequence of assembly operations, starting from individual parts, that will result in complete assembly of a device specified as a CAD model. The automated assembly programming problem is that of automatically producing a robot program that will carry out a given assembly sequence. Given solutions to both of these problems, it is possible to automatically program a robot to assemble a mechanical device given as a CAD data file. This report describes the current state of our solutions to both of these problems, and a software system called Archimedes 2 we have constructed to automate these solutions. Because Archimedes 2 can input CAD data in several standard formats, we have been able to test it on a number of industrial assembly models more complex than any before attempted by automated assembly planning systems, some having over 100 parts. A complete path from a CAD model to an automatically generated robot program for assembling the device represented by the CAD model has also been demonstrated.

  8. Evolutionary Trace Annotation Server: automated enzyme function prediction in protein structures using 3D templates

    PubMed Central

    Matthew Ward, R.; Venner, Eric; Daines, Bryce; Murray, Stephen; Erdin, Serkan; Kristensen, David M.; Lichtarge, Olivier

    2009-01-01

    Summary:The Evolutionary Trace Annotation (ETA) Server predicts enzymatic activity. ETA starts with a structure of unknown function, such as those from structural genomics, and with no prior knowledge of its mechanism uses the phylogenetic Evolutionary Trace (ET) method to extract key functional residues and propose a function-associated 3D motif, called a 3D template. ETA then searches previously annotated structures for geometric template matches that suggest molecular and thus functional mimicry. In order to maximize the predictive value of these matches, ETA next applies distinctive specificity filters—evolutionary similarity, function plurality and match reciprocity. In large scale controls on enzymes, prediction coverage is 43% but the positive predictive value rises to 92%, thus minimizing false annotations. Users may modify any search parameter, including the template. ETA thus expands the ET suite for protein structure annotation, and can contribute to the annotation efforts of metaservers. Availability:The ETA Server is a web application available at http://mammoth.bcm.tmc.edu/eta/. Contact: lichtarge@bcm.edu PMID:19307237

  9. Adaptive image inversion of contrast 3D echocardiography for enabling automated analysis.

    PubMed

    Shaheen, Anjuman; Rajpoot, Kashif

    2015-08-01

    Contrast 3D echocardiography (C3DE) is commonly used to enhance the visual quality of ultrasound images in comparison with non-contrast 3D echocardiography (3DE). Although the image quality in C3DE is perceived to be improved for visual analysis, however it actually deteriorates for the purpose of automatic or semi-automatic analysis due to higher speckle noise and intensity inhomogeneity. Therefore, the LV endocardial feature extraction and segmentation from the C3DE images remains a challenging problem. To address this challenge, this work proposes an adaptive pre-processing method to invert the appearance of C3DE image. The image inversion is based on an image intensity threshold value which is automatically estimated through image histogram analysis. In the inverted appearance, the LV cavity appears dark while the myocardium appears bright thus making it similar in appearance to a 3DE image. Moreover, the resulting inverted image has high contrast and low noise appearance, yielding strong LV endocardium boundary and facilitating feature extraction for segmentation. Our results demonstrate that the inverse appearance of contrast image enables the subsequent LV segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Semi-automated 3D leaf reconstruction and analysis of trichome patterning from light microscopic images.

    PubMed

    Failmezger, Henrik; Jaegle, Benjamin; Schrader, Andrea; Hülskamp, Martin; Tresch, Achim

    2013-04-01

    Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons.

  11. Using an automated 3D-tracking system to record individual and shoals of adult zebrafish.

    PubMed

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-12-05

    Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.

  12. Semi-automated 3D Leaf Reconstruction and Analysis of Trichome Patterning from Light Microscopic Images

    PubMed Central

    Schrader, Andrea; Hülskamp, Martin; Tresch, Achim

    2013-01-01

    Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons. PMID:23637587

  13. Automated kidney detection for 3D ultrasound using scan line searching

    NASA Astrophysics Data System (ADS)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan

    2016-04-01

    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  14. Accurate and automated image segmentation of 3D optical coherence tomography data suffering from low signal-to-noise levels.

    PubMed

    Su, Rong; Ekberg, Peter; Leitner, Michael; Mattsson, Lars

    2014-12-01

    Optical coherence tomography (OCT) has proven to be a useful tool for investigating internal structures in ceramic tapes, and the technique is expected to be important for roll-to-roll manufacturing. However, because of high scattering in ceramic materials, noise and speckles deteriorate the image quality, which makes automated quantitative measurements of internal interfaces difficult. To overcome this difficulty we present in this paper an innovative image analysis approach based on volumetric OCT data. The engine in the analysis is a 3D image processing and analysis algorithm. It is dedicated to boundary segmentation and dimensional measurement in volumetric OCT images, and offers high accuracy, efficiency, robustness, subpixel resolution, and a fully automated operation. The method relies on the correlation property of a physical interface and effectively eliminates pixels caused by noise and speckles. The remaining pixels being stored are the ones confirmed to be related to the target interfaces. Segmentation of tilted and curved internal interfaces separated by ∼10  μm in the Z direction is demonstrated. The algorithm also extracts full-field top-view intensity maps of the target interfaces for high-accuracy measurements in the X and Y directions. The methodology developed here may also be adopted in other similar 3D imaging and measurement technologies, e.g., ultrasound imaging, and for various materials.

  15. Automated quantitative Rb-82 3D PET/CT myocardial perfusion imaging: normal limits and correlation with invasive coronary angiography.

    PubMed

    Nakazato, Ryo; Berman, Daniel S; Dey, Damini; Le Meunier, Ludovic; Hayes, Sean W; Fermin, Jimmy S; Cheng, Victor Y; Thomson, Louise E J; Friedman, John D; Germano, Guido; Slomka, Piotr J

    2012-04-01

    We aimed to characterize normal limits and to determine the diagnostic accuracy for an automated quantification of 3D 82-Rubidium (Rb-82) PET/CT myocardial perfusion imaging (MPI). We studied 125 consecutive patients undergoing Rb-82 PET/CT MPI, including patients with suspected coronary artery disease (CAD) and invasive coronary angiography, and 42 patients with a low likelihood (LLk) of CAD. Normal limits for perfusion and function were derived from LLk patients. QPET software was used to quantify perfusion abnormality at rest and stress expressed as total perfusion deficit (TPD). Relative perfusion databases did not differ in any of the 17 segments between males and females. The areas under the receiver operating characteristic curve for detection of CAD were 0.86 for identification of ≥50% and ≥70% stenosis. The sensitivity/specificity was 86%/86% for detecting ≥50% stenosis and 93%/77% for ≥70% stenosis, respectively. In regard to normal limits, mean rest and stress left ventricular ejection fraction (LVEF) were 67% ± 10% and 75% ± 9%, respectively. Mean transient ischemic dilation ratio was 1.06 ± 0.14 and mean increase in LVEF with stress was 7.4% ± 6.1% (95th percentile of 0%). Normal limits have been established for 3D Rb-82 PET/CT analysis with QPET software. Fully automated quantification of myocardial perfusion PET data shows high diagnostic accuracy for detecting obstructive CAD.

  16. VCM automated 3-D measurement system: theory, application, and performance evaluation

    NASA Astrophysics Data System (ADS)

    El-Hakim, Sabry F.; Pizzi, Nicolino J.; Westmore, David B.

    1992-03-01

    The vision-based coordinate measurement (VCM) automated measurement system has been under development at the National Research Council Canada for several years. The system, which is a multicamera passive system, combines the principles of stereo vision, photogrammetry, knowledge-based techniques, and object-oriented design to provide precise coordinate and dimension measurements of parts for applications such as those found in the aerospace and automobile industries. The system may also be used for tracking or positioning of parts and digitization of targeted objects. Description of the system, the techniques employed for calibration, CAD-based feature extraction and measurement, and performance evaluation are presented.

  17. Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.

    2016-04-01

    A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and

  18. Automated scoring of regional lung perfusion in children from contrast enhanced 3D MRI

    NASA Astrophysics Data System (ADS)

    Heimann, Tobias; Eichinger, Monika; Bauman, Grzegorz; Bischoff, Arved; Puderbach, Michael; Meinzer, Hans-Peter

    2012-03-01

    MRI perfusion images give information about regional lung function and can be used to detect pulmonary pathologies in cystic fibrosis (CF) children. However, manual assessment of the percentage of pathologic tissue in defined lung subvolumes features large inter- and intra-observer variation, making it difficult to determine disease progression consistently. We present an automated method to calculate a regional score for this purpose. First, lungs are located based on thresholding and morphological operations. Second, statistical shape models of left and right children's lungs are initialized at the determined locations and used to precisely segment morphological images. Segmentation results are transferred to perfusion maps and employed as masks to calculate perfusion statistics. An automated threshold to determine pathologic tissue is calculated and used to determine accurate regional scores. We evaluated the method on 10 MRI images and achieved an average surface distance of less than 1.5 mm compared to manual reference segmentations. Pathologic tissue was detected correctly in 9 cases. The approach seems suitable for detecting early signs of CF and monitoring response to therapy.

  19. Automated 2D-3D registration of a radiograph and a cone beam CT using line-segment enhancement

    SciTech Connect

    Munbodh, Reshma; Jaffray, David A.; Moseley, Douglas J.; Chen Zhe; Knisely, Jonathan P.S.; Cathier, Pascal; Duncan, James S.

    2006-05-15

    The objective of this study was to develop a fully automated two-dimensional (2D)-three-dimensional (3D) registration framework to quantify setup deviations in prostate radiation therapy from cone beam CT (CBCT) data and a single AP radiograph. A kilovoltage CBCT image and kilovoltage AP radiograph of an anthropomorphic phantom of the pelvis were acquired at 14 accurately known positions. The shifts in the phantom position were subsequently estimated by registering digitally reconstructed radiographs (DRRs) from the 3D CBCT scan to the AP radiographs through the correlation of enhanced linear image features mainly representing bony ridges. Linear features were enhanced by filtering the images with ''sticks,'' short line segments which are varied in orientation to achieve the maximum projection value at every pixel in the image. The mean (and standard deviations) of the absolute errors in estimating translations along the three orthogonal axes in millimeters were 0.134 (0.096) AP(out-of-plane), 0.021 (0.023) ML and 0.020 (0.020) SI. The corresponding errors for rotations in degrees were 0.011 (0.009) AP, 0.029 (0.016) ML (out-of-plane), and 0.030 (0.028) SI (out-of-plane). Preliminary results with megavoltage patient data have also been reported. The results suggest that it may be possible to enhance anatomic features that are common to DRRs from a CBCT image and a single AP radiography of the pelvis for use in a completely automated and accurate 2D-3D registration framework for setup verification in prostate radiotherapy. This technique is theoretically applicable to other rigid bony structures such as the cranial vault or skull base and piecewise rigid structures such as the spine.

  20. The Bubble Box: Towards an Automated Visual Sensor for 3D Analysis and Characterization of Marine Gas Release Sites

    PubMed Central

    Jordt, Anne; Zelenka, Claudius; Schneider von Deimling, Jens; Koch, Reinhard; Köser, Kevin

    2015-01-01

    Several acoustic and optical techniques have been used for characterizing natural and anthropogenic gas leaks (carbon dioxide, methane) from the ocean floor. Here, single-camera based methods for bubble stream observation have become an important tool, as they help estimating flux and bubble sizes under certain assumptions. However, they record only a projection of a bubble into the camera and therefore cannot capture the full 3D shape, which is particularly important for larger, non-spherical bubbles. The unknown distance of the bubble to the camera (making it appear larger or smaller than expected) as well as refraction at the camera interface introduce extra uncertainties. In this article, we introduce our wide baseline stereo-camera deep-sea sensor bubble box that overcomes these limitations, as it observes bubbles from two orthogonal directions using calibrated cameras. Besides the setup and the hardware of the system, we discuss appropriate calibration and the different automated processing steps deblurring, detection, tracking, and 3D fitting that are crucial to arrive at a 3D ellipsoidal shape and rise speed of each bubble. The obtained values for single bubbles can be aggregated into statistical bubble size distributions or fluxes for extrapolation based on diffusion and dissolution models and large scale acoustic surveys. We demonstrate and evaluate the wide baseline stereo measurement model using a controlled test setup with ground truth information. PMID:26690168

  1. Automated 3-D tracking of centrosomes in sequences of confocal image stacks.

    PubMed

    Kerekes, Ryan A; Gleason, Shaun S; Trivedi, Niraj; Solecki, David J

    2009-01-01

    In order to facilitate the study of neuron migration, we propose a method for 3-D detection and tracking of centrosomes in time-lapse confocal image stacks of live neuron cells. We combine Laplacian-based blob detection, adaptive thresholding, and the extraction of scale and roundness features to find centrosome-like objects in each frame. We link these detections using the joint probabilistic data association filter (JPDAF) tracking algorithm with a Newtonian state-space model tailored to the motion characteristics of centrosomes in live neurons. We apply our algorithm to image sequences containing multiple cells, some of which had been treated with motion-inhibiting drugs. We provide qualitative results and quantitative comparisons to manual segmentation and tracking results showing that our average motion estimates agree to within 13% of those computed manually by neurobiologists.

  2. Analyzing the relevance of shape descriptors in automated recognition of facial gestures in 3D images

    NASA Astrophysics Data System (ADS)

    Rodriguez A., Julian S.; Prieto, Flavio

    2013-03-01

    The present document shows and explains the results from analyzing shape descriptors (DESIRE and Spherical Spin Image) for facial recognition of 3D images. DESIRE is a descriptor made of depth images, silhouettes and rays extended from a polygonal mesh; whereas the Spherical Spin Image (SSI) associated to a polygonal mesh point, is a 2D histogram built from neighboring points by using the position information that captures features of the local shape. The database used contains images of facial expressions which in average were recognized 88.16% using a neuronal network and 91.11% with a Bayesian classifier in the case of the first descriptor; in contrast, the second descriptor only recognizes in average 32% and 23,6% using the same mentioned classifiers respectively.

  3. Automated 3-D Tracking of Centrosomes in Sequences of Confocal Image Stacks

    SciTech Connect

    Kerekes, Ryan A; Gleason, Shaun Scott; Trivedi, Dr. Niraj; Solecki, Dr. David

    2009-01-01

    In order to facilitate the study of neuron migration, we propose a method for 3-D detection and tracking of centrosomes in time-lapse confocal image stacks of live neuron cells. We combine Laplacian-based blob detection, adaptive thresholding, and the extraction of scale and roundness features to find centrosome-like objects in each frame. We link these detections using the joint probabilistic data association filter (JPDAF) tracking algorithm with a Newtonian state-space model tailored to the motion characteristics of centrosomes in live neurons. We apply our algorithm to image sequences containing multiple cells, some of which had been treated with motion-inhibiting drugs. We provide qualitative results and quantitative comparisons to manual segmentation and tracking results showing that our motion estimates closely agree with those generated by neurobiology experts.

  4. Automated 3D heart segmentation by search rays for building individual conductor models

    NASA Astrophysics Data System (ADS)

    Kim, Jaeil; Kim, Seokyeol; Kim, Kiwoong; Park, Jinah

    2009-02-01

    Magnetocardiograph (MCG) is one of the most useful diagnosing tools for myocardial ischemic diseases and the conduction abnormality, since the technique directly measures magnetic fields generated by myocardial currents without distortion in a non-invasive way. To localize the current source accurately, building a patient-specific conductor model is indispensable. In this paper, we present the method to automatically construct a patient-specific three-dimensional (3D) mesh model of a human thorax and a heart consisting of pericardium and four chambers. We represent the standard thorax model by simplex meshes, and deform them to fit into the individual CT data to reconstruct accurate surface representations for the MCG conductor model. The deformable simplex mesh model deforms based on the external forces exerted by the edge and gradient components of the source volume data while its internal force acts to maintain the integrity of the shape. However, image driven deformation is often very sensitive to its initial position. Therefore, we suggest our solution to automatic region-of-interest (ROI) detection using search rays, which are casted to 3D volume images to identify the region of a heart based on both the radiodensity values and their continuity along the path of the rays. Upon automatic ROI detection with search rays, the initial position and orientation of the standard mesh model is determined, and each vertex of the model is respectively moved by the weighted sum of the internal and external forces to conform to the each patient's own thorax and heart shape while minimizing the user's input.

  5. Automated in vivo 3D high-definition optical coherence tomography skin analysis system.

    PubMed

    Ai Ping Yow; Jun Cheng; Annan Li; Srivastava, Ruchir; Jiang Liu; Wong, Damon Wing Kee; Hong Liang Tey

    2016-08-01

    The in vivo assessment and visualization of skin structures can be performed through the use of high resolution optical coherence tomography imaging, also known as HD-OCT. However, the manual assessment of such images can be exhaustive and time consuming. In this paper, we present an analysis system to automatically identify and quantify the skin characteristics such as the topography of the surface of the skin and thickness of the epidermis in HD-OCT images. Comparison of this system with manual clinical measurements demonstrated its potential for automatic objective skin analysis and diseases diagnosis. To our knowledge, this is the first report of an automated system to process and analyse HD-OCT skin images.

  6. A machine learning pipeline for automated registration and classification of 3D lidar data

    NASA Astrophysics Data System (ADS)

    Rajagopal, Abhejit; Chellappan, Karthik; Chandrasekaran, Shivkumar; Brown, Andrew P.

    2017-05-01

    Despite the large availability of geospatial data, registration and exploitation of these datasets remains a persis- tent challenge in geoinformatics. Popular signal processing and machine learning algorithms, such as non-linear SVMs and neural networks, rely on well-formatted input models as well as reliable output labels, which are not always immediately available. In this paper we outline a pipeline for gathering, registering, and classifying initially unlabeled wide-area geospatial data. As an illustrative example, we demonstrate the training and test- ing of a convolutional neural network to recognize 3D models in the OGRIP 2007 LiDAR dataset using fuzzy labels derived from OpenStreetMap as well as other datasets available on OpenTopography.org. When auxiliary label information is required, various text and natural language processing filters are used to extract and cluster keywords useful for identifying potential target classes. A subset of these keywords are subsequently used to form multi-class labels, with no assumption of independence. Finally, we employ class-dependent geometry extraction routines to identify candidates from both training and testing datasets. Our regression networks are able to identify the presence of 6 structural classes, including roads, walls, and buildings, in volumes as big as 8000 m3 in as little as 1.2 seconds on a commodity 4-core Intel CPU. The presented framework is neither dataset nor sensor-modality limited due to the registration process, and is capable of multi-sensor data-fusion.

  7. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    SciTech Connect

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H. |

    1996-12-31

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog`s chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data.

  8. Dynamic replanning of 3D automated reconstruction using situation graph trees and illumination adjustment

    NASA Astrophysics Data System (ADS)

    Kohler, Sophie; Far, Aïcha Beya; Hirsch, Ernest

    2007-01-01

    This paper presents an original approach for the optimal 3D reconstruction of manufactured workpieces based on a priori planification of the task, enhanced on-line through dynamic adjustment of the lighting conditions, and built around a cognitive intelligent sensory system using so-called Situation Graph Trees. The system takes explicitely structural knowledge related to image acquisition conditions, type of illumination sources, contents of the scene (e. g., CAD models and tolerance information), etc. into account. The principle of the approach relies on two steps. First, a socalled initialization phase, leading to the a priori task plan, collects this structural knowledge. This knowledge is conveniently encoded, as a sub-part, in the Situation Graph Tree building the backbone of the planning system specifying exhaustively the behavior of the application. Second, the image is iteratively evaluated under the control of this Situation Graph Tree. The information describing the quality of the piece to analyze is thus extracted and further exploited for, e. g., inspection tasks. Lastly, the approach enables dynamic adjustment of the Situation Graph Tree, enabling the system to adjust itself to the actual application run-time conditions, thus providing the system with a self-learning capability.

  9. FunFOLD: an improved automated method for the prediction of ligand binding residues using 3D models of proteins

    PubMed Central

    2011-01-01

    Background The accurate prediction of ligand binding residues from amino acid sequences is important for the automated functional annotation of novel proteins. In the previous two CASP experiments, the most successful methods in the function prediction category were those which used structural superpositions of 3D models and related templates with bound ligands in order to identify putative contacting residues. However, whilst most of this prediction process can be automated, visual inspection and manual adjustments of parameters, such as the distance thresholds used for each target, have often been required to prevent over prediction. Here we describe a novel method FunFOLD, which uses an automatic approach for cluster identification and residue selection. The software provided can easily be integrated into existing fold recognition servers, requiring only a 3D model and list of templates as inputs. A simple web interface is also provided allowing access to non-expert users. The method has been benchmarked against the top servers and manual prediction groups tested at both CASP8 and CASP9. Results The FunFOLD method shows a significant improvement over the best available servers and is shown to be competitive with the top manual prediction groups that were tested at CASP8. The FunFOLD method is also competitive with both the top server and manual methods tested at CASP9. When tested using common subsets of targets, the predictions from FunFOLD are shown to achieve a significantly higher mean Matthews Correlation Coefficient (MCC) scores and Binding-site Distance Test (BDT) scores than all server methods that were tested at CASP8. Testing on the CASP9 set showed no statistically significant separation in performance between FunFOLD and the other top server groups tested. Conclusions The FunFOLD software is freely available as both a standalone package and a prediction server, providing competitive ligand binding site residue predictions for expert and non

  10. An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images.

    PubMed

    Sun, Zhuli; Chen, Haoyu; Shi, Fei; Wang, Lirong; Zhu, Weifang; Xiang, Dehui; Yan, Chenglin; Li, Liang; Chen, Xinjian

    2016-02-22

    Pigment epithelium detachment (PED) is an important clinical manifestation of multiple chorioretinal diseases, which can cause loss of central vision. In this paper, an automated framework is proposed to segment serous PED in SD-OCT images. The proposed framework consists of four main steps: first, a multi-scale graph search method is applied to segment abnormal retinal layers; second, an effective AdaBoost method is applied to refine the initial segmented regions based on 62 extracted features; third, a shape-constrained graph cut method is applied to segment serous PED, in which the foreground and background seeds are obtained automatically; finally, an adaptive structure elements based morphology method is applied to remove false positive segmented regions. The proposed framework was tested on 25 SD-OCT volumes from 25 patients diagnosed with serous PED. The average true positive volume fraction (TPVF), false positive volume fraction (FPVF), dice similarity coefficient (DSC) and positive predictive value (PPV) are 90.08%, 0.22%, 91.20% and 92.62%, respectively. The proposed framework can provide clinicians with accurate quantitative information, including shape, size and position of the PED region, which can assist clinical diagnosis and treatment.

