Sample records for automated computational methods

  1. Automated image quality assessment for chest CT scans.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  2. InPRO: Automated Indoor Construction Progress Monitoring Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Hamledari, Hesam

    In this research, an envisioned automated intelligent robotic solution for automated indoor data collection and inspection that employs a series of unmanned aerial vehicles (UAV), entitled "InPRO", is presented. InPRO consists of four stages, namely: 1) automated path planning; 2) autonomous UAV-based indoor inspection; 3) automated computer vision-based assessment of progress; and, 4) automated updating of 4D building information models (BIM). The works presented in this thesis address the third stage of InPRO. A series of computer vision-based methods that automate the assessment of construction progress using images captured at indoor sites are introduced. The proposed methods employ computer vision and machine learning techniques to detect the components of under-construction indoor partitions. In particular, framing (studs), insulation, electrical outlets, and different states of drywall sheets (installing, plastering, and painting) are automatically detected using digital images. High accuracy rates, real-time performance, and operation without a priori information are indicators of the methods' promising performance.

  3. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis

    NASA Astrophysics Data System (ADS)

    Ponsioen, Sten; Pedergnana, Tiemo; Haller, George

    2018-04-01

    We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.

  4. A LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.

    PubMed

    Prakash, Jaya; Yalavarthy, Phaneendra K

    2013-03-01

    Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimization procedure that uses the simplex method to find the optimal regularization parameter. The proposed LSQR-type method is compared with the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed minimal residual method (MRM)-based choice of regularization parameter using numerical and experimental phantom data. The results indicate that the proposed LSQR-type and MRM-based methods performance in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based methods. The proposed method computational complexity is at least five times lower compared to MRM-based method, making it an optimal technique. The LSQR-type method was able to overcome the inherent limitation of computationally expensive nature of MRM-based automated way finding the optimal regularization parameter in diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.

  5. NMR-based automated protein structure determination.

    PubMed

    Würz, Julia M; Kazemi, Sina; Schmidt, Elena; Bagaria, Anurag; Güntert, Peter

    2017-08-15

    NMR spectra analysis for protein structure determination can now in many cases be performed by automated computational methods. This overview of the computational methods for NMR protein structure analysis presents recent automated methods for signal identification in multidimensional NMR spectra, sequence-specific resonance assignment, collection of conformational restraints, and structure calculation, as implemented in the CYANA software package. These algorithms are sufficiently reliable and integrated into one software package to enable the fully automated structure determination of proteins starting from NMR spectra without manual interventions or corrections at intermediate steps, with an accuracy of 1-2 Å backbone RMSD in comparison with manually solved reference structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Automated Measurement of Patient-Specific Tibial Slopes from MRI

    PubMed Central

    Amerinatanzi, Amirhesam; Summers, Rodney K.; Ahmadi, Kaveh; Goel, Vijay K.; Hewett, Timothy E.; Nyman, Edward

    2017-01-01

    Background: Multi-planar proximal tibial slopes may be associated with increased likelihood of osteoarthritis and anterior cruciate ligament injury, due in part to their role in checking the anterior-posterior stability of the knee. Established methods suffer repeatability limitations and lack computational efficiency for intuitive clinical adoption. The aims of this study were to develop a novel automated approach and to compare the repeatability and computational efficiency of the approach against previously established methods. Methods: Tibial slope geometries were obtained via MRI and measured using an automated Matlab-based approach. Data were compared for repeatability and evaluated for computational efficiency. Results: Mean lateral tibial slope (LTS) for females (7.2°) was greater than for males (1.66°). Mean LTS in the lateral concavity zone was greater for females (7.8° for females, 4.2° for males). Mean medial tibial slope (MTS) for females was greater (9.3° vs. 4.6°). Along the medial concavity zone, female subjects demonstrated greater MTS. Conclusion: The automated method was more repeatable and computationally efficient than previously identified methods and may aid in the clinical assessment of knee injury risk, inform surgical planning, and implant design efforts. PMID:28952547

  7. Genetic algorithms in teaching artificial intelligence (automated generation of specific algebras)

    NASA Astrophysics Data System (ADS)

    Habiballa, Hashim; Jendryscik, Radek

    2017-11-01

    The problem of teaching essential Artificial Intelligence (AI) methods is an important task for an educator in the branch of soft-computing. The key focus is often given to proper understanding of the principle of AI methods in two essential points - why we use soft-computing methods at all and how we apply these methods to generate reasonable results in sensible time. We present one interesting problem solved in the non-educational research concerning automated generation of specific algebras in the huge search space. We emphasize above mentioned points as an educational case study of an interesting problem in automated generation of specific algebras.

  8. The Computer Bulletin Board.

    ERIC Educational Resources Information Center

    Collins, Michael J.; Vitz, Ed

    1988-01-01

    Examines two computer interfaced lab experiments: 1) discusses the automation of a Perkin Elmer 337 infrared spectrophotometer noting the mechanical and electronic changes needed; 2) uses the Gouy method and Lotus Measure software to automate magnetic susceptibility determinations. Methodology is described. (MVL)

  9. Computer program CDCID: an automated quality control program using CDC update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, G.L.; Aguilar, F.

    1984-04-01

    A computer program, CDCID, has been developed in coordination with a quality control program to provide a highly automated method of documenting changes to computer codes at EG and G Idaho, Inc. The method uses the standard CDC UPDATE program in such a manner that updates and their associated documentation are easily made and retrieved in various formats. The method allows each card image of a source program to point to the document which describes it, who created the card, and when it was created. The method described is applicable to the quality control of computer programs in general. Themore » computer program described is executable only on CDC computing systems, but the program could be modified and applied to any computing system with an adequate updating program.« less

  10. Accuracy and efficiency of computer-aided anatomical analysis using 3D visualization software based on semi-automated and automated segmentations.

    PubMed

    An, Gao; Hong, Li; Zhou, Xiao-Bing; Yang, Qiong; Li, Mei-Qing; Tang, Xiang-Yang

    2017-03-01

    We investigated and compared the functionality of two 3D visualization software provided by a CT vendor and a third-party vendor, respectively. Using surgical anatomical measurement as baseline, we evaluated the accuracy of 3D visualization and verified their utility in computer-aided anatomical analysis. The study cohort consisted of 50 adult cadavers fixed with the classical formaldehyde method. The computer-aided anatomical analysis was based on CT images (in DICOM format) acquired by helical scan with contrast enhancement, using a CT vendor provided 3D visualization workstation (Syngo) and a third-party 3D visualization software (Mimics) that was installed on a PC. Automated and semi-automated segmentations were utilized in the 3D visualization workstation and software, respectively. The functionality and efficiency of automated and semi-automated segmentation methods were compared. Using surgical anatomical measurement as a baseline, the accuracy of 3D visualization based on automated and semi-automated segmentations was quantitatively compared. In semi-automated segmentation, the Mimics 3D visualization software outperformed the Syngo 3D visualization workstation. No significant difference was observed in anatomical data measurement by the Syngo 3D visualization workstation and the Mimics 3D visualization software (P>0.05). Both the Syngo 3D visualization workstation provided by a CT vendor and the Mimics 3D visualization software by a third-party vendor possessed the needed functionality, efficiency and accuracy for computer-aided anatomical analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Combining Archetypes, Ontologies and Formalization Enables Automated Computation of Quality Indicators.

    PubMed

    Legaz-García, María Del Carmen; Dentler, Kathrin; Fernández-Breis, Jesualdo Tomás; Cornet, Ronald

    2017-01-01

    ArchMS is a framework that represents clinical information and knowledge using ontologies in OWL, which facilitates semantic interoperability and thereby the exploitation and secondary use of clinical data. However, it does not yet support the automated assessment of quality of care. CLIF is a stepwise method to formalize quality indicators. The method has been implemented in the CLIF tool which supports its users in generating computable queries based on a patient data model which can be based on archetypes. To enable the automated computation of quality indicators using ontologies and archetypes, we tested whether ArchMS and the CLIF tool can be integrated. We successfully automated the process of generating SPARQL queries from quality indicators that have been formalized with CLIF and integrated them into ArchMS. Hence, ontologies and archetypes can be combined for the execution of formalized quality indicators.

  12. Computational methods for structural load and resistance modeling

    NASA Technical Reports Server (NTRS)

    Thacker, B. H.; Millwater, H. R.; Harren, S. V.

    1991-01-01

    An automated capability for computing structural reliability considering uncertainties in both load and resistance variables is presented. The computations are carried out using an automated Advanced Mean Value iteration algorithm (AMV +) with performance functions involving load and resistance variables obtained by both explicit and implicit methods. A complete description of the procedures used is given as well as several illustrative examples, verified by Monte Carlo Analysis. In particular, the computational methods described in the paper are shown to be quite accurate and efficient for a material nonlinear structure considering material damage as a function of several primitive random variables. The results show clearly the effectiveness of the algorithms for computing the reliability of large-scale structural systems with a maximum number of resolutions.

  13. An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling*

    PubMed Central

    Huang, Yu; Su, Yuzhuo; Rorden, Christopher; Dmochowski, Jacek; Datta, Abhishek; Parra, Lucas C.

    2014-01-01

    Targeted transcranial stimulation with electric currents requires accurate models of the current flow from scalp electrodes to the human brain. Idiosyncratic anatomy of individual brains and heads leads to significant variability in such current flows across subjects, thus, necessitating accurate individualized head models. Here we report on an automated processing chain that computes current distributions in the head starting from a structural magnetic resonance image (MRI). The main purpose of automating this process is to reduce the substantial effort currently required for manual segmentation, electrode placement, and solving of finite element models. In doing so, several weeks of manual labor were reduced to no more than 4 hours of computation time and minimal user interaction, while current-flow results for the automated method deviated by less than 27.9% from the manual method. Key facilitating factors are the addition of three tissue types (skull, scalp and air) to a state-of-the-art automated segmentation process, morphological processing to correct small but important segmentation errors, and automated placement of small electrodes based on easily reproducible standard electrode configurations. We anticipate that such an automated processing will become an indispensable tool to individualize transcranial direct current stimulation (tDCS) therapy. PMID:23367144

  14. Computational efficiency for the surface renewal method

    NASA Astrophysics Data System (ADS)

    Kelley, Jason; Higgins, Chad

    2018-04-01

    Measuring surface fluxes using the surface renewal (SR) method requires programmatic algorithms for tabulation, algebraic calculation, and data quality control. A number of different methods have been published describing automated calibration of SR parameters. Because the SR method utilizes high-frequency (10 Hz+) measurements, some steps in the flux calculation are computationally expensive, especially when automating SR to perform many iterations of these calculations. Several new algorithms were written that perform the required calculations more efficiently and rapidly, and that tested for sensitivity to length of flux averaging period, ability to measure over a large range of lag timescales, and overall computational efficiency. These algorithms utilize signal processing techniques and algebraic simplifications that demonstrate simple modifications that dramatically improve computational efficiency. The results here complement efforts by other authors to standardize a robust and accurate computational SR method. Increased speed of computation time grants flexibility to implementing the SR method, opening new avenues for SR to be used in research, for applied monitoring, and in novel field deployments.

  15. Automated estimation of image quality for coronary computed tomographic angiography using machine learning.

    PubMed

    Nakanishi, Rine; Sankaran, Sethuraman; Grady, Leo; Malpeso, Jenifer; Yousfi, Razik; Osawa, Kazuhiro; Ceponiene, Indre; Nazarat, Negin; Rahmani, Sina; Kissel, Kendall; Jayawardena, Eranthi; Dailing, Christopher; Zarins, Christopher; Koo, Bon-Kwon; Min, James K; Taylor, Charles A; Budoff, Matthew J

    2018-03-23

    Our goal was to evaluate the efficacy of a fully automated method for assessing the image quality (IQ) of coronary computed tomography angiography (CCTA). The machine learning method was trained using 75 CCTA studies by mapping features (noise, contrast, misregistration scores, and un-interpretability index) to an IQ score based on manual ground truth data. The automated method was validated on a set of 50 CCTA studies and subsequently tested on a new set of 172 CCTA studies against visual IQ scores on a 5-point Likert scale. The area under the curve in the validation set was 0.96. In the 172 CCTA studies, our method yielded a Cohen's kappa statistic for the agreement between automated and visual IQ assessment of 0.67 (p < 0.01). In the group where good to excellent (n = 163), fair (n = 6), and poor visual IQ scores (n = 3) were graded, 155, 5, and 2 of the patients received an automated IQ score > 50 %, respectively. Fully automated assessment of the IQ of CCTA data sets by machine learning was reproducible and provided similar results compared with visual analysis within the limits of inter-operator variability. • The proposed method enables automated and reproducible image quality assessment. • Machine learning and visual assessments yielded comparable estimates of image quality. • Automated assessment potentially allows for more standardised image quality. • Image quality assessment enables standardization of clinical trial results across different datasets.

  16. Nursing benefits of using an automated injection system for ictal brain single photon emission computed tomography.

    PubMed

    Vonhofen, Geraldine; Evangelista, Tonya; Lordeon, Patricia

    2012-04-01

    The traditional method of administering radioactive isotopes to pediatric patients undergoing ictal brain single photon emission computed tomography testing has been by manual injections. This method presents certain challenges for nursing, including time requirements and safety risks. This quality improvement project discusses the implementation of an automated injection system for isotope administration and its impact on staffing, safety, and nursing satisfaction. It was conducted in an epilepsy monitoring unit at a large urban pediatric facility. Results of this project showed a decrease in the number of nurses exposed to radiation and improved nursing satisfaction with the use of the automated injection system. In addition, there was a decrease in the number of nursing hours required during ictal brain single photon emission computed tomography testing.

  17. A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.

    2011-01-01

    A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.

  18. Automated Quantification of Pneumothorax in CT

    PubMed Central

    Do, Synho; Salvaggio, Kristen; Gupta, Supriya; Kalra, Mannudeep; Ali, Nabeel U.; Pien, Homer

    2012-01-01

    An automated, computer-aided diagnosis (CAD) algorithm for the quantification of pneumothoraces from Multidetector Computed Tomography (MDCT) images has been developed. Algorithm performance was evaluated through comparison to manual segmentation by expert radiologists. A combination of two-dimensional and three-dimensional processing techniques was incorporated to reduce required processing time by two-thirds (as compared to similar techniques). Volumetric measurements on relative pneumothorax size were obtained and the overall performance of the automated method shows an average error of just below 1%. PMID:23082091

  19. Negotiating for Computer Services. Proceedings of the 1977 Clinic on Library Applications of Data Processing.

    ERIC Educational Resources Information Center

    Divilbiss, J. L., Ed.

    To help the librarian in negotiating with vendors of automated library services, nine authors have presented methods of dealing with a specific service or situation. Paper topics include computer services, network contracts, innovative service, data processing, automated circulation, a turn-key system, data base sharing, online data base services,…

  20. Automated Detection of Heuristics and Biases among Pathologists in a Computer-Based System

    ERIC Educational Resources Information Center

    Crowley, Rebecca S.; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia

    2013-01-01

    The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to…

  1. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  2. New fully automated software for assessment of brachial artery flow- mediated dilation with advantages of continuous measurement.

    PubMed

    Ercan, Ertuğrul; Kırılmaz, Bahadır; Kahraman, İsmail; Bayram, Vildan; Doğan, Hüseyin

    2012-11-01

    Flow-mediated dilation (FMD) is used to evaluate endothelial functions. Computer-assisted analysis utilizing edge detection permits continuous measurements along the vessel wall. We have developed a new fully automated software program to allow accurate and reproducible measurement. FMD has been measured and analyzed in 18 coronary artery disease (CAD) patients and 17 controls both by manually and by the software developed (computer supported) methods. The agreement between methods was assessed by Bland-Altman analysis. The mean age, body mass index and cardiovascular risk factors were higher in CAD group. Automated FMD% measurement for the control subjects was 18.3±8.5 and 6.8±6.5 for the CAD group (p=0.0001). The intraobserver and interobserver correlation for automated measurement was high (r=0.974, r=0.981, r=0.937, r=0.918, respectively). Manual FMD% at 60th second was correlated with automated FMD % (r=0.471, p=0.004). The new fully automated software© can be used to precise measurement of FMD with low intra- and interobserver variability than manual assessment.

  3. Predicting Flows of Rarefied Gases

    NASA Technical Reports Server (NTRS)

    LeBeau, Gerald J.; Wilmoth, Richard G.

    2005-01-01

    DSMC Analysis Code (DAC) is a flexible, highly automated, easy-to-use computer program for predicting flows of rarefied gases -- especially flows of upper-atmospheric, propulsion, and vented gases impinging on spacecraft surfaces. DAC implements the direct simulation Monte Carlo (DSMC) method, which is widely recognized as standard for simulating flows at densities so low that the continuum-based equations of computational fluid dynamics are invalid. DAC enables users to model complex surface shapes and boundary conditions quickly and easily. The discretization of a flow field into computational grids is automated, thereby relieving the user of a traditionally time-consuming task while ensuring (1) appropriate refinement of grids throughout the computational domain, (2) determination of optimal settings for temporal discretization and other simulation parameters, and (3) satisfaction of the fundamental constraints of the method. In so doing, DAC ensures an accurate and efficient simulation. In addition, DAC can utilize parallel processing to reduce computation time. The domain decomposition needed for parallel processing is completely automated, and the software employs a dynamic load-balancing mechanism to ensure optimal parallel efficiency throughout the simulation.

  4. A study on automated anatomical labeling to arteries concerning with colon from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2011-03-01

    This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.

  5. ASP: Automated symbolic computation of approximate symmetries of differential equations

    NASA Astrophysics Data System (ADS)

    Jefferson, G. F.; Carminati, J.

    2013-03-01

    A recent paper (Pakdemirli et al. (2004) [12]) compared three methods of determining approximate symmetries of differential equations. Two of these methods are well known and involve either a perturbation of the classical Lie symmetry generator of the differential system (Baikov, Gazizov and Ibragimov (1988) [7], Ibragimov (1996) [6]) or a perturbation of the dependent variable/s and subsequent determination of the classical Lie point symmetries of the resulting coupled system (Fushchych and Shtelen (1989) [11]), both up to a specified order in the perturbation parameter. The third method, proposed by Pakdemirli, Yürüsoy and Dolapçi (2004) [12], simplifies the calculations required by Fushchych and Shtelen's method through the assignment of arbitrary functions to the non-linear components prior to computing symmetries. All three methods have been implemented in the new MAPLE package ASP (Automated Symmetry Package) which is an add-on to the MAPLE symmetry package DESOLVII (Vu, Jefferson and Carminati (2012) [25]). To our knowledge, this is the first computer package to automate all three methods of determining approximate symmetries for differential systems. Extensions to the theory have also been suggested for the third method and which generalise the first method to systems of differential equations. Finally, a number of approximate symmetries and corresponding solutions are compared with results in the literature.

  6. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    Using automated and standardized computer tools to calculate the pertinent test result values has several advantages such as: 1. allowing high-fidelity solutions to complex nonlinear phenomena that would be impractical to express in written equation form, 2. eliminating errors associated with the interpretation and programing of analysis procedures from the text of test standards, 3. lessening the need for expertise in the areas of solid mechanics, fracture mechanics, numerical methods, and/or finite element modeling, to achieve sound results, 4. and providing one computer tool and/or one set of solutions for all users for a more "standardized" answer. In summary, this approach allows a non-expert with rudimentary training to get the best practical solution based on the latest understanding with minimum difficulty.Other existing ASTM standards that cover complicated phenomena use standard computer programs: 1. ASTM C1340/C1340M-10- Standard Practice for Estimation of Heat Gain or Loss Through Ceilings Under Attics Containing Radiant Barriers by Use of a Computer Program 2. ASTM F 2815 - Standard Practice for Chemical Permeation through Protective Clothing Materials: Testing Data Analysis by Use of a Computer Program 3. ASTM E2807 - Standard Specification for 3D Imaging Data Exchange, Version 1.0 The verification, validation, and round-robin processes required of a computer tool closely parallel the methods that are used to ensure the solution validity for equations included in test standard. The use of automated analysis tools allows the creation and practical implementation of advanced fracture mechanics test standards that capture the physics of a nonlinear fracture mechanics problem without adding undue burden or expense to the user. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  7. [Automated processing of data from the 1985 population and housing census].

    PubMed

    Cholakov, S

    1987-01-01

    The author describes the method of automated data processing used in the 1985 census of Bulgaria. He notes that the computerization of the census involves decentralization and the use of regional computing centers as well as data processing at the Central Statistical Office's National Information Computer Center. Special attention is given to problems concerning the projection and programming of census data. (SUMMARY IN ENG AND RUS)

  8. Automated tetraploid genotype calling by hierarchical clustering

    USDA-ARS?s Scientific Manuscript database

    SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, however, the relationship between signal intensity and allele dosage must be inferred independently for each marker. We developed an improved computational method to automate this process, ...

  9. Laser-optical methods and systems of computer-automated investigation of bio-objects (plants, seeds, food products, and others)

    NASA Astrophysics Data System (ADS)

    Lisker, Joseph S.

    1999-01-01

    A new conception of the scientific problem of information exchange in the system plant-man-environment is developed. The laser-optical methods and the system are described which allow computer automated investigation of bio-objects without damaging their vital function. The results of investigation of optical-physiological features of plants and seeds are presented. The effects of chlorophyll well and IR beg are discovered for plants and also the effects os water pumping and protein transformations are shown for seeds. The perspectives of the use of the optical methods and equipment suggested to solve scientific problems of agriculture are discussed.

  10. In vivo automated quantification of quality of apples during storage using optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Dalal, Devjyoti; Kumar, Anuj; Prakash, Surya; Dalal, Krishna

    2018-06-01

    Moisture content is an important feature of fruits and vegetables. As 80% of apple content is water, so decreasing the moisture content will degrade the quality of apples (Golden Delicious). The computational and texture features of the apples were extracted from optical coherence tomography (OCT) images. A support vector machine with a Gaussian kernel model was used to perform automated classification. To evaluate the quality of wax coated apples during storage in vivo, our proposed method opens up the possibility of fully automated quantitative analysis based on the morphological features of apples. Our results demonstrate that the analysis of the computational and texture features of OCT images may be a good non-destructive method for the assessment of the quality of apples.

  11. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis.

    PubMed

    Varela, J A; Vázquez, S A; Martínez-Núñez, E

    2017-05-01

    A novel computational method is proposed in this work for use in discovering reaction mechanisms and solving the kinetics of transition metal-catalyzed reactions. The method does not rely on either chemical intuition or assumed a priori mechanisms, and it works in a fully automated fashion. Its core is a procedure, recently developed by one of the authors, that combines accelerated direct dynamics with an efficient geometry-based post-processing algorithm to find transition states (Martinez-Nunez, E., J. Comput. Chem. 2015 , 36 , 222-234). In the present work, several auxiliary tools have been added to deal with the specific features of transition metal catalytic reactions. As a test case, we chose the cobalt-catalyzed hydroformylation of ethylene because of its well-established mechanism, and the fact that it has already been used in previous automated computational studies. Besides the generally accepted mechanism of Heck and Breslow, several side reactions, such as hydrogenation of the alkene, emerged from our calculations. Additionally, the calculated rate law for the hydroformylation reaction agrees reasonably well with those obtained in previous experimental and theoretical studies.

  12. Computer grading of examinations

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.

    1969-01-01

    A method, using IBM cards and computer processing, automates examination grading and recording and permits use of computational problems. The student generates his own answers, and the instructor has much greater freedom in writing questions than is possible with multiple choice examinations.

  13. Automation for "Direct-to" Clearances in Air-Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McNally, David

    2006-01-01

    A method of automation, and a system of computer hardware and software to implement the method, have been invented to assist en-route air-traffic controllers in the issuance of clearances to fly directly to specified waypoints or navigation fixes along straight paths that deviate from previously filed flight plans. Such clearances, called "direct-to" clearances, have been in use since before the invention of this method and system.

  14. Improvement of Computer Software Quality through Software Automated Tools.

    DTIC Science & Technology

    1986-08-31

    requirement for increased emphasis on software quality assurance has lead to the creation of various methods of verification and validation. Experience...result was a vast array of methods , systems, languages and automated tools to assist in the process. Given that the primary role of quality assurance is...Unfortunately, there is no single method , tool or technique that can insure accurate, reliable and cost effective software. Therefore, government and industry

  15. An Inexpensive and Automated Method for Presenting Olfactory or Tactile Stimuli to Rats in a Two-Choice Discrimination Task

    ERIC Educational Resources Information Center

    Iversen, Iver H.

    2008-01-01

    An inexpensive and automated method for presentation of olfactory or tactile stimuli in a two-choice task for rats was implemented with the use of a computer-controlled bidirectional motor. The motor rotated a disk that presented two stimuli of different texture for tactile discrimination, or different odor for olfactory discrimination. Because…

  16. Research in computer science

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  17. Comparison of visual microscopic and computer-automated fluorescence detection of rabies virus neutralizing antibodies.

    PubMed

    Péharpré, D; Cliquet, F; Sagné, E; Renders, C; Costy, F; Aubert, M

    1999-07-01

    The rapid fluorescent focus inhibition test (RFFIT) and the fluorescent antibody virus neutralization test (FAVNT) are both diagnostic tests for determining levels of rabies neutralizing antibodies. An automated method for determining fluorescence has been implemented to reduce the work time required for fluorescent visual microscopic observations. The automated method offers several advantages over conventional visual observation, such as the ability to rapidly test many samples. The antibody titers obtained with automated techniques were similar to those obtained with both the RFFIT (n = 165, r = 0.93, P < 0.001) and the FAVNT (n = 52, r = 0.99, P < 0.001).

  18. Automated delineation and characterization of watersheds for more than 3,000 surface-water-quality monitoring stations active in 2010 in Texas

    USGS Publications Warehouse

    Archuleta, Christy-Ann M.; Gonzales, Sophia L.; Maltby, David R.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality, developed computer scripts and applications to automate the delineation of watershed boundaries and compute watershed characteristics for more than 3,000 surface-water-quality monitoring stations in Texas that were active during 2010. Microsoft Visual Basic applications were developed using ArcGIS ArcObjects to format the source input data required to delineate watershed boundaries. Several automated scripts and tools were developed or used to calculate watershed characteristics using Python, Microsoft Visual Basic, and the RivEX tool. Automated methods were augmented by the use of manual methods, including those done using ArcMap software. Watershed boundaries delineated for the monitoring stations are limited to the extent of the Subbasin boundaries in the USGS Watershed Boundary Dataset, which may not include the total watershed boundary from the monitoring station to the headwaters.

  19. Computer-Aided Diagnosis of Acute Lymphoblastic Leukaemia

    PubMed Central

    2018-01-01

    Leukaemia is a form of blood cancer which affects the white blood cells and damages the bone marrow. Usually complete blood count (CBC) and bone marrow aspiration are used to diagnose the acute lymphoblastic leukaemia. It can be a fatal disease if not diagnosed at the earlier stage. In practice, manual microscopic evaluation of stained sample slide is used for diagnosis of leukaemia. But manual diagnostic methods are time-consuming, less accurate, and prone to errors due to various human factors like stress, fatigue, and so forth. Therefore, different automated systems have been proposed to wrestle the glitches in the manual diagnostic methods. In recent past, some computer-aided leukaemia diagnosis methods are presented. These automated systems are fast, reliable, and accurate as compared to manual diagnosis methods. This paper presents review of computer-aided diagnosis systems regarding their methodologies that include enhancement, segmentation, feature extraction, classification, and accuracy. PMID:29681996

  20. SU-F-I-45: An Automated Technique to Measure Image Contrast in Clinical CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J; Abadi, E; Meng, B

    Purpose: To develop and validate an automated technique for measuring image contrast in chest computed tomography (CT) exams. Methods: An automated computer algorithm was developed to measure the distribution of Hounsfield units (HUs) inside four major organs: the lungs, liver, aorta, and bones. These organs were first segmented or identified using computer vision and image processing techniques. Regions of interest (ROIs) were automatically placed inside the lungs, liver, and aorta and histograms of the HUs inside the ROIs were constructed. The mean and standard deviation of each histogram were computed for each CT dataset. Comparison of the mean and standardmore » deviation of the HUs in the different organs provides different contrast values. The ROI for the bones is simply the segmentation mask of the bones. Since the histogram for bones does not follow a Gaussian distribution, the 25th and 75th percentile were computed instead of the mean. The sensitivity and accuracy of the algorithm was investigated by comparing the automated measurements with manual measurements. Fifteen contrast enhanced and fifteen non-contrast enhanced chest CT clinical datasets were examined in the validation procedure. Results: The algorithm successfully measured the histograms of the four organs in both contrast and non-contrast enhanced chest CT exams. The automated measurements were in agreement with manual measurements. The algorithm has sufficient sensitivity as indicated by the near unity slope of the automated versus manual measurement plots. Furthermore, the algorithm has sufficient accuracy as indicated by the high coefficient of determination, R2, values ranging from 0.879 to 0.998. Conclusion: Patient-specific image contrast can be measured from clinical datasets. The algorithm can be run on both contrast enhanced and non-enhanced clinical datasets. The method can be applied to automatically assess the contrast characteristics of clinical chest CT images and quantify dependencies that may not be captured in phantom data.« less

  1. Computational Analysis of Behavior.

    PubMed

    Egnor, S E Roian; Branson, Kristin

    2016-07-08

    In this review, we discuss the emerging field of computational behavioral analysis-the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with.

  2. Computed tomography-based volumetric tool for standardized measurement of the maxillary sinus

    PubMed Central

    Giacomini, Guilherme; Pavan, Ana Luiza Menegatti; Altemani, João Mauricio Carrasco; Duarte, Sergio Barbosa; Fortaleza, Carlos Magno Castelo Branco; Miranda, José Ricardo de Arruda

    2018-01-01

    Volume measurements of maxillary sinus may be useful to identify diseases affecting paranasal sinuses. However, literature shows a lack of consensus in studies measuring the volume. This may be attributable to different computed tomography data acquisition techniques, segmentation methods, focuses of investigation, among other reasons. Furthermore, methods for volumetrically quantifying the maxillary sinus are commonly manual or semiautomated, which require substantial user expertise and are time-consuming. The purpose of the present study was to develop an automated tool for quantifying the total and air-free volume of the maxillary sinus based on computed tomography images. The quantification tool seeks to standardize maxillary sinus volume measurements, thus allowing better comparisons and determinations of factors that influence maxillary sinus size. The automated tool utilized image processing techniques (watershed, threshold, and morphological operators). The maxillary sinus volume was quantified in 30 patients. To evaluate the accuracy of the automated tool, the results were compared with manual segmentation that was performed by an experienced radiologist using a standard procedure. The mean percent differences between the automated and manual methods were 7.19% ± 5.83% and 6.93% ± 4.29% for total and air-free maxillary sinus volume, respectively. Linear regression and Bland-Altman statistics showed good agreement and low dispersion between both methods. The present automated tool for maxillary sinus volume assessment was rapid, reliable, robust, accurate, and reproducible and may be applied in clinical practice. The tool may be used to standardize measurements of maxillary volume. Such standardization is extremely important for allowing comparisons between studies, providing a better understanding of the role of the maxillary sinus, and determining the factors that influence maxillary sinus size under normal and pathological conditions. PMID:29304130

  3. A Simple Method for Automated Equilibration Detection in Molecular Simulations.

    PubMed

    Chodera, John D

    2016-04-12

    Molecular simulations intended to compute equilibrium properties are often initiated from configurations that are highly atypical of equilibrium samples, a practice which can generate a distinct initial transient in mechanical observables computed from the simulation trajectory. Traditional practice in simulation data analysis recommends this initial portion be discarded to equilibration, but no simple, general, and automated procedure for this process exists. Here, we suggest a conceptually simple automated procedure that does not make strict assumptions about the distribution of the observable of interest in which the equilibration time is chosen to maximize the number of effectively uncorrelated samples in the production timespan used to compute equilibrium averages. We present a simple Python reference implementation of this procedure and demonstrate its utility on typical molecular simulation data.

  4. A simple method for automated equilibration detection in molecular simulations

    PubMed Central

    Chodera, John D.

    2016-01-01

    Molecular simulations intended to compute equilibrium properties are often initiated from configurations that are highly atypical of equilibrium samples, a practice which can generate a distinct initial transient in mechanical observables computed from the simulation trajectory. Traditional practice in simulation data analysis recommends this initial portion be discarded to equilibration, but no simple, general, and automated procedure for this process exists. Here, we suggest a conceptually simple automated procedure that does not make strict assumptions about the distribution of the observable of interest, in which the equilibration time is chosen to maximize the number of effectively uncorrelated samples in the production timespan used to compute equilibrium averages. We present a simple Python reference implementation of this procedure, and demonstrate its utility on typical molecular simulation data. PMID:26771390

  5. The Location of Sources of Human Computer Processed Cerebral Potentials for the Automated Assessment of Visual Field Impairment

    PubMed Central

    Leisman, Gerald; Ashkenazi, Maureen

    1979-01-01

    Objective psychophysical techniques for investigating visual fields are described. The paper concerns methods for the collection and analysis of evoked potentials using a small laboratory computer and provides efficient methods for obtaining information about the conduction pathways of the visual system.

  6. A Computational Workflow for the Automated Generation of Models of Genetic Designs.

    PubMed

    Misirli, Göksel; Nguyen, Tramy; McLaughlin, James Alastair; Vaidyanathan, Prashant; Jones, Timothy S; Densmore, Douglas; Myers, Chris; Wipat, Anil

    2018-06-05

    Computational models are essential to engineer predictable biological systems and to scale up this process for complex systems. Computational modeling often requires expert knowledge and data to build models. Clearly, manual creation of models is not scalable for large designs. Despite several automated model construction approaches, computational methodologies to bridge knowledge in design repositories and the process of creating computational models have still not been established. This paper describes a workflow for automatic generation of computational models of genetic circuits from data stored in design repositories using existing standards. This workflow leverages the software tool SBOLDesigner to build structural models that are then enriched by the Virtual Parts Repository API using Systems Biology Open Language (SBOL) data fetched from the SynBioHub design repository. The iBioSim software tool is then utilized to convert this SBOL description into a computational model encoded using the Systems Biology Markup Language (SBML). Finally, this SBML model can be simulated using a variety of methods. This workflow provides synthetic biologists with easy to use tools to create predictable biological systems, hiding away the complexity of building computational models. This approach can further be incorporated into other computational workflows for design automation.

  7. How automated image analysis techniques help scientists in species identification and classification?

    PubMed

    Yousef Kalafi, Elham; Town, Christopher; Kaur Dhillon, Sarinder

    2017-09-04

    Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification increased over the last two decades. Automation of data classification is primarily focussed on images, incorporating and analysing image data has recently become easier due to developments in computational technology. Research efforts in identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, categorizing and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies.

  8. Automated procedures for sizing aerospace vehicle structures /SAVES/

    NASA Technical Reports Server (NTRS)

    Giles, G. L.; Blackburn, C. L.; Dixon, S. C.

    1972-01-01

    Results from a continuing effort to develop automated methods for structural design are described. A system of computer programs presently under development called SAVES is intended to automate the preliminary structural design of a complete aerospace vehicle. Each step in the automated design process of the SAVES system of programs is discussed, with emphasis placed on use of automated routines for generation of finite-element models. The versatility of these routines is demonstrated by structural models generated for a space shuttle orbiter, an advanced technology transport,n hydrogen fueled Mach 3 transport. Illustrative numerical results are presented for the Mach 3 transport wing.

  9. Electronic Data Interchange in Procurement

    DTIC Science & Technology

    1990-04-01

    contract management and order processing systems. This conversion of automated information to paper and back to automated form is not only slow and...automated purchasing computer and the contractor’s order processing computer through telephone lines, as illustrated in Figure 1-1. Computer-to-computer...into the contractor’s order processing or contract management system. This approach - converting automated information to paper and back to automated

  10. Learning About Cockpit Automation: From Piston Trainer to Jet Transport

    NASA Technical Reports Server (NTRS)

    Casner, Stephen M.

    2003-01-01

    Two experiments explored the idea of providing cockpit automation training to airline-bound student pilots using cockpit automation equipment commonly found in small training airplanes. In a first experiment, pilots mastered a set of tasks and maneuvers using a GPS navigation computer, autopilot, and flight director system installed in a small training airplane Students were then tested on their ability to complete a similar set of tasks using the cockpit automation system found in a popular jet transport aircraft. Pilot were able to successfully complete 77% of all tasks in the jet transport on their first attempt. An analysis of a control group suggests that the pilot's success was attributable to the application of automation principles they had learned in the small airplane. A second experiment looked at two different ways of delivering small-aeroplane cockpit automation training: a self-study method, and a dual instruction method. The results showed a slight advantage for the self-study method. Overall, the results of the two studies cast a strong vote for the incorporation of cockpit automation training in curricula designed for pilot who will later transition to the jet fleet.

  11. Study of flutter related computational procedures for minimum weight structural sizing of advanced aircraft

    NASA Technical Reports Server (NTRS)

    Oconnell, R. F.; Hassig, H. J.; Radovcich, N. A.

    1976-01-01

    Results of a study of the development of flutter modules applicable to automated structural design of advanced aircraft configurations, such as a supersonic transport, are presented. Automated structural design is restricted to automated sizing of the elements of a given structural model. It includes a flutter optimization procedure; i.e., a procedure for arriving at a structure with minimum mass for satisfying flutter constraints. Methods of solving the flutter equation and computing the generalized aerodynamic force coefficients in the repetitive analysis environment of a flutter optimization procedure are studied, and recommended approaches are presented. Five approaches to flutter optimization are explained in detail and compared. An approach to flutter optimization incorporating some of the methods discussed is presented. Problems related to flutter optimization in a realistic design environment are discussed and an integrated approach to the entire flutter task is presented. Recommendations for further investigations are made. Results of numerical evaluations, applying the five methods of flutter optimization to the same design task, are presented.

  12. Automated Analysis of Counselor Style and Effects: The Development and Evaluation of Methods and Materials to Assess the Stylistic Accuracy and Outcome Effectiveness of Counselor Verbal Behavior. Final Report.

    ERIC Educational Resources Information Center

    Pepyne, Edward W.

    This project attempts to develop, evaluate and implement methods and materials for the automated analysis of the stylistic characteristics of counselor verbal behavior and its effects on client verbal behavior within the counseling interview. To achieve this purpose, the project designed a system of computer programs, the DISCOURSE ANALYSIS…

  13. Computational aero-acoustics for fan duct propagation and radiation. Current status and application to turbofan liner optimisation

    NASA Astrophysics Data System (ADS)

    Astley, R. J.; Sugimoto, R.; Mustafi, P.

    2011-08-01

    Novel techniques are presented to reduce noise from turbofan aircraft engines by optimising the acoustic treatment in engine ducts. The application of Computational Aero-Acoustics (CAA) to predict acoustic propagation and absorption in turbofan ducts is reviewed and a critical assessment of performance indicates that validated and accurate techniques are now available for realistic engine predictions. A procedure for integrating CAA methods with state of the art optimisation techniques is proposed in the remainder of the article. This is achieved by embedding advanced computational methods for noise prediction within automated and semi-automated optimisation schemes. Two different strategies are described and applied to realistic nacelle geometries and fan sources to demonstrate the feasibility of this approach for industry scale problems.

  14. Fault management for data systems

    NASA Technical Reports Server (NTRS)

    Boyd, Mark A.; Iverson, David L.; Patterson-Hine, F. Ann

    1993-01-01

    Issues related to automating the process of fault management (fault diagnosis and response) for data management systems are considered. Substantial benefits are to be gained by successful automation of this process, particularly for large, complex systems. The use of graph-based models to develop a computer assisted fault management system is advocated. The general problem is described and the motivation behind choosing graph-based models over other approaches for developing fault diagnosis computer programs is outlined. Some existing work in the area of graph-based fault diagnosis is reviewed, and a new fault management method which was developed from existing methods is offered. Our method is applied to an automatic telescope system intended as a prototype for future lunar telescope programs. Finally, an application of our method to general data management systems is described.

  15. Artificial Intelligence Methods: Challenge in Computer Based Polymer Design

    NASA Astrophysics Data System (ADS)

    Rusu, Teodora; Pinteala, Mariana; Cartwright, Hugh

    2009-08-01

    This paper deals with the use of Artificial Intelligence Methods (AI) in the design of new molecules possessing desired physical, chemical and biological properties. This is an important and difficult problem in the chemical, material and pharmaceutical industries. Traditional methods involve a laborious and expensive trial-and-error procedure, but computer-assisted approaches offer many advantages in the automation of molecular design.

  16. Comparison of Manual and Automated Measurements of Tracheobronchial Airway Geometry in Three Balb/c Mice.

    PubMed

    Islam, Asef; Oldham, Michael J; Wexler, Anthony S

    2017-11-01

    Mammalian lungs are comprised of large numbers of tracheobronchial airways that transition from the trachea to alveoli. Studies as wide ranging as pollutant deposition and lung development rely on accurate characterization of these airways. Advancements in CT imaging and the value of computational approaches in eliminating the burden of manual measurement are providing increased efficiency in obtaining this geometric data. In this study, we compare an automated method to a manual one for the first six generations of three Balb/c mouse lungs. We find good agreement between manual and automated methods and that much of the disagreement can be attributed to method precision. Using the automated method, we then provide anatomical data for the entire tracheobronchial airway tree from three Balb/C mice. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2046-2057, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu; Campbell, Richard L.

    2014-01-01

    The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.

  18. Methodology of automated ionosphere front velocity estimation for ground-based augmentation of GNSS

    NASA Astrophysics Data System (ADS)

    Bang, Eugene; Lee, Jiyun

    2013-11-01

    ionospheric anomalies occurring during severe ionospheric storms can pose integrity threats to Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS). Ionospheric anomaly threat models for each region of operation need to be developed to analyze the potential impact of these anomalies on GBAS users and develop mitigation strategies. Along with the magnitude of ionospheric gradients, the speed of the ionosphere "fronts" in which these gradients are embedded is an important parameter for simulation-based GBAS integrity analysis. This paper presents a methodology for automated ionosphere front velocity estimation which will be used to analyze a vast amount of ionospheric data, build ionospheric anomaly threat models for different regions, and monitor ionospheric anomalies continuously going forward. This procedure automatically selects stations that show a similar trend of ionospheric delays, computes the orientation of detected fronts using a three-station-based trigonometric method, and estimates speeds for the front using a two-station-based method. It also includes fine-tuning methods to improve the estimation to be robust against faulty measurements and modeling errors. It demonstrates the performance of the algorithm by comparing the results of automated speed estimation to those manually computed previously. All speed estimates from the automated algorithm fall within error bars of ± 30% of the manually computed speeds. In addition, this algorithm is used to populate the current threat space with newly generated threat points. A larger number of velocity estimates helps us to better understand the behavior of ionospheric gradients under geomagnetic storm conditions.

  19. Employment Opportunities for the Handicapped in Programmable Automation.

    ERIC Educational Resources Information Center

    Swift, Richard; Leneway, Robert

    A Computer Integrated Manufacturing System may make it possible for severely disabled people to custom design, machine, and manufacture either wood or metal parts. Programmable automation merges computer aided design, computer aided manufacturing, computer aided engineering, and computer integrated manufacturing systems with automated production…

  20. Automated Grading System for Evaluation of Superficial Punctate Keratitis Associated With Dry Eye.

    PubMed

    Rodriguez, John D; Lane, Keith J; Ousler, George W; Angjeli, Endri; Smith, Lisa M; Abelson, Mark B

    2015-04-01

    To develop an automated method of grading fluorescein staining that accurately reproduces the clinical grading system currently in use. From the slit lamp photograph of the fluorescein-stained cornea, the region of interest was selected and punctate dot number calculated using software developed with the OpenCV computer vision library. Images (n = 229) were then divided into six incremental severity categories based on computed scores. The final selection of 54 photographs represented the full range of scores: nine images from each of six categories. These were then evaluated by three investigators using a clinical 0 to 4 corneal staining scale. Pearson correlations were calculated to compare investigator scores, and mean investigator and automated scores. Lin's Concordance Correlation Coefficients (CCC) and Bland-Altman plots were used to assess agreement between methods and between investigators. Pearson's correlation between investigators was 0.914; mean CCC between investigators was 0.882. Bland-Altman analysis indicated that scores assessed by investigator 3 were significantly higher than those of investigators 1 and 2 (paired t-test). The predicted grade was calculated to be: Gpred = 1.48log(Ndots) - 0.206. The two-point Pearson's correlation coefficient between the methods was 0.927 (P < 0.0001). The CCC between predicted automated score Gpred and mean investigator score was 0.929, 95% confidence interval (0.884-0.957). Bland-Altman analysis did not indicate bias. The difference in SD between clinical and automated methods was 0.398. An objective, automated analysis of corneal staining provides a quality assurance tool to be used to substantiate clinical grading of key corneal staining endpoints in multicentered clinical trials of dry eye.

  1. The Use of Computer Simulation Methods to Reach Data for Economic Analysis of Automated Logistic Systems

    NASA Astrophysics Data System (ADS)

    Neradilová, Hana; Fedorko, Gabriel

    2016-12-01

    Automated logistic systems are becoming more widely used within enterprise logistics processes. Their main advantage is that they allow increasing the efficiency and reliability of logistics processes. In terms of evaluating their effectiveness, it is necessary to take into account the economic aspect of the entire process. However, many users ignore and underestimate this area,which is not correct. One of the reasons why the economic aspect is overlooked is the fact that obtaining information for such an analysis is not easy. The aim of this paper is to present the possibilities of computer simulation methods for obtaining data for full-scale economic analysis implementation.

  2. Two pass method and radiation interchange processing when applied to thermal-structural analysis of large space truss structures

    NASA Technical Reports Server (NTRS)

    Warren, Andrew H.; Arelt, Joseph E.; Lalicata, Anthony L.; Rogers, Karen M.

    1993-01-01

    A method of efficient and automated thermal-structural processing of very large space structures is presented. The method interfaces the finite element and finite difference techniques. It also results in a pronounced reduction of the quantity of computations, computer resources and manpower required for the task, while assuring the desired accuracy of the results.

  3. PDB_REDO: automated re-refinement of X-ray structure models in the PDB.

    PubMed

    Joosten, Robbie P; Salzemann, Jean; Bloch, Vincent; Stockinger, Heinz; Berglund, Ann-Charlott; Blanchet, Christophe; Bongcam-Rudloff, Erik; Combet, Christophe; Da Costa, Ana L; Deleage, Gilbert; Diarena, Matteo; Fabbretti, Roberto; Fettahi, Géraldine; Flegel, Volker; Gisel, Andreas; Kasam, Vinod; Kervinen, Timo; Korpelainen, Eija; Mattila, Kimmo; Pagni, Marco; Reichstadt, Matthieu; Breton, Vincent; Tickle, Ian J; Vriend, Gert

    2009-06-01

    Structural biology, homology modelling and rational drug design require accurate three-dimensional macromolecular coordinates. However, the coordinates in the Protein Data Bank (PDB) have not all been obtained using the latest experimental and computational methods. In this study a method is presented for automated re-refinement of existing structure models in the PDB. A large-scale benchmark with 16 807 PDB entries showed that they can be improved in terms of fit to the deposited experimental X-ray data as well as in terms of geometric quality. The re-refinement protocol uses TLS models to describe concerted atom movement. The resulting structure models are made available through the PDB_REDO databank (http://www.cmbi.ru.nl/pdb_redo/). Grid computing techniques were used to overcome the computational requirements of this endeavour.

  4. Automated breast segmentation in ultrasound computer tomography SAFT images

    NASA Astrophysics Data System (ADS)

    Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.

    2017-03-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.

  5. Computer aided fixture design - A case based approach

    NASA Astrophysics Data System (ADS)

    Tanji, Shekhar; Raiker, Saiesh; Mathew, Arun Tom

    2017-11-01

    Automated fixture design plays important role in process planning and integration of CAD and CAM. An automated fixture setup design system is developed where when fixturing surfaces and points are described allowing modular fixture components to get automatically select for generating fixture units and placed into position with satisfying assembled conditions. In past, various knowledge based system have been developed to implement CAFD in practice. In this paper, to obtain an acceptable automated machining fixture design, a case-based reasoning method with developed retrieval system is proposed. Visual Basic (VB) programming language is used in integrating with SolidWorks API (Application programming interface) module for better retrieval procedure reducing computational time. These properties are incorporated in numerical simulation to determine the best fit for practical use.

  6. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  7. Automation for Air Traffic Control: The Rise of a New Discipline

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Tobias, Leonard (Technical Monitor)

    1997-01-01

    The current debate over the concept of Free Flight has renewed interest in automated conflict detection and resolution in the enroute airspace. An essential requirement for effective conflict detection is accurate prediction of trajectories. Trajectory prediction is, however, an inexact process which accumulates errors that grow in proportion to the length of the prediction time interval. Using a model of prediction errors for the trajectory predictor incorporated in the Center-TRACON Automation System (CTAS), a computationally fast algorithm for computing conflict probability has been derived. Furthermore, a method of conflict resolution has been formulated that minimizes the average cost of resolution, when cost is defined as the increment in airline operating costs incurred in flying the resolution maneuver. The method optimizes the trade off between early resolution at lower maneuver costs but higher prediction error on the one hand and late resolution with higher maneuver costs but lower prediction errors on the other. The method determines both the time to initiate the resolution maneuver as well as the characteristics of the resolution trajectory so as to minimize the cost of the resolution. Several computational examples relevant to the design of a conflict probe that can support user-preferred trajectories in the enroute airspace will be presented.

