Sample records for automated classification algorithm

  1. Fusion of multiple quadratic penalty function support vector machines (QPFSVM) for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-08-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. The Quadratic Penalty Function Support Vector Machine (QPFSVM) algorithm to aid in the automated detection and classification of sea mines is introduced in this paper. The QPFSVM algorithm is easy to train, simple to implement, and robust to feature space dimension. Outputs of successive SVM algorithms are cascaded in stages (fused) to improve the Probability of Classification (Pc) and reduce the number of false alarms. Even though our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to fusion of any D/C problem (e.g., automated medical diagnosis or automatic target recognition for ballistic missile defense).

  2. Automated structural classification of lipids by machine learning.

    PubMed

    Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T

    2015-03-01

    Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

    NASA Astrophysics Data System (ADS)

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y.; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian

    2016-09-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral.

  4. A probabilistic approach to segmentation and classification of neoplasia in uterine cervix images using color and geometric features

    NASA Astrophysics Data System (ADS)

    Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron

    2005-04-01

    Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.

  5. Automated Method of Frequency Determination in Software Metric Data Through the Use of the Multiple Signal Classification (MUSIC) Algorithm

    DTIC Science & Technology

    1998-06-26

    METHOD OF FREQUENCY DETERMINATION 4 IN SOFTWARE METRIC DATA THROUGH THE USE OF THE 5 MULTIPLE SIGNAL CLASSIFICATION ( MUSIC ) ALGORITHM 6 7 STATEMENT OF...graph showing the estimated power spectral 12 density (PSD) generated by the multiple signal classification 13 ( MUSIC ) algorithm from the data set used...implemented in this module; however, it is preferred to use 1 the Multiple Signal Classification ( MUSIC ) algorithm. The MUSIC 2 algorithm is

  6. Advances in algorithm fusion for automated sea mine detection and classification

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2002-11-01

    Along with other sensors, the Navy uses high-resolution sonar to detect and classify sea mines in mine-hunting operations. Scientists and engineers have devoted substantial effort to the development of automated detection and classification (D/C) algorithms for these high-resolution systems. Several factors spurred these efforts, including: (1) aids for operators to reduce work overload; (2) more optimal use of all available data; and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and manmade clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms (Algorithm Fusion) have been studied. To date, the results have been remarkable, including reliable robustness to new environments. In this paper a brief history of existing Algorithm Fusion technology and some techniques recently used to improve performance are presented. An exploration of new developments is presented in conclusion.

  7. Automated condition-invariable neurite segmentation and synapse classification using textural analysis-based machine-learning algorithms

    PubMed Central

    Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly

    2013-01-01

    High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652

  8. Automated attribution of remotely-sensed ecological disturbances using spatial and temporal characteristics of common disturbance classes.

    NASA Astrophysics Data System (ADS)

    Cooper, L. A.; Ballantyne, A.

    2017-12-01

    Forest disturbances are critical components of ecosystems. Knowledge of their prevalence and impacts is necessary to accurately describe forest health and ecosystem services through time. While there are currently several methods available to identify and describe forest disturbances, especially those which occur in North America, the process remains inefficient and inaccessible in many parts of the world. Here, we introduce a preliminary approach to streamline and automate both the detection and attribution of forest disturbances. We use a combination of the Breaks for Additive Season and Trend (BFAST) detection algorithm to detect disturbances in combination with supervised and unsupervised classification algorithms to attribute the detections to disturbance classes. Both spatial and temporal disturbance characteristics are derived and utilized for the goal of automating the disturbance attribution process. The resulting preliminary algorithm is applied to up-scaled (100m) Landsat data for several different ecosystems in North America, with varying success. Our results indicate that supervised classification is more reliable than unsupervised classification, but that limited training data are required for a region. Future work will improve the algorithm through refining and validating at sites within North America before applying this approach globally.

  9. Robust automated classification of first-motion polarities for focal mechanism determination with machine learning

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Meier, M. A.; Hauksson, E.

    2017-12-01

    Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.

  10. Validation of Case Finding Algorithms for Hepatocellular Cancer From Administrative Data and Electronic Health Records Using Natural Language Processing.

    PubMed

    Sada, Yvonne; Hou, Jason; Richardson, Peter; El-Serag, Hashem; Davila, Jessica

    2016-02-01

    Accurate identification of hepatocellular cancer (HCC) cases from automated data is needed for efficient and valid quality improvement initiatives and research. We validated HCC International Classification of Diseases, 9th Revision (ICD-9) codes, and evaluated whether natural language processing by the Automated Retrieval Console (ARC) for document classification improves HCC identification. We identified a cohort of patients with ICD-9 codes for HCC during 2005-2010 from Veterans Affairs administrative data. Pathology and radiology reports were reviewed to confirm HCC. The positive predictive value (PPV), sensitivity, and specificity of ICD-9 codes were calculated. A split validation study of pathology and radiology reports was performed to develop and validate ARC algorithms. Reports were manually classified as diagnostic of HCC or not. ARC generated document classification algorithms using the Clinical Text Analysis and Knowledge Extraction System. ARC performance was compared with manual classification. PPV, sensitivity, and specificity of ARC were calculated. A total of 1138 patients with HCC were identified by ICD-9 codes. On the basis of manual review, 773 had HCC. The HCC ICD-9 code algorithm had a PPV of 0.67, sensitivity of 0.95, and specificity of 0.93. For a random subset of 619 patients, we identified 471 pathology reports for 323 patients and 943 radiology reports for 557 patients. The pathology ARC algorithm had PPV of 0.96, sensitivity of 0.96, and specificity of 0.97. The radiology ARC algorithm had PPV of 0.75, sensitivity of 0.94, and specificity of 0.68. A combined approach of ICD-9 codes and natural language processing of pathology and radiology reports improves HCC case identification in automated data.

  11. Automated extraction and classification of time-frequency contours in humpback vocalizations.

    PubMed

    Ou, Hui; Au, Whitlow W L; Zurk, Lisa M; Lammers, Marc O

    2013-01-01

    A time-frequency contour extraction and classification algorithm was created to analyze humpback whale vocalizations. The algorithm automatically extracted contours of whale vocalization units by searching for gray-level discontinuities in the spectrogram images. The unit-to-unit similarity was quantified by cross-correlating the contour lines. A library of distinctive humpback units was then generated by applying an unsupervised, cluster-based learning algorithm. The purpose of this study was to provide a fast and automated feature selection tool to describe the vocal signatures of animal groups. This approach could benefit a variety of applications such as species description, identification, and evolution of song structures. The algorithm was tested on humpback whale song data recorded at various locations in Hawaii from 2002 to 2003. Results presented in this paper showed low probability of false alarm (0%-4%) under noisy environments with small boat vessels and snapping shrimp. The classification algorithm was tested on a controlled set of 30 units forming six unit types, and all the units were correctly classified. In a case study on humpback data collected in the Auau Chanel, Hawaii, in 2002, the algorithm extracted 951 units, which were classified into 12 distinctive types.

  12. A detailed comparison of analysis processes for MCC-IMS data in disease classification—Automated methods can replace manual peak annotations

    PubMed Central

    Horsch, Salome; Kopczynski, Dominik; Kuthe, Elias; Baumbach, Jörg Ingo; Rahmann, Sven

    2017-01-01

    Motivation Disease classification from molecular measurements typically requires an analysis pipeline from raw noisy measurements to final classification results. Multi capillary column—ion mobility spectrometry (MCC-IMS) is a promising technology for the detection of volatile organic compounds in the air of exhaled breath. From raw measurements, the peak regions representing the compounds have to be identified, quantified, and clustered across different experiments. Currently, several steps of this analysis process require manual intervention of human experts. Our goal is to identify a fully automatic pipeline that yields competitive disease classification results compared to an established but subjective and tedious semi-manual process. Method We combine a large number of modern methods for peak detection, peak clustering, and multivariate classification into analysis pipelines for raw MCC-IMS data. We evaluate all combinations on three different real datasets in an unbiased cross-validation setting. We determine which specific algorithmic combinations lead to high AUC values in disease classifications across the different medical application scenarios. Results The best fully automated analysis process achieves even better classification results than the established manual process. The best algorithms for the three analysis steps are (i) SGLTR (Savitzky-Golay Laplace-operator filter thresholding regions) and LM (Local Maxima) for automated peak identification, (ii) EM clustering (Expectation Maximization) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for the clustering step and (iii) RF (Random Forest) for multivariate classification. Thus, automated methods can replace the manual steps in the analysis process to enable an unbiased high throughput use of the technology. PMID:28910313

  13. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  14. Automated detection and classification of dice

    NASA Astrophysics Data System (ADS)

    Correia, Bento A. B.; Silva, Jeronimo A.; Carvalho, Fernando D.; Guilherme, Rui; Rodrigues, Fernando C.; de Silva Ferreira, Antonio M.

    1995-03-01

    This paper describes a typical machine vision system in an unusual application, the automated visual inspection of a Casino's playing tables. The SORTE computer vision system was developed at INETI under a contract with the Portuguese Gaming Inspection Authorities IGJ. It aims to automate the tasks of detection and classification of the dice's scores on the playing tables of the game `Banca Francesa' (which means French Banking) in Casinos. The system is based on the on-line analysis of the images captured by a monochrome CCD camera placed over the playing tables, in order to extract relevant information concerning the score indicated by the dice. Image processing algorithms for real time automatic throwing detection and dice classification were developed and implemented.

  15. Automated database-guided expert-supervised orientation for immunophenotypic diagnosis and classification of acute leukemia

    PubMed Central

    Lhermitte, L; Mejstrikova, E; van der Sluijs-Gelling, A J; Grigore, G E; Sedek, L; Bras, A E; Gaipa, G; Sobral da Costa, E; Novakova, M; Sonneveld, E; Buracchi, C; de Sá Bacelar, T; te Marvelde, J G; Trinquand, A; Asnafi, V; Szczepanski, T; Matarraz, S; Lopez, A; Vidriales, B; Bulsa, J; Hrusak, O; Kalina, T; Lecrevisse, Q; Martin Ayuso, M; Brüggemann, M; Verde, J; Fernandez, P; Burgos, L; Paiva, B; Pedreira, C E; van Dongen, J J M; Orfao, A; van der Velden, V H J

    2018-01-01

    Precise classification of acute leukemia (AL) is crucial for adequate treatment. EuroFlow has previously designed an AL orientation tube (ALOT) to guide towards the relevant classification panel (T-cell acute lymphoblastic leukemia (T-ALL), B-cell precursor (BCP)-ALL and/or acute myeloid leukemia (AML)) and final diagnosis. Now we built a reference database with 656 typical AL samples (145 T-ALL, 377 BCP-ALL, 134 AML), processed and analyzed via standardized protocols. Using principal component analysis (PCA)-based plots and automated classification algorithms for direct comparison of single-cells from individual patients against the database, another 783 cases were subsequently evaluated. Depending on the database-guided results, patients were categorized as: (i) typical T, B or Myeloid without or; (ii) with a transitional component to another lineage; (iii) atypical; or (iv) mixed-lineage. Using this automated algorithm, in 781/783 cases (99.7%) the right panel was selected, and data comparable to the final WHO-diagnosis was already provided in >93% of cases (85% T-ALL, 97% BCP-ALL, 95% AML and 87% mixed-phenotype AL patients), even without data on the full-characterization panels. Our results show that database-guided analysis facilitates standardized interpretation of ALOT results and allows accurate selection of the relevant classification panels, hence providing a solid basis for designing future WHO AL classifications. PMID:29089646

  16. Objective automated quantification of fluorescence signal in histological sections of rat lens.

    PubMed

    Talebizadeh, Nooshin; Hagström, Nanna Zhou; Yu, Zhaohua; Kronschläger, Martin; Söderberg, Per; Wählby, Carolina

    2017-08-01

    Visual quantification and classification of fluorescent signals is the gold standard in microscopy. The purpose of this study was to develop an automated method to delineate cells and to quantify expression of fluorescent signal of biomarkers in each nucleus and cytoplasm of lens epithelial cells in a histological section. A region of interest representing the lens epithelium was manually demarcated in each input image. Thereafter, individual cell nuclei within the region of interest were automatically delineated based on watershed segmentation and thresholding with an algorithm developed in Matlab™. Fluorescence signal was quantified within nuclei, cytoplasms and juxtaposed backgrounds. The classification of cells as labelled or not labelled was based on comparison of the fluorescence signal within cells with local background. The classification rule was thereafter optimized as compared with visual classification of a limited dataset. The performance of the automated classification was evaluated by asking 11 independent blinded observers to classify all cells (n = 395) in one lens image. Time consumed by the automatic algorithm and visual classification of cells was recorded. On an average, 77% of the cells were correctly classified as compared with the majority vote of the visual observers. The average agreement among visual observers was 83%. However, variation among visual observers was high, and agreement between two visual observers was as low as 71% in the worst case. Automated classification was on average 10 times faster than visual scoring. The presented method enables objective and fast detection of lens epithelial cells and quantification of expression of fluorescent signal with an accuracy comparable with the variability among visual observers. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  17. Automated frame selection process for high-resolution microendoscopy

    NASA Astrophysics Data System (ADS)

    Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-04-01

    We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.

  18. Automated classification of optical coherence tomography images of human atrial tissue

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Tsay, David; Amir, Syed B.; Marboe, Charles C.; Hendon, Christine P.

    2016-10-01

    Tissue composition of the atria plays a critical role in the pathology of cardiovascular disease, tissue remodeling, and arrhythmogenic substrates. Optical coherence tomography (OCT) has the ability to capture the tissue composition information of the human atria. In this study, we developed a region-based automated method to classify tissue compositions within human atria samples within OCT images. We segmented regional information without prior information about the tissue architecture and subsequently extracted features within each segmented region. A relevance vector machine model was used to perform automated classification. Segmentation of human atrial ex vivo datasets was correlated with trichrome histology and our classification algorithm had an average accuracy of 80.41% for identifying adipose, myocardium, fibrotic myocardium, and collagen tissue compositions.

  19. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    NASA Astrophysics Data System (ADS)

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  20. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  1. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    PubMed Central

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-01-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520

  2. An ant colony optimization based feature selection for web page classification.

    PubMed

    Saraç, Esra; Özel, Selma Ayşe

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods.

  3. Validation of Case Finding Algorithms for Hepatocellular Cancer from Administrative Data and Electronic Health Records using Natural Language Processing

    PubMed Central

    Sada, Yvonne; Hou, Jason; Richardson, Peter; El-Serag, Hashem; Davila, Jessica

    2013-01-01

    Background Accurate identification of hepatocellular cancer (HCC) cases from automated data is needed for efficient and valid quality improvement initiatives and research. We validated HCC ICD-9 codes, and evaluated whether natural language processing (NLP) by the Automated Retrieval Console (ARC) for document classification improves HCC identification. Methods We identified a cohort of patients with ICD-9 codes for HCC during 2005–2010 from Veterans Affairs administrative data. Pathology and radiology reports were reviewed to confirm HCC. The positive predictive value (PPV), sensitivity, and specificity of ICD-9 codes were calculated. A split validation study of pathology and radiology reports was performed to develop and validate ARC algorithms. Reports were manually classified as diagnostic of HCC or not. ARC generated document classification algorithms using the Clinical Text Analysis and Knowledge Extraction System. ARC performance was compared to manual classification. PPV, sensitivity, and specificity of ARC were calculated. Results 1138 patients with HCC were identified by ICD-9 codes. Based on manual review, 773 had HCC. The HCC ICD-9 code algorithm had a PPV of 0.67, sensitivity of 0.95, and specificity of 0.93. For a random subset of 619 patients, we identified 471 pathology reports for 323 patients and 943 radiology reports for 557 patients. The pathology ARC algorithm had PPV of 0.96, sensitivity of 0.96, and specificity of 0.97. The radiology ARC algorithm had PPV of 0.75, sensitivity of 0.94, and specificity of 0.68. Conclusion A combined approach of ICD-9 codes and NLP of pathology and radiology reports improves HCC case identification in automated data. PMID:23929403

  4. Automated source classification of new transient sources

    NASA Astrophysics Data System (ADS)

    Oertel, M.; Kreikenbohm, A.; Wilms, J.; DeLuca, A.

    2017-10-01

    The EXTraS project harvests the hitherto unexplored temporal domain information buried in the serendipitous data collected by the European Photon Imaging Camera (EPIC) onboard the ESA XMM-Newton mission since its launch. This includes a search for fast transients, missed by standard image analysis, and a search and characterization of variability in hundreds of thousands of sources. We present an automated classification scheme for new transient sources in the EXTraS project. The method is as follows: source classification features of a training sample are used to train machine learning algorithms (performed in R; randomForest (Breiman, 2001) in supervised mode) which are then tested on a sample of known source classes and used for classification.

  5. Holistic approach for automated background EEG assessment in asphyxiated full-term infants

    NASA Astrophysics Data System (ADS)

    Matic, Vladimir; Cherian, Perumpillichira J.; Koolen, Ninah; Naulaers, Gunnar; Swarte, Renate M.; Govaert, Paul; Van Huffel, Sabine; De Vos, Maarten

    2014-12-01

    Objective. To develop an automated algorithm to quantify background EEG abnormalities in full-term neonates with hypoxic ischemic encephalopathy. Approach. The algorithm classifies 1 h of continuous neonatal EEG (cEEG) into a mild, moderate or severe background abnormality grade. These classes are well established in the literature and a clinical neurophysiologist labeled 272 1 h cEEG epochs selected from 34 neonates. The algorithm is based on adaptive EEG segmentation and mapping of the segments into the so-called segments’ feature space. Three features are suggested and further processing is obtained using a discretized three-dimensional distribution of the segments’ features represented as a 3-way data tensor. Further classification has been achieved using recently developed tensor decomposition/classification methods that reduce the size of the model and extract a significant and discriminative set of features. Main results. Effective parameterization of cEEG data has been achieved resulting in high classification accuracy (89%) to grade background EEG abnormalities. Significance. For the first time, the algorithm for the background EEG assessment has been validated on an extensive dataset which contained major artifacts and epileptic seizures. The demonstrated high robustness, while processing real-case EEGs, suggests that the algorithm can be used as an assistive tool to monitor the severity of hypoxic insults in newborns.

  6. A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound.

    PubMed

    Gatos, Ilias; Tsantis, Stavros; Spiliopoulos, Stavros; Skouroliakou, Aikaterini; Theotokas, Ioannis; Zoumpoulis, Pavlos; Hazle, John D; Kagadis, George C

    2015-07-01

    Detect and classify focal liver lesions (FLLs) from contrast-enhanced ultrasound (CEUS) imaging by means of an automated quantification algorithm. The proposed algorithm employs a sophisticated segmentation method to detect and contour focal lesions from 52 CEUS video sequences (30 benign and 22 malignant). Lesion detection involves wavelet transform zero crossings utilization as an initialization step to the Markov random field model toward the lesion contour extraction. After FLL detection across frames, time intensity curve (TIC) is computed which provides the contrast agents' behavior at all vascular phases with respect to adjacent parenchyma for each patient. From each TIC, eight features were automatically calculated and employed into the support vector machines (SVMs) classification algorithm in the design of the image analysis model. With regard to FLLs detection accuracy, all lesions detected had an average overlap value of 0.89 ± 0.16 with manual segmentations for all CEUS frame-subsets included in the study. Highest classification accuracy from the SVM model was 90.3%, misdiagnosing three benign and two malignant FLLs with sensitivity and specificity values of 93.1% and 86.9%, respectively. The proposed quantification system that employs FLLs detection and classification algorithms may be of value to physicians as a second opinion tool for avoiding unnecessary invasive procedures.

  7. Integrating human and machine intelligence in galaxy morphology classification tasks

    NASA Astrophysics Data System (ADS)

    Beck, Melanie R.; Scarlata, Claudia; Fortson, Lucy F.; Lintott, Chris J.; Simmons, B. D.; Galloway, Melanie A.; Willett, Kyle W.; Dickinson, Hugh; Masters, Karen L.; Marshall, Philip J.; Wright, Darryl

    2018-06-01

    Quantifying galaxy morphology is a challenging yet scientifically rewarding task. As the scale of data continues to increase with upcoming surveys, traditional classification methods will struggle to handle the load. We present a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme, we increase the classification rate nearly 5-fold classifying 226 124 galaxies in 92 d of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7 per cent accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides at least a factor of 8 increase in the classification rate, classifying 210 803 galaxies in just 32 d of GZ2 project time with 93.1 per cent accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.

  8. Automated system for analyzing the activity of individual neurons

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Johnson, Kenneth O.; Menkes, Alex M.; Diamond, Steve D.; Oshaughnessy, David M.

    1993-01-01

    This paper presents a signal processing system that: (1) provides an efficient and reliable instrument for investigating the activity of neuronal assemblies in the brain; and (2) demonstrates the feasibility of generating the command signals of prostheses using the activity of relevant neurons in disabled subjects. The system operates online, in a fully automated manner and can recognize the transient waveforms of several neurons in extracellular neurophysiological recordings. Optimal algorithms for detection, classification, and resolution of overlapping waveforms are developed and evaluated. Full automation is made possible by an algorithm that can set appropriate decision thresholds and an algorithm that can generate templates on-line. The system is implemented with a fast IBM PC compatible processor board that allows on-line operation.

  9. A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI

    PubMed Central

    Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953

  10. A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.

    PubMed

    Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T

    2014-01-01

    Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.

  11. Automated classification and quantitative analysis of arterial and venous vessels in fundus images

    NASA Astrophysics Data System (ADS)

    Alam, Minhaj; Son, Taeyoon; Toslak, Devrim; Lim, Jennifer I.; Yao, Xincheng

    2018-02-01

    It is known that retinopathies may affect arteries and veins differently. Therefore, reliable differentiation of arteries and veins is essential for computer-aided analysis of fundus images. The purpose of this study is to validate one automated method for robust classification of arteries and veins (A-V) in digital fundus images. We combine optical density ratio (ODR) analysis and blood vessel tracking algorithm to classify arteries and veins. A matched filtering method is used to enhance retinal blood vessels. Bottom hat filtering and global thresholding are used to segment the vessel and skeleton individual blood vessels. The vessel tracking algorithm is used to locate the optic disk and to identify source nodes of blood vessels in optic disk area. Each node can be identified as vein or artery using ODR information. Using the source nodes as starting point, the whole vessel trace is then tracked and classified as vein or artery using vessel curvature and angle information. 50 color fundus images from diabetic retinopathy patients were used to test the algorithm. Sensitivity, specificity, and accuracy metrics were measured to assess the validity of the proposed classification method compared to ground truths created by two independent observers. The algorithm demonstrated 97.52% accuracy in identifying blood vessels as vein or artery. A quantitative analysis upon A-V classification showed that average A-V ratio of width for NPDR subjects with hypertension decreased significantly (43.13%).

  12. Beyond crosswalks: reliability of exposure assessment following automated coding of free-text job descriptions for occupational epidemiology.

    PubMed

    Burstyn, Igor; Slutsky, Anton; Lee, Derrick G; Singer, Alison B; An, Yuan; Michael, Yvonne L

    2014-05-01

    Epidemiologists typically collect narrative descriptions of occupational histories because these are less prone than self-reported exposures to recall bias of exposure to a specific hazard. However, the task of coding these narratives can be daunting and prohibitively time-consuming in some settings. The aim of this manuscript is to evaluate the performance of a computer algorithm to translate the narrative description of occupational codes into standard classification of jobs (2010 Standard Occupational Classification) in an epidemiological context. The fundamental question we address is whether exposure assignment resulting from manual (presumed gold standard) coding of the narratives is materially different from that arising from the application of automated coding. We pursued our work through three motivating examples: assessment of physical demands in Women's Health Initiative observational study, evaluation of predictors of exposure to coal tar pitch volatiles in the US Occupational Safety and Health Administration's (OSHA) Integrated Management Information System, and assessment of exposure to agents known to cause occupational asthma in a pregnancy cohort. In these diverse settings, we demonstrate that automated coding of occupations results in assignment of exposures that are in reasonable agreement with results that can be obtained through manual coding. The correlation between physical demand scores based on manual and automated job classification schemes was reasonable (r = 0.5). The agreement between predictive probability of exceeding the OSHA's permissible exposure level for polycyclic aromatic hydrocarbons, using coal tar pitch volatiles as a surrogate, based on manual and automated coding of jobs was modest (Kendall rank correlation = 0.29). In the case of binary assignment of exposure to asthmagens, we observed that fair to excellent agreement in classifications can be reached, depending on presence of ambiguity in assigned job classification (κ = 0.5-0.8). Thus, the success of automated coding appears to depend on the setting and type of exposure that is being assessed. Our overall recommendation is that automated translation of short narrative descriptions of jobs for exposure assessment is feasible in some settings and essential for large cohorts, especially if combined with manual coding to both assess reliability of coding and to further refine the coding algorithm.

  13. Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting.

    PubMed

    Hassan, Ahnaf Rashik; Bhuiyan, Mohammed Imamul Hassan

    2017-03-01

    Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm.

    PubMed

    Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib

    2008-10-01

    Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.

  15. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network

    PubMed Central

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714

  16. An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network.

    PubMed

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  17. a Fully Automated Pipeline for Classification Tasks with AN Application to Remote Sensing

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Claesen, M.; Takeda, H.; De Moor, B.

    2016-06-01

    Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly pushed `shallow' machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view, utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms for the sake of generally fast and fine optimization, which enables us not only to optimize (hyper)parameters but also to determine appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets, common datasets in computer vision field for character recognition and object recognition problems respectively, our automated learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset), small amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high possibility that our approach contributes to general classification problems.

  18. An Ant Colony Optimization Based Feature Selection for Web Page Classification

    PubMed Central

    2014-01-01

    The increased popularity of the web has caused the inclusion of huge amount of information to the web, and as a result of this explosive information growth, automated web page classification systems are needed to improve search engines' performance. Web pages have a large number of features such as HTML/XML tags, URLs, hyperlinks, and text contents that should be considered during an automated classification process. The aim of this study is to reduce the number of features to be used to improve runtime and accuracy of the classification of web pages. In this study, we used an ant colony optimization (ACO) algorithm to select the best features, and then we applied the well-known C4.5, naive Bayes, and k nearest neighbor classifiers to assign class labels to web pages. We used the WebKB and Conference datasets in our experiments, and we showed that using the ACO for feature selection improves both accuracy and runtime performance of classification. We also showed that the proposed ACO based algorithm can select better features with respect to the well-known information gain and chi square feature selection methods. PMID:25136678

  19. Classification of product inspection items using nonlinear features

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.; Lee, H.-W.

    1998-03-01

    Automated processing and classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. This approach involves two main steps: preprocessing and classification. Preprocessing locates individual items and segments ones that touch using a modified watershed algorithm. The second stage involves extraction of features that allow discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper. We use a new nonlinear feature extraction scheme called the maximum representation and discriminating feature (MRDF) extraction method to compute nonlinear features that are used as inputs to a classifier. The MRDF is shown to provide better classification and a better ROC (receiver operating characteristic) curve than other methods.

  20. EEG artifact elimination by extraction of ICA-component features using image processing algorithms.

    PubMed

    Radüntz, T; Scouten, J; Hochmuth, O; Meffert, B

    2015-03-30

    Artifact rejection is a central issue when dealing with electroencephalogram recordings. Although independent component analysis (ICA) separates data in linearly independent components (IC), the classification of these components as artifact or EEG signal still requires visual inspection by experts. In this paper, we achieve automated artifact elimination using linear discriminant analysis (LDA) for classification of feature vectors extracted from ICA components via image processing algorithms. We compare the performance of this automated classifier to visual classification by experts and identify range filtering as a feature extraction method with great potential for automated IC artifact recognition (accuracy rate 88%). We obtain almost the same level of recognition performance for geometric features and local binary pattern (LBP) features. Compared to the existing automated solutions the proposed method has two main advantages: First, it does not depend on direct recording of artifact signals, which then, e.g. have to be subtracted from the contaminated EEG. Second, it is not limited to a specific number or type of artifact. In summary, the present method is an automatic, reliable, real-time capable and practical tool that reduces the time intensive manual selection of ICs for artifact removal. The results are very promising despite the relatively small channel resolution of 25 electrodes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. CP-CHARM: segmentation-free image classification made accessible.

    PubMed

    Uhlmann, Virginie; Singh, Shantanu; Carpenter, Anne E

    2016-01-27

    Automated classification using machine learning often relies on features derived from segmenting individual objects, which can be difficult to automate. WND-CHARM is a previously developed classification algorithm in which features are computed on the whole image, thereby avoiding the need for segmentation. The algorithm obtained encouraging results but requires considerable computational expertise to execute. Furthermore, some benchmark sets have been shown to be subject to confounding artifacts that overestimate classification accuracy. We developed CP-CHARM, a user-friendly image-based classification algorithm inspired by WND-CHARM in (i) its ability to capture a wide variety of morphological aspects of the image, and (ii) the absence of requirement for segmentation. In order to make such an image-based classification method easily accessible to the biological research community, CP-CHARM relies on the widely-used open-source image analysis software CellProfiler for feature extraction. To validate our method, we reproduced WND-CHARM's results and ensured that CP-CHARM obtained comparable performance. We then successfully applied our approach on cell-based assay data and on tissue images. We designed these new training and test sets to reduce the effect of batch-related artifacts. The proposed method preserves the strengths of WND-CHARM - it extracts a wide variety of morphological features directly on whole images thereby avoiding the need for cell segmentation, but additionally, it makes the methods easily accessible for researchers without computational expertise by implementing them as a CellProfiler pipeline. It has been demonstrated to perform well on a wide range of bioimage classification problems, including on new datasets that have been carefully selected and annotated to minimize batch effects. This provides for the first time a realistic and reliable assessment of the whole image classification strategy.

  2. An advanced method for classifying atmospheric circulation types based on prototypes connectivity graph

    NASA Astrophysics Data System (ADS)

    Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros

    2012-11-01

    Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.

  3. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.

    PubMed

    Yu, Sheng; Liao, Katherine P; Shaw, Stanley Y; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Cai, Tianxi

    2015-09-01

    Analysis of narrative (text) data from electronic health records (EHRs) can improve population-scale phenotyping for clinical and genetic research. Currently, selection of text features for phenotyping algorithms is slow and laborious, requiring extensive and iterative involvement by domain experts. This paper introduces a method to develop phenotyping algorithms in an unbiased manner by automatically extracting and selecting informative features, which can be comparable to expert-curated ones in classification accuracy. Comprehensive medical concepts were collected from publicly available knowledge sources in an automated, unbiased fashion. Natural language processing (NLP) revealed the occurrence patterns of these concepts in EHR narrative notes, which enabled selection of informative features for phenotype classification. When combined with additional codified features, a penalized logistic regression model was trained to classify the target phenotype. The authors applied our method to develop algorithms to identify patients with rheumatoid arthritis and coronary artery disease cases among those with rheumatoid arthritis from a large multi-institutional EHR. The area under the receiver operating characteristic curves (AUC) for classifying RA and CAD using models trained with automated features were 0.951 and 0.929, respectively, compared to the AUCs of 0.938 and 0.929 by models trained with expert-curated features. Models trained with NLP text features selected through an unbiased, automated procedure achieved comparable or slightly higher accuracy than those trained with expert-curated features. The majority of the selected model features were interpretable. The proposed automated feature extraction method, generating highly accurate phenotyping algorithms with improved efficiency, is a significant step toward high-throughput phenotyping. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Comparison and optimization of machine learning methods for automated classification of circulating tumor cells.

    PubMed

    Lannin, Timothy B; Thege, Fredrik I; Kirby, Brian J

    2016-10-01

    Advances in rare cell capture technology have made possible the interrogation of circulating tumor cells (CTCs) captured from whole patient blood. However, locating captured cells in the device by manual counting bottlenecks data processing by being tedious (hours per sample) and compromises the results by being inconsistent and prone to user bias. Some recent work has been done to automate the cell location and classification process to address these problems, employing image processing and machine learning (ML) algorithms to locate and classify cells in fluorescent microscope images. However, the type of machine learning method used is a part of the design space that has not been thoroughly explored. Thus, we have trained four ML algorithms on three different datasets. The trained ML algorithms locate and classify thousands of possible cells in a few minutes rather than a few hours, representing an order of magnitude increase in processing speed. Furthermore, some algorithms have a significantly (P < 0.05) higher area under the receiver operating characteristic curve than do other algorithms. Additionally, significant (P < 0.05) losses to performance occur when training on cell lines and testing on CTCs (and vice versa), indicating the need to train on a system that is representative of future unlabeled data. Optimal algorithm selection depends on the peculiarities of the individual dataset, indicating the need of a careful comparison and optimization of algorithms for individual image classification tasks. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  5. Automated Visibility & Cloud Cover Measurements with a Solid State Imaging System

    DTIC Science & Technology

    1989-03-01

    GL-TR-89-0061 SIO Ref. 89-7 MPL-U-26/89 AUTOMATED VISIBILITY & CLOUD COVER MEASUREMENTS WITH A SOLID-STATE IMAGING SYSTEM C) to N4 R. W. Johnson W. S...include Security Classification) Automated Visibility & Cloud Measurements With A Solid State Imaging System 12. PERSONAL AUTHOR(S) Richard W. Johnson...based imaging systems , their ics and control algorithms, thus they ar.L discussed sepa- initial deployment and the preliminary application of rately

  6. Integrating Human and Machine Intelligence in Galaxy Morphology Classification Tasks

    NASA Astrophysics Data System (ADS)

    Beck, Melanie Renee

    The large flood of data flowing from observatories presents significant challenges to astronomy and cosmology--challenges that will only be magnified by projects currently under development. Growth in both volume and velocity of astrophysics data is accelerating: whereas the Sloan Digital Sky Survey (SDSS) has produced 60 terabytes of data in the last decade, the upcoming Large Synoptic Survey Telescope (LSST) plans to register 30 terabytes per night starting in the year 2020. Additionally, the Euclid Mission will acquire imaging for 5 x 107 resolvable galaxies. The field of galaxy evolution faces a particularly challenging future as complete understanding often cannot be reached without analysis of detailed morphological galaxy features. Historically, morphological analysis has relied on visual classification by astronomers, accessing the human brains capacity for advanced pattern recognition. However, this accurate but inefficient method falters when confronted with many thousands (or millions) of images. In the SDSS era, efforts to automate morphological classifications of galaxies (e.g., Conselice et al., 2000; Lotz et al., 2004) are reasonably successful and can distinguish between elliptical and disk-dominated galaxies with accuracies of 80%. While this is statistically very useful, a key problem with these methods is that they often cannot say which 80% of their samples are accurate. Furthermore, when confronted with the more complex task of identifying key substructure within galaxies, automated classification algorithms begin to fail. The Galaxy Zoo project uses a highly innovative approach to solving the scalability problem of visual classification. Displaying images of SDSS galaxies to volunteers via a simple and engaging web interface, www.galaxyzoo.org asks people to classify images by eye. Within the first year hundreds of thousands of members of the general public had classified each of the 1 million SDSS galaxies an average of 40 times. Galaxy Zoo thus solved both the visual classification problem of time efficiency and improved accuracy by producing a distribution of independent classifications for each galaxy. While crowd-sourced galaxy classifications have proven their worth, challenges remain before establishing this method as a critical and standard component of the data processing pipelines for the next generation of surveys. In particular, though innovative, crowd-sourcing techniques do not have the capacity to handle the data volume and rates expected in the next generation of surveys. These algorithms will be delegated to handle the majority of the classification tasks, freeing citizen scientists to contribute their efforts on subtler and more complex assignments. This thesis presents a solution through an integration of visual and automated classifications, preserving the best features of both human and machine. We demonstrate the effectiveness of such a system through a re-analysis of visual galaxy morphology classifications collected during the Galaxy Zoo 2 (GZ2) project. We reprocess the top-level question of the GZ2 decision tree with a Bayesian classification aggregation algorithm dubbed SWAP, originally developed for the Space Warps gravitational lens project. Through a simple binary classification scheme we increase the classification rate nearly 5-fold classifying 226,124 galaxies in 92 days of GZ2 project time while reproducing labels derived from GZ2 classification data with 95.7% accuracy. We next combine this with a Random Forest machine learning algorithm that learns on a suite of non-parametric morphology indicators widely used for automated morphologies. We develop a decision engine that delegates tasks between human and machine and demonstrate that the combined system provides a factor of 11.4 increase in the classification rate, classifying 210,803 galaxies in just 32 days of GZ2 project time with 93.1% accuracy. As the Random Forest algorithm requires a minimal amount of computational cost, this result has important implications for galaxy morphology identification tasks in the era of Euclid and other large-scale surveys.

  7. Automated classification of cell morphology by coherence-controlled holographic microscopy

    NASA Astrophysics Data System (ADS)

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.

  8. Automated classification of cell morphology by coherence-controlled holographic microscopy.

    PubMed

    Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim

    2017-08-01

    In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  10. Targeted Acoustic Data Processing for Ocean Ecological Studies

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, N.; Li, K.; Tiemann, C.; Ackleh, A. S.; Tang, T.; Ioup, G. E.; Ioup, J. W.

    2015-12-01

    The Gulf of Mexico is home to many species of deep diving marine mammals. In recent years several ecological studies have collected large volumes of Passive Acoustic Monitoring (PAM) data to investigate the effects of anthropogenic activities on protected and endangered marine mammal species. To utilize these data to their fullest potential for abundance estimates and habitat preference studies, automated detection and classification algorithms are needed to extract species acoustic encounters from a continuous stream of data. The species which phonate in overlapping frequency bands represent a particular challenge. This paper analyzes the performance of a newly developed automated detector for the classification of beaked whale clicks in the Northern Gulf of Mexico. Current used beaked whale classification algorithms rely heavily on experienced human operator involvement in manually associating potential events with a particular species of beaked whales. Our detection algorithm is two-stage: the detector is triggered when the species-representative phonation band energy exceeds the baseline detection threshold. Then multiple event attributes (temporal click duration, central frequency, frequency band, frequency sweep rate, Choi-Williams distribution shape indices) are measured. An attribute vector is then used to discriminate among different species of beaked whales present in the Gulf of Mexico and Risso's dolphins which were recognized to mask the detections of beaked whales in the case of widely used energy-band detectors. The detector is applied to the PAM data collected by the Littoral Acoustic Demonstration Center to estimate abundance trends of beaked whales in the vicinity of the 2010 oil spill before and after the disaster. This algorithm will allow automated processing with minimal operator involvement for new and archival PAM data. [The research is supported by a BP/GOMRI 2015-2017 consortium grant.

  11. Developing an Automated Machine Learning Marine Oil Spill Detection System with Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Pinales, J. C.; Graber, H. C.; Hargrove, J. T.; Caruso, M. J.

    2016-02-01

    Previous studies have demonstrated the ability to detect and classify marine hydrocarbon films with spaceborne synthetic aperture radar (SAR) imagery. The dampening effects of hydrocarbon discharges on small surface capillary-gravity waves renders the ocean surface "radar dark" compared with the standard wind-borne ocean surfaces. Given the scope and impact of events like the Deepwater Horizon oil spill, the need for improved, automated and expedient monitoring of hydrocarbon-related marine anomalies has become a pressing and complex issue for governments and the extraction industry. The research presented here describes the development, training, and utilization of an algorithm that detects marine oil spills in an automated, semi-supervised manner, utilizing X-, C-, or L-band SAR data as the primary input. Ancillary datasets include related radar-borne variables (incidence angle, etc.), environmental data (wind speed, etc.) and textural descriptors. Shapefiles produced by an experienced human-analyst served as targets (validation) during the training portion of the investigation. Training and testing datasets were chosen for development and assessment of algorithm effectiveness as well as optimal conditions for oil detection in SAR data. The algorithm detects oil spills by following a 3-step methodology: object detection, feature extraction, and classification. Previous oil spill detection and classification methodologies such as machine learning algorithms, artificial neural networks (ANN), and multivariate classification methods like partial least squares-discriminant analysis (PLS-DA) are evaluated and compared. Statistical, transform, and model-based image texture techniques, commonly used for object mapping directly or as inputs for more complex methodologies, are explored to determine optimal textures for an oil spill detection system. The influence of the ancillary variables is explored, with a particular focus on the role of strong vs. weak wind forcing.

  12. Hyperparameterization of soil moisture statistical models for North America with Ensemble Learning Models (Elm)

    NASA Astrophysics Data System (ADS)

    Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.

    2017-12-01

    Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.

  13. Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn

    2011-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.

  14. Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy.

    PubMed

    Welikala, R A; Fraz, M M; Dehmeshki, J; Hoppe, A; Tah, V; Mann, S; Williamson, T H; Barman, S A

    2015-07-01

    Proliferative diabetic retinopathy (PDR) is a condition that carries a high risk of severe visual impairment. The hallmark of PDR is the growth of abnormal new vessels. In this paper, an automated method for the detection of new vessels from retinal images is presented. This method is based on a dual classification approach. Two vessel segmentation approaches are applied to create two separate binary vessel map which each hold vital information. Local morphology features are measured from each binary vessel map to produce two separate 4-D feature vectors. Independent classification is performed for each feature vector using a support vector machine (SVM) classifier. The system then combines these individual outcomes to produce a final decision. This is followed by the creation of additional features to generate 21-D feature vectors, which feed into a genetic algorithm based feature selection approach with the objective of finding feature subsets that improve the performance of the classification. Sensitivity and specificity results using a dataset of 60 images are 0.9138 and 0.9600, respectively, on a per patch basis and 1.000 and 0.975, respectively, on a per image basis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.

    PubMed

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  17. Genome-Wide Comparative Gene Family Classification

    PubMed Central

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  18. Photometric Supernova Classification with Machine Learning

    NASA Astrophysics Data System (ADS)

    Lochner, Michelle; McEwen, Jason D.; Peiris, Hiranya V.; Lahav, Ofer; Winter, Max K.

    2016-08-01

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models to curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.

  19. A semi-automated method for bone age assessment using cervical vertebral maturation.

    PubMed

    Baptista, Roberto S; Quaglio, Camila L; Mourad, Laila M E H; Hummel, Anderson D; Caetano, Cesar Augusto C; Ortolani, Cristina Lúcia F; Pisa, Ivan T

    2012-07-01

    To propose a semi-automated method for pattern classification to predict individuals' stage of growth based on morphologic characteristics that are described in the modified cervical vertebral maturation (CVM) method of Baccetti et al. A total of 188 lateral cephalograms were collected, digitized, evaluated manually, and grouped into cervical stages by two expert examiners. Landmarks were located on each image and measured. Three pattern classifiers based on the Naïve Bayes algorithm were built and assessed using a software program. The classifier with the greatest accuracy according to the weighted kappa test was considered best. The classifier showed a weighted kappa coefficient of 0.861 ± 0.020. If an adjacent estimated pre-stage or poststage value was taken to be acceptable, the classifier would show a weighted kappa coefficient of 0.992 ± 0.019. Results from this study show that the proposed semi-automated pattern classification method can help orthodontists identify the stage of CVM. However, additional studies are needed before this semi-automated classification method for CVM assessment can be implemented in clinical practice.

  20. Optimizing high performance computing workflow for protein functional annotation.

    PubMed

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-09-10

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.

  1. Optimizing high performance computing workflow for protein functional annotation

    PubMed Central

    Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene

    2014-01-01

    Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296

  2. Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network.

    PubMed

    Smith, Kenneth P; Kang, Anthony D; Kirby, James E

    2018-03-01

    Microscopic interpretation of stained smears is one of the most operator-dependent and time-intensive activities in the clinical microbiology laboratory. Here, we investigated application of an automated image acquisition and convolutional neural network (CNN)-based approach for automated Gram stain classification. Using an automated microscopy platform, uncoverslipped slides were scanned with a 40× dry objective, generating images of sufficient resolution for interpretation. We collected 25,488 images from positive blood culture Gram stains prepared during routine clinical workup. These images were used to generate 100,213 crops containing Gram-positive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative rods, or background (no cells). These categories were targeted for proof-of-concept development as they are associated with the majority of bloodstream infections. Our CNN model achieved a classification accuracy of 94.9% on a test set of image crops. Receiver operating characteristic (ROC) curve analysis indicated a robust ability to differentiate between categories with an area under the curve of >0.98 for each. After training and validation, we applied the classification algorithm to new images collected from 189 whole slides without human intervention. Sensitivity and specificity were 98.4% and 75.0% for Gram-positive cocci in chains and pairs, 93.2% and 97.2% for Gram-positive cocci in clusters, and 96.3% and 98.1% for Gram-negative rods. Taken together, our data support a proof of concept for a fully automated classification methodology for blood-culture Gram stains. Importantly, the algorithm was highly adept at identifying image crops with organisms and could be used to present prescreened, classified crops to technologists to accelerate smear review. This concept could potentially be extended to all Gram stain interpretive activities in the clinical laboratory. Copyright © 2018 American Society for Microbiology.

  3. Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification.

    PubMed

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V; Robles, Montserrat; Aparici, F; Martí-Bonmatí, L; García-Gómez, Juan M

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation.

  4. Algorithmic Classification of Five Characteristic Types of Paraphasias.

    PubMed

    Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven

    2016-12-01

    This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.

  5. Rapid automated classification of anesthetic depth levels using GPU based parallelization of neural networks.

    PubMed

    Peker, Musa; Şen, Baha; Gürüler, Hüseyin

    2015-02-01

    The effect of anesthesia on the patient is referred to as depth of anesthesia. Rapid classification of appropriate depth level of anesthesia is a matter of great importance in surgical operations. Similarly, accelerating classification algorithms is important for the rapid solution of problems in the field of biomedical signal processing. However numerous, time-consuming mathematical operations are required when training and testing stages of the classification algorithms, especially in neural networks. In this study, to accelerate the process, parallel programming and computing platform (Nvidia CUDA) facilitates dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU) was utilized. The system was employed to detect anesthetic depth level on related electroencephalogram (EEG) data set. This dataset is rather complex and large. Moreover, the achieving more anesthetic levels with rapid response is critical in anesthesia. The proposed parallelization method yielded high accurate classification results in a faster time.

  6. Preprocessing and meta-classification for brain-computer interfaces.

    PubMed

    Hammon, Paul S; de Sa, Virginia R

    2007-03-01

    A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.

  7. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos

    The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variablemore » objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.« less

  9. Clustering-based Feature Learning on Variable Stars

    NASA Astrophysics Data System (ADS)

    Mackenzie, Cristóbal; Pichara, Karim; Protopapas, Pavlos

    2016-04-01

    The success of automatic classification of variable stars depends strongly on the lightcurve representation. Usually, lightcurves are represented as a vector of many descriptors designed by astronomers called features. These descriptors are expensive in terms of computing, require substantial research effort to develop, and do not guarantee a good classification. Today, lightcurve representation is not entirely automatic; algorithms must be designed and manually tuned up for every survey. The amounts of data that will be generated in the future mean astronomers must develop scalable and automated analysis pipelines. In this work we present a feature learning algorithm designed for variable objects. Our method works by extracting a large number of lightcurve subsequences from a given set, which are then clustered to find common local patterns in the time series. Representatives of these common patterns are then used to transform lightcurves of a labeled set into a new representation that can be used to train a classifier. The proposed algorithm learns the features from both labeled and unlabeled lightcurves, overcoming the bias using only labeled data. We test our method on data sets from the Massive Compact Halo Object survey and the Optical Gravitational Lensing Experiment; the results show that our classification performance is as good as and in some cases better than the performance achieved using traditional statistical features, while the computational cost is significantly lower. With these promising results, we believe that our method constitutes a significant step toward the automation of the lightcurve classification pipeline.

  10. Ensemble support vector machine classification of dementia using structural MRI and mini-mental state examination.

    PubMed

    Sørensen, Lauge; Nielsen, Mads

    2018-05-15

    The International Challenge for Automated Prediction of MCI from MRI data offered independent, standardized comparison of machine learning algorithms for multi-class classification of normal control (NC), mild cognitive impairment (MCI), converting MCI (cMCI), and Alzheimer's disease (AD) using brain imaging and general cognition. We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore valuable to evaluate the potential benefit of ensembling this type of classifier. The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed that enforcing a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to 59.1%. The ensemble SVM outperformed single SVM classifications consistently in the challenge test set. Ensemble methods using bagging and feature selection can improve the performance of the commonly applied SVM classifier in dementia classification. This resulted in competitive classification accuracies in the International Challenge for Automated Prediction of MCI from MRI data. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

    PubMed Central

    Schmitter, Daniel; Roche, Alexis; Maréchal, Bénédicte; Ribes, Delphine; Abdulkadir, Ahmed; Bach-Cuadra, Meritxell; Daducci, Alessandro; Granziera, Cristina; Klöppel, Stefan; Maeder, Philippe; Meuli, Reto; Krueger, Gunnar

    2014-01-01

    Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease. PMID:25429357

  12. Hybrid ANN optimized artificial fish swarm algorithm based classifier for classification of suspicious lesions in breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Janaki Sathya, D.; Geetha, K.

    2017-12-01

    Automatic mass or lesion classification systems are developed to aid in distinguishing between malignant and benign lesions present in the breast DCE-MR images, the systems need to improve both the sensitivity and specificity of DCE-MR image interpretation in order to be successful for clinical use. A new classifier (a set of features together with a classification method) based on artificial neural networks trained using artificial fish swarm optimization (AFSO) algorithm is proposed in this paper. The basic idea behind the proposed classifier is to use AFSO algorithm for searching the best combination of synaptic weights for the neural network. An optimal set of features based on the statistical textural features is presented. The investigational outcomes of the proposed suspicious lesion classifier algorithm therefore confirm that the resulting classifier performs better than other such classifiers reported in the literature. Therefore this classifier demonstrates that the improvement in both the sensitivity and specificity are possible through automated image analysis.

  13. pySPACE—a signal processing and classification environment in Python

    PubMed Central

    Krell, Mario M.; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H.; Kirchner, Elsa A.; Kirchner, Frank

    2013-01-01

    In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries. PMID:24399965

  14. pySPACE-a signal processing and classification environment in Python.

    PubMed

    Krell, Mario M; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H; Kirchner, Elsa A; Kirchner, Frank

    2013-01-01

    In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries.

  15. Automatic classification of protein structures using physicochemical parameters.

    PubMed

    Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam

    2014-09-01

    Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

  16. Evolving land cover classification algorithms for multispectral and multitemporal imagery

    NASA Astrophysics Data System (ADS)

    Brumby, Steven P.; Theiler, James P.; Bloch, Jeffrey J.; Harvey, Neal R.; Perkins, Simon J.; Szymanski, John J.; Young, Aaron C.

    2002-01-01

    The Cerro Grande/Los Alamos forest fire devastated over 43,000 acres (17,500 ha) of forested land, and destroyed over 200 structures in the town of Los Alamos and the adjoining Los Alamos National Laboratory. The need to measure the continuing impact of the fire on the local environment has led to the application of a number of remote sensing technologies. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-based sensors, including Landsat 7 Enhanced Thematic Mapper (ETM+). We now report on the application of a machine learning technique to the automated classification of land cover using multi-spectral and multi-temporal imagery. We apply a hybrid genetic programming/supervised classification technique to evolve automatic feature extraction algorithms. We use a software package we have developed at Los Alamos National Laboratory, called GENIE, to carry out this evolution. We use multispectral imagery from the Landsat 7 ETM+ instrument from before, during, and after the wildfire. Using an existing land cover classification based on a 1992 Landsat 5 TM scene for our training data, we evolve algorithms that distinguish a range of land cover categories, and an algorithm to mask out clouds and cloud shadows. We report preliminary results of combining individual classification results using a K-means clustering approach. The details of our evolved classification are compared to the manually produced land-cover classification.

  17. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images.

    PubMed

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-10-01

    To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors' classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors' automatic classification and manual segmentation were 91.6% ± 2.0%. A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution.

  18. Cupping artifact correction and automated classification for high-resolution dedicated breast CT images

    PubMed Central

    Yang, Xiaofeng; Wu, Shengyong; Sechopoulos, Ioannis; Fei, Baowei

    2012-01-01

    Purpose: To develop and test an automated algorithm to classify the different tissues present in dedicated breast CT images. Methods: The original CT images are first corrected to overcome cupping artifacts, and then a multiscale bilateral filter is used to reduce noise while keeping edge information on the images. As skin and glandular tissues have similar CT values on breast CT images, morphologic processing is used to identify the skin mask based on its position information. A modified fuzzy C-means (FCM) classification method is then used to classify breast tissue as fat and glandular tissue. By combining the results of the skin mask with the FCM, the breast tissue is classified as skin, fat, and glandular tissue. To evaluate the authors’ classification method, the authors use Dice overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on eight patient images. Results: The correction method was able to correct the cupping artifacts and improve the quality of the breast CT images. For glandular tissue, the overlap ratios between the authors’ automatic classification and manual segmentation were 91.6% ± 2.0%. Conclusions: A cupping artifact correction method and an automatic classification method were applied and evaluated for high-resolution dedicated breast CT images. Breast tissue classification can provide quantitative measurements regarding breast composition, density, and tissue distribution. PMID:23039675

  19. False alarm reduction by the And-ing of multiple multivariate Gaussian classifiers

    NASA Astrophysics Data System (ADS)

    Dobeck, Gerald J.; Cobb, J. Tory

    2003-09-01

    The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. This paper describes a method for training several multivariate Gaussian classifiers such that their And-ing dramatically reduces false alarms while maintaining a high probability of classification. This training approach is referred to as the Focused- Training method. This work extends our 2001-2002 work where the Focused-Training method was used with three other types of classifiers: the Attractor-based K-Nearest Neighbor Neural Network (a type of radial-basis, probabilistic neural network), the Optimal Discrimination Filter Classifier (based linear discrimination theory), and the Quadratic Penalty Function Support Vector Machine (QPFSVM). Although our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to a wide range of pattern recognition and automatic target recognition (ATR) problems.