  11. Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain.

    PubMed

    Pagani, Marco; Damiano, Mario; Galbusera, Alberto; Tsaftaris, Sotirios A; Gozzi, Alessandro

    2016-07-15

    Morphoanatomical MRI methods have recently begun to be applied in the mouse. However, substantial differences in the anatomical organisation of human and rodent brain prevent a straightforward extension of clinical neuroimaging tools to mouse brain imaging. As a result, the vast majority of the published approaches rely on tailored routines that address single morphoanatomical readouts and typically lack a sufficiently-detailed description of the complex workflow required to process images and quantify structural alterations. Here we provide a detailed description of semi-automated registration-based procedures for voxel based morphometry, cortical thickness estimation and automated anatomical labelling of the mouse brain. The approach relies on the sequential use of advanced image processing tools offered by ANTs, a flexible open source toolkit freely available to the scientific community. To illustrate our procedures, we described their application to quantify morphological alterations in socially-impaired BTBR mice with respect to normosocial C57BL/6J controls, a comparison recently described by us and other research groups. We show that the approach can reliably detect both focal and large-scale grey matter alterations using complementary readouts. No detailed operational workflows for mouse imaging are available for direct comparison with our methods. However, empirical assessment of the mapped inter-strain differences is in good agreement with the findings of other groups using analogous approaches. The detailed operational workflows described here are expected to help the implementation of rodent morphoanatomical methods by non-expert users, and ultimately promote the use of these tools across the preclinical neuroimaging community. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Automated 3D MRI volumetry reveals regional atrophy differences in Rasmussen encephalitis.

    PubMed

    Wagner, Jan; Schoene-Bake, Jan-Christoph; Bien, Christian G; Urbach, Horst; Elger, Christian E; Weber, Bernd

    2012-04-01

    Rasmussen encephalitis is a chronic immune-mediated disease leading to unilateral atrophy on magnetic resonance imaging (MRI) and progressive neurologic deficits. Until now, quantitative parameters describing the course of the disease on MRI require manual intervention and are, therefore, time-consuming and observer-dependent. Furthermore, regional atrophy differences cannot be evaluated with the previously published methods. In this study we present a fully automated volumetric approach applied to serial MRI scans of 12 patients with Rasmussen encephalitis. We retrospectively analyzed 12 patients with Rasmussen encephalitis with a disease onset between 2001 and 2008. All patients underwent a total of 66 serial MRI scans including a three-dimensional T(1) data set. The volumetric analysis was based on standard procedures of the freely available software FMRIB Software Library (FSL) and required about 45 min per scan. Furthermore, planimetric analyses were performed on 51 scans as described previously. The relative and absolute volume loss of the affected hemisphere was significantly higher compared to the unaffected hemisphere. Referring to regional atrophy differences our results show that the frontal lobe and the insula were preferentially involved in the atrophic process. The degree of hemispheric, parietal, and occipital atrophy was negatively correlated with the age at disease onset, indicating a more aggressive and outspread disease in young children compared to adolescents. Volumetric hemispheric ratio and planimetric hemispheric ratio correlated significantly, but planimetric hemispheric ratio underestimated the real degree of hemiatrophy, especially in patients with predominant affections outside the frontoinsular region. The volumetric analysis presented here offers a precise assessment of the disease progression in Rasmussen encephalitis in an observer-independent and time-efficient manner and gives an interesting insight into the course of the disease

  13. Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models.

    PubMed

    Chen, Ting; Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2010-01-01

    Tagged magnetic resonance imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the robust point matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of 1) through-plane motion and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the moving least square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  14. Automated 3D Motion Tracking using Gabor Filter Bank, Robust Point Matching, and Deformable Models

    PubMed Central

    Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Tagged Magnetic Resonance Imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the Robust Point Matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of: 1) through-plane motion, and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the Moving Least Square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  15. A robust automated method to detect stent struts in 3D intravascular optical coherence tomographic image sequences

    NASA Astrophysics Data System (ADS)

    Wang, A.; Eggermont, J.; Dekker, N.; Garcia-Garcia, H. M.; Pawar, R.; Reiber, J. H. C.; Dijkstra, J.

    2012-03-01

    Intravascular optical coherence tomography (IVOCT) provides very high resolution cross-sectional image sequences of vessels. It has been rapidly accepted for stent implantation and its follow up evaluation. Given the large amount of stent struts in a single image sequence, only automated detection methods are feasible. In this paper, we present an automated stent strut detection technique which requires neither lumen nor vessel wall segmentation. To detect strut-pixel candidates, both global intensity histograms and local intensity profiles of the raw polar images are used. Gaussian smoothing is applied followed by specified Prewitt compass filters to detect the trailing shadow of each strut. The shadow edge positions assist the strut-pixel candidates clustering. In the end, a 3D guide wire filter is applied to remove the guide wire from the detection results. For validation, two experts marked 6738 struts in 1021 frames in 10 IVOCT image sequences from a one-year follow up study. The struts were labeled as malapposed, apposed or covered together with the image quality (high, medium, low). The inter-observer agreement was 96%. The algorithm was validated for different combinations of strut status and image quality. Compared to the manual results, 93% of the struts were correctly detected by the new method. For each combination, the lowest accuracy was 88%, which shows the robustness towards different situations. The presented method can detect struts automatically regardless of the strut status or the image quality, which can be used for quantitative measurement, 3D reconstruction and visualization of the implanted stents.

  16. Automated Breast Volume Scanning: Identifying 3-D Coronal Plane Imaging Features May Help Categorize Complex Cysts.

    PubMed

    Wang, Hong-Yan; Jiang, Yu-Xin; Zhu, Qing-Li; Zhang, Jing; Xiao, Meng-Su; Liu, He; Dai, Qing; Li, Jian-Chu; Sun, Qiang

    2016-03-01

    The study described here sought to identify specific ultrasound (US) automated breast volume scanning (ABVS) features that distinguish benign from malignant lesions. Medical records of 750 patients with 792 breast lesions were retrospectively reviewed. Of the 750 patients, 101 with 122 cystic lesions were included in this study, and the results ABVS results were compared with biopsy pathology results. These lesions were classified into six categories based on ABVS sonographic features: type I = simple cyst; type II = clustered cyst; type III = cystic masses with thin septa; type IV = complex cyst; type V = predominantly cystic masses; and type VI = predominantly solid masses. Comparisons were conducted between the ABVS coronal plane features of the lesions and histopathology results, and the positive predictive value (PPV) was calculated for each feature. Of the 122 lesions, 90 (73.8%) were classified as benign, and 32 (26.2%) were classified as malignant. The sensitivity, specificity and accuracy associated with ABVS features for cystic lesions were 78.1%, 74.4% and 75.4%, respectively. The 11 cases (8.9%) of type I-IV cysts were all benign. Of the 22 (18.0%) type V cysts, 16 (13.1%) were benign and 6 (4.9%) were malignant. Of the 89 (72.9%) type VI cysts, 63 (51.7%) were benign and 26 (21.3%) were malignant. The typical symptoms of malignancy on ABVS include retraction (PPV = 100%, p < 0.05), hyper-echoic halos (PPV = 85.7%, p < 0.05), microcalcification (PPV = 66.7%, p < 0.05), thick walls or thick septa (PPV = 62.5%, p < 0.05), irregular shape (PPV: 51.2%, p < 0.05), indistinct margin (PPV: 48.6%, p < 0.05) and predominantly solid masses with eccentric cystic foci (PPV = 46.8%, p < 0.05). ABVS can reveal sonographic features of the lesions along the coronal plane, which may be of benefit in the detection of malignant, predominantly cystic masses and provide high clinical values.

  17. Automated detection of retinal cell nuclei in 3D micro-CT images of zebrafish using support vector machine classification

    NASA Astrophysics Data System (ADS)

    Ding, Yifu; Tavolara, Thomas; Cheng, Keith

    2016-03-01

    Our group is developing a method to examine biological specimens in cellular detail using synchrotron microCT. The method can acquire 3D images of tissue at micrometer-scale resolutions, allowing for individual cell types to be visualized in the context of the entire specimen. For model organism research, this tool will enable the rapid characterization of tissue architecture and cellular morphology from every organ system. This characterization is critical for proposed and ongoing "phenome" projects that aim to phenotype whole-organism mutants and diseased tissues from different organisms including humans. With the envisioned collection of hundreds to thousands of images for a phenome project, it is important to develop quantitative image analysis tools for the automated scoring of organism phenotypes across organ systems. Here we present a first step towards that goal, demonstrating the use of support vector machines (SVM) in detecting retinal cell nuclei in 3D images of wild-type zebrafish. In addition, we apply the SVM classifier on a mutant zebrafish to examine whether SVMs can be used to capture phenotypic differences in these images. The longterm goal of this work is to allow cellular and tissue morphology to be characterized quantitatively for many organ systems, at the level of the whole-organism.

  18. Automation of 3D reconstruction of neural tissue from large volume of conventional Serial Section Transmission Electron Micrographs

    PubMed Central

    Mishchenko, Yuriy

    2010-01-01

    We describe an approach for automation of the process of reconstruction of neural tissue from serial section transmission electron micrographs. Such reconstructions require 3D segmentation of individual neuronal processes (axons and dendrites) performed in densely packed neuropil. We first detect neuronal cell profiles in each image in a stack of serial micrographs with multi-scale ridge detector. Short breaks in detected boundaries are interpolated using anisotropic contour completion formulated in fuzzy-logic framework. Detected profiles from adjacent sections are linked together based on cues such as shape similarity and image texture. Thus obtained 3D segmentation is validated by human operators in computer-guided proofreading process. Our approach makes possible reconstructions of neural tissue at final rate of about 5µm3/man-hour, as determined primarily by the speed of proofreading. To date we have applied this approach to reconstruct few blocks of neural tissue from different regions of rat brain totaling over 1000µm3, and used these to evaluate reconstruction speed, quality, error rates, and presence of ambiguous locations in neuropil ssTEM imaging data. PMID:18834903

  19. Fully automated measurement of field-dependent AMS using MFK1-FA Kappabridge equipped with 3D rotator

    NASA Astrophysics Data System (ADS)

    Chadima, Martin; Studynka, Jan

    2013-04-01

    Low-field magnetic susceptibility of paramagnetic and diamagnetic minerals is field-independent by definition being also field-independent in pure magnetite. On the other hand, in pyrrhotite, hematite and high-Ti titanomagnetite it may be clearly field-dependent. Consequently, the field-dependent AMS enables the magnetic fabric of the latter group of minerals to be separated from the whole-rock AMS. The methods for the determination of the field-dependent AMS consist of separate measurements of each specimen in several fields within the Rayleigh Law range and subsequent processing in which the field-independent and field-dependent AMS components are calculated. The disadvantage of this technique is that each specimen must be measured several times, which is relatively laborious and time consuming. Recently, a new 3D rotator was developed for the MFK1-FA Kappabridge, which rotates the specimen simultaneously about two axes with different velocities. The measurement is fully automated in such a way that, once the specimen is inserted into the rotator, it requires no additional manipulation to measure the full AMS tensor. Consequently, the 3D rotator enables to measure the AMS tensors in the pre-set field intensities without any operator interference. Whole procedure is controlled by newly developed Safyr5 software; once the measurements are finished, the acquired data are immediately processed and can be visualized in a standard way.

  20. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  1. Fully automated prostate segmentation in 3D MR based on normalized gradient fields cross-correlation initialization and LOGISMOS refinement

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter

    2012-02-01

    Manual delineation of the prostate is a challenging task for a clinician due to its complex and irregular shape. Furthermore, the need for precisely targeting the prostate boundary continues to grow. Planning for radiation therapy, MR-ultrasound fusion for image-guided biopsy, multi-parametric MRI tissue characterization, and context-based organ retrieval are examples where accurate prostate delineation can play a critical role in a successful patient outcome. Therefore, a robust automated full prostate segmentation system is desired. In this paper, we present an automated prostate segmentation system for 3D MR images. In this system, the prostate is segmented in two steps: the prostate displacement and size are first detected, and then the boundary is refined by a shape model. The detection approach is based on normalized gradient fields cross-correlation. This approach is fast, robust to intensity variation and provides good accuracy to initialize a prostate mean shape model. The refinement model is based on a graph-search based framework, which contains both shape and topology information during deformation. We generated the graph cost using trained classifiers and used coarse-to-fine search and region-specific classifier training. The proposed algorithm was developed using 261 training images and tested on another 290 cases. The segmentation performance using mean DSC ranging from 0.89 to 0.91 depending on the evaluation subset demonstrates state of the art performance. Running time for the system is about 20 to 40 seconds depending on image size and resolution.

  2. a Novel Method for Automation of 3d Hydro Break Line Generation from LIDAR Data Using Matlab

    NASA Astrophysics Data System (ADS)

    Toscano, G. J.; Gopalam, U.; Devarajan, V.

    2013-08-01

    Water body detection is necessary to generate hydro break lines, which are in turn useful in creating deliverables such as TINs, contours, DEMs from LiDAR data. Hydro flattening follows the detection and delineation of water bodies (lakes, rivers, ponds, reservoirs, streams etc.) with hydro break lines. Manual hydro break line generation is time consuming and expensive. Accuracy and processing time depend on the number of vertices marked for delineation of break lines. Automation with minimal human intervention is desired for this operation. This paper proposes using a novel histogram analysis of LiDAR elevation data and LiDAR intensity data to automatically detect water bodies. Detection of water bodies using elevation information was verified by checking against LiDAR intensity data since the spectral reflectance of water bodies is very small compared with that of land and vegetation in near infra-red wavelength range. Detection of water bodies using LiDAR intensity data was also verified by checking against LiDAR elevation data. False detections were removed using morphological operations and 3D break lines were generated. Finally, a comparison of automatically generated break lines with their semi-automated/manual counterparts was performed to assess the accuracy of the proposed method and the results were discussed.

  3. Quantification of telomere features in tumor tissue sections by an automated 3D imaging-based workflow.

    PubMed

    Gunkel, Manuel; Chung, Inn; Wörz, Stefan; Deeg, Katharina I; Simon, Ronald; Sauter, Guido; Jones, David T W; Korshunov, Andrey; Rohr, Karl; Erfle, Holger; Rippe, Karsten

    2017-02-01

    The microscopic analysis of telomere features provides a wealth of information on the mechanism by which tumor cells maintain their unlimited proliferative potential. Accordingly, the analysis of telomeres in tissue sections of patient tumor samples can be exploited to obtain diagnostic information and to define tumor subgroups. In many instances, however, analysis of the image data is conducted by manual inspection of 2D images at relatively low resolution for only a small part of the sample. As the telomere feature signal distribution is frequently heterogeneous, this approach is prone to a biased selection of the information present in the image and lacks subcellular details. Here we address these issues by using an automated high-resolution imaging and analysis workflow that quantifies individual telomere features on tissue sections for a large number of cells. The approach is particularly suited to assess telomere heterogeneity and low abundant cellular subpopulations with distinct telomere characteristics in a reproducible manner. It comprises the integration of multi-color fluorescence in situ hybridization, immunofluorescence and DNA staining with targeted automated 3D fluorescence microscopy and image analysis. We apply our method to telomeres in glioblastoma and prostate cancer samples, and describe how the imaging data can be used to derive statistically reliable information on telomere length distribution or colocalization with PML nuclear bodies. We anticipate that relating this approach to clinical outcome data will prove to be valuable for pretherapeutic patient stratification.

  4. PONDEROSA-C/S: client-server based software package for automated protein 3D structure determination.

    PubMed

    Lee, Woonghee; Stark, Jaime L; Markley, John L

    2014-11-01

    Peak-picking Of Noe Data Enabled by Restriction Of Shift Assignments-Client Server (PONDEROSA-C/S) builds on the original PONDEROSA software (Lee et al. in Bioinformatics 27:1727-1728. doi: 10.1093/bioinformatics/btr200, 2011) and includes improved features for structure calculation and refinement. PONDEROSA-C/S consists of three programs: Ponderosa Server, Ponderosa Client, and Ponderosa Analyzer. PONDEROSA-C/S takes as input the protein sequence, a list of assigned chemical shifts, and nuclear Overhauser data sets ((13)C- and/or (15)N-NOESY). The output is a set of assigned NOEs and 3D structural models for the protein. Ponderosa Analyzer supports the visualization, validation, and refinement of the results from Ponderosa Server. These tools enable semi-automated NMR-based structure determination of proteins in a rapid and robust fashion. We present examples showing the use of PONDEROSA-C/S in solving structures of four proteins: two that enable comparison with the original PONDEROSA package, and two from the Critical Assessment of automated Structure Determination by NMR (Rosato et al. in Nat Methods 6:625-626. doi: 10.1038/nmeth0909-625 , 2009) competition. The software package can be downloaded freely in binary format from http://pine.nmrfam.wisc.edu/download_packages.html. Registered users of the National Magnetic Resonance Facility at Madison can submit jobs to the PONDEROSA-C/S server at http://ponderosa.nmrfam.wisc.edu, where instructions, tutorials, and instructions can be found. Structures are normally returned within 1-2 days.

  5. A semi-automated 3-D annotation method for breast ultrasound imaging: system development and feasibility study on phantoms.

    PubMed

    Jiang, Wei-wei; Li, An-hua; Zheng, Yong-Ping

    2014-02-01

    Spatial annotation is an essential step in breast ultrasound imaging, because the follow-up diagnosis and treatment are based on this annotation. However, the current method for annotation is manual and highly dependent on the operator's experience. Moreover, important spatial information, such as the probe tilt angle, cannot be indicated in the clinical 2-D annotations. To solve these problems, we developed a semi-automated 3-D annotation method for breast ultrasound imaging. A spatial sensor was fixed on an ultrasound probe to obtain the image spatial data. Three-dimensional virtual models of breast and probe were used to annotate image locations. After the reference points were recorded, this system displayed the image annotations automatically. Compared with the conventional manual annotation method, this new annotation system has higher accuracy as indicated by the phantom test results. In addition, this new annotation method has good repeatability, with intra-class correlation coefficients of 0.907 (average variation: ≤3.45%) and 0.937 (average variation: ≤2.85%) for the intra-rater and inter-rater tests, respectively. Breast phantom experiments simulating clinical breast scanning further indicated the feasibility of this system for clinical applications. This new annotation method is expected to facilitate more accurate, intuitive and rapid breast ultrasound diagnosis.

  6. Automated incision line determination for virtual unfolded view generation of the stomach from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Suito, Tomoaki; Oda, Masahiro; Kitasaka, Takayuki; Iinuma, Gen; Misawa, Kazunari; Nawano, Shigeru; Mori, Kensaku

    2012-03-01

    In this paper, we propose an automated incision line determination method for virtual unfolded view generation of the stomach from 3D abdominal CT images. The previous virtual unfolding methods of the stomach required a lot of manual operations such as determination of the incision line, which heavily tasks an operator. In general, an incision line along the greater curvature of the stomach is used for making pathological specimen. In our method, an incision line is automatically determined by projecting a centerline of the stomach onto the gastric surface from a projection line. The projection line is determined by using positions of the cardia and the pylorus, that can be easily specified by two mouse clicks. The process of our method is performed as follows. We extract the stomach region using a thresholding and a labeling processes. We apply a thinning process to the stomach region, and then we extract the longest line from the result of the thinning process. We obtain a centerline of the stomach region by smoothing the longest line by using a Bezier curve. The incision line is calculated by projecting the centerline onto the gastric surface from the projection line. We applied the proposed method to 19 cases of CT images. We automatically determined incision lines. Experimintal results showed our method was able to determine incision lines along the greater curvature for most of 19 cases.

  7. Automated 3D detection and classification of Giardia lamblia cysts using digital holographic microscopy with partially coherent source

    NASA Astrophysics Data System (ADS)

    El Mallahi, A.; Detavernier, A.; Yourassowsky, C.; Dubois, F.

    2012-06-01

    Over the past century, monitoring of Giardia lamblia became a matter of concern for all drinking water suppliers worldwide. Indeed, this parasitic flagellated protozoan is responsible for giardiasis, a widespread diarrhoeal disease (200 million symptomatic individuals) that can lead immunocompromised individuals to death. The major difficulty raised by Giardia lamblia's cyst, its vegetative transmission form, is its ability to survive for long periods in harsh environments, including the chlorine concentrations and treatment duration used traditionally in water disinfection. Currently, there is a need for a reliable, inexpensive, and easy-to-use sensor for the identification and quantification of cysts in the incoming water. For this purpose, we investigated the use of a digital holographic microscope working with partially coherent spatial illumination that reduces the coherent noise. Digital holography allows one to numerically investigate a volume by refocusing the different plane of depth of a hologram. In this paper, we perform an automated 3D analysis that computes the complex amplitude of each hologram, detects all the particles present in the whole volume given by one hologram and refocuses them if there are out of focus using a refocusing criterion based on the integrated complex amplitude modulus and we obtain the (x,y,z) coordinates of each particle. Then the segmentation of the particles is processed and a set of morphological and textures features characteristic to Giardia lamblia cysts is computed in order to classify each particles in the right classes.