  8. Automated Development of Accurate Algorithms and Efficient Codes for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.; Dyson, Rodger W.

    1999-01-01

    The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that have resulted from this work. A review of computational aeroacoustics has recently been given by Lele.

  9. New cellular automaton model for magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    A new type of two-dimensional cellular automation method is introduced for computation of magnetohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algorithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and magnetic-induction effects. The method is local in the microscopic space and therefore suited to massively parallel computations.

  10. Building Flexible User Interfaces for Solving PDEs

    NASA Astrophysics Data System (ADS)

    Logg, Anders; Wells, Garth N.

    2010-09-01

    FEniCS is a collection of software tools for the automated solution of differential equations by finite element methods. In this note, we describe how FEniCS can be used to solve a simple nonlinear model problem with varying levels of automation. At one extreme, FEniCS provides tools for the fully automated and adaptive solution of nonlinear partial differential equations. At the other extreme, FEniCS provides a range of tools that allow the computational scientist to experiment with novel solution algorithms.

  11. Automated brain computed tomographic densitometry of early ischemic changes in acute stroke

    PubMed Central

    Stoel, Berend C.; Marquering, Henk A.; Staring, Marius; Beenen, Ludo F.; Slump, Cornelis H.; Roos, Yvo B.; Majoie, Charles B.

    2015-01-01

    Abstract. The Alberta Stroke Program Early CT score (ASPECTS) scoring method is frequently used for quantifying early ischemic changes (EICs) in patients with acute ischemic stroke in clinical studies. Varying interobserver agreement has been reported, however, with limited agreement. Therefore, our goal was to develop and evaluate an automated brain densitometric method. It divides CT scans of the brain into ASPECTS regions using atlas-based segmentation. EICs are quantified by comparing the brain density between contralateral sides. This method was optimized and validated using CT data from 10 and 63 patients, respectively. The automated method was validated against manual ASPECTS, stroke severity at baseline and clinical outcome after 7 to 10 days (NIH Stroke Scale, NIHSS) and 3 months (modified Rankin Scale). Manual and automated ASPECTS showed similar and statistically significant correlations with baseline NIHSS (R=−0.399 and −0.277, respectively) and with follow-up mRS (R=−0.256 and −0.272), except for the follow-up NIHSS. Agreement between automated and consensus ASPECTS reading was similar to the interobserver agreement of manual ASPECTS (differences <1 point in 73% of cases). The automated ASPECTS method could, therefore, be used as a supplementary tool to assist manual scoring. PMID:26158082

  12. A Framework for Modeling Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.

  13. Vertebra identification using template matching modelmp and K-means clustering.

    PubMed

    Larhmam, Mohamed Amine; Benjelloun, Mohammed; Mahmoudi, Saïd

    2014-03-01

    Accurate vertebra detection and segmentation are essential steps for automating the diagnosis of spinal disorders. This study is dedicated to vertebra alignment measurement, the first step in a computer-aided diagnosis tool for cervical spine trauma. Automated vertebral segment alignment determination is a challenging task due to low contrast imaging and noise. A software tool for segmenting vertebrae and detecting subluxations has clinical significance. A robust method was developed and tested for cervical vertebra identification and segmentation that extracts parameters used for vertebra alignment measurement. Our contribution involves a novel combination of a template matching method and an unsupervised clustering algorithm. In this method, we build a geometric vertebra mean model. To achieve vertebra detection, manual selection of the region of interest is performed initially on the input image. Subsequent preprocessing is done to enhance image contrast and detect edges. Candidate vertebra localization is then carried out by using a modified generalized Hough transform (GHT). Next, an adapted cost function is used to compute local voted centers and filter boundary data. Thereafter, a K-means clustering algorithm is applied to obtain clusters distribution corresponding to the targeted vertebrae. These clusters are combined with the vote parameters to detect vertebra centers. Rigid segmentation is then carried out by using GHT parameters. Finally, cervical spine curves are extracted to measure vertebra alignment. The proposed approach was successfully applied to a set of 66 high-resolution X-ray images. Robust detection was achieved in 97.5 % of the 330 tested cervical vertebrae. An automated vertebral identification method was developed and demonstrated to be robust to noise and occlusion. This work presents a first step toward an automated computer-aided diagnosis system for cervical spine trauma detection.

  14. Centralized automated quality assurance for large scale health care systems. A pilot method for some aspects of dental radiography.

    PubMed

    Benn, D K; Minden, N J; Pettigrew, J C; Shim, M

    1994-08-01

    President Clinton's Health Security Act proposes the formation of large scale health plans with improved quality assurance. Dental radiography consumes 4% ($1.2 billion in 1990) of total dental expenditure yet regular systematic office quality assurance is not performed. A pilot automated method is described for assessing density of exposed film and fogging of unexposed processed film. A workstation and camera were used to input intraoral radiographs. Test images were produced from a phantom jaw with increasing exposure times. Two radiologists subjectively classified the images as too light, acceptable, or too dark. A computer program automatically classified global grey level histograms from the test images as too light, acceptable, or too dark. The program correctly classified 95% of 88 clinical films. Optical density of unexposed film in the range 0.15 to 0.52 measured by computer was reliable to better than 0.01. Further work is needed to see if comprehensive centralized automated radiographic quality assurance systems with feedback to dentists are feasible, are able to improve quality, and are significantly cheaper than conventional clerical methods.

  15. Comparison of Manual Versus Automated Data Collection Method for an Evidence-Based Nursing Practice Study

    PubMed Central

    Byrne, M.D.; Jordan, T.R.; Welle, T.

    2013-01-01

    Objective The objective of this study was to investigate and improve the use of automated data collection procedures for nursing research and quality assurance. Methods A descriptive, correlational study analyzed 44 orthopedic surgical patients who were part of an evidence-based practice (EBP) project examining post-operative oxygen therapy at a Midwestern hospital. The automation work attempted to replicate a manually-collected data set from the EBP project. Results Automation was successful in replicating data collection for study data elements that were available in the clinical data repository. The automation procedures identified 32 “false negative” patients who met the inclusion criteria described in the EBP project but were not selected during the manual data collection. Automating data collection for certain data elements, such as oxygen saturation, proved challenging because of workflow and practice variations and the reliance on disparate sources for data abstraction. Automation also revealed instances of human error including computational and transcription errors as well as incomplete selection of eligible patients. Conclusion Automated data collection for analysis of nursing-specific phenomenon is potentially superior to manual data collection methods. Creation of automated reports and analysis may require initial up-front investment with collaboration between clinicians, researchers and information technology specialists who can manage the ambiguities and challenges of research and quality assurance work in healthcare. PMID:23650488

  16. Crowdsourcing scoring of immunohistochemistry images: Evaluating Performance of the Crowd and an Automated Computational Method

    NASA Astrophysics Data System (ADS)

    Irshad, Humayun; Oh, Eun-Yeong; Schmolze, Daniel; Quintana, Liza M.; Collins, Laura; Tamimi, Rulla M.; Beck, Andrew H.

    2017-02-01

    The assessment of protein expression in immunohistochemistry (IHC) images provides important diagnostic, prognostic and predictive information for guiding cancer diagnosis and therapy. Manual scoring of IHC images represents a logistical challenge, as the process is labor intensive and time consuming. Since the last decade, computational methods have been developed to enable the application of quantitative methods for the analysis and interpretation of protein expression in IHC images. These methods have not yet replaced manual scoring for the assessment of IHC in the majority of diagnostic laboratories and in many large-scale research studies. An alternative approach is crowdsourcing the quantification of IHC images to an undefined crowd. The aim of this study is to quantify IHC images for labeling of ER status with two different crowdsourcing approaches, image-labeling and nuclei-labeling, and compare their performance with automated methods. Crowdsourcing- derived scores obtained greater concordance with the pathologist interpretations for both image-labeling and nuclei-labeling tasks (83% and 87%), as compared to the pathologist concordance achieved by the automated method (81%) on 5,338 TMA images from 1,853 breast cancer patients. This analysis shows that crowdsourcing the scoring of protein expression in IHC images is a promising new approach for large scale cancer molecular pathology studies.

  17. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  18. Audiovisual Media for Computer Education.

    ERIC Educational Resources Information Center

    Van Der Aa, H. J., Ed.

    The result of an international survey, this catalog lists over 450 films dealing with computing methods and automation and is intended for those who wish to use audiovisual displays as a means of instruction of computer education. The catalog gives the film's title, running time, and producer and tells whether the film is color or black-and-white,…

  19. An automated data collection system for a Charpy impact tester

    NASA Technical Reports Server (NTRS)

    Weigman, Bernard J.; Spiegel, F. Xavier

    1993-01-01

    A method for automated data collection has been developed for a Charpy impact tester. A potentiometer is connected to the pivot point of the hammer and measures the angular displacement of the hammer. This data is collected with a computer and, through appropriate software, accurately records the energy absorbed by the specimen. The device can be easily calibrated with minimal effort.

  20. Economics of cutting hardwood dimension parts with an automated system

    Treesearch

    Henry A. Huber; Steve Ruddell; Kalinath Mukherjee; Charles W. McMillin

    1989-01-01

    A financial analysis using discounted cash-flow decision methods was completed to determine the economic feasibility of replacing a conventional roughmill crosscut and rip operation with a proposed automated computer vision and laser cutting system. Red oak and soft maple lumber were cut at production levels of 30 thousand board feet (MBF)/day and 5 MBF/day to produce...

  1. Effects of an Automated Telephone Support System on Caregiver Burden and Anxiety: Findings from the REACH for TLC Intervention Study

    ERIC Educational Resources Information Center

    Mahoney, Diane Feeney; Tarlow, Barbara J.; Jones, Richard N.

    2003-01-01

    Purpose: We determine the main outcome effects of a 12-month computer-mediated automated interactive voice response (IVR) intervention designed to assist family caregivers managing persons with disruptive behaviors related to Alzheimer's disease (AD). Design and Methods: We conducted a randomized controlled study of 100 caregivers, 51 in the usual…

  2. Automated volumetry for unilateral hippocampal sclerosis detection in patients with temporal lobe epilepsy.

    PubMed

    Martins, Cristina; Moreira da Silva, Nadia; Silva, Guilherme; Rozanski, Verena E; Silva Cunha, Joao Paulo

    2016-08-01

    Hippocampal sclerosis (HS) is the most common cause of temporal lobe epilepsy (TLE) and can be identified in magnetic resonance imaging as hippocampal atrophy and subsequent volume loss. Detecting this kind of abnormalities through simple radiological assessment could be difficult, even for experienced radiologists. For that reason, hippocampal volumetry is generally used to support this kind of diagnosis. Manual volumetry is the traditional approach but it is time consuming and requires the physician to be familiar with neuroimaging software tools. In this paper, we propose an automated method, written as a script that uses FSL-FIRST, to perform hippocampal segmentation and compute an index to quantify hippocampi asymmetry (HAI). We compared the automated detection of HS (left or right) based on the HAI with the agreement of two experts in a group of 19 patients and 15 controls, achieving 84.2% sensitivity, 86.7% specificity and a Cohen's kappa coefficient of 0.704. The proposed method is integrated in the "Advanced Brain Imaging Lab" (ABrIL) cloud neurocomputing platform. The automated procedure is 77% (on average) faster to compute vs. the manual volumetry segmentation performed by an experienced physician.

  3. Interfacing Computer-Assisted Drafting and Design with the Building Loads Analysis and System Thermodynamics (BLAST) Program

    DTIC Science & Technology

    1992-10-01

    Manual CI APPENDIX D: Drawing Navigator Field Test D1 DISTRIBUTION Accesion For NTIS CRA&I OTIC TAB Unannouncea JustiteCdtOn By Distribution I "".i•I...methods replace manual methods, the automation will handle the data for the designer, thus reducing error and increasing throughput. However, the two...actively move data from one automation tool (CADD) to the other (the analysis program). This intervention involves a manual rekeying of data already in

  4. Automated Detector of High Frequency Oscillations in Epilepsy Based on Maximum Distributed Peak Points.

    PubMed

    Ren, Guo-Ping; Yan, Jia-Qing; Yu, Zhi-Xin; Wang, Dan; Li, Xiao-Nan; Mei, Shan-Shan; Dai, Jin-Dong; Li, Xiao-Li; Li, Yun-Lin; Wang, Xiao-Fei; Yang, Xiao-Feng

    2018-02-01

    High frequency oscillations (HFOs) are considered as biomarker for epileptogenicity. Reliable automation of HFOs detection is necessary for rapid and objective analysis, and is determined by accurate computation of the baseline. Although most existing automated detectors measure baseline accurately in channels with rare HFOs, they lose accuracy in channels with frequent HFOs. Here, we proposed a novel algorithm using the maximum distributed peak points method to improve baseline determination accuracy in channels with wide HFOs activity ranges and calculate a dynamic baseline. Interictal ripples (80-200[Formula: see text]Hz), fast ripples (FRs, 200-500[Formula: see text]Hz) and baselines in intracerebral EEGs from seven patients with intractable epilepsy were identified by experienced reviewers and by our computer-automated program, and the results were compared. We also compared the performance of our detector to four well-known detectors integrated in RIPPLELAB. The sensitivity and specificity of our detector were, respectively, 71% and 75% for ripples and 66% and 84% for FRs. Spearman's rank correlation coefficient comparing automated and manual detection was [Formula: see text] for ripples and [Formula: see text] for FRs ([Formula: see text]). In comparison to other detectors, our detector had a relatively higher sensitivity and specificity. In conclusion, our automated detector is able to accurately calculate a dynamic iEEG baseline in different HFO activity channels using the maximum distributed peak points method, resulting in higher sensitivity and specificity than other available HFO detectors.

  5. A new automated spectral feature extraction method and its application in spectral classification and defective spectra recovery

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Guo, Ping; Luo, A.-Li

    2017-03-01

    Spectral feature extraction is a crucial procedure in automated spectral analysis. This procedure starts from the spectral data and produces informative and non-redundant features, facilitating the subsequent automated processing and analysis with machine-learning and data-mining techniques. In this paper, we present a new automated feature extraction method for astronomical spectra, with application in spectral classification and defective spectra recovery. The basic idea of our approach is to train a deep neural network to extract features of spectra with different levels of abstraction in different layers. The deep neural network is trained with a fast layer-wise learning algorithm in an analytical way without any iterative optimization procedure. We evaluate the performance of the proposed scheme on real-world spectral data. The results demonstrate that our method is superior regarding its comprehensive performance, and the computational cost is significantly lower than that for other methods. The proposed method can be regarded as a new valid alternative general-purpose feature extraction method for various tasks in spectral data analysis.

  6. A Computational Framework for Automation of Point Defect Calculations

    NASA Astrophysics Data System (ADS)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; Lany, Stephan; Stevanovic, Vladan; National Renewable Energy Laboratory, Golden, Colorado 80401 Collaboration

    A complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory has been developed. The framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. The package provides the capability to compute widely accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3as test examples, we demonstrate the package capabilities and validate the methodology. We believe that a robust automated tool like this will enable the materials by design community to assess the impact of point defects on materials performance. National Renewable Energy Laboratory, Golden, Colorado 80401.

  7. Role of post-mapping computed tomography in virtual-assisted lung mapping.

    PubMed

    Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun

    2017-02-01

    Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.

  8. The interaction of representation and reasoning.

    PubMed

    Bundy, Alan

    2013-09-08

    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group.

  9. Computer laser system for prevention and treatment of dental diseases: new methods and results

    NASA Astrophysics Data System (ADS)

    Fedyai, S. G.; Prochonchukov, Alexander A.; Zhizhina, Nina A.; Metelnikov, Michael A.

    1995-05-01

    We report results of clinical application of the new computer-laser system. The system includes hardware and software means, which are applied for new efficient methods of prevention and treatment of main dental diseases. The hardware includes a laser physiotherapeutic device (LPD) `Optodan' and a fiberoptic laser delivery system with special endodontic rigging. The semiconductor AG-AL-AG laser diode with wavelengths in the spectral range of 850 - 950 nm (produced by Scientific-Industrial Concern `Reflector') is used as a basic unit. The LPD `Optodan' and methods of treatment are covered by Russian patent No 2014107 and certified by the Russian Ministry of Health. The automated computer system allows us to examine patients quickly and to input differential diagnosis, to determine indications (and contraindications), parameters and regimen of laser therapy, to control treatment efficacy (for carious -- through clinical indexes of enamel solubles, velocity of demineralization and other tests; for periodontal diseases trough complex of the periodontal indexes with automated registry and calculation). We present last results of application of the new technique and methods in treatment of dental diseases in Russian clinics.

  10. A computational framework for automation of point defect calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  11. A computational framework for automation of point defect calculations

    DOE PAGES

    Goyal, Anuj; Gorai, Prashun; Peng, Haowei; ...

    2017-01-13

    We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.

  12. Analyzing the Cohesion of English Text and Discourse with Automated Computer Tools

    ERIC Educational Resources Information Center

    Jeon, Moongee

    2014-01-01

    This article investigates the lexical and discourse features of English text and discourse with automated computer technologies. Specifically, this article examines the cohesion of English text and discourse with automated computer tools, Coh-Metrix and TEES. Coh-Metrix is a text analysis computer tool that can analyze English text and discourse…

  13. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-08-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.

  14. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy.

    PubMed

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-08-11

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method.

  15. Automated In Vivo Platform for the Discovery of Functional Food Treatments of Hypercholesterolemia

    PubMed Central

    Littleton, Robert M.; Haworth, Kevin J.; Tang, Hong; Setchell, Kenneth D. R.; Nelson, Sandra; Hove, Jay R.

    2013-01-01

    The zebrafish is becoming an increasingly popular model system for both automated drug discovery and investigating hypercholesterolemia. Here we combine these aspects and for the first time develop an automated high-content confocal assay for treatments of hypercholesterolemia. We also create two algorithms for automated analysis of cardiodynamic data acquired by high-speed confocal microscopy. The first algorithm computes cardiac parameters solely from the frequency-domain representation of cardiodynamic data while the second uses both frequency- and time-domain data. The combined approach resulted in smaller differences relative to manual measurements. The methods are implemented to test the ability of a methanolic extract of the hawthorn plant (Crataegus laevigata) to treat hypercholesterolemia and its peripheral cardiovascular effects. Results demonstrate the utility of these methods and suggest the extract has both antihypercholesterolemic and postitively inotropic properties. PMID:23349685

  16. Automated in vivo platform for the discovery of functional food treatments of hypercholesterolemia.

    PubMed

    Littleton, Robert M; Haworth, Kevin J; Tang, Hong; Setchell, Kenneth D R; Nelson, Sandra; Hove, Jay R

    2013-01-01

    The zebrafish is becoming an increasingly popular model system for both automated drug discovery and investigating hypercholesterolemia. Here we combine these aspects and for the first time develop an automated high-content confocal assay for treatments of hypercholesterolemia. We also create two algorithms for automated analysis of cardiodynamic data acquired by high-speed confocal microscopy. The first algorithm computes cardiac parameters solely from the frequency-domain representation of cardiodynamic data while the second uses both frequency- and time-domain data. The combined approach resulted in smaller differences relative to manual measurements. The methods are implemented to test the ability of a methanolic extract of the hawthorn plant (Crataegus laevigata) to treat hypercholesterolemia and its peripheral cardiovascular effects. Results demonstrate the utility of these methods and suggest the extract has both antihypercholesterolemic and postitively inotropic properties.

  17. Automated analysis of clonal cancer cells by intravital imaging

    PubMed Central

    Coffey, Sarah Earley; Giedt, Randy J; Weissleder, Ralph

    2013-01-01

    Longitudinal analyses of single cell lineages over prolonged periods have been challenging particularly in processes characterized by high cell turn-over such as inflammation, proliferation, or cancer. RGB marking has emerged as an elegant approach for enabling such investigations. However, methods for automated image analysis continue to be lacking. Here, to address this, we created a number of different multicolored poly- and monoclonal cancer cell lines for in vitro and in vivo use. To classify these cells in large scale data sets, we subsequently developed and tested an automated algorithm based on hue selection. Our results showed that this method allows accurate analyses at a fraction of the computational time required by more complex color classification methods. Moreover, the methodology should be broadly applicable to both in vitro and in vivo analyses. PMID:24349895

  18. The contaminant analysis automation robot implementation for the automated laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-12-31

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLMmore » when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation.« less

  19. Large-Scale Automated Analysis of News Media: A Novel Computational Method for Obesity Policy Research

    PubMed Central

    Hamad, Rita; Pomeranz, Jennifer L.; Siddiqi, Arjumand; Basu, Sanjay

    2015-01-01

    Objective Analyzing news media allows obesity policy researchers to understand popular conceptions about obesity, which is important for targeting health education and policies. A persistent dilemma is that investigators have to read and manually classify thousands of individual news articles to identify how obesity and obesity-related policy proposals may be described to the public in the media. We demonstrate a novel method called “automated content analysis” that permits researchers to train computers to “read” and classify massive volumes of documents. Methods We identified 14,302 newspaper articles that mentioned the word “obesity” during 2011–2012. We examined four states that vary in obesity prevalence and policy (Alabama, California, New Jersey, and North Carolina). We tested the reliability of an automated program to categorize the media’s “framing” of obesity as an individual-level problem (e.g., diet) and/or an environmental-level problem (e.g., obesogenic environment). Results The automated program performed similarly to human coders. The proportion of articles with individual-level framing (27.7–31.0%) was higher than the proportion with neutral (18.0–22.1%) or environmental-level framing (16.0–16.4%) across all states and over the entire study period (p<0.05). Conclusion We demonstrate a novel approach to the study of how obesity concepts are communicated and propagated in news media. PMID:25522013

  20. An anatomy of industrial robots and their controls

    NASA Astrophysics Data System (ADS)

    Luh, J. Y. S.

    1983-02-01

    The modernization of manufacturing facilities by means of automation represents an approach for increasing productivity in industry. The three existing types of automation are related to continuous process controls, the use of transfer conveyor methods, and the employment of programmable automation for the low-volume batch production of discrete parts. The industrial robots, which are defined as computer controlled mechanics manipulators, belong to the area of programmable automation. Typically, the robots perform tasks of arc welding, paint spraying, or foundary operation. One may assign a robot to perform a variety of job assignments simply by changing the appropriate computer program. The present investigation is concerned with an evaluation of the potential of the robot on the basis of its basic structure and controls. It is found that robots function well in limited areas of industry. If the range of tasks which robots can perform is to be expanded, it is necessary to provide multiple-task sensors, or special tooling, or even automatic tooling.

  1. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  2. Comparison of manual versus automated data collection method for an evidence-based nursing practice study.

    PubMed

    Byrne, M D; Jordan, T R; Welle, T

    2013-01-01

    The objective of this study was to investigate and improve the use of automated data collection procedures for nursing research and quality assurance. A descriptive, correlational study analyzed 44 orthopedic surgical patients who were part of an evidence-based practice (EBP) project examining post-operative oxygen therapy at a Midwestern hospital. The automation work attempted to replicate a manually-collected data set from the EBP project. Automation was successful in replicating data collection for study data elements that were available in the clinical data repository. The automation procedures identified 32 "false negative" patients who met the inclusion criteria described in the EBP project but were not selected during the manual data collection. Automating data collection for certain data elements, such as oxygen saturation, proved challenging because of workflow and practice variations and the reliance on disparate sources for data abstraction. Automation also revealed instances of human error including computational and transcription errors as well as incomplete selection of eligible patients. Automated data collection for analysis of nursing-specific phenomenon is potentially superior to manual data collection methods. Creation of automated reports and analysis may require initial up-front investment with collaboration between clinicians, researchers and information technology specialists who can manage the ambiguities and challenges of research and quality assurance work in healthcare.

  3. An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.; Swadley, Casey L.

    2002-01-01

    Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.

  4. High-reliability computing for the smarter planet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Heather M; Graham, Paul; Manuzzato, Andrea

    2010-01-01

    The geometric rate of improvement of transistor size and integrated circuit performance, known as Moore's Law, has been an engine of growth for our economy, enabling new products and services, creating new value and wealth, increasing safety, and removing menial tasks from our daily lives. Affordable, highly integrated components have enabled both life-saving technologies and rich entertainment applications. Anti-lock brakes, insulin monitors, and GPS-enabled emergency response systems save lives. Cell phones, internet appliances, virtual worlds, realistic video games, and mp3 players enrich our lives and connect us together. Over the past 40 years of silicon scaling, the increasing capabilities ofmore » inexpensive computation have transformed our society through automation and ubiquitous communications. In this paper, we will present the concept of the smarter planet, how reliability failures affect current systems, and methods that can be used to increase the reliable adoption of new automation in the future. We will illustrate these issues using a number of different electronic devices in a couple of different scenarios. Recently IBM has been presenting the idea of a 'smarter planet.' In smarter planet documents, IBM discusses increased computer automation of roadways, banking, healthcare, and infrastructure, as automation could create more efficient systems. A necessary component of the smarter planet concept is to ensure that these new systems have very high reliability. Even extremely rare reliability problems can easily escalate to problematic scenarios when implemented at very large scales. For life-critical systems, such as automobiles, infrastructure, medical implantables, and avionic systems, unmitigated failures could be dangerous. As more automation moves into these types of critical systems, reliability failures will need to be managed. As computer automation continues to increase in our society, the need for greater radiation reliability is necessary. Already critical infrastructure is failing too frequently. In this paper, we will introduce the Cross-Layer Reliability concept for designing more reliable computer systems.« less

  5. [Isolation and identification methods of enterobacteria group and its technological advancement].

    PubMed

    Furuta, Itaru

    2007-08-01

    In the last half-century, isolation and identification methods of enterobacteria groups have markedly improved by technological advancement. Clinical microbiology tests have changed overtime from tube methods to commercial identification kits and automated identification. Tube methods are the original method for the identification of enterobacteria groups, that is, a basically essential method to recognize bacterial fermentation and biochemical principles. In this paper, traditional tube tests are discussed, such as the utilization of carbohydrates, indole, methyl red, and citrate and urease tests. Commercial identification kits and automated instruments by computer based analysis as current methods are also discussed, and those methods provide rapidity and accuracy. Nonculture techniques of nucleic acid typing methods using PCR analysis, and immunochemical methods using monoclonal antibodies can be further developed.

  6. Applying Standard Interfaces to a Process-Control Language

    NASA Technical Reports Server (NTRS)

    Berthold, Richard T.

    2005-01-01

    A method of applying open-operating-system standard interfaces to the NASA User Interface Language (UIL) has been devised. UIL is a computing language that can be used in monitoring and controlling automated processes: for example, the Timeliner computer program, written in UIL, is a general-purpose software system for monitoring and controlling sequences of automated tasks in a target system. In providing the major elements of connectivity between UIL and the target system, the present method offers advantages over the prior method. Most notably, unlike in the prior method, the software description of the target system can be made independent of the applicable compiler software and need not be linked to the applicable executable compiler image. Also unlike in the prior method, it is not necessary to recompile the source code and relink the source code to a new executable compiler image. Abstraction of the description of the target system to a data file can be defined easily, with intuitive syntax, and knowledge of the source-code language is not needed for the definition.

  7. An accurate and efficient method for evaluating the kernel of the integral equation relating pressure to normalwash in unsteady potential flow

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1982-01-01

    This paper describes an accurate economical method for generating approximations to the kernel of the integral equation relating unsteady pressure to normalwash in nonplanar flow. The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the non elementary integrals in the kernel by exponential approximations and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. Coefficients for 8, 12, 24, and 72 term approximations are tabulated in the report. Also, since the method is automated, it can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.

  8. Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review

    NASA Astrophysics Data System (ADS)

    van Rikxoort, Eva M.; van Ginneken, Bram

    2013-09-01

    Computed tomography (CT) is the modality of choice for imaging the lungs in vivo. Sub-millimeter isotropic images of the lungs can be obtained within seconds, allowing the detection of small lesions and detailed analysis of disease processes. The high resolution of thoracic CT and the high prevalence of lung diseases require a high degree of automation in the analysis pipeline. The automated segmentation of pulmonary structures in thoracic CT has been an important research topic for over a decade now. This systematic review provides an overview of current literature. We discuss segmentation methods for the lungs, the pulmonary vasculature, the airways, including airway tree construction and airway wall segmentation, the fissures, the lobes and the pulmonary segments. For each topic, the current state of the art is summarized, and topics for future research are identified.

  9. Automated Design of Quantum Circuits

    NASA Technical Reports Server (NTRS)

    Williams, Colin P.; Gray, Alexander G.

    2000-01-01

    In order to design a quantum circuit that performs a desired quantum computation, it is necessary to find a decomposition of the unitary matrix that represents that computation in terms of a sequence of quantum gate operations. To date, such designs have either been found by hand or by exhaustive enumeration of all possible circuit topologies. In this paper we propose an automated approach to quantum circuit design using search heuristics based on principles abstracted from evolutionary genetics, i.e. using a genetic programming algorithm adapted specially for this problem. We demonstrate the method on the task of discovering quantum circuit designs for quantum teleportation. We show that to find a given known circuit design (one which was hand-crafted by a human), the method considers roughly an order of magnitude fewer designs than naive enumeration. In addition, the method finds novel circuit designs superior to those previously known.

  10. Automated acoustic localization and call association for vocalizing humpback whales on the Navy's Pacific Missile Range Facility.

    PubMed

    Helble, Tyler A; Ierley, Glenn R; D'Spain, Gerald L; Martin, Stephen W

    2015-01-01

    Time difference of arrival (TDOA) methods for acoustically localizing multiple marine mammals have been applied to recorded data from the Navy's Pacific Missile Range Facility in order to localize and track humpback whales. Modifications to established methods were necessary in order to simultaneously track multiple animals on the range faster than real-time and in a fully automated way, while minimizing the number of incorrect localizations. The resulting algorithms were run with no human intervention at computational speeds faster than the data recording speed on over forty days of acoustic recordings from the range, spanning multiple years. Spatial localizations based on correlating sequences of units originating from within the range produce estimates having a standard deviation typically 10 m or less (due primarily to TDOA measurement errors), and a bias of 20 m or less (due primarily to sound speed mismatch). An automated method for associating units to individual whales is presented, enabling automated humpback song analyses to be performed.

  11. The Change to Administrative Computing in Schools.

    ERIC Educational Resources Information Center

    Brown, Daniel J.

    1984-01-01

    Describes a study of the process of school office automation which focuses on personnel reactions to administrative computing, what users view as advantages and disadvantages of the automation, perceived barriers and facilitators of the change to automation, school personnel view of long term effects, and implications for school computer policy.…

  12. Fundamentals of Library Automation and Technology. Participant Workbook.

    ERIC Educational Resources Information Center

    Bridge, Frank; Walton, Robert

    This workbook presents outlines of topics to be covered during a two-day workshop on the fundamentals for library automation. Topics for the first day include: (1) Introduction; (2) Computer Technology--A Historical Overview; (3) Evolution of Library Automation; (4) Computer Hardware Technology--An Introduction; (5) Computer Software…

  13. System for Computer Automated Typesetting (SCAT) of Computer Authored Texts.

    ERIC Educational Resources Information Center

    Keeler, F. Laurence

    This description of the System for Automated Typesetting (SCAT), an automated system for typesetting text and inserting special graphic symbols in programmed instructional materials created by the computer aided authoring system AUTHOR, provides an outline of the design architecture of the system and an overview including the component…

  14. CRD's Daniela Ushizima Receives DOE Early Career Award

    Science.gov Websites

    Science. The award will fund research into developing new methods to help scientists extract more -the-art data analysis methods with emphasis on pattern recognition and machine learning emerging sources, multidisciplinary teams to interpret the data and the computational methods to automate some of

  15. Human factors issues in the use of artificial intelligence in air traffic control. October 1990 Workshop

    NASA Technical Reports Server (NTRS)

    Hockaday, Stephen; Kuhlenschmidt, Sharon (Editor)

    1991-01-01

    The objective of the workshop was to explore the role of human factors in facilitating the introduction of artificial intelligence (AI) to advanced air traffic control (ATC) automation concepts. AI is an umbrella term which is continually expanding to cover a variety of techniques where machines are performing actions taken based upon dynamic, external stimuli. AI methods can be implemented using more traditional programming languages such as LISP or PROLOG, or they can be implemented using state-of-the-art techniques such as object-oriented programming, neural nets (hardware or software), and knowledge based expert systems. As this technology advances and as increasingly powerful computing platforms become available, the use of AI to enhance ATC systems can be realized. Substantial efforts along these lines are already being undertaken at the FAA Technical Center, NASA Ames Research Center, academic institutions, industry, and elsewhere. Although it is clear that the technology is ripe for bringing computer automation to ATC systems, the proper scope and role of automation are not at all apparent. The major concern is how to combine human controllers with computer technology. A wide spectrum of options exists, ranging from using automation only to provide extra tools to augment decision making by human controllers to turning over moment-by-moment control to automated systems and using humans as supervisors and system managers. Across this spectrum, it is now obvious that the difficulties that occur when tying human and automated systems together must be resolved so that automation can be introduced safely and effectively. The focus of the workshop was to further explore the role of injecting AI into ATC systems and to identify the human factors that need to be considered for successful application of the technology to present and future ATC systems.

  16. On automating domain connectivity for overset grids

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau

    1994-01-01

    An alternative method for domain connectivity among systems of overset grids is presented. Reference uniform Cartesian systems of points are used to achieve highly efficient domain connectivity, and form the basis for a future fully automated system. The Cartesian systems are used to approximated body surfaces and to map the computational space of component grids. By exploiting the characteristics of Cartesian Systems, Chimera type hole-cutting and identification of donor elements for intergrid boundary points can be carried out very efficiently. The method is tested for a range of geometrically complex multiple-body overset grid systems.

  17. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orimoto, Yuuichi, E-mail: orimoto.yuuichi.888@m.kyushu-u.ac.jp; Aoki, Yuriko; Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method,more » and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between “choose-maximum” (choose a base pair giving the maximum β for each step) and “choose-minimum” (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.« less

  18. Automated property optimization via ab initio O(N) elongation method: Application to (hyper-)polarizability in DNA.

    PubMed

    Orimoto, Yuuichi; Aoki, Yuriko

    2016-07-14

    An automated property optimization method was developed based on the ab initio O(N) elongation (ELG) method and applied to the optimization of nonlinear optical (NLO) properties in DNA as a first test. The ELG method mimics a polymerization reaction on a computer, and the reaction terminal of a starting cluster is attacked by monomers sequentially to elongate the electronic structure of the system by solving in each step a limited space including the terminal (localized molecular orbitals at the terminal) and monomer. The ELG-finite field (ELG-FF) method for calculating (hyper-)polarizabilities was used as the engine program of the optimization method, and it was found to show linear scaling efficiency while maintaining high computational accuracy for a random sequenced DNA model. Furthermore, the self-consistent field convergence was significantly improved by using the ELG-FF method compared with a conventional method, and it can lead to more feasible NLO property values in the FF treatment. The automated optimization method successfully chose an appropriate base pair from four base pairs (A, T, G, and C) for each elongation step according to an evaluation function. From test optimizations for the first order hyper-polarizability (β) in DNA, a substantial difference was observed depending on optimization conditions between "choose-maximum" (choose a base pair giving the maximum β for each step) and "choose-minimum" (choose a base pair giving the minimum β). In contrast, there was an ambiguous difference between these conditions for optimizing the second order hyper-polarizability (γ) because of the small absolute value of γ and the limitation of numerical differential calculations in the FF method. It can be concluded that the ab initio level property optimization method introduced here can be an effective step towards an advanced computer aided material design method as long as the numerical limitation of the FF method is taken into account.

  19. Automated computation of femoral angles in dogs from three-dimensional computed tomography reconstructions: Comparison with manual techniques.

    PubMed

    Longo, F; Nicetto, T; Banzato, T; Savio, G; Drigo, M; Meneghello, R; Concheri, G; Isola, M

    2018-02-01

    The aim of this ex vivo study was to test a novel three-dimensional (3D) automated computer-aided design (CAD) method (aCAD) for the computation of femoral angles in dogs from 3D reconstructions of computed tomography (CT) images. The repeatability and reproducibility of three manual radiography, manual CT reconstructions and the aCAD method for the measurement of three femoral angles were evaluated: (1) anatomical lateral distal femoral angle (aLDFA); (2) femoral neck angle (FNA); and (3) femoral torsion angle (FTA). Femoral angles of 22 femurs obtained from 16 cadavers were measured by three blinded observers. Measurements were repeated three times by each observer for each diagnostic technique. Femoral angle measurements were analysed using a mixed effects linear model for repeated measures to determine the levels of intra-observer agreement (repeatability) and inter-observer agreement (reproducibility). Repeatability and reproducibility of measurements using the aCAD method were excellent (intra-class coefficients, ICCs≥0.98) for all three angles assessed. Manual radiography and CT exhibited excellent agreement for the aLDFA measurement (ICCs≥0.90). However, FNA repeatability and reproducibility were poor (ICCs<0.8), whereas FTA measurement showed slightly higher ICCs values, except for the radiographic reproducibility, which was poor (ICCs<0.8). The computation of the 3D aCAD method provided the highest repeatability and reproducibility among the tested methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Automated replication of cone beam CT-guided treatments in the Pinnacle(3) treatment planning system for adaptive radiotherapy.

    PubMed

    Hargrave, Catriona; Mason, Nicole; Guidi, Robyn; Miller, Julie-Anne; Becker, Jillian; Moores, Matthew; Mengersen, Kerrie; Poulsen, Michael; Harden, Fiona

    2016-03-01

    Time-consuming manual methods have been required to register cone-beam computed tomography (CBCT) images with plans in the Pinnacle(3) treatment planning system in order to replicate delivered treatments for adaptive radiotherapy. These methods rely on fiducial marker (FM) placement during CBCT acquisition or the image mid-point to localise the image isocentre. A quality assurance study was conducted to validate an automated CBCT-plan registration method utilising the Digital Imaging and Communications in Medicine (DICOM) Structure Set (RS) and Spatial Registration (RE) files created during online image-guided radiotherapy (IGRT). CBCTs of a phantom were acquired with FMs and predetermined setup errors using various online IGRT workflows. The CBCTs, DICOM RS and RE files were imported into Pinnacle(3) plans of the phantom and the resulting automated CBCT-plan registrations were compared to existing manual methods. A clinical protocol for the automated method was subsequently developed and tested retrospectively using CBCTs and plans for six bladder patients. The automated CBCT-plan registration method was successfully applied to thirty-four phantom CBCT images acquired with an online 0 mm action level workflow. Ten CBCTs acquired with other IGRT workflows required manual workarounds. This was addressed during the development and testing of the clinical protocol using twenty-eight patient CBCTs. The automated CBCT-plan registrations were instantaneous, replicating delivered treatments in Pinnacle(3) with errors of ±0.5 mm. These errors were comparable to mid-point-dependant manual registrations but superior to FM-dependant manual registrations. The automated CBCT-plan registration method quickly and reliably replicates delivered treatments in Pinnacle(3) for adaptive radiotherapy.

  1. Pilot interaction with automated airborne decision making systems

    NASA Technical Reports Server (NTRS)

    Rouse, W. B.; Chu, Y. Y.; Greenstein, J. S.; Walden, R. S.

    1976-01-01

    An investigation was made of interaction between a human pilot and automated on-board decision making systems. Research was initiated on the topic of pilot problem solving in automated and semi-automated flight management systems and attempts were made to develop a model of human decision making in a multi-task situation. A study was made of allocation of responsibility between human and computer, and discussed were various pilot performance parameters with varying degrees of automation. Optimal allocation of responsibility between human and computer was considered and some theoretical results found in the literature were presented. The pilot as a problem solver was discussed. Finally the design of displays, controls, procedures, and computer aids for problem solving tasks in automated and semi-automated systems was considered.

  2. Project TwEATs: a feasibility study testing the use of automated text messaging to monitor appetite ratings in a free-living population

    PubMed Central

    Schembre, Susan M.; Yuen, Jessica

    2011-01-01

    There are no standardized methods for monitoring appetite in free-living populations. Fifteen participants tested a computer-automated text-messaging system designed to track hunger ratings over seven days. Participants were sent text-messages (SMS) hourly and instructed to reply during waking hours with their current hunger rating. Of 168 SMS, 0.6-7.1% were undelivered, varying by mobile service provider, On average 12 SMS responses were received daily with minor variations by observation day or day of the week. Compliance was over 74% and 93% of the ratings were received within 30-minutes. Automated text-messaging is a feasible method to monitor appetite ratings in this population. PMID:21251941

  3. Towards a theory of automated elliptic mesh generation

    NASA Technical Reports Server (NTRS)

    Cordova, J. Q.

    1992-01-01

    The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented.

  4. Automated segmentation of cardiac visceral fat in low-dose non-contrast chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Liang, Mingzhu; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    Cardiac visceral fat was segmented from low-dose non-contrast chest CT images using a fully automated method. Cardiac visceral fat is defined as the fatty tissues surrounding the heart region, enclosed by the lungs and posterior to the sternum. It is measured by constraining the heart region with an Anatomy Label Map that contains robust segmentations of the lungs and other major organs and estimating the fatty tissue within this region. The algorithm was evaluated on 124 low-dose and 223 standard-dose non-contrast chest CT scans from two public datasets. Based on visual inspection, 343 cases had good cardiac visceral fat segmentation. For quantitative evaluation, manual markings of cardiac visceral fat regions were made in 3 image slices for 45 low-dose scans and the Dice similarity coefficient (DSC) was computed. The automated algorithm achieved an average DSC of 0.93. Cardiac visceral fat volume (CVFV), heart region volume (HRV) and their ratio were computed for each case. The correlation between cardiac visceral fat measurement and coronary artery and aortic calcification was also evaluated. Results indicated the automated algorithm for measuring cardiac visceral fat volume may be an alternative method to the traditional manual assessment of thoracic region fat content in the assessment of cardiovascular disease risk.

  5. Computer vision applications for coronagraphic optical alignment and image processing.

    PubMed

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  6. Automated, computer-guided PASI measurements by digital image analysis versus conventional physicians' PASI calculations: study protocol for a comparative, single-centre, observational study.

    PubMed

    Fink, Christine; Uhlmann, Lorenz; Klose, Christina; Haenssle, Holger A

    2018-05-17

    Reliable and accurate assessment of severity in psoriasis is very important in order to meet indication criteria for initiation of systemic treatment or to evaluate treatment efficacy. The most acknowledged tool for measuring the extent of psoriatic skin changes is the Psoriasis Area and Severity Index (PASI). However, the calculation of PASI can be tedious and subjective and high intraobserver and interobserver variability is an important concern. Therefore, there is a great need for a standardised and objective method that guarantees a reproducible PASI calculation. Within this study we will investigate the precision and reproducibility of automated, computer-guided PASI measurements in comparison to trained physicians to address these limitations. Non-interventional analyses of PASI calculations by either physicians in a prospective versus retrospective setting or an automated computer-guided algorithm in 120 patients with plaque psoriasis. All retrospective PASI calculations by physicians or by the computer algorithm are based on total body digital images. The primary objective of this study is comparison of automated computer-guided PASI measurements by means of digital image analysis versus conventional, prospective or retrospective physicians' PASI assessments. Secondary endpoints include (1) the assessment of physicians' interobserver variance in PASI calculations, (2) the assessment of physicians' intraobserver variance in PASI assessments of the same patients' images after a time interval of at least 4 weeks, (3) the assessment of the deviation between physicians' prospective versus retrospective PASI calculations, and (4) the reproducibility of automated computer-guided PASI measurements by assessment of two sets of total body digital images of the same patients taken at one time point. Ethical approval was provided by the Ethics Committee of the Medical Faculty of the University of Heidelberg (ethics approval number S-379/2016). DRKS00011818; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Computer program for calculating supersonic flow about circular, elliptic, and bielliptic cones by the method of lines

    NASA Technical Reports Server (NTRS)

    Klunker, E. B.; South, J. C., Jr.; Davis, R. M.

    1972-01-01

    A user's manual for a computer program which calculates the supersonic flow about circular, elliptic, and bielliptic cones at incidence and elliptic cones at yaw by the method of lines is presented. The program is automated to compute a case from known or easily calculated solution by changing the parameters through a sequence of steps. It provides information including the shock shape, flow field, isentropic surface properties, entropy layer, and force coefficients. A description of the program operation, sample computations, and a FORTRAN 4 listing are presented.

  8. Testing an automated method to estimate ground-water recharge from streamflow records

    USGS Publications Warehouse

    Rutledge, A.T.; Daniel, C.C.

    1994-01-01

    The computer program, RORA, allows automated analysis of streamflow hydrographs to estimate ground-water recharge. Output from the program, which is based on the recession-curve-displacement method (often referred to as the Rorabaugh method, for whom the program is named), was compared to estimates of recharge obtained from a manual analysis of 156 years of streamflow record from 15 streamflow-gaging stations in the eastern United States. Statistical tests showed that there was no significant difference between paired estimates of annual recharge by the two methods. Tests of results produced by the four workers who performed the manual method showed that results can differ significantly between workers. Twenty-two percent of the variation between manual and automated estimates could be attributed to having different workers perform the manual method. The program RORA will produce estimates of recharge equivalent to estimates produced manually, greatly increase the speed od analysis, and reduce the subjectivity inherent in manual analysis.

  9. The interaction of representation and reasoning

    PubMed Central

    Bundy, Alan

    2013-01-01

    Automated reasoning is an enabling technology for many applications of informatics. These applications include verifying that a computer program meets its specification; enabling a robot to form a plan to achieve a task and answering questions by combining information from diverse sources, e.g. on the Internet, etc. How is automated reasoning possible? Firstly, knowledge of a domain must be stored in a computer, usually in the form of logical formulae. This knowledge might, for instance, have been entered manually, retrieved from the Internet or perceived in the environment via sensors, such as cameras. Secondly, rules of inference are applied to old knowledge to derive new knowledge. Automated reasoning techniques have been adapted from logic, a branch of mathematics that was originally designed to formalize the reasoning of humans, especially mathematicians. My special interest is in the way that representation and reasoning interact. Successful reasoning is dependent on appropriate representation of both knowledge and successful methods of reasoning. Failures of reasoning can suggest changes of representation. This process of representational change can also be automated. We will illustrate the automation of representational change by drawing on recent work in my research group. PMID:24062623

  10. Control mechanism of double-rotator-structure ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  11. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis.

    PubMed

    Kumar, Sudhir; Stecher, Glen; Peterson, Daniel; Tamura, Koichiro

    2012-10-15

    There is a growing need in the research community to apply the molecular evolutionary genetics analysis (MEGA) software tool for batch processing a large number of datasets and to integrate it into analysis workflows. Therefore, we now make available the computing core of the MEGA software as a stand-alone executable (MEGA-CC), along with an analysis prototyper (MEGA-Proto). MEGA-CC provides users with access to all the computational analyses available through MEGA's graphical user interface version. This includes methods for multiple sequence alignment, substitution model selection, evolutionary distance estimation, phylogeny inference, substitution rate and pattern estimation, tests of natural selection and ancestral sequence inference. Additionally, we have upgraded the source code for phylogenetic analysis using the maximum likelihood methods for parallel execution on multiple processors and cores. Here, we describe MEGA-CC and outline the steps for using MEGA-CC in tandem with MEGA-Proto for iterative and automated data analysis. http://www.megasoftware.net/.

  12. Computational Analysis of the Caenorhabditis elegans Germline to Study the Distribution of Nuclei, Proteins, and the Cytoskeleton.

    PubMed

    Gopal, Sandeep; Pocock, Roger

    2018-04-19

    The Caenorhabditis elegans (C. elegans) germline is used to study several biologically important processes including stem cell development, apoptosis, and chromosome dynamics. While the germline is an excellent model, the analysis is often two dimensional due to the time and labor required for three-dimensional analysis. Major readouts in such studies are the number/position of nuclei and protein distribution within the germline. Here, we present a method to perform automated analysis of the germline using confocal microscopy and computational approaches to determine the number and position of nuclei in each region of the germline. Our method also analyzes germline protein distribution that enables the three-dimensional examination of protein expression in different genetic backgrounds. Further, our study shows variations in cytoskeletal architecture in distinct regions of the germline that may accommodate specific spatial developmental requirements. Finally, our method enables automated counting of the sperm in the spermatheca of each germline. Taken together, our method enables rapid and reproducible phenotypic analysis of the C. elegans germline.

  13. Robust Ambiguity Estimation for an Automated Analysis of the Intensive Sessions

    NASA Astrophysics Data System (ADS)

    Kareinen, Niko; Hobiger, Thomas; Haas, Rüdiger

    2016-12-01

    Very Long Baseline Interferometry (VLBI) is a unique space-geodetic technique that can directly determine the Earth's phase of rotation, namely UT1. The daily estimates of the difference between UT1 and Coordinated Universal Time (UTC) are computed from one-hour long VLBI Intensive sessions. These sessions are essential for providing timely UT1 estimates for satellite navigation systems. To produce timely UT1 estimates, efforts have been made to completely automate the analysis of VLBI Intensive sessions. This requires automated processing of X- and S-band group delays. These data often contain an unknown number of integer ambiguities in the observed group delays. In an automated analysis with the c5++ software the standard approach in resolving the ambiguities is to perform a simplified parameter estimation using a least-squares adjustment (L2-norm minimization). We implement the robust L1-norm with an alternative estimation method in c5++. The implemented method is used to automatically estimate the ambiguities in VLBI Intensive sessions for the Kokee-Wettzell baseline. The results are compared to an analysis setup where the ambiguity estimation is computed using the L2-norm. Additionally, we investigate three alternative weighting strategies for the ambiguity estimation. The results show that in automated analysis the L1-norm resolves ambiguities better than the L2-norm. The use of the L1-norm leads to a significantly higher number of good quality UT1-UTC estimates with each of the three weighting strategies.