  20. PHOTOMETRIC SUPERNOVA CLASSIFICATION WITH MACHINE LEARNING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lochner, Michelle; Peiris, Hiranya V.; Lahav, Ofer

    Automated photometric supernova classification has become an active area of research in recent years in light of current and upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely SALT2 fits, to more independent techniques that fit parametric models tomore » curves, to a completely model-independent wavelet approach. We cover a range of representative machine learning algorithms, including naive Bayes, k -nearest neighbors, support vector machines, artificial neural networks, and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieve an AUC of 0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any redshift information.« less

  1. Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer E.; Gorpas, Dimitris; Unger, Jakob; Darrow, Morgan; Bold, Richard J.; Marcu, Laura

    2018-01-01

    Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N  =  20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.

  2. Classifying human operator functional state based on electrophysiological and performance measures and fuzzy clustering method.

    PubMed

    Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin

    2013-12-01

    The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.

  3. Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

    PubMed Central

    Juan-Albarracín, Javier; Fuster-Garcia, Elies; Manjón, José V.; Robles, Montserrat; Aparici, F.; Martí-Bonmatí, L.; García-Gómez, Juan M.

    2015-01-01

    Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. PMID:25978453

  4. Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma.

    PubMed

    Mansberger, Steven L; Menda, Shivali A; Fortune, Brad A; Gardiner, Stuart K; Demirel, Shaban

    2017-02-01

    To characterize the error of optical coherence tomography (OCT) measurements of retinal nerve fiber layer (RNFL) thickness when using automated retinal layer segmentation algorithms without manual refinement. Cross-sectional study. This study was set in a glaucoma clinical practice, and the dataset included 3490 scans from 412 eyes of 213 individuals with a diagnosis of glaucoma or glaucoma suspect. We used spectral domain OCT (Spectralis) to measure RNFL thickness in a 6-degree peripapillary circle, and exported the native "automated segmentation only" results. In addition, we exported the results after "manual refinement" to correct errors in the automated segmentation of the anterior (internal limiting membrane) and the posterior boundary of the RNFL. Our outcome measures included differences in RNFL thickness and glaucoma classification (i.e., normal, borderline, or outside normal limits) between scans with automated segmentation only and scans using manual refinement. Automated segmentation only resulted in a thinner global RNFL thickness (1.6 μm thinner, P < .001) when compared to manual refinement. When adjusted by operator, a multivariate model showed increased differences with decreasing RNFL thickness (P < .001), decreasing scan quality (P < .001), and increasing age (P < .03). Manual refinement changed 298 of 3486 (8.5%) of scans to a different global glaucoma classification, wherein 146 of 617 (23.7%) of borderline classifications became normal. Superior and inferior temporal clock hours had the largest differences. Automated segmentation without manual refinement resulted in reduced global RNFL thickness and overestimated the classification of glaucoma. Differences increased in eyes with a thinner RNFL thickness, older age, and decreased scan quality. Operators should inspect and manually refine OCT retinal layer segmentation when assessing RNFL thickness in the management of patients with glaucoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Do you see what I see? Mobile eye-tracker contextual analysis and inter-rater reliability.

    PubMed

    Stuart, S; Hunt, D; Nell, J; Godfrey, A; Hausdorff, J M; Rochester, L; Alcock, L

    2018-02-01

    Mobile eye-trackers are currently used during real-world tasks (e.g. gait) to monitor visual and cognitive processes, particularly in ageing and Parkinson's disease (PD). However, contextual analysis involving fixation locations during such tasks is rarely performed due to its complexity. This study adapted a validated algorithm and developed a classification method to semi-automate contextual analysis of mobile eye-tracking data. We further assessed inter-rater reliability of the proposed classification method. A mobile eye-tracker recorded eye-movements during walking in five healthy older adult controls (HC) and five people with PD. Fixations were identified using a previously validated algorithm, which was adapted to provide still images of fixation locations (n = 116). The fixation location was manually identified by two raters (DH, JN), who classified the locations. Cohen's kappa correlation coefficients determined the inter-rater reliability. The algorithm successfully provided still images for each fixation, allowing manual contextual analysis to be performed. The inter-rater reliability for classifying the fixation location was high for both PD (kappa = 0.80, 95% agreement) and HC groups (kappa = 0.80, 91% agreement), which indicated a reliable classification method. This study developed a reliable semi-automated contextual analysis method for gait studies in HC and PD. Future studies could adapt this methodology for various gait-related eye-tracking studies.

  6. A new framework for analysing automated acoustic species-detection data: occupancy estimation and optimization of recordings post-processing

    USGS Publications Warehouse

    Chambert, Thierry A.; Waddle, J. Hardin; Miller, David A.W.; Walls, Susan; Nichols, James D.

    2018-01-01

    The development and use of automated species-detection technologies, such as acoustic recorders, for monitoring wildlife are rapidly expanding. Automated classification algorithms provide a cost- and time-effective means to process information-rich data, but often at the cost of additional detection errors. Appropriate methods are necessary to analyse such data while dealing with the different types of detection errors.We developed a hierarchical modelling framework for estimating species occupancy from automated species-detection data. We explore design and optimization of data post-processing procedures to account for detection errors and generate accurate estimates. Our proposed method accounts for both imperfect detection and false positive errors and utilizes information about both occurrence and abundance of detections to improve estimation.Using simulations, we show that our method provides much more accurate estimates than models ignoring the abundance of detections. The same findings are reached when we apply the methods to two real datasets on North American frogs surveyed with acoustic recorders.When false positives occur, estimator accuracy can be improved when a subset of detections produced by the classification algorithm is post-validated by a human observer. We use simulations to investigate the relationship between accuracy and effort spent on post-validation, and found that very accurate occupancy estimates can be obtained with as little as 1% of data being validated.Automated monitoring of wildlife provides opportunity and challenges. Our methods for analysing automated species-detection data help to meet key challenges unique to these data and will prove useful for many wildlife monitoring programs.

  7. Using laser altimetry-based segmentation to refine automated tree identification in managed forests of the Black Hills, South Dakota

    Treesearch

    Eric Rowell; Carl Selelstad; Lee Vierling; Lloyd Queen; Wayne Sheppard

    2006-01-01

    The success of a local maximum (LM) tree detection algorithm for detecting individual trees from lidar data depends on stand conditions that are often highly variable. A laser height variance and percent canopy cover (PCC) classification is used to segment the landscape by stand condition prior to stem detection. We test the performance of the LM algorithm using canopy...

  8. Low-power wearable respiratory sound sensing.

    PubMed

    Oletic, Dinko; Arsenali, Bruno; Bilas, Vedran

    2014-04-09

    Building upon the findings from the field of automated recognition of respiratory sound patterns, we propose a wearable wireless sensor implementing on-board respiratory sound acquisition and classification, to enable continuous monitoring of symptoms, such as asthmatic wheezing. Low-power consumption of such a sensor is required in order to achieve long autonomy. Considering that the power consumption of its radio is kept minimal if transmitting only upon (rare) occurrences of wheezing, we focus on optimizing the power consumption of the digital signal processor (DSP). Based on a comprehensive review of asthmatic wheeze detection algorithms, we analyze the computational complexity of common features drawn from short-time Fourier transform (STFT) and decision tree classification. Four algorithms were implemented on a low-power TMS320C5505 DSP. Their classification accuracies were evaluated on a dataset of prerecorded respiratory sounds in two operating scenarios of different detection fidelities. The execution times of all algorithms were measured. The best classification accuracy of over 92%, while occupying only 2.6% of the DSP's processing time, is obtained for the algorithm featuring the time-frequency tracking of shapes of crests originating from wheezing, with spectral features modeled using energy.

  9. Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Bassier, M.; Vergauwen, M.; Van Genechten, B.

    2017-08-01

    Semantically rich three dimensional models such as Building Information Models (BIMs) are increasingly used in digital heritage. They provide the required information to varying stakeholders during the different stages of the historic buildings life cyle which is crucial in the conservation process. The creation of as-built BIM models is based on point cloud data. However, manually interpreting this data is labour intensive and often leads to misinterpretations. By automatically classifying the point cloud, the information can be proccesed more effeciently. A key aspect in this automated scan-to-BIM process is the classification of building objects. In this research we look to automatically recognise elements in existing buildings to create compact semantic information models. Our algorithm efficiently extracts the main structural components such as floors, ceilings, roofs, walls and beams despite the presence of significant clutter and occlusions. More specifically, Support Vector Machines (SVM) are proposed for the classification. The algorithm is evaluated using real data of a variety of existing buildings. The results prove that the used classifier recognizes the objects with both high precision and recall. As a result, entire data sets are reliably labelled at once. The approach enables experts to better document and process heritage assets.

  10. An ordinal classification approach for CTG categorization.

    PubMed

    Georgoulas, George; Karvelis, Petros; Gavrilis, Dimitris; Stylios, Chrysostomos D; Nikolakopoulos, George

    2017-07-01

    Evaluation of cardiotocogram (CTG) is a standard approach employed during pregnancy and delivery. But, its interpretation requires high level expertise to decide whether the recording is Normal, Suspicious or Pathological. Therefore, a number of attempts have been carried out over the past three decades for development automated sophisticated systems. These systems are usually (multiclass) classification systems that assign a category to the respective CTG. However most of these systems usually do not take into consideration the natural ordering of the categories associated with CTG recordings. In this work, an algorithm that explicitly takes into consideration the ordering of CTG categories, based on binary decomposition method, is investigated. Achieved results, using as a base classifier the C4.5 decision tree classifier, prove that the ordinal classification approach is marginally better than the traditional multiclass classification approach, which utilizes the standard C4.5 algorithm for several performance criteria.

  11. Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography.

    PubMed

    Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z

    2006-08-01

    This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.

  12. The Optimization of Trained and Untrained Image Classification Algorithms for Use on Large Spatial Datasets

    NASA Technical Reports Server (NTRS)

    Kocurek, Michael J.

    2005-01-01

    The HARVIST project seeks to automatically provide an accurate, interactive interface to predict crop yield over the entire United States. In order to accomplish this goal, large images must be quickly and automatically classified by crop type. Current trained and untrained classification algorithms, while accurate, are highly inefficient when operating on large datasets. This project sought to develop new variants of two standard trained and untrained classification algorithms that are optimized to take advantage of the spatial nature of image data. The first algorithm, harvist-cluster, utilizes divide-and-conquer techniques to precluster an image in the hopes of increasing overall clustering speed. The second algorithm, harvistSVM, utilizes support vector machines (SVMs), a type of trained classifier. It seeks to increase classification speed by applying a "meta-SVM" to a quick (but inaccurate) SVM to approximate a slower, yet more accurate, SVM. Speedups were achieved by tuning the algorithm to quickly identify when the quick SVM was incorrect, and then reclassifying low-confidence pixels as necessary. Comparing the classification speeds of both algorithms to known baselines showed a slight speedup for large values of k (the number of clusters) for harvist-cluster, and a significant speedup for harvistSVM. Future work aims to automate the parameter tuning process required for harvistSVM, and further improve classification accuracy and speed. Additionally, this research will move documents created in Canvas into ArcGIS. The launch of the Mars Reconnaissance Orbiter (MRO) will provide a wealth of image data such as global maps of Martian weather and high resolution global images of Mars. The ability to store this new data in a georeferenced format will support future Mars missions by providing data for landing site selection and the search for water on Mars.

  13. Strategies for cloud-top phase determination: differentiation between thin cirrus clouds and snow in manual (ground truth) analyses

    NASA Astrophysics Data System (ADS)

    Hutchison, Keith D.; Etherton, Brian J.; Topping, Phillip C.

    1996-12-01

    Quantitative assessments on the performance of automated cloud analysis algorithms require the creation of highly accurate, manual cloud, no cloud (CNC) images from multispectral meteorological satellite data. In general, the methodology to create ground truth analyses for the evaluation of cloud detection algorithms is relatively straightforward. However, when focus shifts toward quantifying the performance of automated cloud classification algorithms, the task of creating ground truth images becomes much more complicated since these CNC analyses must differentiate between water and ice cloud tops while ensuring that inaccuracies in automated cloud detection are not propagated into the results of the cloud classification algorithm. The process of creating these ground truth CNC analyses may become particularly difficult when little or no spectral signature is evident between a cloud and its background, as appears to be the case when thin cirrus is present over snow-covered surfaces. In this paper, procedures are described that enhance the researcher's ability to manually interpret and differentiate between thin cirrus clouds and snow-covered surfaces in daytime AVHRR imagery. The methodology uses data in up to six AVHRR spectral bands, including an additional band derived from the daytime 3.7 micron channel, which has proven invaluable for the manual discrimination between thin cirrus clouds and snow. It is concluded that while the 1.6 micron channel remains essential to differentiate between thin ice clouds and snow. However, this capability that may be lost if the 3.7 micron data switches to a nighttime-only transmission with the launch of future NOAA satellites.

  14. Automated tissue characterization of in vivo atherosclerotic plaques by intravascular optical coherence tomography images

    PubMed Central

    Ughi, Giovanni Jacopo; Adriaenssens, Tom; Sinnaeve, Peter; Desmet, Walter; D’hooge, Jan

    2013-01-01

    Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for the in vivo investigation of coronary artery disease. While IVOCT visualizes atherosclerotic plaques with a resolution <20µm, image analysis in terms of tissue composition is currently performed by a time-consuming manual procedure based on the qualitative interpretation of image features. We illustrate an algorithm for the automated and systematic characterization of IVOCT atherosclerotic tissue. The proposed method consists in a supervised classification of image pixels according to textural features combined with the estimated value of the optical attenuation coefficient. IVOCT images of 64 plaques, from 49 in vivo IVOCT data sets, constituted the algorithm’s training and testing data sets. Validation was obtained by comparing automated analysis results to the manual assessment of atherosclerotic plaques. An overall pixel-wise accuracy of 81.5% with a classification feasibility of 76.5% and per-class accuracy of 89.5%, 72.1% and 79.5% for fibrotic, calcified and lipid-rich tissue respectively, was found. Moreover, measured optical properties were in agreement with previous results reported in literature. As such, an algorithm for automated tissue characterization was developed and validated using in vivo human data, suggesting that it can be applied to clinical IVOCT data. This might be an important step towards the integration of IVOCT in cardiovascular research and routine clinical practice. PMID:23847728

  15. Automated detection of cloud and cloud-shadow in single-date Landsat imagery using neural networks and spatial post-processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael J.; Hayes, Daniel J

    2014-01-01

    Use of Landsat data to answer ecological questions is contingent on the effective removal of cloud and cloud shadow from satellite images. We develop a novel algorithm to identify and classify clouds and cloud shadow, \\textsc{sparcs}: Spacial Procedures for Automated Removal of Cloud and Shadow. The method uses neural networks to determine cloud, cloud-shadow, water, snow/ice, and clear-sky membership of each pixel in a Landsat scene, and then applies a set of procedures to enforce spatial rules. In a comparison to FMask, a high-quality cloud and cloud-shadow classification algorithm currently available, \\textsc{sparcs} performs favorably, with similar omission errors for cloudsmore » (0.8% and 0.9%, respectively), substantially lower omission error for cloud-shadow (8.3% and 1.1%), and fewer errors of commission (7.8% and 5.0%). Additionally, textsc{sparcs} provides a measure of uncertainty in its classification that can be exploited by other processes that use the cloud and cloud-shadow detection. To illustrate this, we present an application that constructs obstruction-free composites of images acquired on different dates in support of algorithms detecting vegetation change.« less

  16. Automated Decision Tree Classification of Corneal Shape

    PubMed Central

    Twa, Michael D.; Parthasarathy, Srinivasan; Roberts, Cynthia; Mahmoud, Ashraf M.; Raasch, Thomas W.; Bullimore, Mark A.

    2011-01-01

    Purpose The volume and complexity of data produced during videokeratography examinations present a challenge of interpretation. As a consequence, results are often analyzed qualitatively by subjective pattern recognition or reduced to comparisons of summary indices. We describe the application of decision tree induction, an automated machine learning classification method, to discriminate between normal and keratoconic corneal shapes in an objective and quantitative way. We then compared this method with other known classification methods. Methods The corneal surface was modeled with a seventh-order Zernike polynomial for 132 normal eyes of 92 subjects and 112 eyes of 71 subjects diagnosed with keratoconus. A decision tree classifier was induced using the C4.5 algorithm, and its classification performance was compared with the modified Rabinowitz–McDonnell index, Schwiegerling’s Z3 index (Z3), Keratoconus Prediction Index (KPI), KISA%, and Cone Location and Magnitude Index using recommended classification thresholds for each method. We also evaluated the area under the receiver operator characteristic (ROC) curve for each classification method. Results Our decision tree classifier performed equal to or better than the other classifiers tested: accuracy was 92% and the area under the ROC curve was 0.97. Our decision tree classifier reduced the information needed to distinguish between normal and keratoconus eyes using four of 36 Zernike polynomial coefficients. The four surface features selected as classification attributes by the decision tree method were inferior elevation, greater sagittal depth, oblique toricity, and trefoil. Conclusions Automated decision tree classification of corneal shape through Zernike polynomials is an accurate quantitative method of classification that is interpretable and can be generated from any instrument platform capable of raw elevation data output. This method of pattern classification is extendable to other classification problems. PMID:16357645

  17. Using support vector machines with tract-based spatial statistics for automated classification of Tourette syndrome children

    NASA Astrophysics Data System (ADS)

    Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang

    2016-03-01

    Tourette syndrome (TS) is a developmental neuropsychiatric disorder with the cardinal symptoms of motor and vocal tics which emerges in early childhood and fluctuates in severity in later years. To date, the neural basis of TS is not fully understood yet and TS has a long-term prognosis that is difficult to accurately estimate. Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy children and TS children. Here we apply Tract-Based Spatial Statistics (TBSS) method to 44 TS children and 48 age and gender matched healthy children in order to extract the diffusion values from each voxel in the white matter (WM) skeleton, and a feature selection algorithm (ReliefF) was used to select the most salient voxels for subsequent classification with support vector machine (SVM). We use a nested cross validation to yield an unbiased assessment of the classification method and prevent overestimation. The accuracy (88.04%), sensitivity (88.64%) and specificity (87.50%) were achieved in our method as peak performance of the SVM classifier was achieved using the axial diffusion (AD) metric, demonstrating the potential of a joint TBSS and SVM pipeline for fast, objective classification of healthy and TS children. These results support that our methods may be useful for the early identification of subjects with TS, and hold promise for predicting prognosis and treatment outcome for individuals with TS.

  18. Driver behavior profiling: An investigation with different smartphone sensors and machine learning

    PubMed Central

    Ferreira, Jair; Carvalho, Eduardo; Ferreira, Bruno V.; de Souza, Cleidson; Suhara, Yoshihiko; Pentland, Alex

    2017-01-01

    Driver behavior impacts traffic safety, fuel/energy consumption and gas emissions. Driver behavior profiling tries to understand and positively impact driver behavior. Usually driver behavior profiling tasks involve automated collection of driving data and application of computer models to generate a classification that characterizes the driver aggressiveness profile. Different sensors and classification methods have been employed in this task, however, low-cost solutions and high performance are still research targets. This paper presents an investigation with different Android smartphone sensors, and classification algorithms in order to assess which sensor/method assembly enables classification with higher performance. The results show that specific combinations of sensors and intelligent methods allow classification performance improvement. PMID:28394925

  19. A compressed sensing method with analytical results for lidar feature classification

    NASA Astrophysics Data System (ADS)

    Allen, Josef D.; Yuan, Jiangbo; Liu, Xiuwen; Rahmes, Mark

    2011-04-01

    We present an innovative way to autonomously classify LiDAR points into bare earth, building, vegetation, and other categories. One desirable product of LiDAR data is the automatic classification of the points in the scene. Our algorithm automatically classifies scene points using Compressed Sensing Methods via Orthogonal Matching Pursuit algorithms utilizing a generalized K-Means clustering algorithm to extract buildings and foliage from a Digital Surface Models (DSM). This technology reduces manual editing while being cost effective for large scale automated global scene modeling. Quantitative analyses are provided using Receiver Operating Characteristics (ROC) curves to show Probability of Detection and False Alarm of buildings vs. vegetation classification. Histograms are shown with sample size metrics. Our inpainting algorithms then fill the voids where buildings and vegetation were removed, utilizing Computational Fluid Dynamics (CFD) techniques and Partial Differential Equations (PDE) to create an accurate Digital Terrain Model (DTM) [6]. Inpainting preserves building height contour consistency and edge sharpness of identified inpainted regions. Qualitative results illustrate other benefits such as Terrain Inpainting's unique ability to minimize or eliminate undesirable terrain data artifacts.

  20. Automated detection and recognition of wildlife using thermal cameras.

    PubMed

    Christiansen, Peter; Steen, Kim Arild; Jørgensen, Rasmus Nyholm; Karstoft, Henrik

    2014-07-30

    In agricultural mowing operations, thousands of animals are injured or killed each year, due to the increased working widths and speeds of agricultural machinery. Detection and recognition of wildlife within the agricultural fields is important to reduce wildlife mortality and, thereby, promote wildlife-friendly farming. The work presented in this paper contributes to the automated detection and classification of animals in thermal imaging. The methods and results are based on top-view images taken manually from a lift to motivate work towards unmanned aerial vehicle-based detection and recognition. Hot objects are detected based on a threshold dynamically adjusted to each frame. For the classification of animals, we propose a novel thermal feature extraction algorithm. For each detected object, a thermal signature is calculated using morphological operations. The thermal signature describes heat characteristics of objects and is partly invariant to translation, rotation, scale and posture. The discrete cosine transform (DCT) is used to parameterize the thermal signature and, thereby, calculate a feature vector, which is used for subsequent classification. Using a k-nearest-neighbor (kNN) classifier, animals are discriminated from non-animals with a balanced classification accuracy of 84.7% in an altitude range of 3-10 m and an accuracy of 75.2% for an altitude range of 10-20 m. To incorporate temporal information in the classification, a tracking algorithm is proposed. Using temporal information improves the balanced classification accuracy to 93.3% in an altitude range 3-10 of meters and 77.7% in an altitude range of 10-20 m.

  1. Towards automated sleep classification in infants using symbolic and subsymbolic approaches.

    PubMed

    Kubat, M; Flotzinger, D; Pfurtscheller, G

    1993-04-01

    The paper addresses the problem of automatic sleep classification. A special effort is made to find a method of extracting reasonable descriptions of the individual sleep stages from sample measurements of EGG, EMG, EOG, etc., and from a classification of these measurements provided by an expert. The method should satisfy three requirements: classification accuracy, interpretability of the results, and the ability to select the relevant and discard the irrelevant variables. The solution suggested in this paper consists of a combination of the subsymbolic algorithm LVQ with the symbolic decision tree generator ID3. Results demonstrating the feasibility and utility of our approach are also presented.

  2. Use of administrative and electronic health record data for development of automated algorithms for childhood diabetes case ascertainment and type classification: the SEARCH for Diabetes in Youth Study

    PubMed Central

    Zhong, Victor W.; Pfaff, Emily R.; Beavers, Daniel P.; Thomas, Joan; Jaacks, Lindsay M.; Bowlby, Deborah A.; Carey, Timothy S.; Lawrence, Jean M.; Dabelea, Dana; Hamman, Richard F.; Pihoker, Catherine; Saydah, Sharon H.; Mayer-Davis, Elizabeth J.

    2014-01-01

    Background The performance of automated algorithms for childhood diabetes case ascertainment and type classification may differ by demographic characteristics. Objective This study evaluated the potential of administrative and electronic health record (EHR) data from a large academic care delivery system to conduct diabetes case ascertainment in youth according to type, age and race/ethnicity. Subjects 57,767 children aged <20 years as of December 31, 2011 seen at University of North Carolina Health Care System in 2011 were included. Methods Using an initial algorithm including billing data, patient problem lists, laboratory test results and diabetes related medications between July 1, 2008 and December 31, 2011, presumptive cases were identified and validated by chart review. More refined algorithms were evaluated by type (type 1 versus type 2), age (<10 versus ≥10 years) and race/ethnicity (non-Hispanic white versus “other”). Sensitivity, specificity and positive predictive value were calculated and compared. Results The best algorithm for ascertainment of diabetes cases overall was billing data. The best type 1 algorithm was the ratio of the number of type 1 billing codes to the sum of type 1 and type 2 billing codes ≥0.5. A useful algorithm to ascertain type 2 youth with “other” race/ethnicity was identified. Considerable age and racial/ethnic differences were present in type-non-specific and type 2 algorithms. Conclusions Administrative and EHR data may be used to identify cases of childhood diabetes (any type), and to identify type 1 cases. The performance of type 2 case ascertainment algorithms differed substantially by race/ethnicity. PMID:24913103

  3. ARTIST: A fully automated artifact rejection algorithm for single-pulse TMS-EEG data.

    PubMed

    Wu, Wei; Keller, Corey J; Rogasch, Nigel C; Longwell, Parker; Shpigel, Emmanuel; Rolle, Camarin E; Etkin, Amit

    2018-04-01

    Concurrent single-pulse TMS-EEG (spTMS-EEG) is an emerging noninvasive tool for probing causal brain dynamics in humans. However, in addition to the common artifacts in standard EEG data, spTMS-EEG data suffer from enormous stimulation-induced artifacts, posing significant challenges to the extraction of neural information. Typically, neural signals are analyzed after a manual time-intensive and often subjective process of artifact rejection. Here we describe a fully automated algorithm for spTMS-EEG artifact rejection. A key step of this algorithm is to decompose the spTMS-EEG data into statistically independent components (ICs), and then train a pattern classifier to automatically identify artifact components based on knowledge of the spatio-temporal profile of both neural and artefactual activities. The autocleaned and hand-cleaned data yield qualitatively similar group evoked potential waveforms. The algorithm achieves a 95% IC classification accuracy referenced to expert artifact rejection performance, and does so across a large number of spTMS-EEG data sets (n = 90 stimulation sites), retains high accuracy across stimulation sites/subjects/populations/montages, and outperforms current automated algorithms. Moreover, the algorithm was superior to the artifact rejection performance of relatively novice individuals, who would be the likely users of spTMS-EEG as the technique becomes more broadly disseminated. In summary, our algorithm provides an automated, fast, objective, and accurate method for cleaning spTMS-EEG data, which can increase the utility of TMS-EEG in both clinical and basic neuroscience settings. © 2018 Wiley Periodicals, Inc.

  4. Automated Classification of Radiology Reports for Acute Lung Injury: Comparison of Keyword and Machine Learning Based Natural Language Processing Approaches.

    PubMed

    Solti, Imre; Cooke, Colin R; Xia, Fei; Wurfel, Mark M

    2009-11-01

    This paper compares the performance of keyword and machine learning-based chest x-ray report classification for Acute Lung Injury (ALI). ALI mortality is approximately 30 percent. High mortality is, in part, a consequence of delayed manual chest x-ray classification. An automated system could reduce the time to recognize ALI and lead to reductions in mortality. For our study, 96 and 857 chest x-ray reports in two corpora were labeled by domain experts for ALI. We developed a keyword and a Maximum Entropy-based classification system. Word unigram and character n-grams provided the features for the machine learning system. The Maximum Entropy algorithm with character 6-gram achieved the highest performance (Recall=0.91, Precision=0.90 and F-measure=0.91) on the 857-report corpus. This study has shown that for the classification of ALI chest x-ray reports, the machine learning approach is superior to the keyword based system and achieves comparable results to highest performing physician annotators.

  5. Automated Classification of Radiology Reports for Acute Lung Injury: Comparison of Keyword and Machine Learning Based Natural Language Processing Approaches

    PubMed Central

    Solti, Imre; Cooke, Colin R.; Xia, Fei; Wurfel, Mark M.

    2010-01-01

    This paper compares the performance of keyword and machine learning-based chest x-ray report classification for Acute Lung Injury (ALI). ALI mortality is approximately 30 percent. High mortality is, in part, a consequence of delayed manual chest x-ray classification. An automated system could reduce the time to recognize ALI and lead to reductions in mortality. For our study, 96 and 857 chest x-ray reports in two corpora were labeled by domain experts for ALI. We developed a keyword and a Maximum Entropy-based classification system. Word unigram and character n-grams provided the features for the machine learning system. The Maximum Entropy algorithm with character 6-gram achieved the highest performance (Recall=0.91, Precision=0.90 and F-measure=0.91) on the 857-report corpus. This study has shown that for the classification of ALI chest x-ray reports, the machine learning approach is superior to the keyword based system and achieves comparable results to highest performing physician annotators. PMID:21152268

  6. Automated wholeslide analysis of multiplex-brightfield IHC images for cancer cells and carcinoma-associated fibroblasts

    NASA Astrophysics Data System (ADS)

    Lorsakul, Auranuch; Andersson, Emilia; Vega Harring, Suzana; Sade, Hadassah; Grimm, Oliver; Bredno, Joerg

    2017-03-01

    Multiplex-brightfield immunohistochemistry (IHC) staining and quantitative measurement of multiple biomarkers can support therapeutic targeting of carcinoma-associated fibroblasts (CAF). This paper presents an automated digitalpathology solution to simultaneously analyze multiple biomarker expressions within a single tissue section stained with an IHC duplex assay. Our method was verified against ground truth provided by expert pathologists. In the first stage, the automated method quantified epithelial-carcinoma cells expressing cytokeratin (CK) using robust nucleus detection and supervised cell-by-cell classification algorithms with a combination of nucleus and contextual features. Using fibroblast activation protein (FAP) as biomarker for CAFs, the algorithm was trained, based on ground truth obtained from pathologists, to automatically identify tumor-associated stroma using a supervised-generation rule. The algorithm reported distance to nearest neighbor in the populations of tumor cells and activated-stromal fibroblasts as a wholeslide measure of spatial relationships. A total of 45 slides from six indications (breast, pancreatic, colorectal, lung, ovarian, and head-and-neck cancers) were included for training and verification. CK-positive cells detected by the algorithm were verified by a pathologist with good agreement (R2=0.98) to ground-truth count. For the area occupied by FAP-positive cells, the inter-observer agreement between two sets of ground-truth measurements was R2=0.93 whereas the algorithm reproduced the pathologists' areas with R2=0.96. The proposed methodology enables automated image analysis to measure spatial relationships of cells stained in an IHC-multiplex assay. Our proof-of-concept results show an automated algorithm can be trained to reproduce the expert assessment and provide quantitative readouts that potentially support a cutoff determination in hypothesis testing related to CAF-targeting-therapy decisions.

  7. Inspection of wear particles in oils by using a fuzzy classifier

    NASA Astrophysics Data System (ADS)

    Hamalainen, Jari J.; Enwald, Petri

    1994-11-01

    The reliability of stand-alone machines and larger production units can be improved by automated condition monitoring. Analysis of wear particles in lubricating or hydraulic oils helps diagnosing the wear states of machine parts. This paper presents a computer vision system for automated classification of wear particles. Digitized images from experiments with a bearing test bench, a hydraulic system with an industrial company, and oil samples from different industrial sources were used for algorithm development and testing. The wear particles were divided into four classes indicating different wear mechanisms: cutting wear, fatigue wear, adhesive wear, and abrasive wear. The results showed that the fuzzy K-nearest neighbor classifier utilized gave the same distribution of wear particles as the classification by a human expert.

  8. Sensitivity and specificity of automated detection of early repolarization in standard 12-lead electrocardiography.

    PubMed

    Kenttä, Tuomas; Porthan, Kimmo; Tikkanen, Jani T; Väänänen, Heikki; Oikarinen, Lasse; Viitasalo, Matti; Karanko, Hannu; Laaksonen, Maarit; Huikuri, Heikki V

    2015-07-01

    Early repolarization (ER) is defined as an elevation of the QRS-ST junction in at least two inferior or lateral leads of the standard 12-lead electrocardiogram (ECG). Our purpose was to create an algorithm for the automated detection and classification of ER. A total of 6,047 electrocardiograms were manually graded for ER by two experienced readers. The automated detection of ER was based on quantification of the characteristic slurring or notching in ER-positive leads. The ER detection algorithm was tested and its results were compared with manual grading, which served as the reference. Readers graded 183 ECGs (3.0%) as ER positive, of which the algorithm detected 176 recordings, resulting in sensitivity of 96.2%. Of the 5,864 ER-negative recordings, the algorithm classified 5,281 as negative, resulting in 90.1% specificity. Positive and negative predictive values for the algorithm were 23.2% and 99.9%, respectively, and its accuracy was 90.2%. Inferior ER was correctly detected in 84.6% and lateral ER in 98.6% of the cases. As the automatic algorithm has high sensitivity, it could be used as a prescreening tool for ER; only the electrocardiograms graded positive by the algorithm would be reviewed manually. This would reduce the need for manual labor by 90%. © 2014 Wiley Periodicals, Inc.

  9. Automated sleep stage detection with a classical and a neural learning algorithm--methodological aspects.

    PubMed

    Schwaibold, M; Schöchlin, J; Bolz, A

    2002-01-01

    For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.

  10. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Automatic detection of erythemato-squamous diseases using k-means clustering.

    PubMed

    Ubeyli, Elif Derya; Doğdu, Erdoğan

    2010-04-01

    A new approach based on the implementation of k-means clustering is presented for automated detection of erythemato-squamous diseases. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. The studied domain contained records of patients with known diagnosis. The k-means clustering algorithm's task was to classify the data points, in this case the patients with attribute data, to one of the five clusters. The algorithm was used to detect the five erythemato-squamous diseases when 33 features defining five disease indications were used. The purpose is to determine an optimum classification scheme for this problem. The present research demonstrated that the features well represent the erythemato-squamous diseases and the k-means clustering algorithm's task achieved high classification accuracies for only five erythemato-squamous diseases.

  12. Automated Segmentation and Classification of Coral using Fluid Lensing from Unmanned Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Instrella, Ron; Chirayath, Ved

    2016-01-01

    In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.

  13. Automated Segmentation and Classification of Coral using Fluid Lensing from Unmanned Airborne Platforms

    NASA Astrophysics Data System (ADS)

    Instrella, R.; Chirayath, V.

    2015-12-01

    In recent years, there has been a growing interest among biologists in monitoring the short and long term health of the world's coral reefs. The environmental impact of climate change poses a growing threat to these biologically diverse and fragile ecosystems, prompting scientists to use remote sensing platforms and computer vision algorithms to analyze shallow marine systems. In this study, we present a novel method for performing coral segmentation and classification from aerial data collected from small unmanned aerial vehicles (sUAV). Our method uses Fluid Lensing algorithms to remove and exploit strong optical distortions created along the air-fluid boundary to produce cm-scale resolution imagery of the ocean floor at depths up to 5 meters. A 3D model of the reef is reconstructed using structure from motion (SFM) algorithms, and the associated depth information is combined with multidimensional maximum a posteriori (MAP) estimation to separate organic from inorganic material and classify coral morphologies in the Fluid-Lensed transects. In this study, MAP estimation is performed using a set of manually classified 100 x 100 pixel training images to determine the most probable coral classification within an interrogated region of interest. Aerial footage of a coral reef was captured off the coast of American Samoa and used to test our proposed method. 90 x 20 meter transects of the Samoan coastline undergo automated classification and are manually segmented by a marine biologist for comparison, leading to success rates as high as 85%. This method has broad applications for coastal remote sensing, and will provide marine biologists access to large swaths of high resolution, segmented coral imagery.

  14. Improving Pattern Recognition and Neural Network Algorithms with Applications to Solar Panel Energy Optimization

    NASA Astrophysics Data System (ADS)

    Zamora Ramos, Ernesto

    Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures, multilayer percepterons and convolutional neural networks. Our research with neural networks has encountered a great deal of difficulties regarding hyperparameter estimation for good training convergence rate and accuracy. Most hyperparameters, including architecture, learning rate, regularization, trainable parameters (or weights) initialization, and so on, are chosen via a trial and error process with some educated guesses. However, we developed the first quantitative method to compare weight initialization strategies, a critical hyperparameter choice during training, to estimate among a group of candidate strategies which would make the network converge to the highest classification accuracy faster with high probability. Our method provides a quick, objective measure to compare initialization strategies to select the best possible among them beforehand without having to complete multiple training sessions for each candidate strategy to compare final results.

  15. Automated classification of dolphin echolocation click types from the Gulf of Mexico.

    PubMed

    Frasier, Kaitlin E; Roch, Marie A; Soldevilla, Melissa S; Wiggins, Sean M; Garrison, Lance P; Hildebrand, John A

    2017-12-01

    Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso's dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori.

  16. Automated classification of dolphin echolocation click types from the Gulf of Mexico

    PubMed Central

    Roch, Marie A.; Soldevilla, Melissa S.; Wiggins, Sean M.; Garrison, Lance P.; Hildebrand, John A.

    2017-01-01

    Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso’s dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori. PMID:29216184

  17. Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies.

    PubMed

    Welikala, R A; Fraz, M M; Foster, P J; Whincup, P H; Rudnicka, A R; Owen, C G; Strachan, D P; Barman, S A

    2016-04-01

    Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Derivation and validation of the automated search algorithms to identify cognitive impairment and dementia in electronic health records.

    PubMed

    Amra, Sakusic; O'Horo, John C; Singh, Tarun D; Wilson, Gregory A; Kashyap, Rahul; Petersen, Ronald; Roberts, Rosebud O; Fryer, John D; Rabinstein, Alejandro A; Gajic, Ognjen

    2017-02-01

    Long-term cognitive impairment is a common and important problem in survivors of critical illness. We developed electronic search algorithms to identify cognitive impairment and dementia from the electronic medical records (EMRs) that provide opportunity for big data analysis. Eligible patients met 2 criteria. First, they had a formal cognitive evaluation by The Mayo Clinic Study of Aging. Second, they were hospitalized in intensive care unit at our institution between 2006 and 2014. The "criterion standard" for diagnosis was formal cognitive evaluation supplemented by input from an expert neurologist. Using all available EMR data, we developed and improved our algorithms in the derivation cohort and validated them in the independent validation cohort. Of 993 participants who underwent formal cognitive testing and were hospitalized in intensive care unit, we selected 151 participants at random to form the derivation and validation cohorts. The automated electronic search algorithm for cognitive impairment was 94.3% sensitive and 93.0% specific. The search algorithms for dementia achieved respective sensitivity and specificity of 97% and 99%. EMR search algorithms significantly outperformed International Classification of Diseases codes. Automated EMR data extractions for cognitive impairment and dementia are reliable and accurate and can serve as acceptable and efficient alternatives to time-consuming manual data review. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A new automated spectral feature extraction method and its application in spectral classification and defective spectra recovery

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Guo, Ping; Luo, A.-Li

    2017-03-01

    Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.

  20. Electronic Sleep Stage Classifiers: A Survey and VLSI Design Methodology.

    PubMed

    Kassiri, Hossein; Chemparathy, Aditi; Salam, M Tariqus; Boyce, Richard; Adamantidis, Antoine; Genov, Roman

    2017-02-01

    First, existing sleep stage classifier sensors and algorithms are reviewed and compared in terms of classification accuracy, level of automation, implementation complexity, invasiveness, and targeted application. Next, the implementation of a miniature microsystem for low-latency automatic sleep stage classification in rodents is presented. The classification algorithm uses one EMG (electromyogram) and two EEG (electroencephalogram) signals as inputs in order to detect REM (rapid eye movement) sleep, and is optimized for low complexity and low power consumption. It is implemented in an on-board low-power FPGA connected to a multi-channel neural recording IC, to achieve low-latency (order of 1 ms or less) classification. Off-line experimental results using pre-recorded signals from nine mice show REM detection sensitivity and specificity of 81.69% and 93.86%, respectively, with the maximum latency of 39 [Formula: see text]. The device is designed to be used in a non-disruptive closed-loop REM sleep suppression microsystem, for future studies of the effects of REM sleep deprivation on memory consolidation.

  1. Image classification of unlabeled malaria parasites in red blood cells.

    PubMed

    Zheng Zhang; Ong, L L Sharon; Kong Fang; Matthew, Athul; Dauwels, Justin; Ming Dao; Asada, Harry

    2016-08-01

    This paper presents a method to detect unlabeled malaria parasites in red blood cells. The current "gold standard" for malaria diagnosis is microscopic examination of thick blood smear, a time consuming process requiring extensive training. Our goal is to develop an automate process to identify malaria infected red blood cells. Major issues in automated analysis of microscopy images of unstained blood smears include overlapping cells and oddly shaped cells. Our approach creates robust templates to detect infected and uninfected red cells. Histogram of Oriented Gradients (HOGs) features are extracted from templates and used to train a classifier offline. Next, the ViolaJones object detection framework is applied to detect infected and uninfected red cells and the image background. Results show our approach out-performs classification approaches with PCA features by 50% and cell detection algorithms applying Hough transforms by 24%. Majority of related work are designed to automatically detect stained parasites in blood smears where the cells are fixed. Although it is more challenging to design algorithms for unstained parasites, our methods will allow analysis of parasite progression in live cells under different drug treatments.

  2. Validation of an automated electronic algorithm and "dashboard" to identify and characterize decompensated heart failure admissions across a medical center.

    PubMed

    Cox, Zachary L; Lewis, Connie M; Lai, Pikki; Lenihan, Daniel J

    2017-01-01

    We aim to validate the diagnostic performance of the first fully automatic, electronic heart failure (HF) identification algorithm and evaluate the implementation of an HF Dashboard system with 2 components: real-time identification of decompensated HF admissions and accurate characterization of disease characteristics and medical therapy. We constructed an HF identification algorithm requiring 3 of 4 identifiers: B-type natriuretic peptide >400 pg/mL; admitting HF diagnosis; history of HF International Classification of Disease, Ninth Revision, diagnosis codes; and intravenous diuretic administration. We validated the diagnostic accuracy of the components individually (n = 366) and combined in the HF algorithm (n = 150) compared with a blinded provider panel in 2 separate cohorts. We built an HF Dashboard within the electronic medical record characterizing the disease and medical therapies of HF admissions identified by the HF algorithm. We evaluated the HF Dashboard's performance over 26 months of clinical use. Individually, the algorithm components displayed variable sensitivity and specificity, respectively: B-type natriuretic peptide >400 pg/mL (89% and 87%); diuretic (80% and 92%); and International Classification of Disease, Ninth Revision, code (56% and 95%). The HF algorithm achieved a high specificity (95%), positive predictive value (82%), and negative predictive value (85%) but achieved limited sensitivity (56%) secondary to missing provider-generated identification data. The HF Dashboard identified and characterized 3147 HF admissions over 26 months. Automated identification and characterization systems can be developed and used with a substantial degree of specificity for the diagnosis of decompensated HF, although sensitivity is limited by clinical data input. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Automated segmentation of geographic atrophy in fundus autofluorescence images using supervised pixel classification.

    PubMed

    Hu, Zhihong; Medioni, Gerard G; Hernandez, Matthias; Sadda, Srinivas R

    2015-01-01

    Geographic atrophy (GA) is a manifestation of the advanced or late stage of age-related macular degeneration (AMD). AMD is the leading cause of blindness in people over the age of 65 in the western world. The purpose of this study is to develop a fully automated supervised pixel classification approach for segmenting GA, including uni- and multifocal patches in fundus autofluorescene (FAF) images. The image features include region-wise intensity measures, gray-level co-occurrence matrix measures, and Gaussian filter banks. A [Formula: see text]-nearest-neighbor pixel classifier is applied to obtain a GA probability map, representing the likelihood that the image pixel belongs to GA. Sixteen randomly chosen FAF images were obtained from 16 subjects with GA. The algorithm-defined GA regions are compared with manual delineation performed by a certified image reading center grader. Eight-fold cross-validation is applied to evaluate the algorithm performance. The mean overlap ratio (OR), area correlation (Pearson's [Formula: see text]), accuracy (ACC), true positive rate (TPR), specificity (SPC), positive predictive value (PPV), and false discovery rate (FDR) between the algorithm- and manually defined GA regions are [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], respectively.

  4. Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks

    PubMed Central

    Kreshuk, Anna; Koethe, Ullrich; Pax, Elizabeth; Bock, Davi D.; Hamprecht, Fred A.

    2014-01-01

    We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution) of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections) is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem). PMID:24516550

  5. Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches.

    PubMed

    Araki, Tadashi; Kumar, P Krishna; Suri, Harman S; Ikeda, Nobutaka; Gupta, Ajay; Saba, Luca; Rajan, Jeny; Lavra, Francesco; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Suri, Jasjit S

    2016-07-01

    The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.35 ± 0.95 mm for JDB and 6.20 ± 1.35 mm for HKDB. The precision-of-merit was: 97.4 % and 98.0 % w.r.t to two manual tracings for JDB and 99.7 % and 97.9 % w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.

  6. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones, and forming training sets from three or four pattern classes. The presented automated classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  7. High-Reproducibility and High-Accuracy Method for Automated Topic Classification

    NASA Astrophysics Data System (ADS)

    Lancichinetti, Andrea; Sirer, M. Irmak; Wang, Jane X.; Acuna, Daniel; Körding, Konrad; Amaral, Luís A. Nunes

    2015-01-01

    Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent searching, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state of the art in topic modeling. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results that are not accurate in inferring the most suitable model parameters. Adapting approaches from community detection in networks, we propose a new algorithm that displays high reproducibility and high accuracy and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure.

  8. Unraveling cognitive traits using the Morris water maze unbiased strategy classification (MUST-C) algorithm.

    PubMed

    Illouz, Tomer; Madar, Ravit; Louzon, Yoram; Griffioen, Kathleen J; Okun, Eitan

    2016-02-01

    The assessment of spatial cognitive learning in rodents is a central approach in neuroscience, as it enables one to assess and quantify the effects of treatments and genetic manipulations from a broad perspective. Although the Morris water maze (MWM) is a well-validated paradigm for testing spatial learning abilities, manual categorization of performance in the MWM into behavioral strategies is subject to individual interpretation, and thus to biases. Here we offer a support vector machine (SVM) - based, automated, MWM unbiased strategy classification (MUST-C) algorithm, as well as a cognitive score scale. This model was examined and validated by analyzing data obtained from five MWM experiments with changing platform sizes, revealing a limitation in the spatial capacity of the hippocampus. We have further employed this algorithm to extract novel mechanistic insights on the impact of members of the Toll-like receptor pathway on cognitive spatial learning and memory. The MUST-C algorithm can greatly benefit MWM users as it provides a standardized method of strategy classification as well as a cognitive scoring scale, which cannot be derived from typical analysis of MWM data. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Automated target classification in high resolution dual frequency sonar imagery

    NASA Astrophysics Data System (ADS)

    Aridgides, Tom; Fernández, Manuel

    2007-04-01

    An improved computer-aided-detection / computer-aided-classification (CAD/CAC) processing string has been developed. The classified objects of 2 distinct strings are fused using the classification confidence values and their expansions as features, and using "summing" or log-likelihood-ratio-test (LLRT) based fusion rules. The utility of the overall processing strings and their fusion was demonstrated with new high-resolution dual frequency sonar imagery. Three significant fusion algorithm improvements were made. First, a nonlinear 2nd order (Volterra) feature LLRT fusion algorithm was developed. Second, a Box-Cox nonlinear feature LLRT fusion algorithm was developed. The Box-Cox transformation consists of raising the features to a to-be-determined power. Third, a repeated application of a subset feature selection / feature orthogonalization / Volterra feature LLRT fusion block was utilized. It was shown that cascaded Volterra feature LLRT fusion of the CAD/CAC processing strings outperforms summing, baseline single-stage Volterra and Box-Cox feature LLRT algorithms, yielding significant improvements over the best single CAD/CAC processing string results, and providing the capability to correctly call the majority of targets while maintaining a very low false alarm rate. Additionally, the robustness of cascaded Volterra feature fusion was demonstrated, by showing that the algorithm yields similar performance with the training and test sets.

  10. Image quality classification for DR screening using deep learning.

    PubMed

    FengLi Yu; Jing Sun; Annan Li; Jun Cheng; Cheng Wan; Jiang Liu

    2017-07-01

    The quality of input images significantly affects the outcome of automated diabetic retinopathy (DR) screening systems. Unlike the previous methods that only consider simple low-level features such as hand-crafted geometric and structural features, in this paper we propose a novel method for retinal image quality classification (IQC) that performs computational algorithms imitating the working of the human visual system. The proposed algorithm combines unsupervised features from saliency map and supervised features coming from convolutional neural networks (CNN), which are fed to an SVM to automatically detect high quality vs poor quality retinal fundus images. We demonstrate the superior performance of our proposed algorithm on a large retinal fundus image dataset and the method could achieve higher accuracy than other methods. Although retinal images are used in this study, the methodology is applicable to the image quality assessment and enhancement of other types of medical images.

  11. Automated retinal vessel type classification in color fundus images

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Nemeth, S.; Bauman, W.; Soliz, P.

    2013-02-01

    Automated retinal vessel type classification is an essential first step toward machine-based quantitative measurement of various vessel topological parameters and identifying vessel abnormalities and alternations in cardiovascular disease risk analysis. This paper presents a new and accurate automatic artery and vein classification method developed for arteriolar-to-venular width ratio (AVR) and artery and vein tortuosity measurements in regions of interest (ROI) of 1.5 and 2.5 optic disc diameters from the disc center, respectively. This method includes illumination normalization, automatic optic disc detection and retinal vessel segmentation, feature extraction, and a partial least squares (PLS) classification. Normalized multi-color information, color variation, and multi-scale morphological features are extracted on each vessel segment. We trained the algorithm on a set of 51 color fundus images using manually marked arteries and veins. We tested the proposed method in a previously unseen test data set consisting of 42 images. We obtained an area under the ROC curve (AUC) of 93.7% in the ROI of AVR measurement and 91.5% of AUC in the ROI of tortuosity measurement. The proposed AV classification method has the potential to assist automatic cardiovascular disease early detection and risk analysis.

  12. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.

    PubMed

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  13. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features

    NASA Astrophysics Data System (ADS)

    Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate

    2017-08-01

    Objective. Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. Approach. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. Main results. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Significance. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.

  14. Intratumoral heterogeneity as a source of discordance in breast cancer biomarker classification.

    PubMed

    Allott, Emma H; Geradts, Joseph; Sun, Xuezheng; Cohen, Stephanie M; Zirpoli, Gary R; Khoury, Thaer; Bshara, Wiam; Chen, Mengjie; Sherman, Mark E; Palmer, Julie R; Ambrosone, Christine B; Olshan, Andrew F; Troester, Melissa A

    2016-06-28

    Spatial heterogeneity in biomarker expression may impact breast cancer classification. The aims of this study were to estimate the frequency of spatial heterogeneity in biomarker expression within tumors, to identify technical and biological factors contributing to spatial heterogeneity, and to examine the impact of discordant biomarker status within tumors on clinical record agreement. Tissue microarrays (TMAs) were constructed using two to four cores (1.0 mm) for each of 1085 invasive breast cancers from the Carolina Breast Cancer Study, which is part of the AMBER Consortium. Immunohistochemical staining for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) was quantified using automated digital imaging analysis. The biomarker status for each core and for each case was assigned using clinical thresholds. Cases with core-to-core biomarker discordance were manually reviewed to distinguish intratumoral biomarker heterogeneity from misclassification of biomarker status by the automated algorithm. The impact of core-to-core biomarker discordance on case-level agreement between TMAs and the clinical record was evaluated. On the basis of automated analysis, discordant biomarker status between TMA cores occurred in 9 %, 16 %, and 18 % of cases for ER, PR, and HER2, respectively. Misclassification of benign epithelium and/or ductal carcinoma in situ as invasive carcinoma by the automated algorithm was implicated in discordance among cores. However, manual review of discordant cases confirmed spatial heterogeneity as a source of discordant biomarker status between cores in 2 %, 7 %, and 8 % of cases for ER, PR, and HER2, respectively. Overall, agreement between TMA and clinical record was high for ER (94 %), PR (89 %), and HER2 (88 %), but it was reduced in cases with core-to-core discordance (agreement 70 % for ER, 61 % for PR, and 57 % for HER2). Intratumoral biomarker heterogeneity may impact breast cancer classification accuracy, with implications for clinical management. Both manually confirmed biomarker heterogeneity and misclassification of biomarker status by automated image analysis contribute to discordant biomarker status between TMA cores. Given that manually confirmed heterogeneity is uncommon (<10 % of cases), large studies are needed to study the impact of heterogeneous biomarker expression on breast cancer classification and outcomes.

  15. Classification of multiple sclerosis lesions using adaptive dictionary learning.

    PubMed

    Deshpande, Hrishikesh; Maurel, Pierre; Barillot, Christian

    2015-12-01

    This paper presents a sparse representation and an adaptive dictionary learning based method for automated classification of multiple sclerosis (MS) lesions in magnetic resonance (MR) images. Manual delineation of MS lesions is a time-consuming task, requiring neuroradiology experts to analyze huge volume of MR data. This, in addition to the high intra- and inter-observer variability necessitates the requirement of automated MS lesion classification methods. Among many image representation models and classification methods that can be used for such purpose, we investigate the use of sparse modeling. In the recent years, sparse representation has evolved as a tool in modeling data using a few basis elements of an over-complete dictionary and has found applications in many image processing tasks including classification. We propose a supervised classification approach by learning dictionaries specific to the lesions and individual healthy brain tissues, which include white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The size of the dictionaries learned for each class plays a major role in data representation but it is an even more crucial element in the case of competitive classification. Our approach adapts the size of the dictionary for each class, depending on the complexity of the underlying data. The algorithm is validated using 52 multi-sequence MR images acquired from 13 MS patients. The results demonstrate the effectiveness of our approach in MS lesion classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Style-based classification of Chinese ink and wash paintings

    NASA Astrophysics Data System (ADS)

    Sheng, Jiachuan; Jiang, Jianmin

    2013-09-01

    Following the fact that a large collection of ink and wash paintings (IWP) is being digitized and made available on the Internet, their automated content description, analysis, and management are attracting attention across research communities. While existing research in relevant areas is primarily focused on image processing approaches, a style-based algorithm is proposed to classify IWPs automatically by their authors. As IWPs do not have colors or even tones, the proposed algorithm applies edge detection to locate the local region and detect painting strokes to enable histogram-based feature extraction and capture of important cues to reflect the styles of different artists. Such features are then applied to drive a number of neural networks in parallel to complete the classification, and an information entropy balanced fusion is proposed to make an integrated decision for the multiple neural network classification results in which the entropy is used as a pointer to combine the global and local features. Evaluations via experiments support that the proposed algorithm achieves good performances, providing excellent potential for computerized analysis and management of IWPs.