  8. Toward Automated FAÇADE Texture Generation for 3d Photorealistic City Modelling with Smartphones or Tablet Pcs

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2012-07-01

    An automated model-image fitting algorithm is proposed in this paper for generating façade texture image from pictures taken by smartphones or tablet PCs. The façade texture generation requires tremendous labour work and thus, has been the bottleneck of 3D photo-realistic city modelling. With advanced developments of the micro electro mechanical system (MEMS), camera, global positioning system (GPS), and gyroscope (G-sensors) can all be integrated into a smartphone or a table PC. These sensors bring the possibility of direct-georeferencing for the pictures taken by smartphones or tablet PCs. Since the accuracy of these sensors cannot compared to the surveying instruments, the image position and orientation derived from these sensors are not capable of photogrammetric measurements. This paper adopted the least-squares model-image fitting (LSMIF) algorithm to iteratively improve the image's exterior orientation. The image position from GPS and the image orientation from gyroscope are treated as the initial values. By fitting the projection of the wireframe model to the extracted edge pixels on image, the image exterior orientation elements are solved when the optimal fitting achieved. With the exact exterior orientation elements, the wireframe model of the building can be correctly projected on the image and, therefore, the façade texture image can be extracted from the picture.

  9. Automated Quantification of DNA Demethylation Effects in Cells via 3D Mapping of Nuclear Signatures and Population Homogeneity Assessment1

    PubMed Central

    Gertych, Arkadiusz; Wawrowsky, Kolja A.; Lindsley, Erik; Vishnevsky, Eugene; Farkas, Daniel L.; Tajbakhsh, Jian

    2009-01-01

    Background Today’s advanced microscopic imaging applies to the preclinical stages of drug discovery that employ high-throughput and high-content three-dimensional (3D) analysis of cells to more efficiently screen candidate compounds. Drug efficacy can be assessed by measuring response homogeneity to treatment within a cell population. In this study topologically quantified nuclear patterns of methylated cytosine and global nuclear DNA are utilized as signatures of cellular response to the treatment of cultured cells with the demethylating anti-cancer agents: 5-azacytidine (5-AZA) and octreotide (OCT). Methods Mouse pituitary folliculostellate TtT-GF cells treated with 5-AZA and OCT for 48 hours, and untreated populations, were studied by immunofluorescence with a specific antibody against 5-methylcytosine (MeC), and 4,6-diamidino-2-phenylindole (DAPI) for delineation of methylated sites and global DNA in nuclei (n=163). Cell images were processed utilizing an automated 3D analysis software that we developed by combining seeded watershed segmentation to extract nuclear shells with measurements of Kullback-Leibler’s (K-L) divergence to analyze cell population homogeneity in the relative nuclear distribution patterns of MeC versus DAPI stained sites. Each cell was assigned to one of the four classes: similar, likely similar, unlikely similar and dissimilar. Results Evaluation of the different cell groups revealed a significantly higher number of cells with similar or likely similar MeC/DAPI patterns among untreated cells (~100%), 5-AZA-treated cells (90%), and a lower degree of same type of cells (64%) in the OCT-treated population. The latter group contained (28%) of unlikely similar or dissimilar (7%) cells. Conclusion Our approach was successful in the assessment of cellular behavior relevant to the biological impact of the applied drugs, i.e. the reorganization of MeC/DAPI distribution by demethylation. In a comparison with other metrics, K-L divergence has

  10. Automated 3D Segmentation of Intraretinal Surfaces in SD-OCT Volumes in Normal and Diabetic Mice

    PubMed Central

    Antony, Bhavna J.; Jeong, Woojin; Abràmoff, Michael D.; Vance, Joseph; Sohn, Elliott H.; Garvin, Mona K.

    2014-01-01

    Purpose To describe an adaptation of an existing graph-theoretic method (initially developed for human optical coherence tomography [OCT] images) for the three-dimensional (3D) automated segmentation of 10 intraretinal surfaces in mice scans, and assess the accuracy of the method and the reproducibility of thickness measurements. Methods Ten intraretinal surfaces were segmented in repeat spectral domain (SD)-OCT volumetric images acquired from normal (n = 8) and diabetic (n = 10) mice. The accuracy of the method was assessed by computing the border position errors of the automated segmentation with respect to manual tracings obtained from two experts. The reproducibility was statistically assessed for four retinal layers within eight predefined regions using the mean and SD of the differences in retinal thickness measured in the repeat scans, the coefficient of variation (CV) and the intraclass correlation coefficients (ICC; with 95% confidence intervals [CIs]). Results The overall mean unsigned border position error for the 10 surfaces computed over 97 B-scans (10 scans, 10 normal mice) was 3.16 ± 0.91 μm. The overall mean differences in retinal thicknesses computed from the normal and diabetic mice were 1.86 ± 0.95 and 2.15 ± 0.86 μm, respectively. The CV of the retinal thicknesses for all the measured layers ranged from 1.04% to 5%. The ICCs for the total retinal thickness in the normal and diabetic mice were 0.78 [0.10, 0.92] and 0.83 [0.31, 0.96], respectively. Conclusion The presented method (publicly available as part of the Iowa Reference Algorithms) has acceptable accuracy and reproducibility and is expected to be useful in the quantitative study of intraretinal layers in mice. Translational Relevance The presented method, initially developed for human OCT, has been adapted for mice, with the potential to be adapted for other animals as well. Quantitative in vivo assessment of the retina in mice allows changes to be measured longitudinally, decreasing

  11. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  12. Automated voxel classification used with atlas-guided diffuse optical tomography for assessment of functional brain networks in young and older adults.

    PubMed

    Li, Lin; Cazzell, Mary; Babawale, Olajide; Liu, Hanli

    2016-10-01

    Atlas-guided diffuse optical tomography (atlas-DOT) is a computational means to image changes in cortical hemodynamic signals during human brain activities. Graph theory analysis (GTA) is a network analysis tool commonly used in functional neuroimaging to study brain networks. Atlas-DOT has not been analyzed with GTA to derive large-scale brain connectivity/networks based on near-infrared spectroscopy (NIRS) measurements. We introduced an automated voxel classification (AVC) method that facilitated the use of GTA with atlas-DOT images by grouping unequal-sized finite element voxels into anatomically meaningful regions of interest within the human brain. The overall approach included volume segmentation, AVC, and cross-correlation. To demonstrate the usefulness of AVC, we applied reproducibility analysis to resting-state functional connectivity measurements conducted from 15 young adults in a two-week period. We also quantified and compared changes in several brain network metrics between young and older adults, which were in agreement with those reported by a previous positron emission tomography study. Overall, this study demonstrated that AVC is a useful means for facilitating integration or combination of atlas-DOT with GTA and thus for quantifying NIRS-based, voxel-wise resting-state functional brain networks.

  13. 3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique.

    PubMed

    Calderilla, Carlos; Maya, Fernando; Cerdà, Víctor; Leal, Luz O

    2017-12-01

    The development of advanced manufacturing techniques is crucial for the design of novel analytical tools with unprecedented features. Advanced manufacturing, also known as 3D printing, has been explored for the first time to fabricate modular devices with integrated features for disk-based automated solid-phase extraction (SPE). A modular device integrating analyte oxidation, disk-based SPE and analyte complexation has been fabricated using stereolithographic 3D printing. The 3D printed device is directly connected to flow-based analytical instrumentation, replacing typical flow networks based on discrete elements. As proof of concept, the 3D printed device was implemented in a multisyringe flow injection analysis (MSFIA) system, and applied to the fully automated speciation, SPE and spectrophotometric quantification of Fe in water samples. The obtained limit of detection for total Fe determination was 7ng, with a dynamic linear range from 22ng to 2400ng Fe (3mL sample). An intra-day RSD of 4% (n = 12) and an inter-day RSD of 4.3% (n = 5, 3mL sample, different day with a different disk), were obtained. Incorporation of integrated 3D printed devices with automated flow-based techniques showed improved sensitivity (85% increase on the measured peak height for the determination of total Fe) in comparison with analogous flow manifolds built from conventional tubing and connectors. Our work represents a step forward towards the improved reproducibility in the fabrication of manifolds for flow-based automated methods of analysis, which is especially relevant in the implementation of interlaboratory analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Automated and Manual Measurements of the Aortic Annulus with ECG-Gated Cardiac CT Angiography Prior to Transcatheter Aortic Valve Replacement: Comparison with 3D-Transesophageal Echocardiography.

    PubMed

    Guez, David; Boroumand, Gilda; Ruggiero, Nicholas J; Mehrotra, Praveen; Halpern, Ethan Joseph

    2017-05-01

    Multimodality evaluation of the aortic annulus is generally advocated to plan for transcatheter aortic valve replacement (TAVR). We compared aortic annular measurements by cardiac computed tomography angiography (cCTA) to three-dimensional transesophageal echocardiography (3D-TEE), and also evaluated the use of semi-automated software for cCTA annular measurements. A retrospective cohort of 74 patients underwent 3D-TEE and electrocardiogram-gated cCTA of the heart within 30 days for TAVR planning. 3D-TEE measurements were obtained during mid-systole; cCTA measurements were obtained during late-systole (40% of R-R interval) and mid-diastole (80% of R-R interval). Annular area was measured independently by manual planimetry and with semi-automated software. cCTA measurements in systole and diastole were highly correlated for short-axis diameter (r = 0.91), long-axis diameter (r = 0.92), and annular area (r = 0.96), although systolic measurements were significantly larger (P < 0.001), most notably for the short-axis diameter. Good correlation was observed between 3D-TEE and cCTA for short-axis diameter (r = 0.84-0.90), long-axis diameter (r = 0.77-0.79), and annular area (r = 0.89-0.90). As compared to 3D-TEE, annular area is overmeasured by 28 mm(2) on systolic phase cCTA (P < 0.008), but nearly identical with 3D-TEE on diastolic phase cCTA. Semi-automated and manual cCTA annulus measurements were highly correlated in systole (r = 0.94) and diastole (r = 0.93), although the semi-automated annular area measured 11-30 mm(2) greater than manual planimetry. Of note, the 95% limits of agreement in our Bland-Altman analysis suggest that the variability in annular area estimates for individual patients between cCTA and 3D-TEE (-100.9 to 99.6 mm(2)), as well as the variability between manual and automated measurements with cCTA (-105.9 to 45.2 mm(2)), may be sufficient to alter size selection for an aortic prosthesis. Although

  15. Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2017-02-01

    We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image segmentation on a number of 2D-slices from different image orientations, and (2) using "convolution" and "deconvolution" networks to achieve the conventional "coarse recognition" and "fine extraction" functions which were integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly (pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and usefulness of proposed improvement for CT image segmentations were confirmed.

  16. Spatio-temporal interpolation of soil moisture in 3D+T using automated sensor network data

    NASA Astrophysics Data System (ADS)

    Gasch, C.; Hengl, T.; Magney, T. S.; Brown, D. J.; Gräler, B.

    2014-12-01

    Soil sensor networks provide frequent in situ measurements of dynamic soil properties at fixed locations, producing data in 2- or 3-dimensions and through time (2D+T and 3D+T). Spatio-temporal interpolation of 3D+T point data produces continuous estimates that can then be used for prediction at unsampled times and locations, as input for process models, and can simply aid in visualization of properties through space and time. Regression-kriging with 3D and 2D+T data has successfully been implemented, but currently the field of geostatistics lacks an analytical framework for modeling 3D+T data. Our objective is to develop robust 3D+T models for mapping dynamic soil data that has been collected with high spatial and temporal resolution. For this analysis, we use data collected from a sensor network installed on the R.J. Cook Agronomy Farm (CAF), a 37-ha Long-Term Agro-Ecosystem Research (LTAR) site in Pullman, WA. For five years, the sensors have collected hourly measurements of soil volumetric water content at 42 locations and five depths. The CAF dataset also includes a digital elevation model and derivatives, a soil unit description map, crop rotations, electromagnetic induction surveys, daily meteorological data, and seasonal satellite imagery. The soil-water sensor data, combined with the spatial and temporal covariates, provide an ideal dataset for developing 3D+T models. The presentation will include preliminary results and address main implementation strategies.

  17. Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy.

    PubMed

    Schneidereit, Dominik; Kraus, Larissa; Meier, Jochen C; Friedrich, Oliver; Gilbert, Daniel F

    2017-06-15

    High-content screening microscopy relies on automation infrastructure that is typically proprietary, non-customizable, costly and requires a high level of skill to use and maintain. The increasing availability of rapid prototyping technology makes it possible to quickly engineer alternatives to conventional automation infrastructure that are low-cost and user-friendly. Here, we describe a 3D printed inexpensive open source and scalable motorized positioning stage for automated high-content screening microscopy and provide detailed step-by-step instructions to re-building the device, including a comprehensive parts list, 3D design files in STEP (Standard for the Exchange of Product model data) and STL (Standard Tessellation Language) format, electronic circuits and wiring diagrams as well as software code. System assembly including 3D printing requires approx. 30h. The fully assembled device is light-weight (1.1kg), small (33×20×8cm) and extremely low-cost (approx. EUR 250). We describe positioning characteristics of the stage, including spatial resolution, accuracy and repeatability, compare imaging data generated with our device to data obtained using a commercially available microplate reader, demonstrate its suitability to high-content microscopy in 96-well high-throughput screening format and validate its applicability to automated functional Cl(-)- and Ca(2+)-imaging with recombinant HEK293 cells as a model system. A time-lapse video of the stage during operation and as part of a custom assembled screening robot can be found at https://vimeo.com/158813199. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  19. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    PubMed

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery.

  20. Dental wear estimation using a digital intra-oral optical scanner and an automated 3D computer vision method.

    PubMed

    Meireles, Agnes Batista; Vieira, Antonio Wilson; Corpas, Livia; Vandenberghe, Bart; Bastos, Flavia Souza; Lambrechts, Paul; Campos, Mario Montenegro; Las Casas, Estevam Barbosa de

    2016-01-01

    The objective of this work was to propose an automated and direct process to grade tooth wear intra-orally. Eight extracted teeth were etched with acid for different times to produce wear and scanned with an intra-oral optical scanner. Computer vision algorithms were used for alignment and comparison among models. Wear volume was estimated and visual scoring was achieved to determine reliability. Results demonstrated that it is possible to directly detect submillimeter differences in teeth surfaces with an automated method with results similar to those obtained by direct visual inspection. The investigated method proved to be reliable for comparison of measurements over time.

  1. Analysis of 107 breast lesions with automated 3D ultrasound and comparison with mammography and manual ultrasound.

    PubMed

    Kotsianos-Hermle, D; Hiltawsky, K M; Wirth, S; Fischer, T; Friese, K; Reiser, M

    2009-07-01

    Our aim was to investigate the diagnostic potential of an automated ultrasound (US) breast scanner prototype and compare it with manual US and mammography. Ninety-seven patients with a total of 107 breast lesions had mammograms, manual US and an automated breast US scan. Multiplanar reconstructions in coronal, axial and the sagittal view were reconstructed from the automated dataset and visualized. After biopsy, all lesions were confirmed histologically. The data were evaluated according to the BIRADS (Breast Imaging Reporting and Data System) classification. The sensitivity and specificity were analyzed. The BIRADS criterion "margin" was significantly related to the overall BIRADS classification, independently of the US method being used. The sensitivity of mammography was significantly lower than of each US method (Fisher's exact test with p<0.05). There were no significant differences between the US methods. The reconstructed third (axial) image plane of the whole breast, which corresponds to a craniocaudal mammogram, can give additional information about both, site and differential diagnosis of a lesion. Although image quality was sufficient, automated US is not good enough to replace manual US at this time.

  2. 3D-catFISH: a system for automated quantitative three-dimensional compartmental analysis of temporal gene transcription activity imaged by fluorescence in situ hybridization.

    PubMed

    Chawla, Monica K; Lin, Gang; Olson, Kathy; Vazdarjanova, Almira; Burke, Sara N; McNaughton, Bruce L; Worley, Paul F; Guzowski, John F; Roysam, Badrinath; Barnes, Carol A

    2004-10-15

    Fluorescence in situ hybridization (FISH) of neural activity-regulated, immediate-early gene (IEG) expression provides a method of functional brain imaging with cellular resolution. This enables the identification, in one brain, of which specific principal neurons were active during each of two distinct behavioral epochs. The unprecedented potential of this differential method for large-scale analysis of functional neural circuits is limited, however, by the time-intensive nature of manual image analysis. A comprehensive software tool for processing three-dimensional, multi-spectral confocal image stacks is described which supports the automation of this analysis. Nuclei counterstained with conventional DNA dyes and FISH signals indicating the sub-cellular distribution of specific, IEG RNA species are imaged using different spectral channels. The DNA channel data are segmented into individual nuclei by a three-dimensional multi-step algorithm that corrects for depth-dependent attenuation, non-isotropic voxels, and imaging noise. Intra-nuclear and cytoplasmic FISH signals are associated spatially with the nuclear segmentation results to generate a detailed tabular/database and graphic representation. Here we present a comprehensive validation of data generated by the automated software against manual quantification by human experts on hippocampal and parietal cortical regions (96.5% concordance with multi-expert consensus). The high degree of reliability and accuracy suggests that the software will generalize well to multiple brain areas and eventually to large-scale brain analysis.

  3. Feasibility of rapid and automated importation of 3D echocardiographic left ventricular (LV) geometry into a finite element (FEM) analysis model

    PubMed Central

    Verhey, Janko F; Nathan, Nadia S

    2004-01-01

    Background Finite element method (FEM) analysis for intraoperative modeling of the left ventricle (LV) is presently not possible. Since 3D structural data of the LV is now obtainable using standard transesophageal echocardiography (TEE) devices intraoperatively, the present study describes a method to transfer this data into a commercially available FEM analysis system: ABAQUS©. Methods In this prospective study TomTec LV Analysis TEE© Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. A newly developed software program MVCP FemCoGen©, written in Delphi, reformats the TomTec file structures in five patients for use in ABAQUS and allows visualization of regional deformation of the LV. Results This study demonstrates that a fully automated importation of 3D TEE data into FEM modeling is feasible and can be efficiently accomplished in the operating room. Conclusion For complete intraoperative 3D LV finite element analysis, three input elements are necessary: 1. time-gaited, reality-based structural information, 2. continuous LV pressure and 3. instantaneous tissue elastance. The first of these elements is now available using the methods presented herein. PMID:15473901

  4. Automated Detection of 3D Landmarks for the Elimination of Non-Biological Variation in Geometric Morphometric Analyses

    PubMed Central

    Aneja, D; Vora, SR; Camci, ED; Shapiro, LG; Cox, TC

    2015-01-01

    Landmark-based morphometric analyses are used by anthropologists, developmental and evolutionary biologists to understand shape and size differences (eg. in the cranioskeleton) between groups of specimens. The standard, labor intensive approach is for researchers to manually place landmarks on 3D image datasets. As landmark recognition is subject to inaccuracies of human perception, digitization of landmark coordinates is typically repeated (often by more than one person) and the mean coordinates are used. In an attempt to improve efficiency and reproducibility between researchers, we have developed an algorithm to locate landmarks on CT mouse hemi-mandible data. The method is evaluated on 3D meshes of 28-day old mice, and results compared to landmarks manually identified by experts. Quantitative shape comparison between two inbred mouse strains demonstrate that data obtained using our algorithm also has enhanced statistical power when compared to data obtained by manual landmarking. PMID:26258171

  5. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods.

    PubMed

    Moon, Inkyu; Yi, Faliu; Lee, Yeon H; Javidi, Bahram; Boss, Daniel; Marquet, Pierre

    2013-12-16

    Quantitative phase (QP) images of red blood cells (RBCs), which are obtained by off-axis digital holographic microscopy, can provide quantitative information about three-dimensional (3D) morphology of human RBCs and the characteristic properties such as mean corpuscular hemoglobin (MCH) and MCH surface density (MCHSD). In this paper, we investigate modifications of the 3D morphology and MCH in RBCs induced by the period of storage time for the purpose of classification of RBCs with different periods of storage by using off-axis digital holographic microscopy. The classification of RBCs based on the duration of storage is highly relevant because a long storage of blood before transfusion may alter the functionality of RBCs and, therefore, cause complications in patients. To analyze any changes in the 3D morphology and MCH of RBCs due to storage, we use data sets from RBC samples stored for 8, 13, 16, 23, 27, 30, 34, 37, 40, 47, and 57 days, respectively. The data sets consist of more than 3,300 blood cells in eleven classes, with more than 300 blood cells per class. The classes indicate the storage period of RBCs and are listed in chronological order. Using the RBCs donated by healthy persons, the off-axis digital holographic microscopy reconstructs several quantitative phase images of RBC samples stored for eleven different periods. We employ marker-controlled watershed transform to remove the background in the RBC quantitative phase images obtained by the off-axis digital holographic microscopy. More than 300 single RBCs are extracted from the segmented quantitative phase images for each class. Such a large number of RBC samples enable us to obtain statistical distributions of the characteristic properties of RBCs after a specific period of storage. Experimental results show that the 3D morphology of the RBCs, in contrast to MCH, is essentially related to the aging of the RBCs.

  6. MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images.

    PubMed

    Yuan, Xiaosong; Trachtenberg, Joshua T; Potter, Steve M; Roysam, Badrinath

    2009-12-01

    This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.

  7. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Fang, Lina; Li, Jonathan

    2013-05-01

    Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions MLS point clouds into a set of consecutive "scanning lines", which each consists of a road cross section. A moving window operator is used to filter out non-ground points line by line, and curb points are detected based on curb patterns. The detected curb points are tracked and refined so that they are both globally consistent and locally similar. To evaluate the validity of the proposed method, experiments were conducted using two types of street-scene point clouds captured by Optech's Lynx Mobile Mapper System. The completeness, correctness, and quality of the extracted roads are over 94.42%, 91.13%, and 91.3%, respectively, which proves the proposed method is a promising solution for extracting 3D roads from MLS point clouds.