  14. Automation and Optimization of Multipulse Laser Zona Drilling of Mouse Embryos During Embryo Biopsy.

    PubMed

    Wong, Christopher Yee; Mills, James K

    2017-03-01

    Laser zona drilling (LZD) is a required step in many embryonic surgical procedures, for example, assisted hatching and preimplantation genetic diagnosis. LZD involves the ablation of the zona pellucida (ZP) using a laser while minimizing potentially harmful thermal effects on critical internal cell structures. Develop a method for the automation and optimization of multipulse LZD, applied to cleavage-stage embryos. A two-stage optimization is used. The first stage uses computer vision algorithms to identify embryonic structures and determines the optimal ablation zone farthest away from critical structures such as blastomeres. The second stage combines a genetic algorithm with a previously reported thermal analysis of LZD to optimize the combination of laser pulse locations and pulse durations. The goal is to minimize the peak temperature experienced by the blastomeres while creating the desired opening in the ZP. A proof of concept of the proposed LZD automation and optimization method is demonstrated through experiments on mouse embryos with positive results, as adequately sized openings are created. Automation of LZD is feasible and is a viable step toward the automation of embryo biopsy procedures. LZD is a common but delicate procedure performed by human operators using subjective methods to gauge proper LZD procedure. Automation of LZD removes human error to increase the success rate of LZD. Although the proposed methods are developed for cleavage-stage embryos, the same methods may be applied to most types LZD procedures, embryos at different developmental stages, or nonembryonic cells.

  15. Automated biphasic morphological assessment of hepatitis B-related liver fibrosis using second harmonic generation microscopy

    PubMed Central

    Wang, Tong-Hong; Chen, Tse-Ching; Teng, Xiao; Liang, Kung-Hao; Yeh, Chau-Ting

    2015-01-01

    Liver fibrosis assessment by biopsy and conventional staining scores is based on histopathological criteria. Variations in sample preparation and the use of semi-quantitative histopathological methods commonly result in discrepancies between medical centers. Thus, minor changes in liver fibrosis might be overlooked in multi-center clinical trials, leading to statistically non-significant data. Here, we developed a computer-assisted, fully automated, staining-free method for hepatitis B-related liver fibrosis assessment. In total, 175 liver biopsies were divided into training (n = 105) and verification (n = 70) cohorts. Collagen was observed using second harmonic generation (SHG) microscopy without prior staining, and hepatocyte morphology was recorded using two-photon excitation fluorescence (TPEF) microscopy. The training cohort was utilized to establish a quantification algorithm. Eleven of 19 computer-recognizable SHG/TPEF microscopic morphological features were significantly correlated with the ISHAK fibrosis stages (P < 0.001). A biphasic scoring method was applied, combining support vector machine and multivariate generalized linear models to assess the early and late stages of fibrosis, respectively, based on these parameters. The verification cohort was used to verify the scoring method, and the area under the receiver operating characteristic curve was >0.82 for liver cirrhosis detection. Since no subjective gradings are needed, interobserver discrepancies could be avoided using this fully automated method. PMID:26260921

  16. Evolutionary Computation for the Identification of Emergent Behavior in Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.; Guillaume, Alexandre

    2009-01-01

    Over the past several years the Center for Evolutionary Computation and Automated Design at the Jet Propulsion Laboratory has developed a technique based on Evolutionary Computational Methods (ECM) that allows for the automated optimization of complex computationally modeled systems. An important application of this technique is for the identification of emergent behaviors in autonomous systems. Mobility platforms such as rovers or airborne vehicles are now being designed with autonomous mission controllers that can find trajectories over a solution space that is larger than can reasonably be tested. It is critical to identify control behaviors that are not predicted and can have surprising results (both good and bad). These emergent behaviors need to be identified, characterized and either incorporated into or isolated from the acceptable range of control characteristics. We use cluster analysis of automatically retrieved solutions to identify isolated populations of solutions with divergent behaviors.

  17. Multi-loop Integrand Reduction with Computational Algebraic Geometry

    NASA Astrophysics Data System (ADS)

    Badger, Simon; Frellesvig, Hjalte; Zhang, Yang

    2014-06-01

    We discuss recent progress in multi-loop integrand reduction methods. Motivated by the possibility of an automated construction of multi-loop amplitudes via generalized unitarity cuts we describe a procedure to obtain a general parameterisation of any multi-loop integrand in a renormalizable gauge theory. The method relies on computational algebraic geometry techniques such as Gröbner bases and primary decomposition of ideals. We present some results for two and three loop amplitudes obtained with the help of the MACAULAY2 computer algebra system and the Mathematica package BASISDET.

  18. Development of computer-aided design system of elastic sensitive elements of automatic metering devices

    NASA Astrophysics Data System (ADS)

    Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.

    2018-05-01

    The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.

  19. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI*

    NASA Astrophysics Data System (ADS)

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey

    2012-12-01

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning.

  20. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  1. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  2. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  3. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  4. 45 CFR 309.145 - What costs are allowable for Tribal IV-D programs carried out under § 309.65(a) of this part?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... (h) Automated data processing computer systems, including: (1) Planning efforts in the identification, evaluation, and selection of an automated data processing computer system solution meeting the program... existing automated data processing computer system to support Tribal IV-D program operations, and...

  5. 45 CFR 286.205 - How will we determine if a Tribe fails to meet the minimum work participation rate(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., financial records, and automated data systems; (ii) The data are free from computational errors and are... records, financial records, and automated data systems; (ii) The data are free from computational errors... records, and automated data systems; (ii) The data are free from computational errors and are internally...

  6. A Factor Graph Approach to Automated GO Annotation

    PubMed Central

    Spetale, Flavio E.; Tapia, Elizabeth; Krsticevic, Flavia; Roda, Fernando; Bulacio, Pilar

    2016-01-01

    As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum. PMID:26771463

  7. A Factor Graph Approach to Automated GO Annotation.

    PubMed

    Spetale, Flavio E; Tapia, Elizabeth; Krsticevic, Flavia; Roda, Fernando; Bulacio, Pilar

    2016-01-01

    As volume of genomic data grows, computational methods become essential for providing a first glimpse onto gene annotations. Automated Gene Ontology (GO) annotation methods based on hierarchical ensemble classification techniques are particularly interesting when interpretability of annotation results is a main concern. In these methods, raw GO-term predictions computed by base binary classifiers are leveraged by checking the consistency of predefined GO relationships. Both formal leveraging strategies, with main focus on annotation precision, and heuristic alternatives, with main focus on scalability issues, have been described in literature. In this contribution, a factor graph approach to the hierarchical ensemble formulation of the automated GO annotation problem is presented. In this formal framework, a core factor graph is first built based on the GO structure and then enriched to take into account the noisy nature of GO-term predictions. Hence, starting from raw GO-term predictions, an iterative message passing algorithm between nodes of the factor graph is used to compute marginal probabilities of target GO-terms. Evaluations on Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster protein sequences from the GO Molecular Function domain showed significant improvements over competing approaches, even when protein sequences were naively characterized by their physicochemical and secondary structure properties or when loose noisy annotation datasets were considered. Based on these promising results and using Arabidopsis thaliana annotation data, we extend our approach to the identification of most promising molecular function annotations for a set of proteins of unknown function in Solanum lycopersicum.

  8. Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2017-04-01

    With the advent of fully automated image analysis and modern machine learning methods, there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually used in academic studies do not scale to large datasets. This method includes protocols for the documentation of many regions in very large image datasets; the documentation may be incrementally updated by new image data and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms have been developed to achieve over 90% acceptable image segmentation on the complete dataset.

  9. Flaw Detection and Evaluation of Composite Cylinders Using Laser Speckle Interferometry and Holography

    DTIC Science & Technology

    1979-11-23

    Entered) ACKNOWLEDGMENTS The author hereby expresses his appreciation to Mr. J. A. Schaeffel Jr. for his guidance on interferometry and the computer...were collected by an automated laser speckle interferometry displacement contour analyzer developed by John A. Schaeffel , Jr. [3]. The new method of 10...Fringe Patterns, US Army Missile Command, Redstone Arsenal, Alabama, Technical Report RL-76-18, 20 April 1976. 3. Schaeffel , J. A., Automated Laser

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This paper is actually a composite of two papers dealing with automation and computerized control of underground mining equipment. The paper primarily discusses drills, haulage equipment, and tunneling machines. It compares performance and cost benefits of conventional equipment to the new automated methods. The company involved are iron ore mining companies in Scandinavia. The papers also discusses the different equipment using air power, water power, hydraulic power, and computer power. The different drill rigs are compared for performance and cost.

  11. Automated imaging system for single molecules

    DOEpatents

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  12. Automation technology for aerospace power management

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  13. EEG feature selection method based on decision tree.

    PubMed

    Duan, Lijuan; Ge, Hui; Ma, Wei; Miao, Jun

    2015-01-01

    This paper aims to solve automated feature selection problem in brain computer interface (BCI). In order to automate feature selection process, we proposed a novel EEG feature selection method based on decision tree (DT). During the electroencephalogram (EEG) signal processing, a feature extraction method based on principle component analysis (PCA) was used, and the selection process based on decision tree was performed by searching the feature space and automatically selecting optimal features. Considering that EEG signals are a series of non-linear signals, a generalized linear classifier named support vector machine (SVM) was chosen. In order to test the validity of the proposed method, we applied the EEG feature selection method based on decision tree to BCI Competition II datasets Ia, and the experiment showed encouraging results.

  14. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.

  15. Computational Testing for Automated Preprocessing 2: Practical Demonstration of a System for Scientific Data-Processing Workflow Management for High-Volume EEG

    PubMed Central

    Cowley, Benjamin U.; Korpela, Jussi

    2018-01-01

    Existing tools for the preprocessing of EEG data provide a large choice of methods to suitably prepare and analyse a given dataset. Yet it remains a challenge for the average user to integrate methods for batch processing of the increasingly large datasets of modern research, and compare methods to choose an optimal approach across the many possible parameter configurations. Additionally, many tools still require a high degree of manual decision making for, e.g., the classification of artifacts in channels, epochs or segments. This introduces extra subjectivity, is slow, and is not reproducible. Batching and well-designed automation can help to regularize EEG preprocessing, and thus reduce human effort, subjectivity, and consequent error. The Computational Testing for Automated Preprocessing (CTAP) toolbox facilitates: (i) batch processing that is easy for experts and novices alike; (ii) testing and comparison of preprocessing methods. Here we demonstrate the application of CTAP to high-resolution EEG data in three modes of use. First, a linear processing pipeline with mostly default parameters illustrates ease-of-use for naive users. Second, a branching pipeline illustrates CTAP's support for comparison of competing methods. Third, a pipeline with built-in parameter-sweeping illustrates CTAP's capability to support data-driven method parameterization. CTAP extends the existing functions and data structure from the well-known EEGLAB toolbox, based on Matlab, and produces extensive quality control outputs. CTAP is available under MIT open-source licence from https://github.com/bwrc/ctap. PMID:29692705

  16. Computational Testing for Automated Preprocessing 2: Practical Demonstration of a System for Scientific Data-Processing Workflow Management for High-Volume EEG.

    PubMed

    Cowley, Benjamin U; Korpela, Jussi

    2018-01-01

    Existing tools for the preprocessing of EEG data provide a large choice of methods to suitably prepare and analyse a given dataset. Yet it remains a challenge for the average user to integrate methods for batch processing of the increasingly large datasets of modern research, and compare methods to choose an optimal approach across the many possible parameter configurations. Additionally, many tools still require a high degree of manual decision making for, e.g., the classification of artifacts in channels, epochs or segments. This introduces extra subjectivity, is slow, and is not reproducible. Batching and well-designed automation can help to regularize EEG preprocessing, and thus reduce human effort, subjectivity, and consequent error. The Computational Testing for Automated Preprocessing (CTAP) toolbox facilitates: (i) batch processing that is easy for experts and novices alike; (ii) testing and comparison of preprocessing methods. Here we demonstrate the application of CTAP to high-resolution EEG data in three modes of use. First, a linear processing pipeline with mostly default parameters illustrates ease-of-use for naive users. Second, a branching pipeline illustrates CTAP's support for comparison of competing methods. Third, a pipeline with built-in parameter-sweeping illustrates CTAP's capability to support data-driven method parameterization. CTAP extends the existing functions and data structure from the well-known EEGLAB toolbox, based on Matlab, and produces extensive quality control outputs. CTAP is available under MIT open-source licence from https://github.com/bwrc/ctap.

  17. Method and automated apparatus for detecting coliform organisms

    NASA Technical Reports Server (NTRS)

    Dill, W. P.; Taylor, R. E.; Jeffers, E. L. (Inventor)

    1980-01-01

    Method and automated apparatus are disclosed for determining the time of detection of metabolically produced hydrogen by coliform bacteria cultured in an electroanalytical cell from the time the cell is inoculated with the bacteria. The detection time data provides bacteria concentration values. The apparatus is sequenced and controlled by a digital computer to discharge a spent sample, clean and sterilize the culture cell, provide a bacteria nutrient into the cell, control the temperature of the nutrient, inoculate the nutrient with a bacteria sample, measures the electrical potential difference produced by the cell, and measures the time of detection from inoculation.

  18. Automated Help System For A Supercomputer

    NASA Technical Reports Server (NTRS)

    Callas, George P.; Schulbach, Catherine H.; Younkin, Michael

    1994-01-01

    Expert-system software developed to provide automated system of user-helping displays in supercomputer system at Ames Research Center Advanced Computer Facility. Users located at remote computer terminals connected to supercomputer and each other via gateway computers, local-area networks, telephone lines, and satellite links. Automated help system answers routine user inquiries about how to use services of computer system. Available 24 hours per day and reduces burden on human experts, freeing them to concentrate on helping users with complicated problems.

  19. Computer Programs For Automated Welding System

    NASA Technical Reports Server (NTRS)

    Agapakis, John E.

    1993-01-01

    Computer programs developed for use in controlling automated welding system described in MFS-28578. Together with control computer, computer input and output devices and control sensors and actuators, provide flexible capability for planning and implementation of schemes for automated welding of specific workpieces. Developed according to macro- and task-level programming schemes, which increases productivity and consistency by reducing amount of "teaching" of system by technician. System provides for three-dimensional mathematical modeling of workpieces, work cells, robots, and positioners.

  20. Faster Evolution of More Multifunctional Logic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian; Zebulum, Ricardo

    2005-01-01

    A modification in a method of automated evolutionary synthesis of voltage-controlled multifunctional logic circuits makes it possible to synthesize more circuits in less time. Prior to the modification, the computations for synthesizing a four-function logic circuit by this method took about 10 hours. Using the method as modified, it is possible to synthesize a six-function circuit in less than half an hour. The concepts of automated evolutionary synthesis and voltage-controlled multifunctional logic circuits were described in a number of prior NASA Tech Briefs articles. To recapitulate: A circuit is designed to perform one of several different logic functions, depending on the value of an applied control voltage. The circuit design is synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. In this process, random populations of integer strings that encode electronic circuits play a role analogous to that of chromosomes. An evolved circuit is tested by computational simulation (prior to testing in real hardware to verify a final design). Then, in a fitness-evaluation step, responses of the circuit are compared with specifications of target responses and circuits are ranked according to how close they come to satisfying specifications. The results of the evaluation provide guidance for refining designs through further iteration.

  1. Automated apparatus and method of generating native code for a stitching machine

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey L. (Inventor)

    2000-01-01

    A computer system automatically generates CNC code for a stitching machine. The computer determines the locations of a present stitching point and a next stitching point. If a constraint is not found between the present stitching point and the next stitching point, the computer generates code for making a stitch at the next stitching point. If a constraint is found, the computer generates code for changing a condition (e.g., direction) of the stitching machine's stitching head.

  2. Impact of pharmacy automation on patient waiting time: an application of computer simulation.

    PubMed

    Tan, Woan Shin; Chua, Siang Li; Yong, Keng Woh; Wu, Tuck Seng

    2009-06-01

    This paper aims to illustrate the use of computer simulation in evaluating the impact of a prototype automated dispensing system on waiting time in an outpatient pharmacy and its potential as a routine tool in pharmacy management. A discrete event simulation model was developed to investigate the impact of a prototype automated dispensing system on operational efficiency and service standards in an outpatient pharmacy. The simulation results suggest that automating the prescription-filing function using a prototype that picks and packs at 20 seconds per item will not assist the pharmacy in achieving the waiting time target of 30 minutes for all patients. Regardless of the state of automation, to meet the waiting time target, 2 additional pharmacists are needed to overcome the process bottleneck at the point of medication dispense. However, if the automated dispensing is the preferred option, the speed of the system needs to be twice as fast as the current configuration to facilitate the reduction of the 95th percentile patient waiting time to below 30 minutes. The faster processing speed will concomitantly allow the pharmacy to reduce the number of pharmacy technicians from 11 to 8. Simulation was found to be a useful and low cost method that allows an otherwise expensive and resource intensive evaluation of new work processes and technology to be completed within a short time.

  3. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue

    PubMed Central

    Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath

    2009-01-01

    Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697

  4. New technologies for advanced three-dimensional optimum shape design in aeronautics

    NASA Astrophysics Data System (ADS)

    Dervieux, Alain; Lanteri, Stéphane; Malé, Jean-Michel; Marco, Nathalie; Rostaing-Schmidt, Nicole; Stoufflet, Bruno

    1999-05-01

    The analysis of complex flows around realistic aircraft geometries is becoming more and more predictive. In order to obtain this result, the complexity of flow analysis codes has been constantly increasing, involving more refined fluid models and sophisticated numerical methods. These codes can only run on top computers, exhausting their memory and CPU capabilities. It is, therefore, difficult to introduce best analysis codes in a shape optimization loop: most previous works in the optimum shape design field used only simplified analysis codes. Moreover, as the most popular optimization methods are the gradient-based ones, the more complex the flow solver, the more difficult it is to compute the sensitivity code. However, emerging technologies are contributing to make such an ambitious project, of including a state-of-the-art flow analysis code into an optimisation loop, feasible. Among those technologies, there are three important issues that this paper wishes to address: shape parametrization, automated differentiation and parallel computing. Shape parametrization allows faster optimization by reducing the number of design variable; in this work, it relies on a hierarchical multilevel approach. The sensitivity code can be obtained using automated differentiation. The automated approach is based on software manipulation tools, which allow the differentiation to be quick and the resulting differentiated code to be rather fast and reliable. In addition, the parallel algorithms implemented in this work allow the resulting optimization software to run on increasingly larger geometries. Copyright

  5. Artificial Neural Networks as a powerful numerical tool to classify specific features of a tooth based on 3D scan data.

    PubMed

    Raith, Stefan; Vogel, Eric Per; Anees, Naeema; Keul, Christine; Güth, Jan-Frederik; Edelhoff, Daniel; Fischer, Horst

    2017-01-01

    Chairside manufacturing based on digital image acquisition is gainingincreasing importance in dentistry. For the standardized application of these methods, it is paramount to have highly automated digital workflows that can process acquired 3D image data of dental surfaces. Artificial Neural Networks (ANNs) arenumerical methods primarily used to mimic the complex networks of neural connections in the natural brain. Our hypothesis is that an ANNcan be developed that is capable of classifying dental cusps with sufficient accuracy. This bears enormous potential for an application in chairside manufacturing workflows in the dental field, as it closes the gap between digital acquisition of dental geometries and modern computer-aided manufacturing techniques.Three-dimensional surface scans of dental casts representing natural full dental arches were transformed to range image data. These data were processed using an automated algorithm to detect candidates for tooth cusps according to salient geometrical features. These candidates were classified following common dental terminology and used as training data for a tailored ANN.For the actual cusp feature description, two different approaches were developed and applied to the available data: The first uses the relative location of the detected cusps as input data and the second method directly takes the image information given in the range images. In addition, a combination of both was implemented and investigated.Both approaches showed high performance with correct classifications of 93.3% and 93.5%, respectively, with improvements by the combination shown to be minor.This article presents for the first time a fully automated method for the classification of teeththat could be confirmed to work with sufficient precision to exhibit the potential for its use in clinical practice,which is a prerequisite for automated computer-aided planning of prosthetic treatments with subsequent automated chairside manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Development of automation and robotics for space via computer graphic simulation methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  7. Initial Development and Testing of a State-of-the-Art Method to Quantify Hydrologic Model Uncertainty

    DTIC Science & Technology

    2013-09-01

    H. Teller , and E. Teller . 1953. Equation of state calculations by fast computing machines . J Chem Phys, 21: 1087-1092. Skahill, B. E. 2012. Practice...of DE-MC sampler burn-in, a hybrid semi- automated approach was implemented, consistent with available guidance regarding practical application of...treatment of jump proposal dimensions that are out of bounds, and a hybrid, heuristic, semi- automated approach for assessing convergence of the DE-MC

  8. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Large-scale automated analysis of news media: a novel computational method for obesity policy research.

    PubMed

    Hamad, Rita; Pomeranz, Jennifer L; Siddiqi, Arjumand; Basu, Sanjay

    2015-02-01

    Analyzing news media allows obesity policy researchers to understand popular conceptions about obesity, which is important for targeting health education and policies. A persistent dilemma is that investigators have to read and manually classify thousands of individual news articles to identify how obesity and obesity-related policy proposals may be described to the public in the media. A machine learning method called "automated content analysis" that permits researchers to train computers to "read" and classify massive volumes of documents was demonstrated. 14,302 newspaper articles that mentioned the word "obesity" during 2011-2012 were identified. Four states that vary in obesity prevalence and policy (Alabama, California, New Jersey, and North Carolina) were examined. The reliability of an automated program to categorize the media's framing of obesity as an individual-level problem (e.g., diet) and/or an environmental-level problem (e.g., obesogenic environment) was tested. The automated program performed similarly to human coders. The proportion of articles with individual-level framing (27.7-31.0%) was higher than the proportion with neutral (18.0-22.1%) or environmental-level framing (16.0-16.4%) across all states and over the entire study period (P<0.05). A novel approach to the study of how obesity concepts are communicated and propagated in news media was demonstrated. © 2014 The Obesity Society.

  10. Model annotation for synthetic biology: automating model to nucleotide sequence conversion

    PubMed Central

    Misirli, Goksel; Hallinan, Jennifer S.; Yu, Tommy; Lawson, James R.; Wimalaratne, Sarala M.; Cooling, Michael T.; Wipat, Anil

    2011-01-01

    Motivation: The need for the automated computational design of genetic circuits is becoming increasingly apparent with the advent of ever more complex and ambitious synthetic biology projects. Currently, most circuits are designed through the assembly of models of individual parts such as promoters, ribosome binding sites and coding sequences. These low level models are combined to produce a dynamic model of a larger device that exhibits a desired behaviour. The larger model then acts as a blueprint for physical implementation at the DNA level. However, the conversion of models of complex genetic circuits into DNA sequences is a non-trivial undertaking due to the complexity of mapping the model parts to their physical manifestation. Automating this process is further hampered by the lack of computationally tractable information in most models. Results: We describe a method for automatically generating DNA sequences from dynamic models implemented in CellML and Systems Biology Markup Language (SBML). We also identify the metadata needed to annotate models to facilitate automated conversion, and propose and demonstrate a method for the markup of these models using RDF. Our algorithm has been implemented in a software tool called MoSeC. Availability: The software is available from the authors' web site http://research.ncl.ac.uk/synthetic_biology/downloads.html. Contact: anil.wipat@ncl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21296753

  11. USSR Report: Cybernetics, Computers and Automation Technology. No. 69.

    DTIC Science & Technology

    1983-05-06

    computers in multiprocessor and multistation design , control and scientific research automation systems. The results of comparing the efficiency of...Podvizhnaya, Scientific Research Institute of Control Computers, Severodonetsk] [Text] The most significant change in the design of the SM-2M compared to...UPRAVLYAYUSHCHIYE SISTEMY I MASHINY, Nov-Dec 82) 95 APPLICATIONS Kiev Automated Control System, Design Features and Prospects for Development (V. A

  12. Automated image-based colon cleansing for laxative-free CT colonography computer-aided polyp detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linguraru, Marius George; Panjwani, Neil; Fletcher, Joel G.

    2011-12-15

    Purpose: To evaluate the performance of a computer-aided detection (CAD) system for detecting colonic polyps at noncathartic computed tomography colonography (CTC) in conjunction with an automated image-based colon cleansing algorithm. Methods: An automated colon cleansing algorithm was designed to detect and subtract tagged-stool, accounting for heterogeneity and poor tagging, to be used in conjunction with a colon CAD system. The method is locally adaptive and combines intensity, shape, and texture analysis with probabilistic optimization. CTC data from cathartic-free bowel preparation were acquired for testing and training the parameters. Patients underwent various colonic preparations with barium or Gastroview in divided dosesmore » over 48 h before scanning. No laxatives were administered and no dietary modifications were required. Cases were selected from a polyp-enriched cohort and included scans in which at least 90% of the solid stool was visually estimated to be tagged and each colonic segment was distended in either the prone or supine view. The CAD system was run comparatively with and without the stool subtraction algorithm. Results: The dataset comprised 38 CTC scans from prone and/or supine scans of 19 patients containing 44 polyps larger than 10 mm (22 unique polyps, if matched between prone and supine scans). The results are robust on fine details around folds, thin-stool linings on the colonic wall, near polyps and in large fluid/stool pools. The sensitivity of the CAD system is 70.5% per polyp at a rate of 5.75 false positives/scan without using the stool subtraction module. This detection improved significantly (p = 0.009) after automated colon cleansing on cathartic-free data to 86.4% true positive rate at 5.75 false positives/scan. Conclusions: An automated image-based colon cleansing algorithm designed to overcome the challenges of the noncathartic colon significantly improves the sensitivity of colon CAD by approximately 15%.« less

  13. BisQue: cloud-based system for management, annotation, visualization, analysis and data mining of underwater and remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Fedorov, D.; Miller, R. J.; Kvilekval, K. G.; Doheny, B.; Sampson, S.; Manjunath, B. S.

    2016-02-01

    Logistical and financial limitations of underwater operations are inherent in marine science, including biodiversity observation. Imagery is a promising way to address these challenges, but the diversity of organisms thwarts simple automated analysis. Recent developments in computer vision methods, such as convolutional neural networks (CNN), are promising for automated classification and detection tasks but are typically very computationally expensive and require extensive training on large datasets. Therefore, managing and connecting distributed computation, large storage and human annotations of diverse marine datasets is crucial for effective application of these methods. BisQue is a cloud-based system for management, annotation, visualization, analysis and data mining of underwater and remote sensing imagery and associated data. Designed to hide the complexity of distributed storage, large computational clusters, diversity of data formats and inhomogeneous computational environments behind a user friendly web-based interface, BisQue is built around an idea of flexible and hierarchical annotations defined by the user. Such textual and graphical annotations can describe captured attributes and the relationships between data elements. Annotations are powerful enough to describe cells in fluorescent 4D images, fish species in underwater videos and kelp beds in aerial imagery. Presently we are developing BisQue-based analysis modules for automated identification of benthic marine organisms. Recent experiments with drop-out and CNN based classification of several thousand annotated underwater images demonstrated an overall accuracy above 70% for the 15 best performing species and above 85% for the top 5 species. Based on these promising results, we have extended bisque with a CNN-based classification system allowing continuous training on user-provided data.

  14. Automatic insertion of simulated microcalcification clusters in a software breast phantom

    NASA Astrophysics Data System (ADS)

    Shankla, Varsha; Pokrajac, David D.; Weinstein, Susan P.; DeLeo, Michael; Tuite, Catherine; Roth, Robyn; Conant, Emily F.; Maidment, Andrew D.; Bakic, Predrag R.

    2014-03-01

    An automated method has been developed to insert realistic clusters of simulated microcalcifications (MCs) into computer models of breast anatomy. This algorithm has been developed as part of a virtual clinical trial (VCT) software pipeline, which includes the simulation of breast anatomy, mechanical compression, image acquisition, image processing, display and interpretation. An automated insertion method has value in VCTs involving large numbers of images. The insertion method was designed to support various insertion placement strategies, governed by probability distribution functions (pdf). The pdf can be predicated on histological or biological models of tumor growth, or estimated from the locations of actual calcification clusters. To validate the automated insertion method, a 2-AFC observer study was designed to compare two placement strategies, undirected and directed. The undirected strategy could place a MC cluster anywhere within the phantom volume. The directed strategy placed MC clusters within fibroglandular tissue on the assumption that calcifications originate from epithelial breast tissue. Three radiologists were asked to select between two simulated phantom images, one from each placement strategy. Furthermore, questions were posed to probe the rationale behind the observer's selection. The radiologists found the resulting cluster placement to be realistic in 92% of cases, validating the automated insertion method. There was a significant preference for the cluster to be positioned on a background of adipose or mixed adipose/fibroglandular tissues. Based upon these results, this automated lesion placement method will be included in our VCT simulation pipeline.

  15. Automated structure determination of proteins with the SAIL-FLYA NMR method.

    PubMed

    Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune

    2007-01-01

    The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.

  16. Automated analysis of brachial ultrasound time series

    NASA Astrophysics Data System (ADS)

    Liang, Weidong; Browning, Roger L.; Lauer, Ronald M.; Sonka, Milan

    1998-07-01

    Atherosclerosis begins in childhood with the accumulation of lipid in the intima of arteries to form fatty streaks, advances through adult life when occlusive vascular disease may result in coronary heart disease, stroke and peripheral vascular disease. Non-invasive B-mode ultrasound has been found useful in studying risk factors in the symptom-free population. Large amount of data is acquired from continuous imaging of the vessels in a large study population. A high quality brachial vessel diameter measurement method is necessary such that accurate diameters can be measured consistently in all frames in a sequence, across different observers. Though human expert has the advantage over automated computer methods in recognizing noise during diameter measurement, manual measurement suffers from inter- and intra-observer variability. It is also time-consuming. An automated measurement method is presented in this paper which utilizes quality assurance approaches to adapt to specific image features, to recognize and minimize the noise effect. Experimental results showed the method's potential for clinical usage in the epidemiological studies.

  17. Autoreject: Automated artifact rejection for MEG and EEG data.

    PubMed

    Jas, Mainak; Engemann, Denis A; Bekhti, Yousra; Raimondo, Federico; Gramfort, Alexandre

    2017-10-01

    We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography (MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with a robust evaluation metric to estimate the optimal peak-to-peak threshold - a quantity commonly used for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which estimates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of bad sensors, the trial is then repaired by interpolation or by excluding it from subsequent analysis. All steps of the algorithm are fully automated thus lending itself to the name Autoreject. In order to assess the practical significance of the algorithm, we conducted extensive validation and comparisons with state-of-the-art methods on four public datasets containing MEG and EEG recordings from more than 200 subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the preprocessing of MEG data from the Human Connectome Project (HCP) going up to the computation of the evoked responses. The automated nature of our method minimizes the burden of human inspection, hence supporting scalability and reliability demanded by data analysis in modern neuroscience. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Automated validation of a computer operating system

    NASA Technical Reports Server (NTRS)

    Dervage, M. M.; Milberg, B. A.

    1970-01-01

    Programs apply selected input/output loads to complex computer operating system and measure performance of that system under such loads. Technique lends itself to checkout of computer software designed to monitor automated complex industrial systems.

  19. Automated Production of Movies on a Cluster of Computers

    NASA Technical Reports Server (NTRS)

    Nail, Jasper; Le, Duong; Nail, William L.; Nail, William

    2008-01-01

    A method of accelerating and facilitating production of video and film motion-picture products, and software and generic designs of computer hardware to implement the method, are undergoing development. The method provides for automation of most of the tedious and repetitive tasks involved in editing and otherwise processing raw digitized imagery into final motion-picture products. The method was conceived to satisfy requirements, in industrial and scientific testing, for rapid processing of multiple streams of simultaneously captured raw video imagery into documentation in the form of edited video imagery and video derived data products for technical review and analysis. In the production of such video technical documentation, unlike in production of motion-picture products for entertainment, (1) it is often necessary to produce multiple video derived data products, (2) there are usually no second chances to repeat acquisition of raw imagery, (3) it is often desired to produce final products within minutes rather than hours, days, or months, and (4) consistency and quality, rather than aesthetics, are the primary criteria for judging the products. In the present method, the workflow has both serial and parallel aspects: processing can begin before all the raw imagery has been acquired, each video stream can be subjected to different stages of processing simultaneously on different computers that may be grouped into one or more cluster(s), and the final product may consist of multiple video streams. Results of processing on different computers are shared, so that workers can collaborate effectively.

  20. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    PubMed Central

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-01-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95–98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management. PMID:28338047

  1. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery

    NASA Astrophysics Data System (ADS)

    Seymour, A. C.; Dale, J.; Hammill, M.; Halpin, P. N.; Johnston, D. W.

    2017-03-01

    Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating animals in aggregations. We combine unmanned aircraft systems (UAS), thermal imagery and computer vision to improve traditional wildlife survey methods. During spring 2015, we flew fixed-wing UAS equipped with thermal sensors, imaging two grey seal (Halichoerus grypus) breeding colonies in eastern Canada. Human analysts counted and classified individual seals in imagery manually. Concurrently, an automated classification and detection algorithm discriminated seals based upon temperature, size, and shape of thermal signatures. Automated counts were within 95-98% of human estimates; at Saddle Island, the model estimated 894 seals compared to analyst counts of 913, and at Hay Island estimated 2188 seals compared to analysts’ 2311. The algorithm improves upon shortcomings of computer vision by effectively recognizing seals in aggregations while keeping model setup time minimal. Our study illustrates how UAS, thermal imagery, and automated detection can be combined to efficiently collect population data critical to wildlife management.

  2. Automated software for analysis of ciliary beat frequency and metachronal wave orientation in primary ciliary dyskinesia.

    PubMed

    Mantovani, Giulia; Pifferi, Massimo; Vozzi, Giovanni

    2010-06-01

    Patients with primary ciliary dyskinesia (PCD) have structural and/or functional alterations of cilia that imply deficits in mucociliary clearance and different respiratory pathologies. A useful indicator for the difficult diagnosis is the ciliary beat frequency (CBF) that is significantly lower in pathological cases than in physiological ones. The CBF computation is not rapid, therefore, the aim of this study is to propose an automated method to evaluate it directly from videos of ciliated cells. The cells are taken from inferior nasal turbinates and videos of ciliary movements are registered and eventually processed by the developed software. The software consists in the extraction of features from videos (written with C++ language) and the computation of the frequency (written with Matlab language). This system was tested both on the samples of nasal cavity and software models, and the results were really promising because in a few seconds, it can compute a reliable frequency if compared with that measured with visual methods. It is to be noticed that the reliability of the computation increases with the quality of acquisition system and especially with the sampling frequency. It is concluded that the developed software could be a useful mean for PCD diagnosis.

  3. Software development environments: Status and trends

    NASA Technical Reports Server (NTRS)

    Duffel, Larry E.

    1988-01-01

    Currently software engineers are the essential integrating factors tying several components together. The components consist of process, methods, computers, tools, support environments, and software engineers. The engineers today empower the tools versus the tools empowering the engineers. Some of the issues in software engineering are quality, managing the software engineering process, and productivity. A strategy to accomplish this is to promote the evolution of software engineering from an ad hoc, labor intensive activity to a managed, technology supported discipline. This strategy may be implemented by putting the process under management control, adopting appropriate methods, inserting the technology that provides automated support for the process and methods, collecting automated tools into an integrated environment and educating the personnel.

  4. A fully automated system for quantification of background parenchymal enhancement in breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Ufuk Dalmiş, Mehmet; Gubern-Mérida, Albert; Borelli, Cristina; Vreemann, Suzan; Mann, Ritse M.; Karssemeijer, Nico

    2016-03-01

    Background parenchymal enhancement (BPE) observed in breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has been identified as an important biomarker associated with risk for developing breast cancer. In this study, we present a fully automated framework for quantification of BPE. We initially segmented fibroglandular tissue (FGT) of the breasts using an improved version of an existing method. Subsequently, we computed BPEabs (volume of the enhancing tissue), BPErf (BPEabs divided by FGT volume) and BPErb (BPEabs divided by breast volume), using different relative enhancement threshold values between 1% and 100%. To evaluate and compare the previous and improved FGT segmentation methods, we used 20 breast DCE-MRI scans and we computed Dice similarity coefficient (DSC) values with respect to manual segmentations. For evaluation of the BPE quantification, we used a dataset of 95 breast DCE-MRI scans. Two radiologists, in individual reading sessions, visually analyzed the dataset and categorized each breast into minimal, mild, moderate and marked BPE. To measure the correlation between automated BPE values to the radiologists' assessments, we converted these values into ordinal categories and we used Spearman's rho as a measure of correlation. According to our results, the new segmentation method obtained an average DSC of 0.81 0.09, which was significantly higher (p<0.001) compared to the previous method (0.76 0.10). The highest correlation values between automated BPE categories and radiologists' assessments were obtained with the BPErf measurement (r=0.55, r=0.49, p<0.001 for both), while the correlation between the scores given by the two radiologists was 0.82 (p<0.001). The presented framework can be used to systematically investigate the correlation between BPE and risk in large screening cohorts.

  5. TU-H-207A-09: An Automated Technique for Estimating Patient-Specific Regional Imparted Energy and Dose From TCM CT Exams Across 13 Protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, J; Tian, X; Segars, P

    2016-06-15

    Purpose: To develop an automated technique for estimating patient-specific regional imparted energy and dose from tube current modulated (TCM) computed tomography (CT) exams across a diverse set of head and body protocols. Methods: A library of 58 adult computational anthropomorphic extended cardiac-torso (XCAT) phantoms were used to model a patient population. A validated Monte Carlo program was used to simulate TCM CT exams on the entire library of phantoms for three head and 10 body protocols. The net imparted energy to the phantoms, normalized by dose length product (DLP), and the net tissue mass in each of the scan regionsmore » were computed. A knowledgebase containing relationships between normalized imparted energy and scanned mass was established. An automated computer algorithm was written to estimate the scanned mass from actual clinical CT exams. The scanned mass estimate, DLP of the exam, and knowledgebase were used to estimate the imparted energy to the patient. The algorithm was tested on 20 chest and 20 abdominopelvic TCM CT exams. Results: The normalized imparted energy increased with increasing kV for all protocols. However, the normalized imparted energy was relatively unaffected by the strength of the TCM. The average imparted energy was 681 ± 376 mJ for abdominopelvic exams and 274 ± 141 mJ for chest exams. Overall, the method was successful in providing patientspecific estimates of imparted energy for 98% of the cases tested. Conclusion: Imparted energy normalized by DLP increased with increasing tube potential. However, the strength of the TCM did not have a significant effect on the net amount of energy deposited to tissue. The automated program can be implemented into the clinical workflow to provide estimates of regional imparted energy and dose across a diverse set of clinical protocols.« less

  6. Automated essay scoring and the future of educational assessment in medical education.

    PubMed

    Gierl, Mark J; Latifi, Syed; Lai, Hollis; Boulais, André-Philippe; De Champlain, André

    2014-10-01

    Constructed-response tasks, which range from short-answer tests to essay questions, are included in assessments of medical knowledge because they allow educators to measure students' ability to think, reason, solve complex problems, communicate and collaborate through their use of writing. However, constructed-response tasks are also costly to administer and challenging to score because they rely on human raters. One alternative to the manual scoring process is to integrate computer technology with writing assessment. The process of scoring written responses using computer programs is known as 'automated essay scoring' (AES). An AES system uses a computer program that builds a scoring model by extracting linguistic features from a constructed-response prompt that has been pre-scored by human raters and then, using machine learning algorithms, maps the linguistic features to the human scores so that the computer can be used to classify (i.e. score or grade) the responses of a new group of students. The accuracy of the score classification can be evaluated using different measures of agreement. Automated essay scoring provides a method for scoring constructed-response tests that complements the current use of selected-response testing in medical education. The method can serve medical educators by providing the summative scores required for high-stakes testing. It can also serve medical students by providing them with detailed feedback as part of a formative assessment process. Automated essay scoring systems yield scores that consistently agree with those of human raters at a level as high, if not higher, as the level of agreement among human raters themselves. The system offers medical educators many benefits for scoring constructed-response tasks, such as improving the consistency of scoring, reducing the time required for scoring and reporting, minimising the costs of scoring, and providing students with immediate feedback on constructed-response tasks. © 2014 John Wiley & Sons Ltd.

  7. Pathologists' Computer-Assisted Diagnosis: A Mock-up of a Prototype Information System to Facilitate Automation of Pathology Sign-out.

    PubMed

    Farahani, Navid; Liu, Zheng; Jutt, Dylan; Fine, Jeffrey L

    2017-10-01

    - Pathologists' computer-assisted diagnosis (pCAD) is a proposed framework for alleviating challenges through the automation of their routine sign-out work. Currently, hypothetical pCAD is based on a triad of advanced image analysis, deep integration with heterogeneous information systems, and a concrete understanding of traditional pathology workflow. Prototyping is an established method for designing complex new computer systems such as pCAD. - To describe, in detail, a prototype of pCAD for the sign-out of a breast cancer specimen. - Deidentified glass slides and data from breast cancer specimens were used. Slides were digitized into whole-slide images with an Aperio ScanScope XT, and screen captures were created by using vendor-provided software. The advanced workflow prototype was constructed by using PowerPoint software. - We modeled an interactive, computer-assisted workflow: pCAD previews whole-slide images in the context of integrated, disparate data and predefined diagnostic tasks and subtasks. Relevant regions of interest (ROIs) would be automatically identified and triaged by the computer. A pathologist's sign-out work would consist of an interactive review of important ROIs, driven by required diagnostic tasks. The interactive session would generate a pathology report automatically. - Using animations and real ROIs, the pCAD prototype demonstrates the hypothetical sign-out in a stepwise fashion, illustrating various interactions and explaining how steps can be automated. The file is publicly available and should be widely compatible. This mock-up is intended to spur discussion and to help usher in the next era of digitization for pathologists by providing desperately needed and long-awaited automation.

  8. Templet Web: the use of volunteer computing approach in PaaS-style cloud

    NASA Astrophysics Data System (ADS)

    Vostokin, Sergei; Artamonov, Yuriy; Tsarev, Daniil

    2018-03-01

    This article presents the Templet Web cloud service. The service is designed for high-performance scientific computing automation. The use of high-performance technology is specifically required by new fields of computational science such as data mining, artificial intelligence, machine learning, and others. Cloud technologies provide a significant cost reduction for high-performance scientific applications. The main objectives to achieve this cost reduction in the Templet Web service design are: (a) the implementation of "on-demand" access; (b) source code deployment management; (c) high-performance computing programs development automation. The distinctive feature of the service is the approach mainly used in the field of volunteer computing, when a person who has access to a computer system delegates his access rights to the requesting user. We developed an access procedure, algorithms, and software for utilization of free computational resources of the academic cluster system in line with the methods of volunteer computing. The Templet Web service has been in operation for five years. It has been successfully used for conducting laboratory workshops and solving research problems, some of which are considered in this article. The article also provides an overview of research directions related to service development.

  9. Boundary element analysis of post-tensioned slabs

    NASA Astrophysics Data System (ADS)

    Rashed, Youssef F.

    2015-06-01

    In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.

  10. Automated Computerized Analysis of Speechin Psychiatric Disorders

    PubMed Central

    Cohen, Alex S.; Elvevåg, Brita

    2014-01-01

    Purpose of Review Disturbances in communication are a hallmark of severe mental illnesses. Recent technological advances have paved the way for objectifying communication using automated computerized linguistic and acoustic analysis. We review recent studies applying various computer-based assessments to the natural language produced by adult patients with severe mental illness. Recent Findings Automated computerized methods afford tools with which it is possible to objectively evaluate patients in a reliable, valid and efficient manner that complements human ratings. Crucially, these measures correlate with important clinical measures. The clinical relevance of these novel metrics has been demonstrated by showing their relationship to functional outcome measures, their in vivo link to classic ‘language’ regions in the brain, and, in the case of linguistic analysis, their relationship to candidate genes for severe mental illness. Summary Computer based assessments of natural language afford a framework with which to measure communication disturbances in adults with SMI. Emerging evidence suggests that they can be reliable and valid, and overcome many practical limitations of more traditional assessment methods. The advancement of these technologies offers unprecedented potential for measuring and understanding some of the most crippling symptoms of some of the most debilitating illnesses known to humankind. PMID:24613984

  11. High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium

    PubMed Central

    Howat, William J; Daley, Frances; Zabaglo, Lila; McDuffus, Leigh‐Anne; Blows, Fiona; Coulson, Penny; Raza Ali, H; Benitez, Javier; Milne, Roger; Brenner, Herman; Stegmaier, Christa; Mannermaa, Arto; Chang‐Claude, Jenny; Rudolph, Anja; Sinn, Peter; Couch, Fergus J; Tollenaar, Rob A.E.M.; Devilee, Peter; Figueroa, Jonine; Sherman, Mark E; Lissowska, Jolanta; Hewitt, Stephen; Eccles, Diana; Hooning, Maartje J; Hollestelle, Antoinette; WM Martens, John; HM van Deurzen, Carolien; Investigators, kConFab; Bolla, Manjeet K; Wang, Qin; Jones, Michael; Schoemaker, Minouk; Broeks, Annegien; van Leeuwen, Flora E; Van't Veer, Laura; Swerdlow, Anthony J; Orr, Nick; Dowsett, Mitch; Easton, Douglas; Schmidt, Marjanka K; Pharoah, Paul D; Garcia‐Closas, Montserrat

    2016-01-01

    Abstract Automated methods are needed to facilitate high‐throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large‐scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37–0.87) and study (kappa range = 0.39–0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p‐value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000–4,500 cells: kappa = 0.78) than those with lower counts (50–500 cells: kappa = 0.41; p‐value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre‐ and post‐analytical quality control procedures are necessary in order to ensure satisfactory performance. PMID:27499923

  12. MRIVIEW: An interactive computational tool for investigation of brain structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranken, D.; George, J.

    MRIVIEW is a software system which uses image processing and visualization to provide neuroscience researchers with an integrated environment for combining functional and anatomical information. Key features of the software include semi-automated segmentation of volumetric head data and an interactive coordinate reconciliation method which utilizes surface visualization. The current system is a precursor to a computational brain atlas. We describe features this atlas will incorporate, including methods under development for visualizing brain functional data obtained from several different research modalities.

  13. Kinematic synthesis of adjustable robotic mechanisms

    NASA Astrophysics Data System (ADS)

    Chuenchom, Thatchai

    1993-01-01

    Conventional hard automation, such as a linkage-based or a cam-driven system, provides high speed capability and repeatability but not the flexibility required in many industrial applications. The conventional mechanisms, that are typically single-degree-of-freedom systems, are being increasingly replaced by multi-degree-of-freedom multi-actuators driven by logic controllers. Although this new trend in sophistication provides greatly enhanced flexibility, there are many instances where the flexibility needs are exaggerated and the associated complexity is unnecessary. Traditional mechanism-based hard automation, on the other hand, neither can fulfill multi-task requirements nor are cost-effective mainly due to lack of methods and tools to design-in flexibility. This dissertation attempts to bridge this technological gap by developing Adjustable Robotic Mechanisms (ARM's) or 'programmable mechanisms' as a middle ground between high speed hard automation and expensive serial jointed-arm robots. This research introduces the concept of adjustable robotic mechanisms towards cost-effective manufacturing automation. A generalized analytical synthesis technique has been developed to support the computational design of ARM's that lays the theoretical foundation for synthesis of adjustable mechanisms. The synthesis method developed in this dissertation, called generalized adjustable dyad and triad synthesis, advances the well-known Burmester theory in kinematics to a new level. While this method provides planar solutions, a novel patented scheme is utilized for converting prescribed three-dimensional motion specifications into sets of planar projections. This provides an analytical and a computational tool for designing adjustable mechanisms that satisfy multiple sets of three-dimensional motion specifications. Several design issues were addressed, including adjustable parameter identification, branching defect, and mechanical errors. An efficient mathematical scheme for identification of adjustable member was also developed. The analytical synthesis techniques developed in this dissertation were successfully implemented in a graphic-intensive user-friendly computer program. A physical prototype of a general purpose adjustable robotic mechanism has been constructed to serve as a proof-of-concept model.

  14. Computational methods for evaluation of cell-based data assessment--Bioconductor.

    PubMed

    Le Meur, Nolwenn

    2013-02-01

    Recent advances in miniaturization and automation of technologies have enabled cell-based assay high-throughput screening, bringing along new challenges in data analysis. Automation, standardization, reproducibility have become requirements for qualitative research. The Bioconductor community has worked in that direction proposing several R packages to handle high-throughput data including flow cytometry (FCM) experiment. Altogether, these packages cover the main steps of a FCM analysis workflow, that is, data management, quality assessment, normalization, outlier detection, automated gating, cluster labeling, and feature extraction. Additionally, the open-source philosophy of R and Bioconductor, which offers room for new development, continuously drives research and improvement of theses analysis methods, especially in the field of clustering and data mining. This review presents the principal FCM packages currently available in R and Bioconductor, their advantages and their limits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    PubMed

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  16. Automated Detection of Events of Scientific Interest

    NASA Technical Reports Server (NTRS)

    James, Mark

    2007-01-01

    A report presents a slightly different perspective of the subject matter of Fusing Symbolic and Numerical Diagnostic Computations (NPO-42512), which appears elsewhere in this issue of NASA Tech Briefs. Briefly, the subject matter is the X-2000 Anomaly Detection Language, which is a developmental computing language for fusing two diagnostic computer programs one implementing a numerical analysis method, the other implementing a symbolic analysis method into a unified event-based decision analysis software system for real-time detection of events. In the case of the cited companion NASA Tech Briefs article, the contemplated events that one seeks to detect would be primarily failures or other changes that could adversely affect the safety or success of a spacecraft mission. In the case of the instant report, the events to be detected could also include natural phenomena that could be of scientific interest. Hence, the use of X- 2000 Anomaly Detection Language could contribute to a capability for automated, coordinated use of multiple sensors and sensor-output-data-processing hardware and software to effect opportunistic collection and analysis of scientific data.