  17. Person detection and tracking with a 360° lidar system

    NASA Astrophysics Data System (ADS)

    Hammer, Marcus; Hebel, Marcus; Arens, Michael

    2017-10-01

    Today it is easily possible to generate dense point clouds of the sensor environment using 360° LiDAR (Light Detection and Ranging) sensors which are available since a number of years. The interpretation of these data is much more challenging. For the automated data evaluation the detection and classification of objects is a fundamental task. Especially in urban scenarios moving objects like persons or vehicles are of particular interest, for instance in automatic collision avoidance, for mobile sensor platforms or surveillance tasks. In literature there are several approaches for automated person detection in point clouds. While most techniques show acceptable results in object detection, the computation time is often crucial. The runtime can be problematic, especially due to the amount of data in the panoramic 360° point clouds. On the other hand, for most applications an object detection and classification in real time is needed. The paper presents a proposal for a fast, real-time capable algorithm for person detection, classification and tracking in panoramic point clouds.

  18. Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions

    PubMed Central

    Maruthapillai, Vasanthan; Murugappan, Murugappan

    2016-01-01

    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject’s face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject’s face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network. PMID:26859884

  19. Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions.

    PubMed

    Maruthapillai, Vasanthan; Murugappan, Murugappan

    2016-01-01

    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.

  20. Enabling phenotypic big data with PheNorm.

    PubMed

    Yu, Sheng; Ma, Yumeng; Gronsbell, Jessica; Cai, Tianrun; Ananthakrishnan, Ashwin N; Gainer, Vivian S; Churchill, Susanne E; Szolovits, Peter; Murphy, Shawn N; Kohane, Isaac S; Liao, Katherine P; Cai, Tianxi

    2018-01-01

    Electronic health record (EHR)-based phenotyping infers whether a patient has a disease based on the information in his or her EHR. A human-annotated training set with gold-standard disease status labels is usually required to build an algorithm for phenotyping based on a set of predictive features. The time intensiveness of annotation and feature curation severely limits the ability to achieve high-throughput phenotyping. While previous studies have successfully automated feature curation, annotation remains a major bottleneck. In this paper, we present PheNorm, a phenotyping algorithm that does not require expert-labeled samples for training. The most predictive features, such as the number of International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes or mentions of the target phenotype, are normalized to resemble a normal mixture distribution with high area under the receiver operating curve (AUC) for prediction. The transformed features are then denoised and combined into a score for accurate disease classification. We validated the accuracy of PheNorm with 4 phenotypes: coronary artery disease, rheumatoid arthritis, Crohn's disease, and ulcerative colitis. The AUCs of the PheNorm score reached 0.90, 0.94, 0.95, and 0.94 for the 4 phenotypes, respectively, which were comparable to the accuracy of supervised algorithms trained with sample sizes of 100-300, with no statistically significant difference. The accuracy of the PheNorm algorithms is on par with algorithms trained with annotated samples. PheNorm fully automates the generation of accurate phenotyping algorithms and demonstrates the capacity for EHR-driven annotations to scale to the next level - phenotypic big data. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Semi-automated surface mapping via unsupervised classification

    NASA Astrophysics Data System (ADS)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-09-01

    Due to the increasing volume of the returned data from space mission, the human search for correlation and identification of interesting features becomes more and more unfeasible. Statistical extraction of features via machine learning methods will increase the scientific output of remote sensing missions and aid the discovery of yet unknown feature hidden in dataset. Those methods exploit algorithm trained on features from multiple instrument, returning classification maps that explore intra-dataset correlation, allowing for the discovery of unknown features. We present two applications, one for Mercury and one for Vesta.

  2. Galaxy And Mass Assembly: automatic morphological classification of galaxies using statistical learning

    NASA Astrophysics Data System (ADS)

    Sreejith, Sreevarsha; Pereverzyev, Sergiy, Jr.; Kelvin, Lee S.; Marleau, Francine R.; Haltmeier, Markus; Ebner, Judith; Bland-Hawthorn, Joss; Driver, Simon P.; Graham, Alister W.; Holwerda, Benne W.; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Moffett, Amanda J.; Pimbblet, Kevin A.; Taylor, Edward N.; Wang, Lingyu; Wright, Angus H.

    2018-03-01

    We apply four statistical learning methods to a sample of 7941 galaxies (z < 0.06) from the Galaxy And Mass Assembly survey to test the feasibility of using automated algorithms to classify galaxies. Using 10 features measured for each galaxy (sizes, colours, shape parameters, and stellar mass), we apply the techniques of Support Vector Machines, Classification Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent, respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification (`unanimous disagreement') serves as a potential indicator of human error in classification, occurring in ˜ 9 per cent of ellipticals, ˜ 9 per cent of little blue spheroids, ˜ 14 per cent of early-type spirals, ˜ 21 per cent of intermediate-type spirals, and ˜ 4 per cent of late-type spirals and irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy types are : E, 70.1 per cent; LBS, 75.6 per cent; S0-Sa, 63.6 per cent; Sab-Scd, 56.4 per cent, and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS, and S0-Sa) and disc-dominated (Sab-Scd and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of 84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.

  3. Investigation of automated feature extraction using multiple data sources

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Perkins, Simon J.; Pope, Paul A.; Theiler, James P.; David, Nancy A.; Porter, Reid B.

    2003-04-01

    An increasing number and variety of platforms are now capable of collecting remote sensing data over a particular scene. For many applications, the information available from any individual sensor may be incomplete, inconsistent or imprecise. However, other sources may provide complementary and/or additional data. Thus, for an application such as image feature extraction or classification, it may be that fusing the mulitple data sources can lead to more consistent and reliable results. Unfortunately, with the increased complexity of the fused data, the search space of feature-extraction or classification algorithms also greatly increases. With a single data source, the determination of a suitable algorithm may be a significant challenge for an image analyst. With the fused data, the search for suitable algorithms can go far beyond the capabilities of a human in a realistic time frame, and becomes the realm of machine learning, where the computational power of modern computers can be harnessed to the task at hand. We describe experiments in which we investigate the ability of a suite of automated feature extraction tools developed at Los Alamos National Laboratory to make use of multiple data sources for various feature extraction tasks. We compare and contrast this software's capabilities on 1) individual data sets from different data sources 2) fused data sets from multiple data sources and 3) fusion of results from multiple individual data sources.

  4. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities.

    PubMed

    Griffanti, Ludovica; Zamboni, Giovanna; Khan, Aamira; Li, Linxin; Bonifacio, Guendalina; Sundaresan, Vaanathi; Schulz, Ursula G; Kuker, Wilhelm; Battaglini, Marco; Rothwell, Peter M; Jenkinson, Mark

    2016-11-01

    Reliable quantification of white matter hyperintensities of presumed vascular origin (WMHs) is increasingly needed, given the presence of these MRI findings in patients with several neurological and vascular disorders, as well as in elderly healthy subjects. We present BIANCA (Brain Intensity AbNormality Classification Algorithm), a fully automated, supervised method for WMH detection, based on the k-nearest neighbour (k-NN) algorithm. Relative to previous k-NN based segmentation methods, BIANCA offers different options for weighting the spatial information, local spatial intensity averaging, and different options for the choice of the number and location of the training points. BIANCA is multimodal and highly flexible so that the user can adapt the tool to their protocol and specific needs. We optimised and validated BIANCA on two datasets with different MRI protocols and patient populations (a "predominantly neurodegenerative" and a "predominantly vascular" cohort). BIANCA was first optimised on a subset of images for each dataset in terms of overlap and volumetric agreement with a manually segmented WMH mask. The correlation between the volumes extracted with BIANCA (using the optimised set of options), the volumes extracted from the manual masks and visual ratings showed that BIANCA is a valid alternative to manual segmentation. The optimised set of options was then applied to the whole cohorts and the resulting WMH volume estimates showed good correlations with visual ratings and with age. Finally, we performed a reproducibility test, to evaluate the robustness of BIANCA, and compared BIANCA performance against existing methods. Our findings suggest that BIANCA, which will be freely available as part of the FSL package, is a reliable method for automated WMH segmentation in large cross-sectional cohort studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Rotor Smoothing and Vibration Monitoring Results for the US Army VMEP

    DTIC Science & Technology

    2009-06-01

    individual component CI detection thresholds, and development of models for diagnostics, prognostics , and anomaly detection . Figure 16 VMEP Server...and prognostics are of current interest. Development of those systems requires large amounts of data (collection, monitoring , manipulation) to capture...development of automated systems and for continuous updating of algorithms to improve detection , classification, and prognostic performance. A test

  6. Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate

    DTIC Science & Technology

    2010-05-01

    Breast cancer, cell signaling, cell proliferation, histology, image analysis 15. NUMBER OF PAGES - 51 16. PRICE CODE 17. SECURITY CLASSIFICATION...revealed by individual stains in multiplex combinations; and (3) software (FARSIGHT) for automated multispectral image analysis that (i) segments...Task 3. Develop computational algorithms for multispectral immunohistological image analysis FARSIGHT software was developed to quantify intrinsic

  7. An automated sleep-state classification algorithm for quantifying sleep timing and sleep-dependent dynamics of electroencephalographic and cerebral metabolic parameters

    PubMed Central

    Rempe, Michael J; Clegern, William C; Wisor, Jonathan P

    2015-01-01

    Introduction Rodent sleep research uses electroencephalography (EEG) and electromyography (EMG) to determine the sleep state of an animal at any given time. EEG and EMG signals, typically sampled at >100 Hz, are segmented arbitrarily into epochs of equal duration (usually 2–10 seconds), and each epoch is scored as wake, slow-wave sleep (SWS), or rapid-eye-movement sleep (REMS), on the basis of visual inspection. Automated state scoring can minimize the burden associated with state and thereby facilitate the use of shorter epoch durations. Methods We developed a semiautomated state-scoring procedure that uses a combination of principal component analysis and naïve Bayes classification, with the EEG and EMG as inputs. We validated this algorithm against human-scored sleep-state scoring of data from C57BL/6J and BALB/CJ mice. We then applied a general homeostatic model to characterize the state-dependent dynamics of sleep slow-wave activity and cerebral glycolytic flux, measured as lactate concentration. Results More than 89% of epochs scored as wake or SWS by the human were scored as the same state by the machine, whether scoring in 2-second or 10-second epochs. The majority of epochs scored as REMS by the human were also scored as REMS by the machine. However, of epochs scored as REMS by the human, more than 10% were scored as SWS by the machine and 18 (10-second epochs) to 28% (2-second epochs) were scored as wake. These biases were not strain-specific, as strain differences in sleep-state timing relative to the light/dark cycle, EEG power spectral profiles, and the homeostatic dynamics of both slow waves and lactate were detected equally effectively with the automated method or the manual scoring method. Error associated with mathematical modeling of temporal dynamics of both EEG slow-wave activity and cerebral lactate either did not differ significantly when state scoring was done with automated versus visual scoring, or was reduced with automated state scoring relative to manual classification. Conclusions Machine scoring is as effective as human scoring in detecting experimental effects in rodent sleep studies. Automated scoring is an efficient alternative to visual inspection in studies of strain differences in sleep and the temporal dynamics of sleep-related physiological parameters. PMID:26366107

  8. Spectral unmixing of urban land cover using a generic library approach

    NASA Astrophysics Data System (ADS)

    Degerickx, Jeroen; Lordache, Marian-Daniel; Okujeni, Akpona; Hermy, Martin; van der Linden, Sebastian; Somers, Ben

    2016-10-01

    Remote sensing based land cover classification in urban areas generally requires the use of subpixel classification algorithms to take into account the high spatial heterogeneity. These spectral unmixing techniques often rely on spectral libraries, i.e. collections of pure material spectra (endmembers, EM), which ideally cover the large EM variability typically present in urban scenes. Despite the advent of several (semi-) automated EM detection algorithms, the collection of such image-specific libraries remains a tedious and time-consuming task. As an alternative, we suggest the use of a generic urban EM library, containing material spectra under varying conditions, acquired from different locations and sensors. This approach requires an efficient EM selection technique, capable of only selecting those spectra relevant for a specific image. In this paper, we evaluate and compare the potential of different existing library pruning algorithms (Iterative Endmember Selection and MUSIC) using simulated hyperspectral (APEX) data of the Brussels metropolitan area. In addition, we develop a new hybrid EM selection method which is shown to be highly efficient in dealing with both imagespecific and generic libraries, subsequently yielding more robust land cover classification results compared to existing methods. Future research will include further optimization of the proposed algorithm and additional tests on both simulated and real hyperspectral data.

  9. Human Vision-Motivated Algorithm Allows Consistent Retinal Vessel Classification Based on Local Color Contrast for Advancing General Diagnostic Exams.

    PubMed

    Ivanov, Iliya V; Leitritz, Martin A; Norrenberg, Lars A; Völker, Michael; Dynowski, Marek; Ueffing, Marius; Dietter, Johannes

    2016-02-01

    Abnormalities of blood vessel anatomy, morphology, and ratio can serve as important diagnostic markers for retinal diseases such as AMD or diabetic retinopathy. Large cohort studies demand automated and quantitative image analysis of vascular abnormalities. Therefore, we developed an analytical software tool to enable automated standardized classification of blood vessels supporting clinical reading. A dataset of 61 images was collected from a total of 33 women and 8 men with a median age of 38 years. The pupils were not dilated, and images were taken after dark adaption. In contrast to current methods in which classification is based on vessel profile intensity averages, and similar to human vision, local color contrast was chosen as a discriminator to allow artery vein discrimination and arterial-venous ratio (AVR) calculation without vessel tracking. With 83% ± 1 standard error of the mean for our dataset, we achieved best classification for weighted lightness information from a combination of the red, green, and blue channels. Tested on an independent dataset, our method reached 89% correct classification, which, when benchmarked against conventional ophthalmologic classification, shows significantly improved classification scores. Our study demonstrates that vessel classification based on local color contrast can cope with inter- or intraimage lightness variability and allows consistent AVR calculation. We offer an open-source implementation of this method upon request, which can be integrated into existing tool sets and applied to general diagnostic exams.

  10. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervisedmore » assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.« less

  11. A Practical and Automated Approach to Large Area Forest Disturbance Mapping with Remote Sensing

    PubMed Central

    Ozdogan, Mutlu

    2014-01-01

    In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions. PMID:24717283

  12. A practical and automated approach to large area forest disturbance mapping with remote sensing.

    PubMed

    Ozdogan, Mutlu

    2014-01-01

    In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels whose value is above or below a threshold defined by the number of standard deviations from the mean value of the histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the approach make the new method especially practical for forest cover change analysis over very large regions.

  13. Automated Tissue Classification Framework for Reproducible Chronic Wound Assessment

    PubMed Central

    Mukherjee, Rashmi; Manohar, Dhiraj Dhane; Das, Dev Kumar; Achar, Arun; Mitra, Analava; Chakraborty, Chandan

    2014-01-01

    The aim of this paper was to develop a computer assisted tissue classification (granulation, necrotic, and slough) scheme for chronic wound (CW) evaluation using medical image processing and statistical machine learning techniques. The red-green-blue (RGB) wound images grabbed by normal digital camera were first transformed into HSI (hue, saturation, and intensity) color space and subsequently the “S” component of HSI color channels was selected as it provided higher contrast. Wound areas from 6 different types of CW were segmented from whole images using fuzzy divergence based thresholding by minimizing edge ambiguity. A set of color and textural features describing granulation, necrotic, and slough tissues in the segmented wound area were extracted using various mathematical techniques. Finally, statistical learning algorithms, namely, Bayesian classification and support vector machine (SVM), were trained and tested for wound tissue classification in different CW images. The performance of the wound area segmentation protocol was further validated by ground truth images labeled by clinical experts. It was observed that SVM with 3rd order polynomial kernel provided the highest accuracies, that is, 86.94%, 90.47%, and 75.53%, for classifying granulation, slough, and necrotic tissues, respectively. The proposed automated tissue classification technique achieved the highest overall accuracy, that is, 87.61%, with highest kappa statistic value (0.793). PMID:25114925

  14. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    PubMed

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    PubMed Central

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-01-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management. PMID:28338047

  16. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    NASA Astrophysics Data System (ADS)

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-03-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.

  17. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  18. Classification of Korla fragrant pears using NIR hyperspectral imaging analysis

    NASA Astrophysics Data System (ADS)

    Rao, Xiuqin; Yang, Chun-Chieh; Ying, Yibin; Kim, Moon S.; Chao, Kuanglin

    2012-05-01

    Korla fragrant pears are small oval pears characterized by light green skin, crisp texture, and a pleasant perfume for which they are named. Anatomically, the calyx of a fragrant pear may be either persistent or deciduous; the deciduouscalyx fruits are considered more desirable due to taste and texture attributes. Chinese packaging standards require that packed cases of fragrant pears contain 5% or less of the persistent-calyx type. Near-infrared hyperspectral imaging was investigated as a potential means for automated sorting of pears according to calyx type. Hyperspectral images spanning the 992-1681 nm region were acquired using an EMCCD-based laboratory line-scan imaging system. Analysis of the hyperspectral images was performed to select wavebands useful for identifying persistent-calyx fruits and for identifying deciduous-calyx fruits. Based on the selected wavebands, an image-processing algorithm was developed that targets automated classification of Korla fragrant pears into the two categories for packaging purposes.

  19. Task-Driven Dictionary Learning Based on Mutual Information for Medical Image Classification.

    PubMed

    Diamant, Idit; Klang, Eyal; Amitai, Michal; Konen, Eli; Goldberger, Jacob; Greenspan, Hayit

    2017-06-01

    We present a novel variant of the bag-of-visual-words (BoVW) method for automated medical image classification. Our approach improves the BoVW model by learning a task-driven dictionary of the most relevant visual words per task using a mutual information-based criterion. Additionally, we generate relevance maps to visualize and localize the decision of the automatic classification algorithm. These maps demonstrate how the algorithm works and show the spatial layout of the most relevant words. We applied our algorithm to three different tasks: chest x-ray pathology identification (of four pathologies: cardiomegaly, enlarged mediastinum, right consolidation, and left consolidation), liver lesion classification into four categories in computed tomography (CT) images and benign/malignant clusters of microcalcifications (MCs) classification in breast mammograms. Validation was conducted on three datasets: 443 chest x-rays, 118 portal phase CT images of liver lesions, and 260 mammography MCs. The proposed method improves the classical BoVW method for all tested applications. For chest x-ray, area under curve of 0.876 was obtained for enlarged mediastinum identification compared to 0.855 using classical BoVW (with p-value 0.01). For MC classification, a significant improvement of 4% was achieved using our new approach (with p-value = 0.03). For liver lesion classification, an improvement of 6% in sensitivity and 2% in specificity were obtained (with p-value 0.001). We demonstrated that classification based on informative selected set of words results in significant improvement. Our new BoVW approach shows promising results in clinically important domains. Additionally, it can discover relevant parts of images for the task at hand without explicit annotations for training data. This can provide computer-aided support for medical experts in challenging image analysis tasks.

  20. Hybrid Optimization of Object-Based Classification in High-Resolution Images Using Continous ANT Colony Algorithm with Emphasis on Building Detection

    NASA Astrophysics Data System (ADS)

    Tamimi, E.; Ebadi, H.; Kiani, A.

    2017-09-01

    Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.

  1. Iterative variational mode decomposition based automated detection of glaucoma using fundus images.

    PubMed

    Maheshwari, Shishir; Pachori, Ram Bilas; Kanhangad, Vivek; Bhandary, Sulatha V; Acharya, U Rajendra

    2017-09-01

    Glaucoma is one of the leading causes of permanent vision loss. It is an ocular disorder caused by increased fluid pressure within the eye. The clinical methods available for the diagnosis of glaucoma require skilled supervision. They are manual, time consuming, and out of reach of common people. Hence, there is a need for an automated glaucoma diagnosis system for mass screening. In this paper, we present a novel method for an automated diagnosis of glaucoma using digital fundus images. Variational mode decomposition (VMD) method is used in an iterative manner for image decomposition. Various features namely, Kapoor entropy, Renyi entropy, Yager entropy, and fractal dimensions are extracted from VMD components. ReliefF algorithm is used to select the discriminatory features and these features are then fed to the least squares support vector machine (LS-SVM) for classification. Our proposed method achieved classification accuracies of 95.19% and 94.79% using three-fold and ten-fold cross-validation strategies, respectively. This system can aid the ophthalmologists in confirming their manual reading of classes (glaucoma or normal) using fundus images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Automated in vivo identification of fungal infection on human scalp using optical coherence tomography and machine learning

    NASA Astrophysics Data System (ADS)

    Dubey, Kavita; Srivastava, Vishal; Singh Mehta, Dalip

    2018-04-01

    Early identification of fungal infection on the human scalp is crucial for avoiding hair loss. The diagnosis of fungal infection on the human scalp is based on a visual assessment by trained experts or doctors. Optical coherence tomography (OCT) has the ability to capture fungal infection information from the human scalp with a high resolution. In this study, we present a fully automated, non-contact, non-invasive optical method for rapid detection of fungal infections based on the extracted features from A-line and B-scan images of OCT. A multilevel ensemble machine model is designed to perform automated classification, which shows the superiority of our classifier to the best classifier based on the features extracted from OCT images. In this study, 60 samples (30 fungal, 30 normal) were imaged by OCT and eight features were extracted. The classification algorithm had an average sensitivity, specificity and accuracy of 92.30, 90.90 and 91.66%, respectively, for identifying fungal and normal human scalps. This remarkable classifying ability makes the proposed model readily applicable to classifying the human scalp.

  3. Automated segmentation and feature extraction of product inspection items

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1997-03-01

    X-ray film and linescan images of pistachio nuts on conveyor trays for product inspection are considered. The final objective is the categorization of pistachios into good, blemished and infested nuts. A crucial step before classification is the separation of touching products and the extraction of features essential for classification. This paper addresses new detection and segmentation algorithms to isolate touching or overlapping items. These algorithms employ a new filter, a new watershed algorithm, and morphological processing to produce nutmeat-only images. Tests on a large database of x-ray film and real-time x-ray linescan images of around 2900 small, medium and large nuts showed excellent segmentation results. A new technique to detect and segment dark regions in nutmeat images is also presented and tested on approximately 300 x-ray film and approximately 300 real-time linescan x-ray images with 95-97 percent detection and correct segmentation. New algorithms are described that determine nutmeat fill ratio and locate splits in nutmeat. The techniques formulated in this paper are of general use in many different product inspection and computer vision problems.

  4. Data Analytics for Smart Parking Applications.

    PubMed

    Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele

    2016-09-23

    We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset.

  5. Unbiased classification of spatial strategies in the Barnes maze.

    PubMed

    Illouz, Tomer; Madar, Ravit; Clague, Charlotte; Griffioen, Kathleen J; Louzoun, Yoram; Okun, Eitan

    2016-11-01

    Spatial learning is one of the most widely studied cognitive domains in neuroscience. The Morris water maze and the Barnes maze are the most commonly used techniques to assess spatial learning and memory in rodents. Despite the fact that these tasks are well-validated paradigms for testing spatial learning abilities, manual categorization of performance into behavioral strategies is subject to individual interpretation, and thus to bias. We have previously described an unbiased machine-learning algorithm to classify spatial strategies in the Morris water maze. Here, we offer a support vector machine-based, automated, Barnes-maze unbiased strategy (BUNS) classification algorithm, as well as a cognitive score scale that can be used for memory acquisition, reversal training and probe trials. The BUNS algorithm can greatly benefit Barnes maze users as it provides a standardized method of strategy classification and cognitive scoring scale, which cannot be derived from typical Barnes maze data analysis. Freely available on the web at http://okunlab.wix.com/okunlab as a MATLAB application. eitan.okun@biu.ac.ilSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Data Analytics for Smart Parking Applications

    PubMed Central

    Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele

    2016-01-01

    We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset. PMID:27669259

  7. Inferring the most probable maps of underground utilities using Bayesian mapping model

    NASA Astrophysics Data System (ADS)

    Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony

    2018-03-01

    Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.

  8. Automated segmentation of thyroid gland on CT images with multi-atlas label fusion and random classification forest

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Chang, Kevin; Kim, Lauren; Turkbey, Evrim; Lu, Le; Yao, Jianhua; Summers, Ronald

    2015-03-01

    The thyroid gland plays an important role in clinical practice, especially for radiation therapy treatment planning. For patients with head and neck cancer, radiation therapy requires a precise delineation of the thyroid gland to be spared on the pre-treatment planning CT images to avoid thyroid dysfunction. In the current clinical workflow, the thyroid gland is normally manually delineated by radiologists or radiation oncologists, which is time consuming and error prone. Therefore, a system for automated segmentation of the thyroid is desirable. However, automated segmentation of the thyroid is challenging because the thyroid is inhomogeneous and surrounded by structures that have similar intensities. In this work, the thyroid gland segmentation is initially estimated by multi-atlas label fusion algorithm. The segmentation is refined by supervised statistical learning based voxel labeling with a random forest algorithm. Multiatlas label fusion (MALF) transfers expert-labeled thyroids from atlases to a target image using deformable registration. Errors produced by label transfer are reduced by label fusion that combines the results produced by all atlases into a consensus solution. Then, random forest (RF) employs an ensemble of decision trees that are trained on labeled thyroids to recognize features. The trained forest classifier is then applied to the thyroid estimated from the MALF by voxel scanning to assign the class-conditional probability. Voxels from the expert-labeled thyroids in CT volumes are treated as positive classes; background non-thyroid voxels as negatives. We applied this automated thyroid segmentation system to CT scans of 20 patients. The results showed that the MALF achieved an overall 0.75 Dice Similarity Coefficient (DSC) and the RF classification further improved the DSC to 0.81.

  9. Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images.

    PubMed

    Maheshwari, Shishir; Pachori, Ram Bilas; Acharya, U Rajendra

    2017-05-01

    Glaucoma is an ocular disorder caused due to increased fluid pressure in the optic nerve. It damages the optic nerve and subsequently causes loss of vision. The available scanning methods are Heidelberg retinal tomography, scanning laser polarimetry, and optical coherence tomography. These methods are expensive and require experienced clinicians to use them. So, there is a need to diagnose glaucoma accurately with low cost. Hence, in this paper, we have presented a new methodology for an automated diagnosis of glaucoma using digital fundus images based on empirical wavelet transform (EWT). The EWT is used to decompose the image, and correntropy features are obtained from decomposed EWT components. These extracted features are ranked based on t value feature selection algorithm. Then, these features are used for the classification of normal and glaucoma images using least-squares support vector machine (LS-SVM) classifier. The LS-SVM is employed for classification with radial basis function, Morlet wavelet, and Mexican-hat wavelet kernels. The classification accuracy of the proposed method is 98.33% and 96.67% using threefold and tenfold cross validation, respectively.

  10. Exploiting unsupervised and supervised classification for segmentation of the pathological lung in CT

    NASA Astrophysics Data System (ADS)

    Korfiatis, P.; Kalogeropoulou, C.; Daoussis, D.; Petsas, T.; Adonopoulos, A.; Costaridou, L.

    2009-07-01

    Delineation of lung fields in presence of diffuse lung diseases (DLPDs), such as interstitial pneumonias (IP), challenges segmentation algorithms. To deal with IP patterns affecting the lung border an automated image texture classification scheme is proposed. The proposed segmentation scheme is based on supervised texture classification between lung tissue (normal and abnormal) and surrounding tissue (pleura and thoracic wall) in the lung border region. This region is coarsely defined around an initial estimate of lung border, provided by means of Markov Radom Field modeling and morphological operations. Subsequently, a support vector machine classifier was trained to distinguish between the above two classes of tissue, using textural feature of gray scale and wavelet domains. 17 patients diagnosed with IP, secondary to connective tissue diseases were examined. Segmentation performance in terms of overlap was 0.924±0.021, and for shape differentiation mean, rms and maximum distance were 1.663±0.816, 2.334±1.574 and 8.0515±6.549 mm, respectively. An accurate, automated scheme is proposed for segmenting abnormal lung fields in HRC affected by IP

  11. Survey statistics of automated segmentations applied to optical imaging of mammalian cells.

    PubMed

    Bajcsy, Peter; Cardone, Antonio; Chalfoun, Joe; Halter, Michael; Juba, Derek; Kociolek, Marcin; Majurski, Michael; Peskin, Adele; Simon, Carl; Simon, Mylene; Vandecreme, Antoine; Brady, Mary

    2015-10-15

    The goal of this survey paper is to overview cellular measurements using optical microscopy imaging followed by automated image segmentation. The cellular measurements of primary interest are taken from mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of biological interest. In our applications, such cellular measurements are important for understanding cell phenomena, such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated segmentation as a software-based measurement leading to quantitative cellular measurements. We define the scope of this survey and a classification schema first. Next, all found and manually filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented), (2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6) computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements. Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and co-occurrence statistics of assigned categories. The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements, segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating segmentation execution, and (d) open research problems to pursue. The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.

  12. New approaches for measuring changes in the cortical surface using an automatic reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Pham, Dzung L.; Han, Xiao; Rettmann, Maryam E.; Xu, Chenyang; Tosun, Duygu; Resnick, Susan; Prince, Jerry L.

    2002-05-01

    In previous work, the authors presented a multi-stage procedure for the semi-automatic reconstruction of the cerebral cortex from magnetic resonance images. This method suffered from several disadvantages. First, the tissue classification algorithm used can be sensitive to noise within the image. Second, manual interaction was required for masking out undesired regions of the brain image, such as the ventricles and putamen. Third, iterated median filters were used to perform a topology correction on the initial cortical surface, resulting in an overly smoothed initial surface. Finally, the deformable surface used to converge to the cortex had difficulty capturing narrow gyri. In this work, all four disadvantages of the procedure have been addressed. A more robust tissue classification algorithm is employed and the manual masking step is replaced by an automatic method involving level set deformable models. Instead of iterated median filters, an algorithm developed specifically for topology correction is used. The last disadvantage is addressed using an algorithm that artificially separates adjacent sulcal banks. The new procedure is more automated but also more accurate than the previous one. Its utility is demonstrated by performing a preliminary study on data from the Baltimore Longitudinal Study of Aging.

  13. Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in Senegal

    USGS Publications Warehouse

    Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.

    2012-01-01

    Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.

  14. Electroencephalogram Signal Classification for Automated Epileptic Seizure Detection Using Genetic Algorithm

    PubMed Central

    Nanthini, B. Suguna; Santhi, B.

    2017-01-01

    Background: Epilepsy causes when the repeated seizure occurs in the brain. Electroencephalogram (EEG) test provides valuable information about the brain functions and can be useful to detect brain disorder, especially for epilepsy. In this study, application for an automated seizure detection model has been introduced successfully. Materials and Methods: The EEG signals are decomposed into sub-bands by discrete wavelet transform using db2 (daubechies) wavelet. The eight statistical features, the four gray level co-occurrence matrix and Renyi entropy estimation with four different degrees of order, are extracted from the raw EEG and its sub-bands. Genetic algorithm (GA) is used to select eight relevant features from the 16 dimension features. The model has been trained and tested using support vector machine (SVM) classifier successfully for EEG signals. The performance of the SVM classifier is evaluated for two different databases. Results: The study has been experimented through two different analyses and achieved satisfactory performance for automated seizure detection using relevant features as the input to the SVM classifier. Conclusion: Relevant features using GA give better accuracy performance for seizure detection. PMID:28781480

  15. Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network.

    PubMed

    Duraisamy, Baskar; Shanmugam, Jayanthi Venkatraman; Annamalai, Jayanthi

    2018-02-19

    An early intervention of Alzheimer's disease (AD) is highly essential due to the fact that this neuro degenerative disease generates major life-threatening issues, especially memory loss among patients in society. Moreover, categorizing NC (Normal Control), MCI (Mild Cognitive Impairment) and AD early in course allows the patients to experience benefits from new treatments. Therefore, it is important to construct a reliable classification technique to discriminate the patients with or without AD from the bio medical imaging modality. Hence, we developed a novel FCM based Weighted Probabilistic Neural Network (FWPNN) classification algorithm and analyzed the brain images related to structural MRI modality for better discrimination of class labels. Initially our proposed framework begins with brain image normalization stage. In this stage, ROI regions related to Hippo-Campus (HC) and Posterior Cingulate Cortex (PCC) from the brain images are extracted using Automated Anatomical Labeling (AAL) method. Subsequently, nineteen highly relevant AD related features are selected through Multiple-criterion feature selection method. At last, our novel FWPNN classification algorithm is imposed to remove suspicious samples from the training data with an end goal to enhance the classification performance. This newly developed classification algorithm combines both the goodness of supervised and unsupervised learning techniques. The experimental validation is carried out with the ADNI subset and then to the Bordex-3 city dataset. Our proposed classification approach achieves an accuracy of about 98.63%, 95.4%, 96.4% in terms of classification with AD vs NC, MCI vs NC and AD vs MCI. The experimental results suggest that the removal of noisy samples from the training data can enhance the decision generation process of the expert systems.

  16. Machine learning methods for the classification of gliomas: Initial results using features extracted from MR spectroscopy.

    PubMed

    Ranjith, G; Parvathy, R; Vikas, V; Chandrasekharan, Kesavadas; Nair, Suresh

    2015-04-01

    With the advent of new imaging modalities, radiologists are faced with handling increasing volumes of data for diagnosis and treatment planning. The use of automated and intelligent systems is becoming essential in such a scenario. Machine learning, a branch of artificial intelligence, is increasingly being used in medical image analysis applications such as image segmentation, registration and computer-aided diagnosis and detection. Histopathological analysis is currently the gold standard for classification of brain tumors. The use of machine learning algorithms along with extraction of relevant features from magnetic resonance imaging (MRI) holds promise of replacing conventional invasive methods of tumor classification. The aim of the study is to classify gliomas into benign and malignant types using MRI data. Retrospective data from 28 patients who were diagnosed with glioma were used for the analysis. WHO Grade II (low-grade astrocytoma) was classified as benign while Grade III (anaplastic astrocytoma) and Grade IV (glioblastoma multiforme) were classified as malignant. Features were extracted from MR spectroscopy. The classification was done using four machine learning algorithms: multilayer perceptrons, support vector machine, random forest and locally weighted learning. Three of the four machine learning algorithms gave an area under ROC curve in excess of 0.80. Random forest gave the best performance in terms of AUC (0.911) while sensitivity was best for locally weighted learning (86.1%). The performance of different machine learning algorithms in the classification of gliomas is promising. An even better performance may be expected by integrating features extracted from other MR sequences. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network.

    PubMed

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-07-08

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods.

  18. Multi-National Banknote Classification Based on Visible-light Line Sensor and Convolutional Neural Network

    PubMed Central

    Pham, Tuyen Danh; Lee, Dong Eun; Park, Kang Ryoung

    2017-01-01

    Automatic recognition of banknotes is applied in payment facilities, such as automated teller machines (ATMs) and banknote counters. Besides the popular approaches that focus on studying the methods applied to various individual types of currencies, there have been studies conducted on simultaneous classification of banknotes from multiple countries. However, their methods were conducted with limited numbers of banknote images, national currencies, and denominations. To address this issue, we propose a multi-national banknote classification method based on visible-light banknote images captured by a one-dimensional line sensor and classified by a convolutional neural network (CNN) considering the size information of each denomination. Experiments conducted on the combined banknote image database of six countries with 62 denominations gave a classification accuracy of 100%, and results show that our proposed algorithm outperforms previous methods. PMID:28698466

  19. A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations.

    PubMed

    Alsalem, M A; Zaidan, A A; Zaidan, B B; Hashim, M; Madhloom, H T; Azeez, N D; Alsyisuf, S

    2018-05-01

    Acute leukaemia diagnosis is a field requiring automated solutions, tools and methods and the ability to facilitate early detection and even prediction. Many studies have focused on the automatic detection and classification of acute leukaemia and their subtypes to promote enable highly accurate diagnosis. This study aimed to review and analyse literature related to the detection and classification of acute leukaemia. The factors that were considered to improve understanding on the field's various contextual aspects in published studies and characteristics were motivation, open challenges that confronted researchers and recommendations presented to researchers to enhance this vital research area. We systematically searched all articles about the classification and detection of acute leukaemia, as well as their evaluation and benchmarking, in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 2007 to 2017. These indices were considered to be sufficiently extensive to encompass our field of literature. Based on our inclusion and exclusion criteria, 89 articles were selected. Most studies (58/89) focused on the methods or algorithms of acute leukaemia classification, a number of papers (22/89) covered the developed systems for the detection or diagnosis of acute leukaemia and few papers (5/89) presented evaluation and comparative studies. The smallest portion (4/89) of articles comprised reviews and surveys. Acute leukaemia diagnosis, which is a field requiring automated solutions, tools and methods, entails the ability to facilitate early detection or even prediction. Many studies have been performed on the automatic detection and classification of acute leukaemia and their subtypes to promote accurate diagnosis. Research areas on medical-image classification vary, but they are all equally vital. We expect this systematic review to help emphasise current research opportunities and thus extend and create additional research fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Enhancing and Archiving the APS Catalog of the POSS I

    NASA Technical Reports Server (NTRS)

    Humphreys, Roberta M.

    2003-01-01

    We have worked on two different projects: 1) Archiving the APS Catalog of the POSS I for distribution to NASA's NED at IPAC, SIMBAD in France, and individual astronomers and 2) The automated morphological classification of galaxies. We have completed archiving the Catalog into easily readable binary files. The database together with the software to read it has been distributed on DVD's to the national and international data centers and to individual astronomers. The archived Catalog contains more than 89 million objects in 632 fields in the first epoch Palomar Observatory Sky Survey. Additional image parameters not available in the original on-line version are also included in the archived version. The archived Catalog is also available and can be queried at the APS web site (URL: http://aps.umn.edu) which has been improved with a much faster and more efficient querying system. The Catalog can be downloaded as binary datafiles with the source code for reading it. It is also being integrated into the SkyQuery system which includes the Sloan Digital Sky Survey, 2MASS, and the FIRST radio sky survey. We experimented with different classification algorithms to automate the morphological classification of galaxies. This is an especially difficult problem because there are not only a large number of attributes or parameters and measurement uncertainties, but also the added complication of human disagreement about the adopted types. To solve this problem we used 837 galaxy images from nine POSS I fields at the North Galactic Pole classified by two independent astronomers for which they agree on the morphological types. The initial goal was to separate the galaxies into the three broad classes relevant to issues of large scale structure and galaxy formation and evolution: early (ellipticals and lenticulars), spirals, and late (irregulars) with an accuracy or success rate that rivals the best astronomer classifiers. We also needed to identify a set of parameters derived from the digitized images that separate the galaxies by type. The human eye can easily recognize complicated patterns in images such as spiral arms which can be spotty, blotchy affairs that are difficult for automated techniques. A galaxy image can potentially be described by hundreds of parameters, all of which may have some relation to the morphological type. In the set of initial experiments we used 624 such parameters, in two colors, blue and red. These parameters include the surface brightness and color measured at different radii, ratios of these parameters at different radii, concentration indices, Fourier transforms and wavelet decomposition coefficients. We experimented with three different classes of classification algorithms; decision trees, k-nearest neighbors, and support vector machines (SVM). A range of experiments were conducted and we eventually narrowed the parameters to 23 selected parameters. SVM consistently outperformed the other algorithms with both sets of features. By combining the results from the different algorithms in a weighted scheme we achieved an overall classification success of 86%.

  1. Automated analysis of clonal cancer cells by intravital imaging

    PubMed Central

    Coffey, Sarah Earley; Giedt, Randy J; Weissleder, Ralph

    2013-01-01

    Longitudinal analyses of single cell lineages over prolonged periods have been challenging particularly in processes characterized by high cell turn-over such as inflammation, proliferation, or cancer. RGB marking has emerged as an elegant approach for enabling such investigations. However, methods for automated image analysis continue to be lacking. Here, to address this, we created a number of different multicolored poly- and monoclonal cancer cell lines for in vitro and in vivo use. To classify these cells in large scale data sets, we subsequently developed and tested an automated algorithm based on hue selection. Our results showed that this method allows accurate analyses at a fraction of the computational time required by more complex color classification methods. Moreover, the methodology should be broadly applicable to both in vitro and in vivo analyses. PMID:24349895

  2. Composite Biomarkers Derived from Micro-Electrode Array Measurements and Computer Simulations Improve the Classification of Drug-Induced Channel Block.

    PubMed

    Tixier, Eliott; Raphel, Fabien; Lombardi, Damiano; Gerbeau, Jean-Frédéric

    2017-01-01

    The Micro-Electrode Array (MEA) device enables high-throughput electrophysiology measurements that are less labor-intensive than patch-clamp based techniques. Combined with human-induced pluripotent stem cells cardiomyocytes (hiPSC-CM), it represents a new and promising paradigm for automated and accurate in vitro drug safety evaluation. In this article, the following question is addressed: which features of the MEA signals should be measured to better classify the effects of drugs? A framework for the classification of drugs using MEA measurements is proposed. The classification is based on the ion channels blockades induced by the drugs. It relies on an in silico electrophysiology model of the MEA, a feature selection algorithm and automatic classification tools. An in silico model of the MEA is developed and is used to generate synthetic measurements. An algorithm that extracts MEA measurements features designed to perform well in a classification context is described. These features are called composite biomarkers. A state-of-the-art machine learning program is used to carry out the classification of drugs using experimental MEA measurements. The experiments are carried out using five different drugs: mexiletine, flecainide, diltiazem, moxifloxacin, and dofetilide. We show that the composite biomarkers outperform the classical ones in different classification scenarios. We show that using both synthetic and experimental MEA measurements improves the robustness of the composite biomarkers and that the classification scores are increased.

  3. Improving the MODIS Global Snow-Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Klein, Andrew G.; Hall, Dorothy K.; Riggs, George A.

    1997-01-01

    An algorithm (Snowmap) is under development to produce global snow maps at 500 meter resolution on a daily basis using data from the NASA MODIS instrument. MODIS, the Moderate Resolution Imaging Spectroradiometer, will be launched as part of the first Earth Observing System (EOS) platform in 1998. Snowmap is a fully automated, computationally frugal algorithm that will be ready to implement at launch. Forests represent a major limitation to the global mapping of snow cover as a forest canopy both obscures and shadows the snow underneath. Landsat Thematic Mapper (TM) and MODIS Airborne Simulator (MAS) data are used to investigate the changes in reflectance that occur as a forest stand becomes snow covered and to propose changes to the Snowmap algorithm that will improve snow classification accuracy forested areas.

  4. Real-time ultrasonic weld evaluation system

    NASA Astrophysics Data System (ADS)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  5. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    USGS Publications Warehouse

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  6. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    NASA Astrophysics Data System (ADS)

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer's accuracy of 93% and a user's accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  7. Automated identification of basalt spectra in Clementine lunar data

    NASA Astrophysics Data System (ADS)

    Antonenko, I.; Osinski, G. R.

    2011-06-01

    The identification of fresh basalt spectra plays an important role in lunar stratigraphic studies; however, the process can be time consuming and labor intensive. Thus motivated, we developed an empirically derived algorithm for the automated identification of fresh basalt spectra from Clememtine UVVIS data. This algorithm has the following four parameters and limits: BC Ratio=3(R950-R900)/(R900-R750)<1.1, CD Delta=(R1000-R950)/R750-1.09(R950-R900)/R750>0.003 and <0.06, B Slope=(R900-R750)/(3R750)<-0.012, and Band Depth=(R750-R950)/(R750-R415)>0.1, where R750 represents the unnormalized reflectance of the 750 nm Clementine band, and so on. Algorithm results were found to be accurate to within an error of 4.5% with respect to visual classification, though olivine spectra may be under-represented. Overall, fresh basalts identified by the algorithm are consistent with expectations and previous work in the Mare Humorum area, though accuracy in other areas has not yet been tested. Great potential exists in using this algorithm for identifying craters that have excavated basalts, estimating the thickness of mare and cryptomare deposits, and other applications.

  8. Automated Clinical Assessment from Smart home-based Behavior Data

    PubMed Central

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-01-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behaviour in the home and predicting standard clinical assessment scores of the residents. To accomplish this goal, we propose a Clinical Assessment using Activity Behavior (CAAB) approach to model a smart home resident’s daily behavior and predict the corresponding standard clinical assessment scores. CAAB uses statistical features that describe characteristics of a resident’s daily activity performance to train machine learning algorithms that predict the clinical assessment scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years using prediction and classification-based experiments. In the prediction-based experiments, we obtain a statistically significant correlation (r = 0.72) between CAAB-predicted and clinician-provided cognitive assessment scores and a statistically significant correlation (r = 0.45) between CAAB-predicted and clinician-provided mobility scores. Similarly, for the classification-based experiments, we find CAAB has a classification accuracy of 72% while classifying cognitive assessment scores and 76% while classifying mobility scores. These prediction and classification results suggest that it is feasible to predict standard clinical scores using smart home sensor data and learning-based data analysis. PMID:26292348

  9. Comparative Approach of MRI-Based Brain Tumor Segmentation and Classification Using Genetic Algorithm.

    PubMed

    Bahadure, Nilesh Bhaskarrao; Ray, Arun Kumar; Thethi, Har Pal

    2018-01-17

    The detection of a brain tumor and its classification from modern imaging modalities is a primary concern, but a time-consuming and tedious work was performed by radiologists or clinical supervisors. The accuracy of detection and classification of tumor stages performed by radiologists is depended on their experience only, so the computer-aided technology is very important to aid with the diagnosis accuracy. In this study, to improve the performance of tumor detection, we investigated comparative approach of different segmentation techniques and selected the best one by comparing their segmentation score. Further, to improve the classification accuracy, the genetic algorithm is employed for the automatic classification of tumor stage. The decision of classification stage is supported by extracting relevant features and area calculation. The experimental results of proposed technique are evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on segmentation score, accuracy, sensitivity, specificity, and dice similarity index coefficient. The experimental results achieved 92.03% accuracy, 91.42% specificity, 92.36% sensitivity, and an average segmentation score between 0.82 and 0.93 demonstrating the effectiveness of the proposed technique for identifying normal and abnormal tissues from brain MR images. The experimental results also obtained an average of 93.79% dice similarity index coefficient, which indicates better overlap between the automated extracted tumor regions with manually extracted tumor region by radiologists.

  10. Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images.

    PubMed

    Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-06-11

    Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs) or bank counting machines). By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD), 3956 in Korean currency (KRW), and 2300 banknotes in Indian currency (INR) using visible light reflection (VR) and near-infrared light transmission (NIRT) imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine.

  11. Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images

    PubMed Central

    Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-01-01

    Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs) or bank counting machines). By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD), 3956 in Korean currency (KRW), and 2300 banknotes in Indian currency (INR) using visible light reflection (VR) and near-infrared light transmission (NIRT) imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine. PMID:27294940

  12. General methodology for simultaneous representation and discrimination of multiple object classes

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.

    1998-03-01

    We address a new general method for linear and nonlinear feature extraction for simultaneous representation and classification. We call this approach the maximum representation and discrimination feature (MRDF) method. We develop a novel nonlinear eigenfeature extraction technique to represent data with closed-form solutions and use it to derive a nonlinear MRDF algorithm. Results of the MRDF method on synthetic databases are shown and compared with results from standard Fukunaga-Koontz transform and Fisher discriminant function methods. The method is also applied to an automated product inspection problem and for classification and pose estimation of two similar objects under 3D aspect angle variations.

  13. X-ray agricultural product inspection: segmentation and classification

    NASA Astrophysics Data System (ADS)

    Casasent, David P.; Talukder, Ashit; Lee, Ha-Woon

    1997-09-01

    Processing of real-time x-ray images of randomly oriented and touching pistachio nuts for product inspection is considered. We describe the image processing used to isolate individual nuts (segmentation). This involves a new watershed transform algorithm. Segmentation results on approximately 3000 x-ray (film) and real time x-ray (linescan) nut images were excellent (greater than 99.9% correct). Initial classification results on film images are presented that indicate that the percentage of infested nuts can be reduced to 1.6% of the crop with only 2% of the good nuts rejected; this performance is much better than present manual methods and other automated classifiers have achieved.

  14. Combining Passive Microwave Rain Rate Retrieval with Visible and Infrared Cloud Classification.

    NASA Astrophysics Data System (ADS)

    Miller, Shawn William

    The relation between cloud type and rain rate has been investigated here from different approaches. Previous studies and intercomparisons have indicated that no single passive microwave rain rate algorithm is an optimal choice for all types of precipitating systems. Motivated by the upcoming Tropical Rainfall Measuring Mission (TRMM), an algorithm which combines visible and infrared cloud classification with passive microwave rain rate estimation was developed and analyzed in a preliminary manner using data from the Tropical Ocean Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE). Overall correlation with radar rain rate measurements across five case studies showed substantial improvement in the combined algorithm approach when compared to the use of any single microwave algorithm. An automated neural network cloud classifier for use over both land and ocean was independently developed and tested on Advanced Very High Resolution Radiometer (AVHRR) data. The global classifier achieved strict accuracy for 82% of the test samples, while a more localized version achieved strict accuracy for 89% of its own test set. These numbers provide hope for the eventual development of a global automated cloud classifier for use throughout the tropics and the temperate zones. The localized classifier was used in conjunction with gridded 15-minute averaged radar rain rates at 8km resolution produced from the current operational network of National Weather Service (NWS) radars, to investigate the relation between cloud type and rain rate over three regions of the continental United States and adjacent waters. The results indicate a substantially lower amount of available moisture in the Front Range of the Rocky Mountains than in the Midwest or in the eastern Gulf of Mexico.

  15. Algorithms and data structures for automated change detection and classification of sidescan sonar imagery

    NASA Astrophysics Data System (ADS)

    Gendron, Marlin Lee

    During Mine Warfare (MIW) operations, MIW analysts perform change detection by visually comparing historical sidescan sonar imagery (SSI) collected by a sidescan sonar with recently collected SSI in an attempt to identify objects (which might be explosive mines) placed at sea since the last time the area was surveyed. This dissertation presents a data structure and three algorithms, developed by the author, that are part of an automated change detection and classification (ACDC) system. MIW analysts at the Naval Oceanographic Office, to reduce the amount of time to perform change detection, are currently using ACDC. The dissertation introductory chapter gives background information on change detection, ACDC, and describes how SSI is produced from raw sonar data. Chapter 2 presents the author's Geospatial Bitmap (GB) data structure, which is capable of storing information geographically and is utilized by the three algorithms. This chapter shows that a GB data structure used in a polygon-smoothing algorithm ran between 1.3--48.4x faster than a sparse matrix data structure. Chapter 3 describes the GB clustering algorithm, which is the author's repeatable, order-independent method for clustering. Results from tests performed in this chapter show that the time to cluster a set of points is not affected by the distribution or the order of the points. In Chapter 4, the author presents his real-time computer-aided detection (CAD) algorithm that automatically detects mine-like objects on the seafloor in SSI. The author ran his GB-based CAD algorithm on real SSI data, and results of these tests indicate that his real-time CAD algorithm performs comparably to or better than other non-real-time CAD algorithms. The author presents his computer-aided search (CAS) algorithm in Chapter 5. CAS helps MIW analysts locate mine-like features that are geospatially close to previously detected features. A comparison between the CAS and a great circle distance algorithm shows that the CAS performs geospatial searching 1.75x faster on large data sets. Finally, the concluding chapter of this dissertation gives important details on how the completed ACDC system will function, and discusses the author's future research to develop additional algorithms and data structures for ACDC.

  16. Mapping the Recent US Hurricanes Triggered Flood Events in Near Real Time

    NASA Astrophysics Data System (ADS)

    Shen, X.; Lazin, R.; Anagnostou, E. N.; Wanik, D. W.; Brakenridge, G. R.

    2017-12-01

    Synthetic Aperture Radar (SAR) observations is the only reliable remote sensing data source to map flood inundation during severe weather events. Unfortunately, since state-of-art data processing algorithms cannot meet the automation and quality standard of a near-real-time (NRT) system, quality controlled inundation mapping by SAR currently depends heavily on manual processing, which limits our capability to quickly issue flood inundation maps at global scale. Specifically, most SAR-based inundation mapping algorithms are not fully automated, while those that are automated exhibit severe over- and/or under-detection errors that limit their potential. These detection errors are primarily caused by the strong overlap among the SAR backscattering probability density functions (PDF) of different land cover types. In this study, we tested a newly developed NRT SAR-based inundation mapping system, named Radar Produced Inundation Diary (RAPID), using Sentinel-1 dual polarized SAR data over recent flood events caused by Hurricanes Harvey, Irma, and Maria (2017). The system consists of 1) self-optimized multi-threshold classification, 2) over-detection removal using land-cover information and change detection, 3) under-detection compensation, and 4) machine-learning based correction. Algorithm details are introduced in another poster, H53J-1603. Good agreements were obtained by comparing the result from RAPID with visual interpretation of SAR images and manual processing from Dartmouth Flood Observatory (DFO) (See Figure 1). Specifically, the over- and under-detections that is typically noted in automated methods is significantly reduced to negligible levels. This performance indicates that RAPID can address the automation and accuracy issues of current state-of-art algorithms and has the potential to apply operationally on a number of satellite SAR missions, such as SWOT, ALOS, Sentinel etc. RAPID data can support many applications such as rapid assessment of damage losses and disaster alleviation/rescue at global scale.

  17. Forecasting of the development of professional medical equipment engineering based on neuro-fuzzy algorithms

    NASA Astrophysics Data System (ADS)

    Vaganova, E. V.; Syryamkin, M. V.