  8. 3D morphometry using automated aortic segmentation in native MR angiography: an alternative to contrast enhanced MRA?

    PubMed Central

    Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl

    2014-01-01

    Introduction Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Methods and materials Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Results Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm3) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm3) (P<0.001). Conclusions 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA. PMID:24834406

  9. Automated simulation and evaluation of autostereoscopic multiview 3D display designs by time-sequential and wavelength-selective filter barrier

    NASA Astrophysics Data System (ADS)

    Kuhlmey, Mathias; Jurk, Silvio; Duckstein, Bernd; de la Barré, René

    2015-09-01

    A novel simulation tool has been developed for spatial multiplexed 3D displays. Main purpose of our software is the 3D display design with optical image splitter in particular lenticular grids or wavelength-selective barriers. As a result of interaction of image splitter with ray emitting displays a spatial light-modulator generating the autostereoscopic image representation was modeled. Based on the simulation model the interaction of optoelectronic devices with the defined spatial planes is described. Time-sequential multiplexing enables increasing the resolution of such 3D displays. On that reason the program was extended with an intermediate data cumulating component. The simulation program represents a stepwise quasi-static functionality and control of the arrangement. It calculates and renders the whole display ray emission and luminance distribution on viewing distance. The degree of result complexity will increase by using wavelength-selective barriers. Visible images at the viewer's eye positon were determined by simulation after every switching operation of optical image splitter. The summation and evaluation of the resulting data is processed in correspondence to the equivalent time sequence. Hereby the simulation was expanded by a complex algorithm for automated search and validation of possible solutions in the multi-dimensional parameter space. For the multiview 3D display design a combination of ray-tracing and 3D rendering was used. Therefore the emitted light intensity distribution of each subpixel will be evaluated by researching in terms of color, luminance and visible area by using different content distribution on subpixel plane. The analysis of the accumulated data will deliver different solutions distinguished by standards of evaluation.

  10. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-04-24

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.

  11. A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors

    PubMed Central

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  12. FluidCam 1&2 - UAV-Based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2015-12-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  13. Computed tomography quantification of pulmonary vessels in chronic obstructive pulmonary disease as identified by 3D automated approach

    PubMed Central

    Yu, Nan; Wei, Xia; Li, Yan; Deng, Lei; Jin, Chen-wang; Guo, Youmin

    2016-01-01

    Abstract The aim of this study was to investigate the vascular alteration of the whole lung and individual lobes in patients with COPD, and assess the association between pulmonary vessels and the extent and distribution of emphysema as well as pulmonary function by a 3-dimensional automated approach. A total of 83 computed tomography images from COPD patients were analyzed. Automated computerized approach was used to measure the total number of vessels at the fifth generation. The extent of emphysema (%LAA-950) in the whole lung and individual lobes were also calculated automatically. The association between the vascular number and the extent and distribution of emphysema, as well as the pulmonary function were assessed. Both the vascular number of fifth generation in the upper lobe and in the lower lobe were significantly negatively correlated with %LAA-950 (P < 0.05). Furthermore, there were significant, yet weak correlations between the vascular number and FEV1% predicted (R = 0.556, P = 0.039) and FEV1/FVC (R = 0.538, P = 0.047). In contrast, the vascular numbers were strongly correlated with DLco (R = 0.770, P = 0.003). Finally, the vascular number correlated closer with %LAA-950 of upper lobes than with %LAA-950 of lower lobes. Pulmonary vessel alteration can be measured; it is related to the extent of emphysema rather than the distribution of emphysema. PMID:27749587

  14. Discrete curvatures combined with machine learning for automated extraction of impact craters on 3D topographic meshes

    NASA Astrophysics Data System (ADS)

    Christoff, Nicole; Jorda, Laurent; Viseur, Sophie; Bouley, Sylvain; Manolova, Agata; Mari, Jean-Luc

    2017-04-01

    One of the challenges of Planetary Science is to estimate as accurately as possible the age of the geological units that crop out on the different space objects in the Solar system. This dating relies on the counting of the impact craters that cover the given outcrop surface. Using this technique, a chronology of the geological events can be determined and their formation and evolution processes can be understood. Over the last decade, several missions to asteroids and planets, such as Dawn to Vesta and Ceres, Messenger to Mercury, Mars Orbiter and Mars Express, produced a huge amount of images, from which equally huge DEMs have been generated. Planned missions, such as BepiColombo, will produce an even larger set of images. This rapidly growing amount of visible images and DEMs makes it more and more fastidious to manually identify craters. Acquisition data will become bigger and this will then require more accurate planetary surface analysis. Because of the importance of the problem, many Crater Detection Algorithm (CDA) were developed and applied onto either image data (2D) or DEM (2D1/5), and rarely onto full 3D data such as 3D topographic meshes. We propose a new approach, based on the detection of crater rim, which form a characteristic round shape. The proposed approach contains two main steps: 1) each vertex is labelled with the values of the mean curvature and minimal curvatures; 2) this curvature map is injected into a Neural Network (NN) to automatically process the region of interest. As a NN approach, it requires a training set of manually detected craters to estimate the optimal weights of the NN. Once trained, the NN can be applied onto the regions of interest for automatically extracting all the craters. As a result, it was observed that detecting forms using a two-dimensional map based on the computation of discrete differential estimators on the 3D mesh is more efficient than using a simple elevation map. This approach significantly reduces the

  15. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    NASA Astrophysics Data System (ADS)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  16. Automated kinematic modelling of warped galaxy discs in large H I surveys: 3D tilted-ring fitting of H I emission cubes

    NASA Astrophysics Data System (ADS)

    Kamphuis, P.; Józsa, G. I. G.; Oh, S.-. H.; Spekkens, K.; Urbancic, N.; Serra, P.; Koribalski, B. S.; Dettmar, R.-J.

    2015-09-01

    Kinematical parametrizations of disc galaxies, employing emission line observations, are indispensable tools for studying the formation and evolution of galaxies. Future large-scale H I surveys will resolve the discs of many thousands of galaxies, allowing a statistical analysis of their disc and halo kinematics, mass distribution and dark matter content. Here, we present an automated procedure which fits tilted-ring models to H I data cubes of individual, well-resolved galaxies. The method builds on the 3D Tilted Ring Fitting Code (TIRIFIC) and is called Fully Automated TIRIFIC (FAT). To assess the accuracy of the code, we apply it to a set of 52 artificial galaxies and 25 real galaxies from the Local Volume H I Survey (LVHIS). Using LVHIS data, we compare our 3D modelling to the 2D modelling methods DISKFIT and ROTCUR. A conservative result is that FAT accurately models the kinematics and the morphologies of galaxies with an extent of eight beams across the major axis in the inclination range 20°-90° without the need for priors such as disc inclination. When comparing to 2D methods we find that velocity fields cannot be used to determine inclinations in galaxies that are marginally resolved. We conclude that with the current code tilted-ring models can be produced in a fully automated fashion. This will be essential for future H I surveys, with the Square Kilometre Array and its pathfinders, which will allow us to model the gas kinematics of many thousands of well-resolved galaxies. Performance studies of FAT close to our conservative limits, as well as the introduction of more parametrized models will open up the possibility to study even less resolved galaxies.

  17. Automated real-time search and analysis algorithms for a non-contact 3D profiling system

    NASA Astrophysics Data System (ADS)

    Haynes, Mark; Wu, Chih-Hang John; Beck, B. Terry; Peterman, Robert J.

    2013-04-01

    The purpose of this research is to develop a new means of identifying and extracting geometrical feature statistics from a non-contact precision-measurement 3D profilometer. Autonomous algorithms have been developed to search through large-scale Cartesian point clouds to identify and extract geometrical features. These algorithms are developed with the intent of providing real-time production quality control of cold-rolled steel wires. The steel wires in question are prestressing steel reinforcement wires for concrete members. The geometry of the wire is critical in the performance of the overall concrete structure. For this research a custom 3D non-contact profilometry system has been developed that utilizes laser displacement sensors for submicron resolution surface profiling. Optimizations in the control and sensory system allow for data points to be collected at up to an approximate 400,000 points per second. In order to achieve geometrical feature extraction and tolerancing with this large volume of data, the algorithms employed are optimized for parsing large data quantities. The methods used provide a unique means of maintaining high resolution data of the surface profiles while keeping algorithm running times within practical bounds for industrial application. By a combination of regional sampling, iterative search, spatial filtering, frequency filtering, spatial clustering, and template matching a robust feature identification method has been developed. These algorithms provide an autonomous means of verifying tolerances in geometrical features. The key method of identifying the features is through a combination of downhill simplex and geometrical feature templates. By performing downhill simplex through several procedural programming layers of different search and filtering techniques, very specific geometrical features can be identified within the point cloud and analyzed for proper tolerancing. Being able to perform this quality control in real time

  18. Speeding up 3D speckle tracking using PatchMatch

    NASA Astrophysics Data System (ADS)

    Zontak, Maria; O'Donnell, Matthew

    2016-03-01

    Echocardiography provides valuable information to diagnose heart dysfunction. A typical exam records several minutes of real-time cardiac images. To enable complete analysis of 3D cardiac strains, 4-D (3-D+t) echocardiography is used. This results in a huge dataset and requires effective automated analysis. Ultrasound speckle tracking is an effective method for tissue motion analysis. It involves correlation of a 3D kernel (block) around a voxel with kernels in later frames. The search region is usually confined to a local neighborhood, due to biomechanical and computational constraints. For high strains and moderate frame-rates, however, this search region will remain large, leading to a considerable computational burden. Moreover, speckle decorrelation (due to high strains) leads to errors in tracking. To solve this, spatial motion coherency between adjacent voxels should be imposed, e.g., by averaging their correlation functions.1 This requires storing correlation functions for neighboring voxels, thus increasing memory demands. In this work, we propose an efficient search using PatchMatch, 2 a powerful method to find correspondences between images. Here we adopt PatchMatch for 3D volumes and radio-frequency signals. As opposed to an exact search, PatchMatch performs random sampling of the search region and propagates successive matches among neighboring voxels. We show that: 1) Inherently smooth offset propagation in PatchMatch contributes to spatial motion coherence without any additional processing or memory demand. 2) For typical scenarios, PatchMatch is at least 20 times faster than the exact search, while maintaining comparable tracking accuracy.

  19. Open-Source Assisted Laboratory Automation through Graphical User Interfaces and 3D Printers: Application to Equipment Hyphenation for Higher-Order Data Generation.

    PubMed

    Siano, Gabriel G; Montemurro, Milagros; Alcaráz, Mirta R; Goicoechea, Héctor C

    2017-09-25

    Higher-order data generation implies some automation challenges, which are mainly related to the hidden programming languages and electronic details of the equipment. When techniques and/or equipment hyphenation are the key to obtaining higher-order data, the required simultaneous control of them demands funds for new hardware, software, and licenses, in addition to very skilled operators. In this work, we present Design of Inputs-Outputs with Sikuli (DIOS), a free and open-source code program that provides a general framework for the design of automated experimental procedures without prior knowledge of programming or electronics. Basically, instruments and devices are considered as nodes in a network, and every node is associated both with physical and virtual inputs and outputs. Virtual components, such as graphical user interfaces (GUIs) of equipment, are handled by means of image recognition tools provided by Sikuli scripting language, while handling of their physical counterparts is achieved using an adapted open-source three-dimensional (3D) printer. Two previously reported experiments of our research group, related to fluorescence matrices derived from kinetics and high-performance liquid chromatography, were adapted to be carried out in a more automated fashion. Satisfactory results, in terms of analytical performance, were obtained. Similarly, advantages derived from open-source tools assistance could be appreciated, mainly in terms of lesser intervention of operators and cost savings.

  20. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation.

    PubMed

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-08-19

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.

  1. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation

    PubMed Central

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-01-01

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions. PMID:26295395

  2. Automated matching of corresponding seed images of three simulator radiographs to allow 3D triangulation of implanted seeds.

    PubMed

    Altschuler, M D; Kassaee, A

    1997-02-01

    To match corresponding seed images in different radiographs so that the 3D seed locations can be triangulated automatically and without ambiguity requires (at least) three radiographs taken from different perspectives, and an algorithm that finds the proper permutations of the seed-image indices. Matching corresponding images in only two radiographs introduces inherent ambiguities which can be resolved only with the use of non-positional information obtained with intensive human effort. Matching images in three or more radiographs is an 'NP (Non-determinant in Polynomial time)-complete' problem. Although the matching problem is fundamental, current methods for three-radiograph seed-image matching use 'local' (seed-by-seed) methods that may lead to incorrect matchings. We describe a permutation-sampling method which not only gives good 'global' (full permutation) matches for the NP-complete three-radiograph seed-matching problem, but also determines the reliability of the radiographic data themselves, namely, whether the patient moved in the interval between radiographic perspectives.

  3. Automated volume analysis of head and neck lesions on CT scans using 3D level set segmentation.

    PubMed

    Street, Ethan; Hadjiiski, Lubomir; Sahiner, Berkman; Gujar, Sachin; Ibrahim, Mohannad; Mukherji, Suresh K; Chan, Heang-Ping

    2007-11-01

    The authors have developed a semiautomatic system for segmentation of a diverse set of lesions in head and neck CT scans. The system takes as input an approximate bounding box, and uses a multistage level set to perform the final segmentation. A data set consisting of 69 lesions marked on 33 scans from 23 patients was used to evaluate the performance of the system. The contours from automatic segmentation were compared to both 2D and 3D gold standard contours manually drawn by three experienced radiologists. Three performance metric measures were used for the comparison. In addition, a radiologist provided quality ratings on a 1 to 10 scale for all of the automatic segmentations. For this pilot study, the authors observed that the differences between the automatic and gold standard contours were larger than the interobserver differences. However, the system performed comparably to the radiologists, achieving an average area intersection ratio of 85.4% compared to an average of 91.2% between two radiologists. The average absolute area error was 21.1% compared to 10.8%, and the average 2D distance was 1.38 mm compared to 0.84 mm between the radiologists. In addition, the quality rating data showed that, despite the very lax assumptions made on the lesion characteristics in designing the system, the automatic contours approximated many of the lesions very well.

  4. Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression.

    PubMed

    Hu, Zhihong; Niemeijer, Meindert; Abràmoft, Michael D; Lee, Kyungmoo; Garvin, Mona K

    2010-01-01

    We present a method for automatically segmenting the blood vessels in optic nerve head (ONH) centered spectral-domain optical coherence tomography (SD-OCT) volumes, with a focus on the ability to segment the vessels in the region near the neural canal opening (NCO). The algorithm first pre-segments the NCO using a graph-theoretic approach. Oriented Gabor wavelets rotated around the center of the NCO are applied to extract features in a 2-D vessel-aimed projection image. Corresponding oriented NCO-based templates are utilized to help suppress the false positive tendency near the NCO boundary. The vessels are identified in a vessel-aimed projection image using a pixel classification algorithm. Based on the 2-D vessel profiles, 3-D vessel segmentation is performed by a triangular-mesh-based graph search approach in the SD-OCT volume. The segmentation method is trained on 5 and is tested on 10 randomly chosen independent ONH-centered SD-OCT volumes from 15 subjects with glaucoma. Using ROC analysis, for the 2-D vessel segmentation, we demonstrate an improvement over the closest previous work with an area under the curve (AUC) of 0.81 (0.72 for previously reported approach) for the region around the NCO and 0.84 for the region outside the NCO (0.81 for previously reported approach).

  5. Semi-automated 3D segmentation of major tracts in the rat brain: comparing DTI with standard histological methods.

    PubMed

    Gyengesi, Erika; Calabrese, Evan; Sherrier, Matthew C; Johnson, G Allan; Paxinos, George; Watson, Charles

    2014-03-01

    Researchers working with rodent models of neurological disease often require an accurate map of the anatomical organization of the white matter of the rodent brain. With the increasing popularity of small animal MRI techniques, including diffusion tensor imaging (DTI), there is considerable interest in rapid segmentation methods of neurological structures for quantitative comparisons. DTI-derived tractography allows simple and rapid segmentation of major white matter tracts, but the anatomic accuracy of these computer-generated fibers is open to question and has not been rigorously evaluated in the rat brain. In this study, we examine the anatomic accuracy of tractography-based segmentation in the adult rat brain. We analysed 12 major white matter pathways using semi-automated tractography-based segmentation alongside manual segmentation of Gallyas silver-stained histology sections. We applied four fiber-tracking algorithms to the DTI data-two integration methods and two deflection methods. In many cases, tractography-based segmentation closely matched histology-based segmentation; however different tractography algorithms produced dramatically different results. Results suggest that certain white matter pathways are more amenable to tractography-based segmentation than others. We believe that these data will help researchers decide whether it is appropriate to use tractography-based segmentation of white matter structures for quantitative DTI-based analysis of neurologic disease models.

  6. A semi-automated 2D/3D marker-based registration algorithm modelling prostate shrinkage during radiotherapy for prostate cancer.

    PubMed

    Budiharto, Tom; Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Verstraete, Jan; Heuvel, Frank Van den; Depuydt, Tom; Oyen, Raymond; Haustermans, Karin

    2009-03-01

    Currently, most available patient alignment tools based on implanted markers use manual marker matching and rigid registration transformations to measure the needed translational shifts. To quantify the particular effect of prostate gland shrinkage, implanted gold markers were tracked during a course of radiotherapy including an isotropic scaling factor to model prostate shrinkage. Eight patients with prostate cancer had gold markers implanted transrectally and seven were treated with (neo) adjuvant androgen deprivation therapy. After patient alignment to skin tattoos, orthogonal electronic portal images (EPIs) were taken. A semi-automated 2D/3D marker-based registration was performed to calculate the necessary couch shifts. The registration consists of a rigid transformation combined with an isotropic scaling to model prostate shrinkage. The inclusion of an isotropic shrinkage model in the registration algorithm cancelled the corresponding increase in registration error. The mean scaling factor was 0.89+/-0.09. For all but two patients, a decrease of the isotropic scaling factor during treatment was observed. However, there was almost no difference in the translation offset between the manual matching of the EPIs to the digitally reconstructed radiographs and the semi-automated 2D/3D registration. A decrease in the intermarker distance was found correlating with prostate shrinkage rather than with random marker migration. Inclusion of shrinkage in the registration process reduces registration errors during a course of radiotherapy. Nevertheless, this did not lead to a clinically significant change in the proposed table translations when compared to translations obtained with manual marker matching without a scaling correction.

  7. Automating measurement of subtle changes in articular cartilage from MRI of the knee by combining 3D image registration and segmentation

    NASA Astrophysics Data System (ADS)

    Lynch, John A.; Zaim, Souhil; Zhao, Jenny; Peterfy, Charles G.; Genant, Harry K.

    2001-07-01

    In osteoarthritis, articular cartilage loses integrity and becomes thinned. This usually occurs at sites which bear weight during normal use. Measurement of such loss from MRI scans, requires precise and reproducible techniques, which can overcome the difficulties of patient repositioning within the scanner. In this study, we combine a previously described technique for segmentation of cartilage from MRI of the knee, with a technique for 3D image registration that matches localized regions of interest at followup and baseline. Two patients, who had recently undergone meniscal surgery, and developed lesions during the 12 month followup period were examined. Image registration matched regions of interest (ROI) between baseline and followup, and changes within the cartilage lesions were estimate to be about a 16% reduction in cartilage volume within each ROI. This was more than 5 times the reproducibility of the measurement, but only represented a change of between 1 and 2% in total femoral cartilage volume. Changes in total cartilage volume may be insensitive for quantifying changes in cartilage morphology. A combined used of automated image segmentation, with 3D image registration could be a useful tool for the precise and sensitive measurement of localized changes in cartilage from MRI of the knee.

  8. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  9. Automated Quantification of Myocardial Salvage in a Rat Model of Ischemia–Reperfusion Injury Using 3D High‐Resolution Magnetic Resonance Imaging (MRI)

    PubMed Central

    Grieve, Stuart M.; Mazhar, Jawad; Callaghan, Fraser; Kok, Cindy Y.; Tandy, Sarah; Bhindi, Ravinay; Figtree, Gemma A.