  17. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers and Automation Technology, Number 29.

    DTIC Science & Technology

    1978-01-17

    approach to designing computers: Formal mathematical methods were applied and computers themselves began to be widely used in designing other...capital, labor resources and the funds of consumers. Analysis of the model indicates that at the present time the average complexity of production of...ALGORITHMIC COMPLETENESS AND COMPLEXITY OF MICROPROGRAMS Kiev KIBERNETIKA in Russian No 3, May/Jun 77 pp 1-15 manuscript received 22 Dec 76 G0LUNK0V

  18. The Effect of Computer Automation on Institutional Review Board (IRB) Office Efficiency

    ERIC Educational Resources Information Center

    Oder, Karl; Pittman, Stephanie

    2015-01-01

    Companies purchase computer systems to make their processes more efficient through automation. Some academic medical centers (AMC) have purchased computer systems for their institutional review boards (IRB) to increase efficiency and compliance with regulations. IRB computer systems are expensive to purchase, deploy, and maintain. An AMC should…

  19. Automated real-time software development

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Walker, Carrie K.; Turkovich, John J.

    1993-01-01

    A Computer-Aided Software Engineering (CASE) system has been developed at the Charles Stark Draper Laboratory (CSDL) under the direction of the NASA Langley Research Center. The CSDL CASE tool provides an automated method of generating source code and hard copy documentation from functional application engineering specifications. The goal is to significantly reduce the cost of developing and maintaining real-time scientific and engineering software while increasing system reliability. This paper describes CSDL CASE and discusses demonstrations that used the tool to automatically generate real-time application code.

  20. Application of remotely sensed multispectral data to automated analysis of marshland vegetation. Inference to the location of breeding habitats of the salt marsh mosquito (Aedes Sollicitans)

    NASA Technical Reports Server (NTRS)

    Cibula, W. G.

    1976-01-01

    The techniques used for the automated classification of marshland vegetation and for the color-coded display of remotely acquired data to facilitate the control of mosquito breeding are presented. A multispectral scanner system and its mode of operation are described, and the computer processing techniques are discussed. The procedures for the selection of calibration sites are explained. Three methods for displaying color-coded classification data are presented.

  1. Possible Computer Vision Systems and Automated or Computer-Aided Edging and Trimming

    Treesearch

    Philip A. Araman

    1990-01-01

    This paper discusses research which is underway to help our industry reduce costs, increase product volume and value recovery, and market more accurately graded and described products. The research is part of a team effort to help the hardwood sawmill industry automate with computer vision systems, and computer-aided or computer controlled processing. This paper...

  2. Automated detection of prostate cancer in digitized whole-slide images of H and E-stained biopsy specimens

    NASA Astrophysics Data System (ADS)

    Litjens, G.; Ehteshami Bejnordi, B.; Timofeeva, N.; Swadi, G.; Kovacs, I.; Hulsbergen-van de Kaa, C.; van der Laak, J.

    2015-03-01

    Automated detection of prostate cancer in digitized H and E whole-slide images is an important first step for computer-driven grading. Most automated grading algorithms work on preselected image patches as they are too computationally expensive to calculate on the multi-gigapixel whole-slide images. An automated multi-resolution cancer detection system could reduce the computational workload for subsequent grading and quantification in two ways: by excluding areas of definitely normal tissue within a single specimen or by excluding entire specimens which do not contain any cancer. In this work we present a multi-resolution cancer detection algorithm geared towards the latter. The algorithm methodology is as follows: at a coarse resolution the system uses superpixels, color histograms and local binary patterns in combination with a random forest classifier to assess the likelihood of cancer. The five most suspicious superpixels are identified and at a higher resolution more computationally expensive graph and gland features are added to refine classification for these superpixels. Our methods were evaluated in a data set of 204 digitized whole-slide H and E stained images of MR-guided biopsy specimens from 163 patients. A pathologist exhaustively annotated the specimens for areas containing cancer. The performance of our system was evaluated using ten-fold cross-validation, stratified according to patient. Image-based receiver operating characteristic (ROC) analysis was subsequently performed where a specimen containing cancer was considered positive and specimens without cancer negative. We obtained an area under the ROC curve of 0.96 and a 0.4 specificity at a 1.0 sensitivity.

  3. Large-scale image region documentation for fully automated image biomarker algorithm development and evaluation

    PubMed Central

    Reeves, Anthony P.; Xie, Yiting; Liu, Shuang

    2017-01-01

    Abstract. With the advent of fully automated image analysis and modern machine learning methods, there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually used in academic studies do not scale to large datasets. This method includes protocols for the documentation of many regions in very large image datasets; the documentation may be incrementally updated by new image data and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms have been developed to achieve over 90% acceptable image segmentation on the complete dataset. PMID:28612037

  4. [A study of biomechanical method for urine test based on color difference estimation].

    PubMed

    Wang, Chunhong; Zhou, Yue; Zhao, Hongxia; Zhou, Fengkun

    2008-02-01

    The biochemical analysis of urine is an important inspection and diagnosis method in hospitals. The conventional method of urine analysis covers mainly colorimetric visual appraisement and automation detection, in which the colorimetric visual appraisement technique has been superseded basically, and the automation detection method is adopted in hospital; moreover, the price of urine biochemical analyzer on market is around twenty thousand RMB yuan (Y), which is hard to enter into ordinary families. It is known that computer vision system is not subject to the physiological and psychological influence of person, its appraisement standard is objective and steady. Therefore, according to the color theory, we have established a computer vision system, which can carry through collection, management, display, and appraisement of color difference between the color of standard threshold value and the color of urine test paper after reaction with urine liquid, and then the level of an illness can be judged accurately. In this paper, we introduce the Urine Test Biochemical Analysis method, which is new and can be popularized in families. Experimental result shows that this test method is easy-to-use and cost-effective. It can realize the monitoring of a whole course and can find extensive applications.

  5. Computer-Aided Nodule Assessment and Risk Yield Risk Management of Adenocarcinoma: The Future of Imaging?

    PubMed

    Foley, Finbar; Rajagopalan, Srinivasan; Raghunath, Sushravya M; Boland, Jennifer M; Karwoski, Ronald A; Maldonado, Fabien; Bartholmai, Brian J; Peikert, Tobias

    2016-01-01

    Increased clinical use of chest high-resolution computed tomography results in increased identification of lung adenocarcinomas and persistent subsolid opacities. However, these lesions range from very indolent to extremely aggressive tumors. Clinically relevant diagnostic tools to noninvasively risk stratify and guide individualized management of these lesions are lacking. Research efforts investigating semiquantitative measures to decrease interrater and intrarater variability are emerging, and in some cases steps have been taken to automate this process. However, many such methods currently are still suboptimal, require validation and are not yet clinically applicable. The computer-aided nodule assessment and risk yield software application represents a validated tool for the automated, quantitative, and noninvasive tool for risk stratification of adenocarcinoma lung nodules. Computer-aided nodule assessment and risk yield correlates well with consensus histology and postsurgical patient outcomes, and therefore may help to guide individualized patient management, for example, in identification of nodules amenable to radiological surveillance, or in need of adjunctive therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Automated flight path planning for virtual endoscopy.

    PubMed

    Paik, D S; Beaulieu, C F; Jeffrey, R B; Rubin, G D; Napel, S

    1998-05-01

    In this paper, a novel technique for rapid and automatic computation of flight paths for guiding virtual endoscopic exploration of three-dimensional medical images is described. While manually planning flight paths is a tedious and time consuming task, our algorithm is automated and fast. Our method for positioning the virtual camera is based on the medial axis transform but is much more computationally efficient. By iteratively correcting a path toward the medial axis, the necessity of evaluating simple point criteria during morphological thinning is eliminated. The virtual camera is also oriented in a stable viewing direction, avoiding sudden twists and turns. We tested our algorithm on volumetric data sets of eight colons, one aorta and one bronchial tree. The algorithm computed the flight paths in several minutes per volume on an inexpensive workstation with minimal computation time added for multiple paths through branching structures (10%-13% per extra path). The results of our algorithm are smooth, centralized paths that aid in the task of navigation in virtual endoscopic exploration of three-dimensional medical images.

  7. Investigating the Effects of Motion Streaks on pQCT-Derived Leg Muscle Density and Its Association With Fractures.

    PubMed

    Chan, Adrian C H; Adachi, Jonathan D; Papaioannou, Alexandra; Wong, Andy Kin On

    Lower peripheral quantitative computed tomography (pQCT)-derived leg muscle density has been associated with fragility fractures in postmenopausal women. Limb movement during image acquisition may result in motion streaks in muscle that could dilute this relationship. This cross-sectional study examined a subset of women from the Canadian Multicentre Osteoporosis Study. pQCT leg scans were qualitatively graded (1-5) for motion severity. Muscle and motion streak were segmented using semi-automated (watershed) and fully automated (threshold-based) methods, computing area, and density. Binary logistic regression evaluated odds ratios (ORs) for fragility or all-cause fractures related to each of these measures with covariate adjustment. Among the 223 women examined (mean age: 72.7 ± 7.1 years, body mass index: 26.30 ± 4.97 kg/m 2 ), muscle density was significantly lower after removing motion (p < 0.001) for both methods. Motion streak areas segmented using the semi-automated method correlated better with visual motion grades (rho = 0.90, p < 0.01) compared to the fully automated method (rho = 0.65, p < 0.01). Although the analysis-reanalysis precision of motion streak area segmentation using the semi-automated method is above 5% error (6.44%), motion-corrected muscle density measures remained well within 2% analytical error. The effect of motion-correction on strengthening the association between muscle density and fragility fractures was significant when motion grade was ≥3 (p interaction <0.05). This observation was most dramatic for the semi-automated algorithm (OR: 1.62 [0.82,3.17] before to 2.19 [1.05,4.59] after correction). Although muscle density showed an overall association with all-cause fractures (OR: 1.49 [1.05,2.12]), the effect of motion-correction was again, most impactful within individuals with scans showing grade 3 or above motion. Correcting for motion in pQCT leg scans strengthened the relationship between muscle density and fragility fractures, particularly in scans with motion grades of 3 or above. Motion streaks are not confounders to the relationship between pQCT-derived leg muscle density and fractures, but may introduce heterogeneity in muscle density measurements, rendering associations with fractures to be weaker. Copyright © 2016. Published by Elsevier Inc.

  8. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by routing through transporter nodes

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-11-16

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. An automated routing strategy routes packets through one or more intermediate nodes of the network to reach a destination. Some packets are constrained to be routed through respective designated transporter nodes, the automated routing strategy determining a path from a respective source node to a respective transporter node, and from a respective transporter node to a respective destination node. Preferably, the source node chooses a routing policy from among multiple possible choices, and that policy is followed by all intermediate nodes. The use of transporter nodes allows greater flexibility in routing.

  9. reCAPTCHA: human-based character recognition via Web security measures.

    PubMed

    von Ahn, Luis; Maurer, Benjamin; McMillen, Colin; Abraham, David; Blum, Manuel

    2008-09-12

    CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) are widespread security measures on the World Wide Web that prevent automated programs from abusing online services. They do so by asking humans to perform a task that computers cannot yet perform, such as deciphering distorted characters. Our research explored whether such human effort can be channeled into a useful purpose: helping to digitize old printed material by asking users to decipher scanned words from books that computerized optical character recognition failed to recognize. We showed that this method can transcribe text with a word accuracy exceeding 99%, matching the guarantee of professional human transcribers. Our apparatus is deployed in more than 40,000 Web sites and has transcribed over 440 million words.

  10. Automated social skills training with audiovisual information.

    PubMed

    Tanaka, Hiroki; Sakti, Sakriani; Neubig, Graham; Negoro, Hideki; Iwasaka, Hidemi; Nakamura, Satoshi

    2016-08-01

    People with social communication difficulties tend to have superior skills using computers, and as a result computer-based social skills training systems are flourishing. Social skills training, performed by human trainers, is a well-established method to obtain appropriate skills in social interaction. Previous works have attempted to automate one or several parts of social skills training through human-computer interaction. However, while previous work on simulating social skills training considered only acoustic and linguistic features, human social skills trainers take into account visual features (e.g. facial expression, posture). In this paper, we create and evaluate a social skills training system that closes this gap by considering audiovisual features regarding ratio of smiling, yaw, and pitch. An experimental evaluation measures the difference in effectiveness of social skill training when using audio features and audiovisual features. Results showed that the visual features were effective to improve users' social skills.

  11. Towards agile large-scale predictive modelling in drug discovery with flow-based programming design principles.

    PubMed

    Lampa, Samuel; Alvarsson, Jonathan; Spjuth, Ola

    2016-01-01

    Predictive modelling in drug discovery is challenging to automate as it often contains multiple analysis steps and might involve cross-validation and parameter tuning that create complex dependencies between tasks. With large-scale data or when using computationally demanding modelling methods, e-infrastructures such as high-performance or cloud computing are required, adding to the existing challenges of fault-tolerant automation. Workflow management systems can aid in many of these challenges, but the currently available systems are lacking in the functionality needed to enable agile and flexible predictive modelling. We here present an approach inspired by elements of the flow-based programming paradigm, implemented as an extension of the Luigi system which we name SciLuigi. We also discuss the experiences from using the approach when modelling a large set of biochemical interactions using a shared computer cluster.Graphical abstract.

  12. Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis

    PubMed Central

    Fang, Shiaofen; McLaughlin, Jason; Fang, Jiandong; Huang, Jeffrey; Autti-Rämö, Ilona; Fagerlund, Åse; Jacobson, Sandra W.; Robinson, Luther K.; Hoyme, H. Eugene; Mattson, Sarah N.; Riley, Edward; Zhou, Feng; Ward, Richard; Moore, Elizabeth S.; Foroud, Tatiana

    2012-01-01

    Objectives Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces. PMID:18713153

  13. Automated compromised right lung segmentation method using a robust atlas-based active volume model with sparse shape composition prior in CT.

    PubMed

    Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren

    2015-12-01

    To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.

  14. Computers Launch Faster, Better Job Matching

    ERIC Educational Resources Information Center

    Stevenson, Gloria

    1976-01-01

    Employment Security Automation Project (ESAP), a five-year program sponsored by the Employment and Training Administration, features an innovative computer-assisted job matching system and instantaneous computer-assisted service for unemployment insurance claimants. ESAP will also consolidate existing automated employment security systems to…

  15. Computation of free oscillations of the earth

    USGS Publications Warehouse

    Buland, Raymond P.; Gilbert, F.

    1984-01-01

    Although free oscillations of the Earth may be computed by many different methods, numerous practical considerations have led us to use a Rayleigh-Ritz formulation with piecewise cubic Hermite spline basis functions. By treating the resulting banded matrix equation as a generalized algebraic eigenvalue problem, we are able to achieve great accuracy and generality and a high degree of automation at a reasonable cost. ?? 1984.

  16. Influencing Trust for Human-Automation Collaborative Scheduling of Multiple Unmanned Vehicles.

    PubMed

    Clare, Andrew S; Cummings, Mary L; Repenning, Nelson P

    2015-11-01

    We examined the impact of priming on operator trust and system performance when supervising a decentralized network of heterogeneous unmanned vehicles (UVs). Advances in autonomy have enabled a future vision of single-operator control of multiple heterogeneous UVs. Real-time scheduling for multiple UVs in uncertain environments requires the computational ability of optimization algorithms combined with the judgment and adaptability of human supervisors. Because of system and environmental uncertainty, appropriate operator trust will be instrumental to maintain high system performance and prevent cognitive overload. Three groups of operators experienced different levels of trust priming prior to conducting simulated missions in an existing, multiple-UV simulation environment. Participants who play computer and video games frequently were found to have a higher propensity to overtrust automation. By priming gamers to lower their initial trust to a more appropriate level, system performance was improved by 10% as compared to gamers who were primed to have higher trust in the automation. Priming was successful at adjusting the operator's initial and dynamic trust in the automated scheduling algorithm, which had a substantial impact on system performance. These results have important implications for personnel selection and training for futuristic multi-UV systems under human supervision. Although gamers may bring valuable skills, they may also be potentially prone to automation bias. Priming during training and regular priming throughout missions may be one potential method for overcoming this propensity to overtrust automation. © 2015, Human Factors and Ergonomics Society.

  17. Machine learning and computer vision approaches for phenotypic profiling.

    PubMed

    Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J

    2017-01-02

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.

  18. Machine learning and computer vision approaches for phenotypic profiling

    PubMed Central

    Morris, Quaid

    2017-01-01

    With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. PMID:27940887

  19. Automating approximate Bayesian computation by local linear regression.

    PubMed

    Thornton, Kevin R

    2009-07-07

    In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.

  20. Computer vision in the poultry industry

    USDA-ARS?s Scientific Manuscript database

    Computer vision is becoming increasingly important in the poultry industry due to increasing use and speed of automation in processing operations. Growing awareness of food safety concerns has helped add food safety inspection to the list of tasks that automated computer vision can assist. Researc...

  1. Computing and Office Automation: Changing Variables.

    ERIC Educational Resources Information Center

    Staman, E. Michael

    1981-01-01

    Trends in computing and office automation and their applications, including planning, institutional research, and general administrative support in higher education, are discussed. Changing aspects of information processing and an increasingly larger user community are considered. The computing literacy cycle may involve programming, analysis, use…

  2. ADP Analysis project for the Human Resources Management Division

    NASA Technical Reports Server (NTRS)

    Tureman, Robert L., Jr.

    1993-01-01

    The ADP (Automated Data Processing) Analysis Project was conducted for the Human Resources Management Division (HRMD) of NASA's Langley Research Center. The three major areas of work in the project were computer support, automated inventory analysis, and an ADP study for the Division. The goal of the computer support work was to determine automation needs of Division personnel and help them solve computing problems. The goal of automated inventory analysis was to find a way to analyze installed software and usage on a Macintosh. Finally, the ADP functional systems study for the Division was designed to assess future HRMD needs concerning ADP organization and activities.

  3. Automated railroad reconstruction from remote sensing image based on texture filter

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Lu, Kaixia

    2018-03-01

    Techniques of remote sensing have been improved incredibly in recent years and very accurate results and high resolution images can be acquired. There exist possible ways to use such data to reconstruct railroads. In this paper, an automated railroad reconstruction method from remote sensing images based on Gabor filter was proposed. The method is divided in three steps. Firstly, the edge-oriented railroad characteristics (such as line features) in a remote sensing image are detected using Gabor filter. Secondly, two response images with the filtering orientations perpendicular to each other are fused to suppress the noise and acquire a long stripe smooth region of railroads. Thirdly, a set of smooth regions can be extracted by firstly computing global threshold for the previous result image using Otsu's method and then converting it to a binary image based on the previous threshold. This workflow is tested on a set of remote sensing images and was found to deliver very accurate results in a quickly and highly automated manner.

  4. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance.

    PubMed

    Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2009-01-01

    This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.

  5. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers, and Automation Technology, Number 27

    DTIC Science & Technology

    1977-05-10

    apply this method of forecast- ing in the solution of all major scientific-technical problems of the na- tional economy. Citing the slow...the future, however, computers will "mature" and learn to recognize patterns in what amounts to a much more complex language—the language of visual...images. Photoelectronic tracking devices or "eyes" will allow the computer to take in information in a much more complex form and to perform opera

  6. Autofocus method for automated microscopy using embedded GPUs.

    PubMed

    Castillo-Secilla, J M; Saval-Calvo, M; Medina-Valdès, L; Cuenca-Asensi, S; Martínez-Álvarez, A; Sánchez, C; Cristóbal, G

    2017-03-01

    In this paper we present a method for autofocusing images of sputum smears taken from a microscope which combines the finding of the optimal focus distance with an algorithm for extending the depth of field (EDoF). Our multifocus fusion method produces an unique image where all the relevant objects of the analyzed scene are well focused, independently to their distance to the sensor. This process is computationally expensive which makes unfeasible its automation using traditional embedded processors. For this purpose a low-cost optimized implementation is proposed using limited resources embedded GPU integrated on cutting-edge NVIDIA system on chip. The extensive tests performed on different sputum smear image sets show the real-time capabilities of our implementation maintaining the quality of the output image.

  7. Automated analysis of free speech predicts psychosis onset in high-risk youths

    PubMed Central

    Bedi, Gillinder; Carrillo, Facundo; Cecchi, Guillermo A; Slezak, Diego Fernández; Sigman, Mariano; Mota, Natália B; Ribeiro, Sidarta; Javitt, Daniel C; Copelli, Mauro; Corcoran, Cheryl M

    2015-01-01

    Background/Objectives: Psychiatry lacks the objective clinical tests routinely used in other specializations. Novel computerized methods to characterize complex behaviors such as speech could be used to identify and predict psychiatric illness in individuals. AIMS: In this proof-of-principle study, our aim was to test automated speech analyses combined with Machine Learning to predict later psychosis onset in youths at clinical high-risk (CHR) for psychosis. Methods: Thirty-four CHR youths (11 females) had baseline interviews and were assessed quarterly for up to 2.5 years; five transitioned to psychosis. Using automated analysis, transcripts of interviews were evaluated for semantic and syntactic features predicting later psychosis onset. Speech features were fed into a convex hull classification algorithm with leave-one-subject-out cross-validation to assess their predictive value for psychosis outcome. The canonical correlation between the speech features and prodromal symptom ratings was computed. Results: Derived speech features included a Latent Semantic Analysis measure of semantic coherence and two syntactic markers of speech complexity: maximum phrase length and use of determiners (e.g., which). These speech features predicted later psychosis development with 100% accuracy, outperforming classification from clinical interviews. Speech features were significantly correlated with prodromal symptoms. Conclusions: Findings support the utility of automated speech analysis to measure subtle, clinically relevant mental state changes in emergent psychosis. Recent developments in computer science, including natural language processing, could provide the foundation for future development of objective clinical tests for psychiatry. PMID:27336038

  8. 45 CFR 310.1 - What definitions apply to this part?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... existing automated data processing computer system through an Intergovernmental Service Agreement; (4...) Office Automation means a generic adjunct component of a computer system that supports the routine... timely and satisfactory; (iv) Assurances that information in the computer system as well as access, use...

  9. 45 CFR 310.1 - What definitions apply to this part?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... existing automated data processing computer system through an Intergovernmental Service Agreement; (4...) Office Automation means a generic adjunct component of a computer system that supports the routine... timely and satisfactory; (iv) Assurances that information in the computer system as well as access, use...

  10. 45 CFR 310.1 - What definitions apply to this part?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... existing automated data processing computer system through an Intergovernmental Service Agreement; (4...) Office Automation means a generic adjunct component of a computer system that supports the routine... timely and satisfactory; (iv) Assurances that information in the computer system as well as access, use...

  11. 45 CFR 310.1 - What definitions apply to this part?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... existing automated data processing computer system through an Intergovernmental Service Agreement; (4...) Office Automation means a generic adjunct component of a computer system that supports the routine... timely and satisfactory; (iv) Assurances that information in the computer system as well as access, use...

  12. 45 CFR 310.1 - What definitions apply to this part?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... existing automated data processing computer system through an Intergovernmental Service Agreement; (4...) Office Automation means a generic adjunct component of a computer system that supports the routine... timely and satisfactory; (iv) Assurances that information in the computer system as well as access, use...

  13. Evaluation of a semi-automated computer algorithm for measuring total fat and visceral fat content in lambs undergoing in vivo whole body computed tomography.

    PubMed

    Rosenblatt, Alana J; Scrivani, Peter V; Boisclair, Yves R; Reeves, Anthony P; Ramos-Nieves, Jose M; Xie, Yiting; Erb, Hollis N

    2017-10-01

    Computed tomography (CT) is a suitable tool for measuring body fat, since it is non-destructive and can be used to differentiate metabolically active visceral fat from total body fat. Whole body analysis of body fat is likely to be more accurate than single CT slice estimates of body fat. The aim of this study was to assess the agreement between semi-automated computer analysis of whole body volumetric CT data and conventional proximate (chemical) analysis of body fat in lambs. Data were collected prospectively from 12 lambs that underwent duplicate whole body CT, followed by slaughter and carcass analysis by dissection and chemical analysis. Agreement between methods for quantification of total and visceral fat was assessed by Bland-Altman plot analysis. The repeatability of CT was assessed for these measures using the mean difference of duplicated measures. When compared to chemical analysis, CT systematically underestimated total and visceral fat contents by more than 10% of the mean fat weight. Therefore, carcass analysis and semi-automated CT computer measurements were not interchangeable for quantifying body fat content without the use of a correction factor. CT acquisition was repeatable, with a mean difference of repeated measures being close to zero. Therefore, uncorrected whole body CT might have an application for assessment of relative changes in fat content, especially in growing lambs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluation of computer-based computer tomography stratification against outcome models in connective tissue disease-related interstitial lung disease: a patient outcome study.

    PubMed

    Jacob, Joseph; Bartholmai, Brian J; Rajagopalan, Srinivasan; Brun, Anne Laure; Egashira, Ryoko; Karwoski, Ronald; Kokosi, Maria; Wells, Athol U; Hansell, David M

    2016-11-23

    To evaluate computer-based computer tomography (CT) analysis (CALIPER) against visual CT scoring and pulmonary function tests (PFTs) when predicting mortality in patients with connective tissue disease-related interstitial lung disease (CTD-ILD). To identify outcome differences between distinct CTD-ILD groups derived following automated stratification of CALIPER variables. A total of 203 consecutive patients with assorted CTD-ILDs had CT parenchymal patterns evaluated by CALIPER and visual CT scoring: honeycombing, reticular pattern, ground glass opacities, pulmonary vessel volume, emphysema, and traction bronchiectasis. CT scores were evaluated against pulmonary function tests: forced vital capacity, diffusing capacity for carbon monoxide, carbon monoxide transfer coefficient, and composite physiologic index for mortality analysis. Automated stratification of CALIPER-CT variables was evaluated in place of and alongside forced vital capacity and diffusing capacity for carbon monoxide in the ILD gender, age physiology (ILD-GAP) model using receiver operating characteristic curve analysis. Cox regression analyses identified four independent predictors of mortality: patient age (P < 0.0001), smoking history (P = 0.0003), carbon monoxide transfer coefficient (P = 0.003), and pulmonary vessel volume (P < 0.0001). Automated stratification of CALIPER variables identified three morphologically distinct groups which were stronger predictors of mortality than all CT and functional indices. The Stratified-CT model substituted automated stratified groups for functional indices in the ILD-GAP model and maintained model strength (area under curve (AUC) = 0.74, P < 0.0001), ILD-GAP (AUC = 0.72, P < 0.0001). Combining automated stratified groups with the ILD-GAP model (stratified CT-GAP model) strengthened predictions of 1- and 2-year mortality: ILD-GAP (AUC = 0.87 and 0.86, respectively); stratified CT-GAP (AUC = 0.89 and 0.88, respectively). CALIPER-derived pulmonary vessel volume is an independent predictor of mortality across all CTD-ILD patients. Furthermore, automated stratification of CALIPER CT variables represents a novel method of prognostication at least as robust as PFTs in CTD-ILD patients.

  15. 17 CFR 38.156 - Automated trade surveillance system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... potential trade practice violations. The automated system must load and process daily orders and trades no... anomalies; compute, retain, and compare trading statistics; compute trade gains, losses, and futures...

  16. 17 CFR 38.156 - Automated trade surveillance system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... potential trade practice violations. The automated system must load and process daily orders and trades no... anomalies; compute, retain, and compare trading statistics; compute trade gains, losses, and futures...

  17. Education & Training for CAD/CAM: Results of a National Probability Survey. Krannert Institute Paper Series.

    ERIC Educational Resources Information Center

    Majchrzak, Ann

    A study was conducted of the training programs used by plants with Computer Automated Design/Computer Automated Manufacturing (CAD/CAM) to help their employees adapt to automated manufacturing. The study sought to determine the relative priorities of manufacturing establishments for training certain workers in certain skills; the status of…

  18. Improved Method Of Bending Concentric Pipes

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.

    1995-01-01

    Proposed method for bending two concentric pipes simultaneously while maintaining void between them replaces present tedious, messy, and labor-intensive method. Array of rubber tubes inserted in gap between concentric pipes. Tubes then inflated with relatively incompressible liquid to fill gap. Enables bending to be done faster and more cleanly, and amenable to automation of significant portion of bending process on computer numerically controlled (CNC) tube-bending machinery.

  19. 20180312 - Mechanistic Modeling of Developmental Defects through Computational Embryology (SOT)

    EPA Science Inventory

    Significant advances in the genome sciences, in automated high-throughput screening (HTS), and in alternative methods for testing enable rapid profiling of chemical libraries for quantitative effects on diverse cellular activities. While a surfeit of HTS data and information is n...

  20. QUARTERLY TECHNICAL PROGRESS REPORT, JULY, AUGUST, SEPTEMBER 1966.

    DTIC Science & Technology

    Contents: Circuit research program; Hardware systems research; Software systems research program; Numerical methods, computer arithmetic and...artificial languages; Library automation; Illiac II service , use, and program development; IBM service , use, and program development; Problem specifications; Switching theory and logical design; General laboratory information.

  1. Evaporation from weighing precipitation gauges: impacts on automated gauge measurements and quality assurance methods

    NASA Astrophysics Data System (ADS)

    Leeper, R. D.; Kochendorfer, J.

    2014-12-01

    The effects of evaporation on precipitation measurements have been understood to bias total precipitation lower. For automated weighing-bucket gauges, the World Meteorological Organization (WMO) suggests the use of evaporative suppressants with frequent observations. However, the use of evaporation suppressants is not always feasible due to environmental hazards and the added cost of maintenance, transport, and disposal of the gauge additive. In addition, research has suggested that evaporation prior to precipitation may affect precipitation measurements from auto-recording gauges operating at sub-hourly frequencies. For further evaluation, a field campaign was conducted to monitor evaporation and its impacts on the quality of precipitation measurements from gauges used at US Climate Reference Network (USCRN) stations. Collocated Geonor gauges with (nonEvap) and without (evap) an evaporative suppressant were compared to evaluate evaporative losses and evaporation biases on precipitation measurements. From June to August, evaporative losses from the evap gauge exceeded accumulated precipitation, with an average loss of 0.12 mm h-1. However, the impact of evaporation on precipitation measurements was sensitive to calculation methods. In general, methods that utilized a longer time series to smooth out sensor noise were more sensitive to gauge (-4.6% bias with respect to control) evaporation than methods computing depth change without smoothing (< +1% bias). These results indicate that while climate and gauge design affect gauge evaporation rates computational methods can influence the magnitude of evaporation bias on precipitation measurements. It is hoped this study will advance QA techniques that mitigate the impact of evaporation biases on precipitation measurements from other automated networks.

  2. Automated noninvasive classification of renal cancer on multiphase CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linguraru, Marius George; Wang, Shijun; Shah, Furhawn

    2011-10-15

    Purpose: To explore the added value of the shape of renal lesions for classifying renal neoplasms. To investigate the potential of computer-aided analysis of contrast-enhanced computed-tomography (CT) to quantify and classify renal lesions. Methods: A computer-aided clinical tool based on adaptive level sets was employed to analyze 125 renal lesions from contrast-enhanced abdominal CT studies of 43 patients. There were 47 cysts and 78 neoplasms: 22 Von Hippel-Lindau (VHL), 16 Birt-Hogg-Dube (BHD), 19 hereditary papillary renal carcinomas (HPRC), and 21 hereditary leiomyomatosis and renal cell cancers (HLRCC). The technique quantified the three-dimensional size and enhancement of lesions. Intrapatient and interphasemore » registration facilitated the study of lesion serial enhancement. The histograms of curvature-related features were used to classify the lesion types. The areas under the curve (AUC) were calculated for receiver operating characteristic curves. Results: Tumors were robustly segmented with 0.80 overlap (0.98 correlation) between manual and semi-automated quantifications. The method further identified morphological discrepancies between the types of lesions. The classification based on lesion appearance, enhancement and morphology between cysts and cancers showed AUC = 0.98; for BHD + VHL (solid cancers) vs. HPRC + HLRCC AUC = 0.99; for VHL vs. BHD AUC = 0.82; and for HPRC vs. HLRCC AUC = 0.84. All semi-automated classifications were statistically significant (p < 0.05) and superior to the analyses based solely on serial enhancement. Conclusions: The computer-aided clinical tool allowed the accurate quantification of cystic, solid, and mixed renal tumors. Cancer types were classified into four categories using their shape and enhancement. Comprehensive imaging biomarkers of renal neoplasms on abdominal CT may facilitate their noninvasive classification, guide clinical management, and monitor responses to drugs or interventions.« less

  3. Computational discovery and in vivo validation of hnf4 as a regulatory gene in planarian regeneration.

    PubMed

    Lobo, Daniel; Morokuma, Junji; Levin, Michael

    2016-09-01

    Automated computational methods can infer dynamic regulatory network models directly from temporal and spatial experimental data, such as genetic perturbations and their resultant morphologies. Recently, a computational method was able to reverse-engineer the first mechanistic model of planarian regeneration that can recapitulate the main anterior-posterior patterning experiments published in the literature. Validating this comprehensive regulatory model via novel experiments that had not yet been performed would add in our understanding of the remarkable regeneration capacity of planarian worms and demonstrate the power of this automated methodology. Using the Michigan Molecular Interactions and STRING databases and the MoCha software tool, we characterized as hnf4 an unknown regulatory gene predicted to exist by the reverse-engineered dynamic model of planarian regeneration. Then, we used the dynamic model to predict the morphological outcomes under different single and multiple knock-downs (RNA interference) of hnf4 and its predicted gene pathway interactors β-catenin and hh Interestingly, the model predicted that RNAi of hnf4 would rescue the abnormal regenerated phenotype (tailless) of RNAi of hh in amputated trunk fragments. Finally, we validated these predictions in vivo by performing the same surgical and genetic experiments with planarian worms, obtaining the same phenotypic outcomes predicted by the reverse-engineered model. These results suggest that hnf4 is a regulatory gene in planarian regeneration, validate the computational predictions of the reverse-engineered dynamic model, and demonstrate the automated methodology for the discovery of novel genes, pathways and experimental phenotypes. michael.levin@tufts.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Using satellite communications for a mobile computer network

    NASA Technical Reports Server (NTRS)

    Wyman, Douglas J.

    1993-01-01

    The topics discussed include the following: patrol car automation, mobile computer network, network requirements, network design overview, MCN mobile network software, MCN hub operation, mobile satellite software, hub satellite software, the benefits of patrol car automation, the benefits of satellite mobile computing, and national law enforcement satellite.

  5. Automation of Design Engineering Processes

    NASA Technical Reports Server (NTRS)

    Torrey, Glenn; Sawasky, Gerald; Courey, Karim

    2004-01-01

    A method, and a computer program that helps to implement the method, have been developed to automate and systematize the retention and retrieval of all the written records generated during the process of designing a complex engineering system. It cannot be emphasized strongly enough that all the written records as used here is meant to be taken literally: it signifies not only final drawings and final engineering calculations but also such ancillary documents as minutes of meetings, memoranda, requests for design changes, approval and review documents, and reports of tests. One important purpose served by the method is to make the records readily available to all involved users via their computer workstations from one computer archive while eliminating the need for voluminous paper files stored in different places. Another important purpose served by the method is to facilitate the work of engineers who are charged with sustaining the system and were not involved in the original design decisions. The method helps the sustaining engineers to retrieve information that enables them to retrace the reasoning that led to the original design decisions, thereby helping them to understand the system better and to make informed engineering choices pertaining to maintenance and/or modifications of the system. The software used to implement the method is written in Microsoft Access. All of the documents pertaining to the design of a given system are stored in one relational database in such a manner that they can be related to each other via a single tracking number.

  6. Automated Literature Searches for Longitudinal Tracking of Cancer Research Training Program Graduates.

    PubMed

    Padilla, Luz A; Desmond, Renee A; Brooks, C Michael; Waterbor, John W

    2018-06-01

    A key outcome measure of cancer research training programs is the number of cancer-related peer-reviewed publications after training. Because program graduates do not routinely report their publications, staff must periodically conduct electronic literature searches on each graduate. The purpose of this study is to compare findings of an innovative computer-based automated search program versus repeated manual literature searches to identify post-training peer-reviewed publications. In late 2014, manual searches for publications by former R25 students identified 232 cancer-related articles published by 112 of 543 program graduates. In 2016, a research assistant was instructed in performing Scopus literature searches for comparison with individual PubMed searches on our 543 program graduates. Through 2014, Scopus found 304 cancer publications, 220 of that had been retrieved manually plus an additional 84 papers. However, Scopus missed 12 publications found manually. Together, both methods found 316 publications. The automated method found 96.2 % of the 316 publications while individual searches found only 73.4 %. An automated search method such as using the Scopus database is a key tool for conducting comprehensive literature searches, but it must be supplemented with periodic manual searches to find the initial publications of program graduates. A time-saving feature of Scopus is the periodic automatic alerts of new publications. Although a training period is needed and initial costs can be high, an automated search method is worthwhile due to its high sensitivity and efficiency in the long term.

  7. Imperceptible watermarking for security of fundus images in tele-ophthalmology applications and computer-aided diagnosis of retina diseases.

    PubMed

    Singh, Anushikha; Dutta, Malay Kishore

    2017-12-01

    The authentication and integrity verification of medical images is a critical and growing issue for patients in e-health services. Accurate identification of medical images and patient verification is an essential requirement to prevent error in medical diagnosis. The proposed work presents an imperceptible watermarking system to address the security issue of medical fundus images for tele-ophthalmology applications and computer aided automated diagnosis of retinal diseases. In the proposed work, patient identity is embedded in fundus image in singular value decomposition domain with adaptive quantization parameter to maintain perceptual transparency for variety of fundus images like healthy fundus or disease affected image. In the proposed method insertion of watermark in fundus image does not affect the automatic image processing diagnosis of retinal objects & pathologies which ensure uncompromised computer-based diagnosis associated with fundus image. Patient ID is correctly recovered from watermarked fundus image for integrity verification of fundus image at the diagnosis centre. The proposed watermarking system is tested in a comprehensive database of fundus images and results are convincing. results indicate that proposed watermarking method is imperceptible and it does not affect computer vision based automated diagnosis of retinal diseases. Correct recovery of patient ID from watermarked fundus image makes the proposed watermarking system applicable for authentication of fundus images for computer aided diagnosis and Tele-ophthalmology applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Computer Vision Research and Its Applications to Automated Cartography

    DTIC Science & Technology

    1984-09-01

    reflecting from scene surfaces, and the film and digitization processes that result in the computer representation of the image. These models, when...alone. Specifically, intepretations that are in some sense "orthogonal" are preferred. A method for finding such interpretations for right-angle...saturated colors are not precisely representable and the colors recorded with different films or cameras may differ, but the tricomponent representation is t

  9. Segmentation of images of abdominal organs.

    PubMed

    Wu, Jie; Kamath, Markad V; Noseworthy, Michael D; Boylan, Colm; Poehlman, Skip

    2008-01-01

    Abdominal organ segmentation, which is, the delineation of organ areas in the abdomen, plays an important role in the process of radiological evaluation. Attempts to automate segmentation of abdominal organs will aid radiologists who are required to view thousands of images daily. This review outlines the current state-of-the-art semi-automated and automated methods used to segment abdominal organ regions from computed tomography (CT), magnetic resonance imaging (MEI), and ultrasound images. Segmentation methods generally fall into three categories: pixel based, region based and boundary tracing. While pixel-based methods classify each individual pixel, region-based methods identify regions with similar properties. Boundary tracing is accomplished by a model of the image boundary. This paper evaluates the effectiveness of the above algorithms with an emphasis on their advantages and disadvantages for abdominal organ segmentation. Several evaluation metrics that compare machine-based segmentation with that of an expert (radiologist) are identified and examined. Finally, features based on intensity as well as the texture of a small region around a pixel are explored. This review concludes with a discussion of possible future trends for abdominal organ segmentation.

  10. Automated Parameter Studies Using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosimis, Michael J.; Nemec, Marian

    2004-01-01

    Computational Fluid Dynamics (CFD) is now routinely used to analyze isolated points in a design space by performing steady-state computations at fixed flight conditions (Mach number, angle of attack, sideslip), for a fixed geometric configuration of interest. This "point analysis" provides detailed information about the flowfield, which aides an engineer in understanding, or correcting, a design. A point analysis is typically performed using high fidelity methods at a handful of critical design points, e.g. a cruise or landing configuration, or a sample of points along a flight trajectory.

  11. Motion Planning of Two Stacker Cranes in a Large-Scale Automated Storage/Retrieval System

    NASA Astrophysics Data System (ADS)

    Kung, Yiheng; Kobayashi, Yoshimasa; Higashi, Toshimitsu; Ota, Jun

    We propose a method for reducing the computational time of motion planning for stacker cranes. Most automated storage/retrieval systems (AS/RSs) are only equipped with one stacker crane. However, this is logistically challenging, and greater work efficiency in warehouses, such as those using two stacker cranes, is required. In this paper, a warehouse with two stacker cranes working simultaneously is proposed. Unlike warehouses with only one crane, trajectory planning in those with two cranes is very difficult. Since there are two cranes working together, a proper trajectory must be considered to avoid collision. However, verifying collisions is complicated and requires a considerable amount of computational time. As transport work in AS/RSs occurs randomly, motion planning cannot be conducted in advance. Planning an appropriate trajectory within a restricted duration would be a difficult task. We thereby address the current problem of motion planning requiring extensive calculation time. As a solution, we propose a “free-step” to simplify the procedure of collision verification and reduce the computational time. On the other hand, we proposed a method to reschedule the order of collision verification in order to find an appropriate trajectory in less time. By the proposed method, we reduce the calculation time to less than 1/300 of that achieved in former research.

  12. Fast fringe pattern phase demodulation using FIR Hilbert transformers

    NASA Astrophysics Data System (ADS)

    Gdeisat, Munther; Burton, David; Lilley, Francis; Arevalillo-Herráez, Miguel

    2016-01-01

    This paper suggests the use of FIR Hilbert transformers to extract the phase of fringe patterns. This method is computationally faster than any known spatial method that produces wrapped phase maps. Also, the algorithm does not require any parameters to be adjusted which are dependent upon the specific fringe pattern that is being processed, or upon the particular setup of the optical fringe projection system that is being used. It is therefore particularly suitable for full algorithmic automation. The accuracy and validity of the suggested method has been tested using both computer-generated and real fringe patterns. This novel algorithm has been proposed for its advantages in terms of computational processing speed as it is the fastest available method to extract the wrapped phase information from a fringe pattern.

  13. Image segmentation evaluation for very-large datasets

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  14. Automating the Analytical Laboratories Section, Lewis Research Center, National Aeronautics and Space Administration: A feasibility study

    NASA Technical Reports Server (NTRS)

    Boyle, W. G.; Barton, G. W.

    1979-01-01

    The feasibility of computerized automation of the Analytical Laboratories Section at NASA's Lewis Research Center was considered. Since that laboratory's duties are not routine, the automation goals were set with that in mind. Four instruments were selected as the most likely automation candidates: an atomic absorption spectrophotometer, an emission spectrometer, an X-ray fluorescence spectrometer, and an X-ray diffraction unit. Two options for computer automation were described: a time-shared central computer and a system with microcomputers for each instrument connected to a central computer. A third option, presented for future planning, expands the microcomputer version. Costs and benefits for each option were considered. It was concluded that the microcomputer version best fits the goals and duties of the laboratory and that such an automted system is needed to meet the laboratory's future requirements.

  15. Artificial neural network-aided image analysis system for cell counting.

    PubMed

    Sjöström, P J; Frydel, B R; Wahlberg, L U

    1999-05-01

    In histological preparations containing debris and synthetic materials, it is difficult to automate cell counting using standard image analysis tools, i.e., systems that rely on boundary contours, histogram thresholding, etc. In an attempt to mimic manual cell recognition, an automated cell counter was constructed using a combination of artificial intelligence and standard image analysis methods. Artificial neural network (ANN) methods were applied on digitized microscopy fields without pre-ANN feature extraction. A three-layer feed-forward network with extensive weight sharing in the first hidden layer was employed and trained on 1,830 examples using the error back-propagation algorithm on a Power Macintosh 7300/180 desktop computer. The optimal number of hidden neurons was determined and the trained system was validated by comparison with blinded human counts. System performance at 50x and lO0x magnification was evaluated. The correlation index at 100x magnification neared person-to-person variability, while 50x magnification was not useful. The system was approximately six times faster than an experienced human. ANN-based automated cell counting in noisy histological preparations is feasible. Consistent histology and computer power are crucial for system performance. The system provides several benefits, such as speed of analysis and consistency, and frees up personnel for other tasks.

  16. A method to establish seismic noise baselines for automated station assessment

    USGS Publications Warehouse

    McNamara, D.E.; Hutt, C.R.; Gee, L.S.; Benz, H.M.; Buland, R.P.

    2009-01-01

    We present a method for quantifying station noise baselines and characterizing the spectral shape of out-of-nominal noise sources. Our intent is to automate this method in order to ensure that only the highest-quality data are used in rapid earthquake products at NEIC. In addition, the station noise baselines provide a valuable tool to support the quality control of GSN and ANSS backbone data and metadata. The procedures addressed here are currently in development at the NEIC, and work is underway to understand how quickly changes from nominal can be observed and used within the NEIC processing framework. The spectral methods and software used to compute station baselines and described herein (PQLX) can be useful to both permanent and portable seismic stations operators. Applications include: general seismic station and data quality control (QC), evaluation of instrument responses, assessment of near real-time communication system performance, characterization of site cultural noise conditions, and evaluation of sensor vault design, as well as assessment of gross network capabilities (McNamara et al. 2005). Future PQLX development plans include incorporating station baselines for automated QC methods and automating station status report generation and notification based on user-defined QC parameters. The PQLX software is available through the USGS (http://earthquake. usgs.gov/research/software/pqlx.php) and IRIS (http://www.iris.edu/software/ pqlx/).

  17. The self-consistent calculation of pseudo-molecule energy levels, construction of energy level correlation diagrams and an automated computation system for SCF-X(Alpha)-SW calculations

    NASA Technical Reports Server (NTRS)

    Schlosser, H.

    1981-01-01

    The self consistent calculation of the electronic energy levels of noble gas pseudomolecules formed when a metal surface is bombarded by noble gas ions is discussed along with the construction of energy level correlation diagrams as a function of interatomic spacing. The self consistent field x alpha scattered wave (SCF-Xalpha-SW) method is utilized. Preliminary results on the Ne-Mg system are given. An interactive x alpha programming system, implemented on the LeRC IBM 370 computer, is described in detail. This automated system makes use of special PROCDEFS (procedure definitions) to minimize the data to be entered manually at a remote terminal. Listings of the special PROCDEFS and of typical input data are given.

  18. Task-oriented situation recognition

    NASA Astrophysics Data System (ADS)

    Bauer, Alexander; Fischer, Yvonne

    2010-04-01

    From the advances in computer vision methods for the detection, tracking and recognition of objects in video streams, new opportunities for video surveillance arise: In the future, automated video surveillance systems will be able to detect critical situations early enough to enable an operator to take preventive actions, instead of using video material merely for forensic investigations. However, problems such as limited computational resources, privacy regulations and a constant change in potential threads have to be addressed by a practical automated video surveillance system. In this paper, we show how these problems can be addressed using a task-oriented approach. The system architecture of the task-oriented video surveillance system NEST and an algorithm for the detection of abnormal behavior as part of the system are presented and illustrated for the surveillance of guests inside a video-monitored building.

  19. Automated Essay Scoring

    ERIC Educational Resources Information Center

    Dikli, Semire

    2006-01-01

    The impacts of computers on writing have been widely studied for three decades. Even basic computers functions, i.e. word processing, have been of great assistance to writers in modifying their essays. The research on Automated Essay Scoring (AES) has revealed that computers have the capacity to function as a more effective cognitive tool (Attali,…

  20. Computer-Aided Instruction in Automated Instrumentation.

    ERIC Educational Resources Information Center

    Stephenson, David T.

    1986-01-01

    Discusses functions of automated instrumentation systems, i.e., systems which combine electrical measuring instruments and a controlling computer to measure responses of a unit under test. The computer-assisted tutorial then described is programmed for use on such a system--a modern microwave spectrum analyzer--to introduce engineering students to…

  1. Automating FEA programming

    NASA Technical Reports Server (NTRS)

    Sharma, Naveen

    1992-01-01

    In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.

  2. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  3. An Analysis for Capital Expenditure Decisions at a Naval Regional Medical Center.