    2015-11-01

    The purpose of the research is the development of evolutionary algorithms for assessments of promising scientific directions. The main attention of the present study is paid to the evaluation of the foresight possibilities for identification of technological peaks and emerging technologies in professional medical equipment engineering in Russia and worldwide on the basis of intellectual property items and neural network modeling. An automated information system consisting of modules implementing various classification methods for accuracy of the forecast improvement and the algorithm of construction of neuro-fuzzy decision tree have been developed. According to the study result, modern trends in this field will focus on personalized smart devices, telemedicine, bio monitoring, «e-Health» and «m-Health» technologies.

  18. Empirical Analysis and Automated Classification of Security Bug Reports

    NASA Technical Reports Server (NTRS)

    Tyo, Jacob P.

    2016-01-01

    With the ever expanding amount of sensitive data being placed into computer systems, the need for effective cybersecurity is of utmost importance. However, there is a shortage of detailed empirical studies of security vulnerabilities from which cybersecurity metrics and best practices could be determined. This thesis has two main research goals: (1) to explore the distribution and characteristics of security vulnerabilities based on the information provided in bug tracking systems and (2) to develop data analytics approaches for automatic classification of bug reports as security or non-security related. This work is based on using three NASA datasets as case studies. The empirical analysis showed that the majority of software vulnerabilities belong only to a small number of types. Addressing these types of vulnerabilities will consequently lead to cost efficient improvement of software security. Since this analysis requires labeling of each bug report in the bug tracking system, we explored using machine learning to automate the classification of each bug report as a security or non-security related (two-class classification), as well as each security related bug report as specific security type (multiclass classification). In addition to using supervised machine learning algorithms, a novel unsupervised machine learning approach is proposed. An ac- curacy of 92%, recall of 96%, precision of 92%, probability of false alarm of 4%, F-Score of 81% and G-Score of 90% were the best results achieved during two-class classification. Furthermore, an accuracy of 80%, recall of 80%, precision of 94%, and F-score of 85% were the best results achieved during multiclass classification.

  19. Analysis of urban area land cover using SEASAT Synthetic Aperture Radar data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M. (Principal Investigator)

    1980-01-01

    Digitally processed SEASAT synthetic aperture raar (SAR) imagery of the Denver, Colorado urban area was examined to explore the potential of SAR data for mapping urban land cover and the compatability of SAR derived land cover classes with the United States Geological Survey classification system. The imagery is examined at three different scales to determine the effect of image enlargement on accuracy and level of detail extractable. At each scale the value of employing a simplistic preprocessing smoothing algorithm to improve image interpretation is addressed. A visual interpretation approach and an automated machine/visual approach are employed to evaluate the feasibility of producing a semiautomated land cover classification from SAR data. Confusion matrices of omission and commission errors are employed to define classification accuracies for each interpretation approach and image scale.

  20. Classification of EEG abnormalities in partial epilepsy with simultaneous EEG-fMRI recordings.

    PubMed

    Pedreira, C; Vaudano, A E; Thornton, R C; Chaudhary, U J; Vulliemoz, S; Laufs, H; Rodionov, R; Carmichael, D W; Lhatoo, S D; Guye, M; Quian Quiroga, R; Lemieux, L

    2014-10-01

    Scalp EEG recordings and the classification of interictal epileptiform discharges (IED) in patients with epilepsy provide valuable information about the epileptogenic network, particularly by defining the boundaries of the "irritative zone" (IZ), and hence are helpful during pre-surgical evaluation of patients with severe refractory epilepsies. The current detection and classification of epileptiform signals essentially rely on expert observers. This is a very time-consuming procedure, which also leads to inter-observer variability. Here, we propose a novel approach to automatically classify epileptic activity and show how this method provides critical and reliable information related to the IZ localization beyond the one provided by previous approaches. We applied Wave_clus, an automatic spike sorting algorithm, for the classification of IED visually identified from pre-surgical simultaneous Electroencephalogram-functional Magnetic Resonance Imagining (EEG-fMRI) recordings in 8 patients affected by refractory partial epilepsy candidate for surgery. For each patient, two fMRI analyses were performed: one based on the visual classification and one based on the algorithmic sorting. This novel approach successfully identified a total of 29 IED classes (compared to 26 for visual identification). The general concordance between methods was good, providing a full match of EEG patterns in 2 cases, additional EEG information in 2 other cases and, in general, covering EEG patterns of the same areas as expert classification in 7 of the 8 cases. Most notably, evaluation of the method with EEG-fMRI data analysis showed hemodynamic maps related to the majority of IED classes representing improved performance than the visual IED classification-based analysis (72% versus 50%). Furthermore, the IED-related BOLD changes revealed by using the algorithm were localized within the presumed IZ for a larger number of IED classes (9) in a greater number of patients than the expert classification (7 and 5, respectively). In contrast, in only one case presented the new algorithm resulted in fewer classes and activation areas. We propose that the use of automated spike sorting algorithms to classify IED provides an efficient tool for mapping IED-related fMRI changes and increases the EEG-fMRI clinical value for the pre-surgical assessment of patients with severe epilepsy. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Machine learning in soil classification.

    PubMed

    Bhattacharya, B; Solomatine, D P

    2006-03-01

    In a number of engineering problems, e.g. in geotechnics, petroleum engineering, etc. intervals of measured series data (signals) are to be attributed a class maintaining the constraint of contiguity and standard classification methods could be inadequate. Classification in this case needs involvement of an expert who observes the magnitude and trends of the signals in addition to any a priori information that might be available. In this paper, an approach for automating this classification procedure is presented. Firstly, a segmentation algorithm is developed and applied to segment the measured signals. Secondly, the salient features of these segments are extracted using boundary energy method. Based on the measured data and extracted features to assign classes to the segments classifiers are built; they employ Decision Trees, ANN and Support Vector Machines. The methodology was tested in classifying sub-surface soil using measured data from Cone Penetration Testing and satisfactory results were obtained.

  2. Performance assessment of automated tissue characterization for prostate H and E stained histopathology

    NASA Astrophysics Data System (ADS)

    DiFranco, Matthew D.; Reynolds, Hayley M.; Mitchell, Catherine; Williams, Scott; Allan, Prue; Haworth, Annette

    2015-03-01

    Reliable automated prostate tumor detection and characterization in whole-mount histology images is sought in many applications, including post-resection tumor staging and as ground-truth data for multi-parametric MRI interpretation. In this study, an ensemble-based supervised classification algorithm for high-resolution histology images was trained on tile-based image features including histogram and gray-level co-occurrence statistics. The algorithm was assessed using different combinations of H and E prostate slides from two separate medical centers and at two different magnifications (400x and 200x), with the aim of applying tumor classification models to new data. Slides from both datasets were annotated by expert pathologists in order to identify homogeneous cancerous and non-cancerous tissue regions of interest, which were then categorized as (1) low-grade tumor (LG-PCa), including Gleason 3 and high-grade prostatic intraepithelial neoplasia (HG-PIN), (2) high-grade tumor (HG-PCa), including various Gleason 4 and 5 patterns, or (3) non-cancerous, including benign stroma and benign prostatic hyperplasia (BPH). Classification models for both LG-PCa and HG-PCa were separately trained using a support vector machine (SVM) approach, and per-tile tumor prediction maps were generated from the resulting ensembles. Results showed high sensitivity for predicting HG-PCa with an AUC up to 0.822 using training data from both medical centres, while LG-PCa showed a lower sensitivity of 0.763 with the same training data. Visual inspection of cancer probability heatmaps from 9 patients showed that 17/19 tumors were detected, and HG-PCa generally reported less false positives than LG-PCa.

  3. A Neural-Network-Based Semi-Automated Geospatial Classification Tool

    NASA Astrophysics Data System (ADS)

    Hale, R. G.; Herzfeld, U. C.

    2014-12-01

    North America's largest glacier system, the Bering Bagley Glacier System (BBGS) in Alaska, surged in 2011-2013, as shown by rapid mass transfer, elevation change, and heavy crevassing. Little is known about the physics controlling surge glaciers' semi-cyclic patterns; therefore, it is crucial to collect and analyze as much data as possible so that predictive models can be made. In addition, physical signs frozen in ice in the form of crevasses may help serve as a warning for future surges. The BBGS surge provided an opportunity to develop an automated classification tool for crevasse classification based on imagery collected from small aircraft. The classification allows one to link image classification to geophysical processes associated with ice deformation. The tool uses an approach that employs geostatistical functions and a feed-forward perceptron with error back-propagation. The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network (NN) can recognize. In an application to preform analysis on airborne video graphic data from the surge of the BBGS, an NN was able to distinguish 18 different crevasse classes with 95 percent or higher accuracy, for over 3,000 images. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we designed the tool's semi-automated pre-training algorithm to be adaptable. The tool can be optimized to specific settings and variables of image analysis: (airborne and satellite imagery, different camera types, observation altitude, number and types of classes, and resolution). The generalization of the classification tool brings three important advantages: (1) multiple types of problems in geophysics can be studied, (2) the training process is sufficiently formalized to allow non-experts in neural nets to perform the training process, and (3) the time required to manually pre-sort imagery into classes is greatly reduced.

  4. Analysis of digitized cervical images to detect cervical neoplasia

    NASA Astrophysics Data System (ADS)

    Ferris, Daron G.

    2004-05-01

    Cervical cancer is the second most common malignancy in women worldwide. If diagnosed in the premalignant stage, cure is invariably assured. Although the Papanicolaou (Pap) smear has significantly reduced the incidence of cervical cancer where implemented, the test is only moderately sensitive, highly subjective and skilled-labor intensive. Newer optical screening tests (cervicography, direct visual inspection and speculoscopy), including fluorescent and reflective spectroscopy, are fraught with certain weaknesses. Yet, the integration of optical probes for the detection and discrimination of cervical neoplasia with automated image analysis methods may provide an effective screening tool for early detection of cervical cancer, particularly in resource poor nations. Investigative studies are needed to validate the potential for automated classification and recognition algorithms. By applying image analysis techniques for registration, segmentation, pattern recognition, and classification, cervical neoplasia may be reliably discriminated from normal epithelium. The National Cancer Institute (NCI), in cooperation with the National Library of Medicine (NLM), has embarked on a program to begin this and other similar investigative studies.

  5. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Papadogiannakis, S.; Taddia, F.; Petrushevska, T.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Nir, G.; Cao, Y.; Blagorodnova, N.; Kulkarni, S.

    2016-05-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artefacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  6. iPTF Discoveries of Recent Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Ferretti, R.; Papadogiannakis, S.; Petrushevska, T.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Hangard, L.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bar, I.; Cao, Y.; Kulkarni, S.; Blagorodnova, N.

    2016-05-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following core-collapse SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  7. iPTF Discoveries of Recent Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Hangard, L.; De Cia, A.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Sagiv, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Bilgi, P.

    2015-04-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Core-Collapse SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  8. iPTF Discoveries of Recent Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.; Andreoni, I.

    2015-10-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  9. iPTF Discoveries of Recent SNe Ia

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Fremling, C.; Johansson, J.; Karamehmetoglu, E.; Migotto, K.; Nyholm, A.; Papadogiannakis, S.; Taddia, F.; Petrushevska, T.; Roy, R.; Ben-Ami, S.; De Cia, A.; Dzigan, Y.; Horesh, A.; Khazov, D.; Manulis, I.; Rubin, A.; Sagiv, I.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.

    2015-02-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  10. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Papadogiannakis, S.; Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Petrushevska, T.; Nyholm, A.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Lunnan, R.; Blagorodnova, N.; Cao, Y.; Cenk, S. B.

    2016-01-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  11. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Taddia, F.; Horesh, A.; Khazov, D.; Knezevic, S.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Cao, Y.; Duggan, G.; Lunnan, R.; Blagorodnova, N.

    2015-11-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  12. iPTF Discoveries of Recent Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Duggan, G.; Lunnan, R.; Cao, Y.

    2015-09-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Core-Collapse SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  13. iPTF Discovery of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hangard, L.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Bar, I.; Horesh, A.; Johansson, J.; Khazov, D.; Knezevic, S.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Cao, Y.; Kulkarni, S.; Lunnan, R.; Ravi, V.; Vedantham, H. K.; Yan, L.

    2016-04-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  14. iPTF Discoveries of Recent Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Lunnan, R.; Cao, Y.; Miller, A.

    2015-11-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Core-Collapse SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  15. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.

    2016-02-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  16. iPTF Discovery of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hangard, L.; Taddia, F.; Ferretti, R.; Papadogiannakis, S.; Petrushevska, T.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bar, I.; Lunnan, R.; Cenk, S. B.

    2016-02-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  17. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Papadogiannakis, S.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Ferretti, R.; Petrushevska, T.; Roy, R.; Taddia, F.; Bar, I.; Horesh, A.; Johansson, J.; Knezevic, S.; Leloudas, G.; Manulis, I.; Nir, G.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Arcavi, I.; Howell, D. A.; McCully, C.; Hosseinzadeh, G.; Valenti, S.; Blagorodnova, N.; Cao, Y.; Duggan, G.; Ravi, V.; Lunnan, R.

    2016-03-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  18. iPTF discoveries of recent type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Papadogiannakis, S.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Petrushevska, T.; Roy, R.; De Cia, A.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Sagiv, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Cenko, S. B.; Capone, J.; Bartakk, M.

    2015-09-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  19. iPTF Discovery of Recent Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Hangard, L.; Petrushevska, T.; Papadogiannakis, S.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Kasliwal, M.

    2015-10-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  20. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.; Neill, J. D.; Walters, R.

    2016-04-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  1. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Papadogiannakis, S.; Taddia, F.; Petrushevska, T.; Fremling, C.; Hangard, L.; Johansson, J.; Karamehmetoglu, E.; Migotto, K.; Nyholm, A.; Roy, R.; Ben-Ami, S.; De Cia, A.; Dzigan, Y.; Horesh, A.; Khazov, D.; Soumagnac, M.; Manulis, I.; Rubin, A.; Sagiv, I.; Vreeswijk, P.; Yaron, O.; Bond, H.; Bilgi, P.; Cao, Y.; Duggan, G.

    2015-03-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  2. iPTF Discovery of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hangard, L.; Ferretti, R.; Papadogiannakis, S.; Petrushevska, T.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Cook, D.

    2015-12-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  3. iPTF Discoveries of Recent Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.; Jencson, J.

    2015-11-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  4. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium.

    PubMed

    Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan

    2017-06-01

    Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images.

  5. Point-of-care mobile digital microscopy and deep learning for the detection of soil-transmitted helminths and Schistosoma haematobium

    PubMed Central

    Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan

    2017-01-01

    ABSTRACT Background: Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Objective: Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. Methods: A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Results: Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3–100%) in the test set (n = 217) of manually labeled helminth eggs. Conclusions: In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images. PMID:28838305

  6. Classification of yeast cells from image features to evaluate pathogen conditions

    NASA Astrophysics Data System (ADS)

    van der Putten, Peter; Bertens, Laura; Liu, Jinshuo; Hagen, Ferry; Boekhout, Teun; Verbeek, Fons J.

    2007-01-01

    Morphometrics from images, image analysis, may reveal differences between classes of objects present in the images. We have performed an image-features-based classification for the pathogenic yeast Cryptococcus neoformans. Building and analyzing image collections from the yeast under different environmental or genetic conditions may help to diagnose a new "unseen" situation. Diagnosis here means that retrieval of the relevant information from the image collection is at hand each time a new "sample" is presented. The basidiomycetous yeast Cryptococcus neoformans can cause infections such as meningitis or pneumonia. The presence of an extra-cellular capsule is known to be related to virulence. This paper reports on the approach towards developing classifiers for detecting potentially more or less virulent cells in a sample, i.e. an image, by using a range of features derived from the shape or density distribution. The classifier can henceforth be used for automating screening and annotating existing image collections. In addition we will present our methods for creating samples, collecting images, image preprocessing, identifying "yeast cells" and creating feature extraction from the images. We compare various expertise based and fully automated methods of feature selection and benchmark a range of classification algorithms and illustrate successful application to this particular domain.

  7. Enhancing navigation in biomedical databases by community voting and database-driven text classification

    PubMed Central

    Duchrow, Timo; Shtatland, Timur; Guettler, Daniel; Pivovarov, Misha; Kramer, Stefan; Weissleder, Ralph

    2009-01-01

    Background The breadth of biological databases and their information content continues to increase exponentially. Unfortunately, our ability to query such sources is still often suboptimal. Here, we introduce and apply community voting, database-driven text classification, and visual aids as a means to incorporate distributed expert knowledge, to automatically classify database entries and to efficiently retrieve them. Results Using a previously developed peptide database as an example, we compared several machine learning algorithms in their ability to classify abstracts of published literature results into categories relevant to peptide research, such as related or not related to cancer, angiogenesis, molecular imaging, etc. Ensembles of bagged decision trees met the requirements of our application best. No other algorithm consistently performed better in comparative testing. Moreover, we show that the algorithm produces meaningful class probability estimates, which can be used to visualize the confidence of automatic classification during the retrieval process. To allow viewing long lists of search results enriched by automatic classifications, we added a dynamic heat map to the web interface. We take advantage of community knowledge by enabling users to cast votes in Web 2.0 style in order to correct automated classification errors, which triggers reclassification of all entries. We used a novel framework in which the database "drives" the entire vote aggregation and reclassification process to increase speed while conserving computational resources and keeping the method scalable. In our experiments, we simulate community voting by adding various levels of noise to nearly perfectly labelled instances, and show that, under such conditions, classification can be improved significantly. Conclusion Using PepBank as a model database, we show how to build a classification-aided retrieval system that gathers training data from the community, is completely controlled by the database, scales well with concurrent change events, and can be adapted to add text classification capability to other biomedical databases. The system can be accessed at . PMID:19799796

  8. Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?

    NASA Astrophysics Data System (ADS)

    Švab Lenarčič, Andreja; Đurić, Nataša; Čotar, Klemen; Ritlop, Klemen; Oštir, Krištof

    2016-10-01

    It is a broadly established belief that the segmentation result significantly affects subsequent image classification accuracy. However, the actual correlation between the two has never been evaluated. Such an evaluation would be of considerable importance for any attempts to automate the object-based classification process, as it would reduce the amount of user intervention required to fine-tune the segmentation parameters. We conducted an assessment of segmentation and classification by analyzing 100 different segmentation parameter combinations, 3 classifiers, 5 land cover classes, 20 segmentation evaluation metrics, and 7 classification accuracy measures. The reliability definition of segmentation evaluation metrics as indicators of land cover classification accuracy was based on the linear correlation between the two. All unsupervised metrics that are not based on number of segments have a very strong correlation with all classification measures and are therefore reliable as indicators of land cover classification accuracy. On the other hand, correlation at supervised metrics is dependent on so many factors that it cannot be trusted as a reliable classification quality indicator. Algorithms for land cover classification studied in this paper are widely used; therefore, presented results are applicable to a wider area.

  9. Impact of atmospheric correction and image filtering on hyperspectral classification of tree species using support vector machine

    NASA Astrophysics Data System (ADS)

    Shahriari Nia, Morteza; Wang, Daisy Zhe; Bohlman, Stephanie Ann; Gader, Paul; Graves, Sarah J.; Petrovic, Milenko

    2015-01-01

    Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performance of classification algorithms. We determine how three processing and correction techniques (atmospheric correction, Gaussian filters, and shade/green vegetation filters) affect the prediction accuracy of classification of tree species at pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna in Central Florida, United States. Species classification using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in the majority of cases. Green vegetation (normalized difference vegetation index) and shade (near-infrared) filters did not increase classification accuracy when applied to large and continuous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and increases species classification accuracy. Using the optimal preprocessing steps, our classification accuracy of six species classes is about 75%.

  10. Automated simultaneous multiple feature classification of MTI data

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Theiler, James P.; Balick, Lee K.; Pope, Paul A.; Szymanski, John J.; Perkins, Simon J.; Porter, Reid B.; Brumby, Steven P.; Bloch, Jeffrey J.; David, Nancy A.; Galassi, Mark C.

    2002-08-01

    Los Alamos National Laboratory has developed and demonstrated a highly capable system, GENIE, for the two-class problem of detecting a single feature against a background of non-feature. In addition to the two-class case, however, a commonly encountered remote sensing task is the segmentation of multispectral image data into a larger number of distinct feature classes or land cover types. To this end we have extended our existing system to allow the simultaneous classification of multiple features/classes from multispectral data. The technique builds on previous work and its core continues to utilize a hybrid evolutionary-algorithm-based system capable of searching for image processing pipelines optimized for specific image feature extraction tasks. We describe the improvements made to the GENIE software to allow multiple-feature classification and describe the application of this system to the automatic simultaneous classification of multiple features from MTI image data. We show the application of the multiple-feature classification technique to the problem of classifying lava flows on Mauna Loa volcano, Hawaii, using MTI image data and compare the classification results with standard supervised multiple-feature classification techniques.

  11. Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm.

    PubMed

    Al-Saffar, Ahmed; Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-Bared, Mohammed

    2018-01-01

    Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach.

  12. Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm

    PubMed Central

    Awang, Suryanti; Tao, Hai; Omar, Nazlia; Al-Saiagh, Wafaa; Al-bared, Mohammed

    2018-01-01

    Sentiment analysis techniques are increasingly exploited to categorize the opinion text to one or more predefined sentiment classes for the creation and automated maintenance of review-aggregation websites. In this paper, a Malay sentiment analysis classification model is proposed to improve classification performances based on the semantic orientation and machine learning approaches. First, a total of 2,478 Malay sentiment-lexicon phrases and words are assigned with a synonym and stored with the help of more than one Malay native speaker, and the polarity is manually allotted with a score. In addition, the supervised machine learning approaches and lexicon knowledge method are combined for Malay sentiment classification with evaluating thirteen features. Finally, three individual classifiers and a combined classifier are used to evaluate the classification accuracy. In experimental results, a wide-range of comparative experiments is conducted on a Malay Reviews Corpus (MRC), and it demonstrates that the feature extraction improves the performance of Malay sentiment analysis based on the combined classification. However, the results depend on three factors, the features, the number of features and the classification approach. PMID:29684036

  13. An Automated Algorithm to Screen Massive Training Samples for a Global Impervious Surface Classification

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Brown de Colstoun, Eric; Wolfe, Robert E.; Tilton, James C.; Huang, Chengquan; Smith, Sarah E.

    2012-01-01

    An algorithm is developed to automatically screen the outliers from massive training samples for Global Land Survey - Imperviousness Mapping Project (GLS-IMP). GLS-IMP is to produce a global 30 m spatial resolution impervious cover data set for years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. This unprecedented high resolution impervious cover data set is not only significant to the urbanization studies but also desired by the global carbon, hydrology, and energy balance researches. A supervised classification method, regression tree, is applied in this project. A set of accurate training samples is the key to the supervised classifications. Here we developed the global scale training samples from 1 m or so resolution fine resolution satellite data (Quickbird and Worldview2), and then aggregate the fine resolution impervious cover map to 30 m resolution. In order to improve the classification accuracy, the training samples should be screened before used to train the regression tree. It is impossible to manually screen 30 m resolution training samples collected globally. For example, in Europe only, there are 174 training sites. The size of the sites ranges from 4.5 km by 4.5 km to 8.1 km by 3.6 km. The amount training samples are over six millions. Therefore, we develop this automated statistic based algorithm to screen the training samples in two levels: site and scene level. At the site level, all the training samples are divided to 10 groups according to the percentage of the impervious surface within a sample pixel. The samples following in each 10% forms one group. For each group, both univariate and multivariate outliers are detected and removed. Then the screen process escalates to the scene level. A similar screen process but with a looser threshold is applied on the scene level considering the possible variance due to the site difference. We do not perform the screen process across the scenes because the scenes might vary due to the phenology, solar-view geometry, and atmospheric condition etc. factors but not actual landcover difference. Finally, we will compare the classification results from screened and unscreened training samples to assess the improvement achieved by cleaning up the training samples. Keywords:

  14. An automated method for identifying artifact in independent component analysis of resting-state FMRI.

    PubMed

    Bhaganagarapu, Kaushik; Jackson, Graeme D; Abbott, David F

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available.

  15. An Automated Method for Identifying Artifact in Independent Component Analysis of Resting-State fMRI

    PubMed Central

    Bhaganagarapu, Kaushik; Jackson, Graeme D.; Abbott, David F.

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available. PMID:23847511

  16. Automated Grouping of Opportunity Rover Alpha Particle X-Ray Spectrometer Compositional Data

    NASA Technical Reports Server (NTRS)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Schroder, C.; Yen, A. S.

    2016-01-01

    The Alpha Particle X-ray Spectrometer (APXS) conducts high-precision in situ measurements of rocks and soils on both active NASA Mars rovers. Since 2004 the rover Opportunity has acquired around 440 unique APXS measurements, including a wide variety of compositions, during its 42+ kilometers traverse across several geological formations. Here we discuss an analytical comparison algorithm providing a means to cluster samples due to compositional similarity and the resulting automated classification scheme. Due to the inherent variance of elements in the APXS data set, each element has an associated weight that is inversely proportional to the variance. Thus, the more consistent the abundance of an element in the data set, the more it contributes to the classification. All 16 elements standard to the APXS data set are considered. Careful attention is also given to the errors associated with the composition measured by the APXS - larger uncertainties reduce the weighting of the element accordingly. The comparison of two targets, i and j, generates a similarity score, S(sub ij). This score is immediately comparable to an average ratio across all elements if one assumes standard weighted uncertainty. The algorithm facilitates the classification of APXS targets by chemistry alone - independent of target appearance and geological context which can be added later as a consistency check. For the N targets considered, a N by N hollow matrix, S, is generated where S = S(sup T). The average relation score, S(sub av), for target N(sub i) is simply the average of column i of S. A large S(sub av) is indicative of a unique sample. In such an instance any targets with a low comparison score can be classified alike. The threshold between classes requires careful consideration. Applying the algorithm to recent Marathon Valley targets indicates similarities with Burns formation and average-Mars-like rocks encountered earlier at Endeavour Crater as well as a new class of felsic rocks.

  17. Automated detection of prostate cancer in digitized whole-slide images of H and E-stained biopsy specimens

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Ehteshami Bejnordi, B.; Timofeeva, N.; Swadi, G.; Kovacs, I.; Hulsbergen-van de Kaa, C.; van der Laak, J.

    2015-03-01

    Automated detection of prostate cancer in digitized H and E whole-slide images is an important first step for computer-driven grading. Most automated grading algorithms work on preselected image patches as they are too computationally expensive to calculate on the multi-gigapixel whole-slide images. An automated multi-resolution cancer detection system could reduce the computational workload for subsequent grading and quantification in two ways: by excluding areas of definitely normal tissue within a single specimen or by excluding entire specimens which do not contain any cancer. In this work we present a multi-resolution cancer detection algorithm geared towards the latter. The algorithm methodology is as follows: at a coarse resolution the system uses superpixels, color histograms and local binary patterns in combination with a random forest classifier to assess the likelihood of cancer. The five most suspicious superpixels are identified and at a higher resolution more computationally expensive graph and gland features are added to refine classification for these superpixels. Our methods were evaluated in a data set of 204 digitized whole-slide H and E stained images of MR-guided biopsy specimens from 163 patients. A pathologist exhaustively annotated the specimens for areas containing cancer. The performance of our system was evaluated using ten-fold cross-validation, stratified according to patient. Image-based receiver operating characteristic (ROC) analysis was subsequently performed where a specimen containing cancer was considered positive and specimens without cancer negative. We obtained an area under the ROC curve of 0.96 and a 0.4 specificity at a 1.0 sensitivity.

  18. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning.

    PubMed

    Abràmoff, Michael David; Lou, Yiyue; Erginay, Ali; Clarida, Warren; Amelon, Ryan; Folk, James C; Niemeijer, Meindert

    2016-10-01

    To compare performance of a deep-learning enhanced algorithm for automated detection of diabetic retinopathy (DR), to the previously published performance of that algorithm, the Iowa Detection Program (IDP)-without deep learning components-on the same publicly available set of fundus images and previously reported consensus reference standard set, by three US Board certified retinal specialists. We used the previously reported consensus reference standard of referable DR (rDR), defined as International Clinical Classification of Diabetic Retinopathy moderate, severe nonproliferative (NPDR), proliferative DR, and/or macular edema (ME). Neither Messidor-2 images, nor the three retinal specialists setting the Messidor-2 reference standard were used for training IDx-DR version X2.1. Sensitivity, specificity, negative predictive value, area under the curve (AUC), and their confidence intervals (CIs) were calculated. Sensitivity was 96.8% (95% CI: 93.3%-98.8%), specificity was 87.0% (95% CI: 84.2%-89.4%), with 6/874 false negatives, resulting in a negative predictive value of 99.0% (95% CI: 97.8%-99.6%). No cases of severe NPDR, PDR, or ME were missed. The AUC was 0.980 (95% CI: 0.968-0.992). Sensitivity was not statistically different from published IDP sensitivity, which had a CI of 94.4% to 99.3%, but specificity was significantly better than the published IDP specificity CI of 55.7% to 63.0%. A deep-learning enhanced algorithm for the automated detection of DR, achieves significantly better performance than a previously reported, otherwise essentially identical, algorithm that does not employ deep learning. Deep learning enhanced algorithms have the potential to improve the efficiency of DR screening, and thereby to prevent visual loss and blindness from this devastating disease.

  19. Automated interpretation of home blood pressure assessment (Hy-Result software) versus physician's assessment: a validation study.

    PubMed

    Postel-Vinay, Nicolas; Bobrie, Guillaume; Ruelland, Alan; Oufkir, Majida; Savard, Sebastien; Persu, Alexandre; Katsahian, Sandrine; Plouin, Pierre F

    2016-04-01

    Hy-Result is the first software for self-interpretation of home blood pressure measurement results, taking into account both the recommended thresholds for normal values and patient characteristics. We compare the software-generated classification with the physician's evaluation. The primary assessment criterion was whether algorithm classification of the blood pressure (BP) status concurred with the physician's advice (blinded to the software's results) following a consultation (n=195 patients). Secondary assessment was the reliability of text messages. In the 58 untreated patients, the agreement between classification of the BP status generated by the software and the physician's classification was 87.9%. In the 137 treated patients, the agreement was 91.9%. The κ-test applied for all the patients was 0.81 (95% confidence interval: 0.73-0.89). After correction of errors identified in the algorithm during the study, agreement increased to 95.4% [κ=0.9 (95% confidence interval: 0.84-0.97)]. For 100% of the patients with comorbidities (n=46), specific text messages were generated, indicating that a physician might recommend a target BP lower than 135/85 mmHg. Specific text messages were also generated for 100% of the patients for whom global cardiovascular risks markedly exceeded norms. Classification by Hy-Result is at least as accurate as that of a specialist in current practice (http://www.hy-result.com).

  20. On the Implementation of a Land Cover Classification System for SAR Images Using Khoros

    NASA Technical Reports Server (NTRS)

    Medina Revera, Edwin J.; Espinosa, Ramon Vasquez

    1997-01-01

    The Synthetic Aperture Radar (SAR) sensor is widely used to record data about the ground under all atmospheric conditions. The SAR acquired images have very good resolution which necessitates the development of a classification system that process the SAR images to extract useful information for different applications. In this work, a complete system for the land cover classification was designed and programmed using the Khoros, a data flow visual language environment, taking full advantages of the polymorphic data services that it provides. Image analysis was applied to SAR images to improve and automate the processes of recognition and classification of the different regions like mountains and lakes. Both unsupervised and supervised classification utilities were used. The unsupervised classification routines included the use of several Classification/Clustering algorithms like the K-means, ISO2, Weighted Minimum Distance, and the Localized Receptive Field (LRF) training/classifier. Different texture analysis approaches such as Invariant Moments, Fractal Dimension and Second Order statistics were implemented for supervised classification of the images. The results and conclusions for SAR image classification using the various unsupervised and supervised procedures are presented based on their accuracy and performance.

  1. Imitating manual curation of text-mined facts in biomedicine.

    PubMed

    Rodriguez-Esteban, Raul; Iossifov, Ivan; Rzhetsky, Andrey

    2006-09-08

    Text-mining algorithms make mistakes in extracting facts from natural-language texts. In biomedical applications, which rely on use of text-mined data, it is critical to assess the quality (the probability that the message is correctly extracted) of individual facts--to resolve data conflicts and inconsistencies. Using a large set of almost 100,000 manually produced evaluations (most facts were independently reviewed more than once, producing independent evaluations), we implemented and tested a collection of algorithms that mimic human evaluation of facts provided by an automated information-extraction system. The performance of our best automated classifiers closely approached that of our human evaluators (ROC score close to 0.95). Our hypothesis is that, were we to use a larger number of human experts to evaluate any given sentence, we could implement an artificial-intelligence curator that would perform the classification job at least as accurately as an average individual human evaluator. We illustrated our analysis by visualizing the predicted accuracy of the text-mined relations involving the term cocaine.

  2. Astronomical data analysis software and systems I; Proceedings of the 1st Annual Conference, Tucson, AZ, Nov. 6-8, 1991

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)

    1992-01-01

    Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.

  3. "SmartMonitor"--an intelligent security system for the protection of individuals and small properties with the possibility of home automation.

    PubMed

    Frejlichowski, Dariusz; Gościewska, Katarzyna; Forczmański, Paweł; Hofman, Radosław

    2014-06-05

    "SmartMonitor" is an intelligent security system based on image analysis that combines the advantages of alarm, video surveillance and home automation systems. The system is a complete solution that automatically reacts to every learned situation in a pre-specified way and has various applications, e.g., home and surrounding protection against unauthorized intrusion, crime detection or supervision over ill persons. The software is based on well-known and proven methods and algorithms for visual content analysis (VCA) that were appropriately modified and adopted to fit specific needs and create a video processing model which consists of foreground region detection and localization, candidate object extraction, object classification and tracking. In this paper, the "SmartMonitor" system is presented along with its architecture, employed methods and algorithms, and object analysis approach. Some experimental results on system operation are also provided. In the paper, focus is put on one of the aforementioned functionalities of the system, namely supervision over ill persons.

  4. Automated Proton Track Identification in MicroBooNE Using Gradient Boosted Decision Trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, Katherine

    MicroBooNE is a liquid argon time projection chamber (LArTPC) neutrino experiment that is currently running in the Booster Neutrino Beam at Fermilab. LArTPC technology allows for high-resolution, three-dimensional representations of neutrino interactions. A wide variety of software tools for automated reconstruction and selection of particle tracks in LArTPCs are actively being developed. Short, isolated proton tracks, the signal for low- momentum-transfer neutral current (NC) elastic events, are easily hidden in a large cosmic background. Detecting these low-energy tracks will allow us to probe interesting regions of the proton's spin structure. An effective method for selecting NC elastic events is tomore » combine a highly efficient track reconstruction algorithm to find all candidate tracks with highly accurate particle identification using a machine learning algorithm. We present our work on particle track classification using gradient tree boosting software (XGBoost) and the performance on simulated neutrino data.« less

  5. An algorithm for automatic parameter adjustment for brain extraction in BrainSuite

    NASA Astrophysics Data System (ADS)

    Rajagopal, Gautham; Joshi, Anand A.; Leahy, Richard M.

    2017-02-01

    Brain Extraction (classification of brain and non-brain tissue) of MRI brain images is a crucial pre-processing step necessary for imaging-based anatomical studies of the human brain. Several automated methods and software tools are available for performing this task, but differences in MR image parameters (pulse sequence, resolution) and instrumentand subject-dependent noise and artefacts affect the performance of these automated methods. We describe and evaluate a method that automatically adapts the default parameters of the Brain Surface Extraction (BSE) algorithm to optimize a cost function chosen to reflect accurate brain extraction. BSE uses a combination of anisotropic filtering, Marr-Hildreth edge detection, and binary morphology for brain extraction. Our algorithm automatically adapts four parameters associated with these steps to maximize the brain surface area to volume ratio. We evaluate the method on a total of 109 brain volumes with ground truth brain masks generated by an expert user. A quantitative evaluation of the performance of the proposed algorithm showed an improvement in the mean (s.d.) Dice coefficient from 0.8969 (0.0376) for default parameters to 0.9509 (0.0504) for the optimized case. These results indicate that automatic parameter optimization can result in significant improvements in definition of the brain mask.

  6. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Johansson, J.; Migotto, K.; Nyholm, A.; Papadogiannakis, S.; Ben-Ami, S.; De Cia, A.; Dzigan, Y.; Horesh, A.; Leloudas, G.; Manulis, I.; Rubin, A.; Sagiv, I.; Vreeswijk, P.; Yaron, O.; Cao, Y.; Perley, D.; Miller, A.; Waszczak, A.; Kasliwal, M. M.; Hosseinzadeh, G.; Cenko, S. B.; Quimby, R.

    2015-05-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W). See ATel #7112 for additional details.

  7. A Fast, Automatic Segmentation Algorithm for Locating and Delineating Touching Cell Boundaries in Imaged Histopathology

    PubMed Central

    Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin

    2013-01-01

    Summary Background Automated analysis of imaged histopathology specimens could potentially provide support for improved reliability in detection and classification in a range of investigative and clinical cancer applications. Automated segmentation of cells in the digitized tissue microarray (TMA) is often the prerequisite for quantitative analysis. However overlapping cells usually bring significant challenges for traditional segmentation algorithms. Objectives In this paper, we propose a novel, automatic algorithm to separate overlapping cells in stained histology specimens acquired using bright-field RGB imaging. Methods It starts by systematically identifying salient regions of interest throughout the image based upon their underlying visual content. The segmentation algorithm subsequently performs a quick, voting based seed detection. Finally, the contour of each cell is obtained using a repulsive level set deformable model using the seeds generated in the previous step. We compared the experimental results with the most current literature, and the pixel wise accuracy between human experts' annotation and those generated using the automatic segmentation algorithm. Results The method is tested with 100 image patches which contain more than 1000 overlapping cells. The overall precision and recall of the developed algorithm is 90% and 78%, respectively. We also implement the algorithm on GPU. The parallel implementation is 22 times faster than its C/C++ sequential implementation. Conclusion The proposed overlapping cell segmentation algorithm can accurately detect the center of each overlapping cell and effectively separate each of the overlapping cells. GPU is proven to be an efficient parallel platform for overlapping cell segmentation. PMID:22526139

  8. Automated assessment of cognitive health using smart home technologies.

    PubMed

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2013-01-01

    The goal of this work is to develop intelligent systems to monitor the wellbeing of individuals in their home environments. This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve=0.80, g-mean=0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained.

  9. Automated Assessment of Cognitive Health Using Smart Home Technologies

    PubMed Central

    Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2014-01-01

    BACKGROUND The goal of this work is to develop intelligent systems to monitor the well being of individuals in their home environments. OBJECTIVE This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. METHODS This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. RESULTS Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. CONCLUSIONS The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained. PMID:23949177

  10. Automated feature extraction and classification from image sources

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.

  11. Cest Analysis: Automated Change Detection from Very-High Remote Sensing Images

    NASA Astrophysics Data System (ADS)

    Ehlers, M.; Klonus, S.; Jarmer, T.; Sofina, N.; Michel, U.; Reinartz, P.; Sirmacek, B.

    2012-08-01

    A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye) new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST) analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT) and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment) with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST) of the change algorithms is applied to calculate the probability of change for a particular location. CEST was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan). CEST results are compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal component analysis, delta cue technique and post classification change detection. The new combined method shows superior results averaging between 45% and 15% improvement in accuracy.

  12. A minimum spanning forest based classification method for dedicated breast CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei, E-mail: bfei@emory.edu

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting modelmore » used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.« less

  13. AUTOMATED UNSUPERVISED CLASSIFICATION OF THE SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA USING k-MEANS CLUSTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez Almeida, J.; Allende Prieto, C., E-mail: jos@iac.es, E-mail: callende@iac.es

    2013-01-20

    Large spectroscopic surveys require automated methods of analysis. This paper explores the use of k-means clustering as a tool for automated unsupervised classification of massive stellar spectral catalogs. The classification criteria are defined by the data and the algorithm, with no prior physical framework. We work with a representative set of stellar spectra associated with the Sloan Digital Sky Survey (SDSS) SEGUE and SEGUE-2 programs, which consists of 173,390 spectra from 3800 to 9200 A sampled on 3849 wavelengths. We classify the original spectra as well as the spectra with the continuum removed. The second set only contains spectral lines,more » and it is less dependent on uncertainties of the flux calibration. The classification of the spectra with continuum renders 16 major classes. Roughly speaking, stars are split according to their colors, with enough finesse to distinguish dwarfs from giants of the same effective temperature, but with difficulties to separate stars with different metallicities. There are classes corresponding to particular MK types, intrinsically blue stars, dust-reddened, stellar systems, and also classes collecting faulty spectra. Overall, there is no one-to-one correspondence between the classes we derive and the MK types. The classification of spectra without continuum renders 13 classes, the color separation is not so sharp, but it distinguishes stars of the same effective temperature and different metallicities. Some classes thus obtained present a fairly small range of physical parameters (200 K in effective temperature, 0.25 dex in surface gravity, and 0.35 dex in metallicity), so that the classification can be used to estimate the main physical parameters of some stars at a minimum computational cost. We also analyze the outliers of the classification. Most of them turn out to be failures of the reduction pipeline, but there are also high redshift QSOs, multiple stellar systems, dust-reddened stars, galaxies, and, finally, odd spectra whose nature we have not deciphered. The template spectra representative of the classes are publicly available in the online journal.« less

  14. Integrating Multibeam Backscatter Angular Response, Mosaic and Bathymetry Data for Benthic Habitat Mapping

    PubMed Central

    Che Hasan, Rozaimi; Ierodiaconou, Daniel; Laurenson, Laurie; Schimel, Alexandre

    2014-01-01

    Multibeam echosounders (MBES) are increasingly becoming the tool of choice for marine habitat mapping applications. In turn, the rapid expansion of habitat mapping studies has resulted in a need for automated classification techniques to efficiently map benthic habitats, assess confidence in model outputs, and evaluate the importance of variables driving the patterns observed. The benthic habitat characterisation process often involves the analysis of MBES bathymetry, backscatter mosaic or angular response with observation data providing ground truth. However, studies that make use of the full range of MBES outputs within a single classification process are limited. We present an approach that integrates backscatter angular response with MBES bathymetry, backscatter mosaic and their derivatives in a classification process using a Random Forests (RF) machine-learning algorithm to predict the distribution of benthic biological habitats. This approach includes a method of deriving statistical features from backscatter angular response curves created from MBES data collated within homogeneous regions of a backscatter mosaic. Using the RF algorithm we assess the relative importance of each variable in order to optimise the classification process and simplify models applied. The results showed that the inclusion of the angular response features in the classification process improved the accuracy of the final habitat maps from 88.5% to 93.6%. The RF algorithm identified bathymetry and the angular response mean as the two most important predictors. However, the highest classification rates were only obtained after incorporating additional features derived from bathymetry and the backscatter mosaic. The angular response features were found to be more important to the classification process compared to the backscatter mosaic features. This analysis indicates that integrating angular response information with bathymetry and the backscatter mosaic, along with their derivatives, constitutes an important improvement for studying the distribution of benthic habitats, which is necessary for effective marine spatial planning and resource management. PMID:24824155

  15. Computational Analysis of Behavior.

    PubMed

    Egnor, S E Roian; Branson, Kristin

    2016-07-08

    In this review, we discuss the emerging field of computational behavioral analysis-the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with.

  16. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data

    USGS Publications Warehouse

    Teluguntla, Pardhasaradhi G.; Thenkabail, Prasad S.; Xiong, Jun N.; Gumma, Murali Krishna; Congalton, Russell G.; Oliphant, Adam; Poehnelt, Justin; Yadav, Kamini; Rao, Mahesh N.; Massey, Richard

    2017-01-01

    Mapping croplands, including fallow areas, are an important measure to determine the quantity of food that is produced, where they are produced, and when they are produced (e.g. seasonality). Furthermore, croplands are known as water guzzlers by consuming anywhere between 70% and 90% of all human water use globally. Given these facts and the increase in global population to nearly 10 billion by the year 2050, the need for routine, rapid, and automated cropland mapping year-after-year and/or season-after-season is of great importance. The overarching goal of this study was to generate standard and routine cropland products, year-after-year, over very large areas through the use of two novel methods: (a) quantitative spectral matching techniques (QSMTs) applied at continental level and (b) rule-based Automated Cropland Classification Algorithm (ACCA) with the ability to hind-cast, now-cast, and future-cast. Australia was chosen for the study given its extensive croplands, rich history of agriculture, and yet nonexistent routine yearly generated cropland products using multi-temporal remote sensing. This research produced three distinct cropland products using Moderate Resolution Imaging Spectroradiometer (MODIS) 250-m normalized difference vegetation index 16-day composite time-series data for 16 years: 2000 through 2015. The products consisted of: (1) cropland extent/areas versus cropland fallow areas, (2) irrigated versus rainfed croplands, and (3) cropping intensities: single, double, and continuous cropping. An accurate reference cropland product (RCP) for the year 2014 (RCP2014) produced using QSMT was used as a knowledge base to train and develop the ACCA algorithm that was then applied to the MODIS time-series data for the years 2000–2015. A comparison between the ACCA-derived cropland products (ACPs) for the year 2014 (ACP2014) versus RCP2014 provided an overall agreement of 89.4% (kappa = 0.814) with six classes: (a) producer’s accuracies varying between 72% and 90% and (b) user’s accuracies varying between 79% and 90%. ACPs for the individual years 2000–2013 and 2015 (ACP2000–ACP2013, ACP2015) showed very strong similarities with several other studies. The extent and vigor of the Australian croplands versus cropland fallows were accurately captured by the ACCA algorithm for the years 2000–2015, thus highlighting the value of the study in food security analysis. The ACCA algorithm and the cropland products are released through http://croplands.org/app/map and http://geography.wr.usgs.gov/science/croplands/algorithms/australia_250m.html

  17. Classification of radiolarian images with hand-crafted and deep features

    NASA Astrophysics Data System (ADS)

    Keçeli, Ali Seydi; Kaya, Aydın; Keçeli, Seda Uzunçimen

    2017-12-01

    Radiolarians are planktonic protozoa and are important biostratigraphic and paleoenvironmental indicators for paleogeographic reconstructions. Radiolarian paleontology still remains as a low cost and the one of the most convenient way to obtain dating of deep ocean sediments. Traditional methods for identifying radiolarians are time-consuming and cannot scale to the granularity or scope necessary for large-scale studies. Automated image classification will allow making these analyses promptly. In this study, a method for automatic radiolarian image classification is proposed on Scanning Electron Microscope (SEM) images of radiolarians to ease species identification of fossilized radiolarians. The proposed method uses both hand-crafted features like invariant moments, wavelet moments, Gabor features, basic morphological features and deep features obtained from a pre-trained Convolutional Neural Network (CNN). Feature selection is applied over deep features to reduce high dimensionality. Classification outcomes are analyzed to compare hand-crafted features, deep features, and their combinations. Results show that the deep features obtained from a pre-trained CNN are more discriminative comparing to hand-crafted ones. Additionally, feature selection utilizes to the computational cost of classification algorithms and have no negative effect on classification accuracy.

  18. Feature selection for the classification of traced neurons.

    PubMed

    López-Cabrera, José D; Lorenzo-Ginori, Juan V

    2018-06-01

    The great availability of computational tools to calculate the properties of traced neurons leads to the existence of many descriptors which allow the automated classification of neurons from these reconstructions. This situation determines the necessity to eliminate irrelevant features as well as making a selection of the most appropriate among them, in order to improve the quality of the classification obtained. The dataset used contains a total of 318 traced neurons, classified by human experts in 192 GABAergic interneurons and 126 pyramidal cells. The features were extracted by means of the L-measure software, which is one of the most used computational tools in neuroinformatics to quantify traced neurons. We review some current feature selection techniques as filter, wrapper, embedded and ensemble methods. The stability of the feature selection methods was measured. For the ensemble methods, several aggregation methods based on different metrics were applied to combine the subsets obtained during the feature selection process. The subsets obtained applying feature selection methods were evaluated using supervised classifiers, among which Random Forest, C4.5, SVM, Naïve Bayes, Knn, Decision Table and the Logistic classifier were used as classification algorithms. Feature selection methods of types filter, embedded, wrappers and ensembles were compared and the subsets returned were tested in classification tasks for different classification algorithms. L-measure features EucDistanceSD, PathDistanceSD, Branch_pathlengthAve, Branch_pathlengthSD and EucDistanceAve were present in more than 60% of the selected subsets which provides evidence about their importance in the classification of this neurons. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Efficient feature selection using a hybrid algorithm for the task of epileptic seizure detection

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2014-07-01

    Feature selection is a very important aspect in the field of machine learning. It entails the search of an optimal subset from a very large data set with high dimensional feature space. Apart from eliminating redundant features and reducing computational cost, a good selection of feature also leads to higher prediction and classification accuracy. In this paper, an efficient feature selection technique is introduced in the task of epileptic seizure detection. The raw data are electroencephalography (EEG) signals. Using discrete wavelet transform, the biomedical signals were decomposed into several sets of wavelet coefficients. To reduce the dimension of these wavelet coefficients, a feature selection method that combines the strength of both filter and wrapper methods is proposed. Principal component analysis (PCA) is used as part of the filter method. As for wrapper method, the evolutionary harmony search (HS) algorithm is employed. This metaheuristic method aims at finding the best discriminating set of features from the original data. The obtained features were then used as input for an automated classifier, namely wavelet neural networks (WNNs). The WNNs model was trained to perform a binary classification task, that is, to determine whether a given EEG signal was normal or epileptic. For comparison purposes, different sets of features were also used as input. Simulation results showed that the WNNs that used the features chosen by the hybrid algorithm achieved the highest overall classification accuracy.

  20. A Review of the Quantification and Classification of Pigmented Skin Lesions: From Dedicated to Hand-Held Devices.

    PubMed

    Filho, Mercedes; Ma, Zhen; Tavares, João Manuel R S

    2015-11-01

    In recent years, the incidence of skin cancer cases has risen, worldwide, mainly due to the prolonged exposure to harmful ultraviolet radiation. Concurrently, the computer-assisted medical diagnosis of skin cancer has undergone major advances, through an improvement in the instrument and detection technology, and the development of algorithms to process the information. Moreover, because there has been an increased need to store medical data, for monitoring, comparative and assisted-learning purposes, algorithms for data processing and storage have also become more efficient in handling the increase of data. In addition, the potential use of common mobile devices to register high-resolution images of skin lesions has also fueled the need to create real-time processing algorithms that may provide a likelihood for the development of malignancy. This last possibility allows even non-specialists to monitor and follow-up suspected skin cancer cases. In this review, we present the major steps in the pre-processing, processing and post-processing of skin lesion images, with a particular emphasis on the quantification and classification of pigmented skin lesions. We further review and outline the future challenges for the creation of minimum-feature, automated and real-time algorithms for the detection of skin cancer from images acquired via common mobile devices.

  1. Spiral waves characterization: Implications for an automated cardiodynamic tissue characterization.

    PubMed

    Alagoz, Celal; Cohen, Andrew R; Frisch, Daniel R; Tunç, Birkan; Phatharodom, Saran; Guez, Allon

    2018-07-01

    Spiral waves are phenomena observed in cardiac tissue especially during fibrillatory activities. Spiral waves are revealed through in-vivo and in-vitro studies using high density mapping that requires special experimental setup. Also, in-silico spiral wave analysis and classification is performed using membrane potentials from entire tissue. In this study, we report a characterization approach that identifies spiral wave behaviors using intracardiac electrogram (EGM) readings obtained with commonly used multipolar diagnostic catheters that perform localized but high-resolution readings. Specifically, the algorithm is designed to distinguish between stationary, meandering, and break-up rotors. The clustering and classification algorithms are tested on simulated data produced using a phenomenological 2D model of cardiac propagation. For EGM measurements, unipolar-bipolar EGM readings from various locations on tissue using two catheter types are modeled. The distance measure between spiral behaviors are assessed using normalized compression distance (NCD), an information theoretical distance. NCD is a universal metric in the sense it is solely based on compressibility of dataset and not requiring feature extraction. We also introduce normalized FFT distance (NFFTD) where compressibility is replaced with a FFT parameter. Overall, outstanding clustering performance was achieved across varying EGM reading configurations. We found that effectiveness in distinguishing was superior in case of NCD than NFFTD. We demonstrated that distinct spiral activity identification on a behaviorally heterogeneous tissue is also possible. This report demonstrates a theoretical validation of clustering and classification approaches that provide an automated mapping from EGM signals to assessment of spiral wave behaviors and hence offers a potential mapping and analysis framework for cardiac tissue wavefront propagation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Recognition of skin melanoma through dermoscopic image analysis

    NASA Astrophysics Data System (ADS)

    Gómez, Catalina; Herrera, Diana Sofia

    2017-11-01

    Melanoma skin cancer diagnosis can be challenging due to the similarities of the early stage symptoms with regular moles. Standardized visual parameters can be determined and characterized to suspect a melanoma cancer type. The automation of this diagnosis could have an impact in the medical field by providing a tool to support the specialists with high accuracy. The objective of this study is to develop an algorithm trained to distinguish a highly probable melanoma from a non-dangerous mole by the segmentation and classification of dermoscopic mole images. We evaluate our approach on the dataset provided by the International Skin Imaging Collaboration used in the International Challenge Skin Lesion Analysis Towards Melanoma Detection. For the segmentation task, we apply a preprocessing algorithm and use Otsu's thresholding in the best performing color space; the average Jaccard Index in the test dataset is 70.05%. For the subsequent classification stage, we use joint histograms in the YCbCr color space, a RBF Gaussian SVM trained with five features concerning circularity and irregularity of the segmented lesion, and the Gray Level Co-occurrence matrix features for texture analysis. These features are combined to obtain an Average Classification Accuracy of 63.3% in the test dataset.