    2014-01-01

    Background Quantification of myocardial “area at risk” (AAR) and myocardial infarction (MI) zone is critical for assessing novel therapies targeting myocardial ischemia–reperfusion (IR) injury. Current “gold‐standard” methods perfuse the heart with Evan's Blue and stain with triphenyl tetrazolium chloride (TTC), requiring manual slicing and analysis. We aimed to develop and validate a high‐resolution 3‐dimensional (3D) magnetic resonance imaging (MRI) method for quantifying MI and AAR. Methods and Results Forty‐eight hours after IR was induced, rats were anesthetized and gadopentetate dimeglumine was administered intravenously. After 10 minutes, the coronary artery was re‐ligated and a solution containing iron oxide microparticles and Evan's Blue was infused (for comparison). Hearts were harvested and transversally sectioned for TTC staining. Ex vivo MR images of slices were acquired on a 9.4‐T magnet. T2* data allowed visualization of AAR, with microparticle‐associated signal loss in perfused regions. T1 data demonstrated gadolinium retention in infarcted zones. Close correlation (r=0.92 to 0.94; P<0.05) of MRI and Evan's Blue/TTC measures for both AAR and MI was observed when the combined techniques were applied to the same heart slice. However, 3D MRI acquisition and analysis of whole heart reduced intra‐observer variability compared to assessment of isolated slices, and allowed automated segmentation and analysis, thus reducing interobserver variation. Anatomical resolution of 81 μm3 was achieved (versus ≈2 mm with manual slicing). Conclusions This novel, yet simple, MRI technique allows precise assessment of infarct and AAR zones. It removes the need for tissue slicing and provides opportunity for 3D digital analysis at high anatomical resolution in a streamlined manner accessible for all laboratories already performing IR experiments. PMID:25146703

  10. Towards automated firearm identification based on high resolution 3D data: rotation-invariant features for multiple line-profile-measurement of firing pin shapes

    NASA Astrophysics Data System (ADS)

    Fischer, Robert; Vielhauer, Claus

    2015-03-01

    Understanding and evaluation of potential evidence, as well as evaluation of automated systems for forensic examinations currently play an important role within the domain of digital crime scene analysis. The application of 3D sensing and pattern recognition systems for automatic extraction and comparison of firearm related tool marks is an evolving field of research within this domain. In this context, the design and evaluation of rotation-invariant features for use on topography data play a particular important role. In this work, we propose and evaluate a 3D imaging system along with two novel features based on topography data and multiple profile-measurement-lines for automatic matching of firing pin shapes. Our test set contains 72 cartridges of three manufactures shot by six different 9mm guns. The entire pattern recognition workflow is addressed. This includes the application of confocal microscopy for data acquisition, preprocessing covers outlier handling, data normalization, as well as necessary segmentation and registration. Feature extraction involves the two introduced features for automatic comparison and matching of 3D firing pin shapes. The introduced features are called `Multiple-Circle-Path' (MCP) and `Multiple-Angle-Path' (MAP). Basically both features are compositions of freely configurable amounts of circular or straight path-lines combined with statistical evaluations. During the first part of evaluation (E1), we examine how well it is possible to differentiate between two 9mm weapons of the same mark and model. During second part (E2), we evaluate the discrimination accuracy regarding the set of six different 9mm guns. During the third part (E3), we evaluate the performance of the features in consideration of different rotation angles. In terms of E1, the best correct classification rate is 100% and in terms of E2 the best result is 86%. The preliminary results for E3 indicate robustness of both features regarding rotation. However, in future

  11. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images

    PubMed Central

    Macnaught, Gillian; Denison, Fiona C.; Reynolds, Rebecca M.; Semple, Scott I.; Boardman, James P.

    2017-01-01

    Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development. PMID:28251155

  12. Histograms of Oriented 3D Gradients for Fully Automated Fetal Brain Localization and Robust Motion Correction in 3 T Magnetic Resonance Images.

    PubMed

    Serag, Ahmed; Macnaught, Gillian; Denison, Fiona C; Reynolds, Rebecca M; Semple, Scott I; Boardman, James P

    2017-01-01

    Fetal brain magnetic resonance imaging (MRI) is a rapidly emerging diagnostic imaging tool. However, automated fetal brain localization is one of the biggest obstacles in expediting and fully automating large-scale fetal MRI processing. We propose a method for automatic localization of fetal brain in 3 T MRI when the images are acquired as a stack of 2D slices that are misaligned due to fetal motion. First, the Histogram of Oriented Gradients (HOG) feature descriptor is extended from 2D to 3D images. Then, a sliding window is used to assign a score to all possible windows in an image, depending on the likelihood of it containing a brain, and the window with the highest score is selected. In our evaluation experiments using a leave-one-out cross-validation strategy, we achieved 96% of complete brain localization using a database of 104 MRI scans at gestational ages between 34 and 38 weeks. We carried out comparisons against template matching and random forest based regression methods and the proposed method showed superior performance. We also showed the application of the proposed method in the optimization of fetal motion correction and how it is essential for the reconstruction process. The method is robust and does not rely on any prior knowledge of fetal brain development.

  13. An Automated Treatment Plan Quality Control Tool for Intensity-Modulated Radiation Therapy Using a Voxel-Weighting Factor-Based Re-Optimization Algorithm.

    PubMed

    Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura

    2016-01-01

    Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be

  14. An Automated Treatment Plan Quality Control Tool for Intensity-Modulated Radiation Therapy Using a Voxel-Weighting Factor-Based Re-Optimization Algorithm

    PubMed Central

    Song, Ting; Li, Nan; Zarepisheh, Masoud; Li, Yongbao; Gautier, Quentin; Zhou, Linghong; Mell, Loren; Jiang, Steve; Cerviño, Laura

    2016-01-01

    Intensity-modulated radiation therapy (IMRT) currently plays an important role in radiotherapy, but its treatment plan quality can vary significantly among institutions and planners. Treatment plan quality control (QC) is a necessary component for individual clinics to ensure that patients receive treatments with high therapeutic gain ratios. The voxel-weighting factor-based plan re-optimization mechanism has been proved able to explore a larger Pareto surface (solution domain) and therefore increase the possibility of finding an optimal treatment plan. In this study, we incorporated additional modules into an in-house developed voxel weighting factor-based re-optimization algorithm, which was enhanced as a highly automated and accurate IMRT plan QC tool (TPS-QC tool). After importing an under-assessment plan, the TPS-QC tool was able to generate a QC report within 2 minutes. This QC report contains the plan quality determination as well as information supporting the determination. Finally, the IMRT plan quality can be controlled by approving quality-passed plans and replacing quality-failed plans using the TPS-QC tool. The feasibility and accuracy of the proposed TPS-QC tool were evaluated using 25 clinically approved cervical cancer patient IMRT plans and 5 manually created poor-quality IMRT plans. The results showed high consistency between the QC report quality determinations and the actual plan quality. In the 25 clinically approved cases that the TPS-QC tool identified as passed, a greater difference could be observed for dosimetric endpoints for organs at risk (OAR) than for planning target volume (PTV), implying that better dose sparing could be achieved in OAR than in PTV. In addition, the dose-volume histogram (DVH) curves of the TPS-QC tool re-optimized plans satisfied the dosimetric criteria more frequently than did the under-assessment plans. In addition, the criteria for unsatisfied dosimetric endpoints in the 5 poor-quality plans could typically be

  15. Automated 3D-2D registration of X-ray microcomputed tomography with histological sections for dental implants in bone using chamfer matching and simulated annealing.

    PubMed

    Becker, Kathrin; Stauber, Martin; Schwarz, Frank; Beißbarth, Tim

    2015-09-01

    We propose a novel 3D-2D registration approach for micro-computed tomography (μCT) and histology (HI), constructed for dental implant biopsies, that finds the position and normal vector of the oblique slice from μCT that corresponds to HI. During image pre-processing, the implants and the bone tissue are segmented using a combination of thresholding, morphological filters and component labeling. After this, chamfer matching is employed to register the implant edges and fine registration of the bone tissues is achieved using simulated annealing. The method was tested on n=10 biopsies, obtained at 20 weeks after non-submerged healing in the canine mandible. The specimens were scanned with μCT 100 and processed for hard tissue sectioning. After registration, we assessed the agreement of bone to implant contact (BIC) using automated and manual measurements. Statistical analysis was conducted to test the agreement of the BIC measurements in the registered samples. Registration was successful for all specimens and agreement of the respective binary images was high (median: 0.90, 1.-3. Qu.: 0.89-0.91). Direct comparison of BIC yielded that automated (median 0.82, 1.-3. Qu.: 0.75-0.85) and manual (median 0.61, 1.-3. Qu.: 0.52-0.67) measures from μCT were significant positively correlated with HI (median 0.65, 1.-3. Qu.: 0.59-0.72) between μCT and HI groups (manual: R(2)=0.87, automated: R(2)=0.75, p<0.001). The results show that this method yields promising results and that μCT may become a valid alternative to assess osseointegration in three dimensions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An Automated Pipeline for Dendrite Spine Detection and Tracking of 3D Optical Microscopy Neuron Images of In Vivo Mouse Models

    PubMed Central

    Fan, Jing; Zhou, Xiaobo; Dy, Jennifer G.; Zhang, Yong; Wong, Stephen T. C.

    2009-01-01

    The variations in dendritic branch morphology and spine density provide insightful information about the brain function and possible treatment to neurodegenerative disease, for example investigating structural plasticity during the course of Alzheimer's disease. Most automated image processing methods aiming at analyzing these problems are developed for in vitro data. However, in vivo neuron images provide real time information and direct observation of the dynamics of a disease process in a live animal model. This paper presents an automated approach for detecting spines and tracking spine evolution over time with in vivo image data in an animal model of Alzheimer's disease. We propose an automated pipeline starting with curvilinear structure detection to determine the medial axis of the dendritic backbone and spines connected to the backbone. We, then, propose the adaptive local binary fitting (aLBF) energy level set model to accurately locate the boundary of dendritic structures using the central line of curvilinear structure as initialization. To track the growth or loss of spines, we present a maximum likelihood based technique to find the graph homomorphism between two image graph structures at different time points. We employ dynamic programming to search for the optimum solution. The pipeline enables us to extract dynamically changing information from real time in vivo data. We validate our proposed approach by comparing with manual results generated by neurologists. In addition, we discuss the performance of 3D based segmentation and conclude that our method is more accurate in identifying weak spines. Experiments show that our approach can quickly and accurately detect and quantify spines of in vivo neuron images and is able to identify spine elimination and formation. PMID:19434521

  17. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses

    PubMed Central

    Chapman, K. E.; Thomas, A. D.; Jenkins, G. J. S.

    2014-01-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay’s fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in

  18. 3-D Extensions for Trustworthy Systems

    DTIC Science & Technology

    2011-01-01

    modifications to the floor planning stage of the 3-D design flow that are necessary to support our design approach. We strongly recommend that the 3-D EDA ...and we outline problems, challenges, attacks, solutions, and topics for future research. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...Requirements for automated 3-D IC design tools for the physical layout of components. Since fully automated Electronic Design Automation ( EDA ) for 3-D

  19. Using semi-automated photogrammetry software to generate 3D surfaces from oblique and vertical photographs at Mount St. Helens, WA

    NASA Astrophysics Data System (ADS)

    Schilling, S.; Diefenbach, A. K.

    2012-12-01

    Photogrammetry has been used to generate contours and Digital Elevation Models (DEMs) to monitor change at Mount St. Helens, WA since the 1980 eruption. We continue to improve techniques to monitor topographic changes within the crater. During the 2004-2008 eruption, 26 DEMs were used to track volume and rates of growth of a lava dome and changes of Crater Glacier. These measurements constrained seismogenic extrusion models and were compared with geodetic deflation volume to constrain magma chamber behavior. We used photogrammetric software to collect irregularly spaced 3D points primarily by hand and, in reasonably flat areas, by automated algorithms, from commercial vertical aerial photographs. These models took days to months to complete and the areal extent of each surface was determined by visual inspection. Later in the eruption, we pioneered the use of different software to generate irregularly spaced 3D points manually from oblique images captured by a hand-held digital camera. In each case, the irregularly spaced points and intervening interpolated points formed regular arrays of cells or DEMs. Calculations using DEMs produced from the hand-held images duplicated volumetric and rate results gleaned from the vertical aerial photographs. This manual point capture technique from oblique hand-held photographs required only a few hours to generate a model over a focused area such as the lava dome, but would have taken perhaps days to capture data over the entire crater. Here, we present results from new photogrammetric software that uses robust image-matching algorithms to produce 3D surfaces automatically after inner, relative, and absolute orientations between overlapping photographs are completed. Measurements using scans of vertical aerial photographs taken August 10, 2005 produced dome volume estimates within two percent of those from a surface generated using the vertical aerial photograph manual method. The new August 10th orientations took less than 8

  20. An automated system for collection of time-lapse 3D radar data to investigate vadose zone flow and transport processes

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.

    2013-12-01

    Capturing three-dimensional ground-penetrating radar (GPR) images can significantly enhance our understanding of subsurface variability during vadose zone flow and transport processes. The high spatial sampling (i.e., small step sizes between profiles) required to collect full resolution 3D data can be a major challenge - particularly for high frequency imaging of detailed structures such as those related to preferential flow patterns in soils. We have developed an automated system for collecting GPR data to address these challenges. The system is based on the Sensors and Software SPIDAR (OEM NIC) platform running a 1000MHz source and receiver antenna that can be independently positioned using a 2-axis motion control system, with both the radar and positioning components integrated through LabView. The antennas can be positioned independently along a rail parallel with the x-axis, which can itself be moved along a second set of rails along the y-axis. The positioning accuracy along each axis has been estimated to be 3um and 0.2mm along each direction, respectively, thus indicating that high resolution positioning for accurate 3D imaging is readily attained. The integrated radar and positioning system is currently capable of collecting up to 100 traces per second over a 25ns time window with 4 stacks, or an equivalent lateral velocity of approximately 50cm/s with traces collected every 0.5cm along the profile. This high speed data collection means that a full 3D section of data (>75,000 traces) over a 0.75m x 1.5m area can be collected in under 20 minutes at sub-centimeter resolution, implying that near real-time imaging of infiltration over reasonably large areas can be achieved. In our case, the radar system has been implemented for a lab environment where it is able to perform imaging experiments over a 4m x 4m x 2m (LxWxH) sand-filled tank. In this presentation we will provide examples of three dimensional data collected over the tank. Experiments imaging rocks

  1. Evaluation of the 3D BacT/ALERT automated culture system for the detection of microbial contamination of platelet concentrates.

    PubMed

    McDonald, C P; Rogers, A; Cox, M; Smith, R; Roy, A; Robbins, S; Hartley, S; Barbara, J A J; Rothenberg, S; Stutzman, L; Widders, G

    2002-10-01

    Bacterial transmission remains the major component of morbidity and mortality associated with transfusion-transmitted infections. Platelet concentrates are the most common cause of bacterial transmission. The BacT/ALERT 3D automated blood culture system has the potential to screen platelet concentrates for the presence of bacteria. Evaluation of this system was performed by spiking day 2 apheresis platelet units with individual bacterial isolates at final concentrations of 10 and 100 colony-forming units (cfu) mL-1. Fifteen organisms were used which had been cited in platelet transmission and monitoring studies. BacT/ALERT times to detection were compared with thioglycollate broth cultures, and the performance of five types of BacT/ALERT culture bottles was evaluated. Sampling was performed immediately after the inoculation of the units, and 10 replicates were performed per organism concentration for each of the five types of BacT/ALERT bottles. The mean times for the detection of these 15 organisms by BacT/ALERT, with the exception of Propionibacterium acnes, ranged from 9.1 to 48.1 h (all 10 replicates were positive). In comparison, the time range found using thioglycollate was 12.0-32.3 h (all 10 replicates were positive). P. acnes' BacT/ALERT mean detection times ranged from 89.0 to 177.6 h compared with 75.6-86.4 h for the thioglycollate broth. BacT/ALERT, with the exception of P. acnes, which has dubious clinical significance, gave equivalent or shorter detection times when compared with the thioglycollate broth system. The BacT/ALERT system detected a range of organisms at levels of 10 and 100 cfu mL-1. This study validates the BacT/ALERT microbial detection system for screening platelets. Currently, the system is the only practically viable option available for routinely screening platelet concentrates to prevent bacterial transmission.

  2. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin.

    PubMed

    Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; Bergkamp, Mayra; Wissink, Joost; Obels, Jiri; Keizer, Karlijn; Leeuw, Frank-Erik de; Ginneken, Bram van; Marchiori, Elena; Platel, Bram

    2017-01-01

    Lacunes of presumed vascular origin (lacunes) are associated with an increased risk of stroke, gait impairment, and dementia and are a primary imaging feature of the small vessel disease. Quantification of lacunes may be of great importance to elucidate the mechanisms behind neuro-degenerative disorders and is recommended as part of study standards for small vessel disease research. However, due to the different appearance of lacunes in various brain regions and the existence of other similar-looking structures, such as perivascular spaces, manual annotation is a difficult, elaborative and subjective task, which can potentially be greatly improved by reliable and consistent computer-aided detection (CAD) routines. In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN). We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.

  3. Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects.

    PubMed

    Apostolova, Liana G; Morra, Jonathan H; Green, Amity E; Hwang, Kristy S; Avedissian, Christina; Woo, Ellen; Cummings, Jeffrey L; Toga, Arthur W; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2010-05-15

    We used a previously validated automated machine learning algorithm based on adaptive boosting to segment the hippocampi in baseline and 12-month follow-up 3D T1-weighted brain MRIs of 150 cognitively normal elderly (NC), 245 mild cognitive impairment (MCI) and 97 Dementia of the Alzheimer's type (DAT) ADNI subjects. Using the radial distance mapping technique, we examined the hippocampal correlates of delayed recall performance on three well-established verbal memory tests--ADAScog delayed recall (ADAScog-DR), the Rey Auditory Verbal Learning Test -DR (AVLT-DR) and Wechsler Logical Memory II-DR (LM II-DR). We observed no significant correlations between delayed recall performance and hippocampal radial distance on any of the three verbal memory measures in NC. All three measures were associated with hippocampal volumes and radial distance in the full sample and in the MCI group at baseline and at follow-up. In DAT we observed stronger left-sided associations between hippocampal radial distance, LM II-DR and ADAScog-DR both at baseline and at follow-up. The strongest linkage between memory performance and hippocampal atrophy in the MCI sample was observed with the most challenging verbal memory test-the AVLT-DR, as opposed to the DAT sample where the least challenging test the ADAScog-DR showed strongest associations with the hippocampal structure. After controlling for baseline hippocampal atrophy, memory performance showed regionally specific associations with hippocampal radial distance in predominantly CA1 but also in subicular distribution.

  4. Pattern of cerebral hyperperfusion in Alzheimer’s disease and amnestic mild cognitive impairment using voxel-based analysis of 3D arterial spin-labeling imaging: initial experience

    PubMed Central

    Ding, Bei; Ling, Hua-wei; Zhang, Yong; Huang, Juan; Zhang, Huan; Wang, Tao; Yan, Fu Hua

    2014-01-01

    Purpose A three-dimensional (3D) continuous pulse arterial spin labeling (ASL) technique was used to investigate cerebral blood flow (CBF) changes in patients with Alzheimer’s disease (AD), amnestic mild cognitive impairment (aMCI), and age- and sex-matched healthy controls. Materials and methods Three groups were recruited for comparison, 24 AD patients, 17 MCI patients, and 21 age- and sex-matched control subjects. Three-dimensional ASL scans covering the entire brain were acquired with a 3.0 T magnetic resonance scanner. Spatial processing was performed with statistical parametric mapping 8. A second-level one-way analysis of variance analysis (threshold at P<0.05) was performed on the preprocessed ASL data. An average whole-brain CBF for each subject was also included as group-level covariates for the perfusion data, to control for individual CBF variations. Results Significantly increased CBF was detected in bilateral frontal lobes and right temporal subgyral regions in aMCI compared with controls. When comparing AD with aMCI, the major hyperperfusion regions were the right limbic lobe and basal ganglia regions, including the putamen, caudate, lentiform nucleus, and thalamus, and hypoperfusion was found in the left medial frontal lobe, parietal cortex, the right middle temporo-occipital lobe, and particularly, the left anterior cingulate gyrus. We also found decreased CBF in the bilateral temporo-parieto-occipital cortices and left limbic lobe in AD patients, relative to the control group. aMCI subjects showed decreased blood flow in the left occipital lobe, bilateral inferior temporal cortex, and right middle temporal cortex. Conclusion Our results indicated that ASL provided useful perfusion information in AD disease and may be used as an appealing alternative for further pathologic and neuropsychological studies, especially of compensatory mechanisms for cerebral hypoperfusion. PMID:24707173

  5. Automatic Segmentation of 3D Micro-CT Coronary Vascular Images

    SciTech Connect

    Lee,J.; Beighley, P.; Ritman, E.; Smith, N.

    2007-01-01

    Although there are many algorithms available in the literature aimed at segmentation and model reconstruction of 3D angiographic images, many are focused on characterizing only a part of the vascular network. This study is motivated by the recent emerging prospects of whole-organ simulations in coronary hemodynamics, autoregulation and tissue oxygen delivery for which anatomically accurate vascular meshes of extended scale are highly desirable. The key requirements of a reconstruction technique for this purpose are automation of processing and sub-voxel accuracy. We have designed a vascular reconstruction algorithm which satisfies these two criteria. It combines automatic seeding and tracking of vessels with radius detection based on active contours. The method was first examined through a series of tests on synthetic data, for accuracy in reproduced topology and morphology of the network and was shown to exhibit errors of less than 0.5 voxel for centerline and radius detections, and 3 for initial seed directions. The algorithm was then applied on real-world data of full rat coronary structure acquired using a micro-CT scanner at 20 {mu}m voxel size. For this, a further validation of radius quantification was carried out against a partially rescanned portion of the network at 8 {mu}m voxel size, which estimated less than 10% radius error in vessels larger than 2 voxels in radius.

  6. Automatic segmentation of 3D micro-CT coronary vascular images.

    PubMed

    Lee, Jack; Beighley, Patricia; Ritman, Erik; Smith, Nicolas

    2007-12-01

    Although there are many algorithms available in the literature aimed at segmentation and model reconstruction of 3D angiographic images, many are focused on characterizing only a part of the vascular network. This study is motivated by the recent emerging prospects of whole-organ simulations in coronary hemodynamics, autoregulation and tissue oxygen delivery for which anatomically accurate vascular meshes of extended scale are highly desirable. The key requirements of a reconstruction technique for this purpose are automation of processing and sub-voxel accuracy. We have designed a vascular reconstruction algorithm which satisfies these two criteria. It combines automatic seeding and tracking of vessels with radius detection based on active contours. The method was first examined through a series of tests on synthetic data, for accuracy in reproduced topology and morphology of the network and was shown to exhibit errors of less than 0.5 voxel for centerline and radius detections, and 3 degrees for initial seed directions. The algorithm was then applied on real-world data of full rat coronary structure acquired using a micro-CT scanner at 20 microm voxel size. For this, a further validation of radius quantification was carried out against a partially rescanned portion of the network at 8 microm voxel size, which estimated less than 10% radius error in vessels larger than 2 voxels in radius.