    DTIC Science & Technology

    1981-12-01

    Service Equipment Review Committee 1. Portable defibrilator Computed tomographic scanner and cardioscope 2. ECG cart Automated blood cell counter 3. Gas...system sterilizer Gas system sterilizer 4. Automated blood cell Portable defibrilator and counter cardioscope 5. Computed tomographic ECG cart scanner...dictating and automated typing) systems. e. Filing equipment f. Automatic data processing equipment including data communications equipment. g

  4. On automating domain connectivity for overset grids

    NASA Technical Reports Server (NTRS)

    Chiu, Ing-Tsau; Meakin, Robert L.

    1995-01-01

    An alternative method for domain connectivity among systems of overset grids is presented. Reference uniform Cartesian systems of points are used to achieve highly efficient domain connectivity, and form the basis for a future fully automated system. The Cartesian systems are used to approximate body surfaces and to map the computational space of component grids. By exploiting the characteristics of Cartesian systems, Chimera type hole-cutting and identification of donor elements for intergrid boundary points can be carried out very efficiently. The method is tested for a range of geometrically complex multiple-body overset grid systems. A dynamic hole expansion/contraction algorithm is also implemented to obtain optimum domain connectivity; however, it is tested only for geometry of generic shapes.

  5. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.

    1984-01-01

    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation.

  6. DEMONSTRATION BULLETIN: HIGH VOLTAGE ELECTRON BEAM TECHNOLOGY - HIGH VOLTAGE ENVIRONMENTAL APPLICATIONS, INC.

    EPA Science Inventory

    The high energy electron beam irradiation technology is a low temperature method for destroying complex mixtures of hazardous organic chemicals in solutions containing solids. The system consists of a computer-automated, portable electron beam accelerator and a delivery system. T...

  7. Assessing Creative Problem-Solving with Automated Text Grading

    ERIC Educational Resources Information Center

    Wang, Hao-Chuan; Chang, Chun-Yen; Li, Tsai-Yen

    2008-01-01

    The work aims to improve the assessment of creative problem-solving in science education by employing language technologies and computational-statistical machine learning methods to grade students' natural language responses automatically. To evaluate constructs like creative problem-solving with validity, open-ended questions that elicit…

  8. Review of edgematchimg procedures for digital cartographic data used in Geographic Information Systems (GIS)

    USGS Publications Warehouse

    Nebert, D.D.

    1989-01-01

    In the process of developing a continuous hydrographic data layer for water resources applications in the Pacific Northwest, map-edge discontinuities in the U.S. Geological Survey 1:100 ,000-scale digital data that required application of computer-assisted edgematching procedures were identified. The spatial data sets required by the project must have line features that match closely enough across map boundaries to ensure full line topology when adjacent files are joined by the computer. Automated edgematching techniques are evaluated as to their effects on positional accuracy. Interactive methods such as selective node-matching and on-screen editing are also reviewed. Interactive procedures complement automated methods by allowing supervision of edgematching in a cartographic and hydrologic context. Common edge conditions encountered in the preparation of the Northwest Rivers data base are described, as are recommended processing solutions. Suggested edgematching procedures for 1:100,000-scale hydrography data are included in an appendix to encourage consistent processing of this theme on a national scale. (USGS)

  9. Automated Infrared Inspection Of Jet Engine Turbine Blades

    NASA Astrophysics Data System (ADS)

    Bantel, T.; Bowman, D.; Halase, J.; Kenue, S.; Krisher, R.; Sippel, T.

    1986-03-01

    The detection of blocked surface cooling holes in hollow jet engine turbine blades and vanes during either manufacture or overhaul can be crucial to the integrity and longevity of the parts when in service. A fully automated infrared inspection system is being established under a tri-service's Manufacturing Technology (ManTech) contract administered by the Air Force to inspect these surface cooling holes for blockages. The method consists of viewing the surface holes of the blade with a scanning infrared radiometer when heated air is flushed through the blade. As the airfoil heats up, the resultant infrared images are written directly into computer memory where image analysis is performed. The computer then makes a determination of whether or not the holes are open from the inner plenum to the exterior surface and ultimately makes an accept/reject decision based on previously programmed criteria. A semiautomatic version has already been implemented and is more cost effective and more reliable than the previous manual inspection methods.

  10. Application of the H-Mode, a Design and Interaction Concept for Highly Automated Vehicles, to Aircraft

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Flemisch, Frank O.; Schutte, Paul C.; Williams, Ralph A.

    2006-01-01

    Driven by increased safety, efficiency, and airspace capacity, automation is playing an increasing role in aircraft operations. As aircraft become increasingly able to autonomously respond to a range of situations with performance surpassing human operators, we are compelled to look for new methods that help us understand their use and guide their design using new forms of automation and interaction. We propose a novel design metaphor to aid the conceptualization, design, and operation of highly-automated aircraft. Design metaphors transfer meaning from common experiences to less familiar applications or functions. A notable example is the "Desktop metaphor" for manipulating files on a computer. This paper describes a metaphor for highly automated vehicles known as the H-metaphor and a specific embodiment of the metaphor known as the H-mode as applied to aircraft. The fundamentals of the H-metaphor are reviewed followed by an overview of an exploratory usability study investigating human-automation interaction issues for a simple H-mode implementation. The envisioned application of the H-mode concept to aircraft is then described as are two planned evaluations.

  11. A design automation framework for computational bioenergetics in biological networks.

    PubMed

    Angione, Claudio; Costanza, Jole; Carapezza, Giovanni; Lió, Pietro; Nicosia, Giuseppe

    2013-10-01

    The bioenergetic activity of mitochondria can be thoroughly investigated by using computational methods. In particular, in our work we focus on ATP and NADH, namely the metabolites representing the production of energy in the cell. We develop a computational framework to perform an exhaustive investigation at the level of species, reactions, genes and metabolic pathways. The framework integrates several methods implementing the state-of-the-art algorithms for many-objective optimization, sensitivity, and identifiability analysis applied to biological systems. We use this computational framework to analyze three case studies related to the human mitochondria and the algal metabolism of Chlamydomonas reinhardtii, formally described with algebraic differential equations or flux balance analysis. Integrating the results of our framework applied to interacting organelles would provide a general-purpose method for assessing the production of energy in a biological network.

  12. Computer-aided head film analysis: the University of California San Francisco method.

    PubMed

    Baumrind, S; Miller, D M

    1980-07-01

    Computer technology is already assuming an important role in the management of orthodontic practices. The next 10 years are likely to see expansion in computer usage into the areas of diagnosis, treatment planning, and treatment-record keeping. In the areas of diagnosis and treatment planning, one of the first problems to be attacked will be the automation of head film analysis. The problems of constructing computer-aided systems for this purpose are considered herein in the light of the authors' 10 years of experience in developing a similar system for research purposes. The need for building in methods for automatic detection and correction of gross errors is discussed and the authors' method for doing so is presented. The construction of a rudimentary machine-readable data base for research and clinical purposes is described.

  13. Using technology to support investigations in the electronic age: tracking hackers to large scale international computer fraud

    NASA Astrophysics Data System (ADS)

    McFall, Steve

    1994-03-01

    With the increase in business automation and the widespread availability and low cost of computer systems, law enforcement agencies have seen a corresponding increase in criminal acts involving computers. The examination of computer evidence is a new field of forensic science with numerous opportunities for research and development. Research is needed to develop new software utilities to examine computer storage media, expert systems capable of finding criminal activity in large amounts of data, and to find methods of recovering data from chemically and physically damaged computer storage media. In addition, defeating encryption and password protection of computer files is also a topic requiring more research and development.

  14. Semi-automated extraction of longitudinal subglacial bedforms from digital terrain models - Two new methods

    NASA Astrophysics Data System (ADS)

    Jorge, Marco G.; Brennand, Tracy A.

    2017-07-01

    Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial bedforms - LSBs) morphometry has been used as a proxy for paleo ice-sheet dynamics. LSB morphometric inventories have relied on manual mapping, which is slow and subjective and thus potentially difficult to reproduce. Automated methods are faster and reproducible, but previous methods for LSB semi-automated mapping have not been highly successful. Here, two new object-based methods for the semi-automated extraction of LSBs (footprints) from digital terrain models are compared in a test area in the Puget Lowland, Washington, USA. As segmentation procedures to create LSB-candidate objects, the normalized closed contour method relies on the contouring of a normalized local relief model addressing LSBs on slopes, and the landform elements mask method relies on the classification of landform elements derived from the digital terrain model. For identifying which LSB-candidate objects correspond to LSBs, both methods use the same LSB operational definition: a ruleset encapsulating expert knowledge, published morphometric data, and the morphometric range of LSBs in the study area. The normalized closed contour method was separately applied to four different local relief models, two computed in moving windows and two hydrology-based. Overall, the normalized closed contour method outperformed the landform elements mask method. The normalized closed contour method performed on a hydrological relief model from a multiple direction flow routing algorithm performed best. For an assessment of its transferability, the normalized closed contour method was evaluated on a second area, the Chautauqua drumlin field, Pennsylvania and New York, USA where it performed better than in the Puget Lowland. A broad comparison to previous methods suggests that the normalized relief closed contour method may be the most capable method to date, but more development is required.

  15. Computer vision and soft computing for automatic skull-face overlay in craniofacial superimposition.

    PubMed

    Campomanes-Álvarez, B Rosario; Ibáñez, O; Navarro, F; Alemán, I; Botella, M; Damas, S; Cordón, O

    2014-12-01

    Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull-face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull-face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull-face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull-face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull-face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Design and Testing of an Automated System using Thermochromatic Liquid Crystals to Determine Local Heat Transfer Coefficients for an Impinging Jet

    NASA Technical Reports Server (NTRS)

    Tan, Benjamin

    1995-01-01

    Using thermochromatic liquid crystal to measure surface temperature, an automated transient method with time-varying free-stream temperature is developed to determine local heat transfer coefficients. By allowing the free-stream temperature to vary with time, the need for complicated mechanical components to achieve a step temperature change is eliminated, and by using the thermochromatic liquid crystals as temperature indicators, the labor intensive task of installing many thermocouples is omitted. Bias associated with human perception of the transition of the thermochromatic liquid crystal is eliminated by using a high speed digital camera and a computer. The method is validated by comparisons with results obtained by the steady-state method for a circular Jet impinging on a flat plate. Several factors affecting the accuracy of the method are evaluated.

  17. Consistent and efficient processing of ADCP streamflow measurements

    USGS Publications Warehouse

    Mueller, David S.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    The use of Acoustic Doppler Current Profilers (ADCPs) from a moving boat is a commonly used method for measuring streamflow. Currently, the algorithms used to compute the average depth, compute edge discharge, identify invalid data, and estimate velocity and discharge for invalid data vary among manufacturers. These differences could result in different discharges being computed from identical data. Consistent computational algorithm, automated filtering, and quality assessment of ADCP streamflow measurements that are independent of the ADCP manufacturer are being developed in a software program that can process ADCP moving-boat discharge measurements independent of the ADCP used to collect the data.

  18. BioBlocks: Programming Protocols in Biology Made Easier.

    PubMed

    Gupta, Vishal; Irimia, Jesús; Pau, Iván; Rodríguez-Patón, Alfonso

    2017-07-21

    The methods to execute biological experiments are evolving. Affordable fluid handling robots and on-demand biology enterprises are making automating entire experiments a reality. Automation offers the benefit of high-throughput experimentation, rapid prototyping, and improved reproducibility of results. However, learning to automate and codify experiments is a difficult task as it requires programming expertise. Here, we present a web-based visual development environment called BioBlocks for describing experimental protocols in biology. It is based on Google's Blockly and Scratch, and requires little or no experience in computer programming to automate the execution of experiments. The experiments can be specified, saved, modified, and shared between multiple users in an easy manner. BioBlocks is open-source and can be customized to execute protocols on local robotic platforms or remotely, that is, in the cloud. It aims to serve as a de facto open standard for programming protocols in Biology.

  19. Automated computer grading of hardwood lumber

    Treesearch

    P. Klinkhachorn; J.P. Franklin; Charles W. McMillin; R.W. Conners; H.A. Huber

    1988-01-01

    This paper describes an improved computer program to grade hardwood lumber. The program was created as part of a system to automate various aspects of the hardwood manufacturing industry. It enhances previous efforts by considering both faces of the board and provides easy application of species dependent rules. The program can be readily interfaced with a computer...

  20. Computer Assisted School Automation (CASA) in Japan.

    ERIC Educational Resources Information Center

    Sakamoto, Takashi; Nakanome, Naoaki

    1991-01-01

    This assessment of the status of computer assisted school automation (CASA) in Japan begins by describing the structure of the Japanese educational system and the roles of CASA in that system. Statistics on various aspects of computers in Japanese schools and the findings of several surveys are cited to report on the present state of educational…

  1. Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study

    PubMed Central

    Rudyanto, Rina D.; Kerkstra, Sjoerd; van Rikxoort, Eva M.; Fetita, Catalin; Brillet, Pierre-Yves; Lefevre, Christophe; Xue, Wenzhe; Zhu, Xiangjun; Liang, Jianming; Öksüz, İlkay; Ünay, Devrim; Kadipaşaogandcaron;lu, Kamuran; Estépar, Raúl San José; Ross, James C.; Washko, George R.; Prieto, Juan-Carlos; Hoyos, Marcela Hernández; Orkisz, Maciej; Meine, Hans; Hüllebrand, Markus; Stöcker, Christina; Mir, Fernando Lopez; Naranjo, Valery; Villanueva, Eliseo; Staring, Marius; Xiao, Changyan; Stoel, Berend C.; Fabijanska, Anna; Smistad, Erik; Elster, Anne C.; Lindseth, Frank; Foruzan, Amir Hossein; Kiros, Ryan; Popuri, Karteek; Cobzas, Dana; Jimenez-Carretero, Daniel; Santos, Andres; Ledesma-Carbayo, Maria J.; Helmberger, Michael; Urschler, Martin; Pienn, Michael; Bosboom, Dennis G.H.; Campo, Arantza; Prokop, Mathias; de Jong, Pim A.; Ortiz-de-Solorzano, Carlos; Muñoz-Barrutia, Arrate; van Ginneken, Bram

    2016-01-01

    The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases. PMID:25113321

  2. SU-F-J-81: Evaluation of Automated Deformable Registration Between Planning Computed Tomography (CT) and Daily Cone Beam CT Images Over the Course of Prostate Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matney, J; Hammers, J; Kaidar-Person, O

    2016-06-15

    Purpose: To compute daily dose delivered during radiotherapy, deformable registration needs to be relatively fast, automated, and accurate. The aim of this study was to evaluate the performance of commercial deformable registration software for deforming between two modalities: planning computed tomography (pCT) images acquired for treatment planning and cone beam (CB) CT images acquired prior to each fraction of prostate cancer radiotherapy. Methods: A workflow was designed using MIM Software™ that aligned and deformed pCT into daily CBCT images in two steps: (1) rigid shifts applied after daily CBCT imaging to align patient anatomy to the pCT and (2) normalizedmore » intensity-based deformable registration to account for interfractional anatomical variations. The physician-approved CTV and organ and risk (OAR) contours were deformed from the pCT to daily CBCT over the course of treatment. The same structures were delineated on each daily CBCT by a radiation oncologist. Dice similarity coefficient (DSC) mean and standard deviations were calculated to quantify the deformable registration quality for prostate, bladder, rectum and femoral heads. Results: To date, contour comparisons have been analyzed for 31 daily fractions of 2 of 10 of the cohort. Interim analysis shows that right and left femoral head contours demonstrate the highest agreement (DSC: 0.96±0.02) with physician contours. Additionally, deformed bladder (DSC: 0.81±0.09) and prostate (DSC: 0.80±0.07) have good agreement with physician-defined daily contours. Rectum contours have the highest variations (DSC: 0.66±0.10) between the deformed and physician-defined contours on daily CBCT imaging. Conclusion: For structures with relatively high contrast boundaries on CBCT, the MIM automated deformable registration provided accurate representations of the daily contours during treatment delivery. These findings will permit subsequent investigations to automate daily dose computation from CBCT. However, improved methods need to be investigated to improve deformable results for rectum contours.« less

  3. Automated image alignment and segmentation to follow progression of geographic atrophy in age-related macular degeneration.

    PubMed

    Ramsey, David J; Sunness, Janet S; Malviya, Poorva; Applegate, Carol; Hager, Gregory D; Handa, James T

    2014-07-01

    To develop a computer-based image segmentation method for standardizing the quantification of geographic atrophy (GA). The authors present an automated image segmentation method based on the fuzzy c-means clustering algorithm for the detection of GA lesions. The method is evaluated by comparing computerized segmentation against outlines of GA drawn by an expert grader for a longitudinal series of fundus autofluorescence images with paired 30° color fundus photographs for 10 patients. The automated segmentation method showed excellent agreement with an expert grader for fundus autofluorescence images, achieving a performance level of 94 ± 5% sensitivity and 98 ± 2% specificity on a per-pixel basis for the detection of GA area, but performed less well on color fundus photographs with a sensitivity of 47 ± 26% and specificity of 98 ± 2%. The segmentation algorithm identified 75 ± 16% of the GA border correctly in fundus autofluorescence images compared with just 42 ± 25% for color fundus photographs. The results of this study demonstrate a promising computerized segmentation method that may enhance the reproducibility of GA measurement and provide an objective strategy to assist an expert in the grading of images.

  4. Multi-objective optimization for an automated and simultaneous phase and baseline correction of NMR spectral data

    NASA Astrophysics Data System (ADS)

    Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus

    2018-04-01

    Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.

  5. Automated analysis of short responses in an interactive synthetic tutoring system for introductory physics

    NASA Astrophysics Data System (ADS)

    Nakamura, Christopher M.; Murphy, Sytil K.; Christel, Michael G.; Stevens, Scott M.; Zollman, Dean A.

    2016-06-01

    Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part of a project to develop and test an interactive learning environment designed to help students learn introductory physics concepts. The system is designed around an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This level of agreement may represent a baseline for practical utility in instruction and indicates that the method warrants further investigation for use in this type of application. Our results also suggest strategies that may be useful for writing activities and questions that are more appropriate for automated assessment. These strategies include building activities that have relatively few conceptually distinct ways of perceiving the physical behavior of relatively few physical objects. Further success in this direction may allow us to promote interactivity and better provide feedback in online learning systems. These capabilities could enable our system to function more like a real tutor.

  6. Automated feature detection and identification in digital point-ordered signals

    DOEpatents

    Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.

    1998-01-01

    A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.

  7. Clinical brain MR imaging prescriptions in Talairach space: technologist- and computer-driven methods.

    PubMed

    Weiss, Kenneth L; Pan, Hai; Storrs, Judd; Strub, William; Weiss, Jane L; Jia, Li; Eldevik, O Petter

    2003-05-01

    Variability in patient head positioning may yield substantial interstudy image variance in the clinical setting. We describe and test three-step technologist and computer-automated algorithms designed to image the brain in a standard reference system and reduce variance. Triple oblique axial images obtained parallel to the Talairach anterior commissure (AC)-posterior commissure (PC) plane were reviewed in a prospective analysis of 126 consecutive patients. Requisite roll, yaw, and pitch correction, as three authors determined independently and subsequently by consensus, were compared with the technologists' actual graphical prescriptions and those generated by a novel computer automated three-step (CATS) program. Automated pitch determinations generated with Statistical Parametric Mapping '99 (SPM'99) were also compared. Requisite pitch correction (15.2 degrees +/- 10.2 degrees ) far exceeded that for roll (-0.6 degrees +/- 3.7 degrees ) and yaw (-0.9 degrees +/- 4.7 degrees ) in terms of magnitude and variance (P <.001). Technologist and computer-generated prescriptions substantially reduced interpatient image variance with regard to roll (3.4 degrees and 3.9 degrees vs 13.5 degrees ), yaw (0.6 degrees and 2.5 degrees vs 22.3 degrees ), and pitch (28.6 degrees, 18.5 degrees with CATS, and 59.3 degrees with SPM'99 vs 104 degrees ). CATS performed worse than the technologists in yaw prescription, and it was equivalent in roll and pitch prescriptions. Talairach prescriptions better approximated standard CT canthomeatal angulations (9 degrees vs 24 degrees ) and provided more efficient brain coverage than that of routine axial imaging. Brain MR prescriptions corrected for direct roll, yaw, and Talairach AC-PC pitch can be readily achieved by trained technologists or automated computer algorithms. This ability will substantially reduce interpatient variance, allow better approximation of standard CT angulation, and yield more efficient brain coverage than that of routine clinical axial imaging.

  8. TERRA REF: Advancing phenomics with high resolution, open access sensor and genomics data

    NASA Astrophysics Data System (ADS)

    LeBauer, D.; Kooper, R.; Burnette, M.; Willis, C.

    2017-12-01

    Automated plant measurement has the potential to improve understanding of genetic and environmental controls on plant traits (phenotypes). The application of sensors and software in the automation of high throughput phenotyping reflects a fundamental shift from labor intensive hand measurements to drone, tractor, and robot mounted sensing platforms. These tools are expected to speed the rate of crop improvement by enabling plant breeders to more accurately select plants with improved yields, resource use efficiency, and stress tolerance. However, there are many challenges facing high throughput phenomics: sensors and platforms are expensive, currently there are few standard methods of data collection and storage, and the analysis of large data sets requires high performance computers and automated, reproducible computing pipelines. To overcome these obstacles and advance the science of high throughput phenomics, the TERRA Phenotyping Reference Platform (TERRA-REF) team is developing an open-access database of high resolution sensor data. TERRA REF is an integrated field and greenhouse phenotyping system that includes: a reference field scanner with fifteen sensors that can generate terrabytes of data each day at mm resolution; UAV, tractor, and fixed field sensing platforms; and an automated controlled-environment scanner. These platforms will enable investigation of diverse sensing modalities, and the investigation of traits under controlled and field environments. It is the goal of TERRA REF to lower the barrier to entry for academic and industry researchers by providing high-resolution data, open source software, and online computing resources. Our project is unique in that all data will be made fully public in November 2018, and is already available to early adopters through the beta-user program. We will describe the datasets and how to use them as well as the databases and computing pipeline and how these can be reused and remixed in other phenomics pipelines. Finally, we will describe the National Data Service workbench, a cloud computing platform that can access the petabyte scale data while supporting reproducible research.

  9. Method and system rapid piece handling

    DOEpatents

    Spletzer, Barry L.

    1996-01-01

    The advent of high-speed fabric cutters has made necessary the development of automated techniques for the collection and sorting of garment pieces into collated piles of pieces ready for assembly. The present invention enables a new method for such handling and sorting of garment parts, and to apparatus capable of carrying out this new method. The common thread is the application of computer-controlled shuttling bins, capable of picking up a desired piece of fabric and dropping it in collated order for assembly. Such apparatus with appropriate computer control relieves the bottleneck now presented by the sorting and collation procedure, thus greatly increasing the overall rate at which garments can be assembled.

  10. The Phenix Software for Automated Determination of Macromolecular Structures

    PubMed Central

    Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor; Chen, Vincent B.; Echols, Nathaniel; Headd, Jeffrey J.; Hung, Li-Wei; Jain, Swati; Kapral, Gary J.; Grosse Kunstleve, Ralf W.; McCoy, Airlie J.; Moriarty, Nigel W.; Oeffner, Robert D.; Read, Randy J.; Richardson, David C.; Richardson, Jane S.; Terwilliger, Thomas C.; Zwart, Peter H.

    2011-01-01

    X-ray crystallography is a critical tool in the study of biological systems. It is able to provide information that has been a prerequisite to understanding the fundamentals of life. It is also a method that is central to the development of new therapeutics for human disease. Significant time and effort are required to determine and optimize many macromolecular structures because of the need for manual interpretation of complex numerical data, often using many different software packages, and the repeated use of interactive three-dimensional graphics. The Phenix software package has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on automation. This has required the development of new algorithms that minimize or eliminate subjective input in favour of built-in expert-systems knowledge, the automation of procedures that are traditionally performed by hand, and the development of a computational framework that allows a tight integration between the algorithms. The application of automated methods is particularly appropriate in the field of structural proteomics, where high throughput is desired. Features in Phenix for the automation of experimental phasing with subsequent model building, molecular replacement, structure refinement and validation are described and examples given of running Phenix from both the command line and graphical user interface. PMID:21821126

  11. Automatic algorithm for monitoring systolic pressure variation and difference in pulse pressure.

    PubMed

    Pestel, Gunther; Fukui, Kimiko; Hartwich, Volker; Schumacher, Peter M; Vogt, Andreas; Hiltebrand, Luzius B; Kurz, Andrea; Fujita, Yoshihisa; Inderbitzin, Daniel; Leibundgut, Daniel

    2009-06-01

    Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.

  12. Personal Computer System for Automatic Coronary Venous Flow Measurement

    PubMed Central

    Dew, Robert B.

    1985-01-01

    We developed an automated system based on an IBM PC/XT Personal computer to measure coronary venous blood flow during cardiac catheterization. Flow is determined by a thermodilution technique in which a cold saline solution is infused through a catheter into the coronary venous system. Regional temperature fluctuations sensed by the catheter are used to determine great cardiac vein and coronary sinus blood flow. The computer system replaces manual methods of acquiring and analyzing temperature data related to flow measurement, thereby increasing the speed and accuracy with which repetitive flow determinations can be made.

  13. Early detection of glaucoma using fully automated disparity analysis of the optic nerve head (ONH) from stereo fundus images

    NASA Astrophysics Data System (ADS)

    Sharma, Archie; Corona, Enrique; Mitra, Sunanda; Nutter, Brian S.

    2006-03-01

    Early detection of structural damage to the optic nerve head (ONH) is critical in diagnosis of glaucoma, because such glaucomatous damage precedes clinically identifiable visual loss. Early detection of glaucoma can prevent progression of the disease and consequent loss of vision. Traditional early detection techniques involve observing changes in the ONH through an ophthalmoscope. Stereo fundus photography is also routinely used to detect subtle changes in the ONH. However, clinical evaluation of stereo fundus photographs suffers from inter- and intra-subject variability. Even the Heidelberg Retina Tomograph (HRT) has not been found to be sufficiently sensitive for early detection. A semi-automated algorithm for quantitative representation of the optic disc and cup contours by computing accumulated disparities in the disc and cup regions from stereo fundus image pairs has already been developed using advanced digital image analysis methodologies. A 3-D visualization of the disc and cup is achieved assuming camera geometry. High correlation among computer-generated and manually segmented cup to disc ratios in a longitudinal study involving 159 stereo fundus image pairs has already been demonstrated. However, clinical usefulness of the proposed technique can only be tested by a fully automated algorithm. In this paper, we present a fully automated algorithm for segmentation of optic cup and disc contours from corresponding stereo disparity information. Because this technique does not involve human intervention, it eliminates subjective variability encountered in currently used clinical methods and provides ophthalmologists with a cost-effective and quantitative method for detection of ONH structural damage for early detection of glaucoma.

  14. An accurate method for evaluating the kernel of the integral equation relating lift to downwash in unsteady potential flow

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1982-01-01

    The method is capable of generating approximations of arbitrary accuracy. It is based on approximating the algebraic part of the nonelementary integrals in the kernel by exponential functions and then integrating termwise. The exponent spacing in the approximation is a geometric sequence. The coefficients and exponent multiplier of the exponential approximation are computed by least squares so the method is completely automated. Exponential approximates generated in this manner are two orders of magnitude more accurate than the exponential approximation that is currently most often used for this purpose. The method can be used to generate approximations to attain any desired trade-off between accuracy and computing cost.

  15. A method for the automated detection phishing websites through both site characteristics and image analysis

    NASA Astrophysics Data System (ADS)

    White, Joshua S.; Matthews, Jeanna N.; Stacy, John L.

    2012-06-01

    Phishing website analysis is largely still a time-consuming manual process of discovering potential phishing sites, verifying if suspicious sites truly are malicious spoofs and if so, distributing their URLs to the appropriate blacklisting services. Attackers increasingly use sophisticated systems for bringing phishing sites up and down rapidly at new locations, making automated response essential. In this paper, we present a method for rapid, automated detection and analysis of phishing websites. Our method relies on near real-time gathering and analysis of URLs posted on social media sites. We fetch the pages pointed to by each URL and characterize each page with a set of easily computed values such as number of images and links. We also capture a screen-shot of the rendered page image, compute a hash of the image and use the Hamming distance between these image hashes as a form of visual comparison. We provide initial results demonstrate the feasibility of our techniques by comparing legitimate sites to known fraudulent versions from Phishtank.com, by actively introducing a series of minor changes to a phishing toolkit captured in a local honeypot and by performing some initial analysis on a set of over 2.8 million URLs posted to Twitter over a 4 days in August 2011. We discuss the issues encountered during our testing such as resolvability and legitimacy of URL's posted on Twitter, the data sets used, the characteristics of the phishing sites we discovered, and our plans for future work.

  16. Analysis of computer-aided techniques for virtual planning in nasoalveolar moulding.

    PubMed

    Loeffelbein, D J; Ritschl, L M; Rau, A; Wolff, K-D; Barbarino, M; Pfeifer, S; Schönberger, M; Wintermantel, E

    2015-05-01

    We compared two methods of planning virtual alveolar moulding as the first step in nasoalveolar moulding to provide the basis for an automated process to fabricate nasoalveolar moulding appliances by using computer-assisted design and computer-aided manufacturing (CAD/CAM). First, the initial intraoral casts taken from seven newborn babies with complete unilateral cleft lip and palate were digitised. This was repeated for the target models after conventional nasoalveolar moulding had been completed. The initial digital model for each patient was then virtually modified by two different modelling techniques to achieve the corresponding target model: parametric and freeform modelling with the software Geomagic(®). The digitally-remodelled casts were quantitatively compared with the actual target model for each patient, and the comparison between the two modified models and the target model showed that freeform modelling of the initial cast was successful (mean (SD) deviation n=7, +0.723 (0.148) to -0.694 (0.157)mm) but needed continuous orientation and was difficult to automate. The results from the parametric modelling (mean (SD) deviation, n=7, +1.168 (0.185) to -1.067 (0.221)mm) were not as good as those from freeform modelling. During parametric modelling, we found some irregularities on the surface, and transverse growth of the maxilla was not accounted for. However, this method seems to be the right one as far as automation is concerned. In addition, an external algorithm must be implemented because the function of the commercial software is limited. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Automation Applications in an Advanced Air Traffic Management System : Volume 4A. Automation Requirements.

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work force, computer resources, controller productivity, system manning, failure ef...

  18. A large-scale evaluation of computational protein function prediction

    PubMed Central

    Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650

  19. Safety in the Automated Office.

    ERIC Educational Resources Information Center

    Graves, Pat R.; Greathouse, Lillian R.

    1990-01-01

    Office automation has introduced new hazards to the workplace: electrical hazards related to computer wiring, musculoskeletal problems resulting from use of computer terminals and design of work stations, and environmental concerns related to ventilation, noise levels, and office machine chemicals. (SK)

  20. Computer automation for feedback system design

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Mathematical techniques and explanations of various steps used by an automated computer program to design feedback systems are summarized. Special attention was given to refining the automatic evaluation suboptimal loop transmission and the translation of time to frequency domain specifications.

  1. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  2. Understanding and enhancing user acceptance of computer technology

    NASA Technical Reports Server (NTRS)

    Rouse, William B.; Morris, Nancy M.

    1986-01-01

    Technology-driven efforts to implement computer technology often encounter problems due to lack of acceptance or begrudging acceptance of the personnel involved. It is argued that individuals' acceptance of automation, in terms of either computerization or computer aiding, is heavily influenced by their perceptions of the impact of the automation on their discretion in performing their jobs. It is suggested that desired levels of discretion reflect needs to feel in control and achieve self-satisfaction in task performance, as well as perceptions of inadequacies of computer technology. Discussion of these factors leads to a structured set of considerations for performing front-end analysis, deciding what to automate, and implementing the resulting changes.

  3. Automation to improve efficiency of field expedient injury prediction screening.

    PubMed

    Teyhen, Deydre S; Shaffer, Scott W; Umlauf, Jon A; Akerman, Raymond J; Canada, John B; Butler, Robert J; Goffar, Stephen L; Walker, Michael J; Kiesel, Kyle B; Plisky, Phillip J

    2012-07-01

    Musculoskeletal injuries are a primary source of disability in the U.S. Military. Physical training and sports-related activities account for up to 90% of all injuries, and 80% of these injuries are considered overuse in nature. As a result, there is a need to develop an evidence-based musculoskeletal screen that can assist with injury prevention. The purpose of this study was to assess the capability of an automated system to improve the efficiency of field expedient tests that may help predict injury risk and provide corrective strategies for deficits identified. The field expedient tests include survey questions and measures of movement quality, balance, trunk stability, power, mobility, and foot structure and mobility. Data entry for these tests was automated using handheld computers, barcode scanning, and netbook computers. An automated algorithm for injury risk stratification and mitigation techniques was run on a server computer. Without automation support, subjects were assessed in 84.5 ± 9.1 minutes per subject compared with 66.8 ± 6.1 minutes per subject with automation and 47.1 ± 5.2 minutes per subject with automation and process improvement measures (p < 0.001). The average time to manually enter the data was 22.2 ± 7.4 minutes per subject. An additional 11.5 ± 2.5 minutes per subject was required to manually assign an intervention strategy. Automation of this injury prevention screening protocol using handheld devices and netbook computers allowed for real-time data entry and enhanced the efficiency of injury screening, risk stratification, and prescription of a risk mitigation strategy.

  4. Tactics for mechanized reasoning: a commentary on Milner (1984) ‘The use of machines to assist in rigorous proof’

    PubMed Central

    Gordon, M. J. C.

    2015-01-01

    Robin Milner's paper, ‘The use of machines to assist in rigorous proof’, introduces methods for automating mathematical reasoning that are a milestone in the development of computer-assisted theorem proving. His ideas, particularly his theory of tactics, revolutionized the architecture of proof assistants. His methodology for automating rigorous proof soundly, particularly his theory of type polymorphism in programing, led to major contributions to the theory and design of programing languages. His citation for the 1991 ACM A.M. Turing award, the most prestigious award in computer science, credits him with, among other achievements, ‘probably the first theoretically based yet practical tool for machine assisted proof construction’. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750147

  5. Fabric circuits and method of manufacturing fabric circuits

    NASA Technical Reports Server (NTRS)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  6. Knowledge-based computational intelligence development for predicting protein secondary structures from sequences.

    PubMed

    Shen, Hong-Bin; Yi, Dong-Liang; Yao, Li-Xiu; Yang, Jie; Chou, Kuo-Chen

    2008-10-01

    In the postgenomic age, with the avalanche of protein sequences generated and relatively slow progress in determining their structures by experiments, it is important to develop automated methods to predict the structure of a protein from its sequence. The membrane proteins are a special group in the protein family that accounts for approximately 30% of all proteins; however, solved membrane protein structures only represent less than 1% of known protein structures to date. Although a great success has been achieved for developing computational intelligence techniques to predict secondary structures in both globular and membrane proteins, there is still much challenging work in this regard. In this review article, we firstly summarize the recent progress of automation methodology development in predicting protein secondary structures, especially in membrane proteins; we will then give some future directions in this research field.

  7. Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Zagaris, George

    2009-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  8. Domain Decomposition By the Advancing-Partition Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2008-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  9. Unsupervised MDP Value Selection for Automating ITS Capabilities

    ERIC Educational Resources Information Center

    Stamper, John; Barnes, Tiffany

    2009-01-01

    We seek to simplify the creation of intelligent tutors by using student data acquired from standard computer aided instruction (CAI) in conjunction with educational data mining methods to automatically generate adaptive hints. In our previous work, we have automatically generated hints for logic tutoring by constructing a Markov Decision Process…

  10. Method to predict external store carriage characteristics at transonic speeds

    NASA Technical Reports Server (NTRS)

    Rosen, Bruce S.

    1988-01-01

    Development of a computational method for prediction of external store carriage characteristics at transonic speeds is described. The geometric flexibility required for treatment of pylon-mounted stores is achieved by computing finite difference solutions on a five-level embedded grid arrangement. A completely automated grid generation procedure facilitates applications. Store modeling capability consists of bodies of revolution with multiple fore and aft fins. A body-conforming grid improves the accuracy of the computed store body flow field. A nonlinear relaxation scheme developed specifically for modified transonic small disturbance flow equations enhances the method's numerical stability and accuracy. As a result, treatment of lower aspect ratio, more highly swept and tapered wings is possible. A limited supersonic freestream capability is also provided. Pressure, load distribution, and force/moment correlations show good agreement with experimental data for several test cases. A detailed computer program description for the Transonic Store Carriage Loads Prediction (TSCLP) Code is included.

  11. Automation Applications in an Advanced Air Traffic Management System : Volume 4B. Automation Requirements (Concluded)

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...

  12. Vulnerability Assessment Using a Fuzzy Logic Based Method

    DTIC Science & Technology

    1993-12-01

    evaluating computer security vulnerabilities is very labor intensive. To help ease this workload, this thesis presents two automated methods possibly...eal 3n, 0 e) 0 n It -f0 . nts reg"roreg Iths OU raen estre -tte In Vt )thef awfict Of this ~.,i~t 14,-, A I’ K1- 2 3" toe 17 %1d3.rV. ~ 0 C .~ Ats ,glt

  13. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    NASA Astrophysics Data System (ADS)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy assessment methods employed primarily by the remote sensing/satellite imaging community.

  14. Automated clinical system for chromosome analysis

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; Friedan, H. J.; Johnson, E. T.; Rennie, P. A.; Wall, R. J. (Inventor)

    1978-01-01

    An automatic chromosome analysis system is provided wherein a suitably prepared slide with chromosome spreads thereon is placed on the stage of an automated microscope. The automated microscope stage is computer operated to move the slide to enable detection of chromosome spreads on the slide. The X and Y location of each chromosome spread that is detected is stored. The computer measures the chromosomes in a spread, classifies them by group or by type and also prepares a digital karyotype image. The computer system can also prepare a patient report summarizing the result of the analysis and listing suspected abnormalities.

  15. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.

    PubMed

    Kim, Jinsuh; Leira, Enrique C; Callison, Richard C; Ludwig, Bryan; Moritani, Toshio; Magnotta, Vincent A; Madsen, Mark T

    2010-05-01

    We developed fully automated software for dynamic susceptibility contrast (DSC) MR perfusion-weighted imaging (PWI) to efficiently and reliably derive critical hemodynamic information for acute stroke treatment decisions. Brain MR PWI was performed in 80 consecutive patients with acute nonlacunar ischemic stroke within 24h after onset of symptom from January 2008 to August 2009. These studies were automatically processed to generate hemodynamic parameters that included cerebral blood flow and cerebral blood volume, and the mean transit time (MTT). To develop reliable software for PWI analysis, we used computationally robust algorithms including the piecewise continuous regression method to determine bolus arrival time (BAT), log-linear curve fitting, arrival time independent deconvolution method and sophisticated motion correction methods. An optimal arterial input function (AIF) search algorithm using a new artery-likelihood metric was also developed. Anatomical locations of the automatically determined AIF were reviewed and validated. The automatically computed BAT values were statistically compared with estimated BAT by a single observer. In addition, gamma-variate curve-fitting errors of AIF and inter-subject variability of AIFs were analyzed. Lastly, two observes independently assessed the quality and area of hypoperfusion mismatched with restricted diffusion area from motion corrected MTT maps and compared that with time-to-peak (TTP) maps using the standard approach. The AIF was identified within an arterial branch and enhanced areas of perfusion deficit were visualized in all evaluated cases. Total processing time was 10.9+/-2.5s (mean+/-s.d.) without motion correction and 267+/-80s (mean+/-s.d.) with motion correction on a standard personal computer. The MTT map produced with our software adequately estimated brain areas with perfusion deficit and was significantly less affected by random noise of the PWI when compared with the TTP map. Results of image quality assessment by two observers revealed that the MTT maps exhibited superior quality over the TTP maps (88% good rating of MTT as compared to 68% of TTP). Our software allowed fully automated deconvolution analysis of DSC PWI using proven efficient algorithms that can be applied to acute stroke treatment decisions. Our streamlined method also offers promise for further development of automated quantitative analysis of the ischemic penumbra. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  16. Automated grading system for evaluation of ocular redness associated with dry eye

    PubMed Central

    Rodriguez, John D; Johnston, Patrick R; Ousler, George W; Smith, Lisa M; Abelson, Mark B

    2013-01-01

    Background We have observed that dry eye redness is characterized by a prominence of fine horizontal conjunctival vessels in the exposed ocular surface of the interpalpebral fissure, and have incorporated this feature into the grading of redness in clinical studies of dry eye. Aim To develop an automated method of grading dry eye-associated ocular redness in order to expand on the clinical grading system currently used. Methods Ninety nine images from 26 dry eye subjects were evaluated by five graders using a 0–4 (in 0.5 increments) dry eye redness (Ora Calibra™ Dry Eye Redness Scale [OCDER]) scale. For the automated method, the Opencv computer vision library was used to develop software for calculating redness and horizontal conjunctival vessels (noted as “horizontality”). From original photograph, the region of interest (ROI) was selected manually using the open source ImageJ software. Total average redness intensity (Com-Red) was calculated as a single channel 8-bit image as R – 0.83G – 0.17B, where R, G and B were the respective intensities of the red, green and blue channels. The location of vessels was detected by normalizing the blue channel and selecting pixels with an intensity of less than 97% of the mean. The horizontal component (Com-Hor) was calculated by the first order Sobel derivative in the vertical direction and the score was calculated as the average blue channel image intensity of this vertical derivative. Pearson correlation coefficients, accuracy and concordance correlation coefficients (CCC) were calculated after regression and standardized regression of the dataset. Results The agreement (both Pearson’s and CCC) among investigators using the OCDER scale was 0.67, while the agreement of investigator to computer was 0.76. A multiple regression using both redness and horizontality improved the agreement CCC from 0.66 and 0.69 to 0.76, demonstrating the contribution of vessel geometry to the overall grade. Computer analysis of a given image has 100% repeatability and zero variability from session to session. Conclusion This objective means of grading ocular redness in a unified fashion has potential significance as a new clinical endpoint. In comparisons between computer and investigator, computer grading proved to be more reliable than another investigator using the OCDER scale. The best fitting model based on the present sample, and usable for future studies, was C4=−12.24+2.12C2HOR+0.88C2RED:C4 is the predicted investigator grade, and C2HOR and C2RED are logarithmic transformations of the computer calculated parameters COM-Hor and COM-Red. Considering the superior repeatability, computer automated grading might be preferable to investigator grading in multicentered dry eye studies in which the subtle differences in redness incurred by treatment have been historically difficult to define. PMID:23814457

  17. On the Use of Parmetric-CAD Systems and Cartesian Methods for Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2004-01-01

    Automated, high-fidelity tools for aerodynamic design face critical issues in attempting to optimize real-life geometry arid in permitting radical design changes. Success in these areas promises not only significantly shorter design- cycle times, but also superior and unconventional designs. To address these issues, we investigate the use of a parmetric-CAD system in conjunction with an embedded-boundary Cartesian method. Our goal is to combine the modeling capabilities of feature-based CAD with the robustness and flexibility of component-based Cartesian volume-mesh generation for complex geometry problems. We present the development of an automated optimization frame-work with a focus on the deployment of such a CAD-based design approach in a heterogeneous parallel computing environment.

  18. Big data in cryoEM: automated collection, processing and accessibility of EM data.

    PubMed

    Baldwin, Philip R; Tan, Yong Zi; Eng, Edward T; Rice, William J; Noble, Alex J; Negro, Carl J; Cianfrocco, Michael A; Potter, Clinton S; Carragher, Bridget

    2018-06-01

    The scope and complexity of cryogenic electron microscopy (cryoEM) data has greatly increased, and will continue to do so, due to recent and ongoing technical breakthroughs that have led to much improved resolutions for macromolecular structures solved using this method. This big data explosion includes single particle data as well as tomographic tilt series, both generally acquired as direct detector movies of ∼10-100 frames per image or per tilt-series. We provide a brief survey of the developments leading to the current status, and describe existing cryoEM pipelines, with an emphasis on the scope of data acquisition, methods for automation, and use of cloud storage and computing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Automated determination of arterial input function for DCE-MRI of the prostate

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Chang, Ming-Ching; Gupta, Sandeep

    2011-03-01

    Prostate cancer is one of the commonest cancers in the world. Dynamic contrast enhanced MRI (DCE-MRI) provides an opportunity for non-invasive diagnosis, staging, and treatment monitoring. Quantitative analysis of DCE-MRI relies on determination of an accurate arterial input function (AIF). Although several methods for automated AIF detection have been proposed in literature, none are optimized for use in prostate DCE-MRI, which is particularly challenging due to large spatial signal inhomogeneity. In this paper, we propose a fully automated method for determining the AIF from prostate DCE-MRI. Our method is based on modeling pixel uptake curves as gamma variate functions (GVF). First, we analytically compute bounds on GVF parameters for more robust fitting. Next, we approximate a GVF for each pixel based on local time domain information, and eliminate the pixels with false estimated AIFs using the deduced upper and lower bounds. This makes the algorithm robust to signal inhomogeneity. After that, according to spatial information such as similarity and distance between pixels, we formulate the global AIF selection as an energy minimization problem and solve it using a message passing algorithm to further rule out the weak pixels and optimize the detected AIF. Our method is fully automated without training or a priori setting of parameters. Experimental results on clinical data have shown that our method obtained promising detection accuracy (all detected pixels inside major arteries), and a very good match with expert traced manual AIF.

  20. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision.

    PubMed

    Heinrich, Andreas; Güttler, Felix; Wendt, Sebastian; Schenkl, Sebastian; Hubig, Michael; Wagner, Rebecca; Mall, Gita; Teichgräber, Ulf

    2018-06-18

     In forensic odontology the comparison between antemortem and postmortem panoramic radiographs (PRs) is a reliable method for person identification. The purpose of this study was to improve and automate identification of unknown people by comparison between antemortem and postmortem PR using computer vision.  The study includes 43 467 PRs from 24 545 patients (46 % females/54 % males). All PRs were filtered and evaluated with Matlab R2014b including the toolboxes image processing and computer vision system. The matching process used the SURF feature to find the corresponding points between two PRs (unknown person and database entry) out of the whole database.  From 40 randomly selected persons, 34 persons (85 %) could be reliably identified by corresponding PR matching points between an already existing scan in the database and the most recent PR. The systematic matching yielded a maximum of 259 points for a successful identification between two different PRs of the same person and a maximum of 12 corresponding matching points for other non-identical persons in the database. Hence 12 matching points are the threshold for reliable assignment.  Operating with an automatic PR system and computer vision could be a successful and reliable tool for identification purposes. The applied method distinguishes itself by virtue of its fast and reliable identification of persons by PR. This Identification method is suitable even if dental characteristics were removed or added in the past. The system seems to be robust for large amounts of data.   · Computer vision allows an automated antemortem and postmortem comparison of panoramic radiographs (PRs) for person identification.. · The present method is able to find identical matching partners among huge datasets (big data) in a short computing time.. · The identification method is suitable even if dental characteristics were removed or added.. · Heinrich A, Güttler F, Wendt S et al. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0632-4744. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Lesion Border Detection in Dermoscopy Images

    PubMed Central

    Celebi, M. Emre; Schaefer, Gerald; Iyatomi, Hitoshi; Stoecker, William V.

    2009-01-01

    Background Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, computerized analysis of dermoscopy images has become an important research area. One of the most important steps in dermoscopy image analysis is the automated detection of lesion borders. Methods In this article, we present a systematic overview of the recent border detection methods in the literature paying particular attention to computational issues and evaluation aspects. Conclusion Common problems with the existing approaches include the acquisition, size, and diagnostic distribution of the test image set, the evaluation of the results, and the inadequate description of the employed methods. Border determination by dermatologists appears to depend upon higher-level knowledge, therefore it is likely that the incorporation of domain knowledge in automated methods will enable them to perform better, especially in sets of images with a variety of diagnoses. PMID:19121917

  2. Automated variance reduction for MCNP using deterministic methods.

    PubMed

    Sweezy, J; Brown, F; Booth, T; Chiaramonte, J; Preeg, B

    2005-01-01

    In order to reduce the user's time and the computer time needed to solve deep penetration problems, an automated variance reduction capability has been developed for the MCNP Monte Carlo transport code. This new variance reduction capability developed for MCNP5 employs the PARTISN multigroup discrete ordinates code to generate mesh-based weight windows. The technique of using deterministic methods to generate importance maps has been widely used to increase the efficiency of deep penetration Monte Carlo calculations. The application of this method in MCNP uses the existing mesh-based weight window feature to translate the MCNP geometry into geometry suitable for PARTISN. The adjoint flux, which is calculated with PARTISN, is used to generate mesh-based weight windows for MCNP. Additionally, the MCNP source energy spectrum can be biased based on the adjoint energy spectrum at the source location. This method can also use angle-dependent weight windows.

  3. Method and System For an Automated Tool for En Route Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz (Inventor); McNally, B. David (Inventor)

    2001-01-01

    A method and system for a new automation tool for en route air traffic controllers first finds all aircraft flying on inefficient routes, then determines whether it is possible to save time by bypassing some route segments, and finally whether the improved route is free of conflicts with other aircraft. The method displays all direct-to eligible aircraft to an air traffic controller in a list sorted by highest time savings. By allowing the air traffic controller to easily identify and work with the highest pay-off aircraft, the method of the present invention contributes to a significant increase in both air traffic controller and aircraft productivity. A graphical computer interface (GUI) is used to enable the air traffic controller to send the aircraft direct to a waypoint or fix closer to the destination airport by a simple point and click action.