  3. LMD Based Features for the Automatic Seizure Detection of EEG Signals Using SVM.

    PubMed

    Zhang, Tao; Chen, Wanzhong

    2017-08-01

    Achieving the goal of detecting seizure activity automatically using electroencephalogram (EEG) signals is of great importance and significance for the treatment of epileptic seizures. To realize this aim, a newly-developed time-frequency analytical algorithm, namely local mean decomposition (LMD), is employed in the presented study. LMD is able to decompose an arbitrary signal into a series of product functions (PFs). Primarily, the raw EEG signal is decomposed into several PFs, and then the temporal statistical and non-linear features of the first five PFs are calculated. The features of each PF are fed into five classifiers, including back propagation neural network (BPNN), K-nearest neighbor (KNN), linear discriminant analysis (LDA), un-optimized support vector machine (SVM) and SVM optimized by genetic algorithm (GA-SVM), for five classification cases, respectively. Confluent features of all PFs and raw EEG are further passed into the high-performance GA-SVM for the same classification tasks. Experimental results on the international public Bonn epilepsy EEG dataset show that the average classification accuracy of the presented approach are equal to or higher than 98.10% in all the five cases, and this indicates the effectiveness of the proposed approach for automated seizure detection.

  4. Structural health monitoring feature design by genetic programming

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Todd, Michael D.

    2014-09-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and other high-capital or life-safety critical structures. Conventional data processing involves pre-processing and extraction of low-dimensional features from in situ time series measurements. The features are then input to a statistical pattern recognition algorithm to perform the relevant classification or regression task necessary to facilitate decisions by the SHM system. Traditional design of signal processing and feature extraction algorithms can be an expensive and time-consuming process requiring extensive system knowledge and domain expertise. Genetic programming, a heuristic program search method from evolutionary computation, was recently adapted by the authors to perform automated, data-driven design of signal processing and feature extraction algorithms for statistical pattern recognition applications. The proposed method, called Autofead, is particularly suitable to handle the challenges inherent in algorithm design for SHM problems where the manifestation of damage in structural response measurements is often unclear or unknown. Autofead mines a training database of response measurements to discover information-rich features specific to the problem at hand. This study provides experimental validation on three SHM applications including ultrasonic damage detection, bearing damage classification for rotating machinery, and vibration-based structural health monitoring. Performance comparisons with common feature choices for each problem area are provided demonstrating the versatility of Autofead to produce significant algorithm improvements on a wide range of problems.

  5. Automatic migraine classification via feature selection committee and machine learning techniques over imaging and questionnaire data.

    PubMed

    Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya; Gomez-Beldarrain, Marian; Fernandez-Ruanova, Begonya; Garcia-Monco, Juan Carlos

    2017-04-13

    Feature selection methods are commonly used to identify subsets of relevant features to facilitate the construction of models for classification, yet little is known about how feature selection methods perform in diffusion tensor images (DTIs). In this study, feature selection and machine learning classification methods were tested for the purpose of automating diagnosis of migraines using both DTIs and questionnaire answers related to emotion and cognition - factors that influence of pain perceptions. We select 52 adult subjects for the study divided into three groups: control group (15), subjects with sporadic migraine (19) and subjects with chronic migraine and medication overuse (18). These subjects underwent magnetic resonance with diffusion tensor to see white matter pathway integrity of the regions of interest involved in pain and emotion. The tests also gather data about pathology. The DTI images and test results were then introduced into feature selection algorithms (Gradient Tree Boosting, L1-based, Random Forest and Univariate) to reduce features of the first dataset and classification algorithms (SVM (Support Vector Machine), Boosting (Adaboost) and Naive Bayes) to perform a classification of migraine group. Moreover we implement a committee method to improve the classification accuracy based on feature selection algorithms. When classifying the migraine group, the greatest improvements in accuracy were made using the proposed committee-based feature selection method. Using this approach, the accuracy of classification into three types improved from 67 to 93% when using the Naive Bayes classifier, from 90 to 95% with the support vector machine classifier, 93 to 94% in boosting. The features that were determined to be most useful for classification included are related with the pain, analgesics and left uncinate brain (connected with the pain and emotions). The proposed feature selection committee method improved the performance of migraine diagnosis classifiers compared to individual feature selection methods, producing a robust system that achieved over 90% accuracy in all classifiers. The results suggest that the proposed methods can be used to support specialists in the classification of migraines in patients undergoing magnetic resonance imaging.

  6. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    DTIC Science & Technology

    2014-03-27

    FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Gordon M. Spahr, Second Lieutenant, USAF AFIT-ENP-14-M-34...CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air...DISTRIUBUTION UNLIMITED. AFIT-ENP-14-M-34 FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB Gordon M. Spahr, BS Second

  7. Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief.

    PubMed

    Douglas, P K; Harris, Sam; Yuille, Alan; Cohen, Mark S

    2011-05-15

    Machine learning (ML) has become a popular tool for mining functional neuroimaging data, and there are now hopes of performing such analyses efficiently in real-time. Towards this goal, we compared accuracy of six different ML algorithms applied to neuroimaging data of persons engaged in a bivariate task, asserting their belief or disbelief of a variety of propositional statements. We performed unsupervised dimension reduction and automated feature extraction using independent component (IC) analysis and extracted IC time courses. Optimization of classification hyperparameters across each classifier occurred prior to assessment. Maximum accuracy was achieved at 92% for Random Forest, followed by 91% for AdaBoost, 89% for Naïve Bayes, 87% for a J48 decision tree, 86% for K*, and 84% for support vector machine. For real-time decoding applications, finding a parsimonious subset of diagnostic ICs might be useful. We used a forward search technique to sequentially add ranked ICs to the feature subspace. For the current data set, we determined that approximately six ICs represented a meaningful basis set for classification. We then projected these six IC spatial maps forward onto a later scanning session within subject. We then applied the optimized ML algorithms to these new data instances, and found that classification accuracy results were reproducible. Additionally, we compared our classification method to our previously published general linear model results on this same data set. The highest ranked IC spatial maps show similarity to brain regions associated with contrasts for belief > disbelief, and disbelief < belief. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. An AdaBoost Based Approach to Automatic Classification and Detection of Buildings Footprints, Vegetation Areas and Roads from Satellite Images

    NASA Astrophysics Data System (ADS)

    Gonulalan, Cansu

    In recent years, there has been an increasing demand for applications to monitor the targets related to land-use, using remote sensing images. Advances in remote sensing satellites give rise to the research in this area. Many applications ranging from urban growth planning to homeland security have already used the algorithms for automated object recognition from remote sensing imagery. However, they have still problems such as low accuracy on detection of targets, specific algorithms for a specific area etc. In this thesis, we focus on an automatic approach to classify and detect building foot-prints, road networks and vegetation areas. The automatic interpretation of visual data is a comprehensive task in computer vision field. The machine learning approaches improve the capability of classification in an intelligent way. We propose a method, which has high accuracy on detection and classification. The multi class classification is developed for detecting multiple objects. We present an AdaBoost-based approach along with the supervised learning algorithm. The combi- nation of AdaBoost with "Attentional Cascade" is adopted from Viola and Jones [1]. This combination decreases the computation time and gives opportunity to real time applications. For the feature extraction step, our contribution is to combine Haar-like features that include corner, rectangle and Gabor. Among all features, AdaBoost selects only critical features and generates in extremely efficient cascade structured classifier. Finally, we present and evaluate our experimental results. The overall system is tested and high performance of detection is achieved. The precision rate of the final multi-class classifier is over 98%.

  9. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning

    NASA Astrophysics Data System (ADS)

    Sun, Yankui; Li, Shan; Sun, Zhongyang

    2017-01-01

    We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects-15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing-168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively.

  10. Using Neural Networks to Classify Digitized Images of Galaxies

    NASA Astrophysics Data System (ADS)

    Goderya, S. N.; McGuire, P. C.

    2000-12-01

    Automated classification of Galaxies into Hubble types is of paramount importance to study the large scale structure of the Universe, particularly as survey projects like the Sloan Digital Sky Survey complete their data acquisition of one million galaxies. At present it is not possible to find robust and efficient artificial intelligence based galaxy classifiers. In this study we will summarize progress made in the development of automated galaxy classifiers using neural networks as machine learning tools. We explore the Bayesian linear algorithm, the higher order probabilistic network, the multilayer perceptron neural network and Support Vector Machine Classifier. The performance of any machine classifier is dependant on the quality of the parameters that characterize the different groups of galaxies. Our effort is to develop geometric and invariant moment based parameters as input to the machine classifiers instead of the raw pixel data. Such an approach reduces the dimensionality of the classifier considerably, and removes the effects of scaling and rotation, and makes it easier to solve for the unknown parameters in the galaxy classifier. To judge the quality of training and classification we develop the concept of Mathews coefficients for the galaxy classification community. Mathews coefficients are single numbers that quantify classifier performance even with unequal prior probabilities of the classes.

  11. Fully automated macular pathology detection in retina optical coherence tomography images using sparse coding and dictionary learning.

    PubMed

    Sun, Yankui; Li, Shan; Sun, Zhongyang

    2017-01-01

    We propose a framework for automated detection of dry age-related macular degeneration (AMD) and diabetic macular edema (DME) from retina optical coherence tomography (OCT) images, based on sparse coding and dictionary learning. The study aims to improve the classification performance of state-of-the-art methods. First, our method presents a general approach to automatically align and crop retina regions; then it obtains global representations of images by using sparse coding and a spatial pyramid; finally, a multiclass linear support vector machine classifier is employed for classification. We apply two datasets for validating our algorithm: Duke spectral domain OCT (SD-OCT) dataset, consisting of volumetric scans acquired from 45 subjects—15 normal subjects, 15 AMD patients, and 15 DME patients; and clinical SD-OCT dataset, consisting of 678 OCT retina scans acquired from clinics in Beijing—168, 297, and 213 OCT images for AMD, DME, and normal retinas, respectively. For the former dataset, our classifier correctly identifies 100%, 100%, and 93.33% of the volumes with DME, AMD, and normal subjects, respectively, and thus performs much better than the conventional method; for the latter dataset, our classifier leads to a correct classification rate of 99.67%, 99.67%, and 100.00% for DME, AMD, and normal images, respectively.

  12. Automated tissue classification of intracardiac optical coherence tomography images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Tsay, David; Amir, Syed B.; Marboe, Charles C.; Hendon, Christine P.

    2016-03-01

    Remodeling of the myocardium is associated with increased risk of arrhythmia and heart failure. Our objective is to automatically identify regions of fibrotic myocardium, dense collagen, and adipose tissue, which can serve as a way to guide radiofrequency ablation therapy or endomyocardial biopsies. Using computer vision and machine learning, we present an automated algorithm to classify tissue compositions from cardiac optical coherence tomography (OCT) images. Three dimensional OCT volumes were obtained from 15 human hearts ex vivo within 48 hours of donor death (source, NDRI). We first segmented B-scans using a graph searching method. We estimated the boundary of each region by minimizing a cost function, which consisted of intensity, gradient, and contour smoothness. Then, features, including texture analysis, optical properties, and statistics of high moments, were extracted. We used a statistical model, relevance vector machine, and trained this model with abovementioned features to classify tissue compositions. To validate our method, we applied our algorithm to 77 volumes. The datasets for validation were manually segmented and classified by two investigators who were blind to our algorithm results and identified the tissues based on trichrome histology and pathology. The difference between automated and manual segmentation was 51.78 +/- 50.96 μm. Experiments showed that the attenuation coefficients of dense collagen were significantly different from other tissue types (P < 0.05, ANOVA). Importantly, myocardial fibrosis tissues were different from normal myocardium in entropy and kurtosis. The tissue types were classified with an accuracy of 84%. The results show good agreements with histology.

  13. Automated analysis of free speech predicts psychosis onset in high-risk youths

    PubMed Central

    Bedi, Gillinder; Carrillo, Facundo; Cecchi, Guillermo A; Slezak, Diego Fernández; Sigman, Mariano; Mota, Natália B; Ribeiro, Sidarta; Javitt, Daniel C; Copelli, Mauro; Corcoran, Cheryl M

    2015-01-01

    Background/Objectives: Psychiatry lacks the objective clinical tests routinely used in other specializations. Novel computerized methods to characterize complex behaviors such as speech could be used to identify and predict psychiatric illness in individuals. AIMS: In this proof-of-principle study, our aim was to test automated speech analyses combined with Machine Learning to predict later psychosis onset in youths at clinical high-risk (CHR) for psychosis. Methods: Thirty-four CHR youths (11 females) had baseline interviews and were assessed quarterly for up to 2.5 years; five transitioned to psychosis. Using automated analysis, transcripts of interviews were evaluated for semantic and syntactic features predicting later psychosis onset. Speech features were fed into a convex hull classification algorithm with leave-one-subject-out cross-validation to assess their predictive value for psychosis outcome. The canonical correlation between the speech features and prodromal symptom ratings was computed. Results: Derived speech features included a Latent Semantic Analysis measure of semantic coherence and two syntactic markers of speech complexity: maximum phrase length and use of determiners (e.g., which). These speech features predicted later psychosis development with 100% accuracy, outperforming classification from clinical interviews. Speech features were significantly correlated with prodromal symptoms. Conclusions: Findings support the utility of automated speech analysis to measure subtle, clinically relevant mental state changes in emergent psychosis. Recent developments in computer science, including natural language processing, could provide the foundation for future development of objective clinical tests for psychiatry. PMID:27336038

  14. Artificial neuron-glia networks learning approach based on cooperative coevolution.

    PubMed

    Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B

    2015-06-01

    Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.

  15. Classification of Automated Search Traffic

    NASA Astrophysics Data System (ADS)

    Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.

    As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.

  16. Automated detection of tuberculosis on sputum smeared slides using stepwise classification

    NASA Astrophysics Data System (ADS)

    Divekar, Ajay; Pangilinan, Corina; Coetzee, Gerrit; Sondh, Tarlochan; Lure, Fleming Y. M.; Kennedy, Sean

    2012-03-01

    Routine visual slide screening for identification of tuberculosis (TB) bacilli in stained sputum slides under microscope system is a tedious labor-intensive task and can miss up to 50% of TB. Based on the Shannon cofactor expansion on Boolean function for classification, a stepwise classification (SWC) algorithm is developed to remove different types of false positives, one type at a time, and to increase the detection of TB bacilli at different concentrations. Both bacilli and non-bacilli objects are first analyzed and classified into several different categories including scanty positive, high concentration positive, and several non-bacilli categories: small bright objects, beaded, dim elongated objects, etc. The morphological and contrast features are extracted based on aprior clinical knowledge. The SWC is composed of several individual classifiers. Individual classifier to increase the bacilli counts utilizes an adaptive algorithm based on a microbiologist's statistical heuristic decision process. Individual classifier to reduce false positive is developed through minimization from a binary decision tree to classify different types of true and false positive based on feature vectors. Finally, the detection algorithm is was tested on 102 independent confirmed negative and 74 positive cases. A multi-class task analysis shows high accordance rate for negative, scanty, and high-concentration as 88.24%, 56.00%, and 97.96%, respectively. A binary-class task analysis using a receiver operating characteristics method with the area under the curve (Az) is also utilized to analyze the performance of this detection algorithm, showing the superior detection performance on the high-concentration cases (Az=0.913) and cases mixed with high-concentration and scanty cases (Az=0.878).

  17. Particle Swarm Optimization approach to defect detection in armour ceramics.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh

    2017-03-01

    In this research, various extracted features were used in the development of an automated ultrasonic sensor based inspection system that enables defect classification in each ceramic component prior to despatch to the field. Classification is an important task and large number of irrelevant, redundant features commonly introduced to a dataset reduces the classifiers performance. Feature selection aims to reduce the dimensionality of the dataset while improving the performance of a classification system. In the context of a multi-criteria optimization problem (i.e. to minimize classification error rate and reduce number of features) such as one discussed in this research, the literature suggests that evolutionary algorithms offer good results. Besides, it is noted that Particle Swarm Optimization (PSO) has not been explored especially in the field of classification of high frequency ultrasonic signals. Hence, a binary coded Particle Swarm Optimization (BPSO) technique is investigated in the implementation of feature subset selection and to optimize the classification error rate. In the proposed method, the population data is used as input to an Artificial Neural Network (ANN) based classification system to obtain the error rate, as ANN serves as an evaluator of PSO fitness function. Copyright © 2016. Published by Elsevier B.V.

  18. Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.

    PubMed

    Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B

    2011-02-01

    This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.

  19. A Generic Deep-Learning-Based Approach for Automated Surface Inspection.

    PubMed

    Ren, Ruoxu; Hung, Terence; Tan, Kay Chen

    2018-03-01

    Automated surface inspection (ASI) is a challenging task in industry, as collecting training dataset is usually costly and related methods are highly dataset-dependent. In this paper, a generic approach that requires small training data for ASI is proposed. First, this approach builds classifier on the features of image patches, where the features are transferred from a pretrained deep learning network. Next, pixel-wise prediction is obtained by convolving the trained classifier over input image. An experiment on three public and one industrial data set is carried out. The experiment involves two tasks: 1) image classification and 2) defect segmentation. The results of proposed algorithm are compared against several best benchmarks in literature. In the classification tasks, the proposed method improves accuracy by 0.66%-25.50%. In the segmentation tasks, the proposed method reduces error escape rates by 6.00%-19.00% in three defect types and improves accuracies by 2.29%-9.86% in all seven defect types. In addition, the proposed method achieves 0.0% error escape rate in the segmentation task of industrial data.

  20. Deep SOMs for automated feature extraction and classification from big data streaming

    NASA Astrophysics Data System (ADS)

    Sakkari, Mohamed; Ejbali, Ridha; Zaied, Mourad

    2017-03-01

    In this paper, we proposed a deep self-organizing map model (Deep-SOMs) for automated features extracting and learning from big data streaming which we benefit from the framework Spark for real time streams and highly parallel data processing. The SOMs deep architecture is based on the notion of abstraction (patterns automatically extract from the raw data, from the less to more abstract). The proposed model consists of three hidden self-organizing layers, an input and an output layer. Each layer is made up of a multitude of SOMs, each map only focusing at local headmistress sub-region from the input image. Then, each layer trains the local information to generate more overall information in the higher layer. The proposed Deep-SOMs model is unique in terms of the layers architecture, the SOMs sampling method and learning. During the learning stage we use a set of unsupervised SOMs for feature extraction. We validate the effectiveness of our approach on large data sets such as Leukemia dataset and SRBCT. Results of comparison have shown that the Deep-SOMs model performs better than many existing algorithms for images classification.

  1. Teaching High School Students Machine Learning Algorithms to Analyze Flood Risk Factors in River Deltas

    NASA Astrophysics Data System (ADS)

    Rose, R.; Aizenman, H.; Mei, E.; Choudhury, N.

    2013-12-01

    High School students interested in the STEM fields benefit most when actively participating, so I created a series of learning modules on how to analyze complex systems using machine-learning that give automated feedback to students. The automated feedbacks give timely responses that will encourage the students to continue testing and enhancing their programs. I have designed my modules to take the tactical learning approach in conveying the concepts behind correlation, linear regression, and vector distance based classification and clustering. On successful completion of these modules, students will learn how to calculate linear regression, Pearson's correlation, and apply classification and clustering techniques to a dataset. Working on these modules will allow the students to take back to the classroom what they've learned and then apply it to the Earth Science curriculum. During my research this summer, we applied these lessons to analyzing river deltas; we looked at trends in the different variables over time, looked for similarities in NDVI, precipitation, inundation, runoff and discharge, and attempted to predict floods based on the precipitation, waves mean, area of discharge, NDVI, and inundation.

  2. JPSS Cryosphere Algorithms: Integration and Testing in Algorithm Development Library (ADL)

    NASA Astrophysics Data System (ADS)

    Tsidulko, M.; Mahoney, R. L.; Meade, P.; Baldwin, D.; Tschudi, M. A.; Das, B.; Mikles, V. J.; Chen, W.; Tang, Y.; Sprietzer, K.; Zhao, Y.; Wolf, W.; Key, J.

    2014-12-01

    JPSS is a next generation satellite system that is planned to be launched in 2017. The satellites will carry a suite of sensors that are already on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. The NOAA/NESDIS/STAR Algorithm Integration Team (AIT) works within the Algorithm Development Library (ADL) framework which mimics the operational JPSS Interface Data Processing Segment (IDPS). The AIT contributes in development, integration and testing of scientific algorithms employed in the IDPS. This presentation discusses cryosphere related activities performed in ADL. The addition of a new ancillary data set - NOAA Global Multisensor Automated Snow/Ice data (GMASI) - with ADL code modifications is described. Preliminary GMASI impact on the gridded Snow/Ice product is estimated. Several modifications to the Ice Age algorithm that demonstrates mis-classification of ice type for certain areas/time periods are tested in the ADL. Sensitivity runs for day time, night time and terminator zone are performed and presented. Comparisons between the original and modified versions of the Ice Age algorithm are also presented.

  3. Automating cell detection and classification in human brain fluorescent microscopy images using dictionary learning and sparse coding.

    PubMed

    Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M; Grinberg, Lea T

    2017-04-15

    Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Tree Classification Software

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1993-01-01

    This paper introduces the IND Tree Package to prospective users. IND does supervised learning using classification trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expert systems. The IND Tree Package was developed as part of a NASA project to semi-automate the development of data analysis and modelling algorithms using artificial intelligence techniques. The IND Tree Package integrates features from CART and C4 with newer Bayesian and minimum encoding methods for growing classification trees and graphs. The IND Tree Package also provides an experimental control suite on top. The newer features give improved probability estimates often required in diagnostic and screening tasks. The package comes with a manual, Unix 'man' entries, and a guide to tree methods and research. The IND Tree Package is implemented in C under Unix and was beta-tested at university and commercial research laboratories in the United States.

  5. Segmentation and classification of cell cycle phases in fluorescence imaging.

    PubMed

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  6. A Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme

    PubMed Central

    Jordan, Alan; Rees, Tony; Gowlett-Holmes, Karen

    2015-01-01

    Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme’s utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use. PMID:26509918

  7. Object-Based Classification of Ikonos Imagery for Mapping Large-Scale Vegetation Communities in Urban Areas.

    PubMed

    Mathieu, Renaud; Aryal, Jagannath; Chong, Albert K

    2007-11-20

    Effective assessment of biodiversity in cities requires detailed vegetation maps.To date, most remote sensing of urban vegetation has focused on thematically coarse landcover products. Detailed habitat maps are created by manual interpretation of aerialphotographs, but this is time consuming and costly at large scale. To address this issue, wetested the effectiveness of object-based classifications that use automated imagesegmentation to extract meaningful ground features from imagery. We applied thesetechniques to very high resolution multispectral Ikonos images to produce vegetationcommunity maps in Dunedin City, New Zealand. An Ikonos image was orthorectified and amulti-scale segmentation algorithm used to produce a hierarchical network of image objects.The upper level included four coarse strata: industrial/commercial (commercial buildings),residential (houses and backyard private gardens), vegetation (vegetation patches larger than0.8/1ha), and water. We focused on the vegetation stratum that was segmented at moredetailed level to extract and classify fifteen classes of vegetation communities. The firstclassification yielded a moderate overall classification accuracy (64%, κ = 0.52), which ledus to consider a simplified classification with ten vegetation classes. The overallclassification accuracy from the simplified classification was 77% with a κ value close tothe excellent range (κ = 0.74). These results compared favourably with similar studies inother environments. We conclude that this approach does not provide maps as detailed as those produced by manually interpreting aerial photographs, but it can still extract ecologically significant classes. It is an efficient way to generate accurate and detailed maps in significantly shorter time. The final map accuracy could be improved by integrating segmentation, automated and manual classification in the mapping process, especially when considering important vegetation classes with limited spectral contrast.

  8. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    NASA Technical Reports Server (NTRS)

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-01-01

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  9. Retinal Microaneurysms Detection Using Gradient Vector Analysis and Class Imbalance Classification.

    PubMed

    Dai, Baisheng; Wu, Xiangqian; Bu, Wei

    2016-01-01

    Retinal microaneurysms (MAs) are the earliest clinically observable lesions of diabetic retinopathy. Reliable automated MAs detection is thus critical for early diagnosis of diabetic retinopathy. This paper proposes a novel method for the automated MAs detection in color fundus images based on gradient vector analysis and class imbalance classification, which is composed of two stages, i.e. candidate MAs extraction and classification. In the first stage, a candidate MAs extraction algorithm is devised by analyzing the gradient field of the image, in which a multi-scale log condition number map is computed based on the gradient vectors for vessel removal, and then the candidate MAs are localized according to the second order directional derivatives computed in different directions. Due to the complexity of fundus image, besides a small number of true MAs, there are also a large amount of non-MAs in the extracted candidates. Classifying the true MAs and the non-MAs is an extremely class imbalanced classification problem. Therefore, in the second stage, several types of features including geometry, contrast, intensity, edge, texture, region descriptors and other features are extracted from the candidate MAs and a class imbalance classifier, i.e., RUSBoost, is trained for the MAs classification. With the Retinopathy Online Challenge (ROC) criterion, the proposed method achieves an average sensitivity of 0.433 at 1/8, 1/4, 1/2, 1, 2, 4 and 8 false positives per image on the ROC database, which is comparable with the state-of-the-art approaches, and 0.321 on the DiaRetDB1 V2.1 database, which outperforms the state-of-the-art approaches.

  10. An evaluation of unsupervised and supervised learning algorithms for clustering landscape types in the United States

    USGS Publications Warehouse

    Wendel, Jochen; Buttenfield, Barbara P.; Stanislawski, Larry V.

    2016-01-01

    Knowledge of landscape type can inform cartographic generalization of hydrographic features, because landscape characteristics provide an important geographic context that affects variation in channel geometry, flow pattern, and network configuration. Landscape types are characterized by expansive spatial gradients, lacking abrupt changes between adjacent classes; and as having a limited number of outliers that might confound classification. The US Geological Survey (USGS) is exploring methods to automate generalization of features in the National Hydrography Data set (NHD), to associate specific sequences of processing operations and parameters with specific landscape characteristics, thus obviating manual selection of a unique processing strategy for every NHD watershed unit. A chronology of methods to delineate physiographic regions for the United States is described, including a recent maximum likelihood classification based on seven input variables. This research compares unsupervised and supervised algorithms applied to these seven input variables, to evaluate and possibly refine the recent classification. Evaluation metrics for unsupervised methods include the Davies–Bouldin index, the Silhouette index, and the Dunn index as well as quantization and topographic error metrics. Cross validation and misclassification rate analysis are used to evaluate supervised classification methods. The paper reports the comparative analysis and its impact on the selection of landscape regions. The compared solutions show problems in areas of high landscape diversity. There is some indication that additional input variables, additional classes, or more sophisticated methods can refine the existing classification.

  11. Automated classification of articular cartilage surfaces based on surface texture.

    PubMed

    Stachowiak, G P; Stachowiak, G W; Podsiadlo, P

    2006-11-01

    In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.

  12. AVNM: A Voting based Novel Mathematical Rule for Image Classification.

    PubMed

    Vidyarthi, Ankit; Mittal, Namita

    2016-12-01

    In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Automated classification of Acid Rock Drainage potential from Corescan drill core imagery

    NASA Astrophysics Data System (ADS)

    Cracknell, M. J.; Jackson, L.; Parbhakar-Fox, A.; Savinova, K.

    2017-12-01

    Classification of the acid forming potential of waste rock is important for managing environmental hazards associated with mining operations. Current methods for the classification of acid rock drainage (ARD) potential usually involve labour intensive and subjective assessment of drill core and/or hand specimens. Manual methods are subject to operator bias, human error and the amount of material that can be assessed within a given time frame is limited. The automated classification of ARD potential documented here is based on the ARD Index developed by Parbhakar-Fox et al. (2011). This ARD Index involves the combination of five indicators: A - sulphide content; B - sulphide alteration; C - sulphide morphology; D - primary neutraliser content; and E - sulphide mineral association. Several components of the ARD Index require accurate identification of sulphide minerals. This is achieved by classifying Corescan Red-Green-Blue true colour images into the presence or absence of sulphide minerals using supervised classification. Subsequently, sulphide classification images are processed and combined with Corescan SWIR-based mineral classifications to obtain information on sulphide content, indices representing sulphide textures (disseminated versus massive and degree of veining), and spatially associated minerals. This information is combined to calculate ARD Index indicator values that feed into the classification of ARD potential. Automated ARD potential classifications of drill core samples associated with a porphyry Cu-Au deposit are compared to manually derived classifications and those obtained by standard static geochemical testing and X-ray diffractometry analyses. Results indicate a high degree of similarity between automated and manual ARD potential classifications. Major differences between approaches are observed in sulphide and neutraliser mineral percentages, likely due to the subjective nature of manual estimates of mineral content. The automated approach presented here for the classification of ARD potential offers rapid, repeatable and accurate outcomes comparable to manually derived classifications. Methods for automated ARD classifications from digital drill core data represent a step-change for geoenvironmental management practices in the mining industry.

  14. Automatic liver volume segmentation and fibrosis classification

    NASA Astrophysics Data System (ADS)

    Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit

    2018-02-01

    In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.

  15. Natural language processing of clinical notes for identification of critical limb ischemia.

    PubMed

    Afzal, Naveed; Mallipeddi, Vishnu Priya; Sohn, Sunghwan; Liu, Hongfang; Chaudhry, Rajeev; Scott, Christopher G; Kullo, Iftikhar J; Arruda-Olson, Adelaide M

    2018-03-01

    Critical limb ischemia (CLI) is a complication of advanced peripheral artery disease (PAD) with diagnosis based on the presence of clinical signs and symptoms. However, automated identification of cases from electronic health records (EHRs) is challenging due to absence of a single definitive International Classification of Diseases (ICD-9 or ICD-10) code for CLI. In this study, we extend a previously validated natural language processing (NLP) algorithm for PAD identification to develop and validate a subphenotyping NLP algorithm (CLI-NLP) for identification of CLI cases from clinical notes. We compared performance of the CLI-NLP algorithm with CLI-related ICD-9 billing codes. The gold standard for validation was human abstraction of clinical notes from EHRs. Compared to billing codes the CLI-NLP algorithm had higher positive predictive value (PPV) (CLI-NLP 96%, billing codes 67%, p < 0.001), specificity (CLI-NLP 98%, billing codes 74%, p < 0.001) and F1-score (CLI-NLP 90%, billing codes 76%, p < 0.001). The sensitivity of these two methods was similar (CLI-NLP 84%; billing codes 88%; p < 0.12). The CLI-NLP algorithm for identification of CLI from narrative clinical notes in an EHR had excellent PPV and has potential for translation to patient care as it will enable automated identification of CLI cases for quality projects, clinical decision support tools and support a learning healthcare system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. [The study of medical supplies automation replenishment algorithm in hospital on medical supplies supplying chain].

    PubMed

    Sheng, Xi

    2012-07-01

    The thesis aims to study the automation replenishment algorithm in hospital on medical supplies supplying chain. The mathematical model and algorithm of medical supplies automation replenishment are designed through referring to practical data form hospital on the basis of applying inventory theory, greedy algorithm and partition algorithm. The automation replenishment algorithm is proved to realize automatic calculation of the medical supplies distribution amount and optimize medical supplies distribution scheme. A conclusion could be arrived that the model and algorithm of inventory theory, if applied in medical supplies circulation field, could provide theoretical and technological support for realizing medical supplies automation replenishment of hospital on medical supplies supplying chain.

  17. DeepPap: Deep Convolutional Networks for Cervical Cell Classification.

    PubMed

    Zhang, Ling; Le Lu; Nogues, Isabella; Summers, Ronald M; Liu, Shaoxiong; Yao, Jianhua

    2017-11-01

    Automation-assisted cervical screening via Pap smear or liquid-based cytology (LBC) is a highly effective cell imaging based cancer detection tool, where cells are partitioned into "abnormal" and "normal" categories. However, the success of most traditional classification methods relies on the presence of accurate cell segmentations. Despite sixty years of research in this field, accurate segmentation remains a challenge in the presence of cell clusters and pathologies. Moreover, previous classification methods are only built upon the extraction of hand-crafted features, such as morphology and texture. This paper addresses these limitations by proposing a method to directly classify cervical cells-without prior segmentation-based on deep features, using convolutional neural networks (ConvNets). First, the ConvNet is pretrained on a natural image dataset. It is subsequently fine-tuned on a cervical cell dataset consisting of adaptively resampled image patches coarsely centered on the nuclei. In the testing phase, aggregation is used to average the prediction scores of a similar set of image patches. The proposed method is evaluated on both Pap smear and LBC datasets. Results show that our method outperforms previous algorithms in classification accuracy (98.3%), area under the curve (0.99) values, and especially specificity (98.3%), when applied to the Herlev benchmark Pap smear dataset and evaluated using five-fold cross validation. Similar superior performances are also achieved on the HEMLBC (H&E stained manual LBC) dataset. Our method is promising for the development of automation-assisted reading systems in primary cervical screening.

  18. Development of Automated Image Analysis Software for Suspended Marine Particle Classification

    DTIC Science & Technology

    2003-09-30

    Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Development of Automated Image Analysis Software for Suspended...objective is to develop automated image analysis software to reduce the effort and time required for manual identification of plankton images. Automated

  19. Automated reliability assessment for spectroscopic redshift measurements

    NASA Astrophysics Data System (ADS)

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for spectroscopic redshift measurements. This newly-defined method is very promising for next-generation large spectroscopic surveys from the ground and in space, such as Euclid and WFIRST. A table of the reclassified VVDS redshifts and reliability is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A53

  20. Ambulatory REACT: real-time seizure detection with a DSP microprocessor.

    PubMed

    McEvoy, Robert P; Faul, Stephen; Marnane, William P

    2010-01-01

    REACT (Real-Time EEG Analysis for event deteCTion) is a Support Vector Machine based technology which, in recent years, has been successfully applied to the problem of automated seizure detection in both adults and neonates. This paper describes the implementation of REACT on a commercial DSP microprocessor; the Analog Devices Blackfin®. The primary aim of this work is to develop a prototype system for use in ambulatory or in-ward automated EEG analysis. Furthermore, the complexity of the various stages of the REACT algorithm on the Blackfin processor is analysed; in particular the EEG feature extraction stages. This hardware profile is used to select a reduced, platform-aware feature set, in order to evaluate the seizure classification accuracy of a lower-complexity, lower-power REACT system.

  1. DeepSAT: A Deep Learning Approach to Tree-Cover Delineation in 1-m NAIP Imagery for the Continental United States

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Basu, Saikat; Nemani, Ramakrishna R.; Mukhopadhyay, Supratik; Michaelis, Andrew; Votava, Petr

    2016-01-01

    High resolution tree cover classification maps are needed to increase the accuracy of current land ecosystem and climate model outputs. Limited studies are in place that demonstrates the state-of-the-art in deriving very high resolution (VHR) tree cover products. In addition, most methods heavily rely on commercial softwares that are difficult to scale given the region of study (e.g. continents to globe). Complexities in present approaches relate to (a) scalability of the algorithm, (b) large image data processing (compute and memory intensive), (c) computational cost, (d) massively parallel architecture, and (e) machine learning automation. In addition, VHR satellite datasets are of the order of terabytes and features extracted from these datasets are of the order of petabytes. In our present study, we have acquired the National Agriculture Imagery Program (NAIP) dataset for the Continental United States at a spatial resolution of 1-m. This data comes as image tiles (a total of quarter million image scenes with 60 million pixels) and has a total size of 65 terabytes for a single acquisition. Features extracted from the entire dataset would amount to 8-10 petabytes. In our proposed approach, we have implemented a novel semi-automated machine learning algorithm rooted on the principles of "deep learning" to delineate the percentage of tree cover. Using the NASA Earth Exchange (NEX) initiative, we have developed an end-to-end architecture by integrating a segmentation module based on Statistical Region Merging, a classification algorithm using Deep Belief Network and a structured prediction algorithm using Conditional Random Fields to integrate the results from the segmentation and classification modules to create per-pixel class labels. The training process is scaled up using the power of GPUs and the prediction is scaled to quarter million NAIP tiles spanning the whole of Continental United States using the NEX HPC supercomputing cluster. An initial pilot over the state of California spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles has produced true positive rates of around 88 percent for fragmented forests and 74 percent for urban tree cover areas, with false positive rates lower than 2 percent for both landscapes.

  2. DeepSAT: A Deep Learning Approach to Tree-cover Delineation in 1-m NAIP Imagery for the Continental United States

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Basu, S.; Nemani, R. R.; Mukhopadhyay, S.; Michaelis, A.; Votava, P.

    2016-12-01

    High resolution tree cover classification maps are needed to increase the accuracy of current land ecosystem and climate model outputs. Limited studies are in place that demonstrates the state-of-the-art in deriving very high resolution (VHR) tree cover products. In addition, most methods heavily rely on commercial softwares that are difficult to scale given the region of study (e.g. continents to globe). Complexities in present approaches relate to (a) scalability of the algorithm, (b) large image data processing (compute and memory intensive), (c) computational cost, (d) massively parallel architecture, and (e) machine learning automation. In addition, VHR satellite datasets are of the order of terabytes and features extracted from these datasets are of the order of petabytes. In our present study, we have acquired the National Agriculture Imagery Program (NAIP) dataset for the Continental United States at a spatial resolution of 1-m. This data comes as image tiles (a total of quarter million image scenes with 60 million pixels) and has a total size of 65 terabytes for a single acquisition. Features extracted from the entire dataset would amount to 8-10 petabytes. In our proposed approach, we have implemented a novel semi-automated machine learning algorithm rooted on the principles of "deep learning" to delineate the percentage of tree cover. Using the NASA Earth Exchange (NEX) initiative, we have developed an end-to-end architecture by integrating a segmentation module based on Statistical Region Merging, a classification algorithm using Deep Belief Network and a structured prediction algorithm using Conditional Random Fields to integrate the results from the segmentation and classification modules to create per-pixel class labels. The training process is scaled up using the power of GPUs and the prediction is scaled to quarter million NAIP tiles spanning the whole of Continental United States using the NEX HPC supercomputing cluster. An initial pilot over the state of California spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles has produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes.

  3. Ensemble LUT classification for degraded document enhancement

    NASA Astrophysics Data System (ADS)

    Obafemi-Ajayi, Tayo; Agam, Gady; Frieder, Ophir

    2008-01-01

    The fast evolution of scanning and computing technologies have led to the creation of large collections of scanned paper documents. Examples of such collections include historical collections, legal depositories, medical archives, and business archives. Moreover, in many situations such as legal litigation and security investigations scanned collections are being used to facilitate systematic exploration of the data. It is almost always the case that scanned documents suffer from some form of degradation. Large degradations make documents hard to read and substantially deteriorate the performance of automated document processing systems. Enhancement of degraded document images is normally performed assuming global degradation models. When the degradation is large, global degradation models do not perform well. In contrast, we propose to estimate local degradation models and use them in enhancing degraded document images. Using a semi-automated enhancement system we have labeled a subset of the Frieder diaries collection.1 This labeled subset was then used to train an ensemble classifier. The component classifiers are based on lookup tables (LUT) in conjunction with the approximated nearest neighbor algorithm. The resulting algorithm is highly effcient. Experimental evaluation results are provided using the Frieder diaries collection.1

  4. Studying fish near ocean energy devices using underwater video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Hull, Ryan E.; Harker-Klimes, Genevra EL

    The effects of energy devices on fish populations are not well-understood, and studying the interactions of fish with tidal and instream turbines is challenging. To address this problem, we have evaluated algorithms to automatically detect fish in underwater video and propose a semi-automated method for ocean and river energy device ecological monitoring. The key contributions of this work are the demonstration of a background subtraction algorithm (ViBE) that detected 87% of human-identified fish events and is suitable for use in a real-time system to reduce data volume, and the demonstration of a statistical model to classify detections as fish ormore » not fish that achieved a correct classification rate of 85% overall and 92% for detections larger than 5 pixels. Specific recommendations for underwater video acquisition to better facilitate automated processing are given. The recommendations will help energy developers put effective monitoring systems in place, and could lead to a standard approach that simplifies the monitoring effort and advances the scientific understanding of the ecological impacts of ocean and river energy devices.« less

  5. Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement

    PubMed Central

    Xu, Dong; Zhang, Jian; Roy, Ambrish; Zhang, Yang

    2011-01-01

    I-TASSER is an automated pipeline for protein tertiary structure prediction using multiple threading alignments and iterative structure assembly simulations. In CASP9 experiments, two new algorithms, QUARK and FG-MD, were added to the I-TASSER pipeline for improving the structural modeling accuracy. QUARK is a de novo structure prediction algorithm used for structure modeling of proteins that lack detectable template structures. For distantly homologous targets, QUARK models are found useful as a reference structure for selecting good threading alignments and guiding the I-TASSER structure assembly simulations. FG-MD is an atomic-level structural refinement program that uses structural fragments collected from the PDB structures to guide molecular dynamics simulation and improve the local structure of predicted model, including hydrogen-bonding networks, torsion angles and steric clashes. Despite considerable progress in both the template-based and template-free structure modeling, significant improvements on protein target classification, domain parsing, model selection, and ab initio folding of beta-proteins are still needed to further improve the I-TASSER pipeline. PMID:22069036

  6. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    PubMed Central

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-01-01

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0.99 for the leaf area and R2 = 0.98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored. PMID:25029283

  7. “SmartMonitor” — An Intelligent Security System for the Protection of Individuals and Small Properties with the Possibility of Home Automation

    PubMed Central

    Frejlichowski, Dariusz; Gościewska, Katarzyna; Forczmański, Paweł; Hofman, Radosław

    2014-01-01

    “SmartMonitor” is an intelligent security system based on image analysis that combines the advantages of alarm, video surveillance and home automation systems. The system is a complete solution that automatically reacts to every learned situation in a pre-specified way and has various applications, e.g., home and surrounding protection against unauthorized intrusion, crime detection or supervision over ill persons. The software is based on well-known and proven methods and algorithms for visual content analysis (VCA) that were appropriately modified and adopted to fit specific needs and create a video processing model which consists of foreground region detection and localization, candidate object extraction, object classification and tracking. In this paper, the “SmartMonitor” system is presented along with its architecture, employed methods and algorithms, and object analysis approach. Some experimental results on system operation are also provided. In the paper, focus is put on one of the aforementioned functionalities of the system, namely supervision over ill persons. PMID:24905854

  8. Deep learning for tumor classification in imaging mass spectrometry.

    PubMed

    Behrmann, Jens; Etmann, Christian; Boskamp, Tobias; Casadonte, Rita; Kriegsmann, Jörg; Maaß, Peter

    2018-04-01

    Tumor classification using imaging mass spectrometry (IMS) data has a high potential for future applications in pathology. Due to the complexity and size of the data, automated feature extraction and classification steps are required to fully process the data. Since mass spectra exhibit certain structural similarities to image data, deep learning may offer a promising strategy for classification of IMS data as it has been successfully applied to image classification. Methodologically, we propose an adapted architecture based on deep convolutional networks to handle the characteristics of mass spectrometry data, as well as a strategy to interpret the learned model in the spectral domain based on a sensitivity analysis. The proposed methods are evaluated on two algorithmically challenging tumor classification tasks and compared to a baseline approach. Competitiveness of the proposed methods is shown on both tasks by studying the performance via cross-validation. Moreover, the learned models are analyzed by the proposed sensitivity analysis revealing biologically plausible effects as well as confounding factors of the considered tasks. Thus, this study may serve as a starting point for further development of deep learning approaches in IMS classification tasks. https://gitlab.informatik.uni-bremen.de/digipath/Deep_Learning_for_Tumor_Classification_in_IMS. jbehrmann@uni-bremen.de or christianetmann@uni-bremen.de. Supplementary data are available at Bioinformatics online.

  9. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping.

    PubMed

    Jaakkola, Anttoni; Hyyppä, Juha; Hyyppä, Hannu; Kukko, Antero

    2008-09-01

    Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  10. PROTAX-Sound: A probabilistic framework for automated animal sound identification

    PubMed Central

    Somervuo, Panu; Ovaskainen, Otso

    2017-01-01

    Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities. PMID:28863178

  11. PROTAX-Sound: A probabilistic framework for automated animal sound identification.

    PubMed

    de Camargo, Ulisses Moliterno; Somervuo, Panu; Ovaskainen, Otso

    2017-01-01

    Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities.

  12. Mining peripheral arterial disease cases from narrative clinical notes using natural language processing.

    PubMed

    Afzal, Naveed; Sohn, Sunghwan; Abram, Sara; Scott, Christopher G; Chaudhry, Rajeev; Liu, Hongfang; Kullo, Iftikhar J; Arruda-Olson, Adelaide M

    2017-06-01

    Lower extremity peripheral arterial disease (PAD) is highly prevalent and affects millions of individuals worldwide. We developed a natural language processing (NLP) system for automated ascertainment of PAD cases from clinical narrative notes and compared the performance of the NLP algorithm with billing code algorithms, using ankle-brachial index test results as the gold standard. We compared the performance of the NLP algorithm to (1) results of gold standard ankle-brachial index; (2) previously validated algorithms based on relevant International Classification of Diseases, Ninth Revision diagnostic codes (simple model); and (3) a combination of International Classification of Diseases, Ninth Revision codes with procedural codes (full model). A dataset of 1569 patients with PAD and controls was randomly divided into training (n = 935) and testing (n = 634) subsets. We iteratively refined the NLP algorithm in the training set including narrative note sections, note types, and service types, to maximize its accuracy. In the testing dataset, when compared with both simple and full models, the NLP algorithm had better accuracy (NLP, 91.8%; full model, 81.8%; simple model, 83%; P < .001), positive predictive value (NLP, 92.9%; full model, 74.3%; simple model, 79.9%; P < .001), and specificity (NLP, 92.5%; full model, 64.2%; simple model, 75.9%; P < .001). A knowledge-driven NLP algorithm for automatic ascertainment of PAD cases from clinical notes had greater accuracy than billing code algorithms. Our findings highlight the potential of NLP tools for rapid and efficient ascertainment of PAD cases from electronic health records to facilitate clinical investigation and eventually improve care by clinical decision support. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Development of Automated Image Analysis Software for Suspended Marine Particle Classification

    DTIC Science & Technology

    2002-09-30

    Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...and global water column. 1 OBJECTIVES The project’s objective is to develop automated image analysis software to reduce the effort and time

  14. Semi-automated algorithm for localization of dermal/epidermal junction in reflectance confocal microscopy images of human skin

    NASA Astrophysics Data System (ADS)

    Kurugol, Sila; Dy, Jennifer G.; Rajadhyaksha, Milind; Gossage, Kirk W.; Weissmann, Jesse; Brooks, Dana H.

    2011-03-01

    The examination of the dermis/epidermis junction (DEJ) is clinically important for skin cancer diagnosis. Reflectance confocal microscopy (RCM) is an emerging tool for detection of skin cancers in vivo. However, visual localization of the DEJ in RCM images, with high accuracy and repeatability, is challenging, especially in fair skin, due to low contrast, heterogeneous structure and high inter- and intra-subject variability. We recently proposed a semi-automated algorithm to localize the DEJ in z-stacks of RCM images of fair skin, based on feature segmentation and classification. Here we extend the algorithm to dark skin. The extended algorithm first decides the skin type and then applies the appropriate DEJ localization method. In dark skin, strong backscatter from the pigment melanin causes the basal cells above the DEJ to appear with high contrast. To locate those high contrast regions, the algorithm operates on small tiles (regions) and finds the peaks of the smoothed average intensity depth profile of each tile. However, for some tiles, due to heterogeneity, multiple peaks in the depth profile exist and the strongest peak might not be the basal layer peak. To select the correct peak, basal cells are represented with a vector of texture features. The peak with most similar features to this feature vector is selected. The results show that the algorithm detected the skin types correctly for all 17 stacks tested (8 fair, 9 dark). The DEJ detection algorithm achieved an average distance from the ground truth DEJ surface of around 4.7μm for dark skin and around 7-14μm for fair skin.

  15. Deriving pathway maps from automated text analysis using a grammar-based approach.

    PubMed

    Olsson, Björn; Gawronska, Barbara; Erlendsson, Björn

    2006-04-01

    We demonstrate how automated text analysis can be used to support the large-scale analysis of metabolic and regulatory pathways by deriving pathway maps from textual descriptions found in the scientific literature. The main assumption is that correct syntactic analysis combined with domain-specific heuristics provides a good basis for relation extraction. Our method uses an algorithm that searches through the syntactic trees produced by a parser based on a Referent Grammar formalism, identifies relations mentioned in the sentence, and classifies them with respect to their semantic class and epistemic status (facts, counterfactuals, hypotheses). The semantic categories used in the classification are based on the relation set used in KEGG (Kyoto Encyclopedia of Genes and Genomes), so that pathway maps using KEGG notation can be automatically generated. We present the current version of the relation extraction algorithm and an evaluation based on a corpus of abstracts obtained from PubMed. The results indicate that the method is able to combine a reasonable coverage with high accuracy. We found that 61% of all sentences were parsed, and 97% of the parse trees were judged to be correct. The extraction algorithm was tested on a sample of 300 parse trees and was found to produce correct extractions in 90.5% of the cases.

  16. Automated Detection of Atrial Fibrillation Based on Time-Frequency Analysis of Seismocardiograms.

    PubMed

    Hurnanen, Tero; Lehtonen, Eero; Tadi, Mojtaba Jafari; Kuusela, Tom; Kiviniemi, Tuomas; Saraste, Antti; Vasankari, Tuija; Airaksinen, Juhani; Koivisto, Tero; Pankaala, Mikko

    2017-09-01

    In this paper, a novel method to detect atrial fibrillation (AFib) from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting. After motion artifact removal, in total 119 min of AFib data and 126 min of sinus rhythm data were considered for automated AFib detection. No other arrhythmias were considered in this study. The proposed algorithm requires no direct heartbeat peak detection from the SCG data, which makes it tolerant against interpersonal variations in the SCG morphology, and noise. Furthermore, the proposed method relies solely on the SCG and needs no complementary electrocardiography to be functional. For the considered data, the detection method performs well even on relatively low quality SCG signals. Using a majority voting scheme that takes five randomly selected segments from a signal and classifies these segments using the proposed algorithm, we obtained an average true positive rate of [Formula: see text] and an average true negative rate of [Formula: see text] for detecting AFib in leave-one-out cross-validation. This paper facilitates adoption of microelectromechanical sensor based heart monitoring devices for arrhythmia detection.

  17. Adaptive Algorithms for Automated Processing of Document Images

    DTIC Science & Technology

    2011-01-01

    ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University

  18. Mining the Galaxy Zoo Database: Machine Learning Applications

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; Wallin, J.; Vedachalam, A.; Baehr, S.; Lintott, C.; Darg, D.; Smith, A.; Fortson, L.

    2010-01-01

    The new Zooniverse initiative is addressing the data flood in the sciences through a transformative partnership between professional scientists, volunteer citizen scientists, and machines. As part of this project, we are exploring the application of machine learning techniques to data mining problems associated with the large and growing database of volunteer science results gathered by the Galaxy Zoo citizen science project. We will describe the basic challenge, some machine learning approaches, and early results. One of the motivators for this study is the acquisition (through the Galaxy Zoo results database) of approximately 100 million classification labels for roughly one million galaxies, yielding a tremendously large and rich set of training examples for improving automated galaxy morphological classification algorithms. In our first case study, the goal is to learn which morphological and photometric features in the Sloan Digital Sky Survey (SDSS) database correlate most strongly with user-selected galaxy morphological class. As a corollary to this study, we are also aiming to identify which galaxy parameters in the SDSS database correspond to galaxies that have been the most difficult to classify (based upon large dispersion in their volunter-provided classifications). Our second case study will focus on similar data mining analyses and machine leaning algorithms applied to the Galaxy Zoo catalog of merging and interacting galaxies. The outcomes of this project will have applications in future large sky surveys, such as the LSST (Large Synoptic Survey Telescope) project, which will generate a catalog of 20 billion galaxies and will produce an additional astronomical alert database of approximately 100 thousand events each night for 10 years -- the capabilities and algorithms that we are exploring will assist in the rapid characterization and classification of such massive data streams. This research has been supported in part through NSF award #0941610.

  19. How automated image analysis techniques help scientists in species identification and classification?

    PubMed

    Yousef Kalafi, Elham; Town, Christopher; Kaur Dhillon, Sarinder

    2017-09-04

    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification increased over the last two decades. Automation of data classification is primarily focussed on images, incorporating and analysing image data has recently become easier due to developments in computational technology. Research efforts in identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, categorizing and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies.

  20. Development of algorithms for detecting citrus canker based on hyperspectral reflectance imaging.

    PubMed

    Li, Jiangbo; Rao, Xiuqin; Ying, Yibin

    2012-01-15

    Automated discrimination of fruits with canker from other fruit with normal surface and different type of peel defects has become a helpful task to enhance the competitiveness and profitability of the citrus industry. Over the last several years, hyperspectral imaging technology has received increasing attention in the agricultural products inspection field. This paper studied the feasibility of classification of citrus canker from other peel conditions including normal surface and nine peel defects by hyperspectal imaging. A combination algorithm based on principal component analysis and the two-band ratio (Q(687/630)) method was proposed. Since fewer wavelengths were desired in order to develop a rapid multispectral imaging system, the canker classification performance of the two-band ratio (Q(687/630)) method alone was also evaluated. The proposed combination approach and two-band ratio method alone resulted in overall classification accuracy for training set samples and test set samples of 99.5%, 84.5% and 98.2%, 82.9%, respectively. The proposed combination approach was more efficient for classifying canker against various conditions under reflectance hyperspectral imagery. However, the two-band ratio (Q(687/630)) method alone also demonstrated effectiveness in discriminating citrus canker from normal fruit and other peel diseases except for copper burn and anthracnose. Copyright © 2011 Society of Chemical Industry.