  7. Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko

    2008-03-01

    The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).

  8. 3D actin network centerline extraction with multiple active contours.

    PubMed

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-02-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and actin cables. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we propose a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D Total Internal Reflection Fluorescence Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy. Quantitative evaluation of the method using synthetic images shows that for images with SNR above 5.0, the average vertex error measured by the distance between our result and ground truth is 1 voxel, and the average Hausdorff distance is below 10 voxels.

  9. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla.

    PubMed

    Fallah, Faezeh; Machann, Jürgen; Martirosian, Petros; Bamberg, Fabian; Schick, Fritz; Yang, Bin

    2017-04-01

    To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m(2) (30.02 ± 6.63 kg/m(2)) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.

  10. A novel 2D and 3D method for automated insulin granule measurement and its application in assessing accepted preparation methods for electron microscopy

    NASA Astrophysics Data System (ADS)

    Mantell, J.; Nam, D.; Bull, D.; Achim, A.; Verkade, P.

    2014-06-01

    Transmission electron microscopy images of insulin-producing beta cells in the islets of Langerhans contain many complex structures, making it difficult to accurately segment insulin granules. Furthermore the appearance of the granules and surrounding halo and limiting membrane can vary enormously depending on the methods used for sample preparation. An automated method has been developed using active contours to segment the insulin core initially and then expand to segment the halos [1]. The method has been validated against manual measurements and also yields higher accuracy than other automated methods [2]. It has then been extended to three dimensions to analyse a tomographic reconstruction from a thick section of the same material. The final step has been to produce a GUI and use the automated process to compare a number of different electron microscopy preparation protocols including chemical fixation (where many of halos are often distended) and to explore the many subtleties of high pressure freezing (where the halos are often minimal, [3]).

  11. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  12. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2016-06-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4(th) dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed.

  13. 3-D threat image projection

    NASA Astrophysics Data System (ADS)

    Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen

    2008-02-01

    Automated Explosive Detection Systems utilizing Computed Tomography perform a series X-ray scans of passenger bags being checked in at the airport, and produce various 2-D projection images and 3-D volumetric images of the bag. The determination as to whether the passenger bag contains an explosive and needs to be searched manually is performed through trained Transportation Security Administration screeners following an approved protocol. In order to keep the screeners vigilant with regards to screening quality, the Transportation Security Administration has mandated the use of Threat Image Projection on 2-D projection X-ray screening equipment used at all US airports. These algorithms insert visual artificial threats into images of the normal passenger bags in order to test the screeners with regards to their screening efficiency and their screening quality at determining threats. This technology for 2-D X-ray system is proven and is widespread amongst multiple manufacturers of X-ray projection systems. Until now, Threat Image Projection has been unsuccessful at being introduced into 3-D Automated Explosive Detection Systems for numerous reasons. The failure of these prior attempts are mainly due to imaging queues that the screeners pickup on, and therefore make it easy for the screeners to discern the presence of the threat image and thus defeating the intended purpose. This paper presents a novel approach for 3-D Threat Image Projection for 3-D Automated Explosive Detection Systems. The method presented here is a projection based approach where both the threat object and the bag remain in projection sinogram space. Novel approaches have been developed for projection based object segmentation, projection based streak reduction used for threat object isolation along with scan orientation independence and projection based streak generation for an overall realistic 3-D image. The algorithms are prototyped in MatLab and C++ and demonstrate non discernible 3-D threat

  14. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  15. 3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models

    PubMed Central

    Khalifa, Fahmi; Soliman, Ahmed; Gimel'farb, Georgy

    2017-01-01

    Kidney segmentation is an essential step in developing any noninvasive computer-assisted diagnostic system for renal function assessment. This paper introduces an automated framework for 3D kidney segmentation from dynamic computed tomography (CT) images that integrates discriminative features from the current and prior CT appearances into a random forest classification approach. To account for CT images' inhomogeneities, we employ discriminate features that are extracted from a higher-order spatial model and an adaptive shape model in addition to the first-order CT appearance. To model the interactions between CT data voxels, we employed a higher-order spatial model, which adds the triple and quad clique families to the traditional pairwise clique family. The kidney shape prior model is built using a set of training CT data and is updated during segmentation using not only region labels but also voxels' appearances in neighboring spatial voxel locations. Our framework performance has been evaluated on in vivo dynamic CT data collected from 20 subjects and comprises multiple 3D scans acquired before and after contrast medium administration. Quantitative evaluation between manually and automatically segmented kidney contours using Dice similarity, percentage volume differences, and 95th-percentile bidirectional Hausdorff distances confirms the high accuracy of our approach. PMID:28280519

  16. Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonjin; Kim, Hannah; Hong, Helen

    2015-03-01

    We propose an automatic segmentation method of chest wall in 3D ABUS images using rib shadow enhancement and multi-planar cumulative probability enhanced map. For the identification of individual dark rib shadows, each rib shadow is enhanced using intensity transfer function and 3D sheet-like enhancement filtering. Then, wrongly enhanced intercostal regions and small fatty tissues are removed using coronal and sagittal cumulative probability enhanced maps. The large fatty tissues with globular and sheet-like shapes at the top of rib shadow are removed using shape and orientation analysis based on moment matrix. Detected chest walls are connected with cubic B-spline interpolation. Experimental results show that the Dice similarity coefficient of proposed method as comparison with two manually outlining results provides over 90% in average.

  17. Automated assessment of breast tissue density in non-contrast 3D CT images without image segmentation based on a deep CNN

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Kano, Takuya; Koyasu, Hiromi; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Matsuo, Masayuki; Fujita, Hiroshi

    2017-03-01

    This paper describes a novel approach for the automatic assessment of breast density in non-contrast three-dimensional computed tomography (3D CT) images. The proposed approach trains and uses a deep convolutional neural network (CNN) from scratch to classify breast tissue density directly from CT images without segmenting the anatomical structures, which creates a bottleneck in conventional approaches. Our scheme determines breast density in a 3D breast region by decomposing the 3D region into several radial 2D-sections from the nipple, and measuring the distribution of breast tissue densities on each 2D section from different orientations. The whole scheme is designed as a compact network without the need for post-processing and provides high robustness and computational efficiency in clinical settings. We applied this scheme to a dataset of 463 non-contrast CT scans obtained from 30- to 45-year-old-women in Japan. The density of breast tissue in each CT scan was assigned to one of four categories (glandular tissue within the breast <25%, 25%-50%, 50%-75%, and >75%) by a radiologist as ground truth. We used 405 CT scans for training a deep CNN and the remaining 58 CT scans for testing the performance. The experimental results demonstrated that the findings of the proposed approach and those of the radiologist were the same in 72% of the CT scans among the training samples and 76% among the testing samples. These results demonstrate the potential use of deep CNN for assessing breast tissue density in non-contrast 3D CT images.

  18. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    SciTech Connect

    Coolens, Catherine; Driscoll, Brandon; Chung, Caroline; Shek, Tina; Gorjizadeh, Alborz; Ménard, Cynthia; Jaffray, David

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions

  19. Two Efficient Label-Equivalence-Based Connected-Component Labeling Algorithms for 3-D Binary Images

    PubMed Central

    He, Lifeng; Chao, Yuyan; Suzuki, Kenji

    2014-01-01

    Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms. PMID:21324785

  20. UmUTracker: A versatile MATLAB program for automated particle tracking of 2D light microscopy or 3D digital holography data

    NASA Astrophysics Data System (ADS)

    Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus

    2017-10-01

    We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile

  1. A study of integration methods of aerial imagery and LIDAR data for a high level of automation in 3D building reconstruction

    NASA Astrophysics Data System (ADS)

    Seo, Suyoung; Schenk, Toni F.

    2003-04-01

    This paper describes integration methods to increase the level of automation in building reconstruction. Aerial imagery has been used as a major source in mapping fields and, in recent years, LIDAR data became popular as another type of mapping resources. Regarding to their performances, aerial imagery has abilities to delineate object boundaries but leaves many missing parts of boundaries during feature extraction. LIDAR data provide direct information about heights of object surfaces but have limitation for boundary localization. Efficient methods using complementary characteristics of two sensors are described to generate hypotheses of building boundaries and localize the object features. Tree structures for grid contours of LIDAR data are used for interpretation of contours. Buildings are recognized by analyzing the contour trees and modeled with surface patches with LIDAR data. Hypotheses of building models are generated as combination of wing models and verified by assessing the consistency between the corresponding data sets. Experiments using aerial imagery and laser data are presented. Our approach shows that the building boundaries are successfully recognized through our contour analysis approach and the inference from contours and our modeling method using wing model increase the level of automation in hypothesis generation/verification steps.

  2. Rapid overlapping-volume acquisition and reconstruction (ROVAR): automated 3D tiling for high-resolution, large field-of-view optical microscopy.

    PubMed

    Schroeder, J L; Bakalar, M; Pohida, T J; Balaban, R S

    2011-07-01

    Micrometer-scale three-dimensional data from fluorescence microscopes offer unique insight into cellular morphology and function by resolving subcellular locations of fluorescent dyes and proteins. To increase field-of-view size while using a high-resolution multiphoton microscope, we have created an automated system of rapidly acquiring overlapping image stacks from multiple fields-of-view along a nonplanar tissue surface. Each image stack is acquired only between the surface and the maximal penetrating depth, as determined by the image signal-to-background ratio. This results in the acquisition of the volume containing visible tissue along the tissue surface, excluding the empty volume above the tissue and the volume beyond the maximum imaging depth within the tissue. The automated collection of overlapping volumes is followed by reconstruction that can efficiently generate a single three-dimensional volume of the tissue surface. This approach yields data spanning multiple millimetres at micrometre resolution that is faster while requiring less work from the microscope operator. The advantages of the system are demonstrated by acquisition of data from intact, unfixed organs without a coverglass both in vivo and in situ. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.

  3. Automated volumetric assessment of the Achilles tendon (AVAT) using a 3D T2 weighted SPACE sequence at 3T in healthy and pathologic cases.

    PubMed

    Syha, R; Würslin, C; Ketelsen, D; Martirosian, P; Grosse, U; Schick, F; Claussen, C D; Springer, F

    2012-07-01

    Achilles tendinopathy has been reported to be frequently associated with increasing volume of the tendon. This work aims at reliable and accurate volumetric quantification of the Achilles tendon using a newly developed contour detection algorithm applied on high resolution MRI data sets recorded at 3T. A total of 26 healthy tendons and 4 degenerated tendons were examined for this study. Automated identification (AI) of tendon boundaries was performed in transverse slices with isotropic resolution (0.8mm) gained with a T2-weighted SPACE sequence at 3T. For AI a snake algorithm was applied and compared to manual tracing (MT). AI was feasible in all examined tendons without further correction. AI of both tendons was performed in each participant within 2 min (2 × 37 slices) compared to MT lasting 20 min. MT and AI showed excellent agreement and correlation (R(2) = 0.99, p<0.0001). AI provided a reduction of measurement error (0.4 cm(3) vs. 0.5 cm(3)) and coefficient of variation (1% vs. 2%). Compared to MT the AI allows assessment of tendon volumes in highly resolved MRI data in a more accurate and reliable time-saving way. Therefore automated volume detection is seen as a helpful clinical tool for evaluation of small volumetric changes of the Achilles tendon. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  5. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  6. Automated Quantification of Human Brain Metabolites by Artificial Neural Network Analysis from in VivoSingle-Voxel 1H NMR Spectra

    NASA Astrophysics Data System (ADS)

    Kaartinen, Jouni; Mierisová, Šarka; Oja, Joni M. E.; Usenius, Jukka-Pekka; Kauppinen, Risto A.; Hiltunen, Yrjö

    1998-09-01

    A real-time automated way of quantifying metabolites fromin vivoNMR spectra using an artificial neural network (ANN) analysis is presented. The spectral training and test sets for ANN containing peaks at the chemical shift ranges resembling long echo time proton NMR spectra from human brain were simulated. The performance of the ANN constructed was compared with an established lineshape fitting (LF) analysis using both simulated and experimental spectral data as inputs. The correspondence between the ANN and LF analyses showed correlation coefficients of order of 0.915-0.997 for spectra with large variations in both signal-to-noise and peak areas. Water suppressed1H NMR spectra from 24 healthy subjects were collected and choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) were quantified with both methods. The ANN quantified these spectra with an accuracy similar to LF analysis (correlation coefficients of 0.915-0.951). These results show that LF and ANN are equally good quantifiers; however, the ANN analyses are more easily automated than LF analyses.

  7. Voxel-Based LIDAR Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Hagstrom, Shea T.

    One of the greatest recent changes in the field of remote sensing is the addition of high-quality Light Detection and Ranging (LIDAR) instruments. In particular, the past few decades have been greatly beneficial to these systems because of increases in data collection speed and accuracy, as well as a reduction in the costs of components. These improvements allow modern airborne instruments to resolve sub-meter details, making them ideal for a wide variety of applications. Because LIDAR uses active illumination to capture 3D information, its output is fundamentally different from other modalities. Despite this difference, LIDAR datasets are often processed using methods appropriate for 2D images and that do not take advantage of its primary virtue of 3-dimensional data. It is this problem we explore by using volumetric voxel modeling. Voxel-based analysis has been used in many applications, especially medical imaging, but rarely in traditional remote sensing. In part this is because the memory requirements are substantial when handling large areas, but with modern computing and storage this is no longer a significant impediment. Our reason for using voxels to model scenes from LIDAR data is that there are several advantages over standard triangle-based models, including better handling of overlapping surfaces and complex shapes. We show how incorporating system position information from early in the LIDAR point cloud generation process allows radiometrically-correct transmission and other novel voxel properties to be recovered. This voxelization technique is validated on simulated data using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) software, a first-principles based ray-tracer developed at the Rochester Institute of Technology. Voxel-based modeling of LIDAR can be useful on its own, but we believe its primary advantage is when applied to problems where simpler surface-based 3D models conflict with the requirement of realistic geometry. To

  8. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements.

    PubMed

    Sheets, Alison L; Corazza, Stefano; Andriacchi, Thomas P

    2010-01-01

    Accurate subject-specific body segment parameters (BSPs) are necessary to perform kinetic analyses of human movements with large accelerations, or no external contact forces or moments. A new automated topographical image-based method of estimating segment mass, center of mass (CM) position, and moments of inertia is presented. Body geometry and volume were measured using a laser scanner, then an automated pose and shape registration algorithm segmented the scanned body surface, and identified joint center (JC) positions. Assuming the constant segment densities of Dempster, thigh and shank masses, CM locations, and moments of inertia were estimated for four male subjects with body mass indexes (BMIs) of 19.7-38.2. The subject-specific BSP were compared with those determined using Dempster and Clauser regression equations. The influence of BSP and BMI differences on knee and hip net forces and moments during a running swing phase were quantified for the subjects with the smallest and largest BMIs. Subject-specific BSP for 15 body segments were quickly calculated using the image-based method, and total subject masses were overestimated by 1.7-2.9%.When compared with the Dempster and Clauser methods, image-based and regression estimated thigh BSP varied more than the shank parameters. Thigh masses and hip JC to thigh CM distances were consistently larger, and each transverse moment of inertia was smaller using the image-based method. Because the shank had larger linear and angular accelerations than the thigh during the running swing phase, shank BSP differences had a larger effect on calculated intersegmental forces and moments at the knee joint than thigh BSP differences did at the hip. It was the net knee kinetic differences caused by the shank BSP differences that were the largest contributors to the hip variations. Finally, BSP differences produced larger kinetic differences for the subject with larger segment masses, suggesting that parameter accuracy is more

  9. A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington's disease.

    PubMed

    Heck, Nicolas; Betuing, Sandrine; Vanhoutte, Peter; Caboche, Jocelyne

    2012-04-01

    Dendritic spines are postsynaptic structures the morphology of which correlates with the strength of synaptic efficacy. Measurements of spine density and spine morphology are achievable using recent imaging and bioinformatics tools. The three-dimensional automated analysis requires optimization of image acquisition and treatment. Here, we studied the critical steps for optimal confocal microscopy imaging of dendritic spines. We characterize the deconvolution process and show that it improves spine morphology analysis. With this method, images of dendritic spines from medium spiny neurons are automatically detected by the software Neuronstudio, which retrieves spine density as well as spine diameter and volume. This approach is illustrated with three-dimensional analysis of dendritic spines in a mouse model of Huntington's disease: the transgenic R6/2 mice. In symptomatic mutant mice, we confirm the decrease in spine density, and the method brings further information and show a decrease in spine volume and dendrite diameter. Moreover, we show a significant decrease in spine density at presymptomatic age which so far has gone unnoticed.

  10. A rat brain MRI template with digital stereotaxic atlas of fine anatomical delineations in paxinos space and its automated application in voxel-wise analysis.

    PubMed

    Nie, Binbin; Chen, Kewei; Zhao, Shujun; Liu, Junhua; Gu, Xiaochun; Yao, Qunli; Hui, Jiaojie; Zhang, Zhijun; Teng, Gaojun; Zhao, Chunjie; Shan, Baoci

    2013-06-01

    This study constructs a rat brain T2 -weighted magnetic resonance imaging template including olfactory bulb and a compatible digital atlas. The atlas contains 624 carefully delineated brain structures based on the newest (2005) edition of rat brain atlas by Paxinos and Watson. An automated procedure, as an SPM toolbox, was introduced for spatially normalizing individual rat brains, conducting statistical analysis and visually localizing the results in the Atlas coordinate space. The brain template/atlas and the procedure were evaluated using functional images between rats with the right side middle cerebral artery occlusion (MCAO) and normal controls. The result shows that the brain region with significant signal decline in the MCAO rats was consistent with the occlusion position.

  11. 3D change detection - Approaches and applications

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  12. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  13. Automated 3D Mapping of Hippocampal Atrophy and its Clinical Correlates in 400 Subjects with Alzheimer’s Disease, Mild Cognitive Impairment, and Elderly Controls

    PubMed Central

    Morra, Jonathan H.; Tu, Zhuowen; Apostolova, Liana G.; Green, Amity E.; Avedissian, Christina; Madsen, Sarah K.; Parikshak, Neelroop; Hua, Xue; Toga, Arthur W.; Jack, Clifford R.; Schuff, Norbert; Weiner, Michael W.; Thompson, Paul M.

    2009-01-01

    We used a new method we developed for automated hippocampal segmentation, called the auto context model (ACM), to analyze brain MRI scans of 400 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). After training the classifier on 21 hand-labeled expert segmentations, we created binary maps of the hippocampus for three age- and sex-matched groups: 100 subjects with Alzheimer’s disease (AD), 200 with mild cognitive impairment (MCI) and 100 elderly controls (mean age: 75.84; SD: 6.64). Hippocampal traces were converted to parametric surface meshes and a radial atrophy mapping technique was used to compute average surface models and local statistics of atrophy. Surface-based statistical maps visualized links between regional atrophy and diagnosis (MCI versus controls: p = 0.008; MCI versus AD: p = 0.001), mini-mental state exam (MMSE) scores, and global and sum-of-boxes clinical dementia rating scores (CDR; all p < 0.0001, corrected). Right but not left hippocampal atrophy was associated with geriatric depression scores (p = 0.004, corrected); hippocampal atrophy was not associated with subsequent decline in MMSE and CDR scores, educational level, ApoE genotype, systolic or diastolic blood pressure measures, or homocysteine. We gradually reduced sample sizes and used false discovery rate curves to examine the method’s power to detect associations with diagnosis and cognition in smaller samples. 40 subjects were sufficient to discriminate AD from normal and correlate atrophy with CDR scores; 104, 200 and 304 subjects, respectively, were required to correlate MMSE with atrophy, to distinguish MCI from normal, and MCI from AD. PMID:19172649

  14. Quantitative validation of voxel-wise statistical analyses of autoradiographic rat brain volumes: application to unilateral visual stimulation.

    PubMed

    Dubois, Albertine; Hérard, Anne-Sophie; Flandin, Guillaume; Duchesnay, Edouard; Besret, Laurent; Frouin, Vincent; Hantraye, Philippe; Bonvento, Gilles; Delzescaux, Thierry

    2008-04-01

    PET scanners devoted to in vivo functional study have recently been developed, but autoradiography remains the reference technique for assessing cerebral glucose metabolism (CMRGlu) in rodents. Autoradiographs are conventionally subjected to region of interest (ROI) analysis, which is intrinsically hypothesis-driven and therefore not suitable for whole-brain investigation. Voxel-wise statistical methods of analysis have long been used to determine differences in brain activity during in vivo functional neuroimaging experiments. They have also recently been applied to 3D reconstructed autoradiographic volume images from rat brains. We present here a fully automated analysis for autoradiographic data combining (1) computerized procedures for the acquisition and 3D reconstruction of postmortem volume images and (2) spatial normalization followed by classical whole-brain voxel-wise statistical analysis. We also describe an additional procedure for characterizing functional differences between the right and left hemispheres of the brain. We compared two spatial normalization techniques and evaluated how the effect of choosing a particular normalization technique impacted on the statistical analysis. We also propose a small volume correction analysis to address the problem of multiple statistical comparisons. Lastly, we investigated the reliability of such analyses, by comparing their results qualitatively and quantitatively with those previously obtained with our semiautomated ROI-based analysis [Dubois, A., Dauguet, J., Herard, A.-S., Besret, L., Duchesnay, E., Frouin, V., Hantraye, P., Bonvento, G., Delzescaux, T., 2007. Automated three-dimensional analysis of histologic and autoradiographic rat brain sections: application to an activation study. J. Cereb. Blood Flow Metab. 27 (10), 1742-1755.]. Both voxel-wise statistical analyses led to the detection of consistent interhemispheric differences in CMRGlu. This work demonstrates the potential value and robustness of

  15. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  16. A 3d-3d appetizer

    NASA Astrophysics Data System (ADS)

    Pei, Du; Ye, Ke

    2016-11-01

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  17. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. 3d-3d correspondence revisited

    SciTech Connect

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  19. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  20. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  1. Refined 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark

    2017-04-01

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  2. A 3d-3d appetizer

    DOE PAGES

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less

  3. A 3d-3d appetizer

    SciTech Connect

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us to see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  4. Cranial Base Superimposition for 3D Evaluation of Soft Tissue Changes

    PubMed Central

    Cevidanes, Lucia H.C.; Motta, Alexandre; Proffit, William R.; Ackerman, James L.; Styner, Martin

    2009-01-01

    The recent emphasis on soft tissues as the limiting factor in treatment and on soft tissue relationships in establishing the goals of treatment has made 3D analysis of soft tissues more important in diagnosis and treatment planning. It is equally important to be able to detect changes in the facial soft tissues produced by growth and/or treatment. This requires structures of reference for superimposition, and a way to display the changes with quantitative information. This paper outlines a technique for quantifying facial soft tissue changes as viewed in CBCT data, using fully-automated voxel-wise registration of the cranial base surface. The assessment of change of soft tissues is done via calculation of the Euclidean surface distances between the 3D models. Color maps are used for visual assessment of the location and quantification of changes. This methodology allows a detailed examination of soft tissue changes with growth and/or treatment. Because of the lack of stable references with 3D photogrammetry, 3D photography and laser scanning, soft tissue changes cannot be accurately quantified by these methods. PMID:20381752

  5. Automated three-dimensional quantification of myocardial perfusion and brain SPECT.

    PubMed

    Slomka, P J; Radau, P; Hurwitz, G A; Dey, D

    2001-01-01

    To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.