  4. Method and system for an automated tool for en route traffic controllers

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz (Inventor); McNally, B. David (Inventor)

    2001-01-01

    A method and system for a new automation tool for en route air traffic controllers first finds all aircraft flying on inefficient routes, then determines whether it is possible to save time by bypassing some route segments, and finally whether the improved route is free of conflicts with other aircraft. The method displays all direct-to eligible aircraft to an air traffic controller in a list sorted by highest time savings. By allowing the air traffic controller to easily identify and work with the highest pay-off aircraft, the method of the present invention contributes to a significant increase in both air traffic controller and aircraft productivity. A graphical computer interface (GUI) is used to enable the air traffic controller to send the aircraft direct to a waypoint or fix closer to the destination airport by a simple point and click action.

  5. Investigation of a novel approach to scoring Giemsa-stained malaria-infected thin blood films.

    PubMed

    Proudfoot, Owen; Drew, Nathan; Scholzen, Anja; Xiang, Sue; Plebanski, Magdalena

    2008-04-21

    Daily assessment of the percentage of erythrocytes that are infected ('percent-parasitaemia') across a time-course is a necessary step in many experimental studies of malaria, but represents a time-consuming and unpopular task among researchers. The most common method is extensive microscopic examination of Giemsa-stained thin blood-films. This study explored a method for the assessment of percent-parasitaemia that does not require extended periods of microscopy and results in a descriptive and permanent record of parasitaemia data that is highly amenable to subsequent 'data-mining'. Digital photography was utilized in conjunction with a basic purpose-written computer programme to test the viability of the concept. Partial automation of the determination of percent parasitaemia was then explored, resulting in the successful customization of commercially available broad-spectrum image analysis software towards this aim. Lastly, automated discrimination between infected and uninfected RBCs based on analysis of digital parameters of individual cell images was explored in an effort to completely automate the calculation of an accurate percent-parasitaemia.

  6. An automated method to analyze language use in patients with schizophrenia and their first-degree relatives

    PubMed Central

    Elvevåg, Brita; Foltz, Peter W.; Rosenstein, Mark; DeLisi, Lynn E.

    2009-01-01

    Communication disturbances are prevalent in schizophrenia, and since it is a heritable illness these are likely present - albeit in a muted form - in the relatives of patients. Given the time-consuming, and often subjective nature of discourse analysis, these deviances are frequently not assayed in large scale studies. Recent work in computational linguistics and statistical-based semantic analysis has shown the potential and power of automated analysis of communication. We present an automated and objective approach to modeling discourse that detects very subtle deviations between probands, their first-degree relatives and unrelated healthy controls. Although these findings should be regarded as preliminary due to the limitations of the data at our disposal, we present a brief analysis of the models that best differentiate these groups in order to illustrate the utility of the method for future explorations of how language components are differentially affected by familial and illness related issues. PMID:20383310

  7. A mixed optimization method for automated design of fuselage structures.

    NASA Technical Reports Server (NTRS)

    Sobieszczanski, J.; Loendorf, D.

    1972-01-01

    A procedure for automating the design of transport aircraft fuselage structures has been developed and implemented in the form of an operational program. The structure is designed in two stages. First, an overall distribution of structural material is obtained by means of optimality criteria to meet strength and displacement constraints. Subsequently, the detailed design of selected rings and panels consisting of skin and stringers is performed by mathematical optimization accounting for a set of realistic design constraints. The practicality and computer efficiency of the procedure is demonstrated on cylindrical and area-ruled large transport fuselages.

  8. Design and implementation of Ada programs to facilitate automated testing

    NASA Technical Reports Server (NTRS)

    Dean, Jack; Fox, Barry; Oropeza, Michael

    1991-01-01

    An automated method utilized to test the software components of COMPASS, an interactive computer aided scheduling system, is presented. Each package of this system introduces a private type, and works to construct instances of that type, along with read and write routines for that type. Generic procedures that can generate test drivers for these functions are given and show how the test drivers can read from a test data file the functions to call, the arguments for those functions, what the anticipated result should be, and whether an exception should be raised for the function given the arguments.

  9. Certification for civil flight decks and the human-computer interface

    NASA Technical Reports Server (NTRS)

    Mcclumpha, Andrew J.; Rudisill, Marianne

    1994-01-01

    This paper will address the issue of human factor aspects of civil flight deck certification, with emphasis on the pilot's interface with automation. In particular, three questions will be asked that relate to this certification process: (1) are the methods, data, and guidelines available from human factors to adequately address the problems of certifying as safe and error tolerant the complex automated systems of modern civil transport aircraft; (2) do aircraft manufacturers effectively apply human factors information during the aircraft flight deck design process; and (3) do regulatory authorities effectively apply human factors information during the aircraft certification process?

  10. Artificial intelligence for multi-mission planetary operations

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; Lawson, Denise L.; James, Mark L.

    1990-01-01

    A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.

  11. Automated detection of diagnostically relevant regions in H&E stained digital pathology slides

    NASA Astrophysics Data System (ADS)

    Bahlmann, Claus; Patel, Amar; Johnson, Jeffrey; Ni, Jie; Chekkoury, Andrei; Khurd, Parmeshwar; Kamen, Ali; Grady, Leo; Krupinski, Elizabeth; Graham, Anna; Weinstein, Ronald

    2012-03-01

    We present a computationally efficient method for analyzing H&E stained digital pathology slides with the objective of discriminating diagnostically relevant vs. irrelevant regions. Such technology is useful for several applications: (1) It can speed up computer aided diagnosis (CAD) for histopathology based cancer detection and grading by an order of magnitude through a triage-like preprocessing and pruning. (2) It can improve the response time for an interactive digital pathology workstation (which is usually dealing with several GByte digital pathology slides), e.g., through controlling adaptive compression or prioritization algorithms. (3) It can support the detection and grading workflow for expert pathologists in a semi-automated diagnosis, hereby increasing throughput and accuracy. At the core of the presented method is the statistical characterization of tissue components that are indicative for the pathologist's decision about malignancy vs. benignity, such as, nuclei, tubules, cytoplasm, etc. In order to allow for effective yet computationally efficient processing, we propose visual descriptors that capture the distribution of color intensities observed for nuclei and cytoplasm. Discrimination between statistics of relevant vs. irrelevant regions is learned from annotated data, and inference is performed via linear classification. We validate the proposed method both qualitatively and quantitatively. Experiments show a cross validation error rate of 1.4%. We further show that the proposed method can prune ~90% of the area of pathological slides while maintaining 100% of all relevant information, which allows for a speedup of a factor of 10 for CAD systems.

  12. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  13. USSR and Eastern Europe Scientific Abstracts, Cybernetics, Computers, and Automation Technology, Number 26

    DTIC Science & Technology

    1977-01-26

    Sisteme Matematicheskogo Obespecheniya YeS EVM [ Applied Programs in the Software System for the Unified System of Computers], by A. Ye. Fateyev, A. I...computerized systems are most effective in large production complexes , in which the level of utilization of computers can be as high as 500,000...performance of these tasks could be furthered by the complex introduction of electronic computers in automated control systems. The creation of ASU

  14. Automation of the aircraft design process

    NASA Technical Reports Server (NTRS)

    Heldenfels, R. R.

    1974-01-01

    The increasing use of the computer to automate the aerospace product development and engineering process is examined with emphasis on structural analysis and design. Examples of systems of computer programs in aerospace and other industries are reviewed and related to the characteristics of aircraft design in its conceptual, preliminary, and detailed phases. Problems with current procedures are identified, and potential improvements from optimum utilization of integrated disciplinary computer programs by a man/computer team are indicated.

  15. AN ULTRAVIOLET-VISIBLE SPECTROPHOTOMETER AUTOMATION SYSTEM. PART I: FUNCTIONAL SPECIFICATIONS

    EPA Science Inventory

    This document contains the project definition, the functional requirements, and the functional design for a proposed computer automation system for scanning spectrophotometers. The system will be implemented on a Data General computer using the BASIC language. The system is a rea...

  16. Automated Intelligent Agents: Are They Trusted Members of Military Teams?

    DTIC Science & Technology

    2008-12-01

    computer -based team firefighting game (C3Fire). The order of presentation of the two trials (human – human vs. human – automation) was...agent. All teams played a computer -based team firefighting game (C3Fire). The order of presentation of the two trials (human – human vs. human...26 b. Participants’ Computer ..................27 C. VARIABLES .........................................27 1. Independent Variables

  17. Direct-methods structure determination of a trypanosome RNA-editing substrate fragment with translational pseudosymmetry

    DOE PAGES

    Mooers, Blaine H. M.

    2016-03-24

    Using direct methods starting from random phases, the crystal structure of a 32-base-pair RNA (675 non-H RNA atoms in the asymmetric unit) was determined using only the native diffraction data (resolution limit 1.05 Å) and the computer program SIR2014. The almost three helical turns of the RNA in the asymmetric unit introduced partial or imperfect translational pseudosymmetry (TPS) that modulated the intensities when averaged by the lMiller indices but still escaped automated detection. Almost six times as many random phase sets had to be tested on average to reach a correct structure compared with a similar-sized RNA hairpin (27 nucleotides,more » 580 non-H RNA atoms) without TPS. Lastly, more sensitive methods are needed for the automated detection of partial TPS.« less

  18. Direct-methods structure determination of a trypanosome RNA-editing substrate fragment with translational pseudosymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mooers, Blaine H. M.

    Using direct methods starting from random phases, the crystal structure of a 32-base-pair RNA (675 non-H RNA atoms in the asymmetric unit) was determined using only the native diffraction data (resolution limit 1.05 Å) and the computer program SIR2014. The almost three helical turns of the RNA in the asymmetric unit introduced partial or imperfect translational pseudosymmetry (TPS) that modulated the intensities when averaged by the lMiller indices but still escaped automated detection. Almost six times as many random phase sets had to be tested on average to reach a correct structure compared with a similar-sized RNA hairpin (27 nucleotides,more » 580 non-H RNA atoms) without TPS. Lastly, more sensitive methods are needed for the automated detection of partial TPS.« less

  19. The Computer as a Tool for Learning

    PubMed Central

    Starkweather, John A.

    1986-01-01

    Experimenters from the beginning recognized the advantages computers might offer in medical education. Several medical schools have gained experience in such programs in automated instruction. Television images and graphic display combined with computer control and user interaction are effective for teaching problem solving. The National Board of Medical Examiners has developed patient-case simulation for examining clinical skills, and the National Library of Medicine has experimented with combining media. Advances from the field of artificial intelligence and the availability of increasingly powerful microcomputers at lower cost will aid further development. Computers will likely affect existing educational methods, adding new capabilities to laboratory exercises, to self-assessment and to continuing education. PMID:3544511

  20. Using Apex To Construct CPM-GOMS Models

    NASA Technical Reports Server (NTRS)

    John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger

    2006-01-01

    process for automatically generating computational models of human/computer interactions as well as graphical and textual representations of the models has been built on the conceptual foundation of a method known in the art as CPM-GOMS. This method is so named because it combines (1) the task decomposition of analysis according to an underlying method known in the art as the goals, operators, methods, and selection (GOMS) method with (2) a model of human resource usage at the level of cognitive, perceptual, and motor (CPM) operations. CPM-GOMS models have made accurate predictions about behaviors of skilled computer users in routine tasks, but heretofore, such models have been generated in a tedious, error-prone manual process. In the present process, CPM-GOMS models are generated automatically from a hierarchical task decomposition expressed by use of a computer program, known as Apex, designed previously to be used to model human behavior in complex, dynamic tasks. An inherent capability of Apex for scheduling of resources automates the difficult task of interleaving the cognitive, perceptual, and motor resources that underlie common task operators (e.g., move and click mouse). The user interface of Apex automatically generates Program Evaluation Review Technique (PERT) charts, which enable modelers to visualize the complex parallel behavior represented by a model. Because interleaving and the generation of displays to aid visualization are automated, it is now feasible to construct arbitrarily long sequences of behaviors. The process was tested by using Apex to create a CPM-GOMS model of a relatively simple human/computer-interaction task and comparing the time predictions of the model and measurements of the times taken by human users in performing the various steps of the task. The task was to withdraw $80 in cash from an automated teller machine (ATM). For the test, a Visual Basic mockup of an ATM was created, with a provision for input from (and measurement of the performance of) the user via a mouse. The times predicted by the automatically generated model turned out to approximate the measured times fairly well (see figure). While these results are promising, there is need for further development of the process. Moreover, it will also be necessary to test other, more complex models: The actions required of the user in the ATM task are too sequential to involve substantial parallelism and interleaving and, hence, do not serve as an adequate test of the unique strength of CPM-GOMS models to accommodate parallelism and interleaving.

  1. A Computer Program Functional Design of the Simulation Subsystem of an Automated Central Flow Control System

    DOT National Transportation Integrated Search

    1976-08-01

    This report contains a functional design for the simulation of a future automation concept in support of the ATC Systems Command Center. The simulation subsystem performs airport airborne arrival delay predictions and computes flow control tables for...

  2. Computerized Manufacturing Automation. Employment, Education, and the Workplace. Summary.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    The application of programmable automation (PA) offers new opportunities to enhance and streamline manufacturing processes. Five PA technologies are examined in this report: computer-aided design, robots, numerically controlled machine tools, flexible manufacturing systems, and computer-integrated manufacturing. Each technology is in a relatively…

  3. 32 CFR 806b.35 - Balancing protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Computer Security, 5 for procedures on safeguarding personal information in automated records. 5 http://www... automated system with a log-on protocol. Others may require more sophisticated security protection based on the sensitivity of the information. Classified computer systems or those with established audit and...

  4. 32 CFR 806b.35 - Balancing protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Computer Security, 5 for procedures on safeguarding personal information in automated records. 5 http://www... automated system with a log-on protocol. Others may require more sophisticated security protection based on the sensitivity of the information. Classified computer systems or those with established audit and...

  5. 32 CFR 806b.35 - Balancing protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Computer Security, 5 for procedures on safeguarding personal information in automated records. 5 http://www... automated system with a log-on protocol. Others may require more sophisticated security protection based on the sensitivity of the information. Classified computer systems or those with established audit and...

  6. 32 CFR 806b.35 - Balancing protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Computer Security, 5 for procedures on safeguarding personal information in automated records. 5 http://www... automated system with a log-on protocol. Others may require more sophisticated security protection based on the sensitivity of the information. Classified computer systems or those with established audit and...

  7. 32 CFR 806b.35 - Balancing protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Computer Security, 5 for procedures on safeguarding personal information in automated records. 5 http://www... automated system with a log-on protocol. Others may require more sophisticated security protection based on the sensitivity of the information. Classified computer systems or those with established audit and...

  8. Semi-automated method to measure pneumonia severity in mice through computed tomography (CT) scan analysis

    NASA Astrophysics Data System (ADS)

    Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.

    2010-03-01

    Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.

  9. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  10. Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Crier, tomyka

    2003-01-01

    With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.

  11. A Method for Automated Detection of Usability Problems from Client User Interface Events

    PubMed Central

    Saadawi, Gilan M.; Legowski, Elizabeth; Medvedeva, Olga; Chavan, Girish; Crowley, Rebecca S.

    2005-01-01

    Think-aloud usability analysis provides extremely useful data but is very time-consuming and expensive to perform because of the extensive manual video analysis that is required. We describe a simple method for automated detection of usability problems from client user interface events for a developing medical intelligent tutoring system. The method incorporates (1) an agent-based method for communication that funnels all interface events and system responses to a centralized database, (2) a simple schema for representing interface events and higher order subgoals, and (3) an algorithm that reproduces the criteria used for manual coding of usability problems. A correction factor was empirically determining to account for the slower task performance of users when thinking aloud. We tested the validity of the method by simultaneously identifying usability problems using TAU and manually computing them from stored interface event data using the proposed algorithm. All usability problems that did not rely on verbal utterances were detectable with the proposed method. PMID:16779121

  12. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm.

    PubMed

    Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-10-01

    The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.

  13. Accuracy of patient-specific organ dose estimates obtained using an automated image segmentation algorithm

    PubMed Central

    Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-01-01

    Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070

  14. Automated data acquisition and processing for a Hohlraum reflectometer

    NASA Technical Reports Server (NTRS)

    Difilippo, Frank; Mirtich, Michael J.

    1988-01-01

    A computer and data acquisition board were used to automate a Perkin-Elmer Model 13 spectrophotometer with a Hohlraum reflectivity attachment. Additional electronic circuitry was necessary for amplification, filtering, and debouncing. The computer was programmed to calculate spectral emittance from 1.7 to 14.7 micrometers and also total emittance versus temperature. Automation of the Hohlraum reflectometer reduced the time required to determine total emittance versus temperature from about three hours to about 40 minutes.

  15. Computer automation of ultrasonic testing. [inspection of ultrasonic welding

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Kerlin, E. E.; Gardner, A. H.; Dunmyer, D.; Wells, T. G.; Robinson, A. R.; Kunselman, J. S.; Walker, T. C.

    1974-01-01

    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded.

  16. Does Automated Feedback Improve Writing Quality?

    ERIC Educational Resources Information Center

    Wilson, Joshua; Olinghouse, Natalie G.; Andrada, Gilbert N.

    2014-01-01

    The current study examines data from students in grades 4-8 who participated in a statewide computer-based benchmark writing assessment that featured automated essay scoring and automated feedback. We examined whether the use of automated feedback was associated with gains in writing quality across revisions to an essay, and with transfer effects…

  17. Workshop on Office Automation and Telecommunication: Applying the Technology.

    ERIC Educational Resources Information Center

    Mitchell, Bill

    This document contains 12 outlines that forecast the office of the future. The outlines cover the following topics: (1) office automation definition and objectives; (2) functional categories of office automation software packages for mini and mainframe computers; (3) office automation-related software for microcomputers; (4) office automation…

  18. Automated grading system for evaluation of ocular redness associated with dry eye.

    PubMed

    Rodriguez, John D; Johnston, Patrick R; Ousler, George W; Smith, Lisa M; Abelson, Mark B

    2013-01-01

    We have observed that dry eye redness is characterized by a prominence of fine horizontal conjunctival vessels in the exposed ocular surface of the interpalpebral fissure, and have incorporated this feature into the grading of redness in clinical studies of dry eye. To develop an automated method of grading dry eye-associated ocular redness in order to expand on the clinical grading system currently used. Ninety nine images from 26 dry eye subjects were evaluated by five graders using a 0-4 (in 0.5 increments) dry eye redness (Ora Calibra™ Dry Eye Redness Scale [OCDER]) scale. For the automated method, the Opencv computer vision library was used to develop software for calculating redness and horizontal conjunctival vessels (noted as "horizontality"). From original photograph, the region of interest (ROI) was selected manually using the open source ImageJ software. Total average redness intensity (Com-Red) was calculated as a single channel 8-bit image as R - 0.83G - 0.17B, where R, G and B were the respective intensities of the red, green and blue channels. The location of vessels was detected by normalizing the blue channel and selecting pixels with an intensity of less than 97% of the mean. The horizontal component (Com-Hor) was calculated by the first order Sobel derivative in the vertical direction and the score was calculated as the average blue channel image intensity of this vertical derivative. Pearson correlation coefficients, accuracy and concordance correlation coefficients (CCC) were calculated after regression and standardized regression of the dataset. The agreement (both Pearson's and CCC) among investigators using the OCDER scale was 0.67, while the agreement of investigator to computer was 0.76. A multiple regression using both redness and horizontality improved the agreement CCC from 0.66 and 0.69 to 0.76, demonstrating the contribution of vessel geometry to the overall grade. Computer analysis of a given image has 100% repeatability and zero variability from session to session. This objective means of grading ocular redness in a unified fashion has potential significance as a new clinical endpoint. In comparisons between computer and investigator, computer grading proved to be more reliable than another investigator using the OCDER scale. The best fitting model based on the present sample, and usable for future studies, was [Formula: see text] is the predicted investigator grade, and [Formula: see text] and [Formula: see text] are logarithmic transformations of the computer calculated parameters COM-Hor and COM-Red. Considering the superior repeatability, computer automated grading might be preferable to investigator grading in multicentered dry eye studies in which the subtle differences in redness incurred by treatment have been historically difficult to define.

  19. Computational Methods for Structural Mechanics and Dynamics, part 1

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling.

  20. Rapid Automated Quantification of Cerebral Leukoaraiosis on CT Images: A Multicenter Validation Study.

    PubMed

    Chen, Liang; Carlton Jones, Anoma Lalani; Mair, Grant; Patel, Rajiv; Gontsarova, Anastasia; Ganesalingam, Jeban; Math, Nikhil; Dawson, Angela; Aweid, Basaam; Cohen, David; Mehta, Amrish; Wardlaw, Joanna; Rueckert, Daniel; Bentley, Paul

    2018-05-15

    Purpose To validate a random forest method for segmenting cerebral white matter lesions (WMLs) on computed tomographic (CT) images in a multicenter cohort of patients with acute ischemic stroke, by comparison with fluid-attenuated recovery (FLAIR) magnetic resonance (MR) images and expert consensus. Materials and Methods A retrospective sample of 1082 acute ischemic stroke cases was obtained that was composed of unselected patients who were treated with thrombolysis or who were undergoing contemporaneous MR imaging and CT, and a subset of International Stroke Thrombolysis-3 trial participants. Automated delineations of WML on images were validated relative to experts' manual tracings on CT images, and co-registered FLAIR MR imaging, and ratings were performed by using two conventional ordinal scales. Analyses included correlations between CT and MR imaging volumes, and agreements between automated and expert ratings. Results Automated WML volumes correlated strongly with expert-delineated WML volumes at MR imaging and CT (r 2 = 0.85 and 0.71 respectively; P < .001). Spatial-similarity of automated maps, relative to WML MR imaging, was not significantly different to that of expert WML tracings on CT images. Individual expert WML volumes at CT correlated well with each other (r 2 = 0.85), but varied widely (range, 91% of mean estimate; median estimate, 11 mL; range of estimated ranges, 0.2-68 mL). Agreements (κ) between automated ratings and consensus ratings were 0.60 (Wahlund system) and 0.64 (van Swieten system) compared with agreements between individual pairs of experts of 0.51 and 0.67, respectively, for the two rating systems (P < .01 for Wahlund system comparison of agreements). Accuracy was unaffected by established infarction, acute ischemic changes, or atrophy (P > .05). Automated preprocessing failure rate was 4%; rating errors occurred in a further 4%. Total automated processing time averaged 109 seconds (range, 79-140 seconds). Conclusion An automated method for quantifying CT cerebral white matter lesions achieves a similar accuracy to experts in unselected and multicenter cohorts. © RSNA, 2018 Online supplemental material is available for this article.

  1. Automated Design of a High-Velocity Channel

    DTIC Science & Technology

    2006-05-01

    using Newton’s method. 2.2.2 Groundwater Applications Optimization methods are also very useful for solving groundwater problems. Townley et al... Townley 85] apply present computational algorithms to steady and transient models for groundwater °ow. The aquifer storage coe±cients, transmissivities...Reliability Analysis", Water Resources Research, Vol. 28, No. 12, December 1992, pp. 3269-3280. [ Townley 85] Townley , L. R. and Wilson, J. L

  2. Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Zamora, G.; Bauman, W.; Soliz, P.

    2012-03-01

    Retinal vasculature is one of the most important anatomical structures in digital retinal photographs. Accurate segmentation of retinal blood vessels is an essential task in automated analysis of retinopathy. This paper presents a new and effective vessel segmentation algorithm that features computational simplicity and fast implementation. This method uses morphological pre-processing to decrease the disturbance of bright structures and lesions before vessel extraction. Next, a vessel probability map is generated by computing the eigenvalues of the second derivatives of Gaussian filtered image at multiple scales. Then, the second order local entropy thresholding is applied to segment the vessel map. Lastly, a rule-based decision step, which measures the geometric shape difference between vessels and lesions is applied to reduce false positives. The algorithm is evaluated on the low-resolution DRIVE and STARE databases and the publicly available high-resolution image database from Friedrich-Alexander University Erlangen-Nuremberg, Germany). The proposed method achieved comparable performance to state of the art unsupervised vessel segmentation methods with a competitive faster speed on the DRIVE and STARE databases. For the high resolution fundus image database, the proposed algorithm outperforms an existing approach both on performance and speed. The efficiency and robustness make the blood vessel segmentation method described here suitable for broad application in automated analysis of retinal images.

  3. Translations on USSR Science and Technology Physical Sciences and Technology No. 18

    DTIC Science & Technology

    1977-09-19

    and Avetik Gukasyan discuss component arrangement alternatives. COPYRIGHT: Notice not available 8545 CSO: 1870 CYBERNETICS, COMPUTERS AND...1974. COPYRIGHT: Notice not available 8545 CSO: 1870 CYBERNETICS, COMPUTERS AND AUTOMATION TECHNOLOGY ’PROYEKC’ COMPUTER-ASSISTED DESIGN SYSTEM...throughout the world are struggling. The "Proyekt" system, produced in the Institute of Cybernetics, assists in automating the design and manufacture of

  4. Assessing Information on the Internet: Toward Providing Library Services for Computer-Mediated Communication.

    ERIC Educational Resources Information Center

    Dillon, Martin; And Others

    1992-01-01

    Describes a project that examined textual information available on the Internet and potential means of providing access to this information. Highlights include an overview of Internet resources, a profile of a document sample, description of FTP (File Transfer Protocol) sites, and an automated method of categorizing files. (MES)

  5. Techniques for Increasing the Efficiency of Automation Systems in School Library Media Centers.

    ERIC Educational Resources Information Center

    Caffarella, Edward P.

    1996-01-01

    Discusses methods of managing queues (waiting lines) to optimize the use of student computer stations in school library media centers and to make searches more efficient and effective. The three major factors in queue management are arrival interval of the patrons, service time, and number of stations. (Author/LRW)

  6. State-of-the-art methods for testing materials outdoors

    Treesearch

    R. Sam Williams

    2004-01-01

    In recent years, computers, sensors, microelectronics, and communication technologies have made it possible to automate the way materials are tested in the field. It is now possible to purchase monitoring equipment to measure weather and materials properties. The measurement of materials response often requires innovative approaches and added expense, but the...

  7. Automated detection of heuristics and biases among pathologists in a computer-based system.

    PubMed

    Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia

    2013-08-01

    The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to diagnostic errors. The authors conducted the study using a computer-based system to view and diagnose virtual slide cases. The software recorded participant responses throughout the diagnostic process, and automatically classified participant actions based on definitions of eight common heuristics and/or biases. The authors measured frequency of heuristic use and bias across three levels of training. Biases studied were detected at varying frequencies, with availability and search satisficing observed most frequently. There were few significant differences by level of training. For representativeness and anchoring, the heuristic was used appropriately as often or more often than it was used in biased judgment. Approximately half of the diagnostic errors were associated with one or more biases. We conclude that heuristic use and biases were observed among physicians at all levels of training using the virtual slide system, although their frequencies varied. The system can be employed to detect heuristic use and to test methods for decreasing diagnostic errors resulting from cognitive biases.

  8. A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model.

    PubMed

    Mazzaferri, Javier; Larrivée, Bruno; Cakir, Bertan; Sapieha, Przemyslaw; Costantino, Santiago

    2018-03-02

    Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License ( https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva ).

  9. A feasability study of color flow doppler vectorization for automated blood flow monitoring.

    PubMed

    Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D

    2017-12-01

    An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.

  10. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  11. Fully Automated Atlas-Based Hippocampus Volumetry for Clinical Routine: Validation in Subjects with Mild Cognitive Impairment from the ADNI Cohort.

    PubMed

    Suppa, Per; Hampel, Harald; Spies, Lothar; Fiebach, Jochen B; Dubois, Bruno; Buchert, Ralph

    2015-01-01

    Hippocampus volumetry based on magnetic resonance imaging (MRI) has not yet been translated into everyday clinical diagnostic patient care, at least in part due to limited availability of appropriate software tools. In the present study, we evaluate a fully-automated and computationally efficient processing pipeline for atlas based hippocampal volumetry using freely available Statistical Parametric Mapping (SPM) software in 198 amnestic mild cognitive impairment (MCI) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI1). Subjects were grouped into MCI stable and MCI to probable Alzheimer's disease (AD) converters according to follow-up diagnoses at 12, 24, and 36 months. Hippocampal grey matter volume (HGMV) was obtained from baseline T1-weighted MRI and then corrected for total intracranial volume and age. Average processing time per subject was less than 4 minutes on a standard PC. The area under the receiver operator characteristic curve of the corrected HGMV for identification of MCI to probable AD converters within 12, 24, and 36 months was 0.78, 0.72, and 0.71, respectively. Thus, hippocampal volume computed with the fully-automated processing pipeline provides similar power for prediction of MCI to probable AD conversion as computationally more expensive methods. The whole processing pipeline has been made freely available as an SPM8 toolbox. It is easily set up and integrated into everyday clinical patient care.

  12. Automated Calibration For Numerical Models Of Riverflow

    NASA Astrophysics Data System (ADS)

    Fernandez, Betsaida; Kopmann, Rebekka; Oladyshkin, Sergey

    2017-04-01

    Calibration of numerical models is fundamental since the beginning of all types of hydro system modeling, to approximate the parameters that can mimic the overall system behavior. Thus, an assessment of different deterministic and stochastic optimization methods is undertaken to compare their robustness, computational feasibility, and global search capacity. Also, the uncertainty of the most suitable methods is analyzed. These optimization methods minimize the objective function that comprises synthetic measurements and simulated data. Synthetic measurement data replace the observed data set to guarantee an existing parameter solution. The input data for the objective function derivate from a hydro-morphological dynamics numerical model which represents an 180-degree bend channel. The hydro- morphological numerical model shows a high level of ill-posedness in the mathematical problem. The minimization of the objective function by different candidate methods for optimization indicates a failure in some of the gradient-based methods as Newton Conjugated and BFGS. Others reveal partial convergence, such as Nelder-Mead, Polak und Ribieri, L-BFGS-B, Truncated Newton Conjugated, and Trust-Region Newton Conjugated Gradient. Further ones indicate parameter solutions that range outside the physical limits, such as Levenberg-Marquardt and LeastSquareRoot. Moreover, there is a significant computational demand for genetic optimization methods, such as Differential Evolution and Basin-Hopping, as well as for Brute Force methods. The Deterministic Sequential Least Square Programming and the scholastic Bayes Inference theory methods present the optimal optimization results. keywords: Automated calibration of hydro-morphological dynamic numerical model, Bayesian inference theory, deterministic optimization methods.

  13. Nonlinear Analysis of a Bolted Marine Riser Connector Using NASTRAN Substructuring

    NASA Technical Reports Server (NTRS)

    Fox, G. L.

    1984-01-01

    Results of an investigation of the behavior of a bolted, flange type marine riser connector is reported. The method used to account for the nonlinear effect of connector separation due to bolt preload and axial tension load is described. The automated multilevel substructing capability of COSMIC/NASTRAN was employed at considerable savings in computer run time. Simplified formulas for computer resources, i.e., computer run times for modules SDCOMP, FBS, and MPYAD, as well as disk storage space, are presented. Actual run time data on a VAX-11/780 is compared with the formulas presented.

  14. Will the Measurement Robots Take Our Jobs? An Update on the State of Automated M&V for Energy Efficiency Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Touzani, Samir; Taylor, Cody

    Trustworthy savings calculations are critical to convincing regulators of both the cost-effectiveness of energy efficiency program investments and their ability to defer supply-side capital investments. Today’s methods for measurement and verification (M&V) of energy savings constitute a significant portion of the total costs of energy efficiency programs. They also require time-consuming data acquisition. A spectrum of savings calculation approaches is used, with some relying more heavily on measured data and others relying more heavily on estimated, modeled, or stipulated data. The rising availability of “smart” meters and devices that report near-real time data, combined with new analytical approaches to quantifyingmore » savings, offers potential to conduct M&V more quickly and at lower cost, with comparable or improved accuracy. Commercial energy management and information systems (EMIS) technologies are beginning to offer M&V capabilities, and program administrators want to understand how they might assist programs in quickly and accurately measuring energy savings. This paper presents the results of recent testing of the ability to use automation to streamline some parts of M&V. Here in this paper, we detail metrics to assess the performance of these new M&V approaches, and a framework to compute the metrics. We also discuss the accuracy, cost, and time trade-offs between more traditional M&V, and these emerging streamlined methods that use high-resolution energy data and automated computational intelligence. Finally we discuss the potential evolution of M&V and early results of pilots currently underway to incorporate M&V automation into ratepayer-funded programs and professional implementation and evaluation practice.« less

  15. Computational Cardiac Anatomy Using MRI

    PubMed Central

    Beg, Mirza Faisal; Helm, Patrick A.; McVeigh, Elliot; Miller, Michael I.; Winslow, Raimond L.

    2005-01-01

    Ventricular geometry and fiber orientation may undergo global or local remodeling in cardiac disease. However, there are as yet no mathematical and computational methods for quantifying variation of geometry and fiber orientation or the nature of their remodeling in disease. Toward this goal, a landmark and image intensity-based large deformation diffeomorphic metric mapping (LDDMM) method to transform heart geometry into common coordinates for quantification of shape and form was developed. Two automated landmark placement methods for modeling tissue deformations expected in different cardiac pathologies are presented. The transformations, computed using the combined use of landmarks and image intensities, yields high-registration accuracy of heart anatomies even in the presence of significant variation of cardiac shape and form. Once heart anatomies have been registered, properties of tissue geometry and cardiac fiber orientation in corresponding regions of different hearts may be quantified. PMID:15508155

  16. Continuous measurement of breast tumor hormone receptor expression: a comparison of two computational pathology platforms

    PubMed Central

    Ahern, Thomas P.; Beck, Andrew H.; Rosner, Bernard A.; Glass, Ben; Frieling, Gretchen; Collins, Laura C.; Tamimi, Rulla M.

    2017-01-01

    Background Computational pathology platforms incorporate digital microscopy with sophisticated image analysis to permit rapid, continuous measurement of protein expression. We compared two computational pathology platforms on their measurement of breast tumor estrogen receptor (ER) and progesterone receptor (PR) expression. Methods Breast tumor microarrays from the Nurses’ Health Study were stained for ER (n=592) and PR (n=187). One expert pathologist scored cases as positive if ≥1% of tumor nuclei exhibited stain. ER and PR were then measured with the Definiens Tissue Studio (automated) and Aperio Digital Pathology (user-supervised) platforms. Platform-specific measurements were compared using boxplots, scatter plots, and correlation statistics. Classification of ER and PR positivity by platform-specific measurements was evaluated with areas under receiver operating characteristic curves (AUC) from univariable logistic regression models, using expert pathologist classification as the standard. Results Both platforms showed considerable overlap in continuous measurements of ER and PR between positive and negative groups classified by expert pathologist. Platform-specific measurements were strongly and positively correlated with one another (rho≥0.77). The user-supervised Aperio workflow performed slightly better than the automated Definiens workflow at classifying ER positivity (AUCAperio=0.97; AUCDefiniens=0.90; difference=0.07, 95% CI: 0.05, 0.09) and PR positivity (AUCAperio=0.94; AUCDefiniens=0.87; difference=0.07, 95% CI: 0.03, 0.12). Conclusion Paired hormone receptor expression measurements from two different computational pathology platforms agreed well with one another. The user-supervised workflow yielded better classification accuracy than the automated workflow. Appropriately validated computational pathology algorithms enrich molecular epidemiology studies with continuous protein expression data and may accelerate tumor biomarker discovery. PMID:27729430

  17. Computer vision-based diameter maps to study fluoroscopic recordings of small intestinal motility from conscious experimental animals.

    PubMed

    Ramírez, I; Pantrigo, J J; Montemayor, A S; López-Pérez, A E; Martín-Fontelles, M I; Brookes, S J H; Abalo, R

    2017-08-01

    When available, fluoroscopic recordings are a relatively cheap, non-invasive and technically straightforward way to study gastrointestinal motility. Spatiotemporal maps have been used to characterize motility of intestinal preparations in vitro, or in anesthetized animals in vivo. Here, a new automated computer-based method was used to construct spatiotemporal motility maps from fluoroscopic recordings obtained in conscious rats. Conscious, non-fasted, adult, male Wistar rats (n=8) received intragastric administration of barium contrast, and 1-2 hours later, when several loops of the small intestine were well-defined, a 2 minutes-fluoroscopic recording was obtained. Spatiotemporal diameter maps (Dmaps) were automatically calculated from the recordings. Three recordings were also manually analyzed for comparison. Frequency analysis was performed in order to calculate relevant motility parameters. In each conscious rat, a stable recording (17-20 seconds) was analyzed. The Dmaps manually and automatically obtained from the same recording were comparable, but the automated process was faster and provided higher resolution. Two frequencies of motor activity dominated; lower frequency contractions (15.2±0.9 cpm) had an amplitude approximately five times greater than higher frequency events (32.8±0.7 cpm). The automated method developed here needed little investigator input, provided high-resolution results with short computing times, and automatically compensated for breathing and other small movements, allowing recordings to be made without anesthesia. Although slow and/or infrequent events could not be detected in the short recording periods analyzed to date (17-20 seconds), this novel system enhances the analysis of in vivo motility in conscious animals. © 2017 John Wiley & Sons Ltd.

  18. An Automated Method of Scanning Probe Microscopy (SPM) Data Analysis and Reactive Site Tracking for Mineral-Water Interface Reactions Observed at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Campbell, B. D.; Higgins, S. R.

    2008-12-01

    Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.

  19. Normalized gradient fields cross-correlation for automated detection of prostate in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.

    2012-02-01

    Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.

  20. Assessment of Automated Analyses of Cell Migration on Flat and Nanostructured Surfaces

    PubMed Central

    Grădinaru, Cristian; Łopacińska, Joanna M.; Huth, Johannes; Kestler, Hans A.; Flyvbjerg, Henrik; Mølhave, Kristian

    2012-01-01

    Motility studies of cells often rely on computer software that analyzes time-lapse recorded movies and establishes cell trajectories fully automatically. This raises the question of reproducibility of results, since different programs could yield significantly different results of such automated analysis. The fact that the segmentation routines of such programs are often challenged by nanostructured surfaces makes the question more pertinent. Here we illustrate how it is possible to track cells on bright field microscopy images with image analysis routines implemented in an open-source cell tracking program, PACT (Program for Automated Cell Tracking). We compare the automated motility analysis of three cell tracking programs, PACT, Autozell, and TLA, using the same movies as input for all three programs. We find that different programs track overlapping, but different subsets of cells due to different segmentation methods. Unfortunately, population averages based on such different cell populations, differ significantly in some cases. Thus, results obtained with one software package are not necessarily reproducible by other software. PMID:24688640

  1. Deployable reflector antenna performance optimization using automated surface correction and array-feed compensation

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Mitchell, John L.

    1992-01-01

    Methods for increasing the electromagnetic (EM) performance of reflectors with rough surfaces were tested and evaluated. First, one quadrant of the 15-meter hoop-column antenna was retrofitted with computer-driven and controlled motors to allow automated adjustment of the reflector surface. The surface errors, measured with metric photogrammetry, were used in a previously verified computer code to calculate control motor adjustments. With this system, a rough antenna surface (rms of approximately 0.180 inch) was corrected in two iterations to approximately the structural surface smoothness limit of 0.060 inch rms. The antenna pattern and gain improved significantly as a result of these surface adjustments. The EM performance was evaluated with a computer program for distorted reflector antennas which had been previously verified with experimental data. Next, the effects of the surface distortions were compensated for in computer simulations by superimposing excitation from an array feed to maximize antenna performance relative to an undistorted reflector. Results showed that a 61-element array could produce EM performance improvements equal to surface adjustments. When both mechanical surface adjustment and feed compensation techniques were applied, the equivalent operating frequency increased from approximately 6 to 18 GHz.

  2. Automated anatomical labeling method for abdominal arteries extracted from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Hoang, Bui Huy; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2012-02-01

    This paper presents an automated anatomical labeling method of abdominal arteries. In abdominal surgery, understanding of blood vessel structure concerning with a target organ is very important. Branching pattern of blood vessels differs among individuals. It is required to develop a system that can assist understanding of a blood vessel structure and anatomical names of blood vessels of a patient. Previous anatomical labbeling methods for abdominal arteries deal with either of the upper or lower abdominal arteries. In this paper, we present an automated anatomical labeling method of both of the upper and lower abdominal arteries extracted from CT images. We obtain a tree structure of artery regions and calculate feature values for each branch. These feature values include the diameter, curvature, direction, and running vectors of a branch. Target arteries of this method are grouped based on branching conditions. The following processes are separately applied for each group. We compute candidate artery names by using classifiers that are trained to output artery names. A correction process of the candidate anatomical names based on the rule of majority is applied to determine final names. We applied the proposed method to 23 cases of 3D abdominal CT images. Experimental results showed that the proposed method is able to perform nomenclature of entire major abdominal arteries. The recall and the precision rates of labeling are 79.01% and 80.41%, respectively.

  3. Automated unsupervised multi-parametric classification of adipose tissue depots in skeletal muscle

    PubMed Central

    Valentinitsch, Alexander; Karampinos, Dimitrios C.; Alizai, Hamza; Subburaj, Karupppasamy; Kumar, Deepak; Link, Thomas M.; Majumdar, Sharmila

    2012-01-01

    Purpose To introduce and validate an automated unsupervised multi-parametric method for segmentation of the subcutaneous fat and muscle regions in order to determine subcutaneous adipose tissue (SAT) and intermuscular adipose tissue (IMAT) areas based on data from a quantitative chemical shift-based water-fat separation approach. Materials and Methods Unsupervised standard k-means clustering was employed to define sets of similar features (k = 2) within the whole multi-modal image after the water-fat separation. The automated image processing chain was composed of three primary stages including tissue, muscle and bone region segmentation. The algorithm was applied on calf and thigh datasets to compute SAT and IMAT areas and was compared to a manual segmentation. Results The IMAT area using the automatic segmentation had excellent agreement with the IMAT area using the manual segmentation for all the cases in the thigh (R2: 0.96) and for cases with up to moderate IMAT area in the calf (R2: 0.92). The group with the highest grade of muscle fat infiltration in the calf had the highest error in the inner SAT contour calculation. Conclusion The proposed multi-parametric segmentation approach combined with quantitative water-fat imaging provides an accurate and reliable method for an automated calculation of the SAT and IMAT areas reducing considerably the total post-processing time. PMID:23097409

  4. A Review of Developments in Computer-Based Systems to Image Teeth and Produce Dental Restorations

    PubMed Central

    Rekow, E. Dianne; Erdman, Arthur G.; Speidel, T. Michael

    1987-01-01

    Computer-aided design and manufacturing (CAD/CAM) make it possible to automate the creation of dental restorations. Currently practiced techniques are described. Three automated systems currently under development are described and compared. Advances in computer-aided design and computer-aided manufacturing (CAD/CAM) provide a new option for dentistry, creating an alternative technique for producing dental restorations. It is possible to create dental restorations that are automatically produced and meet or exceed current requirements for fit and occlusion.

  5. Automation; The New Industrial Revolution.

    ERIC Educational Resources Information Center

    Arnstein, George E.

    Automation is a word that describes the workings of computers and the innovations of automatic transfer machines in the factory. As the hallmark of the new industrial revolution, computers displace workers and create a need for new skills and retraining programs. With improved communication between industry and the educational community to…

  6. Final-Approach-Spacing Subsystem For Air Traffic

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.; Erzberger, Heinz; Bergeron, Hugh

    1992-01-01

    Automation subsystem of computers, computer workstations, communication equipment, and radar helps air-traffic controllers in terminal radar approach-control (TRACON) facility manage sequence and spacing of arriving aircraft for both efficiency and safety. Called FAST (Final Approach Spacing Tool), subsystem enables controllers to choose among various levels of automation.

  7. Information Communication Highways in the 1990s: An Analysis of Their Potential Impact on Library Automation.

    ERIC Educational Resources Information Center

    Kibirige, Harry M.

    1991-01-01

    Discussion of the potential effects of fiber optic-based communication technology on information networks and systems design highlights library automation. Topics discussed include computers and telecommunications systems, the importance of information in national economies, microcomputers, local area networks (LANs), national computer networks,…

  8. An Introduction to Archival Automation: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    Cook, Michael

    Developed under a contract with the International Council on Archives, these guidelines are designed to emphasize the role of automation techniques in archives and records services, provide an indication of existing computer systems used in different archives services and of specific computer applications at various stages of archives…

  9. Automation of the CFD Process on Distributed Computing Systems

    NASA Technical Reports Server (NTRS)

    Tejnil, Ed; Gee, Ken; Rizk, Yehia M.

    2000-01-01

    A script system was developed to automate and streamline portions of the CFD process. The system was designed to facilitate the use of CFD flow solvers on supercomputer and workstation platforms within a parametric design event. Integrating solver pre- and postprocessing phases, the fully automated ADTT script system marshalled the required input data, submitted the jobs to available computational resources, and processed the resulting output data. A number of codes were incorporated into the script system, which itself was part of a larger integrated design environment software package. The IDE and scripts were used in a design event involving a wind tunnel test. This experience highlighted the need for efficient data and resource management in all parts of the CFD process. To facilitate the use of CFD methods to perform parametric design studies, the script system was developed using UNIX shell and Perl languages. The goal of the work was to minimize the user interaction required to generate the data necessary to fill a parametric design space. The scripts wrote out the required input files for the user-specified flow solver, transferred all necessary input files to the computational resource, submitted and tracked the jobs using the resource queuing structure, and retrieved and post-processed the resulting dataset. For computational resources that did not run queueing software, the script system established its own simple first-in-first-out queueing structure to manage the workload. A variety of flow solvers were incorporated in the script system, including INS2D, PMARC, TIGER and GASP. Adapting the script system to a new flow solver was made easier through the use of object-oriented programming methods. The script system was incorporated into an ADTT integrated design environment and evaluated as part of a wind tunnel experiment. The system successfully generated the data required to fill the desired parametric design space. This stressed the computational resources required to compute and store the information. The scripts were continually modified to improve the utilization of the computational resources and reduce the likelihood of data loss due to failures. An ad-hoc file server was created to manage the large amount of data being generated as part of the design event. Files were stored and retrieved as needed to create new jobs and analyze the results. Additional information is contained in the original.

  10. Automated Discovery of Elementary Chemical Reaction Steps Using Freezing String and Berny Optimization Methods.

    PubMed

    Suleimanov, Yury V; Green, William H

    2015-09-08

    We present a simple protocol which allows fully automated discovery of elementary chemical reaction steps using in cooperation double- and single-ended transition-state optimization algorithms--the freezing string and Berny optimization methods, respectively. To demonstrate the utility of the proposed approach, the reactivity of several single-molecule systems of combustion and atmospheric chemistry importance is investigated. The proposed algorithm allowed us to detect without any human intervention not only "known" reaction pathways, manually detected in the previous studies, but also new, previously "unknown", reaction pathways which involve significant atom rearrangements. We believe that applying such a systematic approach to elementary reaction path finding will greatly accelerate the discovery of new chemistry and will lead to more accurate computer simulations of various chemical processes.

  11. The Electrolyte Genome project: A big data approach in battery materials discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Xiaohui; Jain, Anubhav; Rajput, Nav Nidhi

    2015-06-01

    We present a high-throughput infrastructure for the automated calculation of molecular properties with a focus on battery electrolytes. The infrastructure is largely open-source and handles both practical aspects (input file generation, output file parsing, and information management) as well as more complex problems (structure matching, salt complex generation, and failure recovery). Using this infrastructure, we have computed the ionization potential (IP) and electron affinities (EA) of 4830 molecules relevant to battery electrolytes (encompassing almost 55,000 quantum mechanics calculations) at the B3LYP/6-31+G(*) level. We describe automated workflows for computing redox potential, dissociation constant, and salt-molecule binding complex structure generation. We presentmore » routines for automatic recovery from calculation errors, which brings the failure rate from 9.2% to 0.8% for the QChem DFT code. Automated algorithms to check duplication between two arbitrary molecules and structures are described. We present benchmark data on basis sets and functionals on the G2-97 test set; one finding is that a IP/EA calculation method that combines PBE geometry optimization and B3LYP energy evaluation requires less computational cost and yields nearly identical results as compared to a full B3LYP calculation, and could be suitable for the calculation of large molecules. Our data indicates that among the 8 functionals tested, XYGJ-OS and B3LYP are the two best functionals to predict IP/EA with an RMSE of 0.12 and 0.27 eV, respectively. Application of our automated workflow to a large set of quinoxaline derivative molecules shows that functional group effect and substitution position effect can be separated for IP/EA of quinoxaline derivatives, and the most sensitive position is different for IP and EA. Published by Elsevier B.V« less

  12. Computer vision-based automated peak picking applied to protein NMR spectra.

    PubMed

    Klukowski, Piotr; Walczak, Michal J; Gonczarek, Adam; Boudet, Julien; Wider, Gerhard

    2015-09-15

    A detailed analysis of multidimensional NMR spectra of macromolecules requires the identification of individual resonances (peaks). This task can be tedious and time-consuming and often requires support by experienced users. Automated peak picking algorithms were introduced more than 25 years ago, but there are still major deficiencies/flaws that often prevent complete and error free peak picking of biological macromolecule spectra. The major challenges of automated peak picking algorithms is both the distinction of artifacts from real peaks particularly from those with irregular shapes and also picking peaks in spectral regions with overlapping resonances which are very hard to resolve by existing computer algorithms. In both of these cases a visual inspection approach could be more effective than a 'blind' algorithm. We present a novel approach using computer vision (CV) methodology which could be better adapted to the problem of peak recognition. After suitable 'training' we successfully applied the CV algorithm to spectra of medium-sized soluble proteins up to molecular weights of 26 kDa and to a 130 kDa complex of a tetrameric membrane protein in detergent micelles. Our CV approach outperforms commonly used programs. With suitable training datasets the application of the presented method can be extended to automated peak picking in multidimensional spectra of nucleic acids or carbohydrates and adapted to solid-state NMR spectra. CV-Peak Picker is available upon request from the authors. gsw@mol.biol.ethz.ch; michal.walczak@mol.biol.ethz.ch; adam.gonczarek@pwr.edu.pl Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting

    PubMed Central

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-01-01

    Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Methods Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. Results There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). Conclusions MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics. PMID:28873173

  14. PEGASUS 5: An Automated Pre-Processor for Overset-Grid CFD

    NASA Technical Reports Server (NTRS)

    Suhs, Norman E.; Rogers, Stuart E.; Dietz, William E.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    An all new, automated version of the PEGASUS software has been developed and tested. PEGASUS provides the hole-cutting and connectivity information between overlapping grids, and is used as the final part of the grid generation process for overset-grid computational fluid dynamics approaches. The new PEGASUS code (Version 5) has many new features: automated hole cutting; a projection scheme for fixing gaps in overset surfaces; more efficient interpolation search methods using an alternating digital tree; hole-size optimization based on adding additional layers of fringe points; and an automatic restart capability. The new code has also been parallelized using the Message Passing Interface standard. The parallelization performance provides efficient speed-up of the execution time by an order of magnitude, and up to a factor of 30 for very large problems. The results of three example cases are presented: a three-element high-lift airfoil, a generic business jet configuration, and a complete Boeing 777-200 aircraft in a high-lift landing configuration. Comparisons of the computed flow fields for the airfoil and 777 test cases between the old and new versions of the PEGASUS codes show excellent agreement with each other and with experimental results.