  1. Noninvasive forward-scattering system for rapid detection, characterization, and identification of Listeria colonies: image processing and data analysis

    NASA Astrophysics Data System (ADS)

    Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul

    2006-10-01

    Bacterial contamination by Listeria monocytogenes puts the public at risk and is also costly for the food-processing industry. Traditional methods for pathogen identification require complicated sample preparation for reliable results. Previously, we have reported development of a noninvasive optical forward-scattering system for rapid identification of Listeria colonies grown on solid surfaces. The presented system included application of computer-vision and patternrecognition techniques to classify scatter pattern formed by bacterial colonies irradiated with laser light. This report shows an extension of the proposed method. A new scatterometer equipped with a high-resolution CCD chip and application of two additional sets of image features for classification allow for higher accuracy and lower error rates. Features based on Zernike moments are supplemented by Tchebichef moments, and Haralick texture descriptors in the new version of the algorithm. Fisher's criterion has been used for feature selection to decrease the training time of machine learning systems. An algorithm based on support vector machines was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for detection and classification of pathogenic bacteria.

  2. Automated Essay Grading using Machine Learning Algorithm

    NASA Astrophysics Data System (ADS)

    Ramalingam, V. V.; Pandian, A.; Chetry, Prateek; Nigam, Himanshu

    2018-04-01

    Essays are paramount for of assessing the academic excellence along with linking the different ideas with the ability to recall but are notably time consuming when they are assessed manually. Manual grading takes significant amount of evaluator’s time and hence it is an expensive process. Automated grading if proven effective will not only reduce the time for assessment but comparing it with human scores will also make the score realistic. The project aims to develop an automated essay assessment system by use of machine learning techniques by classifying a corpus of textual entities into small number of discrete categories, corresponding to possible grades. Linear regression technique will be utilized for training the model along with making the use of various other classifications and clustering techniques. We intend to train classifiers on the training set, make it go through the downloaded dataset, and then measure performance our dataset by comparing the obtained values with the dataset values. We have implemented our model using java.

  3. Conceptual design of the CZMIL data processing system (DPS): algorithms and software for fusing lidar, hyperspectral data, and digital images

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Tuell, Grady

    2010-04-01

    The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.

  4. Refining image segmentation by polygon skeletonization

    NASA Technical Reports Server (NTRS)

    Clarke, Keith C.

    1987-01-01

    A skeletonization algorithm was encoded and applied to a test data set of land-use polygons taken from a USGS digital land use dataset at 1:250,000. The distance transform produced by this method was instrumental in the description of the shape, size, and level of generalization of the outlines of the polygons. A comparison of the topology of skeletons for forested wetlands and lakes indicated that some distinction based solely upon the shape properties of the areas is possible, and may be of use in an intelligent automated land cover classification system.

  5. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery Using a Probabilistic Learning Framework

    NASA Technical Reports Server (NTRS)

    Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna

    2015-01-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  6. A High Performance Computing Approach to Tree Cover Delineation in 1-m NAIP Imagery using a Probabilistic Learning Framework

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.

    2015-12-01

    Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.

  7. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a

  8. Deep Belief Networks for Electroencephalography: A Review of Recent Contributions and Future Outlooks.

    PubMed

    Movahedi, Faezeh; Coyle, James L; Sejdic, Ervin

    2018-05-01

    Deep learning, a relatively new branch of machine learning, has been investigated for use in a variety of biomedical applications. Deep learning algorithms have been used to analyze different physiological signals and gain a better understanding of human physiology for automated diagnosis of abnormal conditions. In this paper, we provide an overview of deep learning approaches with a focus on deep belief networks in electroencephalography applications. We investigate the state-of-the-art algorithms for deep belief networks and then cover the application of these algorithms and their performances in electroencephalographic applications. We covered various applications of electroencephalography in medicine, including emotion recognition, sleep stage classification, and seizure detection, in order to understand how deep learning algorithms could be modified to better suit the tasks desired. This review is intended to provide researchers with a broad overview of the currently existing deep belief network methodology for electroencephalography signals, as well as to highlight potential challenges for future research.

  9. Dreaming of Atmospheres

    NASA Astrophysics Data System (ADS)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  10. [Algorithm for the automated processing of rheosignals].

    PubMed

    Odinets, G S

    1988-01-01

    Algorithm for rheosignals recognition for a microprocessing device with a representation apparatus and with automated and manual cursor control was examined. The algorithm permits to automate rheosignals registrating and processing taking into account their changeability.

  11. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    PubMed

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  12. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification

    PubMed Central

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows. PMID:28125723

  13. Learning optimal embedded cascades.

    PubMed

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  14. Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging.

    PubMed

    Dabbah, M A; Graham, J; Petropoulos, I N; Tavakoli, M; Malik, R A

    2011-10-01

    Diabetic peripheral neuropathy (DPN) is one of the most common long term complications of diabetes. Corneal confocal microscopy (CCM) image analysis is a novel non-invasive technique which quantifies corneal nerve fibre damage and enables diagnosis of DPN. This paper presents an automatic analysis and classification system for detecting nerve fibres in CCM images based on a multi-scale adaptive dual-model detection algorithm. The algorithm exploits the curvilinear structure of the nerve fibres and adapts itself to the local image information. Detected nerve fibres are then quantified and used as feature vectors for classification using random forest (RF) and neural networks (NNT) classifiers. We show, in a comparative study with other well known curvilinear detectors, that the best performance is achieved by the multi-scale dual model in conjunction with the NNT classifier. An evaluation of clinical effectiveness shows that the performance of the automated system matches that of ground-truth defined by expert manual annotation. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Towards automatic lithological classification from remote sensing data using support vector machines

    NASA Astrophysics Data System (ADS)

    Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael

    2010-05-01

    Remote sensing data can be effectively used as a mean to build geological knowledge for poorly mapped terrains. Spectral remote sensing data from space- and air-borne sensors have been widely used to geological mapping, especially in areas of high outcrop density in arid regions. However, spectral remote sensing information by itself cannot be efficiently used for a comprehensive lithological classification of an area due to (1) diagnostic spectral response of a rock within an image pixel is conditioned by several factors including the atmospheric effects, spectral and spatial resolution of the image, sub-pixel level heterogeneity in chemical and mineralogical composition of the rock, presence of soil and vegetation cover; (2) only surface information and is therefore highly sensitive to the noise due to weathering, soil cover, and vegetation. Consequently, for efficient lithological classification, spectral remote sensing data needs to be supplemented with other remote sensing datasets that provide geomorphological and subsurface geological information, such as digital topographic model (DEM) and aeromagnetic data. Each of the datasets contain significant information about geology that, in conjunction, can potentially be used for automated lithological classification using supervised machine learning algorithms. In this study, support vector machine (SVM), which is a kernel-based supervised learning method, was applied to automated lithological classification of a study area in northwestern India using remote sensing data, namely, ASTER, DEM and aeromagnetic data. Several digital image processing techniques were used to produce derivative datasets that contained enhanced information relevant to lithological discrimination. A series of SVMs (trained using k-folder cross-validation with grid search) were tested using various combinations of input datasets selected from among 50 datasets including the original 14 ASTER bands and 36 derivative datasets (including 14 principal component bands, 14 independent component bands, 3 band ratios, 3 DEM derivatives: slope/curvatureroughness and 2 aeromagnetic derivatives: mean and variance of susceptibility) extracted from the ASTER, DEM and aeromagnetic data, in order to determine the optimal inputs that provide the highest classification accuracy. It was found that a combination of ASTER-derived independent components, principal components and band ratios, DEM-derived slope, curvature and roughness, and aeromagnetic-derived mean and variance of magnetic susceptibility provide the highest classification accuracy of 93.4% on independent test samples. A comparison of the classification results of the SVM with those of maximum likelihood (84.9%) and minimum distance (38.4%) classifiers clearly show that the SVM algorithm returns much higher classification accuracy. Therefore, the SVM method can be used to produce quick and reliable geological maps from scarce geological information, which is still the case with many under-developed frontier regions of the world.

  16. Automating Cell Detection and Classification in Human Brain Fluorescent Microscopy Images Using Dictionary Learning and Sparse Coding

    PubMed Central

    Alegro, Maryana; Theofilas, Panagiotis; Nguy, Austin; Castruita, Patricia A.; Seeley, William; Heinsen, Helmut; Ushizima, Daniela M.

    2017-01-01

    Background Immunofluorescence (IF) plays a major role in quantifying protein expression in situ and understanding cell function. It is widely applied in assessing disease mechanisms and in drug discovery research. Automation of IF analysis can transform studies using experimental cell models. However, IF analysis of postmortem human tissue relies mostly on manual interaction, often subjected to low-throughput and prone to error, leading to low inter and intra-observer reproducibility. Human postmortem brain samples challenges neuroscientists because of the high level of autofluorescence caused by accumulation of lipofuscin pigment during aging, hindering systematic analyses. We propose a method for automating cell counting and classification in IF microscopy of human postmortem brains. Our algorithm speeds up the quantification task while improving reproducibility. New method Dictionary learning and sparse coding allow for constructing improved cell representations using IF images. These models are input for detection and segmentation methods. Classification occurs by means of color distances between cells and a learned set. Results Our method successfully detected and classified cells in 49 human brain images. We evaluated our results regarding true positive, false positive, false negative, precision, recall, false positive rate and F1 score metrics. We also measured user-experience and time saved compared to manual countings. Comparison with existing methods We compared our results to four open-access IF-based cell-counting tools available in the literature. Our method showed improved accuracy for all data samples. Conclusion The proposed method satisfactorily detects and classifies cells from human postmortem brain IF images, with potential to be generalized for applications in other counting tasks. PMID:28267565

  17. Continuous measurement of breast tumor hormone receptor expression: a comparison of two computational pathology platforms

    PubMed Central

    Ahern, Thomas P.; Beck, Andrew H.; Rosner, Bernard A.; Glass, Ben; Frieling, Gretchen; Collins, Laura C.; Tamimi, Rulla M.

    2017-01-01

    Background Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumor estrogen receptor (ER) and progesterone receptor (PR) expression. Methods Breast tumor microarrays from the Nurses’ Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumor nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots, and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Results Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (rho≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUCAperio=0.97; AUCDefiniens=0.90; difference=0.07, 95% CI: 0.05, 0.09) and PR positivity (AUCAperio=0.94; AUCDefiniens=0.87; difference=0.07, 95% CI: 0.03, 0.12). Conclusion Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumor biomarker discovery. PMID:27729430

  18. A systematic literature review of automated clinical coding and classification systems

    PubMed Central

    Williams, Margaret; Fenton, Susan H; Jenders, Robert A; Hersh, William R

    2010-01-01

    Clinical coding and classification processes transform natural language descriptions in clinical text into data that can subsequently be used for clinical care, research, and other purposes. This systematic literature review examined studies that evaluated all types of automated coding and classification systems to determine the performance of such systems. Studies indexed in Medline or other relevant databases prior to March 2009 were considered. The 113 studies included in this review show that automated tools exist for a variety of coding and classification purposes, focus on various healthcare specialties, and handle a wide variety of clinical document types. Automated coding and classification systems themselves are not generalizable, nor are the results of the studies evaluating them. Published research shows these systems hold promise, but these data must be considered in context, with performance relative to the complexity of the task and the desired outcome. PMID:20962126

  19. A systematic literature review of automated clinical coding and classification systems.

    PubMed

    Stanfill, Mary H; Williams, Margaret; Fenton, Susan H; Jenders, Robert A; Hersh, William R

    2010-01-01

    Clinical coding and classification processes transform natural language descriptions in clinical text into data that can subsequently be used for clinical care, research, and other purposes. This systematic literature review examined studies that evaluated all types of automated coding and classification systems to determine the performance of such systems. Studies indexed in Medline or other relevant databases prior to March 2009 were considered. The 113 studies included in this review show that automated tools exist for a variety of coding and classification purposes, focus on various healthcare specialties, and handle a wide variety of clinical document types. Automated coding and classification systems themselves are not generalizable, nor are the results of the studies evaluating them. Published research shows these systems hold promise, but these data must be considered in context, with performance relative to the complexity of the task and the desired outcome.

  20. Machine Learning Algorithms for Automated Satellite Snow and Sea Ice Detection

    NASA Astrophysics Data System (ADS)

    Bonev, George

    The continuous mapping of snow and ice cover, particularly in the arctic and poles, are critical to understanding the earth and atmospheric science. Much of the world's sea ice and snow covers the most inhospitable places, making measurements from satellite-based remote sensors essential. Despite the wealth of data from these instruments many challenges remain. For instance, remote sensing instruments reside on-board different satellites and observe the earth at different portions of the electromagnetic spectrum with different spatial footprints. Integrating and fusing this information to make estimates of the surface is a subject of active research. In response to these challenges, this dissertation will present two algorithms that utilize methods from statistics and machine learning, with the goal of improving on the quality and accuracy of current snow and sea ice detection products. The first algorithm aims at implementing snow detection using optical/infrared instrument data. The novelty in this approach is that the classifier is trained using ground station measurements of snow depth that are collocated with the reflectance observed at the satellite. Several classification methods are compared using this training data to identify the one yielding the highest accuracy and optimal space/time complexity. The algorithm is then evaluated against the current operational NASA snow product and it is found that it produces comparable and in some cases superior accuracy results. The second algorithm presents a fully automated approach to sea ice detection that integrates data obtained from passive microwave and optical/infrared satellite instruments. For a particular region of interest the algorithm generates sea ice maps of each individual satellite overpass and then aggregates them to a daily composite level, maximizing the amount of high resolution information available. The algorithm is evaluated at both, the individual satellite overpass level, and at the daily composite level. Results show that at the single overpass level for clear-sky regions, the developed multi-sensor algorithm performs with accuracy similar to that of the optical/infrared products, with the advantage of being able to also classify partially cloud-obscured regions with the help of passive microwave data. At the daily composite level, results show that the algorithm's performance with respect to total ice extent is in line with other daily products, with the novelty of being fully automated and having higher resolution.

  1. A neural network for noise correlation classification

    NASA Astrophysics Data System (ADS)

    Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas

    2018-02-01

    We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.

  2. A novel approach for the automated segmentation and volume quantification of cardiac fats on computed tomography.

    PubMed

    Rodrigues, É O; Morais, F F C; Morais, N A O S; Conci, L S; Neto, L V; Conci, A

    2016-01-01

    The deposits of fat on the surroundings of the heart are correlated to several health risk factors such as atherosclerosis, carotid stiffness, coronary artery calcification, atrial fibrillation and many others. These deposits vary unrelated to obesity, which reinforces its direct segmentation for further quantification. However, manual segmentation of these fats has not been widely deployed in clinical practice due to the required human workload and consequential high cost of physicians and technicians. In this work, we propose a unified method for an autonomous segmentation and quantification of two types of cardiac fats. The segmented fats are termed epicardial and mediastinal, and stand apart from each other by the pericardium. Much effort was devoted to achieve minimal user intervention. The proposed methodology mainly comprises registration and classification algorithms to perform the desired segmentation. We compare the performance of several classification algorithms on this task, including neural networks, probabilistic models and decision tree algorithms. Experimental results of the proposed methodology have shown that the mean accuracy regarding both epicardial and mediastinal fats is 98.5% (99.5% if the features are normalized), with a mean true positive rate of 98.0%. In average, the Dice similarity index was equal to 97.6%. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. AutoBD: Automated Bi-Level Description for Scalable Fine-Grained Visual Categorization.

    PubMed

    Yao, Hantao; Zhang, Shiliang; Yan, Chenggang; Zhang, Yongdong; Li, Jintao; Tian, Qi

    Compared with traditional image classification, fine-grained visual categorization is a more challenging task, because it targets to classify objects belonging to the same species, e.g. , classify hundreds of birds or cars. In the past several years, researchers have made many achievements on this topic. However, most of them are heavily dependent on the artificial annotations, e.g., bounding boxes, part annotations, and so on . The requirement of artificial annotations largely hinders the scalability and application. Motivated to release such dependence, this paper proposes a robust and discriminative visual description named Automated Bi-level Description (AutoBD). "Bi-level" denotes two complementary part-level and object-level visual descriptions, respectively. AutoBD is "automated," because it only requires the image-level labels of training images and does not need any annotations for testing images. Compared with the part annotations labeled by the human, the image-level labels can be easily acquired, which thus makes AutoBD suitable for large-scale visual categorization. Specifically, the part-level description is extracted by identifying the local region saliently representing the visual distinctiveness. The object-level description is extracted from object bounding boxes generated with a co-localization algorithm. Although only using the image-level labels, AutoBD outperforms the recent studies on two public benchmark, i.e. , classification accuracy achieves 81.6% on CUB-200-2011 and 88.9% on Car-196, respectively. On the large-scale Birdsnap data set, AutoBD achieves the accuracy of 68%, which is currently the best performance to the best of our knowledge.Compared with traditional image classification, fine-grained visual categorization is a more challenging task, because it targets to classify objects belonging to the same species, e.g. , classify hundreds of birds or cars. In the past several years, researchers have made many achievements on this topic. However, most of them are heavily dependent on the artificial annotations, e.g., bounding boxes, part annotations, and so on . The requirement of artificial annotations largely hinders the scalability and application. Motivated to release such dependence, this paper proposes a robust and discriminative visual description named Automated Bi-level Description (AutoBD). "Bi-level" denotes two complementary part-level and object-level visual descriptions, respectively. AutoBD is "automated," because it only requires the image-level labels of training images and does not need any annotations for testing images. Compared with the part annotations labeled by the human, the image-level labels can be easily acquired, which thus makes AutoBD suitable for large-scale visual categorization. Specifically, the part-level description is extracted by identifying the local region saliently representing the visual distinctiveness. The object-level description is extracted from object bounding boxes generated with a co-localization algorithm. Although only using the image-level labels, AutoBD outperforms the recent studies on two public benchmark, i.e. , classification accuracy achieves 81.6% on CUB-200-2011 and 88.9% on Car-196, respectively. On the large-scale Birdsnap data set, AutoBD achieves the accuracy of 68%, which is currently the best performance to the best of our knowledge.

  4. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation

    NASA Astrophysics Data System (ADS)

    Qin, Wenjian; Wu, Jia; Han, Fei; Yuan, Yixuan; Zhao, Wei; Ibragimov, Bulat; Gu, Jia; Xing, Lei

    2018-05-01

    Segmentation of liver in abdominal computed tomography (CT) is an important step for radiation therapy planning of hepatocellular carcinoma. Practically, a fully automatic segmentation of liver remains challenging because of low soft tissue contrast between liver and its surrounding organs, and its highly deformable shape. The purpose of this work is to develop a novel superpixel-based and boundary sensitive convolutional neural network (SBBS-CNN) pipeline for automated liver segmentation. The entire CT images were first partitioned into superpixel regions, where nearby pixels with similar CT number were aggregated. Secondly, we converted the conventional binary segmentation into a multinomial classification by labeling the superpixels into three classes: interior liver, liver boundary, and non-liver background. By doing this, the boundary region of the liver was explicitly identified and highlighted for the subsequent classification. Thirdly, we computed an entropy-based saliency map for each CT volume, and leveraged this map to guide the sampling of image patches over the superpixels. In this way, more patches were extracted from informative regions (e.g. the liver boundary with irregular changes) and fewer patches were extracted from homogeneous regions. Finally, deep CNN pipeline was built and trained to predict the probability map of the liver boundary. We tested the proposed algorithm in a cohort of 100 patients. With 10-fold cross validation, the SBBS-CNN achieved mean Dice similarity coefficients of 97.31  ±  0.36% and average symmetric surface distance of 1.77  ±  0.49 mm. Moreover, it showed superior performance in comparison with state-of-art methods, including U-Net, pixel-based CNN, active contour, level-sets and graph-cut algorithms. SBBS-CNN provides an accurate and effective tool for automated liver segmentation. It is also envisioned that the proposed framework is directly applicable in other medical image segmentation scenarios.

  5. Classification of Variable Objects in Massive Sky Monitoring Surveys

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily

    2012-03-01

    The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of machine learning in astronomy. The goal of this chapter is to show a number of successful applications of state-of-the-art machine learning methodology to time-resolved astronomical data, illustrate what is possible today, and help identify areas for further research and development. After a brief comparison of the utility of various machine learning classifiers, the discussion focuses on support vector machines (SVM), neural nets, and self-organizing maps. Traditionally, to detect and classify transient variability astronomers used ad hoc scan statistics. These methods will remain important as feature extractors for input into generic machine learning algorithms. Experience shows that the performance of machine learning tools on astronomical data critically depends on the definition and quality of the input features, and that a considerable amount of preprocessing is required before standard algorithms can be applied. However, with continued investments of effort by a growing number of astro-informatics savvy computer scientists and astronomers the much-needed expertise and infrastructure are growing faster than ever.

  6. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue

    PubMed Central

    Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath

    2009-01-01

    Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697

  7. Inclusion of temporal priors for automated neonatal EEG classification

    NASA Astrophysics Data System (ADS)

    Temko, Andriy; Stevenson, Nathan; Marnane, William; Boylan, Geraldine; Lightbody, Gordon

    2012-08-01

    The aim of this paper is to use recent advances in the clinical understanding of the temporal evolution of seizure burden in neonates with hypoxic ischemic encephalopathy to improve the performance of automated detection algorithms. Probabilistic weights are designed from temporal locations of neonatal seizure events relative to time of birth. These weights are obtained by fitting a skew-normal distribution to the temporal seizure density and introduced into the probabilistic framework of the previously developed neonatal seizure detector. The results are validated on the largest available clinical dataset, comprising 816.7 h. By exploiting these priors, the receiver operating characteristic area is increased by 23% (relative) reaching 96.74%. The number of false detections per hour is decreased from 0.45 to 0.25, while maintaining the correct detection of seizure burden at 70%.

  8. Machine learning for micro-tomography

    NASA Astrophysics Data System (ADS)

    Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James

    2017-09-01

    Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.

  9. Automated quasi-3D spine curvature quantification and classification

    NASA Astrophysics Data System (ADS)

    Khilari, Rupal; Puchin, Juris; Okada, Kazunori

    2018-02-01

    Scoliosis is a highly prevalent spine deformity that has traditionally been diagnosed through measurement of the Cobb angle on radiographs. More recent technology such as the commercial EOS imaging system, although more accurate, also require manual intervention for selecting the extremes of the vertebrae forming the Cobb angle. This results in a high degree of inter and intra observer error in determining the extent of spine deformity. Our primary focus is to eliminate the need for manual intervention by robustly quantifying the curvature of the spine in three dimensions, making it consistent across multiple observers. Given the vertebrae centroids, the proposed Vertebrae Sequence Angle (VSA) estimation and segmentation algorithm finds the largest angle between consecutive pairs of centroids within multiple inflection points on the curve. To exploit existing clinical diagnostic standards, the algorithm uses a quasi-3-dimensional approach considering the curvature in the coronal and sagittal projection planes of the spine. Experiments were performed with manuallyannotated ground-truth classification of publicly available, centroid-annotated CT spine datasets. This was compared with the results obtained from manual Cobb and Centroid angle estimation methods. Using the VSA, we then automatically classify the occurrence and the severity of spine curvature based on Lenke's classification for idiopathic scoliosis. We observe that the results appear promising with a scoliotic angle lying within +/- 9° of the Cobb and Centroid angle, and vertebrae positions differing by at the most one position. Our system also resulted in perfect classification of scoliotic from healthy spines with our dataset with six cases.

  10. Assessing Rotation-Invariant Feature Classification for Automated Wildebeest Population Counts.

    PubMed

    Torney, Colin J; Dobson, Andrew P; Borner, Felix; Lloyd-Jones, David J; Moyer, David; Maliti, Honori T; Mwita, Machoke; Fredrick, Howard; Borner, Markus; Hopcraft, J Grant C

    2016-01-01

    Accurate and on-demand animal population counts are the holy grail for wildlife conservation organizations throughout the world because they enable fast and responsive adaptive management policies. While the collection of image data from camera traps, satellites, and manned or unmanned aircraft has advanced significantly, the detection and identification of animals within images remains a major bottleneck since counting is primarily conducted by dedicated enumerators or citizen scientists. Recent developments in the field of computer vision suggest a potential resolution to this issue through the use of rotation-invariant object descriptors combined with machine learning algorithms. Here we implement an algorithm to detect and count wildebeest from aerial images collected in the Serengeti National Park in 2009 as part of the biennial wildebeest count. We find that the per image error rates are greater than, but comparable to, two separate human counts. For the total count, the algorithm is more accurate than both manual counts, suggesting that human counters have a tendency to systematically over or under count images. While the accuracy of the algorithm is not yet at an acceptable level for fully automatic counts, our results show this method is a promising avenue for further research and we highlight specific areas where future research should focus in order to develop fast and accurate enumeration of aerial count data. If combined with a bespoke image collection protocol, this approach may yield a fully automated wildebeest count in the near future.

  11. Practical protocols for fast histopathology by Fourier transform infrared spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Keith, Frances N.; Reddy, Rohith K.; Bhargava, Rohit

    2008-02-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation.

  12. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  13. Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses.

    PubMed

    Bào, Yīmíng; Amarasinghe, Gaya K; Basler, Christopher F; Bavari, Sina; Bukreyev, Alexander; Chandran, Kartik; Dolnik, Olga; Dye, John M; Ebihara, Hideki; Formenty, Pierre; Hewson, Roger; Kobinger, Gary P; Leroy, Eric M; Mühlberger, Elke; Netesov, Sergey V; Patterson, Jean L; Paweska, Janusz T; Smither, Sophie J; Takada, Ayato; Towner, Jonathan S; Volchkov, Viktor E; Wahl-Jensen, Victoria; Kuhn, Jens H

    2017-05-11

    The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.

  14. Construction Method of Display Proposal for Commodities in Sales Promotion by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Yumoto, Masaki

    In a sales promotion task, wholesaler prepares and presents the display proposal for commodities in order to negotiate with retailer's buyers what commodities they should sell. For automating the sales promotion tasks, the proposal has to be constructed according to the target retailer's buyer. However, it is difficult to construct the proposal suitable for the target retail store because of too much combination of commodities. This paper proposes a construction method by Genetic algorithm (GA). The proposed method represents initial display proposals for commodities with genes, improve ones with the evaluation value by GA, and rearrange one with the highest evaluation value according to the classification of commodity. Through practical experiment, we can confirm that display proposal by the proposed method is similar with the one constructed by a wholesaler.

  15. An active learning approach for rapid characterization of endothelial cells in human tumors.

    PubMed

    Padmanabhan, Raghav K; Somasundar, Vinay H; Griffith, Sandra D; Zhu, Jianliang; Samoyedny, Drew; Tan, Kay See; Hu, Jiahao; Liao, Xuejun; Carin, Lawrence; Yoon, Sam S; Flaherty, Keith T; Dipaola, Robert S; Heitjan, Daniel F; Lal, Priti; Feldman, Michael D; Roysam, Badrinath; Lee, William M F

    2014-01-01

    Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.

  16. A Minimum Spanning Forest Based Method for Noninvasive Cancer Detection with Hyperspectral Imaging

    PubMed Central

    Pike, Robert; Lu, Guolan; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2016-01-01

    Goal The purpose of this paper is to develop a classification method that combines both spectral and spatial information for distinguishing cancer from healthy tissue on hyperspectral images in an animal model. Methods An automated algorithm based on a minimum spanning forest (MSF) and optimal band selection has been proposed to classify healthy and cancerous tissue on hyperspectral images. A support vector machine (SVM) classifier is trained to create a pixel-wise classification probability map of cancerous and healthy tissue. This map is then used to identify markers that are used to compute mutual information for a range of bands in the hyperspectral image and thus select the optimal bands. An MSF is finally grown to segment the image using spatial and spectral information. Conclusion The MSF based method with automatically selected bands proved to be accurate in determining the tumor boundary on hyperspectral images. Significance Hyperspectral imaging combined with the proposed classification technique has the potential to provide a noninvasive tool for cancer detection. PMID:26285052

  17. Classification of calcium in intravascular OCT images for the purpose of intervention planning

    NASA Astrophysics Data System (ADS)

    Shalev, Ronny; Bezerra, Hiram G.; Ray, Soumya; Prabhu, David; Wilson, David L.

    2016-03-01

    The presence of extensive calcification is a primary concern when planning and implementing a vascular percutaneous intervention such as stenting. If the balloon does not expand, the interventionalist must blindly apply high balloon pressure, use an atherectomy device, or abort the procedure. As part of a project to determine the ability of Intravascular Optical Coherence Tomography (IVOCT) to aid intervention planning, we developed a method for automatic classification of calcium in coronary IVOCT images. We developed an approach where plaque texture is modeled by the joint probability distribution of a bank of filter responses where the filter bank was chosen to reflect the qualitative characteristics of the calcium. This distribution is represented by the frequency histogram of filter response cluster centers. The trained algorithm was evaluated on independent ex-vivo image data accurately labeled using registered 3D microscopic cryo-image data which was used as ground truth. In this study, regions for extraction of sub-images (SI's) were selected by experts to include calcium, fibrous, or lipid tissues. We manually optimized algorithm parameters such as choice of filter bank, size of the dictionary, etc. Splitting samples into training and testing data, we achieved 5-fold cross validation calcium classification with F1 score of 93.7+/-2.7% with recall of >=89% and a precision of >=97% in this scenario with admittedly selective data. The automated algorithm performed in close-to-real-time (2.6 seconds per frame) suggesting possible on-line use. This promising preliminary study indicates that computational IVOCT might automatically identify calcium in IVOCT coronary artery images.

  18. A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography.

    PubMed

    Grassmann, Felix; Mengelkamp, Judith; Brandl, Caroline; Harsch, Sebastian; Zimmermann, Martina E; Linkohr, Birgit; Peters, Annette; Heid, Iris M; Palm, Christoph; Weber, Bernhard H F

    2018-04-10

    Age-related macular degeneration (AMD) is a common threat to vision. While classification of disease stages is critical to understanding disease risk and progression, several systems based on color fundus photographs are known. Most of these require in-depth and time-consuming analysis of fundus images. Herein, we present an automated computer-based classification algorithm. Algorithm development for AMD classification based on a large collection of color fundus images. Validation is performed on a cross-sectional, population-based study. We included 120 656 manually graded color fundus images from 3654 Age-Related Eye Disease Study (AREDS) participants. AREDS participants were >55 years of age, and non-AMD sight-threatening diseases were excluded at recruitment. In addition, performance of our algorithm was evaluated in 5555 fundus images from the population-based Kooperative Gesundheitsforschung in der Region Augsburg (KORA; Cooperative Health Research in the Region of Augsburg) study. We defined 13 classes (9 AREDS steps, 3 late AMD stages, and 1 for ungradable images) and trained several convolution deep learning architectures. An ensemble of network architectures improved prediction accuracy. An independent dataset was used to evaluate the performance of our algorithm in a population-based study. κ Statistics and accuracy to evaluate the concordance between predicted and expert human grader classification. A network ensemble of 6 different neural net architectures predicted the 13 classes in the AREDS test set with a quadratic weighted κ of 92% (95% confidence interval, 89%-92%) and an overall accuracy of 63.3%. In the independent KORA dataset, images wrongly classified as AMD were mainly the result of a macular reflex observed in young individuals. By restricting the KORA analysis to individuals >55 years of age and prior exclusion of other retinopathies, the weighted and unweighted κ increased to 50% and 63%, respectively. Importantly, the algorithm detected 84.2% of all fundus images with definite signs of early or late AMD. Overall, 94.3% of healthy fundus images were classified correctly. Our deep learning algoritm revealed a weighted κ outperforming human graders in the AREDS study and is suitable to classify AMD fundus images in other datasets using individuals >55 years of age. Copyright © 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  19. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan

    2009-09-01

    We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.

  20. An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques

    DTIC Science & Technology

    2018-01-09

    ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological and...is no longer needed. Do not return it to the originator. ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy ...4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques 5a. CONTRACT NUMBER

  1. Semi-Automated Classification of Seafloor Data Collected on the Delmarva Inner Shelf

    NASA Astrophysics Data System (ADS)

    Sweeney, E. M.; Pendleton, E. A.; Brothers, L. L.; Mahmud, A.; Thieler, E. R.

    2017-12-01

    We tested automated classification methods on acoustic bathymetry and backscatter data collected by the U.S. Geological Survey (USGS) and National Oceanic and Atmospheric Administration (NOAA) on the Delmarva inner continental shelf to efficiently and objectively identify sediment texture and geomorphology. Automated classification techniques are generally less subjective and take significantly less time than manual classification methods. We used a semi-automated process combining unsupervised and supervised classification techniques to characterize seafloor based on bathymetric slope and relative backscatter intensity. Statistical comparison of our automated classification results with those of a manual classification conducted on a subset of the acoustic imagery indicates that our automated method was highly accurate (95% total accuracy and 93% Kappa). Our methods resolve sediment ridges, zones of flat seafloor and areas of high and low backscatter. We compared our classification scheme with mean grain size statistics of samples collected in the study area and found that strong correlations between backscatter intensity and sediment texture exist. High backscatter zones are associated with the presence of gravel and shells mixed with sand, and low backscatter areas are primarily clean sand or sand mixed with mud. Slope classes further elucidate textural and geomorphologic differences in the seafloor, such that steep slopes (>0.35°) with high backscatter are most often associated with the updrift side of sand ridges and bedforms, whereas low slope with high backscatter correspond to coarse lag or shell deposits. Low backscatter and high slopes are most often found on the downdrift side of ridges and bedforms, and low backscatter and low slopes identify swale areas and sand sheets. We found that poor acoustic data quality was the most significant cause of inaccurate classification results, which required additional user input to mitigate. Our method worked well along the primarily sandy Delmarva inner continental shelf, and outlines a method that can be used to efficiently and consistently produce surficial geologic interpretations of the seafloor from ground-truthed geophysical or hydrographic data.

  2. Classification Comparisons Between Compact Polarimetric and Quad-Pol SAR Imagery

    NASA Astrophysics Data System (ADS)

    Souissi, Boularbah; Doulgeris, Anthony P.; Eltoft, Torbjørn

    2015-04-01

    Recent interest in dual-pol SAR systems has lead to a novel approach, the so-called compact polarimetric imaging mode (CP) which attempts to reconstruct fully polarimetric information based on a few simple assumptions. In this work, the CP image is simulated from the full quad-pol (QP) image. We present here the initial comparison of polarimetric information content between QP and CP imaging modes. The analysis of multi-look polarimetric covariance matrix data uses an automated statistical clustering method based upon the expectation maximization (EM) algorithm for finite mixture modeling, using the complex Wishart probability density function. Our results showed that there are some different characteristics between the QP and CP modes. The classification is demonstrated using a E-SAR and Radarsat2 polarimetric SAR images acquired over DLR Oberpfaffenhofen in Germany and Algiers in Algeria respectively.

  3. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    PubMed

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

  4. A new set of wavelet- and fractals-based features for Gleason grading of prostate cancer histopathology images

    NASA Astrophysics Data System (ADS)

    Mosquera Lopez, Clara; Agaian, Sos

    2013-02-01

    Prostate cancer detection and staging is an important step towards patient treatment selection. Advancements in digital pathology allow the application of new quantitative image analysis algorithms for computer-assisted diagnosis (CAD) on digitized histopathology images. In this paper, we introduce a new set of features to automatically grade pathological images using the well-known Gleason grading system. The goal of this study is to classify biopsy images belonging to Gleason patterns 3, 4, and 5 by using a combination of wavelet and fractal features. For image classification we use pairwise coupling Support Vector Machine (SVM) classifiers. The accuracy of the system, which is close to 97%, is estimated through three different cross-validation schemes. The proposed system offers the potential for automating classification of histological images and supporting prostate cancer diagnosis.

  5. Automated novelty detection in the WISE survey with one-class support vector machines

    NASA Astrophysics Data System (ADS)

    Solarz, A.; Bilicki, M.; Gromadzki, M.; Pollo, A.; Durkalec, A.; Wypych, M.

    2017-10-01

    Wide-angle photometric surveys of previously uncharted sky areas or wavelength regimes will always bring in unexpected sources - novelties or even anomalies - whose existence and properties cannot be easily predicted from earlier observations. Such objects can be efficiently located with novelty detection algorithms. Here we present an application of such a method, called one-class support vector machines (OCSVM), to search for anomalous patterns among sources preselected from the mid-infrared AllWISE catalogue covering the whole sky. To create a model of expected data we train the algorithm on a set of objects with spectroscopic identifications from the SDSS DR13 database, present also in AllWISE. The OCSVM method detects as anomalous those sources whose patterns - WISE photometric measurements in this case - are inconsistent with the model. Among the detected anomalies we find artefacts, such as objects with spurious photometry due to blending, but more importantly also real sources of genuine astrophysical interest. Among the latter, OCSVM has identified a sample of heavily reddened AGN/quasar candidates distributed uniformly over the sky and in a large part absent from other WISE-based AGN catalogues. It also allowed us to find a specific group of sources of mixed types, mostly stars and compact galaxies. By combining the semi-supervised OCSVM algorithm with standard classification methods it will be possible to improve the latter by accounting for sources which are not present in the training sample, but are otherwise well-represented in the target set. Anomaly detection adds flexibility to automated source separation procedures and helps verify the reliability and representativeness of the training samples. It should be thus considered as an essential step in supervised classification schemes to ensure completeness and purity of produced catalogues. The catalogues of outlier data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A39

  6. Complexity and Automation Displays of Air Traffic Control: Literature Review and Analysis

    DTIC Science & Technology

    2005-04-01

    Security ...Classif. (of this report) 20. Security Classif. (of...Branstrom, & Brasil , 1998), little effort has been devoted to assessing the complexity of ATC automation displays. Given the fact that many new

  7. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    NASA Astrophysics Data System (ADS)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  8. Automated Detection of Electroencephalography Artifacts in Human, Rodent and Canine Subjects using Machine Learning.

    PubMed

    Levitt, Joshua; Nitenson, Adam; Koyama, Suguru; Heijmans, Lonne; Curry, James; Ross, Jason T; Kamerling, Steven; Saab, Carl Y

    2018-06-23

    Electroencephalography (EEG) invariably contains extra-cranial artifacts that are commonly dealt with based on qualitative and subjective criteria. Failure to account for EEG artifacts compromises data interpretation. We have developed a quantitative and automated support vector machine (SVM)-based algorithm to accurately classify artifactual EEG epochs in awake rodent, canine and humans subjects. An embodiment of this method also enables the determination of 'eyes open/closed' states in human subjects. The levels of SVM accuracy for artifact classification in humans, Sprague Dawley rats and beagle dogs were 94.17%, 83.68%, and 85.37%, respectively, whereas 'eyes open/closed' states in humans were labeled with 88.60% accuracy. Each of these results was significantly higher than chance. Comparison with Existing Methods: Other existing methods, like those dependent on Independent Component Analysis, have not been tested in non-human subjects, and require full EEG montages, instead of only single channels, as this method does. We conclude that our EEG artifact detection algorithm provides a valid and practical solution to a common problem in the quantitative analysis and assessment of EEG in pre-clinical research settings across evolutionary spectra. Copyright © 2018. Published by Elsevier B.V.

  9. Reducing uncertainty in wind turbine blade health inspection with image processing techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyi

    Structural health inspection has been widely applied in the operation of wind farms to find early cracks in wind turbine blades (WTBs). Increased numbers of turbines and expanded rotor diameters are driving up the workloads and safety risks for site employees. Therefore, it is important to automate the inspection process as well as minimize the uncertainties involved in routine blade health inspection. In addition, crack documentation and trending is vital to assess rotor blade and turbine reliability in the 20 year designed life span. A new crack recognition and classification algorithm is described that can support automated structural health inspection of the surface of large composite WTBs. The first part of the study investigated the feasibility of digital image processing in WTB health inspection and defined the capability of numerically detecting cracks as small as hairline thickness. The second part of the study identified and analyzed the uncertainty of the digital image processing method. A self-learning algorithm was proposed to recognize and classify cracks without comparing a blade image to a library of crack images. The last part of the research quantified the uncertainty in the field conditions and the image processing methods.

  10. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  11. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  12. CUSTOMS SERVICE MODERNIZATION: Management Improvements Needed on High-Risk Automated Commercial Environment Project

    DTIC Science & Technology

    2002-05-01

    GAO United States General Accounting OfficeReport to Congressional CommitteesMay 2002 CUSTOMS SERVICE MODERNIZATION Management Improvements Needed...from... to) - Title and Subtitle CUSTOMS SERVICE MODERNIZATION: Management Improvements Needed on High-Risk Automated Commercial Environment... Customs management of ACE. Subject Terms Report Classification unclassified Classification of this page unclassified Classification of Abstract

  13. Algorithm of the automated choice of points of the acupuncture for EHF-therapy

    NASA Astrophysics Data System (ADS)

    Lyapina, E. P.; Chesnokov, I. A.; Anisimov, Ya. E.; Bushuev, N. A.; Murashov, E. P.; Eliseev, Yu. Yu.; Syuzanna, H.

    2007-05-01

    Offered algorithm of the automated choice of points of the acupuncture for EHF-therapy. The recipe formed by algorithm of an automated choice of points for acupunctural actions has a recommendational character. Clinical investigations showed that application of the developed algorithm in EHF-therapy allows to normalize energetic state of the meridians and to effectively solve many problems of an organism functioning.

  14. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods

    PubMed Central

    Burlina, Philippe; Billings, Seth; Joshi, Neil

    2017-01-01

    Objective To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and “engineered” features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. Results The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). Conclusions This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification. PMID:28854220

  15. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods.

    PubMed

    Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima

    2017-01-01

    To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.

  16. Classification of Parkinson's disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples.

    PubMed

    Zhang, He-Hua; Yang, Liuyang; Liu, Yuchuan; Wang, Pin; Yin, Jun; Li, Yongming; Qiu, Mingguo; Zhu, Xueru; Yan, Fang

    2016-11-16

    The use of speech based data in the classification of Parkinson disease (PD) has been shown to provide an effect, non-invasive mode of classification in recent years. Thus, there has been an increased interest in speech pattern analysis methods applicable to Parkinsonism for building predictive tele-diagnosis and tele-monitoring models. One of the obstacles in optimizing classifications is to reduce noise within the collected speech samples, thus ensuring better classification accuracy and stability. While the currently used methods are effect, the ability to invoke instance selection has been seldomly examined. In this study, a PD classification algorithm was proposed and examined that combines a multi-edit-nearest-neighbor (MENN) algorithm and an ensemble learning algorithm. First, the MENN algorithm is applied for selecting optimal training speech samples iteratively, thereby obtaining samples with high separability. Next, an ensemble learning algorithm, random forest (RF) or decorrelated neural network ensembles (DNNE), is used to generate trained samples from the collected training samples. Lastly, the trained ensemble learning algorithms are applied to the test samples for PD classification. This proposed method was examined using a more recently deposited public datasets and compared against other currently used algorithms for validation. Experimental results showed that the proposed algorithm obtained the highest degree of improved classification accuracy (29.44%) compared with the other algorithm that was examined. Furthermore, the MENN algorithm alone was found to improve classification accuracy by as much as 45.72%. Moreover, the proposed algorithm was found to exhibit a higher stability, particularly when combining the MENN and RF algorithms. This study showed that the proposed method could improve PD classification when using speech data and can be applied to future studies seeking to improve PD classification methods.

  17. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features.

    PubMed

    Nandi, Sutanu; Subramanian, Abhishek; Sarkar, Ram Rup

    2017-07-25

    Prediction of essential genes helps to identify a minimal set of genes that are absolutely required for the appropriate functioning and survival of a cell. The available machine learning techniques for essential gene prediction have inherent problems, like imbalanced provision of training datasets, biased choice of the best model for a given balanced dataset, choice of a complex machine learning algorithm, and data-based automated selection of biologically relevant features for classification. Here, we propose a simple support vector machine-based learning strategy for the prediction of essential genes in Escherichia coli K-12 MG1655 metabolism that integrates a non-conventional combination of an appropriate sample balanced training set, a unique organism-specific genotype, phenotype attributes that characterize essential genes, and optimal parameters of the learning algorithm to generate the best machine learning model (the model with the highest accuracy among all the models trained for different sample training sets). For the first time, we also introduce flux-coupled metabolic subnetwork-based features for enhancing the classification performance. Our strategy proves to be superior as compared to previous SVM-based strategies in obtaining a biologically relevant classification of genes with high sensitivity and specificity. This methodology was also trained with datasets of other recent supervised classification techniques for essential gene classification and tested using reported test datasets. The testing accuracy was always high as compared to the known techniques, proving that our method outperforms known methods. Observations from our study indicate that essential genes are conserved among homologous bacterial species, demonstrate high codon usage bias, GC content and gene expression, and predominantly possess a tendency to form physiological flux modules in metabolism.

  18. Robust evaluation of time series classification algorithms for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Harvey, Dustin Y.; Worden, Keith; Todd, Michael D.

    2014-03-01

    Structural health monitoring (SHM) systems provide real-time damage and performance information for civil, aerospace, and mechanical infrastructure through analysis of structural response measurements. The supervised learning methodology for data-driven SHM involves computation of low-dimensional, damage-sensitive features from raw measurement data that are then used in conjunction with machine learning algorithms to detect, classify, and quantify damage states. However, these systems often suffer from performance degradation in real-world applications due to varying operational and environmental conditions. Probabilistic approaches to robust SHM system design suffer from incomplete knowledge of all conditions a system will experience over its lifetime. Info-gap decision theory enables nonprobabilistic evaluation of the robustness of competing models and systems in a variety of decision making applications. Previous work employed info-gap models to handle feature uncertainty when selecting various components of a supervised learning system, namely features from a pre-selected family and classifiers. In this work, the info-gap framework is extended to robust feature design and classifier selection for general time series classification through an efficient, interval arithmetic implementation of an info-gap data model. Experimental results are presented for a damage type classification problem on a ball bearing in a rotating machine. The info-gap framework in conjunction with an evolutionary feature design system allows for fully automated design of a time series classifier to meet performance requirements under maximum allowable uncertainty.

  19. [Computers in biomedical research: I. Analysis of bioelectrical signals].

    PubMed

    Vivaldi, E A; Maldonado, P

    2001-08-01

    A personal computer equipped with an analog-to-digital conversion card is able to input, store and display signals of biomedical interest. These signals can additionally be submitted to ad-hoc software for analysis and diagnosis. Data acquisition is based on the sampling of a signal at a given rate and amplitude resolution. The automation of signal processing conveys syntactic aspects (data transduction, conditioning and reduction); and semantic aspects (feature extraction to describe and characterize the signal and diagnostic classification). The analytical approach that is at the basis of computer programming allows for the successful resolution of apparently complex tasks. Two basic principles involved are the definition of simple fundamental functions that are then iterated and the modular subdivision of tasks. These two principles are illustrated, respectively, by presenting the algorithm that detects relevant elements for the analysis of a polysomnogram, and the task flow in systems that automate electrocardiographic reports.

  20. Automated Assessment of Patients' Self-Narratives for Posttraumatic Stress Disorder Screening Using Natural Language Processing and Text Mining.

    PubMed

    He, Qiwei; Veldkamp, Bernard P; Glas, Cees A W; de Vries, Theo

    2017-03-01

    Patients' narratives about traumatic experiences and symptoms are useful in clinical screening and diagnostic procedures. In this study, we presented an automated assessment system to screen patients for posttraumatic stress disorder via a natural language processing and text-mining approach. Four machine-learning algorithms-including decision tree, naive Bayes, support vector machine, and an alternative classification approach called the product score model-were used in combination with n-gram representation models to identify patterns between verbal features in self-narratives and psychiatric diagnoses. With our sample, the product score model with unigrams attained the highest prediction accuracy when compared with practitioners' diagnoses. The addition of multigrams contributed most to balancing the metrics of sensitivity and specificity. This article also demonstrates that text mining is a promising approach for analyzing patients' self-expression behavior, thus helping clinicians identify potential patients from an early stage.

  1. Automated image processing method for the diagnosis and classification of malaria on thin blood smears.

    PubMed

    Ross, Nicholas E; Pritchard, Charles J; Rubin, David M; Dusé, Adriano G

    2006-05-01

    Malaria is a serious global health problem, and rapid, accurate diagnosis is required to control the disease. An image processing algorithm to automate the diagnosis of malaria on thin blood smears is developed. The image classification system is designed to positively identify malaria parasites present in thin blood smears, and differentiate the species of malaria. Images are acquired using a charge-coupled device camera connected to a light microscope. Morphological and novel threshold selection techniques are used to identify erythrocytes (red blood cells) and possible parasites present on microscopic slides. Image features based on colour, texture and the geometry of the cells and parasites are generated, as well as features that make use of a priori knowledge of the classification problem and mimic features used by human technicians. A two-stage tree classifier using backpropogation feedforward neural networks distinguishes between true and false positives, and then diagnoses the species (Plasmodium falciparum, P. vivax, P. ovale or P. malariae) of the infection. Malaria samples obtained from the Department of Clinical Microbiology and Infectious Diseases at the University of the Witwatersrand Medical School are used for training and testing of the system. Infected erythrocytes are positively identified with a sensitivity of 85% and a positive predictive value (PPV) of 81%, which makes the method highly sensitive at diagnosing a complete sample provided many views are analysed. Species were correctly determined for 11 out of 15 samples.

  2. A clinically viable capsule endoscopy video analysis platform for automatic bleeding detection

    NASA Astrophysics Data System (ADS)

    Yi, Steven; Jiao, Heng; Xie, Jean; Mui, Peter; Leighton, Jonathan A.; Pasha, Shabana; Rentz, Lauri; Abedi, Mahmood

    2013-02-01

    In this paper, we present a novel and clinically valuable software platform for automatic bleeding detection on gastrointestinal (GI) tract from Capsule Endoscopy (CE) videos. Typical CE videos for GI tract run about 8 hours and are manually reviewed by physicians to locate diseases such as bleedings and polyps. As a result, the process is time consuming and is prone to disease miss-finding. While researchers have made efforts to automate this process, however, no clinically acceptable software is available on the marketplace today. Working with our collaborators, we have developed a clinically viable software platform called GISentinel for fully automated GI tract bleeding detection and classification. Major functional modules of the SW include: the innovative graph based NCut segmentation algorithm, the unique feature selection and validation method (e.g. illumination invariant features, color independent features, and symmetrical texture features), and the cascade SVM classification for handling various GI tract scenes (e.g. normal tissue, food particles, bubbles, fluid, and specular reflection). Initial evaluation results on the SW have shown zero bleeding instance miss-finding rate and 4.03% false alarm rate. This work is part of our innovative 2D/3D based GI tract disease detection software platform. While the overall SW framework is designed for intelligent finding and classification of major GI tract diseases such as bleeding, ulcer, and polyp from the CE videos, this paper will focus on the automatic bleeding detection functional module.

  3. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST software, with new detection, filtering and classification algorithms. Particularly, dedicated filtering algorithm development based on Wavelet filtering was exploited for the improvement of oil spill detection and classification. In this work we present the functionalities of the developed software and the main results in support of the developed algorithm validity.

  4. Novel techniques for enhancement and segmentation of acne vulgaris lesions.

    PubMed

    Malik, A S; Humayun, J; Kamel, N; Yap, F B-B

    2014-08-01

    More than 99% acne patients suffer from acne vulgaris. While diagnosing the severity of acne vulgaris lesions, dermatologists have observed inter-rater and intra-rater variability in diagnosis results. This is because during assessment, identifying lesion types and their counting is a tedious job for dermatologists. To make the assessment job objective and easier for dermatologists, an automated system based on image processing methods is proposed in this study. There are two main objectives: (i) to develop an algorithm for the enhancement of various acne vulgaris lesions; and (ii) to develop a method for the segmentation of enhanced acne vulgaris lesions. For the first objective, an algorithm is developed based on the theory of high dynamic range (HDR) images. The proposed algorithm uses local rank transform to generate the HDR images from a single acne image followed by the log transformation. Then, segmentation is performed by clustering the pixels based on Mahalanobis distance of each pixel from spectral models of acne vulgaris lesions. Two metrics are used to evaluate the enhancement of acne vulgaris lesions, i.e., contrast improvement factor (CIF) and image contrast normalization (ICN). The proposed algorithm is compared with two other methods. The proposed enhancement algorithm shows better result than both the other methods based on CIF and ICN. In addition, sensitivity and specificity are calculated for the segmentation results. The proposed segmentation method shows higher sensitivity and specificity than other methods. This article specifically discusses the contrast enhancement and segmentation for automated diagnosis system of acne vulgaris lesions. The results are promising that can be used for further classification of acne vulgaris lesions for final grading of the lesions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. A robust algorithm for automated target recognition using precomputed radar cross sections

    NASA Astrophysics Data System (ADS)

    Ehrman, Lisa M.; Lanterman, Aaron D.

    2004-09-01

    Passive radar is an emerging technology that offers a number of unique benefits, including covert operation. Many such systems are already capable of detecting and tracking aircraft. The goal of this work is to develop a robust algorithm for adding automated target recognition (ATR) capabilities to existing passive radar systems. In previous papers, we proposed conducting ATR by comparing the precomputed RCS of known targets to that of detected targets. To make the precomputed RCS as accurate as possible, a coordinated flight model is used to estimate aircraft orientation. Once the aircraft's position and orientation are known, it is possible to determine the incident and observed angles on the aircraft, relative to the transmitter and receiver. This makes it possible to extract the appropriate radar cross section (RCS) from our simulated database. This RCS is then scaled to account for propagation losses and the receiver's antenna gain. A Rician likelihood model compares these expected signals from different targets to the received target profile. We have previously employed Monte Carlo runs to gauge the probability of error in the ATR algorithm; however, generation of a statistically significant set of Monte Carlo runs is computationally intensive. As an alternative to Monte Carlo runs, we derive the relative entropy (also known as Kullback-Liebler distance) between two Rician distributions. Since the probability of Type II error in our hypothesis testing problem can be expressed as a function of the relative entropy via Stein's Lemma, this provides us with a computationally efficient method for determining an upper bound on our algorithm's performance. It also provides great insight into the types of classification errors we can expect from our algorithm. This paper compares the numerically approximated probability of Type II error with the results obtained from a set of Monte Carlo runs.

  6. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  7. Benchmarking of data fusion algorithms in support of earth observation based Antarctic wildlife monitoring

    NASA Astrophysics Data System (ADS)

    Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.