  6. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  7. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  8. Diamond in 3-D

    NASA Image and Video Library

    2004-08-20

    This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.

  9. A Semi-automated Approach to Improve the Efficiency of Medical Imaging Segmentation for Haptic Rendering.

    PubMed

    Banerjee, Pat; Hu, Mengqi; Kannan, Rahul; Krishnaswamy, Srinivasan

    2017-08-01

    The Sensimmer platform represents our ongoing research on simultaneous haptics and graphics rendering of 3D models. For simulation of medical and surgical procedures using Sensimmer, 3D models must be obtained from medical imaging data, such as magnetic resonance imaging (MRI) or computed tomography (CT). Image segmentation techniques are used to determine the anatomies of interest from the images. 3D models are obtained from segmentation and their triangle reduction is required for graphics and haptics rendering. This paper focuses on creating 3D models by automating the segmentation of CT images based on the pixel contrast for integrating the interface between Sensimmer and medical imaging devices, using the volumetric approach, Hough transform method, and manual centering method. Hence, automating the process has reduced the segmentation time by 56.35% while maintaining the same accuracy of the output at ±2 voxels.

  10. 3D Plasmon Ruler

    SciTech Connect

    2011-01-01

    In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

  11. Prominent Rocks - 3-D

    NASA Image and Video Library

    1997-07-13

    Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.

  12. 3D Laser System

    NASA Image and Video Library

    2015-09-16

    NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.

  13. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  14. Tow Architecture and Mechanical Properties of 3-D Woven Composites

    DTIC Science & Technology

    2010-06-01

    within the fabric. The second was automated voxel modelling using a Python script written as part of this research program, resulting in an approximate...assignment The automated modelling approach, named ConEn V1.0, has been instituted using PYTHON 2.5 \\ Additional sub components of the code required to...develop the program include the Python Imaging Library (PIL) and Numpy. The program works by processing a series of cross-sectional images, from

  15. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  16. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  17. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  18. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  20. Medical 3-D Printing.

    PubMed

    Furlow, Bryant

    2017-05-01

    Three-dimensional printing is used in the manufacturing industry, medical and pharmaceutical research, drug production, clinical medicine, and dentistry, with implications for precision and personalized medicine. This technology is advancing the development of patient-specific prosthetics, stents, splints, and fixation devices and is changing medical education, treatment decision making, and surgical planning. Diagnostic imaging modalities play a fundamental role in the creation of 3-D printed models. Although most 3-D printed objects are rigid, flexible soft-tissue-like prosthetics also can be produced. ©2017 American Society of Radiologic Technologists.

  1. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  2. Compressing Color Data for Voxelized Surface Geometry.

    PubMed

    Dolonius, Dan; Sintorn, Erik; Kampe, Viktor; Assarsson, Ulf

    2017-08-18

    We explore the problem of decoupling color information from geometry in large scenes of voxelized surfaces and of compressing the array of colors without introducing disturbing artifacts. In this extension of our I3D paper with the same title, we first present a novel method for connecting each node in a sparse voxel DAG to its corresponding colors in a separate 1D array of colors, with very little additional information stored to the DAG. Then, we show that by mapping the 1D array of colors onto a 2D image using a space-filling curve, we can achieve high compression rates and good quality using conventional, modern, hardware-accelerated texture compression formats such as ASTC or BC7. We additionally explore whether this method can be used to compress voxel colors for off-line storage and network transmission using conventional off-line compression formats such as JPG and JPG2K. For real-time decompression, we suggest a novel variable bitrate block encoding that consistently outperforms previous work, often achieving two times the compression at equal quality.

  3. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  4. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  5. Voxel inversion of airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Auken, E.; Fiandaca, G.; Kirkegaard, C.; Vest Christiansen, A.

    2013-12-01

    Inversion of electromagnetic data usually refers to a model space being linked to the actual observation points, and for airborne surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space. This means that incorporating the geophysical data into the geological and/or hydrological modelling grids involves a spatial relocation of the models, which in itself is a subtle process where valuable information is easily lost. Also the integration of prior information, e.g. from boreholes, is difficult when the observation points do not coincide with the position of the prior information, as well as the joint inversion of airborne and ground-based surveys. We developed a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models, for easier incorporation of prior information and for straightforward integration of different data types in joint inversion. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the properties is computed everywhere by means of an interpolation function f (e.g. inverse distance or kriging). The position of the nodes is fixed during the inversion and is chosen to sample the soil taking into account topography and inversion resolution. Given this definition of the voxel model space, both 1D and 2D/3D forward responses can be computed. The 1D forward responses are computed as follows: A) a 1D model subdivision, in terms of model thicknesses and direction of the "virtual" horizontal stratification, is defined for each 1D data set. For EM soundings the "virtual" horizontal stratification is set up parallel to the topography at the sounding position. B) the "virtual" 1D models are constructed by interpolating

  6. 3-D Grab!

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.

  7. Voxel Based Representation of Full-Waveform Airborne Laser Scanner Data for Forestry Applications

    NASA Astrophysics Data System (ADS)

    Stelling, N.; Richter, K.

    2016-06-01

    The advantages of using airborne full-waveform laser scanner data in forest applications, e.g. for the description of the vertical vegetation structure or accurate biomass estimation, have been emphasized in many publications. To exploit the full potential offered by airborne full-waveform laser scanning data, the development of voxel based methods for data analysis is essential. In contrast to existing approaches based on the extraction of discrete 3D points by a Gaussian decomposition, it is very promising to derive the voxel attributes from the digitised waveform directly. For this purpose, the waveform data have to be transferred into a 3D voxel representation. This requires a series of radiometric and geometric transformations of the raw full-waveform laser scanner data. Thus, the paper deals with the geometric aspects and describes a processing chain from the raw waveform data to an attenuationcorrected volumetric forest stand reconstruction. The integration of attenuation-corrected waveform data into the voxel space is realised with an efficient parametric voxel traversal method operating on an octree data structure. The voxel attributes are derived from the amplitudes of the attenuation-corrected waveforms. Additionally, a new 3D filtering approach is presented to eliminate non-object voxel. Applying these methods to real full-waveform laser scanning data, a voxel based representation of a spruce was generated combining three flight strips from different viewing directions.

  8. Unoriented 3d TFTs

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Lakshya

    2017-05-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.

  9. A probabilistic framework for freehand 3D ultrasound reconstruction applied to catheter ablation guidance in the left atrium.

    PubMed

    Koolwal, Aditya B; Barbagli, Federico; Carlson, Christopher R; Liang, David H

    2009-09-01

    The catheter ablation procedure is a minimally invasive surgery used to treat atrial fibrillation. Difficulty visualizing the catheter inside the left atrium anatomy has led to lengthy procedure times and limited success rates. In this paper, we present a set of algorithms for reconstructing 3D ultrasound data of the left atrium in real-time, with an emphasis on automatic tissue classification for improved clarity surrounding regions of interest. Using an intracardiac echo (ICE) ultrasound catheter, we collect 2D-ICE images of a left atrium phantom from multiple configurations and iteratively compound the acquired data into a 3D-ICE volume. We introduce two new methods for compounding overlapping US data-occupancy-likelihood and response-grid compounding-which automatically classify voxels as "occupied" or "clear," and mitigate reconstruction artifacts caused by signal dropout. Finally, we use the results of an ICE-to-CT registration algorithm to devise a response-likelihood weighting scheme, which assigns weights to US signals based on the likelihood that they correspond to tissue-reflections. Our algorithms successfully reconstruct a 3D-ICE volume of the left atrium with voxels classified as "occupied" or "clear," even within difficult-to-image regions like the pulmonary vein openings. We are robust to dropout artifact that plagues a subset of the 2D-ICE images, and our weighting scheme assists in filtering out spurious data attributed to ghost-signals from multi-path reflections. By automatically classifying tissue, our algorithm precludes the need for thresholding, a process that is difficult to automate without subjective input. Our hope is to use this result towards developing 3D ultrasound segmentation algorithms in the future.

  10. From voxel to curvature

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ayache, Nicholas; Sander, Peter T.

    1991-09-01

    Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.

  11. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  12. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  13. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  14. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy.

    PubMed

    Qiu, Wu; Yuchi, Ming; Ding, Mingyue; Tessier, David; Fenster, Aaron

    2013-04-01

    Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200,000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 × 376 × 630 voxels. The proposed needle segmentation algorithm is accurate, robust, and

  15. Adaptive kernel regression for freehand 3D ultrasound reconstruction

    NASA Astrophysics Data System (ADS)

    Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen

    2017-03-01

    Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.

  16. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  17. Fabricating 3D figurines with personalized faces.

    PubMed

    Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain

    2013-01-01

    We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer.

  18. 3-D interactive visualisation tools for Hi spectral line imaging

    NASA Astrophysics Data System (ADS)

    van der Hulst, J. M.; Punzo, D.; Roerdink, J. B. T. M.

    2017-06-01

    Upcoming HI surveys will deliver such large datasets that automated processing using the full 3-D information to find and characterize HI objects is unavoidable. Full 3-D visualization is an essential tool for enabling qualitative and quantitative inspection and analysis of the 3-D data, which is often complex in nature. Here we present SlicerAstro, an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing, which we developed for the inspection and analysis of HI spectral line data. We describe its initial capabilities, including 3-D filtering, 3-D selection and comparative modelling.

  19. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  20. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. A 3D Data Transformation Processor

    DTIC Science & Technology

    2012-10-01

    forensic purposes. Our work differs from XTRec in that we are proposing a specialized 3DIC approach, and we argue that our proposed sytem would fa...on Emerging Technologies and Factory Automation (ETFA), Patras, Greece, September 2007. [11] J. Kim, C. Nicopoulos, D. Park , R. Das, Y. Xie, N...R. Kastner, T. Huffmire, C. Irvine, and T. Levin. Hardware assistance for trustworthy systems through 3-D integration. In Proceedings of the Annual

  3. Towards next generation 3D cameras

    NASA Astrophysics Data System (ADS)

    Gupta, Mohit

    2017-03-01

    We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (<100 microns resolution) scans in extremely demanding scenarios with low-cost components. Several of these cameras are making a practical impact in industrial automation, being adopted in robotic inspection and assembly systems.

  4. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  5. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  6. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  7. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  8. The investigation of data voxelization for a three-dimensional volumetric display system

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoyan; Liu, Xu; Lin, Yuanfang

    2009-04-01

    A high resolution three-dimensional (3D) volumetric display system utilizing a rotating light-emitting diode (LED) array is presented, which provides viewers with true depth cues, binocular parallax, accommodation and convergence, etc, and can be observed from any direction without the need for any special viewing aids. The data voxelization method for the system is presented. The evaluation of texture distortion due to the deviations of the voxel positions caused in voxelization is introduced. 3D models with two types of texture are built: one in which the gray scale is nearly invariant in the background, and the other in which the gray scale varies in the whole picture. The texture distortion of models with the two types of texture is evaluated and a numerical analysis is given. The relationship between texture distortion and voxelization precision is studied. Voxelization precision can be improved by shortening the voxelization step length. Experiments show that models with textures in which gray scale varies gradually in the whole picture need higher voxelization precision than textures with an invariant gray scale background. In order to obtain similar display quality, the ratio of the voxelization step length of models with the two types of texture is about 5/2. This project was supported by the High-Tech Research and Development Program of China (2007AA01Z339).

  9. 3D Whole Heart Imaging for Congenital Heart Disease

    PubMed Central

    Greil, Gerald; Tandon, Animesh (Aashoo); Silva Vieira, Miguel; Hussain, Tarique

    2017-01-01

    Three-dimensional (3D) whole heart techniques form a cornerstone in cardiovascular magnetic resonance imaging of congenital heart disease (CHD). It offers significant advantages over other CHD imaging modalities and techniques: no ionizing radiation; ability to be run free-breathing; ECG-gated dual-phase imaging for accurate measurements and tissue properties estimation; and higher signal-to-noise ratio and isotropic voxel resolution for multiplanar reformatting assessment. However, there are limitations, such as potentially long acquisition times with image quality degradation. Recent advances in and current applications of 3D whole heart imaging in CHD are detailed, as well as future directions. PMID:28289674

  10. Laser-induced forward transfer (LIFT) of congruent voxels

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Kim, Heungsoo; Auyeung, Raymond C. Y.; Beniam, Iyoel; Breckenfeld, Eric

    2016-06-01

    Laser-induced forward transfer (LIFT) of functional materials offers unique advantages and capabilities for the rapid prototyping of electronic, optical and sensor elements. The use of LIFT for printing high viscosity metallic nano-inks and nano-pastes can be optimized for the transfer of voxels congruent with the shape of the laser pulse, forming thin film-like structures non-lithographically. These processes are capable of printing patterns with excellent lateral resolution and thickness uniformity typically found in 3-dimensional stacked assemblies, MEMS-like structures and free-standing interconnects. However, in order to achieve congruent voxel transfer with LIFT, the particle size and viscosity of the ink or paste suspensions must be adjusted to minimize variations due to wetting and drying effects. When LIFT is carried out with high-viscosity nano-suspensions, the printed voxel size and shape become controllable parameters, allowing the printing of thin-film like structures whose shape is determined by the spatial distribution of the laser pulse. The result is a new level of parallelization beyond current serial direct-write processes whereby the geometry of each printed voxel can be optimized according to the pattern design. This work shows how LIFT of congruent voxels can be applied to the fabrication of 2D and 3D microstructures by adjusting the viscosity of the nano-suspension and laser transfer parameters.

  11. Voxel Based Segmentation of Large Airborne Topobathymetric LIDAR Data

    NASA Astrophysics Data System (ADS)

    Boerner, R.; Hoegner, L.; Stilla, U.

    2017-05-01

    Point cloud segmentation and classification is currently a research highlight. Methods in this field create labelled data, where each point has additional class information. Current approaches are to generate a graph on the basis of all points in the point cloud, calculate or learn descriptors and train a matcher for the descriptor to the corresponding classes. Since these approaches need to look on each point in the point cloud iteratively, they result in long calculation times for large point clouds. Therefore, large point clouds need a generalization, to save computation time. One kind of generalization is to cluster the raw points into a 3D grid structure, which is represented by small volume units ( i.e. voxels) used for further processing. This paper introduces a method to use such a voxel structure to cluster a large point cloud into ground and non-ground points. The proposed method for ground detection first marks ground voxels with a region growing approach. In a second step non ground voxels are searched and filtered in the ground segment to reduce effects of over-segmentations. This filter uses the probability that a voxel mostly consist of last pulses and a discrete gradient in a local neighbourhood . The result is the ground label as a first classification result and connected segments of non-ground points. The test area of the river Mangfall in Bavaria, Germany, is used for the first processing.

  12. Wave-CAIPI for highly accelerated 3D imaging.

    PubMed

    Bilgic, Berkin; Gagoski, Borjan A; Cauley, Stephen F; Fan, Audrey P; Polimeni, Jonathan R; Grant, P Ellen; Wald, Lawrence L; Setsompop, Kawin

    2015-06-01

    To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. The wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. © 2014 Wiley Periodicals, Inc.

  13. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  15. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  16. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  17. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  18. 3D Printing and 3D Bioprinting in Pediatrics

    PubMed Central

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542

  19. 3D Printing and 3D Bioprinting in Pediatrics.

    PubMed

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  20. 3D face recognition by projection-based methods

    NASA Astrophysics Data System (ADS)

    Dutagaci, Helin; Sankur, Bülent; Yemez, Yücel

    2006-02-01

    In this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.

  1. Miniaturized 3D microscope imaging system

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  2. A visual LISP program for voxelizing AutoCAD solid models

    NASA Astrophysics Data System (ADS)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  3. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours.

    PubMed

    Way, Ted W; Hadjiiski, Lubomir M; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N; Kazerooni, Ella A; Bogot, Naama; Zhou, Chuan

    2006-07-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (A(z)) of 0.83 +/- 0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D

  4. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  5. Influence of voxel S factors on three-dimensional internal dosimetry calculations.

    PubMed

    Berenato, Salvatore; Amato, Ernesto; Fischer, Alexander; Baldari, Sergio

    2016-10-01

    Internal dosimetry is a fundamental instrument for the personalization of nuclear medicine therapies, to maximize the therapeutic effect while minimizing the radiation burden to other organs. Three-dimensional (3D) dosimetry can quantify the impact of heterogeneous radiopharmaceutical distributions in organs, lesions and tissues. We analysed the influence of radionuclide voxel S factors in 3D dosimetry of (111)In, (177)Lu and (90)Y, the most used radionuclides in Peptide Receptor Radionuclide Therapy (PRRT). Calculations were carried out for kidneys on a workstation equipped with a software for 3D dosimetry (Imalytics STRATOS, Philips AG), adopting a computational anthropomorphic phantom and, retrospectively, the SPECT-CT image series of a clinical case of PRRT. Two sets of voxel S factors were adopted: the pre-loaded Philips kernels, calculated by direct Monte Carlo simulation, and the ones calculated through a previously proposed analytical approach. Philips (111)In kernel did not account for mono-energetic Auger or Conversion electrons. Results indicate a difference of about -32% in voxel S factors for (111)In in 4.42mm voxel size and around -35% in 4.80mm voxel size, particularly self-dose values; this lead to significant shift in dose histograms and average doses. For (177)Lu and (90)Y, differences are about 2% and 12% for 4.42mm voxels and about -8% and 9% for 4.80mm voxels, respectively, attributable to the different calculation methods of the voxel S factors; this does not lead to significant discrepancies between the two dose histograms. Consequently, voxel S factors must account accurately for all radiations emitted by the nuclide.

  6. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  7. 3D Microchannel Co-Culture: Method and Biological Validation

    PubMed Central

    Bauer, Maret; Su, Gui; Beebe, David J.; Friedl, Andreas

    2010-01-01

    Conventional 3D culture is typically performed in multi-well plates (e.g. 12 wells). The volumes and dimensions necessitate relatively large numbers of cells and fluid exchange steps are not easily automated limiting throughput. 3D microchannel culture can overcome these challenges simplifying 3D culture processes. However, the adaptation of immunocytochemical endpoint measurements and the validation of microchannel 3D culture with conventional 3D culture are needed before widespread adoption can occur. Here we use a breast carcinoma growth model governed by complex and reciprocal interactions between epithelial carcinoma cells and mesenchymal fibroblasts to validate the 3D microculture system. Specifically, we report the use of a 3D microchannel co-culture assay platform to interrogate paracrine signalling pathways in breast cancer. Using a previously validated 3D co-culture of human mammary fibroblasts and T47D breast carcinoma cells, we demonstrate the use of arrayed microchannels to analyze paracrine signalling pathways and screen for inhibitors. Results in both conventional format (multiwell plate) and microchannels were comparable. This technology represents a significant advancement for high-throughput screening in individual patients and for drug discovery by enabling the use of 3D co-culture models via smaller sample requirements and compatibility with existing HTS infrastructure (e.g. automated liquid handlers, scanners). PMID:20577680

  8. Interactive 3D medical data cutting using closed curve with arbitrary shape.

    PubMed

    Ning, Hai; Yang, Rongqian; Ma, Amin; Wu, Xiaoming

    2015-03-01

    Interactive 3D cutting is widely used as a flexible manual segmentation tool to extract medical data on regions of interest. A novel method for clipping 3D medical data is proposed to reveal the interior of volumetric data. The 3D cutting method retains or clips away selected voxels projected inside an arbitrary-shaped closed curve which is clipping geometry constructed by interactive tool to make cutting operation more flexible. Transformation between the world and screen coordinate frames is studied to project voxels of medical data onto the screen frame and avoid computing intersection of clipping geometry and volumetric data in 3D space. For facilitating the decision on whether the voxels should be retained, voxels through coordinate transformation are all projected onto a binary mask image on screen frame which the closed curve is also projected onto to conveniently obtain the voxels of intersection. The paper pays special attention to optimization algorithm of cutting process. The optimization algorithm that mixes octree with quad-tree decomposition is introduced to reduce computation complexity, save computation time, and match real time. The paper presents results obtained from raw and segmented medical volume datasets and the process time of cutting operation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. 3-D vision and range finding techniques

    NASA Astrophysics Data System (ADS)

    Monchaud, Serge

    The introduction of third generation robots in automated systems is impeded by the absence of 3-D sensors collecting panoramic range data at medium distance ( 0-10 meters) in a large volume (up to 100 m 3). The work described in the present paper offers a certain number of solutions to this general problem. Our system is built around a 2-D passive machine vision connected to various cameras (VIDICON and CCD). The host computer (HP 1000) pilots numerous sorts of range finders (acoustic and optical). The concept of multisensory range finders is introduced to allow the best use of each type (active methods). This 3-D vision has been tested in two fields of application: -in robotics for the absolute of a mobile robot; -in audiovisual for fixing objects or actors in a 3-D synthetic scene. In some cases the absolute location problem is solved with an opto-electronic remote tracking measurement system. It is the last part of our 3-D machine vision.