  15. Comparison of computer versus manual determination of pulmonary nodule volumes in CT scans

    NASA Astrophysics Data System (ADS)

    Biancardi, Alberto M.; Reeves, Anthony P.; Jirapatnakul, Artit C.; Apanasovitch, Tatiyana; Yankelevitz, David; Henschke, Claudia I.

    2008-03-01

    Accurate nodule volume estimation is necessary in order to estimate the clinically relevant growth rate or change in size over time. An automated nodule volume-measuring algorithm was applied to a set of pulmonary nodules that were documented by the Lung Image Database Consortium (LIDC). The LIDC process model specifies that each scan is assessed by four experienced thoracic radiologists and that boundaries are to be marked around the visible extent of the nodules for nodules 3 mm and larger. Nodules were selected from the LIDC database with the following inclusion criteria: (a) they must have a solid component on a minimum of three CT image slices and (b) they must be marked by all four LIDC radiologists. A total of 113 nodules met the selection criterion with diameters ranging from 3.59 mm to 32.68 mm (mean 9.37 mm, median 7.67 mm). The centroid of each marked nodule was used as the seed point for the automated algorithm. 95 nodules (84.1%) were correctly segmented, but one was considered not meeting the first selection criterion by the automated method; for the remaining ones, eight (7.1%) were structurally too complex or extensively attached and 10 (8.8%) were considered not properly segmented after a simple visual inspection by a radiologist. Since the LIDC specifications, as aforementioned, instruct radiologists to include both solid and sub-solid parts, the automated method core capability of segmenting solid tissues was augmented to take into account also the nodule sub-solid parts. We ranked the distances of the automated method estimates and the radiologist-based estimates from the median of the radiologist-based values. The automated method was in 76.6% of the cases closer to the median than at least one of the values derived from the manual markings, which is a sign of a very good agreement with the radiologists' markings.

  16. A Model-based Framework for Risk Assessment in Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems. This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions. Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  17. Safety Metrics for Human-Computer Controlled Systems

    NASA Technical Reports Server (NTRS)

    Leveson, Nancy G; Hatanaka, Iwao

    2000-01-01

    The rapid growth of computer technology and innovation has played a significant role in the rise of computer automation of human tasks in modem production systems across all industries. Although the rationale for automation has been to eliminate "human error" or to relieve humans from manual repetitive tasks, various computer-related hazards and accidents have emerged as a direct result of increased system complexity attributed to computer automation. The risk assessment techniques utilized for electromechanical systems are not suitable for today's software-intensive systems or complex human-computer controlled systems.This thesis will propose a new systemic model-based framework for analyzing risk in safety-critical systems where both computers and humans are controlling safety-critical functions. A new systems accident model will be developed based upon modem systems theory and human cognitive processes to better characterize system accidents, the role of human operators, and the influence of software in its direct control of significant system functions Better risk assessments will then be achievable through the application of this new framework to complex human-computer controlled systems.

  18. Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM.

    PubMed

    Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D Joshua

    2011-01-01

    Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.

  19. EpHLA software: a timesaving and accurate tool for improving identification of acceptable mismatches for clinical purposes.

    PubMed

    Filho, Herton Luiz Alves Sales; da Mata Sousa, Luiz Claudio Demes; von Glehn, Cristina de Queiroz Carrascosa; da Silva, Adalberto Socorro; dos Santos Neto, Pedro de Alcântara; do Nascimento, Ferraz; de Castro, Adail Fonseca; do Nascimento, Liliane Machado; Kneib, Carolina; Bianchi Cazarote, Helena; Mayumi Kitamura, Daniele; Torres, Juliane Roberta Dias; da Cruz Lopes, Laiane; Barros, Aryela Loureiro; da Silva Edlin, Evelin Nildiane; de Moura, Fernanda Sá Leal; Watanabe, Janine Midori Figueiredo; do Monte, Semiramis Jamil Hadad

    2012-06-01

    The HLAMatchmaker algorithm, which allows the identification of “safe” acceptable mismatches (AMMs) for recipients of solid organ and cell allografts, is rarely used in part due to the difficulty in using it in the current Excel format. The automation of this algorithm may universalize its use to benefit the allocation of allografts. Recently, we have developed a new software called EpHLA, which is the first computer program automating the use of the HLAMatchmaker algorithm. Herein, we present the experimental validation of the EpHLA program by showing the time efficiency and the quality of operation. The same results, obtained by a single antigen bead assay with sera from 10 sensitized patients waiting for kidney transplants, were analyzed either by conventional HLAMatchmaker or by automated EpHLA method. Users testing these two methods were asked to record: (i) time required for completion of the analysis (in minutes); (ii) number of eplets obtained for class I and class II HLA molecules; (iii) categorization of eplets as reactive or non-reactive based on the MFI cutoff value; and (iv) determination of AMMs based on eplets' reactivities. We showed that although both methods had similar accuracy, the automated EpHLA method was over 8 times faster in comparison to the conventional HLAMatchmaker method. In particular the EpHLA software was faster and more reliable but equally accurate as the conventional method to define AMMs for allografts. The EpHLA software is an accurate and quick method for the identification of AMMs and thus it may be a very useful tool in the decision-making process of organ allocation for highly sensitized patients as well as in many other applications.

  20. Verification and Validation in a Rapid Software Development Process

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Easterbrook, Steve M.

    1997-01-01

    The high cost of software production is driving development organizations to adopt more automated design and analysis methods such as rapid prototyping, computer-aided software engineering (CASE) tools, and high-level code generators. Even developers of safety-critical software system have adopted many of these new methods while striving to achieve high levels Of quality and reliability. While these new methods may enhance productivity and quality in many cases, we examine some of the risks involved in the use of new methods in safety-critical contexts. We examine a case study involving the use of a CASE tool that automatically generates code from high-level system designs. We show that while high-level testing on the system structure is highly desirable, significant risks exist in the automatically generated code and in re-validating releases of the generated code after subsequent design changes. We identify these risks and suggest process improvements that retain the advantages of rapid, automated development methods within the quality and reliability contexts of safety-critical projects.

  1. Test of the Center for Automated Processing of Hardwoods' Auto-Image Detection and Computer-Based Grading and Cutup System

    Treesearch

    Philip A. Araman; Janice K. Wiedenbeck

    1995-01-01

    Automated lumber grading and yield optimization using computer controlled saws will be plausible for hardwoods if and when lumber scanning systems can reliably identify all defects by type. Existing computer programs could then be used to grade the lumber, identify the best cut-up solution, and control the sawing machines. The potential value of a scanning grading...

  2. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.

    PubMed

    Dalmış, Mehmet Ufuk; Litjens, Geert; Holland, Katharina; Setio, Arnaud; Mann, Ritse; Karssemeijer, Nico; Gubern-Mérida, Albert

    2017-02-01

    Automated segmentation of breast and fibroglandular tissue (FGT) is required for various computer-aided applications of breast MRI. Traditional image analysis and computer vision techniques, such atlas, template matching, or, edge and surface detection, have been applied to solve this task. However, applicability of these methods is usually limited by the characteristics of the images used in the study datasets, while breast MRI varies with respect to the different MRI protocols used, in addition to the variability in breast shapes. All this variability, in addition to various MRI artifacts, makes it a challenging task to develop a robust breast and FGT segmentation method using traditional approaches. Therefore, in this study, we investigated the use of a deep-learning approach known as "U-net." We used a dataset of 66 breast MRI's randomly selected from our scientific archive, which includes five different MRI acquisition protocols and breasts from four breast density categories in a balanced distribution. To prepare reference segmentations, we manually segmented breast and FGT for all images using an in-house developed workstation. We experimented with the application of U-net in two different ways for breast and FGT segmentation. In the first method, following the same pipeline used in traditional approaches, we trained two consecutive (2C) U-nets: first for segmenting the breast in the whole MRI volume and the second for segmenting FGT inside the segmented breast. In the second method, we used a single 3-class (3C) U-net, which performs both tasks simultaneously by segmenting the volume into three regions: nonbreast, fat inside the breast, and FGT inside the breast. For comparison, we applied two existing and published methods to our dataset: an atlas-based method and a sheetness-based method. We used Dice Similarity Coefficient (DSC) to measure the performances of the automated methods, with respect to the manual segmentations. Additionally, we computed Pearson's correlation between the breast density values computed based on manual and automated segmentations. The average DSC values for breast segmentation were 0.933, 0.944, 0.863, and 0.848 obtained from 3C U-net, 2C U-nets, atlas-based method, and sheetness-based method, respectively. The average DSC values for FGT segmentation obtained from 3C U-net, 2C U-nets, and atlas-based methods were 0.850, 0.811, and 0.671, respectively. The correlation between breast density values based on 3C U-net and manual segmentations was 0.974. This value was significantly higher than 0.957 as obtained from 2C U-nets (P < 0.0001, Steiger's Z-test with Bonferoni correction) and 0.938 as obtained from atlas-based method (P = 0.0016). In conclusion, we applied a deep-learning method, U-net, for segmenting breast and FGT in MRI in a dataset that includes a variety of MRI protocols and breast densities. Our results showed that U-net-based methods significantly outperformed the existing algorithms and resulted in significantly more accurate breast density computation. © 2016 American Association of Physicists in Medicine.

  3. Multiphasic Health Testing in the Clinic Setting

    PubMed Central

    LaDou, Joseph

    1971-01-01

    The economy of automated multiphasic health testing (amht) activities patterned after the high-volume Kaiser program can be realized in low-volume settings. amht units have been operated at daily volumes of 20 patients in three separate clinical environments. These programs have displayed economics entirely compatible with cost figures published by the established high-volume centers. This experience, plus the expanding capability of small, general purpose, digital computers (minicomputers) indicates that a group of six or more physicians generating 20 laboratory appraisals per day can economically justify a completely automated multiphasic health testing facility. This system would reside in the clinic or hospital where it is used and can be configured to do analyses such as electrocardiography and generate laboratory reports, and communicate with large computer systems in university medical centers. Experience indicates that the most effective means of implementing these benefits of automation is to make them directly available to the medical community with the physician playing the central role. Economic justification of a dedicated computer through low-volume health testing then allows, as a side benefit, automation of administrative as well as other diagnostic activities—for example, patient billing, computer-aided diagnosis, and computer-aided therapeutics. PMID:4935771

  4. Automated method and system for the alignment and correlation of images from two different modalities

    DOEpatents

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  5. A continuous scale-space method for the automated placement of spot heights on maps

    NASA Astrophysics Data System (ADS)

    Rocca, Luigi; Jenny, Bernhard; Puppo, Enrico

    2017-12-01

    Spot heights and soundings explicitly indicate terrain elevation on cartographic maps. Cartographers have developed design principles for the manual selection, placement, labeling, and generalization of spot height locations, but these processes are work-intensive and expensive. Finding an algorithmic criterion that matches the cartographers' judgment in ranking the significance of features on a terrain is a difficult endeavor. This article proposes a method for the automated selection of spot heights locations representing natural features such as peaks, saddles and depressions. A lifespan of critical points in a continuous scale-space model is employed as the main measure of the importance of features, and an algorithm and a data structure for its computation are described. We also introduce a method for the comparison of algorithmically computed spot height locations with manually produced reference compilations. The new method is compared with two known techniques from the literature. Results show spot height locations that are closer to reference spot heights produced manually by swisstopo cartographers, compared to previous techniques. The introduced method can be applied to elevation models for the creation of topographic and bathymetric maps. It also ranks the importance of extracted spot height locations, which allows for a variation in the size of symbols and labels according to the significance of represented features. The importance ranking could also be useful for adjusting spot height density of zoomable maps in real time.

  6. Semi-automated segmentation of a glioblastoma multiforme on brain MR images for radiotherapy planning.

    PubMed

    Hori, Daisuke; Katsuragawa, Shigehiko; Murakami, Ryuuji; Hirai, Toshinori

    2010-04-20

    We propose a computerized method for semi-automated segmentation of the gross tumor volume (GTV) of a glioblastoma multiforme (GBM) on brain MR images for radiotherapy planning (RTP). Three-dimensional (3D) MR images of 28 cases with a GBM were used in this study. First, a sphere volume of interest (VOI) including the GBM was selected by clicking a part of the GBM region in the 3D image. Then, the sphere VOI was transformed to a two-dimensional (2D) image by use of a spiral-scanning technique. We employed active contour models (ACM) to delineate an optimal outline of the GBM in the transformed 2D image. After inverse transform of the optimal outline to the 3D space, a morphological filter was applied to smooth the shape of the 3D segmented region. For evaluation of our computerized method, we compared the computer output with manually segmented regions, which were obtained by a therapeutic radiologist using a manual tracking method. In evaluating our segmentation method, we employed the Jaccard similarity coefficient (JSC) and the true segmentation coefficient (TSC) in volumes between the computer output and the manually segmented region. The mean and standard deviation of JSC and TSC were 74.2+/-9.8% and 84.1+/-7.1%, respectively. Our segmentation method provided a relatively accurate outline for GBM and would be useful for radiotherapy planning.

  7. The application of SSADM to modelling the logical structure of proteins.

    PubMed

    Saldanha, J; Eccles, J

    1991-10-01

    A logical design that describes the overall structure of proteins, together with a more detailed design describing secondary and some supersecondary structures, has been constructed using the computer-aided software engineering (CASE) tool, Auto-mate. Auto-mate embodies the philosophy of the Structured Systems Analysis and Design Method (SSADM) which enables the logical design of computer systems. Our design will facilitate the building of large information systems, such as databases and knowledgebases in the field of protein structure, by the derivation of system requirements from our logical model prior to producing the final physical system. In addition, the study has highlighted the ease of employing SSADM as a formalism in which to conduct the transferral of concepts from an expert into a design for a knowledge-based system that can be implemented on a computer (the knowledge-engineering exercise). It has been demonstrated how SSADM techniques may be extended for the purpose of modelling the constituent Prolog rules. This facilitates the integration of the logical system design model with the derived knowledge-based system.

  8. Making the connection: the VA-Regenstrief project.

    PubMed

    Martin, D K

    1992-01-01

    The Regenstrief Automated Medical Record System is a well-established clinical information system with powerful facilities for querying and decision support. My colleagues and I introduced this system into the Indianapolis Veterans Affairs (VA) Medical Center by interfacing it to the institution's automated data-processing system, the Decentralized Hospital Computer Program (DHCP), using a recently standardized method for clinical data interchange. This article discusses some of the challenges encountered in that process, including the translation of vocabulary terms and maintenance of the software interface. Efforts such as these demonstrate the importance of standardization in medical informatics and the need for data standards at all levels of information exchange.

  9. Automated identification and indexing of dislocations in crystal interfaces

    DOE PAGES

    Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios

    2012-10-31

    Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal andmore » also identifies dislocation junctions.« less

  10. Autonomous entropy-based intelligent experimental design

    NASA Astrophysics Data System (ADS)

    Malakar, Nabin Kumar

    2011-07-01

    The aim of this thesis is to explore the application of probability and information theory in experimental design, and to do so in a way that combines what we know about inference and inquiry in a comprehensive and consistent manner. Present day scientific frontiers involve data collection at an ever-increasing rate. This requires that we find a way to collect the most relevant data in an automated fashion. By following the logic of the scientific method, we couple an inference engine with an inquiry engine to automate the iterative process of scientific learning. The inference engine involves Bayesian machine learning techniques to estimate model parameters based upon both prior information and previously collected data, while the inquiry engine implements data-driven exploration. By choosing an experiment whose distribution of expected results has the maximum entropy, the inquiry engine selects the experiment that maximizes the expected information gain. The coupled inference and inquiry engines constitute an autonomous learning method for scientific exploration. We apply it to a robotic arm to demonstrate the efficacy of the method. Optimizing inquiry involves searching for an experiment that promises, on average, to be maximally informative. If the set of potential experiments is described by many parameters, the search involves a high-dimensional entropy space. In such cases, a brute force search method will be slow and computationally expensive. We develop an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment. This helps to reduce the number of computations necessary to find the optimal experiment. We also extended the method of maximizing entropy, and developed a method of maximizing joint entropy so that it could be used as a principle of collaboration between two robots. This is a major achievement of this thesis, as it allows the information-based collaboration between two robotic units towards a same goal in an automated fashion.

  11. Automated dynamic analytical model improvement for damped structures

    NASA Technical Reports Server (NTRS)

    Fuh, J. S.; Berman, A.

    1985-01-01

    A method is described to improve a linear nonproportionally damped analytical model of a structure. The procedure finds the smallest changes in the analytical model such that the improved model matches the measured modal parameters. Features of the method are: (1) ability to properly treat complex valued modal parameters of a damped system; (2) applicability to realistically large structural models; and (3) computationally efficiency without involving eigensolutions and inversion of a large matrix.

  12. Range and mission scheduling automation using combined AI and operations research techniques

    NASA Technical Reports Server (NTRS)

    Arbabi, Mansur; Pfeifer, Michael

    1987-01-01

    Ground-based systems for Satellite Command, Control, and Communications (C3) operations require a method for planning, scheduling and assigning the range resources such as: antenna systems scattered around the world, communications systems, and personnel. The method must accommodate user priorities, last minute changes, maintenance requirements, and exceptions from nominal requirements. Described are computer programs which solve 24 hour scheduling problems, using heuristic algorithms and a real time interactive scheduling process.

  13. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies.

    PubMed

    Reddy, M Rami; Singh, U C; Erion, Mark D

    2004-05-26

    Free-energy perturbation (FEP) is considered the most accurate computational method for calculating relative solvation and binding free-energy differences. Despite some success in applying FEP methods to both drug design and lead optimization, FEP calculations are rarely used in the pharmaceutical industry. One factor limiting the use of FEP is its low throughput, which is attributed in part to the dependence of conventional methods on the user's ability to develop accurate molecular mechanics (MM) force field parameters for individual drug candidates and the time required to complete the process. In an attempt to find an FEP method that could eventually be automated, we developed a method that uses quantum mechanics (QM) for treating the solute, MM for treating the solute surroundings, and the FEP method for computing free-energy differences. The thread technique was used in all transformations and proved to be essential for the successful completion of the calculations. Relative solvation free energies for 10 structurally diverse molecular pairs were calculated, and the results were in close agreement with both the calculated results generated by conventional FEP methods and the experimentally derived values. While considerably more CPU demanding than conventional FEP methods, this method (QM/MM-based FEP) alleviates the need for development of molecule-specific MM force field parameters and therefore may enable future automation of FEP-based calculations. Moreover, calculation accuracy should be improved over conventional methods, especially for calculations reliant on MM parameters derived in the absence of experimental data.

  14. Real -time dispatching modelling for trucks with different capacities in open pit mines / Modelowanie w czasie rzeczywistym przewozów ciężarówek o różnej ładowności w kopalni odkrywkowej

    NASA Astrophysics Data System (ADS)

    Ahangaran, Daryoush Kaveh; Yasrebi, Amir Bijan; Wetherelt, Andy; Foster, Patrick

    2012-10-01

    Application of fully automated systems for truck dispatching plays a major role in decreasing the transportation costs which often represent the majority of costs spent on open pit mining. Consequently, the application of a truck dispatching system has become fundamentally important in most of the world's open pit mines. Recent experiences indicate that by decreasing a truck's travelling time and the associated waiting time of its associated shovel then due to the application of a truck dispatching system the rate of production will be considerably improved. Computer-based truck dispatching systems using algorithms, advanced and accurate software are examples of these innovations. Developing an algorithm of a computer- based program appropriated to a specific mine's conditions is considered as one of the most important activities in connection with computer-based dispatching in open pit mines. In this paper the changing trend of programming and dispatching control algorithms and automation conditions will be discussed. Furthermore, since the transportation fleet of most mines use trucks with different capacities, innovative methods, operational optimisation techniques and the best possible methods for developing the required algorithm for real-time dispatching are selected by conducting research on mathematical-based planning methods. Finally, a real-time dispatching model compatible with the requirement of trucks with different capacities is developed by using two techniques of flow networks and integer programming.

  15. Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis,Michael J.

    2006-01-01

    Cartesian-mesh methods are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods with an eficient computation of design sensitivities. We address this issue using the adjoint method, where the computational cost of the design sensitivities, or objective function gradients, is esseutially indepeudent of the number of design variables. In previous work, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable approximation of the objective finction gradient. Motivated by the success of mesh-perturbation schemes commonly used in body-fitted unstructured formulations, we propose an approach based on a local linearization of a mesh-perturbation scheme similar to the spring analogy. This approach circumvents most of the difficulties that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides a consistent approximation tot he exact gradient of the discretized abjective function. A detailed gradient accurace study is presented to verify our approach. Thereafter, we focus on a shape optimization problem for an Apollo-like reentry capsule. The optimization seeks to enhance the lift-to-drag ratio of the capsule by modifyjing the shape of its heat-shield in conjunction with a center-of-gravity (c.g.) offset. This multipoint and multi-objective optimization problem is used to demonstrate the overall effectiveness of the Cartesian adjoint method for addressing the issues of complex aerodynamic design. This abstract presents only a brief outline of the numerical method and results; full details will be given in the final paper.

  16. Cockpit Adaptive Automation and Pilot Performance

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja

    2001-01-01

    The introduction of high-level automated systems in the aircraft cockpit has provided several benefits, e.g., new capabilities, enhanced operational efficiency, and reduced crew workload. At the same time, conventional 'static' automation has sometimes degraded human operator monitoring performance, increased workload, and reduced situation awareness. Adaptive automation represents an alternative to static automation. In this approach, task allocation between human operators and computer systems is flexible and context-dependent rather than static. Adaptive automation, or adaptive task allocation, is thought to provide for regulation of operator workload and performance, while preserving the benefits of static automation. In previous research we have reported beneficial effects of adaptive automation on the performance of both pilots and non-pilots of flight-related tasks. For adaptive systems to be viable, however, such benefits need to be examined jointly in the context of a single set of tasks. The studies carried out under this project evaluated a systematic method for combining different forms of adaptive automation. A model for effective combination of different forms of adaptive automation, based on matching adaptation to operator workload was proposed and tested. The model was evaluated in studies using IFR-rated pilots flying a general-aviation simulator. Performance, subjective, and physiological (heart rate variability, eye scan-paths) measures of workload were recorded. The studies compared workload-based adaptation to to non-adaptive control conditions and found evidence for systematic benefits of adaptive automation. The research provides an empirical basis for evaluating the effectiveness of adaptive automation in the cockpit. The results contribute to the development of design principles and guidelines for the implementation of adaptive automation in the cockpit, particularly in general aviation, and in other human-machine systems. Project goals were met or exceeded. The results of the research extended knowledge of automation-related performance decrements in pilots and demonstrated the positive effects of adaptive task allocation. In addition, several practical implications for cockpit automation design were drawn from the research conducted. A total of 12 articles deriving from the project were published.

  17. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume II. Appendices. Final Report.

    ERIC Educational Resources Information Center

    Connelly, E. M.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is described. Ultimately, this approach will allow automatic measurement of pilot performance in a flight simulator or from recorded in-flight data. An efficient method of representing performance data within a computer is…

  18. Using Software Tools to Automate the Assessment of Student Programs.

    ERIC Educational Resources Information Center

    Jackson, David

    1991-01-01

    Argues that advent of computer-aided instruction (CAI) systems for teaching introductory computer programing makes it imperative that software be developed to automate assessment and grading of student programs. Examples of typical student programing problems are given, and application of the Unix tools Lex and Yacc to the automatic assessment of…

  19. In-House Automation of a Small Library Using a Mainframe Computer.

    ERIC Educational Resources Information Center

    Waranius, Frances B.; Tellier, Stephen H.

    1986-01-01

    An automated library routine management system was developed in-house to create system unique to the Library and Information Center, Lunar and Planetary Institute, Houston, Texas. A modular approach was used to allow continuity in operations and services as system was implemented. Acronyms and computer accounts and file names are appended.…

  20. Automated Management Of Documents

    NASA Technical Reports Server (NTRS)

    Boy, Guy

    1995-01-01

    Report presents main technical issues involved in computer-integrated documentation. Problems associated with automation of management and maintenance of documents analyzed from perspectives of artificial intelligence and human factors. Technologies that may prove useful in computer-integrated documentation reviewed: these include conventional approaches to indexing and retrieval of information, use of hypertext, and knowledge-based artificial-intelligence systems.

  1. Automated Analysis of Short Responses in an Interactive Synthetic Tutoring System for Introductory Physics

    ERIC Educational Resources Information Center

    Nakamura, Christopher M.; Murphy, Sytil K.; Christel, Michael G.; Stevens, Scott M.; Zollman, Dean A.

    2016-01-01

    Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part…

  2. Bibliographic Automation of Large Library Operations Using a Time-Sharing System: Phase I. Final Report.

    ERIC Educational Resources Information Center

    Epstein, A. H.; And Others

    The first phase of an ongoing library automation project at Stanford University is described. Project BALLOTS (Bibliographic Automation of Large Library Operations Using a Time-Sharing System) seeks to automate the acquisition and cataloging functions of a large library using an on-line time-sharing computer. The main objectives are to control…

  3. Numerical Simulation of Rolling-Airframes Using a Multi-Level Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A supersonic rolling missile with two synchronous canard control surfaces is analyzed using an automated, inviscid, Cartesian method. Sequential-static and time-dependent dynamic simulations of the complete motion are computed for canard dither schedules for level flight, pitch, and yaw maneuver. The dynamic simulations are compared directly against both high-resolution viscous simulations and relevant experimental data, and are also utilized to compute dynamic stability derivatives. The results show that both the body roll rate and canard dither motion influence the roll-averaged forces and moments on the body. At the relatively, low roll rates analyzed in the current work these dynamic effects are modest, however the dynamic computations are effective in predicting the dynamic stability derivatives which can be significant for highly-maneuverable missiles.

  4. The automation of an inlet mass flow control system

    NASA Technical Reports Server (NTRS)

    Supplee, Frank; Tcheng, Ping; Weisenborn, Michael

    1989-01-01

    The automation of a closed-loop computer controlled system for the inlet mass flow system (IMFS) developed for a wind tunnel facility at Langley Research Center is presented. This new PC based control system is intended to replace the manual control system presently in use in order to fully automate the plug positioning of the IMFS during wind tunnel testing. Provision is also made for communication between the PC and a host-computer in order to allow total animation of the plug positioning and data acquisition during the complete sequence of predetermined plug locations. As extensive running time is programmed for the IMFS, this new automated system will save both manpower and tunnel running time.

  5. Design Guidelines and Criteria for User/Operator Transactions with Battlefield Automated Systems. Volume 2. Technical Discussion

    DTIC Science & Technology

    1981-02-01

    Continue on tevetee «Id* If necemtery mid Identify br black number) Battlefield automated systems Human- computer interaction. Design criteria System...Report (this report) In-Depth Analyses of Individual Systems A. Tactical Fire Direction System (TACFIRE) (RP 81-26) B. Tactical Computer Terminal...select the design features and operating procedures of the human- computer Interface which best match the require- ments and capabilities of anticipated

  6. Mechanical properties of bovine cortical bone based on the automated ball indentation technique and graphics processing method.

    PubMed

    Zhang, Airong; Zhang, Song; Bian, Cuirong

    2018-02-01

    Cortical bone provides the main form of support in humans and other vertebrates against various forces. Thus, capturing its mechanical properties is important. In this study, the mechanical properties of cortical bone were investigated by using automated ball indentation and graphics processing at both the macroscopic and microstructural levels under dry conditions. First, all polished samples were photographed under a metallographic microscope, and the area ratio of the circumferential lamellae and osteons was calculated through the graphics processing method. Second, fully-computer-controlled automated ball indentation (ABI) tests were performed to explore the micro-mechanical properties of the cortical bone at room temperature and a constant indenter speed. The indentation defects were examined with a scanning electron microscope. Finally, the macroscopic mechanical properties of the cortical bone were estimated with the graphics processing method and mixture rule. Combining ABI and graphics processing proved to be an effective tool to obtaining the mechanical properties of the cortical bone, and the indenter size had a significant effect on the measurement. The methods presented in this paper provide an innovative approach to acquiring the macroscopic mechanical properties of cortical bone in a nondestructive manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Prospects for automated diagnosis of verbal autopsies.

    PubMed

    Garenne, Michel

    2014-02-04

    Verbal autopsy is a method for assessing probable causes of death from lay reporting of signs, symptoms and circumstances by family members or caregivers of a deceased person. Several methods of automated diagnoses of causes of death from standardized verbal autopsy questionnaires have been developed recently (Inter-VA, Tariff, Random Forest and King-Lu). Their performances have been assessed in a series of papers in BMC Medicine. Overall, and despite high specificity, the current strategies of automated computer diagnoses lead to relatively low sensitivity and positive predictive values, even for causes which are expected to be easily assessed by interview. Some methods have even abnormally low sensitivity for selected diseases of public health importance and could probably be improved. Ways to improve the current strategies are proposed: more detailed questionnaires; using more information on disease duration; stratifying for large groups of causes of death by age, sex and main category; using clusters of signs and symptoms rather than quantitative scores or ranking; separating indeterminate causes; imputing unknown cause with appropriate methods. Please see related articles: http://www.biomedcentral.com/1741-7015/12/5; http://www.biomedcentral.com/1741-7015/12/19; http://www.biomedcentral.com/1741-7015/12/20; http://www.biomedcentral.com/1741-7015/12/21; http://www.biomedcentral.com/1741-7015/12/22; http://www.biomedcentral.com/1741-7015/12/23.

  8. Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis

    PubMed Central

    Myburgh, Hermanus C.; van Zijl, Willemien H.; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude

    2016-01-01

    Background Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. Methods A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. Findings An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. Interpretation The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~ 64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations. PMID:27077122

  9. Automatic blood vessel based-liver segmentation using the portal phase abdominal CT

    NASA Astrophysics Data System (ADS)

    Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen

    2018-02-01

    Liver segmentation is the basis for computer-based planning of hepatic surgical interventions. In diagnosis and analysis of hepatic diseases and surgery planning, automatic segmentation of liver has high importance. Blood vessel (BV) has showed high performance at liver segmentation. In our previous work, we developed a semi-automatic method that segments the liver through the portal phase abdominal CT images in two stages. First stage was interactive segmentation of abdominal blood vessels (ABVs) and subsequent classification into hepatic (HBVs) and non-hepatic (non-HBVs). This stage had 5 interactions that include selective threshold for bone segmentation, selecting two seed points for kidneys segmentation, selection of inferior vena cava (IVC) entrance for starting ABVs segmentation, identification of the portal vein (PV) entrance to the liver and the IVC-exit for classifying HBVs from other ABVs (non-HBVs). Second stage is automatic segmentation of the liver based on segmented ABVs as described in [4]. For full automation of our method we developed a method [5] that segments ABVs automatically tackling the first three interactions. In this paper, we propose full automation of classifying ABVs into HBVs and non- HBVs and consequently full automation of liver segmentation that we proposed in [4]. Results illustrate that the method is effective at segmentation of the liver through the portal abdominal CT images.

  10. Statistical analysis to assess automated level of suspicion scoring methods in breast ultrasound

    NASA Astrophysics Data System (ADS)

    Galperin, Michael

    2003-05-01

    A well-defined rule-based system has been developed for scoring 0-5 the Level of Suspicion (LOS) based on qualitative lexicon describing the ultrasound appearance of breast lesion. The purposes of the research are to asses and select one of the automated LOS scoring quantitative methods developed during preliminary studies in benign biopsies reduction. The study has used Computer Aided Imaging System (CAIS) to improve the uniformity and accuracy of applying the LOS scheme by automatically detecting, analyzing and comparing breast masses. The overall goal is to reduce biopsies on the masses with lower levels of suspicion, rather that increasing the accuracy of diagnosis of cancers (will require biopsy anyway). On complex cysts and fibroadenoma cases experienced radiologists were up to 50% less certain in true negatives than CAIS. Full correlation analysis was applied to determine which of the proposed LOS quantification methods serves CAIS accuracy the best. This paper presents current results of applying statistical analysis for automated LOS scoring quantification for breast masses with known biopsy results. It was found that First Order Ranking method yielded most the accurate results. The CAIS system (Image Companion, Data Companion software) is developed by Almen Laboratories and was used to achieve the results.

  11. Automated matching of supine and prone colonic polyps based on PCA and SVMs

    NASA Astrophysics Data System (ADS)

    Wang, Shijun; Van Uitert, Robert L.; Summers, Ronald M.

    2008-03-01

    Computed tomographic colonography (CTC) is a feasible and minimally invasive method for the detection of colorectal polyps and cancer screening. In current practice, a patient will be scanned twice during the CTC examination - once supine and once prone. In order to assist the radiologists in evaluating colon polyp candidates in both scans, we expect the computer aided detection (CAD) system can provide not only the locations of suspicious polyps, but also the possible matched pairs of polyps in two scans. In this paper, we propose a new automated matching method based on the extracted features of polyps by using principal component analysis (PCA) and Support Vector Machines (SVMs). Our dataset comes from the 104 CT scans of 52 patients with supine and prone positions collected from three medical centers. From it we constructed two groups of matched polyp candidates according to the size of true polyps: group A contains 12 true polyp pairs (> 9 mm) and 454 false pairs; group B contains 24 true polyp pairs (6-9 mm) and 514 false pairs. By using PCA, we reduced the dimensions of original data (with 157 attributes) to 30 dimensions. We did leave-one-patient-out test on the two groups of data. ROC analysis shows that it is easier to match bigger polyps than that of smaller polyps. On group A data, when false alarm probability is 0.18, the sensitivity of SVM achieves 0.83 which shows that automated matching of polyp candidates is practicable for clinical applications.

  12. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images.

    PubMed

    Shahidi, Shoaleh; Bahrampour, Ehsan; Soltanimehr, Elham; Zamani, Ali; Oshagh, Morteza; Moattari, Marzieh; Mehdizadeh, Alireza

    2014-09-16

    Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods.

  13. Simplified Automated Image Analysis for Detection and Phenotyping of Mycobacterium tuberculosis on Porous Supports by Monitoring Growing Microcolonies

    PubMed Central

    den Hertog, Alice L.; Visser, Dennis W.; Ingham, Colin J.; Fey, Frank H. A. G.; Klatser, Paul R.; Anthony, Richard M.

    2010-01-01

    Background Even with the advent of nucleic acid (NA) amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS), as opposed to traditional culture on solid media or automated liquid culture, has shown potential to both speed up and increase the provision of mycobacterial culture in high burden settings. Methods Here we explore the growth of Mycobacterial tuberculosis microcolonies, imaged by automated digital microscopy, cultured on a porous aluminium oxide (PAO) supports. Repeated imaging during colony growth greatly simplifies “computer vision” and presumptive identification of microcolonies was achieved here using existing publically available algorithms. Our system thus allows the growth of individual microcolonies to be monitored and critically, also to change the media during the growth phase without disrupting the microcolonies. Transfer of identified microcolonies onto selective media allowed us, within 1-2 bacterial generations, to rapidly detect the drug susceptibility of individual microcolonies, eliminating the need for time consuming subculturing or the inoculation of multiple parallel cultures. Significance Monitoring the phenotype of individual microcolonies as they grow has immense potential for research, screening, and ultimately M. tuberculosis diagnostic applications. The method described is particularly appealing with respect to speed and automation. PMID:20544033

  14. The science of visual analysis at extreme scale

    NASA Astrophysics Data System (ADS)

    Nowell, Lucy T.

    2011-01-01

    Driven by market forces and spanning the full spectrum of computational devices, computer architectures are changing in ways that present tremendous opportunities and challenges for data analysis and visual analytic technologies. Leadership-class high performance computing system will have as many as a million cores by 2020 and support 10 billion-way concurrency, while laptop computers are expected to have as many as 1,000 cores by 2015. At the same time, data of all types are increasing exponentially and automated analytic methods are essential for all disciplines. Many existing analytic technologies do not scale to make full use of current platforms and fewer still are likely to scale to the systems that will be operational by the end of this decade. Furthermore, on the new architectures and for data at extreme scales, validating the accuracy and effectiveness of analytic methods, including visual analysis, will be increasingly important.

  15. Automated method to compute Evans index for diagnosis of idiopathic normal pressure hydrocephalus on brain CT images

    NASA Astrophysics Data System (ADS)

    Takahashi, Noriyuki; Kinoshita, Toshibumi; Ohmura, Tomomi; Matsuyama, Eri; Toyoshima, Hideto

    2017-03-01

    The early diagnosis of idiopathic normal pressure hydrocephalus (iNPH) considered as a treatable dementia is important. The iNPH causes enlargement of lateral ventricles (LVs). The degree of the enlargement of the LVs on CT or MR images is evaluated by using a diagnostic imaging criterion, Evans index. Evans index is defined as the ratio of the maximal width of frontal horns (FH) of the LVs to the maximal width of the inner skull (IS). Evans index is the most commonly used parameter for the evaluation of ventricular enlargement. However, manual measurement of Evans index is a time-consuming process. In this study, we present an automated method to compute Evans index on brain CT images. The algorithm of the method consisted of five major steps: standardization of CT data to an atlas, extraction of FH and IS regions, the search for the outmost points of bilateral FH regions, determination of the maximal widths of both the FH and the IS, and calculation of Evans index. The standardization to the atlas was performed by using linear affine transformation and non-linear wrapping techniques. The FH regions were segmented by using a three dimensional region growing technique. This scheme was applied to CT scans from 44 subjects, including 13 iNPH patients. The average difference in Evans index between the proposed method and manual measurement was 0.01 (1.6%), and the correlation coefficient of these data for the Evans index was 0.98. Therefore, this computerized method may have the potential to accurately compute Evans index for the diagnosis of iNPH on CT images.

  16. An automated framework for NMR resonance assignment through simultaneous slice picking and spin system forming.

    PubMed

    Abbas, Ahmed; Guo, Xianrong; Jing, Bing-Yi; Gao, Xin

    2014-06-01

    Despite significant advances in automated nuclear magnetic resonance-based protein structure determination, the high numbers of false positives and false negatives among the peaks selected by fully automated methods remain a problem. These false positives and negatives impair the performance of resonance assignment methods. One of the main reasons for this problem is that the computational research community often considers peak picking and resonance assignment to be two separate problems, whereas spectroscopists use expert knowledge to pick peaks and assign their resonances at the same time. We propose a novel framework that simultaneously conducts slice picking and spin system forming, an essential step in resonance assignment. Our framework then employs a genetic algorithm, directed by both connectivity information and amino acid typing information from the spin systems, to assign the spin systems to residues. The inputs to our framework can be as few as two commonly used spectra, i.e., CBCA(CO)NH and HNCACB. Different from the existing peak picking and resonance assignment methods that treat peaks as the units, our method is based on 'slices', which are one-dimensional vectors in three-dimensional spectra that correspond to certain ([Formula: see text]) values. Experimental results on both benchmark simulated data sets and four real protein data sets demonstrate that our method significantly outperforms the state-of-the-art methods while using a less number of spectra than those methods. Our method is freely available at http://sfb.kaust.edu.sa/Pages/Software.aspx.

  17. Development and testing of an automated computer tablet-based method for self-testing of high and low contrast near visual acuity in ophthalmic patients.

    PubMed

    Aslam, Tariq M; Parry, Neil R A; Murray, Ian J; Salleh, Mahani; Col, Caterina Dal; Mirza, Naznin; Czanner, Gabriela; Tahir, Humza J

    2016-05-01

    Many eye diseases require on-going assessment for optimal management, creating an ever-increasing burden on patients and hospitals that could potentially be reduced through home vision monitoring. However, there is limited evidence for the utility of current applications and devices for this. To address this, we present a new automated, computer tablet-based method for self-testing near visual acuity (VA) for both high and low contrast targets. We report on its reliability and agreement with gold standard measures. The Mobile Assessment of Vision by intERactIve Computer (MAVERIC) system consists of a calibrated computer tablet housed in a bespoke viewing chamber. Purpose-built software automatically elicits touch-screen responses from subjects to measure their near VA for either low or high contrast acuity. Near high contrast acuity was measured using both the MAVERIC system and a near Landolt C chart in one eye for 81 patients and low contrast acuity using the MAVERIC system and a 25 % contrast near EDTRS chart in one eye of a separate 95 patients. The MAVERIC near acuity was also retested after 20 min to evaluate repeatability. Repeatability of both high and low contrast MAVERIC acuity measures, and their agreement with the chart tests, was assessed using the Bland-Altman comparison method. One hundred and seventy-three patients (96 %) completed the self- testing MAVERIC system without formal assistance. The resulting MAVERIC vision demonstrated good repeatability and good agreement with the gold-standard near chart measures. This study demonstrates the potential utility of the MAVERIC system for patients with ophthalmic disease to self-test their high and low contrast VA. The technique has a high degree of reliability and agreement with gold standard chart based measurements.

  18. Analytical Energy Gradients for Excited-State Coupled-Cluster Methods

    NASA Astrophysics Data System (ADS)

    Wladyslawski, Mark; Nooijen, Marcel

    The equation-of-motion coupled-cluster (EOM-CC) and similarity transformed equation-of-motion coupled-cluster (STEOM-CC) methods have been firmly established as accurate and routinely applicable extensions of single-reference coupled-cluster theory to describe electronically excited states. An overview of these methods is provided, with emphasis on the many-body similarity transform concept that is the key to a rationalization of their accuracy. The main topic of the paper is the derivation of analytical energy gradients for such non-variational electronic structure approaches, with an ultimate focus on obtaining their detailed algebraic working equations. A general theoretical framework using Lagrange's method of undetermined multipliers is presented, and the method is applied to formulate the EOM-CC and STEOM-CC gradients in abstract operator terms, following the previous work in [P.G. Szalay, Int. J. Quantum Chem. 55 (1995) 151] and [S.R. Gwaltney, R.J. Bartlett, M. Nooijen, J. Chem. Phys. 111 (1999) 58]. Moreover, the systematics of the Lagrange multiplier approach is suitable for automation by computer, enabling the derivation of the detailed derivative equations through a standardized and direct procedure. To this end, we have developed the SMART (Symbolic Manipulation and Regrouping of Tensors) package of automated symbolic algebra routines, written in the Mathematica programming language. The SMART toolkit provides the means to expand, differentiate, and simplify equations by manipulation of the detailed algebraic tensor expressions directly. The Lagrangian multiplier formulation establishes a uniform strategy to perform the automated derivation in a standardized manner: A Lagrange multiplier functional is constructed from the explicit algebraic equations that define the energy in the electronic method; the energy functional is then made fully variational with respect to all of its parameters, and the symbolic differentiations directly yield the explicit equations for the wavefunction amplitudes, the Lagrange multipliers, and the analytical gradient via the perturbation-independent generalized Hellmann-Feynman effective density matrix. This systematic automated derivation procedure is applied to obtain the detailed gradient equations for the excitation energy (EE-), double ionization potential (DIP-), and double electron affinity (DEA-) similarity transformed equation-of-motion coupled-cluster singles-and-doubles (STEOM-CCSD) methods. In addition, the derivatives of the closed-shell-reference excitation energy (EE-), ionization potential (IP-), and electron affinity (EA-) equation-of-motion coupled-cluster singles-and-doubles (EOM-CCSD) methods are derived. Furthermore, the perturbative EOM-PT and STEOM-PT gradients are obtained. The algebraic derivative expressions for these dozen methods are all derived here uniformly through the automated Lagrange multiplier process and are expressed compactly in a chain-rule/intermediate-density formulation, which facilitates a unified modular implementation of analytic energy gradients for CCSD/PT-based electronic methods. The working equations for these analytical gradients are presented in full detail, and their factorization and implementation into an efficient computer code are discussed.

  19. Atlas-based liver segmentation and hepatic fat-fraction assessment for clinical trials.

    PubMed

    Yan, Zhennan; Zhang, Shaoting; Tan, Chaowei; Qin, Hongxing; Belaroussi, Boubakeur; Yu, Hui Jing; Miller, Colin; Metaxas, Dimitris N

    2015-04-01

    Automated assessment of hepatic fat-fraction is clinically important. A robust and precise segmentation would enable accurate, objective and consistent measurement of hepatic fat-fraction for disease quantification, therapy monitoring and drug development. However, segmenting the liver in clinical trials is a challenging task due to the variability of liver anatomy as well as the diverse sources the images were acquired from. In this paper, we propose an automated and robust framework for liver segmentation and assessment. It uses single statistical atlas registration to initialize a robust deformable model to obtain fine segmentation. Fat-fraction map is computed by using chemical shift based method in the delineated region of liver. This proposed method is validated on 14 abdominal magnetic resonance (MR) volumetric scans. The qualitative and quantitative comparisons show that our proposed method can achieve better segmentation accuracy with less variance comparing with two other atlas-based methods. Experimental results demonstrate the promises of our assessment framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Automated geospatial Web Services composition based on geodata quality requirements

    NASA Astrophysics Data System (ADS)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  1. Depth-time interpolation of feature trends extracted from mobile microelectrode data with kernel functions.

    PubMed

    Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F

    2012-01-01

    Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.

  2. A novel method for automated grid generation of ice shapes for local-flow analysis

    NASA Astrophysics Data System (ADS)

    Ogretim, Egemen; Huebsch, Wade W.

    2004-02-01

    Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading-edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine-cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness.

  3. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    NASA Astrophysics Data System (ADS)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous, similar approaches are: 1) Progressive Automated Invariant Model Generation, 2) Invariant Minimal Complete Description Set for computational efficiency, 3) Arbitrary Model Precision for robust object description and identification.

  4. A little anthropomorphism goes a long way: Effects of oxytocin on trust, compliance and team performance with automated agents

    PubMed Central

    de Visser, Ewart J.; Monfort, Samuel S.; Goodyear, Kimberly; Lu, Li; O’Hara, Martin; Lee, Mary R.; Parasuraman, Raja; Krueger, Frank

    2017-01-01

    Objective We investigated the effects of exogenous oxytocin on trust, compliance, and team decision making with agents varying in anthropomorphism (computer, avatar, human) and reliability (100%, 50%). Background Recent work has explored psychological similarities in how we trust human-like automation compared to how we trust other humans. Exogenous administration of oxytocin, a neuropeptide associated with trust among humans, offers a unique opportunity to probe the anthropomorphism continuum of automation to infer when agents are trusted like another human or merely a machine. Method Eighty-four healthy male participants collaborated with automated agents varying in anthropomorphism that provided recommendations in a pattern recognition task. Results Under placebo, participants exhibited less trust and compliance with automated aids as the anthropomorphism of those aids increased. Under oxytocin, participants interacted with aids on the extremes of the anthropomorphism continuum similarly to placebos, but increased their trust, compliance, and performance with the avatar, an agent on the midpoint of the anthropomorphism continuum. Conclusion This study provided the first evidence that administration of exogenous oxytocin affected trust, compliance, and team decision making with automated agents. These effects provide support for the premise that oxytocin increases affinity for social stimuli in automated aids. Application Designing automation to mimic basic human characteristics is sufficient to elicit behavioral trust outcomes that are driven by neurological processes typically observed in human-human interactions. Designers of automated systems should consider the task, the individual, and the level of anthropomorphism to achieve the desired outcome. PMID:28146673

  5. A new 2D segmentation method based on dynamic programming applied to computer aided detection in mammography.

    PubMed

    Timp, Sheila; Karssemeijer, Nico

    2004-05-01

    Mass segmentation plays a crucial role in computer-aided diagnosis (CAD) systems for classification of suspicious regions as normal, benign, or malignant. In this article we present a robust and automated segmentation technique--based on dynamic programming--to segment mass lesions from surrounding tissue. In addition, we propose an efficient algorithm to guarantee resulting contours to be closed. The segmentation method based on dynamic programming was quantitatively compared with two other automated segmentation methods (region growing and the discrete contour model) on a dataset of 1210 masses. For each mass an overlap criterion was calculated to determine the similarity with manual segmentation. The mean overlap percentage for dynamic programming was 0.69, for the other two methods 0.60 and 0.59, respectively. The difference in overlap percentage was statistically significant. To study the influence of the segmentation method on the performance of a CAD system two additional experiments were carried out. The first experiment studied the detection performance of the CAD system for the different segmentation methods. Free-response receiver operating characteristics analysis showed that the detection performance was nearly identical for the three segmentation methods. In the second experiment the ability of the classifier to discriminate between malignant and benign lesions was studied. For region based evaluation the area Az under the receiver operating characteristics curve was 0.74 for dynamic programming, 0.72 for the discrete contour model, and 0.67 for region growing. The difference in Az values obtained by the dynamic programming method and region growing was statistically significant. The differences between other methods were not significant.