    2016-03-01

    Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.

  8. Artificial Neural Networks as a powerful numerical tool to classify specific features of a tooth based on 3D scan data.

    PubMed

    Raith, Stefan; Vogel, Eric Per; Anees, Naeema; Keul, Christine; Güth, Jan-Frederik; Edelhoff, Daniel; Fischer, Horst

    2017-01-01

    Chairside manufacturing based on digital image acquisition is gainingincreasing importance in dentistry. For the standardized application of these methods, it is paramount to have highly automated digital workflows that can process acquired 3D image data of dental surfaces. Artificial Neural Networks (ANNs) arenumerical methods primarily used to mimic the complex networks of neural connections in the natural brain. Our hypothesis is that an ANNcan be developed that is capable of classifying dental cusps with sufficient accuracy. This bears enormous potential for an application in chairside manufacturing workflows in the dental field, as it closes the gap between digital acquisition of dental geometries and modern computer-aided manufacturing techniques.Three-dimensional surface scans of dental casts representing natural full dental arches were transformed to range image data. These data were processed using an automated algorithm to detect candidates for tooth cusps according to salient geometrical features. These candidates were classified following common dental terminology and used as training data for a tailored ANN.For the actual cusp feature description, two different approaches were developed and applied to the available data: The first uses the relative location of the detected cusps as input data and the second method directly takes the image information given in the range images. In addition, a combination of both was implemented and investigated.Both approaches showed high performance with correct classifications of 93.3% and 93.5%, respectively, with improvements by the combination shown to be minor.This article presents for the first time a fully automated method for the classification of teeththat could be confirmed to work with sufficient precision to exhibit the potential for its use in clinical practice,which is a prerequisite for automated computer-aided planning of prosthetic treatments with subsequent automated chairside manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optical Detection of Degraded Therapeutic Proteins.

    PubMed

    Herrington, William F; Singh, Gajendra P; Wu, Di; Barone, Paul W; Hancock, William; Ram, Rajeev J

    2018-03-23

    The quality of therapeutic proteins such as hormones, subunit and conjugate vaccines, and antibodies is critical to the safety and efficacy of modern medicine. Identifying malformed proteins at the point-of-care can prevent adverse immune reactions in patients; this is of special concern when there is an insecure supply chain resulting in the delivery of degraded, or even counterfeit, drug product. Identification of degraded protein, for example human growth hormone, is demonstrated by applying automated anomaly detection algorithms. Detection of the degraded protein differs from previous applications of machine-learning and classification to spectral analysis: only example spectra of genuine, high-quality drug products are used to construct the classifier. The algorithm is tested on Raman spectra acquired on protein dilutions typical of formulated drug product and at sample volumes of 25 µL, below the typical overfill (waste) volumes present in vials of injectable drug product. The algorithm is demonstrated to correctly classify anomalous recombinant human growth hormone (rhGH) with 92% sensitivity and 98% specificity even when the algorithm has only previously encountered high-quality drug product.

  10. DREAMING OF ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as themore » “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.« less

  11. Prediction of body mass index status from voice signals based on machine learning for automated medical applications.

    PubMed

    Lee, Bum Ju; Kim, Keun Ho; Ku, Boncho; Jang, Jun-Su; Kim, Jong Yeol

    2013-05-01

    The body mass index (BMI) provides essential medical information related to body weight for the treatment and prognosis prediction of diseases such as cardiovascular disease, diabetes, and stroke. We propose a method for the prediction of normal, overweight, and obese classes based only on the combination of voice features that are associated with BMI status, independently of weight and height measurements. A total of 1568 subjects were divided into 4 groups according to age and gender differences. We performed statistical analyses by analysis of variance (ANOVA) and Scheffe test to find significant features in each group. We predicted BMI status (normal, overweight, and obese) by a logistic regression algorithm and two ensemble classification algorithms (bagging and random forests) based on statistically significant features. In the Female-2030 group (females aged 20-40 years), classification experiments using an imbalanced (original) data set gave area under the receiver operating characteristic curve (AUC) values of 0.569-0.731 by logistic regression, whereas experiments using a balanced data set gave AUC values of 0.893-0.994 by random forests. AUC values in Female-4050 (females aged 41-60 years), Male-2030 (males aged 20-40 years), and Male-4050 (males aged 41-60 years) groups by logistic regression in imbalanced data were 0.585-0.654, 0.581-0.614, and 0.557-0.653, respectively. AUC values in Female-4050, Male-2030, and Male-4050 groups in balanced data were 0.629-0.893 by bagging, 0.707-0.916 by random forests, and 0.695-0.854 by bagging, respectively. In each group, we found discriminatory features showing statistical differences among normal, overweight, and obese classes. The results showed that the classification models built by logistic regression in imbalanced data were better than those built by the other two algorithms, and significant features differed according to age and gender groups. Our results could support the development of BMI diagnosis tools for real-time monitoring; such tools are considered helpful in improving automated BMI status diagnosis in remote healthcare or telemedicine and are expected to have applications in forensic and medical science. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A completely automated CAD system for mass detection in a large mammographic database.

    PubMed

    Bellotti, R; De Carlo, F; Tangaro, S; Gargano, G; Maggipinto, G; Castellano, M; Massafra, R; Cascio, D; Fauci, F; Magro, R; Raso, G; Lauria, A; Forni, G; Bagnasco, S; Cerello, P; Zanon, E; Cheran, S C; Lopez Torres, E; Bottigli, U; Masala, G L; Oliva, P; Retico, A; Fantacci, M E; Cataldo, R; De Mitri, I; De Nunzio, G

    2006-08-01

    Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image segmentation for the localization of regions of interest (ROIs). This step relies on an iterative dynamical threshold algorithm able to select iso-intensity closed contours around gray level maxima of the mammogram. (b) ROI characterization by means of textural features computed from the gray tone spatial dependence matrix (GTSDM), containing second-order spatial statistics information on the pixel gray level intensity. As the images under study were recorded in different centers and with different machine settings, eight GTSDM features were selected so as to be invariant under monotonic transformation. In this way, the images do not need to be normalized, as the adopted features depend on the texture only, rather than on the gray tone levels, too. (c) ROI classification by means of a neural network, with supervision provided by the radiologist's diagnosis. The CAD system was evaluated on a large database of 3369 mammographic images [2307 negative, 1062 pathological (or positive), containing at least one confirmed mass, as diagnosed by an expert radiologist]. To assess the performance of the system, receiver operating characteristic (ROC) and free-response ROC analysis were employed. The area under the ROC curve was found to be Az = 0.783 +/- 0.008 for the ROI-based classification. When evaluating the accuracy of the CAD against the radiologist-drawn boundaries, 4.23 false positives per image are found at 80% of mass sensitivity.

  13. An extensible infrastructure for fully automated spike sorting during online experiments.

    PubMed

    Santhanam, Gopal; Sahani, Maneesh; Ryu, Stephen; Shenoy, Krishna

    2004-01-01

    When recording extracellular neural activity, it is often necessary to distinguish action potentials arising from distinct cells near the electrode tip, a process commonly referred to as "spike sorting." In a number of experiments, notably those that involve direct neuroprosthetic control of an effector, this cell-by-cell classification of the incoming signal must be achieved in real time. Several commercial offerings are available for this task, but all of these require some manual supervision per electrode, making each scheme cumbersome with large electrode counts. We present a new infrastructure that leverages existing unsupervised algorithms to sort and subsequently implement the resulting signal classification rules for each electrode using a commercially available Cerebus neural signal processor. We demonstrate an implementation of this infrastructure to classify signals from a cortical electrode array, using a probabilistic clustering algorithm (described elsewhere). The data were collected from a rhesus monkey performing a delayed center-out reach task. We used both sorted and unsorted (thresholded) action potentials from an array implanted in pre-motor cortex to "predict" the reach target, a common decoding operation in neuroprosthetic research. The use of sorted spikes led to an improvement in decoding accuracy of between 3.6 and 6.4%.

  14. Robust prediction of protein subcellular localization combining PCA and WSVMs.

    PubMed

    Tian, Jiang; Gu, Hong; Liu, Wenqi; Gao, Chiyang

    2011-08-01

    Automated prediction of protein subcellular localization is an important tool for genome annotation and drug discovery, and Support Vector Machines (SVMs) can effectively solve this problem in a supervised manner. However, the datasets obtained from real experiments are likely to contain outliers or noises, which can lead to poor generalization ability and classification accuracy. To explore this problem, we adopt strategies to lower the effect of outliers. First we design a method based on Weighted SVMs, different weights are assigned to different data points, so the training algorithm will learn the decision boundary according to the relative importance of the data points. Second we analyse the influence of Principal Component Analysis (PCA) on WSVM classification, propose a hybrid classifier combining merits of both PCA and WSVM. After performing dimension reduction operations on the datasets, kernel-based possibilistic c-means algorithm can generate more suitable weights for the training, as PCA transforms the data into a new coordinate system with largest variances affected greatly by the outliers. Experiments on benchmark datasets show promising results, which confirms the effectiveness of the proposed method in terms of prediction accuracy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Automatic classification of blank substrate defects

    NASA Astrophysics Data System (ADS)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask Technology Center (MPMask). The Calibre ADC tool was qualified on production mask blanks against the manual classification. The classification accuracy of ADC is greater than 95% for critical defects with an overall accuracy of 90%. The sensitivity to weak defect signals and locating the defect in the images is a challenge we are resolving. The performance of the tool has been demonstrated on multiple mask types and is ready for deployment in full volume mask manufacturing production flow. Implementation of Calibre ADC is estimated to reduce the misclassification of critical defects by 60-80%.

  16. A method for automated snow avalanche debris detection through use of synthetic aperture radar (SAR) imaging

    NASA Astrophysics Data System (ADS)

    Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.

    2016-11-01

    Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.

  17. Segmentation of anatomical branching structures based on texture features and conditional random field

    NASA Astrophysics Data System (ADS)

    Nuzhnaya, Tatyana; Bakic, Predrag; Kontos, Despina; Megalooikonomou, Vasileios; Ling, Haibin

    2012-02-01

    This work is a part of our ongoing study aimed at understanding a relation between the topology of anatomical branching structures with the underlying image texture. Morphological variability of the breast ductal network is associated with subsequent development of abnormalities in patients with nipple discharge such as papilloma, breast cancer and atypia. In this work, we investigate complex dependence among ductal components to perform segmentation, the first step for analyzing topology of ductal lobes. Our automated framework is based on incorporating a conditional random field with texture descriptors of skewness, coarseness, contrast, energy and fractal dimension. These features are selected to capture the architectural variability of the enhanced ducts by encoding spatial variations between pixel patches in galactographic image. The segmentation algorithm was applied to a dataset of 20 x-ray galactograms obtained at the Hospital of the University of Pennsylvania. We compared the performance of the proposed approach with fully and semi automated segmentation algorithms based on neural network classification, fuzzy-connectedness, vesselness filter and graph cuts. Global consistency error and confusion matrix analysis were used as accuracy measurements. For the proposed approach, the true positive rate was higher and the false negative rate was significantly lower compared to other fully automated methods. This indicates that segmentation based on CRF incorporated with texture descriptors has potential to efficiently support the analysis of complex topology of the ducts and aid in development of realistic breast anatomy phantoms.

  18. Automated classification of bone marrow cells in microscopic images for diagnosis of leukemia: a comparison of two classification schemes with respect to the segmentation quality

    NASA Astrophysics Data System (ADS)

    Krappe, Sebastian; Benz, Michaela; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2015-03-01

    The morphological analysis of bone marrow smears is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually with the use of bright field microscope. This is a time consuming, partly subjective and tedious process. Furthermore, repeated examinations of a slide yield intra- and inter-observer variances. For this reason an automation of morphological bone marrow analysis is pursued. This analysis comprises several steps: image acquisition and smear detection, cell localization and segmentation, feature extraction and cell classification. The automated classification of bone marrow cells is depending on the automated cell segmentation and the choice of adequate features extracted from different parts of the cell. In this work we focus on the evaluation of support vector machines (SVMs) and random forests (RFs) for the differentiation of bone marrow cells in 16 different classes, including immature and abnormal cell classes. Data sets of different segmentation quality are used to test the two approaches. Automated solutions for the morphological analysis for bone marrow smears could use such a classifier to pre-classify bone marrow cells and thereby shortening the examination duration.

  19. Photoplethysmography as a single source for analysis of sleep-disordered breathing in patients with severe cardiovascular disease.

    PubMed

    Amir, Offer; Barak-Shinar, Deganit; Henry, Antonietta; Smart, Frank W

    2012-02-01

    Sleep-disordered breathing and Cheyne-Stokes breathing are often not diagnosed, especially in cardiovascular patients. An automated system based on photoplethysmographic signals might provide a convenient screening and diagnostic solution for patient evaluation at home or in an ambulatory setting. We compared event detection and classification obtained by full polysomnography (the 'gold standard') and by an automated new algorithm system in 74 subjects. Each subject underwent overnight polysomnography, 60 in a hospital cardiology department and 14 while being tested for suspected sleep-disordered breathing in a sleep laboratory. The sleep-disordered breathing and Cheyne-Stokes breathing parameters measured by a new automated algorithm system correlated very well with the corresponding results obtained by full polysomnography. The sensitivity of the Cheyne-Stokes breathing detected from the system compared to full polysomnography was 92% [95% confidence interval (CI): 78.6-98.3%] and specificity 94% (95% CI: 81.3-99.3%). Comparison of the Apnea Hyponea Index with a cutoff level of 15 shows a sensitivity of 98% (95% CI: 87.1-99.6%) and specificity of 96% (95% CI: 79.8-99.3%). The detection of respiratory events showed agreement of approximately 80%. Regression and Bland-Altman plots revealed good agreement between the two methods. Relative to gold-standard polysomnography, the simply used automated system in this study yielded an acceptable analysis of sleep- and/or cardiac-related breathing disorders. Accordingly, and given the convenience and simplicity of its application, this system can be considered as a suitable platform for home and ambulatory screening and diagnosis of sleep-disordered breathing in patients with cardiovascular disease. © 2011 European Sleep Research Society.

  20. Automated spectral classification and the GAIA project

    NASA Technical Reports Server (NTRS)

    Lasala, Jerry; Kurtz, Michael J.

    1995-01-01

    Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.

  1. An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study.

    PubMed

    De Tobel, J; Radesh, P; Vandermeulen, D; Thevissen, P W

    2017-12-01

    Automated methods to evaluate growth of hand and wrist bones on radiographs and magnetic resonance imaging have been developed. They can be applied to estimate age in children and subadults. Automated methods require the software to (1) recognise the region of interest in the image(s), (2) evaluate the degree of development and (3) correlate this to the age of the subject based on a reference population. For age estimation based on third molars an automated method for step (1) has been presented for 3D magnetic resonance imaging and is currently being optimised (Unterpirker et al. 2015). To develop an automated method for step (2) based on lower third molars on panoramic radiographs. A modified Demirjian staging technique including ten developmental stages was developed. Twenty panoramic radiographs per stage per gender were retrospectively selected for FDI element 38. Two observers decided in consensus about the stages. When necessary, a third observer acted as a referee to establish the reference stage for the considered third molar. This set of radiographs was used as training data for machine learning algorithms for automated staging. First, image contrast settings were optimised to evaluate the third molar of interest and a rectangular bounding box was placed around it in a standardised way using Adobe Photoshop CC 2017 software. This bounding box indicated the region of interest for the next step. Second, several machine learning algorithms available in MATLAB R2017a software were applied for automated stage recognition. Third, the classification performance was evaluated in a 5-fold cross-validation scenario, using different validation metrics (accuracy, Rank-N recognition rate, mean absolute difference, linear kappa coefficient). Transfer Learning as a type of Deep Learning Convolutional Neural Network approach outperformed all other tested approaches. Mean accuracy equalled 0.51, mean absolute difference was 0.6 stages and mean linearly weighted kappa was 0.82. The overall performance of the presented automated pilot technique to stage lower third molar development on panoramic radiographs was similar to staging by human observers. It will be further optimised in future research, since it represents a necessary step to achieve a fully automated dental age estimation method, which to date is not available.

  2. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing

    PubMed Central

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-01-01

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, feature extraction algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system. PMID:29462855

  3. Enhanced Automated Guidance System for Horizontal Auger Boring Based on Image Processing.

    PubMed

    Wu, Lingling; Wen, Guojun; Wang, Yudan; Huang, Lei; Zhou, Jiang

    2018-02-15

    Horizontal auger boring (HAB) is a widely used trenchless technology for the high-accuracy installation of gravity or pressure pipelines on line and grade. Differing from other pipeline installations, HAB requires a more precise and automated guidance system for use in a practical project. This paper proposes an economic and enhanced automated optical guidance system, based on optimization research of light-emitting diode (LED) light target and five automated image processing bore-path deviation algorithms. An LED light target was optimized for many qualities, including light color, filter plate color, luminous intensity, and LED layout. The image preprocessing algorithm, direction location algorithm, angle measurement algorithm, deflection detection algorithm, and auto-focus algorithm, compiled in MATLAB, are used to automate image processing for deflection computing and judging. After multiple indoor experiments, this guidance system is applied in a project of hot water pipeline installation, with accuracy controlled within 2 mm in 48-m distance, providing accurate line and grade controls and verifying the feasibility and reliability of the guidance system.

  4. Advancing Bag-of-Visual-Words Representations for Lesion Classification in Retinal Images

    PubMed Central

    Pires, Ramon; Jelinek, Herbert F.; Wainer, Jacques; Valle, Eduardo; Rocha, Anderson

    2014-01-01

    Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.22.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors. PMID:24886780

  5. Classification of radiological errors in chest radiographs, using support vector machine on the spatial frequency features of false- negative and false-positive regions

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Donovan, Tim; Brennan, Patrick C.; Dix, Alan; Manning, David J.

    2011-03-01

    Aim: To optimize automated classification of radiological errors during lung nodule detection from chest radiographs (CxR) using a support vector machine (SVM) run on the spatial frequency features extracted from the local background of selected regions. Background: The majority of the unreported pulmonary nodules are visually detected but not recognized; shown by the prolonged dwell time values at false-negative regions. Similarly, overestimated nodule locations are capturing substantial amounts of foveal attention. Spatial frequency properties of selected local backgrounds are correlated with human observer responses either in terms of accuracy in indicating abnormality position or in the precision of visual sampling the medical images. Methods: Seven radiologists participated in the eye tracking experiments conducted under conditions of pulmonary nodule detection from a set of 20 postero-anterior CxR. The most dwelled locations have been identified and subjected to spatial frequency (SF) analysis. The image-based features of selected ROI were extracted with un-decimated Wavelet Packet Transform. An analysis of variance was run to select SF features and a SVM schema was implemented to classify False-Negative and False-Positive from all ROI. Results: A relative high overall accuracy was obtained for each individually developed Wavelet-SVM algorithm, with over 90% average correct ratio for errors recognition from all prolonged dwell locations. Conclusion: The preliminary results show that combined eye-tracking and image-based features can be used for automated detection of radiological error with SVM. The work is still in progress and not all analytical procedures have been completed, which might have an effect on the specificity of the algorithm.

  6. Comprehensible knowledge model creation for cancer treatment decision making.

    PubMed

    Afzal, Muhammad; Hussain, Maqbool; Ali Khan, Wajahat; Ali, Taqdir; Lee, Sungyoung; Huh, Eui-Nam; Farooq Ahmad, Hafiz; Jamshed, Arif; Iqbal, Hassan; Irfan, Muhammad; Abbas Hydari, Manzar

    2017-03-01

    A wealth of clinical data exists in clinical documents in the form of electronic health records (EHRs). This data can be used for developing knowledge-based recommendation systems that can assist clinicians in clinical decision making and education. One of the big hurdles in developing such systems is the lack of automated mechanisms for knowledge acquisition to enable and educate clinicians in informed decision making. An automated knowledge acquisition methodology with a comprehensible knowledge model for cancer treatment (CKM-CT) is proposed. With the CKM-CT, clinical data are acquired automatically from documents. Quality of data is ensured by correcting errors and transforming various formats into a standard data format. Data preprocessing involves dimensionality reduction and missing value imputation. Predictive algorithm selection is performed on the basis of the ranking score of the weighted sum model. The knowledge builder prepares knowledge for knowledge-based services: clinical decisions and education support. Data is acquired from 13,788 head and neck cancer (HNC) documents for 3447 patients, including 1526 patients of the oral cavity site. In the data quality task, 160 staging values are corrected. In the preprocessing task, 20 attributes and 106 records are eliminated from the dataset. The Classification and Regression Trees (CRT) algorithm is selected and provides 69.0% classification accuracy in predicting HNC treatment plans, consisting of 11 decision paths that yield 11 decision rules. Our proposed methodology, CKM-CT, is helpful to find hidden knowledge in clinical documents. In CKM-CT, the prediction models are developed to assist and educate clinicians for informed decision making. The proposed methodology is generalizable to apply to data of other domains such as breast cancer with a similar objective to assist clinicians in decision making and education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells.

    PubMed

    Park, Han Sang; Rinehart, Matthew T; Walzer, Katelyn A; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection without staining or expert analysis.

  8. Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches

    PubMed Central

    Kavitha, Muthu Subash; Ganesh Kumar, Pugalendhi; Park, Soon-Yong; Huh, Kyung-Hoe; Heo, Min-Suk; Kurita, Takio; Asano, Akira; An, Seo-Yong

    2016-01-01

    Objectives: This study proposed a new automated screening system based on a hybrid genetic swarm fuzzy (GSF) classifier using digital dental panoramic radiographs to diagnose females with a low bone mineral density (BMD) or osteoporosis. Methods: The geometrical attributes of both the mandibular cortical bone and trabecular bone were acquired using previously developed software. Designing an automated system for osteoporosis screening involved partitioning of the input attributes to generate an initial membership function (MF) and a rule set (RS), classification using a fuzzy inference system and optimization of the generated MF and RS using the genetic swarm algorithm. Fivefold cross-validation (5-FCV) was used to estimate the classification accuracy of the hybrid GSF classifier. The performance of the hybrid GSF classifier has been further compared with that of individual genetic algorithm and particle swarm optimization fuzzy classifiers. Results: Proposed hybrid GSF classifier in identifying low BMD or osteoporosis at the lumbar spine and femoral neck BMD was evaluated. The sensitivity, specificity and accuracy of the hybrid GSF with optimized MF and RS in identifying females with a low BMD were 95.3%, 94.7% and 96.01%, respectively, at the lumbar spine and 99.1%, 98.4% and 98.9%, respectively, at the femoral neck BMD. The diagnostic performance of the proposed system with femoral neck BMD was 0.986 with a confidence interval of 0.942–0.998. The highest mean accuracy using 5-FCV was 97.9% with femoral neck BMD. Conclusions: The combination of high accuracy along with its interpretation ability makes this proposed automatic system using hybrid GSF classifier capable of identifying a large proportion of undetected low BMD or osteoporosis at its early stage. PMID:27186991

  9. Automated Detection of P. falciparum Using Machine Learning Algorithms with Quantitative Phase Images of Unstained Cells

    PubMed Central

    Park, Han Sang; Rinehart, Matthew T.; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-01-01

    Malaria detection through microscopic examination of stained blood smears is a diagnostic challenge that heavily relies on the expertise of trained microscopists. This paper presents an automated analysis method for detection and staging of red blood cells infected by the malaria parasite Plasmodium falciparum at trophozoite or schizont stage. Unlike previous efforts in this area, this study uses quantitative phase images of unstained cells. Erythrocytes are automatically segmented using thresholds of optical phase and refocused to enable quantitative comparison of phase images. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information. While all individual descriptors are highly statistically different between infected and uninfected cells, each descriptor does not enable separation of populations at a level satisfactory for clinical utility. To improve the diagnostic capacity, we applied various machine learning techniques, including linear discriminant classification (LDC), logistic regression (LR), and k-nearest neighbor classification (NNC), to formulate algorithms that combine all of the calculated physical parameters to distinguish cells more effectively. Results show that LDC provides the highest accuracy of up to 99.7% in detecting schizont stage infected cells compared to uninfected RBCs. NNC showed slightly better accuracy (99.5%) than either LDC (99.0%) or LR (99.1%) for discriminating late trophozoites from uninfected RBCs. However, for early trophozoites, LDC produced the best accuracy of 98%. Discrimination of infection stage was less accurate, producing high specificity (99.8%) but only 45.0%-66.8% sensitivity with early trophozoites most often mistaken for late trophozoite or schizont stage and late trophozoite and schizont stage most often confused for each other. Overall, this methodology points to a significant clinical potential of using quantitative phase imaging to detect and stage malaria infection without staining or expert analysis. PMID:27636719

  10. Application of the Minkowski-functionals for automated pattern classification of breast parenchyma depicted by digital mammography

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Fischer, Tanja; Riosk, Dororthea; Britsch, Stefanie; Reiser, Maximilian

    2008-03-01

    With an estimated life-time-risk of about 10%, breast cancer is the most common cancer among women in western societies. Extensive mammography-screening programs have been implemented for diagnosis of the disease at an early stage. Several algorithms for computer-aided detection (CAD) have been proposed to help radiologists manage the increasing number of mammographic image-data and identify new cases of cancer. However, a major issue with most CAD-solutions is the fact that performance strongly depends on the structure and density of the breast tissue. Prior information about the global tissue quality in a patient would be helpful for selecting the most effective CAD-approach in order to increase the sensitivity of lesion-detection. In our study, we propose an automated method for textural evaluation of digital mammograms using the Minkowski Functionals in 2D. 80 mammograms are consensus-classified by two experienced readers as fibrosis, involution/atrophy, or normal. For each case, the topology of graylevel distribution is evaluated within a retromamillary image-section of 512 x 512 pixels. In addition, we obtain parameters from the graylevel-histogram (20th percentile, median and mean graylevel intensity). As a result, correct classification of the mammograms based on the densitometic parameters is achieved in between 38 and 48%, whereas topological analysis increases the rate to 83%. The findings demonstrate the effectiveness of the proposed algorithm. Compared to features obtained from graylevel histograms and comparable studies, we draw the conclusion that the presented method performs equally good or better. Our future work will be focused on the characterization of the mammographic tissue according to the Breast Imaging Reporting and Data System (BI-RADS). Moreover, other databases will be tested for an in-depth evaluation of the efficiency of our proposal.

  11. An appraisal of current dysphagia diagnosis and treatment strategies.

    PubMed

    Kaindlstorfer, Adolf; Pointner, Rudolph

    2016-08-01

    Dysphagia is a common, serious health problem with a wide variety of etiologies and manifestations. This review gives a general overview of diagnostic and therapeutic options for oropharyngeal as well as esophageal swallowing disorders respecting the considerable progress made over recent years. Diagnosis can be challenging and requires expertise in interpretation of symptoms and patient history. Endoscopy, barium radiography and manometry are still the diagnostic mainstays. Classification of esophageal motor-disorders has been revolutionized with the introduction of high-resolution esophageal pressure topography and a new standardized classification algorithm. Automated integrated impedance manometry is a promising upcoming tool for objective evaluation of oropharyngeal dysphagia, in non-obstructive esophageal dysphagia and prediction of post fundoplication dysphagia risk. Impedance planimetry provides new diagnostic information on esophageal and LES-distensibility and allows controlled therapeutic dilatation without the need for radiation. Peroral endoscopic myotomy is a promising therapeutic approach for achalasia and spastic motility disorders.

  12. Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach

    NASA Astrophysics Data System (ADS)

    Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios

    A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.

  13. FRASS: the web-server for RNA structural comparison

    PubMed Central

    2010-01-01

    Background The impressive increase of novel RNA structures, during the past few years, demands automated methods for structure comparison. While many algorithms handle only small motifs, few techniques, developed in recent years, (ARTS, DIAL, SARA, SARSA, and LaJolla) are available for the structural comparison of large and intact RNA molecules. Results The FRASS web-server represents a RNA chain with its Gauss integrals and allows one to compare structures of RNA chains and to find similar entries in a database derived from the Protein Data Bank. We observed that FRASS scores correlate well with the ARTS and LaJolla similarity scores. Moreover, the-web server can also reproduce satisfactorily the DARTS classification of RNA 3D structures and the classification of the SCOR functions that was obtained by the SARA method. Conclusions The FRASS web-server can be easily used to detect relationships among RNA molecules and to scan efficiently the rapidly enlarging structural databases. PMID:20553602

  14. Automated discrimination of dementia spectrum disorders using extreme learning machine and structural T1 MRI features.

    PubMed

    Jongin Kim; Boreom Lee

    2017-07-01

    The classification of neuroimaging data for the diagnosis of Alzheimer's Disease (AD) is one of the main research goals of the neuroscience and clinical fields. In this study, we performed extreme learning machine (ELM) classifier to discriminate the AD, mild cognitive impairment (MCI) from normal control (NC). We compared the performance of ELM with that of a linear kernel support vector machine (SVM) for 718 structural MRI images from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The data consisted of normal control, MCI converter (MCI-C), MCI non-converter (MCI-NC), and AD. We employed SVM-based recursive feature elimination (RFE-SVM) algorithm to find the optimal subset of features. In this study, we found that the RFE-SVM feature selection approach in combination with ELM shows the superior classification accuracy to that of linear kernel SVM for structural T1 MRI data.

  15. Can Automated Imaging for Optic Disc and Retinal Nerve Fiber Layer Analysis Aid Glaucoma Detection?

    PubMed

    Banister, Katie; Boachie, Charles; Bourne, Rupert; Cook, Jonathan; Burr, Jennifer M; Ramsay, Craig; Garway-Heath, David; Gray, Joanne; McMeekin, Peter; Hernández, Rodolfo; Azuara-Blanco, Augusto

    2016-05-01

    To compare the diagnostic performance of automated imaging for glaucoma. Prospective, direct comparison study. Adults with suspected glaucoma or ocular hypertension referred to hospital eye services in the United Kingdom. We evaluated 4 automated imaging test algorithms: the Heidelberg Retinal Tomography (HRT; Heidelberg Engineering, Heidelberg, Germany) glaucoma probability score (GPS), the HRT Moorfields regression analysis (MRA), scanning laser polarimetry (GDx enhanced corneal compensation; Glaucoma Diagnostics (GDx), Carl Zeiss Meditec, Dublin, CA) nerve fiber indicator (NFI), and Spectralis optical coherence tomography (OCT; Heidelberg Engineering) retinal nerve fiber layer (RNFL) classification. We defined abnormal tests as an automated classification of outside normal limits for HRT and OCT or NFI ≥ 56 (GDx). We conducted a sensitivity analysis, using borderline abnormal image classifications. The reference standard was clinical diagnosis by a masked glaucoma expert including standardized clinical assessment and automated perimetry. We analyzed 1 eye per patient (the one with more advanced disease). We also evaluated the performance according to severity and using a combination of 2 technologies. Sensitivity and specificity, likelihood ratios, diagnostic, odds ratio, and proportion of indeterminate tests. We recruited 955 participants, and 943 were included in the analysis. The average age was 60.5 years (standard deviation, 13.8 years); 51.1% were women. Glaucoma was diagnosed in at least 1 eye in 16.8%; 32% of participants had no glaucoma-related findings. The HRT MRA had the highest sensitivity (87.0%; 95% confidence interval [CI], 80.2%-92.1%), but lowest specificity (63.9%; 95% CI, 60.2%-67.4%); GDx had the lowest sensitivity (35.1%; 95% CI, 27.0%-43.8%), but the highest specificity (97.2%; 95% CI, 95.6%-98.3%). The HRT GPS sensitivity was 81.5% (95% CI, 73.9%-87.6%), and specificity was 67.7% (95% CI, 64.2%-71.2%); OCT sensitivity was 76.9% (95% CI, 69.2%-83.4%), and specificity was 78.5% (95% CI, 75.4%-81.4%). Including only eyes with severe glaucoma, sensitivity increased: HRT MRA, HRT GPS, and OCT would miss 5% of eyes, and GDx would miss 21% of eyes. A combination of 2 different tests did not improve the accuracy substantially. Automated imaging technologies can aid clinicians in diagnosing glaucoma, but may not replace current strategies because they can miss some cases of severe glaucoma. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Content Classification: Leveraging New Tools and Librarians' Expertise.

    ERIC Educational Resources Information Center

    Starr, Jennie

    1999-01-01

    Presents factors for librarians to consider when decision-making about information retrieval. Discusses indexing theory; thesauri aids; controlled vocabulary or thesauri to increase access; humans versus machines; automated tools; product evaluations and evaluation criteria; automated classification tools; content server products; and document…

  17. Visual Recognition Software for Binary Classification and its Application to Pollen Identification

    NASA Astrophysics Data System (ADS)

    Punyasena, S. W.; Tcheng, D. K.; Nayak, A.

    2014-12-01

    An underappreciated source of uncertainty in paleoecology is the uncertainty of palynological identifications. The confidence of any given identification is not regularly reported in published results, so cannot be incorporated into subsequent meta-analyses. Automated identifications systems potentially provide a means of objectively measuring the confidence of a given count or single identification, as well as a mechanism for increasing sample sizes and throughput. We developed the software ARLO (Automated Recognition with Layered Optimization) to tackle difficult visual classification problems such as pollen identification. ARLO applies pattern recognition and machine learning to the analysis of pollen images. The features that the system discovers are not the traditional features of pollen morphology. Instead, general purpose image features, such as pixel lines and grids of different dimensions, size, spacing, and resolution, are used. ARLO adapts to a given problem by searching for the most effective combination of feature representation and learning strategy. We present a two phase approach which uses our machine learning process to first segment pollen grains from the background and then classify pollen pixels and report species ratios. We conducted two separate experiments that utilized two distinct sets of algorithms and optimization procedures. The first analysis focused on reconstructing black and white spruce pollen ratios, training and testing our classification model at the slide level. This allowed us to directly compare our automated counts and expert counts to slides of known spruce ratios. Our second analysis focused on maximizing classification accuracy at the individual pollen grain level. Instead of predicting ratios of given slides, we predicted the species represented in a given image window. The resulting analysis was more scalable, as we were able to adapt the most efficient parts of the methodology from our first analysis. ARLO was able to distinguish between the pollen of black and white spruce with an accuracy of ~83.61%. This compared favorably to human expert performance. At the writing of this abstract, we are also experimenting with experimenting with the analysis of higher diversity samples, including modern tropical pollen material collected from ground pollen traps.

  18. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions

    PubMed Central

    Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner

    2016-01-01

    In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter. PMID:27983669

  19. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.

    PubMed

    Rose, Johann Christian; Kicherer, Anna; Wieland, Markus; Klingbeil, Lasse; Töpfer, Reinhard; Kuhlmann, Heiner

    2016-12-15

    In viticulture, phenotypic data are traditionally collected directly in the field via visual and manual means by an experienced person. This approach is time consuming, subjective and prone to human errors. In recent years, research therefore has focused strongly on developing automated and non-invasive sensor-based methods to increase data acquisition speed, enhance measurement accuracy and objectivity and to reduce labor costs. While many 2D methods based on image processing have been proposed for field phenotyping, only a few 3D solutions are found in the literature. A track-driven vehicle consisting of a camera system, a real-time-kinematic GPS system for positioning, as well as hardware for vehicle control, image storage and acquisition is used to visually capture a whole vine row canopy with georeferenced RGB images. In the first post-processing step, these images were used within a multi-view-stereo software to reconstruct a textured 3D point cloud of the whole grapevine row. A classification algorithm is then used in the second step to automatically classify the raw point cloud data into the semantic plant components, grape bunches and canopy. In the third step, phenotypic data for the semantic objects is gathered using the classification results obtaining the quantity of grape bunches, berries and the berry diameter.

  20. Automated mineralogy based on micro-energy-dispersive X-ray fluorescence microscopy (µ-EDXRF) applied to plutonic rock thin sections in comparison to a mineral liberation analyzer

    NASA Astrophysics Data System (ADS)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2017-10-01

    Recent developments in the application of micro-energy-dispersive X-ray fluorescence spectrometry mapping (µ-EDXRF) have opened up new opportunities for fast geoscientific analyses. Acquiring spatially resolved spectral and chemical information non-destructively for large samples of up to 20 cm length provides valuable information for geoscientific interpretation. Using supervised classification of the spectral information, mineral distribution maps can be obtained. In this work, thin sections of plutonic rocks are analyzed by µ-EDXRF and classified using the supervised classification algorithm spectral angle mapper (SAM). Based on the mineral distribution maps, it is possible to obtain quantitative mineral information, i.e., to calculate the modal mineralogy, search and locate minerals of interest, and perform image analysis. The results are compared to automated mineralogy obtained from the mineral liberation analyzer (MLA) of a scanning electron microscope (SEM) and show good accordance, revealing variation resulting mostly from the limit of spatial resolution of the µ-EDXRF instrument. Taking into account the little time needed for sample preparation and measurement, this method seems suitable for fast sample overviews with valuable chemical, mineralogical and textural information. Additionally, it enables the researcher to make better and more targeted decisions for subsequent analyses.

  1. Nonnegative matrix factorization and sparse representation for the automated detection of periodic limb movements in sleep.

    PubMed

    Shokrollahi, Mehrnaz; Krishnan, Sridhar; Dopsa, Dustin D; Muir, Ryan T; Black, Sandra E; Swartz, Richard H; Murray, Brian J; Boulos, Mark I

    2016-11-01

    Stroke is a leading cause of death and disability in adults, and incurs a significant economic burden to society. Periodic limb movements (PLMs) in sleep are repetitive movements involving the great toe, ankle, and hip. Evolving evidence suggests that PLMs may be associated with high blood pressure and stroke, but this relationship remains underexplored. Several issues limit the study of PLMs including the need to manually score them, which is time-consuming and costly. For this reason, we developed a novel automated method for nocturnal PLM detection, which was shown to be correlated with (a) the manually scored PLM index on polysomnography, and (b) white matter hyperintensities on brain imaging, which have been demonstrated to be associated with PLMs. Our proposed algorithm consists of three main stages: (1) representing the signal in the time-frequency plane using time-frequency matrices (TFM), (2) applying K-nonnegative matrix factorization technique to decompose the TFM matrix into its significant components, and (3) applying kernel sparse representation for classification (KSRC) to the decomposed signal. Our approach was applied to a dataset that consisted of 65 subjects who underwent polysomnography. An overall classification of 97 % was achieved for discrimination of the aforementioned signals, demonstrating the potential of the presented method.

  2. Lithologic discrimination of volcanic and sedimentary rocks by spectral examination of Landsat TM data from the Puma, Central Andes Mountains

    NASA Technical Reports Server (NTRS)

    Fielding, E. J.

    1986-01-01

    The Central Andes are widely used as a modern example of noncollisional mountain-building processes. The Puna is a high plateau in the Chilean and Argentine Central Andes extending southward from the altiplano of Bolivia and Peru. Young tectonic and volcanic features are well exposed on the surface of the arid Puna, making them prime targets for the application of high-resolution space imagery such as Shuttle Imaging Radar B and Landsat Thematic Mapper (TM). Two TM scene quadrants from this area are analyzed using interactive color image processing, examination, and automated classification algorithms. The large volumes of these high-resolution datasets require significantly different techniques than have been used previously for the interpretation of Landsat MSS data. Preliminary results include the determination of the radiance spectra of several volcanic and sedimentary rock units and the use of the spectra for automated classification. Structural interpretations have revealed several previously unknown folds in late Tertiary strata, and key zones have been targeted to be investigated in the field. The synoptic view of space imagery is already filling a critical gap between low-resolution geophysical data and traditional geologic field mapping in the reconnaissance study of poorly mapped mountain frontiers such as the Puna.

  3. CLustre: semi-automated lineament clustering for palaeo-glacial reconstruction

    NASA Astrophysics Data System (ADS)

    Smith, Mike; Anders, Niels; Keesstra, Saskia

    2016-04-01

    Palaeo glacial reconstructions, or "inversions", using evidence from the palimpsest landscape are increasingly being undertaken with larger and larger databases. Predominant in landform evidence is the lineament (or drumlin) where the biggest datasets number in excess of 50,000 individual forms. One stage in the inversion process requires the identification of lineaments that are generically similar and then their subsequent interpretation in to a coherent chronology of events. Here we present CLustre, a semi-authomated algorithm that clusters lineaments using a locally adaptive, region growing, method. This is initially tested using 1,500 model runs on a synthetic dataset, before application to two case studies (where manual clustering has been undertaken by independent researchers): (1) Dubawnt Lake, Canada and (2) Victoria island, Canada. Results using the synthetic data show that classifications are robust in most scenarios, although specific cases of cross-cutting lineaments may lead to incorrect clusters. Application to the case studies showed a very good match to existing published work, with differences related to limited numbers of unclassified lineaments and parallel cross-cutting lineaments. The value in CLustre comes from the semi-automated, objective, application of a classification method that is repeatable. Once classified, summary statistics of lineament groups can be calculated and then used in the inversion.

  4. Comparing automated classification and digitization approaches to detect change in eelgrass bed extent during restoration of a large river delta

    USGS Publications Warehouse

    Davenport, Anna Elizabeth; Davis, Jerry D.; Woo, Isa; Grossman, Eric; Barham, Jesse B.; Ellings, Christopher S.; Takekawa, John Y.

    2017-01-01

    Native eelgrass (Zostera marina) is an important contributor to ecosystem services that supplies cover for juvenile fish, supports a variety of invertebrate prey resources for fish and waterbirds, provides substrate for herring roe consumed by numerous fish and birds, helps stabilize sediment, and sequesters organic carbon. Seagrasses are in decline globally, and monitoring changes in their growth and extent is increasingly valuable to determine impacts from large-scale estuarine restoration and inform blue carbon mapping initiatives. Thus, we examined the efficacy of two remote sensing mapping methods with high-resolution (0.5 m pixel size) color near infrared imagery with ground validation to assess change following major tidal marsh restoration. Automated classification of false color aerial imagery and digitized polygons documented a slight decline in eelgrass area directly after restoration followed by an increase two years later. Classification of sparse and low to medium density eelgrass was confounded in areas with algal cover, however large dense patches of eelgrass were well delineated. Automated classification of aerial imagery from unsupervised and supervised methods provided reasonable accuracies of 73% and hand-digitizing polygons from the same imagery yielded similar results. Visual clues for hand digitizing from the high-resolution imagery provided as reliable a map of dense eelgrass extent as automated image classification. We found that automated classification had no advantages over manual digitization particularly because of the limitations of detecting eelgrass with only three bands of imagery and near infrared.

  5. Automated classification of seismic sources in a large database: a comparison of Random Forests and Deep Neural Networks.

    NASA Astrophysics Data System (ADS)

    Hibert, Clement; Stumpf, André; Provost, Floriane; Malet, Jean-Philippe

    2017-04-01

    In the past decades, the increasing quality of seismic sensors and capability to transfer remotely large quantity of data led to a fast densification of local, regional and global seismic networks for near real-time monitoring of crustal and surface processes. This technological advance permits the use of seismology to document geological and natural/anthropogenic processes (volcanoes, ice-calving, landslides, snow and rock avalanches, geothermal fields), but also led to an ever-growing quantity of seismic data. This wealth of seismic data makes the construction of complete seismicity catalogs, which include earthquakes but also other sources of seismic waves, more challenging and very time-consuming as this critical pre-processing stage is classically done by human operators and because hundreds of thousands of seismic signals have to be processed. To overcome this issue, the development of automatic methods for the processing of continuous seismic data appears to be a necessity. The classification algorithm should satisfy the need of a method that is robust, precise and versatile enough to be deployed to monitor the seismicity in very different contexts. In this study, we evaluate the ability of machine learning algorithms for the analysis of seismic sources at the Piton de la Fournaise volcano being Random Forest and Deep Neural Network classifiers. We gather a catalog of more than 20,000 events, belonging to 8 classes of seismic sources. We define 60 attributes, based on the waveform, the frequency content and the polarization of the seismic waves, to parameterize the seismic signals recorded. We show that both algorithms provide similar positive classification rates, with values exceeding 90% of the events. When trained with a sufficient number of events, the rate of positive identification can reach 99%. These very high rates of positive identification open the perspective of an operational implementation of these algorithms for near-real time monitoring of mass movements and other environmental sources at the local, regional and even global scale.

  6. WE-G-207-05: Relationship Between CT Image Quality, Segmentation Performance, and Quantitative Image Feature Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J; Nishikawa, R; Reiser, I

    Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benignmore » or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification performance. The best segmentation Result does not necessarily lead to the best classification Result. This work has been supported in part by grants from the NIH R21-EB015053. R Nishikawa is receives royalties form Hologic, Inc.« less

  7. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.

    PubMed

    Zdravevski, Eftim; Risteska Stojkoska, Biljana; Standl, Marie; Schulz, Holger

    2017-01-01

    Assessment of health benefits associated with physical activity depend on the activity duration, intensity and frequency, therefore their correct identification is very valuable and important in epidemiological and clinical studies. The aims of this study are: to develop an algorithm for automatic identification of intended jogging periods; and to assess whether the identification performance is improved when using two accelerometers at the hip and ankle, compared to when using only one at either position. The study used diarized jogging periods and the corresponding accelerometer data from thirty-nine, 15-year-old adolescents, collected under field conditions, as part of the GINIplus study. The data was obtained from two accelerometers placed at the hip and ankle. Automated feature engineering technique was performed to extract features from the raw accelerometer readings and to select a subset of the most significant features. Four machine learning algorithms were used for classification: Logistic regression, Support Vector Machines, Random Forest and Extremely Randomized Trees. Classification was performed using only data from the hip accelerometer, using only data from ankle accelerometer and using data from both accelerometers. The reported jogging periods were verified by visual inspection and used as golden standard. After the feature selection and tuning of the classification algorithms, all options provided a classification accuracy of at least 0.99, independent of the applied segmentation strategy with sliding windows of either 60s or 180s. The best matching ratio, i.e. the length of correctly identified jogging periods related to the total time including the missed ones, was up to 0.875. It could be additionally improved up to 0.967 by application of post-classification rules, which considered the duration of breaks and jogging periods. There was no obvious benefit of using two accelerometers, rather almost the same performance could be achieved from either accelerometer position. Machine learning techniques can be used for automatic activity recognition, as they provide very accurate activity recognition, significantly more accurate than when keeping a diary. Identification of jogging periods in adolescents can be performed using only one accelerometer. Performance-wise there is no significant benefit from using accelerometers on both locations.

  8. Object-based locust habitat mapping using high-resolution multispectral satellite data in the southern Aral Sea basin

    NASA Astrophysics Data System (ADS)

    Navratil, Peter; Wilps, Hans

    2013-01-01

    Three different object-based image classification techniques are applied to high-resolution satellite data for the mapping of the habitats of Asian migratory locust (Locusta migratoria migratoria) in the southern Aral Sea basin, Uzbekistan. A set of panchromatic and multispectral Système Pour l'Observation de la Terre-5 satellite images was spectrally enhanced by normalized difference vegetation index and tasseled cap transformation and segmented into image objects, which were then classified by three different classification approaches: a rule-based hierarchical fuzzy threshold (HFT) classification method was compared to a supervised nearest neighbor classifier and classification tree analysis by the quick, unbiased, efficient statistical trees algorithm. Special emphasis was laid on the discrimination of locust feeding and breeding habitats due to the significance of this discrimination for practical locust control. Field data on vegetation and land cover, collected at the time of satellite image acquisition, was used to evaluate classification accuracy. The results show that a robust HFT classifier outperformed the two automated procedures by 13% overall accuracy. The classification method allowed a reliable discrimination of locust feeding and breeding habitats, which is of significant importance for the application of the resulting data for an economically and environmentally sound control of locust pests because exact spatial knowledge on the habitat types allows a more effective surveying and use of pesticides.

  9. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  10. Towards an Automated Classification of Transient Events in Synoptic Sky Surveys

    NASA Technical Reports Server (NTRS)

    Djorgovski, S. G.; Donalek, C.; Mahabal, A. A.; Moghaddam, B.; Turmon, M.; Graham, M. J.; Drake, A. J.; Sharma, N.; Chen, Y.

    2011-01-01

    We describe the development of a system for an automated, iterative, real-time classification of transient events discovered in synoptic sky surveys. The system under development incorporates a number of Machine Learning techniques, mostly using Bayesian approaches, due to the sparse nature, heterogeneity, and variable incompleteness of the available data. The classifications are improved iteratively as the new measurements are obtained. One novel featrue is the development of an automated follow-up recommendation engine, that suggest those measruements that would be the most advantageous in terms of resolving classification ambiguities and/or characterization of the astrophysically most interesting objects, given a set of available follow-up assets and their cost funcations. This illustrates the symbiotic relationship of astronomy and applied computer science through the emerging disciplne of AstroInformatics.

  11. Continuous measurement of breast tumour hormone receptor expression: a comparison of two computational pathology platforms.

    PubMed

    Ahern, Thomas P; Beck, Andrew H; Rosner, Bernard A; Glass, Ben; Frieling, Gretchen; Collins, Laura C; Tamimi, Rulla M

    2017-05-01

    Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumour oestrogen receptor (ER) and progesterone receptor (PR) expression. Breast tumour microarrays from the Nurses' Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumour nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (r≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUC Aperio =0.97; AUC Definiens =0.90; difference=0.07, 95% CI 0.05 to 0.09) and PR positivity (AUC Aperio =0.94; AUC Definiens =0.87; difference=0.07, 95% CI 0.03 to 0.12). Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumour biomarker discovery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Combining machine learning and ontological data handling for multi-source classification of nature conservation areas

    NASA Astrophysics Data System (ADS)

    Moran, Niklas; Nieland, Simon; Tintrup gen. Suntrup, Gregor; Kleinschmit, Birgit

    2017-02-01

    Manual field surveys for nature conservation management are expensive and time-consuming and could be supplemented and streamlined by using Remote Sensing (RS). RS is critical to meet requirements of existing laws such as the EU Habitats Directive (HabDir) and more importantly to meet future challenges. The full potential of RS has yet to be harnessed as different nomenclatures and procedures hinder interoperability, comparison and provenance. Therefore, automated tools are needed to use RS data to produce comparable, empirical data outputs that lend themselves to data discovery and provenance. These issues are addressed by a novel, semi-automatic ontology-based classification method that uses machine learning algorithms and Web Ontology Language (OWL) ontologies that yields traceable, interoperable and observation-based classification outputs. The method was tested on European Union Nature Information System (EUNIS) grasslands in Rheinland-Palatinate, Germany. The developed methodology is a first step in developing observation-based ontologies in the field of nature conservation. The tests show promising results for the determination of the grassland indicators wetness and alkalinity with an overall accuracy of 85% for alkalinity and 76% for wetness.

  13. Machine learning vortices at the Kosterlitz-Thouless transition

    NASA Astrophysics Data System (ADS)

    Beach, Matthew J. S.; Golubeva, Anna; Melko, Roger G.

    2018-01-01

    Efficient and automated classification of phases from minimally processed data is one goal of machine learning in condensed-matter and statistical physics. Supervised algorithms trained on raw samples of microstates can successfully detect conventional phase transitions via learning a bulk feature such as an order parameter. In this paper, we investigate whether neural networks can learn to classify phases based on topological defects. We address this question on the two-dimensional classical XY model which exhibits a Kosterlitz-Thouless transition. We find significant feature engineering of the raw spin states is required to convincingly claim that features of the vortex configurations are responsible for learning the transition temperature. We further show a single-layer network does not correctly classify the phases of the XY model, while a convolutional network easily performs classification by learning the global magnetization. Finally, we design a deep network capable of learning vortices without feature engineering. We demonstrate the detection of vortices does not necessarily result in the best classification accuracy, especially for lattices of less than approximately 1000 spins. For larger systems, it remains a difficult task to learn vortices.

  14. Structural Analysis of Biodiversity

    PubMed Central

    Sirovich, Lawrence; Stoeckle, Mark Y.; Zhang, Yu

    2010-01-01

    Large, recently-available genomic databases cover a wide range of life forms, suggesting opportunity for insights into genetic structure of biodiversity. In this study we refine our recently-described technique using indicator vectors to analyze and visualize nucleotide sequences. The indicator vector approach generates correlation matrices, dubbed Klee diagrams, which represent a novel way of assembling and viewing large genomic datasets. To explore its potential utility, here we apply the improved algorithm to a collection of almost 17000 DNA barcode sequences covering 12 widely-separated animal taxa, demonstrating that indicator vectors for classification gave correct assignment in all 11000 test cases. Indicator vector analysis revealed discontinuities corresponding to species- and higher-level taxonomic divisions, suggesting an efficient approach to classification of organisms from poorly-studied groups. As compared to standard distance metrics, indicator vectors preserve diagnostic character probabilities, enable automated classification of test sequences, and generate high-information density single-page displays. These results support application of indicator vectors for comparative analysis of large nucleotide data sets and raise prospect of gaining insight into broad-scale patterns in the genetic structure of biodiversity. PMID:20195371

  15. Automated Speech Rate Measurement in Dysarthria.

    PubMed

    Martens, Heidi; Dekens, Tomas; Van Nuffelen, Gwen; Latacz, Lukas; Verhelst, Werner; De Bodt, Marc

    2015-06-01

    In this study, a new algorithm for automated determination of speech rate (SR) in dysarthric speech is evaluated. We investigated how reliably the algorithm calculates the SR of dysarthric speech samples when compared with calculation performed by speech-language pathologists. The new algorithm was trained and tested using Dutch speech samples of 36 speakers with no history of speech impairment and 40 speakers with mild to moderate dysarthria. We tested the algorithm under various conditions: according to speech task type (sentence reading, passage reading, and storytelling) and algorithm optimization method (speaker group optimization and individual speaker optimization). Correlations between automated and human SR determination were calculated for each condition. High correlations between automated and human SR determination were found in the various testing conditions. The new algorithm measures SR in a sufficiently reliable manner. It is currently being integrated in a clinical software tool for assessing and managing prosody in dysarthric speech. Further research is needed to fine-tune the algorithm to severely dysarthric speech, to make the algorithm less sensitive to background noise, and to evaluate how the algorithm deals with syllabic consonants.