  10. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  11. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    SciTech Connect

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  12. Dose fractionation theorem in 3-D reconstruction (tomography)

    SciTech Connect

    Glaeser, R.M.

    1997-02-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.

  13. Rapid three-dimensional quantification of voxel-wise collagen fiber orientation

    PubMed Central

    Liu, Zhiyi; Quinn, Kyle P.; Speroni, Lucia; Arendt, Lisa; Kuperwasser, Charlotte; Sonnenschein, Carlos; Soto, Ana M.; Georgakoudi, Irene

    2015-01-01

    Defining fiber orientation at each voxel within a 3D biomedical image stack is potentially useful for a variety of applications, including cancer, wound healing and tissue regeneration. Current methods are typically computationally intensive or inaccurate. Herein, we present a 3D weighted orientation vector summation algorithm, which is a generalization of a previously reported 2D vector summation technique aimed at quantifying collagen fiber orientations simultaneously at each voxel of an image stack. As a result, voxel-wise fiber orientation information with 4° to 5° accuracy can be determined, and the computational time required to analyze a typical stack with the size of 512x512x100 voxels is less than 5 min. Thus, this technique enables the practical extraction of voxel-specific orientation data for characterizing structural anisotropy in 3D specimens. As examples, we use this approach to characterize the fiber organization in an excised mouse mammary gland and a 3D breast tissue model. PMID:26203362

  14. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  15. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  16. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  17. Smooth 2D manifold extraction from 3D image stack

    PubMed Central

    Shihavuddin, Asm; Basu, Sreetama; Rexhepaj, Elton; Delestro, Felipe; Menezes, Nikita; Sigoillot, Séverine M; Del Nery, Elaine; Selimi, Fekrije; Spassky, Nathalie; Genovesio, Auguste

    2017-01-01

    Three-dimensional fluorescence microscopy followed by image processing is routinely used to study biological objects at various scales such as cells and tissue. However, maximum intensity projection, the most broadly used rendering tool, extracts a discontinuous layer of voxels, obliviously creating important artifacts and possibly misleading interpretation. Here we propose smooth manifold extraction, an algorithm that produces a continuous focused 2D extraction from a 3D volume, hence preserving local spatial relationships. We demonstrate the usefulness of our approach by applying it to various biological applications using confocal and wide-field microscopy 3D image stacks. We provide a parameter-free ImageJ/Fiji plugin that allows 2D visualization and interpretation of 3D image stacks with maximum accuracy. PMID:28561033

  18. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    NASA Astrophysics Data System (ADS)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    one label. Further information such as color, orientation and archaeological notes are added to the label to improve the documentation. The available 3D information allows for easy measurements in the data. The full 3D information of a region of interest can be segmented from the entire data. By joining this data from different georeferenced views the full 3D shape of findings is stored. All the generated documentation in CASTLE3D is exported to an XML format and serves as input for other systems and databases. Apart from presenting the functionalities of CASTLE3D we evaluate its documentation process in a sample project. For this purpose we export the data to the Adiuvabit database (http://adiuvabit.de) where more information is added for further analysis. The documentation process is compared to traditional documentation methods and it is shown how the automated system helps in accelerating the documentation process and decreases errors to a minimum.

  19. Validation of 3D multimodality roadmapping in interventional neuroradiology

    NASA Astrophysics Data System (ADS)

    Ruijters, Daniel; Homan, Robert; Mielekamp, Peter; van de Haar, Peter; Babic, Drazenko

    2011-08-01

    Three-dimensional multimodality roadmapping is entering clinical routine utilization for neuro-vascular treatment. Its purpose is to navigate intra-arterial and intra-venous endovascular devices through complex vascular anatomy by fusing pre-operative computed tomography (CT) or magnetic resonance (MR) with the live fluoroscopy image. The fused image presents the real-time position of the intra-vascular devices together with the patient's 3D vascular morphology and its soft-tissue context. This paper investigates the effectiveness, accuracy, robustness and computation times of the described methods in order to assess their suitability for the intended clinical purpose: accurate interventional navigation. The mutual information-based 3D-3D registration proved to be of sub-voxel accuracy and yielded an average registration error of 0.515 mm and the live machine-based 2D-3D registration delivered an average error of less than 0.2 mm. The capture range of the image-based 3D-3D registration was investigated to characterize its robustness, and yielded an extent of 35 mm and 25° for >80% of the datasets for registration of 3D rotational angiography (3DRA) with CT, and 15 mm and 20° for >80% of the datasets for registration of 3DRA with MR data. The image-based 3D-3D registration could be computed within 8 s, while applying the machine-based 2D-3D registration only took 1.5 µs, which makes them very suitable for interventional use.

  20. Sodium 3D COncentration MApping (COMA 3D) Using 23Na and Proton MRI

    PubMed Central

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-01-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/hour concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8×0.8×0.8 mm3 and imaging matrices of 60×60×60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/ PMID:25261742

  1. Sodium 3D COncentration MApping (COMA 3D) using 23Na and proton MRI

    NASA Astrophysics Data System (ADS)

    Truong, Milton L.; Harrington, Michael G.; Schepkin, Victor D.; Chekmenev, Eduard Y.

    2014-10-01

    Functional changes of sodium 3D MRI signals were converted into millimolar concentration changes using an open-source fully automated MATLAB toolbox. These concentration changes are visualized via 3D sodium concentration maps, and they are overlaid over conventional 3D proton images to provide high-resolution co-registration for easy correlation of functional changes to anatomical regions. Nearly 5000/h concentration maps were generated on a personal computer (ca. 2012) using 21.1 T 3D sodium MRI brain images of live rats with spatial resolution of 0.8 × 0.8 × 0.8 mm3 and imaging matrices of 60 × 60 × 60. The produced concentration maps allowed for non-invasive quantitative measurement of in vivo sodium concentration in the normal rat brain as a functional response to migraine-like conditions. The presented work can also be applied to sodium-associated changes in migraine, cancer, and other metabolic abnormalities that can be sensed by molecular imaging. The MATLAB toolbox allows for automated image analysis of the 3D images acquired on the Bruker platform and can be extended to other imaging platforms. The resulting images are presented in a form of series of 2D slices in all three dimensions in native MATLAB and PDF formats. The following is provided: (a) MATLAB source code for image processing, (b) the detailed processing procedures, (c) description of the code and all sub-routines, (d) example data sets of initial and processed data. The toolbox can be downloaded at: http://www.vuiis.vanderbilt.edu/~truongm/COMA3D/.

  2. Automated analysis of hip joint cartilage combining MR T2 and three-dimensional fast-spin-echo images.

    PubMed

    Chandra, Shekhar S; Surowiec, Rachel; Ho, Charles; Xia, Ying; Engstrom, Craig; Crozier, Stuart; Fripp, Jurgen

    2016-01-01

    To validate a fully automated scheme to extract biochemical information from the hip joint cartilages using MR T2 mapping images incorporating segmentation of co-registered three-dimensional Fast-Spin-Echo (3D-SPACE) images. Manual analyses of unilateral hip (3 Tesla) MR images of 24 asymptomatic volunteers were used to validate a 3D deformable model method for automated cartilage segmentation of SPACE scans, partitioning of the individual femoral and acetabular cartilage plates into clinically defined sub-regions and propagating these results to T2 maps to calculate region-wise T2 value statistics. Analyses were completed on a desktop computer (∼ 10 min per case). The mean voxel overlap between automated A and manual M segmentations of the cartilage volumes in the (clinically based) SPACE images was 73% (100 × 2|A∩M|/[|A|+|M|]). The automated and manual analyses demonstrated a relative difference error <10% in the median "T2 average signal" for each cartilage plate. The automated and manual analyses showed consistent patterns between significant differences in T2 data across the hip cartilage sub-regions. The good agreement between the manual and automatic analyses of T2 values indicates the use of structural 3D-SPACE MR images with the proposed method provides a promising approach for automated quantitative T2 assessment of hip joint cartilages. © 2015 Wiley Periodicals, Inc.

  3. Comparative evaluation of the role of single and multiple blood specimens in the outcome of blood cultures using BacT/ALERT 3D (automated) blood culture system in a tertiary care hospital

    PubMed Central

    Elantamilan, D.; Lyngdoh, Valarie Wihiwot; Khyriem, Annie B.; Rajbongshi, Jyotismita; Bora, Ishani; Devi, Surbala Thingujam; Bhattacharyya, Prithwis; Barman, Himesh

    2016-01-01

    Introduction: Bloodstream infection (BSI) is a leading cause of mortality in critically ill patients. The mortality directly attributable to BSI has been estimated to be around 16% and 40% in general hospital population and Intensive Care Unit (ICU) population, respectively. The detection rate of these infections increases with the number of blood samples obtained for culture. The newer continuous monitoring automated blood culture systems with enhanced culture media show increased yield and sensitivity. Hence, we aimed at studying the role of single and multiple blood specimens from different sites at the same time in the outcome of automated blood culture system. Materials and Methods and Results: A total of 1054 blood culture sets were analyzed over 1 year, the sensitivity of one, two, and three samples in a set was found to be 85.67%, 96.59%, and 100%, respectively, which showed a statistically significant difference (P < 0.0001). Similar findings were seen in few more studies, however, among individual organisms in contrast to other studies, the isolation rates of Gram-positive bacteria were less than that of Gram-negative Bacilli with one (or first) sample in a blood culture set. In our study, despite using BacT/ALERT three-dimensional continuous culture monitoring system with FAN plus culture bottles, 15% of positive cultures would have been missed if only a single sample was collected in a blood culture set. Conclusion: The variables like the volume of blood and number of samples collected from different sites still play a major role in the outcome of these automated blood culture systems. PMID:27688629

  4. 3D-CDTI User Manual v2.1

    NASA Technical Reports Server (NTRS)

    Johnson, Walter; Battiste, Vernol

    2016-01-01

    The 3D-Cockpit Display of Traffic Information (3D-CDTI) is a flight deck tool that presents aircrew with: proximal traffic aircraft location, their current status and flight plan data; strategic conflict detection and alerting; automated conflict resolution strategies; the facility to graphically plan manual route changes; time-based, in-trail spacing on approach. The CDTI is manipulated via a touchpad on the flight deck, and by mouse when presented as part of a desktop flight simulator.

  5. Perception of 3D spatial relations for 3D displays

    NASA Astrophysics Data System (ADS)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  6. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  7. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  8. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  9. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  10. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  11. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  12. Automated three-dimensional tracing of neurons in confocal and brightfield images.

    PubMed

    He, Wenyun; Hamilton, Thomas A; Cohen, Andrew R; Holmes, Timothy J; Pace, Christopher; Szarowski, Donald H; Turner, James N; Roysam, Badrinath

    2003-08-01

    Automated three-dimensional (3-D) image analysis methods are presented for tracing of dye-injected neurons imaged by fluorescence confocal microscopy and HRP-stained neurons imaged by transmitted-light brightfield microscopy. An improved algorithm for adaptive 3-D skeletonization of noisy images enables the tracing. This algorithm operates by performing connectivity testing over large N x N x N voxel neighborhoods exploiting the sparseness of the structures of interest, robust surface detection that improves upon classical vacant neighbor schemes, improved handling of process ends or tips based on shape collapse prevention, and thickness-adaptive thinning. The confocal image stacks were skeletonized directly. The brightfield stacks required 3-D deconvolution. The results of skeletonization were analyzed to extract a graph representation. Topological and metric analyses can be carried out using this representation. A semiautomatic method was developed for reconnection of dendritic fragments that are disconnected due to insufficient dye penetration, an imaging deficiency, or skeletonization errors.

  13. Automated Three-Dimensional Tracing of Neurons in Confocal and Brightfield Images

    NASA Astrophysics Data System (ADS)

    He, Wenyun; Hamilton, Thomas A.; Cohen, Andrew R.; Holmes, Timothy J.; Pace, Christopher; Szarowski, Donald H.; Turner, James N.; Roysam, Badrinath

    2003-08-01

    Automated three-dimensional (3-D) image analysis methods are presented for tracing of dye-injected neurons imaged by fluorescence confocal microscopy and HRP-stained neurons imaged by transmitted-light brightfield microscopy. An improved algorithm for adaptive 3-D skeletonization of noisy images enables the tracing. This algorithm operates by performing connectivity testing over large N × N × N voxel neighborhoods exploiting the sparseness of the structures of interest, robust surface detection that improves upon classical vacant neighbor schemes, improved handling of process ends or tips based on shape collapse prevention, and thickness-adaptive thinning. The confocal image stacks were skeletonized directly. The brightfield stacks required 3-D deconvolution. The results of skeletonization were analyzed to extract a graph representation. Topological and metric analyses can be carried out using this representation. A semiautomatic method was developed for reconnection of dendritic fragments that are disconnected due to insufficient dye penetration, an imaging deficiency, or skeletonization errors.

  14. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  15. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  16. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  17. Voxel Advanced Digital-Manufacturing for Earth and Regolith in Space Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Mueller, Robert P.

    2015-01-01

    A voxel is a discrete three-dimensional (3D) element of material that is used to construct a larger 3D object. It is the 3D equivalent of a pixel. This project will conceptualize and study various approaches in order to develop a proof of concept 3D printing device that utilizes regolith as the material of the voxels. The goal is to develop a digital printer head capable of placing discrete self-aligning voxels in additive layers in order to fabricate small parts that can be given structural integrity through a post-printing sintering or other binding process. The quicker speeds possible with the voxel 3D printing approach along with the utilization of regolith material as the substrate will advance the use of this technology to applications for In-Situ Resource Utilization (ISRU), which is key to reducing logistics from Earth to Space, thus making long-duration human exploration missions to other celestial bodies more possible.

  18. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  19. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  20. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  1. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  2. Ensemble 3D PTV for high resolution turbulent statistics

    NASA Astrophysics Data System (ADS)

    Agüera, Nereida; Cafiero, Gioacchino; Astarita, Tommaso; Discetti, Stefano

    2016-12-01

    A method to extract turbulent statistics from three-dimensional (3D) PIV measurements via ensemble averaging is presented. The proposed technique is a 3D extension of the ensemble particle tracking velocimetry methods, which consist in summing distributions of velocity vectors calculated on low image density samples and then extract the statistical moments from the velocity vectors within sub-volumes, with the size of the sub-volume depending on the desired number of particles and on the available number of snapshots. The extension to 3D measurements poses the additional difficulty of sparse velocity vectors distributions, thus requiring a large number of snapshots to achieve high resolution measurements with a sufficient degree of accuracy. At the current state, this hinders the achievement of single-voxel measurements, unless millions of samples are available. Consequently, one has to give up spatial resolution and live with still relatively large (if compared to the voxel) sub-volumes. This leads to the further problem of the possible occurrence of a residual mean velocity gradient within the sub-volumes, which significantly contaminates the computation of second order moments. In this work, we propose a method to reduce the residual gradient effect, allowing to reach high resolution even with relatively large interrogation spots, therefore still retrieving a large number of particles on which it is possible to calculate turbulent statistics. The method consists in applying a polynomial fit to the velocity distributions within each sub-volume trying to mimic the residual mean velocity gradient.

  3. Brain tissue segmentation in 4D CT using voxel classification

    NASA Astrophysics Data System (ADS)

    van den Boom, R.; Oei, M. T. H.; Lafebre, S.; Oostveen, L. J.; Meijer, F. J. A.; Steens, S. C. A.; Prokop, M.; van Ginneken, B.; Manniesing, R.

    2012-02-01

    A method is proposed to segment anatomical regions of the brain from 4D computer tomography (CT) patient data. The method consists of a three step voxel classification scheme, each step focusing on structures that are increasingly difficult to segment. The first step classifies air and bone, the second step classifies vessels and the third step classifies white matter, gray matter and cerebrospinal fluid. As features the time averaged intensity value and the temporal intensity change value were used. In each step, a k-Nearest-Neighbor classifier was used to classify the voxels. Training data was obtained by placing regions of interest in reconstructed 3D image data. The method has been applied to ten 4D CT cerebral patient data. A leave-one-out experiment showed consistent and accurate segmentation results.

  4. Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

    PubMed Central

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  5. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    PubMed

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.

  6. DNA Assembly in 3D Printed Fluidics.

    PubMed

    Patrick, William G; Nielsen, Alec A K; Keating, Steven J; Levy, Taylor J; Wang, Che-Wei; Rivera, Jaime J; Mondragón-Palomino, Octavio; Carr, Peter A; Voigt, Christopher A; Oxman, Neri; Kong, David S

    2015-01-01

    The process of connecting genetic parts-DNA assembly-is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

  7. DNA Assembly in 3D Printed Fluidics

    PubMed Central

    Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Wang, Che-Wei; Rivera, Jaime J.; Mondragón-Palomino, Octavio; Carr, Peter A.; Voigt, Christopher A.; Oxman, Neri; Kong, David S.

    2015-01-01

    The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448

  8. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  9. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  10. Knee cartilage extraction and bone-cartilage interface analysis from 3D MRI data sets

    NASA Astrophysics Data System (ADS)

    Tamez-Pena, Jose G.; Barbu-McInnis, Monica; Totterman, Saara

    2004-05-01

    This works presents a robust methodology for the analysis of the knee joint cartilage and the knee bone-cartilage interface from fused MRI sets. The proposed approach starts by fusing a set of two 3D MR images the knee. Although the proposed method is not pulse sequence dependent, the first sequence should be programmed to achieve good contrast between bone and cartilage. The recommended second pulse sequence is one that maximizes the contrast between cartilage and surrounding soft tissues. Once both pulse sequences are fused, the proposed bone-cartilage analysis is done in four major steps. First, an unsupervised segmentation algorithm is used to extract the femur, the tibia, and the patella. Second, a knowledge based feature extraction algorithm is used to extract the femoral, tibia and patellar cartilages. Third, a trained user corrects cartilage miss-classifications done by the automated extracted cartilage. Finally, the final segmentation is the revisited using an unsupervised MAP voxel relaxation algorithm. This final segmentation has the property that includes the extracted bone tissue as well as all the cartilage tissue. This is an improvement over previous approaches where only the cartilage was segmented. Furthermore, this approach yields very reproducible segmentation results in a set of scan-rescan experiments. When these segmentations were coupled with a partial volume compensated surface extraction algorithm the volume, area, thickness measurements shows precisions around 2.6%

  11. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  12. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    NASA Astrophysics Data System (ADS)

    Maesano, Francesco E.; D'Ambrogi, Chiara

    2017-02-01

    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  13. "3D fusion" echocardiography improves 3D left ventricular assessment: comparison with 2D contrast echocardiography.

    PubMed

    Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul

    2015-02-01

    Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P < 0.0005) and segmental image quality (2.42 ± 0.99 vs. 1.93 ± 1.18, P < 0.005) compared to unfused 3D acquisitions. Levels achieved were closer to scores for 2D contrast images (CNR: 9.04 ± 2.21, P = 0.6; segmental image quality: 2.91 ± 0.37, P < 0.005). WMSI calculated from fused 3D volumes did not differ significantly from those obtained from 2D contrast echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.

  14. A cubic interpolation pipeline for fast computation of 3D deformation fields modeled using B-splines

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Shekhar, Raj

    2006-02-01

    Fast computation of 3D deformation fields is critical to bringing the application of automated elastic image registration algorithms to routine clinical practice. However, it lies beyond the computational power of current microprocessors; therefore requiring implementations using either massively parallel computers or application-specific hardware accelerators. The use of massively parallel computers in a clinical setting is not practical or cost-effective, therefore making the use of hardware accelerators necessary. We present a hardware pipeline that allows accelerating the computation of 3D deformation fields to speeds up to two orders of magnitude faster than software implementations on current workstations and about 64 times faster than other previously reported architectures. The pipeline implements a version of the free-form deformation calculation algorithm, which is optimized to minimize the number of arithmetic operations required to calculate the transformation of a given set of neighboring voxels, thereby achieving an efficient and compact implementation in hardware which allows its use as part of a larger system.

  15. Influence of voxel size settings in X-Ray CT Imagery of soil in scaling properties

    NASA Astrophysics Data System (ADS)

    Heck, R.; Scaiff, N. T.; Andina, D.; Tarquis, A. M.

    2012-04-01

    Fundamental to the interpretation and comparison of X-ray CT imagery of soil is recognition of the objectivity and consistency of procedures used to generate the 3D models. Notably, there has been a lack of consistency in the size of voxels used for diverse interpretations of soils features and processes; in part, this is due to the ongoing evolution of instrumentation and computerized image processing capacity. Moreover, there is still need for discussion on whether standard voxels sizes should be recommended, and what those would be. Regardless of any eventual adoption of such standards, there is a need to also consider the manner in which voxel size is set in the 3D imagery. In the typical approaches to X-ray CT imaging, voxel size may be set at three stages: image acquisition (involving the position of the sample relative to the tube and detector), image reconstruction (where binning of pixels in the acquired images may occur), as well as post-reconstruction re-sampling (which may involve algorithms such as tri-cubic convolution). This research evaluates and compares the spatial distribution of intra-aggregate voids in 3