  6. Coronary artery analysis: Computer-assisted selection of best-quality segments in multiple-phase coronary CT angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chuan, E-mail: chuan@umich.edu; Chan, Heang-

    Purpose: The authors are developing an automated method to identify the best-quality coronary arterial segment from multiple-phase coronary CT angiography (cCTA) acquisitions, which may be used by either interpreting physicians or computer-aided detection systems to optimally and efficiently utilize the diagnostic information available in multiple-phase cCTA for the detection of coronary artery disease. Methods: After initialization with a manually identified seed point, each coronary artery tree is automatically extracted from multiple cCTA phases using our multiscale coronary artery response enhancement and 3D rolling balloon region growing vessel segmentation and tracking method. The coronary artery trees from multiple phases are thenmore » aligned by a global registration using an affine transformation with quadratic terms and nonlinear simplex optimization, followed by a local registration using a cubic B-spline method with fast localized optimization. The corresponding coronary arteries among the available phases are identified using a recursive coronary segment matching method. Each of the identified vessel segments is transformed by the curved planar reformation (CPR) method. Four features are extracted from each corresponding segment as quality indicators in the original computed tomography volume and the straightened CPR volume, and each quality indicator is used as a voting classifier for the arterial segment. A weighted voting ensemble (WVE) classifier is designed to combine the votes of the four voting classifiers for each corresponding segment. The segment with the highest WVE vote is then selected as the best-quality segment. In this study, the training and test sets consisted of 6 and 20 cCTA cases, respectively, each with 6 phases, containing a total of 156 cCTA volumes and 312 coronary artery trees. An observer preference study was also conducted with one expert cardiothoracic radiologist and four nonradiologist readers to visually rank vessel segment quality. The performance of our automated method was evaluated by comparing the automatically identified best-quality segments identified by the computer to those selected by the observers. Results: For the 20 test cases, 254 groups of corresponding vessel segments were identified after multiple phase registration and recursive matching. The AI-BQ segments agreed with the radiologist’s top 2 ranked segments in 78.3% of the 254 groups (Cohen’s kappa 0.60), and with the 4 nonradiologist observers in 76.8%, 84.3%, 83.9%, and 85.8% of the 254 groups. In addition, 89.4% of the AI-BQ segments agreed with at least two observers’ top 2 rankings, and 96.5% agreed with at least one observer’s top 2 rankings. In comparison, agreement between the four observers’ top ranked segment and the radiologist’s top 2 ranked segments were 79.9%, 80.7%, 82.3%, and 76.8%, respectively, with kappa values ranging from 0.56 to 0.68. Conclusions: The performance of our automated method for selecting the best-quality coronary segments from a multiple-phase cCTA acquisition was comparable to the selection made by human observers. This study demonstrates the potential usefulness of the automated method in clinical practice, enabling interpreting physicians to fully utilize the best available information in cCTA for diagnosis of coronary disease, without requiring manual search through the multiple phases and minimizing the variability in image phase selection for evaluation of coronary artery segments across the diversity of human readers with variations in expertise.« less

  7. Automated touch sensing in the mouse tapered beam test using Raspberry Pi.

    PubMed

    Ardesch, Dirk Jan; Balbi, Matilde; Murphy, Timothy H

    2017-11-01

    Rodent models of neurological disease such as stroke are often characterized by motor deficits. One of the tests that are used to assess these motor deficits is the tapered beam test, which provides a sensitive measure of bilateral motor function based on foot faults (slips) made by a rodent traversing a gradually narrowing beam. However, manual frame-by-frame scoring of video recordings is necessary to obtain test results, which is time-consuming and prone to human rater bias. We present a cost-effective method for automated touch sensing in the tapered beam test. Capacitive touch sensors detect foot faults onto the beam through a layer of conductive paint, and results are processed and stored on a Raspberry Pi computer. Automated touch sensing using this method achieved high sensitivity (96.2%) as compared to 'gold standard' manual video scoring. Furthermore, it provided a reliable measure of lateralized motor deficits in mice with unilateral photothrombotic stroke: results indicated an increased number of contralesional foot faults for up to 6days after ischemia. The automated adaptation of the tapered beam test produces results immediately after each trial, without the need for labor-intensive post-hoc video scoring. It also increases objectivity of the data as it requires less experimenter involvement during analysis. Automated touch sensing may provide a useful adaptation to the existing tapered beam test in mice, while the simplicity of the hardware lends itself to potential further adaptations to related behavioral tests. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Automation Applications in an Advanced Air Traffic Management System : Volume 5A. DELTA Simulation Model - User's Guide

    DOT National Transportation Integrated Search

    1974-08-01

    Volume 4 describes the automation requirements. A presentation of automation requirements is made for an advanced air traffic management system in terms of controller work for-e, computer resources, controller productivity, system manning, failure ef...

  9. Large-Scale Document Automation: The Systems Integration Issue.

    ERIC Educational Resources Information Center

    Kalthoff, Robert J.

    1985-01-01

    Reviews current technologies for electronic imaging and its recording and transmission, including digital recording, optical data disks, automated image-delivery micrographics, high-density-magnetic recording, and new developments in telecommunications and computers. The role of the document automation systems integrator, who will bring these…

  10. Vessel suppressed chest Computed Tomography for semi-automated volumetric measurements of solid pulmonary nodules.

    PubMed

    Milanese, Gianluca; Eberhard, Matthias; Martini, Katharina; Vittoria De Martini, Ilaria; Frauenfelder, Thomas

    2018-04-01

    To evaluate whether vessel-suppressed computed tomography (VSCT) can be reliably used for semi-automated volumetric measurements of solid pulmonary nodules, as compared to standard CT (SCT) MATERIAL AND METHODS: Ninety-three SCT were elaborated by dedicated software (ClearRead CT, Riverain Technologies, Miamisburg, OH, USA), that allows subtracting vessels from lung parenchyma. Semi-automated volumetric measurements of 65 solid nodules were compared between SCT and VSCT. The measurements were repeated by two readers. For each solid nodule, volume measured on SCT by Reader 1 and Reader 2 was averaged and the average volume between readers acted as standard of reference value. Concordance between measurements was assessed using Lin's Concordance Correlation Coefficient (CCC). Limits of agreement (LoA) between readers and CT datasets were evaluated. Standard of reference nodule volume ranged from 13 to 366 mm 3 . The mean overestimation between readers was 3 mm 3 and 2.9 mm 3 on SCT and VSCT, respectively. Semi-automated volumetric measurements on VSCT showed substantial agreement with the standard of reference (Lin's CCC = 0.990 for Reader 1; 0.985 for Reader 2). The upper and lower LoA between readers' measurements were (16.3, -22.4 mm 3 ) and (15.5, -21.4 mm 3 ) for SCT and VSCT, respectively. VSCT datasets are feasible for the measurements of solid nodules, showing an almost perfect concordance between readers and with measurements on SCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Netwar

    NASA Astrophysics Data System (ADS)

    Keen, Arthur A.

    2006-04-01

    This paper describes technology being developed at 21st Century Technologies to automate Computer Network Operations (CNO). CNO refers to DoD activities related to Attacking and Defending Computer Networks (CNA & CND). Next generation cyber threats are emerging in the form of powerful Internet services and tools that automate intelligence gathering, planning, testing, and surveillance. We will focus on "Search-Engine Hacks", queries that can retrieve lists of router/switch/server passwords, control panels, accessible cameras, software keys, VPN connection files, and vulnerable web applications. Examples include "Titan Rain" attacks against DoD facilities and the Santy worm, which identifies vulnerable sites by searching Google for URLs containing application-specific strings. This trend will result in increasingly sophisticated and automated intelligence-driven cyber attacks coordinated across multiple domains that are difficult to defeat or even understand with current technology. One traditional method of CNO relies on surveillance detection as an attack predictor. Unfortunately, surveillance detection is difficult because attackers can perform search engine-driven surveillance such as with Google Hacks, and avoid touching the target site. Therefore, attack observables represent only about 5% of the attacker's total attack time, and are inadequate to provide warning. In order to predict attacks and defend against them, CNO must also employ more sophisticated techniques and work to understand the attacker's Motives, Means and Opportunities (MMO). CNO must use automated reconnaissance tools, such as Google, to identify information vulnerabilities, and then utilize Internet tools to observe the intelligence gathering, planning, testing, and collaboration activities that represent 95% of the attacker's effort.

  12. Computer-controlled attenuator.

    PubMed

    Mitov, D; Grozev, Z

    1991-01-01

    Various possibilities for applying electronic computer-controlled attenuators for the automation of physiological experiments are considered. A detailed description is given of the design of a 4-channel computer-controlled attenuator, in two of the channels of which the output signal can change by a linear step, in the other two channels--by a logarithmic step. This, together with the existence of additional programmable timers, allows to automate a wide range of studies in different spheres of physiology and psychophysics, including vision and hearing.

  13. Analysis of Delays in Transmitting Time Code Using an Automated Computer Time Distribution System

    DTIC Science & Technology

    1999-12-01

    jlevine@clock. bldrdoc.gov Abstract An automated computer time distribution system broadcasts standard tune to users using computers and modems via...contributed to &lays - sofhareplatform (50% of the delay), transmission speed of time- codes (25OA), telephone network (lS%), modem and others (10’4). The... modems , and telephone lines. Users dial the ACTS server to receive time traceable to the national time scale of Singapore, UTC(PSB). The users can in

  14. Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM

    PubMed Central

    Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D. Joshua

    2011-01-01

    Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi. PMID:21461364

  15. Questioned document workflow for handwriting with automated tools

    NASA Astrophysics Data System (ADS)

    Das, Krishnanand; Srihari, Sargur N.; Srinivasan, Harish

    2012-01-01

    During the last few years many document recognition methods have been developed to determine whether a handwriting specimen can be attributed to a known writer. However, in practice, the work-flow of the document examiner continues to be manual-intensive. Before a systematic or computational, approach can be developed, an articulation of the steps involved in handwriting comparison is needed. We describe the work flow of handwritten questioned document examination, as described in a standards manual, and the steps where existing automation tools can be used. A well-known ransom note case is considered as an example, where one encounters testing for multiple writers of the same document, determining whether the writing is disguised, known writing is formal while questioned writing is informal, etc. The findings for the particular ransom note case using the tools are given. Also observations are made for developing a more fully automated approach to handwriting examination.

  16. A Computational Methodology to Screen Activities of Enzyme Variants

    PubMed Central

    Hediger, Martin R.; De Vico, Luca; Svendsen, Allan; Besenmatter, Werner; Jensen, Jan H.

    2012-01-01

    We present a fast computational method to efficiently screen enzyme activity. In the presented method, the effect of mutations on the barrier height of an enzyme-catalysed reaction can be computed within 24 hours on roughly 10 processors. The methodology is based on the PM6 and MOZYME methods as implemented in MOPAC2009, and is tested on the first step of the amide hydrolysis reaction catalyzed by the Candida Antarctica lipase B (CalB) enzyme. The barrier heights are estimated using adiabatic mapping and shown to give barrier heights to within 3 kcal/mol of B3LYP/6-31G(d)//RHF/3-21G results for a small model system. Relatively strict convergence criteria (0.5 kcal/(molÅ)), long NDDO cutoff distances within the MOZYME method (15 Å) and single point evaluations using conventional PM6 are needed for reliable results. The generation of mutant structures and subsequent setup of the semiempirical calculations are automated so that the effect on barrier heights can be estimated for hundreds of mutants in a matter of weeks using high performance computing. PMID:23284627

  17. Students' Perceived Usefulness of Formative Feedback for a Computer-Adaptive Test

    ERIC Educational Resources Information Center

    Lilley, Mariana; Barker, Trevor

    2007-01-01

    In this paper we report on research related to the provision of automated feedback based on a computer adaptive test (CAT), used in formative assessment. A cohort of 76 second year university undergraduates took part in a formative assessment with a CAT and were provided with automated feedback on their performance. A sample of students responded…

  18. Identifying and locating surface defects in wood: Part of an automated lumber processing system

    Treesearch

    Richard W. Conners; Charles W. McMillin; Kingyao Lin; Ramon E. Vasquez-Espinosa

    1983-01-01

    Continued increases in the cost of materials and labor make it imperative for furniture manufacturers to control costs by improved yield and increased productivity. This paper describes an Automated Lumber Processing System (ALPS) that employs computer tomography, optical scanning technology, the calculation of an optimum cutting strategy, and 1 computer-driven laser...

  19. Automated Estimation Of Software-Development Costs

    NASA Technical Reports Server (NTRS)

    Roush, George B.; Reini, William

    1993-01-01

    COSTMODL is automated software development-estimation tool. Yields significant reduction in risk of cost overruns and failed projects. Accepts description of software product developed and computes estimates of effort required to produce it, calendar schedule required, and distribution of effort and staffing as function of defined set of development life-cycle phases. Written for IBM PC(R)-compatible computers.

  20. Using Adaptive Automation to Increase Operator Performance and Decrease Stress in a Satellite Operations Environment

    ERIC Educational Resources Information Center

    Klein, David C.

    2014-01-01

    As advancements in automation continue to alter the systemic behavior of computer systems in a wide variety of industrial applications, human-machine interactions are increasingly becoming supervisory in nature, with less hands-on human involvement. This maturing of the human role within the human-computer relationship is relegating operations…

  1. Guidelines for Documentation of Computer Programs and Automated Data Systems. (Category: Software; Subcategory: Documentation).

    ERIC Educational Resources Information Center

    Federal Information Processing Standards Publication, 1976

    1976-01-01

    These guidelines provide a basis for determining the content and extent of documentation for computer programs and automated data systems. Content descriptions of ten document types plus examples of how management can determine when to use the various types are included. The documents described are (1) functional requirements documents, (2) data…

  2. Cancer Detection Using Neural Computing Methodology

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Kohen, Hamid S.; Bearman, Gregory H.; Seligson, David B.

    2001-01-01

    This paper describes a novel learning methodology used to analyze bio-materials. The premise of this research is to help pathologists quickly identify anomalous cells in a cost efficient method. Skilled pathologists must methodically, efficiently and carefully analyze manually histopathologic materials for the presence, amount and degree of malignancy and/or other disease states. The prolonged attention required to accomplish this task induces fatigue that may result in a higher rate of diagnostic errors. In addition, automated image analysis systems to date lack a sufficiently intelligent means of identifying even the most general regions of interest in tissue based studies and this shortfall greatly limits their utility. An intelligent data understanding system that could quickly and accurately identify diseased tissues and/or could choose regions of interest would be expected to increase the accuracy of diagnosis and usher in truly automated tissue based image analysis.

  3. ANIE: A mathematical algorithm for automated indexing of planar deformation features in quartz grains

    NASA Astrophysics Data System (ADS)

    Huber, Matthew S.; Ferriãre, Ludovic; Losiak, Anna; Koeberl, Christian

    2011-09-01

    Abstract- Planar deformation features (PDFs) in quartz, one of the most commonly used diagnostic indicators of shock metamorphism, are planes of amorphous material that follow crystallographic orientations, and can thus be distinguished from non-shock-induced fractures in quartz. The process of indexing data for PDFs from universal-stage measurements has traditionally been performed using a manual graphical method, a time-consuming process in which errors can easily be introduced. A mathematical method and computer algorithm, which we call the Automated Numerical Index Executor (ANIE) program for indexing PDFs, was produced, and is presented here. The ANIE program is more accurate and faster than the manual graphical determination of Miller-Bravais indices, as it allows control of the exact error used in the calculation and removal of human error from the process.

  4. Classification of product inspection items using nonlinear features

    NASA Astrophysics Data System (ADS)

    Talukder, Ashit; Casasent, David P.; Lee, H.-W.

    1998-03-01

    Automated processing and classification of real-time x-ray images of randomly oriented touching pistachio nuts is discussed. The ultimate objective is the development of a system for automated non-invasive detection of defective product items on a conveyor belt. This approach involves two main steps: preprocessing and classification. Preprocessing locates individual items and segments ones that touch using a modified watershed algorithm. The second stage involves extraction of features that allow discrimination between damaged and clean items (pistachio nuts). This feature extraction and classification stage is the new aspect of this paper. We use a new nonlinear feature extraction scheme called the maximum representation and discriminating feature (MRDF) extraction method to compute nonlinear features that are used as inputs to a classifier. The MRDF is shown to provide better classification and a better ROC (receiver operating characteristic) curve than other methods.

  5. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation, appendix A

    NASA Technical Reports Server (NTRS)

    Haley, D. C.; Almand, B. J.; Thomas, M. M.; Krauze, L. D.; Gremban, K. D.; Sanborn, J. C.; Kelly, J. H.; Depkovich, T. M.

    1984-01-01

    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed were: (1) Capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) Capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) Postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) Investigation and simulation of various control methods including manual force/torque and active compliance control; (5) Evaluation and implementation of three obstacle avoidance methods; (6) Video simulation and edge detection; and (7) Software simulation validation. This appendix is the user's guide and includes examples of program runs and outputs as well as instructions for program use.

  6. Instrumentation and test methods of an automated radiated susceptibility system

    NASA Astrophysics Data System (ADS)

    Howard, M. W.; Deere, J.

    1983-09-01

    The instrumentation and test methods of an automated electromagnetic compatibility (EMC) system for performing radiated susceptibility tests from 14 kHz to 1000 MHz is described. Particular emphasis is given to the effectiveness of the system in the evaluation of electronic circuits for susceptibility to RF radiation. The system consists of a centralized data acquisition/control unit which interfaces with the equipment under test (EUT), the RF isolated field probes, and RF amplifier ALC output; four broadband linear RF amplifiers; and a frequency synthesizer with drive level increments in steps of 0.1 dB. Centralized control of the susceptibility test system is provided by a desktop computer. It is found that the system can reduce the execution time of RF susceptibility tests by as much as 70 percent. A block diagram of the system is provided.

  7. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms.

    PubMed

    Rashno, Abdolreza; Koozekanani, Dara D; Drayna, Paul M; Nazari, Behzad; Sadri, Saeed; Rabbani, Hossein; Parhi, Keshab K

    2018-05-01

    This paper presents a fully automated algorithm to segment fluid-associated (fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based shortest path method. In neutrosophic domain, an image is transformed into three sets: (true), (indeterminate) that represents noise, and (false). This paper makes four key contributions. First, a new method is introduced to compute the indeterminacy set , and a new -correction operation is introduced to compute the set in neutrosophic domain. Second, a graph shortest-path method is applied in neutrosophic domain to segment the inner limiting membrane and the retinal pigment epithelium as regions of interest (ROI) and outer plexiform layer and inner segment myeloid as middle layers using a novel definition of the edge weights . Third, a new cost function for cluster-based fluid/cyst segmentation in ROI is presented which also includes a novel approach in estimating the number of clusters in an automated manner. Fourth, the final fluid regions are achieved by ignoring very small regions and the regions between middle layers. The proposed method is evaluated using two publicly available datasets: Duke, Optima, and a third local dataset from the UMN clinic which is available online. The proposed algorithm outperforms the previously proposed Duke algorithm by 8% with respect to the dice coefficient and by 5% with respect to precision on the Duke dataset, while achieving about the same sensitivity. Also, the proposed algorithm outperforms a prior method for Optima dataset by 6%, 22%, and 23% with respect to the dice coefficient, sensitivity, and precision, respectively. Finally, the proposed algorithm also achieves sensitivity of 67.3%, 88.8%, and 76.7%, for the Duke, Optima, and the university of minnesota (UMN) datasets, respectively.

  8. Role of Gist and PHOG Features in Computer-Aided Diagnosis of Tuberculosis without Segmentation

    PubMed Central

    Chauhan, Arun; Chauhan, Devesh; Rout, Chittaranjan

    2014-01-01

    Purpose Effective diagnosis of tuberculosis (TB) relies on accurate interpretation of radiological patterns found in a chest radiograph (CXR). Lack of skilled radiologists and other resources, especially in developing countries, hinders its efficient diagnosis. Computer-aided diagnosis (CAD) methods provide second opinion to the radiologists for their findings and thereby assist in better diagnosis of cancer and other diseases including TB. However, existing CAD methods for TB are based on the extraction of textural features from manually or semi-automatically segmented CXRs. These methods are prone to errors and cannot be implemented in X-ray machines for automated classification. Methods Gabor, Gist, histogram of oriented gradients (HOG), and pyramid histogram of oriented gradients (PHOG) features extracted from the whole image can be implemented into existing X-ray machines to discriminate between TB and non-TB CXRs in an automated manner. Localized features were extracted for the above methods using various parameters, such as frequency range, blocks and region of interest. The performance of these features was evaluated against textural features. Two digital CXR image datasets (8-bit DA and 14-bit DB) were used for evaluating the performance of these features. Results Gist (accuracy 94.2% for DA, 86.0% for DB) and PHOG (accuracy 92.3% for DA, 92.0% for DB) features provided better results for both the datasets. These features were implemented to develop a MATLAB toolbox, TB-Xpredict, which is freely available for academic use at http://sourceforge.net/projects/tbxpredict/. This toolbox provides both automated training and prediction modules and does not require expertise in image processing for operation. Conclusion Since the features used in TB-Xpredict do not require segmentation, the toolbox can easily be implemented in X-ray machines. This toolbox can effectively be used for the mass screening of TB in high-burden areas with improved efficiency. PMID:25390291

  9. Job monitoring on DIRAC for Belle II distributed computing

    NASA Astrophysics Data System (ADS)

    Kato, Yuji; Hayasaka, Kiyoshi; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo

    2015-12-01

    We developed a monitoring system for Belle II distributed computing, which consists of active and passive methods. In this paper we describe the passive monitoring system, where information stored in the DIRAC database is processed and visualized. We divide the DIRAC workload management flow into steps and store characteristic variables which indicate issues. These variables are chosen carefully based on our experiences, then visualized. As a result, we are able to effectively detect issues. Finally, we discuss the future development for automating log analysis, notification of issues, and disabling problematic sites.

  10. Automated method for structural segmentation of nasal airways based on cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur

    2017-08-01

    The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.

  11. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandularmore » tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers’ manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose. Conclusions: The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.« less

  12. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.

    2013-12-15

    Purpose: Breast magnetic resonance imaging (MRI) plays an important role in the clinical management of breast cancer. Studies suggest that the relative amount of fibroglandular (i.e., dense) tissue in the breast as quantified in MR images can be predictive of the risk for developing breast cancer, especially for high-risk women. Automated segmentation of the fibroglandular tissue and volumetric density estimation in breast MRI could therefore be useful for breast cancer risk assessment. Methods: In this work the authors develop and validate a fully automated segmentation algorithm, namely, an atlas-aided fuzzy C-means (FCM-Atlas) method, to estimate the volumetric amount of fibroglandularmore » tissue in breast MRI. The FCM-Atlas is a 2D segmentation method working on a slice-by-slice basis. FCM clustering is first applied to the intensity space of each 2D MR slice to produce an initial voxelwise likelihood map of fibroglandular tissue. Then a prior learned fibroglandular tissue likelihood atlas is incorporated to refine the initial FCM likelihood map to achieve enhanced segmentation, from which the absolute volume of the fibroglandular tissue (|FGT|) and the relative amount (i.e., percentage) of the |FGT| relative to the whole breast volume (FGT%) are computed. The authors' method is evaluated by a representative dataset of 60 3D bilateral breast MRI scans (120 breasts) that span the full breast density range of the American College of Radiology Breast Imaging Reporting and Data System. The automated segmentation is compared to manual segmentation obtained by two experienced breast imaging radiologists. Segmentation performance is assessed by linear regression, Pearson's correlation coefficients, Student's pairedt-test, and Dice's similarity coefficients (DSC). Results: The inter-reader correlation is 0.97 for FGT% and 0.95 for |FGT|. When compared to the average of the two readers’ manual segmentation, the proposed FCM-Atlas method achieves a correlation ofr = 0.92 for FGT% and r = 0.93 for |FGT|, and the automated segmentation is not statistically significantly different (p = 0.46 for FGT% and p = 0.55 for |FGT|). The bilateral correlation between left breasts and right breasts for the FGT% is 0.94, 0.92, and 0.95 for reader 1, reader 2, and the FCM-Atlas, respectively; likewise, for the |FGT|, it is 0.92, 0.92, and 0.93, respectively. For the spatial segmentation agreement, the automated algorithm achieves a DSC of 0.69 ± 0.1 when compared to reader 1 and 0.61 ± 0.1 for reader 2, respectively, while the DSC between the two readers’ manual segmentation is 0.67 ± 0.15. Additional robustness analysis shows that the segmentation performance of the authors' method is stable both with respect to selecting different cases and to varying the number of cases needed to construct the prior probability atlas. The authors' results also show that the proposed FCM-Atlas method outperforms the commonly used two-cluster FCM-alone method. The authors' method runs at ∼5 min for each 3D bilateral MR scan (56 slices) for computing the FGT% and |FGT|, compared to ∼55 min needed for manual segmentation for the same purpose. Conclusions: The authors' method achieves robust segmentation and can serve as an efficient tool for processing large clinical datasets for quantifying the fibroglandular tissue content in breast MRI. It holds a great potential to support clinical applications in the future including breast cancer risk assessment.« less

  13. High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.

    PubMed

    Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C

    2007-10-09

    High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.

  14. Evaluation of a deformable registration algorithm for subsequent lung computed tomography imaging during radiochemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stützer, Kristin; Haase, Robert; Exner, Florian

    2016-09-15

    Purpose: Rating both a lung segmentation algorithm and a deformable image registration (DIR) algorithm for subsequent lung computed tomography (CT) images by different evaluation techniques. Furthermore, investigating the relative performance and the correlation of the different evaluation techniques to address their potential value in a clinical setting. Methods: Two to seven subsequent CT images (69 in total) of 15 lung cancer patients were acquired prior, during, and after radiochemotherapy. Automated lung segmentations were compared to manually adapted contours. DIR between the first and all following CT images was performed with a fast algorithm specialized for lung tissue registration, requiring themore » lung segmentation as input. DIR results were evaluated based on landmark distances, lung contour metrics, and vector field inconsistencies in different subvolumes defined by eroding the lung contour. Correlations between the results from the three methods were evaluated. Results: Automated lung contour segmentation was satisfactory in 18 cases (26%), failed in 6 cases (9%), and required manual correction in 45 cases (66%). Initial and corrected contours had large overlap but showed strong local deviations. Landmark-based DIR evaluation revealed high accuracy compared to CT resolution with an average error of 2.9 mm. Contour metrics of deformed contours were largely satisfactory. The median vector length of inconsistency vector fields was 0.9 mm in the lung volume and slightly smaller for the eroded volumes. There was no clear correlation between the three evaluation approaches. Conclusions: Automatic lung segmentation remains challenging but can assist the manual delineation process. Proven by three techniques, the inspected DIR algorithm delivers reliable results for the lung CT data sets acquired at different time points. Clinical application of DIR demands a fast DIR evaluation to identify unacceptable results, for instance, by combining different automated DIR evaluation methods.« less

  15. An automated benchmarking platform for MHC class II binding prediction methods.

    PubMed

    Andreatta, Massimo; Trolle, Thomas; Yan, Zhen; Greenbaum, Jason A; Peters, Bjoern; Nielsen, Morten

    2018-05-01

    Computational methods for the prediction of peptide-MHC binding have become an integral and essential component for candidate selection in experimental T cell epitope discovery studies. The sheer amount of published prediction methods-and often discordant reports on their performance-poses a considerable quandary to the experimentalist who needs to choose the best tool for their research. With the goal to provide an unbiased, transparent evaluation of the state-of-the-art in the field, we created an automated platform to benchmark peptide-MHC class II binding prediction tools. The platform evaluates the absolute and relative predictive performance of all participating tools on data newly entered into the Immune Epitope Database (IEDB) before they are made public, thereby providing a frequent, unbiased assessment of available prediction tools. The benchmark runs on a weekly basis, is fully automated, and displays up-to-date results on a publicly accessible website. The initial benchmark described here included six commonly used prediction servers, but other tools are encouraged to join with a simple sign-up procedure. Performance evaluation on 59 data sets composed of over 10 000 binding affinity measurements suggested that NetMHCIIpan is currently the most accurate tool, followed by NN-align and the IEDB consensus method. Weekly reports on the participating methods can be found online at: http://tools.iedb.org/auto_bench/mhcii/weekly/. mniel@bioinformatics.dtu.dk. Supplementary data are available at Bioinformatics online.

  16. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  17. A Potential Tool for Clinicians; Evaluating a Computer-Led Dietary Assessment Method in Overweight and Obese Women during Weight Loss.

    PubMed

    Widaman, Adrianne M; Keim, Nancy L; Burnett, Dustin J; Miller, Beverly; Witbracht, Megan G; Widaman, Keith F; Laugero, Kevin D

    2017-03-01

    Many Americans are attempting to lose weight with the help of healthcare professionals. Clinicians can improve weight loss results by using technology. Accurate dietary assessment is crucial to effective weight loss. The aim of this study was to validate a computer-led dietary assessment method in overweight/obese women. Known dietary intake was compared to Automated Self-Administered 24-h recall (ASA24) reported intake in women ( n = 45), 19-50 years, with body mass index of 27-39.9 kg/m². Participants received nutrition education and reduced body weight by 4%-10%. Participants completed one unannounced dietary recall and their responses were compared to actual intake. Accuracy of the recall and characteristics of respondent error were measured using linear and logistic regression. Energy was underreported by 5% with no difference for most nutrients except carbohydrates, vitamin B12, vitamin C, selenium, calcium and vitamin D ( p = 0.002, p < 0.0001, p = 0.022, p = 0.010, p = 0.008 and p = 0.001 respectively). Overall, ASA24 is a valid dietary assessment tool in overweight/obese women participating in a weight loss program. The automated features eliminate the need for clinicians to be trained, to administer, or to analyze dietary intake. Computer-led dietary assessment tools should be considered as part of clinician-supervised weight loss programs.

  18. Automating NEURON Simulation Deployment in Cloud Resources.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2017-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.

  19. Automating NEURON Simulation Deployment in Cloud Resources

    PubMed Central

    Santamaria, Fidel

    2016-01-01

    Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341

  20. An Automated High-Throughput Metabolic Stability Assay Using an Integrated High-Resolution Accurate Mass Method and Automated Data Analysis Software.

    PubMed

    Shah, Pranav; Kerns, Edward; Nguyen, Dac-Trung; Obach, R Scott; Wang, Amy Q; Zakharov, Alexey; McKew, John; Simeonov, Anton; Hop, Cornelis E C A; Xu, Xin

    2016-10-01

    Advancement of in silico tools would be enabled by the availability of data for metabolic reaction rates and intrinsic clearance (CLint) of a diverse compound structure data set by specific metabolic enzymes. Our goal is to measure CLint for a large set of compounds with each major human cytochrome P450 (P450) isozyme. To achieve our goal, it is of utmost importance to develop an automated, robust, sensitive, high-throughput metabolic stability assay that can efficiently handle a large volume of compound sets. The substrate depletion method [in vitro half-life (t1/2) method] was chosen to determine CLint The assay (384-well format) consisted of three parts: 1) a robotic system for incubation and sample cleanup; 2) two different integrated, ultraperformance liquid chromatography/mass spectrometry (UPLC/MS) platforms to determine the percent remaining of parent compound, and 3) an automated data analysis system. The CYP3A4 assay was evaluated using two long t1/2 compounds, carbamazepine and antipyrine (t1/2 > 30 minutes); one moderate t1/2 compound, ketoconazole (10 < t1/2 < 30 minutes); and two short t1/2 compounds, loperamide and buspirone (t½ < 10 minutes). Interday and intraday precision and accuracy of the assay were within acceptable range (∼12%) for the linear range observed. Using this assay, CYP3A4 CLint and t1/2 values for more than 3000 compounds were measured. This high-throughput, automated, and robust assay allows for rapid metabolic stability screening of large compound sets and enables advanced computational modeling for individual human P450 isozymes. U.S. Government work not protected by U.S. copyright.

  1. Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys.

    PubMed

    Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E; Blais, Jaime D; Czerwiec, Frank S; Harris, Peter C; King, Bernard F; Torres, Vicente E; Erickson, Bradley J

    2017-08-01

    Deep learning techniques are being rapidly applied to medical imaging tasks-from organ and lesion segmentation to tissue and tumor classification. These techniques are becoming the leading algorithmic approaches to solve inherently difficult image processing tasks. Currently, the most critical requirement for successful implementation lies in the need for relatively large datasets that can be used for training the deep learning networks. Based on our initial studies of MR imaging examinations of the kidneys of patients affected by polycystic kidney disease (PKD), we have generated a unique database of imaging data and corresponding reference standard segmentations of polycystic kidneys. In the study of PKD, segmentation of the kidneys is needed in order to measure total kidney volume (TKV). Automated methods to segment the kidneys and measure TKV are needed to increase measurement throughput and alleviate the inherent variability of human-derived measurements. We hypothesize that deep learning techniques can be leveraged to perform fast, accurate, reproducible, and fully automated segmentation of polycystic kidneys. Here, we describe a fully automated approach for segmenting PKD kidneys within MR images that simulates a multi-observer approach in order to create an accurate and robust method for the task of segmentation and computation of TKV for PKD patients. A total of 2000 cases were used for training and validation, and 400 cases were used for testing. The multi-observer ensemble method had mean ± SD percent volume difference of 0.68 ± 2.2% compared with the reference standard segmentations. The complete framework performs fully automated segmentation at a level comparable with interobserver variability and could be considered as a replacement for the task of segmentation of PKD kidneys by a human.

  2. Fully automated chest wall line segmentation in breast MRI by using context information

    NASA Astrophysics Data System (ADS)

    Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina

    2012-03-01

    Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).

  3. The Computer Aided Aircraft-design Package (CAAP)

    NASA Technical Reports Server (NTRS)

    Yalif, Guy U.

    1994-01-01

    The preliminary design of an aircraft is a complex, labor-intensive, and creative process. Since the 1970's, many computer programs have been written to help automate preliminary airplane design. Time and resource analyses have identified, 'a substantial decrease in project duration with the introduction of an automated design capability'. Proof-of-concept studies have been completed which establish 'a foundation for a computer-based airframe design capability', Unfortunately, today's design codes exist in many different languages on many, often expensive, hardware platforms. Through the use of a module-based system architecture, the Computer aided Aircraft-design Package (CAAP) will eventually bring together many of the most useful features of existing programs. Through the use of an expert system, it will add an additional feature that could be described as indispensable to entry level engineers and students: the incorporation of 'expert' knowledge into the automated design process.

  4. CNN for breaking text-based CAPTCHA with noise

    NASA Astrophysics Data System (ADS)

    Liu, Kaixuan; Zhang, Rong; Qing, Ke

    2017-07-01

    A CAPTCHA ("Completely Automated Public Turing test to tell Computers and Human Apart") system is a program that most humans can pass but current computer programs could hardly pass. As the most common type of CAPTCHAs , text-based CAPTCHA has been widely used in different websites to defense network bots. In order to breaking textbased CAPTCHA, in this paper, two trained CNN models are connected for the segmentation and classification of CAPTCHA images. Then base on these two models, we apply sliding window segmentation and voting classification methods realize an end-to-end CAPTCHA breaking system with high success rate. The experiment results show that our method is robust and effective in breaking text-based CAPTCHA with noise.

  5. Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi

    2013-03-01

    Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.

  6. New method of computing the contributions of graphs without lepton loops to the electron anomalous magnetic moment in QED

    NASA Astrophysics Data System (ADS)

    Volkov, Sergey

    2017-11-01

    This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.

  7. Automated Training Evaluation (ATE). Final Report.

    ERIC Educational Resources Information Center

    Charles, John P.; Johnson, Robert M.

    The automation of weapons system training presents the potential for significant savings in training costs in terms of manpower, time, and money. The demonstration of the technical feasibility of automated training through the application of advanced digital computer techniques and advanced training techniques is essential before the application…

  8. An Adaptive Cross-Architecture Combination Method for Graph Traversal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Song, Shuaiwen; Kerbyson, Darren J.

    2014-06-18

    Breadth-First Search (BFS) is widely used in many real-world applications including computational biology, social networks, and electronic design automation. The combination method, using both top-down and bottom-up techniques, is the most effective BFS approach. However, current combination methods rely on trial-and-error and exhaustive search to locate the optimal switching point, which may cause significant runtime overhead. To solve this problem, we design an adaptive method based on regression analysis to predict an optimal switching point for the combination method at runtime within less than 0.1% of the BFS execution time.

  9. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  10. Fully automated registration of first-pass myocardial perfusion MRI using independent component analysis.

    PubMed

    Milles, J; van der Geest, R J; Jerosch-Herold, M; Reiber, J H C; Lelieveldt, B P F

    2007-01-01

    This paper presents a novel method for registration of cardiac perfusion MRI. The presented method successfully corrects for breathing motion without any manual interaction using Independent Component Analysis to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of ICA, and used to compute the displacement caused by breathing for each frame. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Validation experiments showed a reduction of the average LV motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. We conclude that this fully automatic ICA-based method shows an excellent accuracy, robustness and computation speed, adequate for use in a clinical environment.

  11. Situation awareness and trust in computer-based procedures in nuclear power plant operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Throneburg, E. B.; Jones, J. M.

    2006-07-01

    Situation awareness and trust are two issues that need to be addressed in the design of computer-based procedures for nuclear power plants. Situation awareness, in relation to computer-based procedures, concerns the operators' knowledge of the plant's state while following the procedures. Trust concerns the amount of faith that the operators put into the automated procedures, which can affect situation awareness. This paper first discusses the advantages and disadvantages of computer-based procedures. It then discusses the known aspects of situation awareness and trust as applied to computer-based procedures in nuclear power plants. An outline of a proposed experiment is then presentedmore » that includes methods of measuring situation awareness and trust so that these aspects can be analyzed for further study. (authors)« less

  12. Automated Measurement of Visual Acuity in Pediatric Ophthalmic Patients Using Principles of Game Design and Tablet Computers.

    PubMed

    Aslam, Tariq M; Tahir, Humza J; Parry, Neil R A; Murray, Ian J; Kwak, Kun; Heyes, Richard; Salleh, Mahani M; Czanner, Gabriela; Ashworth, Jane

    2016-10-01

    To report on the utility of a computer tablet-based method for automated testing of visual acuity in children based on the principles of game design. We describe the testing procedure and present repeatability as well as agreement of the score with accepted visual acuity measures. Reliability and validity study. Setting: Manchester Royal Eye Hospital Pediatric Ophthalmology Outpatients Department. Total of 112 sequentially recruited patients. For each patient 1 eye was tested with the Mobile Assessment of Vision by intERactIve Computer for Children (MAVERIC-C) system, consisting of a software application running on a computer tablet, housed in a bespoke viewing chamber. The application elicited touch screen responses using a game design to encourage compliance and automatically acquire visual acuity scores of participating patients. Acuity was then assessed by an examiner with a standard chart-based near ETDRS acuity test before the MAVERIC-C assessment was repeated. Reliability of MAVERIC-C near visual acuity score and agreement of MAVERIC-C score with near ETDRS chart for visual acuity. Altogether, 106 children (95%) completed the MAVERIC-C system without assistance. The vision scores demonstrated satisfactory reliability, with test-retest VA scores having a mean difference of 0.001 (SD ±0.136) and limits of agreement of 2 SD (LOA) of ±0.267. Comparison with the near EDTRS chart showed agreement with a mean difference of -0.0879 (±0.106) with LOA of ±0.208. This study demonstrates promising utility for software using a game design to enable automated testing of acuity in children with ophthalmic disease in an objective and accurate manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report culminates the work accomplished during a three year design project on the automation of an Environmental Control and Life Support System (ECLSS) suitable for space travel and colonization. The system would provide a comfortable living environment in space that is fully functional with limited human supervision. A completely automated ECLSS would increase astronaut productivity while contributing to their safety and comfort. The first section of this report, section 1.0, briefly explains the project, its goals, and the scheduling used by the team in meeting these goals. Section 2.0 presents an in-depth look at each of the component subsystems. Each subsection describes the mathematical modeling and computer simulation used to represent that portion of the system. The individual models have been integrated into a complete computer simulation of the CO2 removal process. In section 3.0, the two simulation control schemes are described. The classical control approach uses traditional methods to control the mechanical equipment. The expert control system uses fuzzy logic and artificial intelligence to control the system. By integrating the two control systems with the mathematical computer simulation, the effectiveness of the two schemes can be compared. The results are then used as proof of concept in considering new control schemes for the entire ECLSS. Section 4.0 covers the results and trends observed when the model was subjected to different test situations. These results provide insight into the operating procedures of the model and the different control schemes. The appendix, section 5.0, contains summaries of lectures presented during the past year, homework assignments, and the completed source code used for the computer simulation and control system.

  14. Estimating Water Levels with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Lucero, E.; Russo, T. A.; Zentner, M.; May, J.; Nguy-Robertson, A. L.

    2016-12-01

    Reservoirs serve multiple functions and are vital for storage, electricity generation, and flood control. For many areas, traditional ground-based reservoir measurements may not be available or data dissemination may be problematic. Consistent monitoring of reservoir levels in data-poor areas can be achieved through remote sensing, providing information to researchers and the international community. Estimates of trends and relative reservoir volume can be used to identify water supply vulnerability, anticipate low power generation, and predict flood risk. Image processing with automated cloud computing provides opportunities to study multiple geographic areas in near real-time. We demonstrate the prediction capability of a cloud environment for identifying water trends at reservoirs in the US, and then apply the method to data-poor areas in North Korea, Iran, Azerbaijan, Zambia, and India. The Google Earth Engine cloud platform hosts remote sensing data and can be used to automate reservoir level estimation with multispectral imagery. We combine automated cloud-based analysis from Landsat image classification to identify reservoir surface area trends and radar altimetry to identify reservoir level trends. The study estimates water level trends using three years of data from four domestic reservoirs to validate the remote sensing method, and five foreign reservoirs to demonstrate the method application. We report correlations between ground-based reservoir level measurements in the US and our remote sensing methods, and correlations between the cloud analysis and altimetry data for reservoirs in data-poor areas. The availability of regular satellite imagery and an automated, near real-time application method provides the necessary datasets for further temporal analysis, reservoir modeling, and flood forecasting. All statements of fact, analysis, or opinion are those of the author and do not reflect the official policy or position of the Department of Defense or any of its components or the U.S. Government

  15. Benefits of a clinical data warehouse with data mining tools to collect data for a radiotherapy trial

    PubMed Central

    Roelofs, Erik; Persoon, Lucas; Nijsten, Sebastiaan; Wiessler, Wolfgang; Dekker, André; Lambin, Philippe

    2016-01-01

    Introduction Collecting trial data in a medical environment is at present mostly performed manually and therefore time-consuming, prone to errors and often incomplete with the complex data considered. Faster and more accurate methods are needed to improve the data quality and to shorten data collection times where information is often scattered over multiple data sources. The purpose of this study is to investigate the possible benefit of modern data warehouse technology in the radiation oncology field. Material and methods In this study, a Computer Aided Theragnostics (CAT) data warehouse combined with automated tools for feature extraction was benchmarked against the regular manual data-collection processes. Two sets of clinical parameters were compiled for non-small cell lung cancer (NSCLC) and rectal cancer, using 27 patients per disease. Data collection times and inconsistencies were compared between the manual and the automated extraction method. Results The average time per case to collect the NSCLC data manually was 10.4 ± 2.1 min and 4.3 ± 1.1 min when using the automated method (p < 0.001). For rectal cancer, these times were 13.5 ± 4.1 and 6.8 ± 2.4 min, respectively (p < 0.001). In 3.2% of the data collected for NSCLC and 5.3% for rectal cancer, there was a discrepancy between the manual and automated method. Conclusions Aggregating multiple data sources in a data warehouse combined with tools for extraction of relevant parameters is beneficial for data collection times and offers the ability to improve data quality. The initial investments in digitizing the data are expected to be compensated due to the flexibility of the data analysis. Furthermore, successive investigations can easily select trial candidates and extract new parameters from the existing databases. PMID:23394741

  16. A self-adapting system for the automated detection of inter-ictal epileptiform discharges.

    PubMed

    Lodder, Shaun S; van Putten, Michel J A M

    2014-01-01

    Scalp EEG remains the standard clinical procedure for the diagnosis of epilepsy. Manual detection of inter-ictal epileptiform discharges (IEDs) is slow and cumbersome, and few automated methods are used to assist in practice. This is mostly due to low sensitivities, high false positive rates, or a lack of trust in the automated method. In this study we aim to find a solution that will make computer assisted detection more efficient than conventional methods, while preserving the detection certainty of a manual search. Our solution consists of two phases. First, a detection phase finds all events similar to epileptiform activity by using a large database of template waveforms. Individual template detections are combined to form "IED nominations", each with a corresponding certainty value based on the reliability of their contributing templates. The second phase uses the ten nominations with highest certainty and presents them to the reviewer one by one for confirmation. Confirmations are used to update certainty values of the remaining nominations, and another iteration is performed where ten nominations with the highest certainty are presented. This continues until the reviewer is satisfied with what has been seen. Reviewer feedback is also used to update template accuracies globally and improve future detections. Using the described method and fifteen evaluation EEGs (241 IEDs), one third of all inter-ictal events were shown after one iteration, half after two iterations, and 74%, 90%, and 95% after 5, 10 and 15 iterations respectively. Reviewing fifteen iterations for the 20-30 min recordings 1 took approximately 5 min. The proposed method shows a practical approach for combining automated detection with visual searching for inter-ictal epileptiform activity. Further evaluation is needed to verify its clinical feasibility and measure the added value it presents.

  17. VID-R and SCAN: Tools and Methods for the Automated Analysis of Visual Records.

    ERIC Educational Resources Information Center

    Ekman, Paul; And Others

    The VID-R (Visual Information Display and Retrieval) system that enables computer-aided analysis of visual records is composed of a film-to-television chain, two videotape recorders with complete remote control of functions, a video-disc recorder, three high-resolution television monitors, a teletype, a PDP-8, a video and audio interface, three…

  18. A Computational Study of Commonsense Science: An Exploration in the Automated Analysis of Clinical Interview Data

    ERIC Educational Resources Information Center

    Sherin, Bruce

    2013-01-01

    A large body of research in the learning sciences has focused on students' commonsense science knowledge--the everyday knowledge of the natural world that is gained outside of formal instruction. Although researchers studying commonsense science have employed a variety of methods, 1-on-1 clinical interviews have played a unique role. The data…

  19. Proof-of-concept automation of propellant processing

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Schallhorn, P. A.

    1989-01-01

    For space-based propellant production, automation of the process is needed. Currently, all phases of terrestrial production have some form of human interaction. A mixer was acquired to help perform the tasks of automation. A heating system to be used with the mixer was designed, built, and installed. Tests performed on the heating system verify design criteria. An IBM PS/2 personal computer was acquired for the future automation work. It is hoped that some the mixing process itself will be automated. This is a concept demonstration task; proving that propellant production can be automated reliably.

  20. A semi-automated region of interest detection method in the scintigraphic glomerular filtration rate determination for patients with abnormal low renal function.

    PubMed

    Tian, Cancan; Zheng, Xiujuan; Han, Yuan; Sun, Xiaoguang; Chen, Kewei; Huang, Qiu

    2013-11-01

    This work presents a novel semi-automated renal region-of-interest (ROI) determination method that is user friendly, time saving, and yet provides a robust glomerular filtration rate (GFR) estimation highly consistent with the reference method. We reviewed data from 57 patients who underwent (99m)Tc-diethylenetriaminepentaacetic acid renal scintigraphy and were diagnosed with abnormal renal function. The renal and background ROIs were delineated by the proposed multi-step, semi-automated method, which integrates temporal/morphologic information via visual inspection and computer-aided calculations. The total GFR was estimated using the proposed method (sGFR) performed by 2 junior clinicians (A and B) with 1 and 3 years of experience, respectively (sGFR_a, sGFR_b), and compared with the reference total GFR (rGFR) estimated by a senior clinician with 20 years of experience who manually delineated the kidney and background ROIs. All GFR calculations herein were conducted using the Gates method. Data from 10 patients with unilateral or non-functioning kidneys were excluded from the analysis. For the remaining patients, sGFR correlated well with rGFR (r(s/rGFR_a) = 0.957, P < 0.001 and r(s/rGFR_b) = 0.951, P < 0.001) and sGFR_a correlated well with sGFR_b (r(a/b) = 0.997, P < 0.001). Moreover, the Bland-Altman plots for sGFR_a and sGFR_b confirm the high reproducibility of the proposed method between different operators. Finally, the proposed procedure is almost 3 times faster than the routinely used procedure in clinical practice. The results suggest that this method is easy to use, highly reproducible, and accurate in measuring the GFR of patients with low renal function. The method is being further extended to a fully automated procedure.

Top