  16. Automated Feature Identification and Classification Using Automated Feature Weighted Self Organizing Map (FWSOM)

    NASA Astrophysics Data System (ADS)

    Starkey, Andrew; Usman Ahmad, Aliyu; Hamdoun, Hassan

    2017-10-01

    This paper investigates the application of a novel method for classification called Feature Weighted Self Organizing Map (FWSOM) that analyses the topology information of a converged standard Self Organizing Map (SOM) to automatically guide the selection of important inputs during training for improved classification of data with redundant inputs, examined against two traditional approaches namely neural networks and Support Vector Machines (SVM) for the classification of EEG data as presented in previous work. In particular, the novel method looks to identify the features that are important for classification automatically, and in this way the important features can be used to improve the diagnostic ability of any of the above methods. The paper presents the results and shows how the automated identification of the important features successfully identified the important features in the dataset and how this results in an improvement of the classification results for all methods apart from linear discriminatory methods which cannot separate the underlying nonlinear relationship in the data. The FWSOM in addition to achieving higher classification accuracy has given insights into what features are important in the classification of each class (left and right-hand movements), and these are corroborated by already published work in this area.

  17. An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.

    2003-01-01

    An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.

  18. High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis

    DOE PAGES

    Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.

    2016-09-23

    High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less

  19. A review of classification algorithms for EEG-based brain-computer interfaces.

    PubMed

    Lotte, F; Congedo, M; Lécuyer, A; Lamarche, F; Arnaldi, B

    2007-06-01

    In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

  20. Improved wavelet packet classification algorithm for vibrational intrusions in distributed fiber-optic monitoring systems

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Pi, Shaohua; Sun, Qi; Jia, Bo

    2015-05-01

    An improved classification algorithm that considers multiscale wavelet packet Shannon entropy is proposed. Decomposition coefficients at all levels are obtained to build the initial Shannon entropy feature vector. After subtracting the Shannon entropy map of the background signal, components of the strongest discriminating power in the initial feature vector are picked out to rebuild the Shannon entropy feature vector, which is transferred to radial basis function (RBF) neural network for classification. Four types of man-made vibrational intrusion signals are recorded based on a modified Sagnac interferometer. The performance of the improved classification algorithm has been evaluated by the classification experiments via RBF neural network under different diffusion coefficients. An 85% classification accuracy rate is achieved, which is higher than the other common algorithms. The classification results show that this improved classification algorithm can be used to classify vibrational intrusion signals in an automatic real-time monitoring system.

  1. Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images.

    PubMed

    Bergeles, Christos; Dubis, Adam M; Davidson, Benjamin; Kasilian, Melissa; Kalitzeos, Angelos; Carroll, Joseph; Dubra, Alfredo; Michaelides, Michel; Ourselin, Sebastien

    2017-06-01

    Precise measurements of photoreceptor numerosity and spatial arrangement are promising biomarkers for the early detection of retinal pathologies and may be valuable in the evaluation of retinal therapies. Adaptive optics scanning light ophthalmoscopy (AOSLO) is a method of imaging that corrects for aberrations of the eye to acquire high-resolution images that reveal the photoreceptor mosaic. These images are typically graded manually by experienced observers, obviating the robust, large-scale use of the technology. This paper addresses unsupervised automated detection of cones in non-confocal, split-detection AOSLO images. Our algorithm leverages the appearance of split-detection images to create a cone model that is used for classification. Results show that it compares favorably to the state-of-the-art, both for images of healthy retinas and for images from patients affected by Stargardt disease. The algorithm presented also compares well to manual annotation while excelling in speed.

  2. Preparation of 2D sequences of corneal images for 3D model building.

    PubMed

    Elbita, Abdulhakim; Qahwaji, Rami; Ipson, Stanley; Sharif, Mhd Saeed; Ghanchi, Faruque

    2014-04-01

    A confocal microscope provides a sequence of images, at incremental depths, of the various corneal layers and structures. From these, medical practioners can extract clinical information on the state of health of the patient's cornea. In this work we are addressing problems associated with capturing and processing these images including blurring, non-uniform illumination and noise, as well as the displacement of images laterally and in the anterior-posterior direction caused by subject movement. The latter may cause some of the captured images to be out of sequence in terms of depth. In this paper we introduce automated algorithms for classification, reordering, registration and segmentation to solve these problems. The successful implementation of these algorithms could open the door for another interesting development, which is the 3D modelling of these sequences. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Quantum ensembles of quantum classifiers.

    PubMed

    Schuld, Maria; Petruccione, Francesco

    2018-02-09

    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which - similar to Bayesian learning - the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.

  4. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  5. [Galaxy/quasar classification based on nearest neighbor method].

    PubMed

    Li, Xiang-Ru; Lu, Yu; Zhou, Jian-Ming; Wang, Yong-Jun

    2011-09-01

    With the wide application of high-quality CCD in celestial spectrum imagery and the implementation of many large sky survey programs (e. g., Sloan Digital Sky Survey (SDSS), Two-degree-Field Galaxy Redshift Survey (2dF), Spectroscopic Survey Telescope (SST), Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) program and Large Synoptic Survey Telescope (LSST) program, etc.), celestial observational data are coming into the world like torrential rain. Therefore, to utilize them effectively and fully, research on automated processing methods for celestial data is imperative. In the present work, we investigated how to recognizing galaxies and quasars from spectra based on nearest neighbor method. Galaxies and quasars are extragalactic objects, they are far away from earth, and their spectra are usually contaminated by various noise. Therefore, it is a typical problem to recognize these two types of spectra in automatic spectra classification. Furthermore, the utilized method, nearest neighbor, is one of the most typical, classic, mature algorithms in pattern recognition and data mining, and often is used as a benchmark in developing novel algorithm. For applicability in practice, it is shown that the recognition ratio of nearest neighbor method (NN) is comparable to the best results reported in the literature based on more complicated methods, and the superiority of NN is that this method does not need to be trained, which is useful in incremental learning and parallel computation in mass spectral data processing. In conclusion, the results in this work are helpful for studying galaxies and quasars spectra classification.

  6. A Framework for Automated Marmoset Vocalization Detection And Classification

    DTIC Science & Technology

    2016-09-08

    recent push to automate vocalization monitoring in a range of mammals. Such efforts have been used to classify bird songs [11], African elephants [12... Elephant ( Loxodonta africana ) Vocalizations,” vol. 117, no. 2, pp. 956–963, 2005. [13] J. C. Brown, “Automatic classification of killer whale

  7. Unbiased and automated identification of a circulating tumour cell definition that associates with overall survival.

    PubMed

    Ligthart, Sjoerd T; Coumans, Frank A W; Attard, Gerhardt; Cassidy, Amy Mulick; de Bono, Johann S; Terstappen, Leon W M M

    2011-01-01

    Circulating tumour cells (CTC) in patients with metastatic carcinomas are associated with poor survival and can be used to guide therapy. Classification of CTC however remains subjective, as they are morphologically heterogeneous. We acquired digital images, using the CellSearch™ system, from blood of 185 castration resistant prostate cancer (CRPC) patients and 68 healthy subjects to define CTC by computer algorithms. Patient survival data was used as the training parameter for the computer to define CTC. The computer-generated CTC definition was validated on a separate CRPC dataset comprising 100 patients. The optimal definition of the computer defined CTC (aCTC) was stricter as compared to the manual CellSearch CTC (mCTC) definition and as a consequence aCTC were less frequent. The computer-generated CTC definition resulted in hazard ratios (HRs) of 2.8 for baseline and 3.9 for follow-up samples, which is comparable to the mCTC definition (baseline HR 2.9, follow-up HR 4.5). Validation resulted in HRs at baseline/follow-up of 3.9/5.4 for computer and 4.8/5.8 for manual definitions. In conclusion, we have defined and validated CTC by clinical outcome using a perfectly reproducing automated algorithm.

  8. Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.

    PubMed

    Gorospe, Giann; Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie; Vidal, Rene

    2014-09-01

    Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes (CMs) is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a CM based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of CMs into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies. While some of the nine cell clusters in the dataset are presented with just one phenotype, the majority of the cell clusters are presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of CMs from an electrophysiological perspective.

  9. Automated Grouping of Action Potentials of Human Embryonic Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Gorospe, Giann; Zhu, Renjun; Millrod, Michal A.; Zambidis, Elias T.; Tung, Leslie; Vidal, René

    2015-01-01

    Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a cardiomyocyte based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of cardiomyocytes into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies (hEBs). While some of the 9 cell clusters in the dataset presented with just one phenotype, the majority of the cell clusters presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of cardiomyocytes from an electrophysiological perspective. PMID:25148658

  10. Automated Health Alerts Using In-Home Sensor Data for Embedded Health Assessment

    PubMed Central

    Guevara, Rainer Dane; Rantz, Marilyn

    2015-01-01

    We present an example of unobtrusive, continuous monitoring in the home for the purpose of assessing early health changes. Sensors embedded in the environment capture behavior and activity patterns. Changes in patterns are detected as potential signs of changing health. We first present results of a preliminary study investigating 22 features extracted from in-home sensor data. A 1-D alert algorithm was then implemented to generate health alerts to clinicians in a senior housing facility. Clinicians analyze each alert and provide a rating on the clinical relevance. These ratings are then used as ground truth for training and testing classifiers. Here, we present the methodology for four classification approaches that fuse multisensor data. Results are shown using embedded sensor data and health alert ratings collected on 21 seniors over nine months. The best results show similar performance for two techniques, where one approach uses only domain knowledge and the second uses supervised learning for training. Finally, we propose a health change detection model based on these results and clinical expertise. The system of in-home sensors and algorithms for automated health alerts provides a method for detecting health problems very early so that early treatment is possible. This method of passive in-home sensing alleviates compliance issues. PMID:27170900

  11. HyphArea--automated analysis of spatiotemporal fungal patterns.

    PubMed

    Baum, Tobias; Navarro-Quezada, Aura; Knogge, Wolfgang; Douchkov, Dimitar; Schweizer, Patrick; Seiffert, Udo

    2011-01-01

    In phytopathology quantitative measurements are rarely used to assess crop plant disease symptoms. Instead, a qualitative valuation by eye is often the method of choice. In order to close the gap between subjective human inspection and objective quantitative results, the development of an automated analysis system that is capable of recognizing and characterizing the growth patterns of fungal hyphae in micrograph images was developed. This system should enable the efficient screening of different host-pathogen combinations (e.g., barley-Blumeria graminis, barley-Rhynchosporium secalis) using different microscopy technologies (e.g., bright field, fluorescence). An image segmentation algorithm was developed for gray-scale image data that achieved good results with several microscope imaging protocols. Furthermore, adaptability towards different host-pathogen systems was obtained by using a classification that is based on a genetic algorithm. The developed software system was named HyphArea, since the quantification of the area covered by a hyphal colony is the basic task and prerequisite for all further morphological and statistical analyses in this context. By means of a typical use case the utilization and basic properties of HyphArea could be demonstrated. It was possible to detect statistically significant differences between the growth of an R. secalis wild-type strain and a virulence mutant. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Comparative study of classification algorithms for damage classification in smart composite laminates

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Ryoo, Chang-Kyung; Kim, Heung Soo

    2017-04-01

    This paper presents a comparative study of different classification algorithms for the classification of various types of inter-ply delaminations in smart composite laminates. Improved layerwise theory is used to model delamination at different interfaces along the thickness and longitudinal directions of the smart composite laminate. The input-output data obtained through surface bonded piezoelectric sensor and actuator is analyzed by the system identification algorithm to get the system parameters. The identified parameters for the healthy and delaminated structure are supplied as input data to the classification algorithms. The classification algorithms considered in this study are ZeroR, Classification via regression, Naïve Bayes, Multilayer Perceptron, Sequential Minimal Optimization, Multiclass-Classifier, and Decision tree (J48). The open source software of Waikato Environment for Knowledge Analysis (WEKA) is used to evaluate the classification performance of the classifiers mentioned above via 75-25 holdout and leave-one-sample-out cross-validation regarding classification accuracy, precision, recall, kappa statistic and ROC Area.

  13. [Automation in surgery: a systematical approach].

    PubMed

    Strauss, G; Meixensberger, J; Dietz, A; Manzey, D

    2007-04-01

    Surgical assistance systems permit a misalignment from the purely manual to an assisted activity of the surgeon (automation). Automation defines a system, that partly or totally fulfils function, those was carried out before totally or partly by the user. The organization of surgical assistance systems following application (planning, simulation, intraoperative navigation and visualization) or technical configuration of the system (manipulator, robot) is not suitable for a description of the interaction between user (surgeon) and the system. The available work has the goal of providing a classification for the degree of the automation of surgical interventions and describing by examples. The presented classification orients itself at pre-working from the Human-Factors-Sciences. As a condition for an automation of a surgical intervention applies that an assumption of a task, which was alone assigned so far to the surgeon takes place via the system. For both reference objects (humans and machine) the condition passively or actively comes into consideration. Besides can be classified according to which functions are taken over during a selected function division by humans and/or the surgical assistance system. Three functional areas were differentiated: "information acquisition and -analysis", "decision making and action planning" as well as "execution of the surgical action". From this results a classification of pre- and intraoperative surgical assist systems in six categories, which represent different automation degrees. The classification pattern is described and illustrated on the basis of surgical of examples.

  14. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  15. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  16. Studying the potential impact of automated document classification on scheduling a systematic review update.

    PubMed

    Cohen, Aaron M; Ambert, Kyle; McDonagh, Marian

    2012-04-19

    Systematic Reviews (SRs) are an essential part of evidence-based medicine, providing support for clinical practice and policy on a wide range of medical topics. However, producing SRs is resource-intensive, and progress in the research they review leads to SRs becoming outdated, requiring updates. Although the question of how and when to update SRs has been studied, the best method for determining when to update is still unclear, necessitating further research. In this work we study the potential impact of a machine learning-based automated system for providing alerts when new publications become available within an SR topic. Some of these new publications are especially important, as they report findings that are more likely to initiate a review update. To this end, we have designed a classification algorithm to identify articles that are likely to be included in an SR update, along with an annotation scheme designed to identify the most important publications in a topic area. Using an SR database containing over 70,000 articles, we annotated articles from 9 topics that had received an update during the study period. The algorithm was then evaluated in terms of the overall correct and incorrect alert rate for publications meeting the topic inclusion criteria, as well as in terms of its ability to identify important, update-motivating publications in a topic area. Our initial approach, based on our previous work in topic-specific SR publication classification, identifies over 70% of the most important new publications, while maintaining a low overall alert rate. We performed an initial analysis of the opportunities and challenges in aiding the SR update planning process with an informatics-based machine learning approach. Alerts could be a useful tool in the planning, scheduling, and allocation of resources for SR updates, providing an improvement in timeliness and coverage for the large number of medical topics needing SRs. While the performance of this initial method is not perfect, it could be a useful supplement to current approaches to scheduling an SR update. Approaches specifically targeting the types of important publications identified by this work are likely to improve results.

  17. Studying the potential impact of automated document classification on scheduling a systematic review update

    PubMed Central

    2012-01-01

    Background Systematic Reviews (SRs) are an essential part of evidence-based medicine, providing support for clinical practice and policy on a wide range of medical topics. However, producing SRs is resource-intensive, and progress in the research they review leads to SRs becoming outdated, requiring updates. Although the question of how and when to update SRs has been studied, the best method for determining when to update is still unclear, necessitating further research. Methods In this work we study the potential impact of a machine learning-based automated system for providing alerts when new publications become available within an SR topic. Some of these new publications are especially important, as they report findings that are more likely to initiate a review update. To this end, we have designed a classification algorithm to identify articles that are likely to be included in an SR update, along with an annotation scheme designed to identify the most important publications in a topic area. Using an SR database containing over 70,000 articles, we annotated articles from 9 topics that had received an update during the study period. The algorithm was then evaluated in terms of the overall correct and incorrect alert rate for publications meeting the topic inclusion criteria, as well as in terms of its ability to identify important, update-motivating publications in a topic area. Results Our initial approach, based on our previous work in topic-specific SR publication classification, identifies over 70% of the most important new publications, while maintaining a low overall alert rate. Conclusions We performed an initial analysis of the opportunities and challenges in aiding the SR update planning process with an informatics-based machine learning approach. Alerts could be a useful tool in the planning, scheduling, and allocation of resources for SR updates, providing an improvement in timeliness and coverage for the large number of medical topics needing SRs. While the performance of this initial method is not perfect, it could be a useful supplement to current approaches to scheduling an SR update. Approaches specifically targeting the types of important publications identified by this work are likely to improve results. PMID:22515596

  18. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology.

    PubMed

    Hsu, Yu-Liang; Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-07-15

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents' wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident's feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment.

  19. Locating and parsing bibliographic references in HTML medical articles

    PubMed Central

    Zou, Jie; Le, Daniel; Thoma, George R.

    2010-01-01

    The set of references that typically appear toward the end of journal articles is sometimes, though not always, a field in bibliographic (citation) databases. But even if references do not constitute such a field, they can be useful as a preprocessing step in the automated extraction of other bibliographic data from articles, as well as in computer-assisted indexing of articles. Automation in data extraction and indexing to minimize human labor is key to the affordable creation and maintenance of large bibliographic databases. Extracting the components of references, such as author names, article title, journal name, publication date and other entities, is therefore a valuable and sometimes necessary task. This paper describes a two-step process using statistical machine learning algorithms, to first locate the references in HTML medical articles and then to parse them. Reference locating identifies the reference section in an article and then decomposes it into individual references. We formulate this step as a two-class classification problem based on text and geometric features. An evaluation conducted on 500 articles drawn from 100 medical journals achieves near-perfect precision and recall rates for locating references. Reference parsing identifies the components of each reference. For this second step, we implement and compare two algorithms. One relies on sequence statistics and trains a Conditional Random Field. The other focuses on local feature statistics and trains a Support Vector Machine to classify each individual word, followed by a search algorithm that systematically corrects low confidence labels if the label sequence violates a set of predefined rules. The overall performance of these two reference-parsing algorithms is about the same: above 99% accuracy at the word level, and over 97% accuracy at the chunk level. PMID:20640222

  20. Locating and parsing bibliographic references in HTML medical articles.

    PubMed

    Zou, Jie; Le, Daniel; Thoma, George R

    2010-06-01

    The set of references that typically appear toward the end of journal articles is sometimes, though not always, a field in bibliographic (citation) databases. But even if references do not constitute such a field, they can be useful as a preprocessing step in the automated extraction of other bibliographic data from articles, as well as in computer-assisted indexing of articles. Automation in data extraction and indexing to minimize human labor is key to the affordable creation and maintenance of large bibliographic databases. Extracting the components of references, such as author names, article title, journal name, publication date and other entities, is therefore a valuable and sometimes necessary task. This paper describes a two-step process using statistical machine learning algorithms, to first locate the references in HTML medical articles and then to parse them. Reference locating identifies the reference section in an article and then decomposes it into individual references. We formulate this step as a two-class classification problem based on text and geometric features. An evaluation conducted on 500 articles drawn from 100 medical journals achieves near-perfect precision and recall rates for locating references. Reference parsing identifies the components of each reference. For this second step, we implement and compare two algorithms. One relies on sequence statistics and trains a Conditional Random Field. The other focuses on local feature statistics and trains a Support Vector Machine to classify each individual word, followed by a search algorithm that systematically corrects low confidence labels if the label sequence violates a set of predefined rules. The overall performance of these two reference-parsing algorithms is about the same: above 99% accuracy at the word level, and over 97% accuracy at the chunk level.

  1. Design and Implementation of a Smart Home System Using Multisensor Data Fusion Technology

    PubMed Central

    Chou, Po-Huan; Chang, Hsing-Cheng; Lin, Shyan-Lung; Yang, Shih-Chin; Su, Heng-Yi; Chang, Chih-Chien; Cheng, Yuan-Sheng; Kuo, Yu-Chen

    2017-01-01

    This paper aims to develop a multisensor data fusion technology-based smart home system by integrating wearable intelligent technology, artificial intelligence, and sensor fusion technology. We have developed the following three systems to create an intelligent smart home environment: (1) a wearable motion sensing device to be placed on residents’ wrists and its corresponding 3D gesture recognition algorithm to implement a convenient automated household appliance control system; (2) a wearable motion sensing device mounted on a resident’s feet and its indoor positioning algorithm to realize an effective indoor pedestrian navigation system for smart energy management; (3) a multisensor circuit module and an intelligent fire detection and alarm algorithm to realize a home safety and fire detection system. In addition, an intelligent monitoring interface is developed to provide in real-time information about the smart home system, such as environmental temperatures, CO concentrations, communicative environmental alarms, household appliance status, human motion signals, and the results of gesture recognition and indoor positioning. Furthermore, an experimental testbed for validating the effectiveness and feasibility of the smart home system was built and verified experimentally. The results showed that the 3D gesture recognition algorithm could achieve recognition rates for automated household appliance control of 92.0%, 94.8%, 95.3%, and 87.7% by the 2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, and leave-one-subject-out cross-validation strategies. For indoor positioning and smart energy management, the distance accuracy and positioning accuracy were around 0.22% and 3.36% of the total traveled distance in the indoor environment. For home safety and fire detection, the classification rate achieved 98.81% accuracy for determining the conditions of the indoor living environment. PMID:28714884

  2. Red Blood Cell Count Automation Using Microscopic Hyperspectral Imaging Technology.

    PubMed

    Li, Qingli; Zhou, Mei; Liu, Hongying; Wang, Yiting; Guo, Fangmin

    2015-12-01

    Red blood cell counts have been proven to be one of the most frequently performed blood tests and are valuable for early diagnosis of some diseases. This paper describes an automated red blood cell counting method based on microscopic hyperspectral imaging technology. Unlike the light microscopy-based red blood count methods, a combined spatial and spectral algorithm is proposed to identify red blood cells by integrating active contour models and automated two-dimensional k-means with spectral angle mapper algorithm. Experimental results show that the proposed algorithm has better performance than spatial based algorithm because the new algorithm can jointly use the spatial and spectral information of blood cells.

  3. Exploring Deep Learning and Transfer Learning for Colonic Polyp Classification

    PubMed Central

    Uhl, Andreas; Wimmer, Georg; Häfner, Michael

    2016-01-01

    Recently, Deep Learning, especially through Convolutional Neural Networks (CNNs) has been widely used to enable the extraction of highly representative features. This is done among the network layers by filtering, selecting, and using these features in the last fully connected layers for pattern classification. However, CNN training for automated endoscopic image classification still provides a challenge due to the lack of large and publicly available annotated databases. In this work we explore Deep Learning for the automated classification of colonic polyps using different configurations for training CNNs from scratch (or full training) and distinct architectures of pretrained CNNs tested on 8-HD-endoscopic image databases acquired using different modalities. We compare our results with some commonly used features for colonic polyp classification and the good results suggest that features learned by CNNs trained from scratch and the “off-the-shelf” CNNs features can be highly relevant for automated classification of colonic polyps. Moreover, we also show that the combination of classical features and “off-the-shelf” CNNs features can be a good approach to further improve the results. PMID:27847543

  4. Detection of anomaly in human retina using Laplacian Eigenmaps and vectorized matched filtering

    NASA Astrophysics Data System (ADS)

    Yacoubou Djima, Karamatou A.; Simonelli, Lucia D.; Cunningham, Denise; Czaja, Wojciech

    2015-03-01

    We present a novel method for automated anomaly detection on auto fluorescent data provided by the National Institute of Health (NIH). This is motivated by the need for new tools to improve the capability of diagnosing macular degeneration in its early stages, track the progression over time, and test the effectiveness of new treatment methods. In previous work, macular anomalies have been detected automatically through multiscale analysis procedures such as wavelet analysis or dimensionality reduction algorithms followed by a classification algorithm, e.g., Support Vector Machine. The method that we propose is a Vectorized Matched Filtering (VMF) algorithm combined with Laplacian Eigenmaps (LE), a nonlinear dimensionality reduction algorithm with locality preserving properties. By applying LE, we are able to represent the data in the form of eigenimages, some of which accentuate the visibility of anomalies. We pick significant eigenimages and proceed with the VMF algorithm that classifies anomalies across all of these eigenimages simultaneously. To evaluate our performance, we compare our method to two other schemes: a matched filtering algorithm based on anomaly detection on single images and a combination of PCA and VMF. LE combined with VMF algorithm performs best, yielding a high rate of accurate anomaly detection. This shows the advantage of using a nonlinear approach to represent the data and the effectiveness of VMF, which operates on the images as a data cube rather than individual images.

  5. Deep 3D convolution neural network for CT brain hemorrhage classification

    NASA Astrophysics Data System (ADS)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  6. Hierarchical trie packet classification algorithm based on expectation-maximization clustering.

    PubMed

    Bi, Xia-An; Zhao, Junxia

    2017-01-01

    With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.

  7. Evaluation of different distortion correction methods and interpolation techniques for an automated classification of celiac disease☆

    PubMed Central

    Gadermayr, M.; Liedlgruber, M.; Uhl, A.; Vécsei, A.

    2013-01-01

    Due to the optics used in endoscopes, a typical degradation observed in endoscopic images are barrel-type distortions. In this work we investigate the impact of methods used to correct such distortions in images on the classification accuracy in the context of automated celiac disease classification. For this purpose we compare various different distortion correction methods and apply them to endoscopic images, which are subsequently classified. Since the interpolation used in such methods is also assumed to have an influence on the resulting classification accuracies, we also investigate different interpolation methods and their impact on the classification performance. In order to be able to make solid statements about the benefit of distortion correction we use various different feature extraction methods used to obtain features for the classification. Our experiments show that it is not possible to make a clear statement about the usefulness of distortion correction methods in the context of an automated diagnosis of celiac disease. This is mainly due to the fact that an eventual benefit of distortion correction highly depends on the feature extraction method used for the classification. PMID:23981585

  8. A volumetric pulmonary CT segmentation method with applications in emphysema assessment

    NASA Astrophysics Data System (ADS)

    Silva, José Silvestre; Silva, Augusto; Santos, Beatriz S.

    2006-03-01

    A segmentation method is a mandatory pre-processing step in many automated or semi-automated analysis tasks such as region identification and densitometric analysis, or even for 3D visualization purposes. In this work we present a fully automated volumetric pulmonary segmentation algorithm based on intensity discrimination and morphologic procedures. Our method first identifies the trachea as well as primary bronchi and then the pulmonary region is identified by applying a threshold and morphologic operations. When both lungs are in contact, additional procedures are performed to obtain two separated lung volumes. To evaluate the performance of the method, we compared contours extracted from 3D lung surfaces with reference contours, using several figures of merit. Results show that the worst case generally occurs at the middle sections of high resolution CT exams, due the presence of aerial and vascular structures. Nevertheless, the average error is inferior to the average error associated with radiologist inter-observer variability, which suggests that our method produces lung contours similar to those drawn by radiologists. The information created by our segmentation algorithm is used by an identification and representation method in pulmonary emphysema that also classifies emphysema according to its severity degree. Two clinically proved thresholds are applied which identify regions with severe emphysema, and with highly severe emphysema. Based on this thresholding strategy, an application for volumetric emphysema assessment was developed offering new display paradigms concerning the visualization of classification results. This framework is easily extendable to accommodate other classifiers namely those related with texture based segmentation as it is often the case with interstitial diseases.

  9. Use of Archived Information by the United States National Data Center

    NASA Astrophysics Data System (ADS)

    Junek, W. N.; Pope, B. M.; Roman-Nieves, J. I.; VanDeMark, T. F.; Ichinose, G. A.; Poffenberger, A.; Woods, M. T.

    2012-12-01

    The United States National Data Center (US NDC) is responsible for monitoring international compliance to nuclear test ban treaties, acquiring data and data products from the International Data Center (IDC), and distributing data according to established policy. The archive of automated and reviewed event solutions residing at the US NDC is a valuable resource for assessing and improving the performance of signal detection, event formation, location, and discrimination algorithms. Numerous research initiatives are currently underway that are focused on optimizing these processes using historic waveform data and alphanumeric information. Identification of optimum station processing parameters is routinely performed through the analysis of archived waveform data. Station specific detector tuning studies produce and compare receiver operating characteristics for multiple detector configurations (e.g., detector type, filter passband) to identify an optimum set of processing parameters with an acceptable false alarm rate. Large aftershock sequences can inundate automated phase association algorithms with numerous detections that are closely spaced in time, which increases the number of false and/or mixed associations in automated event solutions and increases analyst burden. Archived waveform data and alphanumeric information are being exploited to develop an aftershock processor that will construct association templates to assist the Global Association (GA) application, reduce the number of false and merged phase associations, and lessen analyst burden. Statistical models are being developed and evaluated for potential use by the GA application for identifying and rejecting unlikely preliminary event solutions. Other uses of archived data at the US NDC include: improved event locations using empirical travel time corrections and discrimination via a statistical framework known as the event classification matrix (ECM).

  10. Automated System for Early Breast Cancer Detection in Mammograms

    NASA Technical Reports Server (NTRS)

    Bankman, Isaac N.; Kim, Dong W.; Christens-Barry, William A.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.

    1993-01-01

    The increasing demand on mammographic screening for early breast cancer detection, and the subtlety of early breast cancer signs on mammograms, suggest an automated image processing system that can serve as a diagnostic aid in radiology clinics. We present a fully automated algorithm for detecting clusters of microcalcifications that are the most common signs of early, potentially curable breast cancer. By using the contour map of the mammogram, the algorithm circumvents some of the difficulties encountered with standard image processing methods. The clinical implementation of an automated instrument based on this algorithm is also discussed.

  11. AAAS: Automated Affirmative Action System. General Description, Phase 1.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC. TACTICS Management Information Systems Directorate.

    This document describes phase 1 of the Automated Affirmative Action System (AAAS) of the Tuskegee Institute, which was designed to organize an inventory of any patterns of job classification and assignment identifiable by sex or minority group; any job classification or organizational unit where women and minorities are not employed or are…

  12. Toward automated classification of consumers' cancer-related questions with a new taxonomy of expected answer types.

    PubMed

    McRoy, Susan; Jones, Sean; Kurmally, Adam

    2016-09-01

    This article examines methods for automated question classification applied to cancer-related questions that people have asked on the web. This work is part of a broader effort to provide automated question answering for health education. We created a new corpus of consumer-health questions related to cancer and a new taxonomy for those questions. We then compared the effectiveness of different statistical methods for developing classifiers, including weighted classification and resampling. Basic methods for building classifiers were limited by the high variability in the natural distribution of questions and typical refinement approaches of feature selection and merging categories achieved only small improvements to classifier accuracy. Best performance was achieved using weighted classification and resampling methods, the latter yielding an accuracy of F1 = 0.963. Thus, it would appear that statistical classifiers can be trained on natural data, but only if natural distributions of classes are smoothed. Such classifiers would be useful for automated question answering, for enriching web-based content, or assisting clinical professionals to answer questions. © The Author(s) 2015.

  13. Gland segmentation in prostate histopathological images

    PubMed Central

    Singh, Malay; Kalaw, Emarene Mationg; Giron, Danilo Medina; Chong, Kian-Tai; Tan, Chew Lim; Lee, Hwee Kuan

    2017-01-01

    Abstract. Glandular structural features are important for the tumor pathologist in the assessment of cancer malignancy of prostate tissue slides. The varying shapes and sizes of glands combined with the tedious manual observation task can result in inaccurate assessment. There are also discrepancies and low-level agreement among pathologists, especially in cases of Gleason pattern 3 and pattern 4 prostate adenocarcinoma. An automated gland segmentation system can highlight various glandular shapes and structures for further analysis by the pathologist. These objective highlighted patterns can help reduce the assessment variability. We propose an automated gland segmentation system. Forty-three hematoxylin and eosin-stained images were acquired from prostate cancer tissue slides and were manually annotated for gland, lumen, periacinar retraction clefting, and stroma regions. Our automated gland segmentation system was trained using these manual annotations. It identifies these regions using a combination of pixel and object-level classifiers by incorporating local and spatial information for consolidating pixel-level classification results into object-level segmentation. Experimental results show that our method outperforms various texture and gland structure-based gland segmentation algorithms in the literature. Our method has good performance and can be a promising tool to help decrease interobserver variability among pathologists. PMID:28653016

  14. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+

    NASA Astrophysics Data System (ADS)

    Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.

    2011-04-01

    The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.

  15. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  16. Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres.

    PubMed

    Grychtol, Bartłomiej; Wolf, Gerhard K; Adler, Andy; Arnold, John H

    2010-08-01

    There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technology may be helpful to identify lung areas at risk. Currently, no automated method is routinely available to identify lung areas that are overdistended, collapsed or ventilated appropriately. We propose a fuzzy logic-based algorithm to analyse EIT images obtained during stepwise changes of mean airway pressures during mechanical ventilation. The algorithm is tested on data from two published studies of stepwise inflation-deflation manoeuvres in an animal model of ALI using conventional and high-frequency oscillatory ventilation. The timing of lung opening and collapsing on segmented images obtained using the algorithm during an inflation-deflation manoeuvre is in agreement with well-known effects of surfactant administration and changes in shunt fraction. While the performance of the algorithm has not been verified against a gold standard, we feel that it presents an important first step in tackling this challenging and important problem.

  17. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  18. Automated Classification of Consumer Health Information Needs in Patient Portal Messages.

    PubMed

    Cronin, Robert M; Fabbri, Daniel; Denny, Joshua C; Jackson, Gretchen Purcell

    2015-01-01

    Patients have diverse health information needs, and secure messaging through patient portals is an emerging means by which such needs are expressed and met. As patient portal adoption increases, growing volumes of secure messages may burden healthcare providers. Automated classification could expedite portal message triage and answering. We created four automated classifiers based on word content and natural language processing techniques to identify health information needs in 1000 patient-generated portal messages. Logistic regression and random forest classifiers detected single information needs well, with area under the curves of 0.804-0.914. A logistic regression classifier accurately found the set of needs within a message, with a Jaccard index of 0.859 (95% Confidence Interval: (0.847, 0.871)). Automated classification of consumer health information needs expressed in patient portal messages is feasible and may allow direct linking to relevant resources or creation of institutional resources for commonly expressed needs.

  19. Automated Classification of Consumer Health Information Needs in Patient Portal Messages

    PubMed Central

    Cronin, Robert M.; Fabbri, Daniel; Denny, Joshua C.; Jackson, Gretchen Purcell

    2015-01-01

    Patients have diverse health information needs, and secure messaging through patient portals is an emerging means by which such needs are expressed and met. As patient portal adoption increases, growing volumes of secure messages may burden healthcare providers. Automated classification could expedite portal message triage and answering. We created four automated classifiers based on word content and natural language processing techniques to identify health information needs in 1000 patient-generated portal messages. Logistic regression and random forest classifiers detected single information needs well, with area under the curves of 0.804–0.914. A logistic regression classifier accurately found the set of needs within a message, with a Jaccard index of 0.859 (95% Confidence Interval: (0.847, 0.871)). Automated classification of consumer health information needs expressed in patient portal messages is feasible and may allow direct linking to relevant resources or creation of institutional resources for commonly expressed needs. PMID:26958285

  20. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer

    PubMed Central

    Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain

    2017-01-01

    Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results. PMID:28467468

  1. Model-based classification of CPT data and automated lithostratigraphic mapping for high-resolution characterization of a heterogeneous sedimentary aquifer.

    PubMed

    Rogiers, Bart; Mallants, Dirk; Batelaan, Okke; Gedeon, Matej; Huysmans, Marijke; Dassargues, Alain

    2017-01-01

    Cone penetration testing (CPT) is one of the most efficient and versatile methods currently available for geotechnical, lithostratigraphic and hydrogeological site characterization. Currently available methods for soil behaviour type classification (SBT) of CPT data however have severe limitations, often restricting their application to a local scale. For parameterization of regional groundwater flow or geotechnical models, and delineation of regional hydro- or lithostratigraphy, regional SBT classification would be very useful. This paper investigates the use of model-based clustering for SBT classification, and the influence of different clustering approaches on the properties and spatial distribution of the obtained soil classes. We additionally propose a methodology for automated lithostratigraphic mapping of regionally occurring sedimentary units using SBT classification. The methodology is applied to a large CPT dataset, covering a groundwater basin of ~60 km2 with predominantly unconsolidated sandy sediments in northern Belgium. Results show that the model-based approach is superior in detecting the true lithological classes when compared to more frequently applied unsupervised classification approaches or literature classification diagrams. We demonstrate that automated mapping of lithostratigraphic units using advanced SBT classification techniques can provide a large gain in efficiency, compared to more time-consuming manual approaches and yields at least equally accurate results.

  2. A Fully Automated Trial Selection Method for Optimization of Motor Imagery Based Brain-Computer Interface.

    PubMed

    Zhou, Bangyan; Wu, Xiaopei; Lv, Zhao; Zhang, Lei; Guo, Xiaojin

    2016-01-01

    Independent component analysis (ICA) as a promising spatial filtering method can separate motor-related independent components (MRICs) from the multichannel electroencephalogram (EEG) signals. However, the unpredictable burst interferences may significantly degrade the performance of ICA-based brain-computer interface (BCI) system. In this study, we proposed a new algorithm frame to address this issue by combining the single-trial-based ICA filter with zero-training classifier. We developed a two-round data selection method to identify automatically the badly corrupted EEG trials in the training set. The "high quality" training trials were utilized to optimize the ICA filter. In addition, we proposed an accuracy-matrix method to locate the artifact data segments within a single trial and investigated which types of artifacts can influence the performance of the ICA-based MIBCIs. Twenty-six EEG datasets of three-class motor imagery were used to validate the proposed methods, and the classification accuracies were compared with that obtained by frequently used common spatial pattern (CSP) spatial filtering algorithm. The experimental results demonstrated that the proposed optimizing strategy could effectively improve the stability, practicality and classification performance of ICA-based MIBCI. The study revealed that rational use of ICA method may be crucial in building a practical ICA-based MIBCI system.

  3. Hyperspectral imaging for presumptive identification of bacterial colonies on solid chromogenic culture media

    NASA Astrophysics Data System (ADS)

    Guillemot, Mathilde; Midahuen, Rony; Archeny, Delpine; Fulchiron, Corine; Montvernay, Regis; Perrin, Guillaume; Leroux, Denis F.

    2016-04-01

    BioMérieux is automating the microbiology laboratory in order to reduce cost (less manpower and consumables), to improve performance (increased sensitivity, machine algorithms) and to gain traceability through optimization of the clinical laboratory workflow. In this study, we evaluate the potential of Hyperspectral imaging (HSI) as a substitute to human visual observation when performing the task of microbiological culture interpretation. Microbial colonies from 19 strains subcategorized in 6 chromogenic classes were analyzed after a 24h-growth on a chromogenic culture medium (chromID® CPS Elite, bioMérieux, France). The HSI analysis was performed in the VNIR region (400-900 nm) using a linescan configuration. Using algorithms relying on Linear Spectral Unmixing, and using exclusively Diffuse Reflectance Spectra (DRS) as input data, we report interclass classification accuracies of 100% using a fully automatable approach and no use of morphological information. In order to eventually simplify the instrument, the performance of degraded DRS was also evaluated using only the most discriminant 14 spectral channels (a model for a multispectral approach) or 3 channels (model of a RGB image). The overall classification performance remains unchanged for our multispectral model but is degraded for the predicted RGB model, hints that a multispectral solution might bring the answer for an improved colony recognition.

  4. Semantic segmentation of mFISH images using convolutional networks.

    PubMed

    Pardo, Esteban; Morgado, José Mário T; Malpica, Norberto

    2018-04-30

    Multicolor in situ hybridization (mFISH) is a karyotyping technique used to detect major chromosomal alterations using fluorescent probes and imaging techniques. Manual interpretation of mFISH images is a time consuming step that can be automated using machine learning; in previous works, pixel or patch wise classification was employed, overlooking spatial information which can help identify chromosomes. In this work, we propose a fully convolutional semantic segmentation network for the interpretation of mFISH images, which uses both spatial and spectral information to classify each pixel in an end-to-end fashion. The semantic segmentation network developed was tested on samples extracted from a public dataset using cross validation. Despite having no labeling information of the image it was tested on, our algorithm yielded an average correct classification ratio (CCR) of 87.41%. Previously, this level of accuracy was only achieved with state of the art algorithms when classifying pixels from the same image in which the classifier has been trained. These results provide evidence that fully convolutional semantic segmentation networks may be employed in the computer aided diagnosis of genetic diseases with improved performance over the current image analysis methods. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.

  5. Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism

    PubMed Central

    Ghiassian, Sina; Greiner, Russell; Jin, Ping; Brown, Matthew R. G.

    2016-01-01

    A clinical tool that can diagnose psychiatric illness using functional or structural magnetic resonance (MR) brain images has the potential to greatly assist physicians and improve treatment efficacy. Working toward the goal of automated diagnosis, we propose an approach for automated classification of ADHD and autism based on histogram of oriented gradients (HOG) features extracted from MR brain images, as well as personal characteristic data features. We describe a learning algorithm that can produce effective classifiers for ADHD and autism when run on two large public datasets. The algorithm is able to distinguish ADHD from control with hold-out accuracy of 69.6% (over baseline 55.0%) using personal characteristics and structural brain scan features when trained on the ADHD-200 dataset (769 participants in training set, 171 in test set). It is able to distinguish autism from control with hold-out accuracy of 65.0% (over baseline 51.6%) using functional images with personal characteristic data when trained on the Autism Brain Imaging Data Exchange (ABIDE) dataset (889 participants in training set, 222 in test set). These results outperform all previously presented methods on both datasets. To our knowledge, this is the first demonstration of a single automated learning process that can produce classifiers for distinguishing patients vs. controls from brain imaging data with above-chance accuracy on large datasets for two different psychiatric illnesses (ADHD and autism). Working toward clinical applications requires robustness against real-world conditions, including the substantial variability that often exists among data collected at different institutions. It is therefore important that our algorithm was successful with the large ADHD-200 and ABIDE datasets, which include data from hundreds of participants collected at multiple institutions. While the resulting classifiers are not yet clinically relevant, this work shows that there is a signal in the (f)MRI data that a learning algorithm is able to find. We anticipate this will lead to yet more accurate classifiers, over these and other psychiatric disorders, working toward the goal of a clinical tool for high accuracy differential diagnosis. PMID:28030565

  6. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  7. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    PubMed

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  8. NASA Tech Briefs, December 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    opics include: High-Rate Digital Receiver Board; Signal Design for Improved Ranging Among Multiple Transceivers; Automated Analysis, Classification, and Display of Waveforms; Fast-Acquisition/Weak-Signal-Tracking GPS Receiver for HEO; Format for Interchange and Display of 3D Terrain Data; Program Analyzes Radar Altimeter Data; Indoor Navigation using Direction Sensor and Beacons; Software Assists in Responding to Anomalous Conditions; Software for Autonomous Spacecraft Maneuvers; WinPlot; Software for Automated Testing of Mission-Control Displays; Nanocarpets for Trapping Microscopic Particles; Precious-Metal Salt Coatings for Detecting Hydrazines; Amplifying Electrochemical Indicators; Better End-Cap Processing for Oxidation-Resistant Polyimides; Carbon-Fiber Brush Heat Exchangers; Solar-Powered Airplane with Cameras and WLAN; A Resonator for Low-Threshold Frequency Conversion; Masked Proportional Routing; Algorithm Determines Wind Speed and Direction from Venturi-Sensor Data; Feature-Identification and Data-Compression Software; Alternative Attitude Commanding and Control for Precise Spacecraft Landing; Inspecting Friction Stir Welding using Electromagnetic Probes; and Helicity in Supercritical O2/H2 and C7H16/N2 Mixing Layers.

  9. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita

    2012-05-17

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major stepsmore » of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI.« less

  10. Prick test: evolution towards automated reading.

    PubMed

    Justo, X; Díaz, I; Gil, J J; Gastaminza, G

    2016-08-01

    The prick test is one of the most common medical methods for diagnosing allergies, and it has been carried out in a similar and laborious manner over many decades. In an attempt to standardize the reading of the test, many researchers have tried to automate the process of measuring the allergic reactions found by developing systems and algorithms based on multiple technologies. This work reviews the techniques for automatic wheal measurement with the aim of pointing out their advantages and disadvantages and the progress in the field. Furthermore, it provides a classification scheme for the different technologies applied. The works discussed herein provide evidence that significant challenges still exist for the development of an automatic wheal measurement system that not only helps allergists in their medical practice but also allows for the standardization of the reading and data exchange. As such, the aim of the work was to serve as guideline for the development of a proper and feasible system. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations

    PubMed Central

    Ribeiro, Sidarta; Pereira, Danillo R.; Papa, João P.; de Albuquerque, Victor Hugo C.

    2016-01-01

    Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. PMID:27654941

  12. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.

    PubMed

    Saberkari, Hamidreza; Bahrami, Sheyda; Shamsi, Mousa; Amoshahy, Mohammad Javad; Ghavifekr, Habib Badri; Sedaaghi, Mohammad Hossein

    2015-01-01

    DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.

  13. Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring

    NASA Astrophysics Data System (ADS)

    Wujanz, Daniel; Avian, Michael; Krueger, Daniel; Neitzel, Frank

    2018-04-01

    Current research questions in the field of geomorphology focus on the impact of climate change on several processes subsequently causing natural hazards. Geodetic deformation measurements are a suitable tool to document such geomorphic mechanisms, e.g. by capturing a region of interest with terrestrial laser scanners which results in a so-called 3-D point cloud. The main problem in deformation monitoring is the transformation of 3-D point clouds captured at different points in time (epochs) into a stable reference coordinate system. In this contribution, a surface-based registration methodology is applied, termed the iterative closest proximity algorithm (ICProx), that solely uses point cloud data as input, similar to the iterative closest point algorithm (ICP). The aim of this study is to automatically classify deformations that occurred at a rock glacier and an ice glacier, as well as in a rockfall area. For every case study, two epochs were processed, while the datasets notably differ in terms of geometric characteristics, distribution and magnitude of deformation. In summary, the ICProx algorithm's classification accuracy is 70 % on average in comparison to reference data.

  14. Classification of Normal and Apoptotic Cells from Fluorescence Microscopy Images Using Generalized Polynomial Chaos and Level Set Function.

    PubMed

    Du, Yuncheng; Budman, Hector M; Duever, Thomas A

    2016-06-01

    Accurate automated quantitative analysis of living cells based on fluorescence microscopy images can be very useful for fast evaluation of experimental outcomes and cell culture protocols. In this work, an algorithm is developed for fast differentiation of normal and apoptotic viable Chinese hamster ovary (CHO) cells. For effective segmentation of cell images, a stochastic segmentation algorithm is developed by combining a generalized polynomial chaos expansion with a level set function-based segmentation algorithm. This approach provides a probabilistic description of the segmented cellular regions along the boundary, from which it is possible to calculate morphological changes related to apoptosis, i.e., the curvature and length of a cell's boundary. These features are then used as inputs to a support vector machine (SVM) classifier that is trained to distinguish between normal and apoptotic viable states of CHO cell images. The use of morphological features obtained from the stochastic level set segmentation of cell images in combination with the trained SVM classifier is more efficient in terms of differentiation accuracy as compared with the original deterministic level set method.

  15. Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Felix; Quach, Tu-Thach; Wheeler, Jason

    File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less

  16. Sparse Coding for N-Gram Feature Extraction and Training for File Fragment Classification

    DOE PAGES

    Wang, Felix; Quach, Tu-Thach; Wheeler, Jason; ...

    2018-04-05

    File fragment classification is an important step in the task of file carving in digital forensics. In file carving, files must be reconstructed based on their content as a result of their fragmented storage on disk or in memory. Existing methods for classification of file fragments typically use hand-engineered features such as byte histograms or entropy measures. In this paper, we propose an approach using sparse coding that enables automated feature extraction. Sparse coding, or sparse dictionary learning, is an unsupervised learning algorithm, and is capable of extracting features based simply on how well those features can be used tomore » reconstruct the original data. With respect to file fragments, we learn sparse dictionaries for n-grams, continuous sequences of bytes, of different sizes. These dictionaries may then be used to estimate n-gram frequencies for a given file fragment, but for significantly larger n-gram sizes than are typically found in existing methods which suffer from combinatorial explosion. To demonstrate the capability of our sparse coding approach, we used the resulting features to train standard classifiers such as support vector machines (SVMs) over multiple file types. Experimentally, we achieved significantly better classification results with respect to existing methods, especially when the features were used in supplement to existing hand-engineered features.« less

  17. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.

    PubMed

    Das, D K; Maiti, A K; Chakraborty, C

    2015-03-01

    In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  18. Caracterisation des occupations du sol en milieu urbain par imagerie radar

    NASA Astrophysics Data System (ADS)

    Codjia, Claude

    This study aims to test the relevance of medium and high-resolution SAR images on the characterization of the types of land use in urban areas. To this end, we have relied on textural approaches based on second-order statistics. Specifically, we look for texture parameters most relevant for discriminating urban objects. We have used in this regard Radarsat-1 in fine polarization mode and Radarsat-2 HH fine mode in dual and quad polarization and ultrafine mode HH polarization. The land uses sought were dense building, medium density building, low density building, industrial and institutional buildings, low density vegetation, dense vegetation and water. We have identified nine texture parameters for analysis, grouped into families according to their mathematical definitions in a first step. The parameters of similarity / dissimilarity include Homogeneity, Contrast, the Differential Inverse Moment and Dissimilarity. The parameters of disorder are Entropy and the Second Angular Momentum. The Standard Deviation and Correlation are the dispersion parameters and the Average is a separate family. It is clear from experience that certain combinations of texture parameters from different family used in classifications yield good results while others produce kappa of very little interest. Furthermore, we realize that if the use of several texture parameters improves classifications, its performance ceils from three parameters. The calculation of correlations between the textures and their principal axes confirm the results. Despite the good performance of this approach based on the complementarity of texture parameters, systematic errors due to the cardinal effects remain on classifications. To overcome this problem, a radiometric compensation model was developed based on the radar cross section (SER). A radar simulation from the digital surface model of the environment allowed us to extract the building backscatter zones and to analyze the related backscatter. Thus, we were able to devise a strategy of compensation of cardinal effects solely based on the responses of the objects according to their orientation from the plane of illumination through the radar's beam. It appeared that a compensation algorithm based on the radar cross section was appropriate. Some examples of the application of this algorithm on HH polarized RADARSAT-2 images are presented as well. Application of this algorithm will allow considerable gains with regard to certain forms of automation (classification and segmentation) at the level of radar imagery thus generating a higher level of quality in regard to visual interpretation. Application of this algorithm on RADARSAT-1 and RADARSAT-2 images with HH, HV, VH, and VV polarisations helped make considerable gains and eliminate most of the classification errors due to the cardinal effects.

  19. A Method of Mapping Burned Area Using Chinese FengYun-3 MERSI Satellite Data

    NASA Astrophysics Data System (ADS)

    Shan, T.

    2017-12-01

    Wildfire is a naturally reoccurring global phenomenon which has environmental and ecological consequences such as effects on the global carbon budget, changes to the global carbon cycle and disruption to ecosystem succession. The information of burned area is significant for post disaster assessment, ecosystems protection and restoration. The Medium Resolution Spectral Imager (MERSI) onboard FENGYUN-3C (FY-3C) has shown good ability for fire detection and monitoring but lacks recognition among researchers. In this study, an automated burned area mapping algorithm was proposed based on FY-3C MERSI data. The algorithm is generally divided into two phases: 1) selection of training pixels based on 1000-m resolution MERSI data, which offers more spectral information through the use of more vegetation indices; and 2) classification: first the region growing method is applied to 1000-m MERSI data to calculate the core burned area and then the same classification method is applied to the 250-m MERSI data set by using the core burned area as a seed to obtain results at a finer spatial resolution. An evaluation of the performance of the algorithm was carried out at two study sites in America and Canada. The accuracy assessment and validation were made by comparing our results with reference results derived from Landsat OLI data. The result has a high kappa coefficient and the lower commission error, indicating that this algorithm can improve the burned area mapping accuracy at the two study sites. It may then be possible to use MERSI and other data to fill the gaps in the imaging of burned areas in the future.

  20. Real alerts and artifact classification in archived multi-signal vital sign monitoring data: implications for mining big data.

    PubMed

    Hravnak, Marilyn; Chen, Lujie; Dubrawski, Artur; Bose, Eliezer; Clermont, Gilles; Pinsky, Michael R

    2016-12-01

    Huge hospital information system databases can be mined for knowledge discovery and decision support, but artifact in stored non-invasive vital sign (VS) high-frequency data streams limits its use. We used machine-learning (ML) algorithms trained on expert-labeled VS data streams to automatically classify VS alerts as real or artifact, thereby "cleaning" such data for future modeling. 634 admissions to a step-down unit had recorded continuous noninvasive VS monitoring data [heart rate (HR), respiratory rate (RR), peripheral arterial oxygen saturation (SpO 2 ) at 1/20 Hz, and noninvasive oscillometric blood pressure (BP)]. Time data were across stability thresholds defined VS event epochs. Data were divided Block 1 as the ML training/cross-validation set and Block 2 the test set. Expert clinicians annotated Block 1 events as perceived real or artifact. After feature extraction, ML algorithms were trained to create and validate models automatically classifying events as real or artifact. The models were then tested on Block 2. Block 1 yielded 812 VS events, with 214 (26 %) judged by experts as artifact (RR 43 %, SpO 2 40 %, BP 15 %, HR 2 %). ML algorithms applied to the Block 1 training/cross-validation set (tenfold cross-validation) gave area under the curve (AUC) scores of 0.97 RR, 0.91 BP and 0.76 SpO 2 . Performance when applied to Block 2 test data was AUC 0.94 RR, 0.84 BP and 0.72 SpO 2 . ML-defined algorithms applied to archived multi-signal continuous VS monitoring data allowed accurate automated classification of VS alerts as real or artifact, and could support data mining for future model building.

Top