Science.gov

Sample records for automated fuel monitoring

  1. New York City Police Department Automated Fuel Monitoring system. Volume II. Documentation report. Technical report

    SciTech Connect

    McGrath, W.J.; McNamara, M.M.

    1981-11-16

    The New York City Police Department (NYCPD) Automated Fuel Monitoring system is briefly described from the original study, through system design, to implementation. The system provides complete control of fuel usage for an agency with 4,000 motor vehicles and 25,000 vehicle operators. As far as is known, it is the largest system of its kind installed to date. The system can be scaled up or down to meet the needs of other governmental units. Estimated annual cost savings to NYCPD are $2,000,000.

  2. Automated Characterization of Spent Fuel through the Multi-Isotope Process (MIP) Monitor

    SciTech Connect

    Coble, Jamie B.; Orton, Christopher R.; Schwantes, Jon M.

    2012-07-31

    This research developed an algorithm for characterizing spent nuclear fuel (SNF) samples based on simulated gamma spectra. The gamma spectra for a variety of light water reactor fuels typical of those found in the United States were simulated. Fuel nuclide concentrations were simulated in ORIGEN-ARP for 1296 fuel samples with a variety of reactor designs, initial enrichments, burn ups, and cooling times. The results of the ORIGEN-ARP simulation were then input to SYNTH to simulate the gamma spectrum for each sample. These spectra were evaluated with partial least squares (PLS)-based multivariate analysis methods to characterize the fuel according to reactor type (pressurized or boiling water reactor), enrichment, burn up, and cooling time. Characterizing some of the features in series by using previously estimated features in the prediction greatly improves the performance. By first classifying the spent fuel reactor type and then using type-specific models, the prediction error for enrichment, burn up, and cooling time improved by a factor of two to four. For some features, the prediction was further improved by including additional information, such as including the predicted burn up in the estimation of cooling time. The optimal prediction flow was determined based on the simulated data. A PLS discriminate analysis model was developed which perfectly classified SNF reactor type. Burn up was predicted within 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment within approximately 2% RMSPE.

  3. Automated fuel pin loading system

    DOEpatents

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  4. Automated fuel pin loading system

    DOEpatents

    Christiansen, David W.; Brown, William F.; Steffen, Jim M.

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  5. Effects of adaptive task allocation on monitoring of automated systems.

    PubMed

    Parasuraman, R; Mouloua, M; Molloy, R

    1996-12-01

    The effects of adaptive task allocation on monitoring for automation failure during multitask flight simulation were examined. Participants monitored an automated engine status task while simultaneously performing tracking and fuel management tasks over three 30-min sessions. Two methods of adaptive task allocation, both involving temporary return of the automated engine status task to the human operator ("human control"), were examined as a possible countermeasure to monitoring inefficiency. For the model-based adaptive group, the engine status task was allocated to all participants in the middle of the second session for 10 min, following which it was again returned to automation control. The same occurred for the performance-based adaptive group, but only if an individual participant's monitoring performance up to that point did not meet a specified criterion. For the nonadaptive control groups, the engine status task remained automated throughout the experiment. All groups had low probabilities of detection of automation failures for the first 40 min spent with automation. However, following the 10-min intervening period of human control, both adaptive groups detected significantly more automation failures during the subsequent blocks under automation control. The results show that adaptive task allocation can enhance monitoring of automated systems. Both model-based and performance-based allocation improved monitoring of automation. Implications for the design of automated systems are discussed.

  6. Automated Fuel Element Closure Welding System

    SciTech Connect

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

  7. Automated Fuel Element Closure Welding System

    SciTech Connect

    Wahlquist, D.R.

    1993-03-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout.

  8. Programs Automate Complex Operations Monitoring

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Kennedy Space Center, just off the east coast of Florida on Merritt Island, has been the starting place of every human space flight in NASA s history. It is where the first Americans left Earth during Project Mercury, the terrestrial departure point of the lunar-bound Apollo astronauts, as well as the last solid ground many astronauts step foot on before beginning their long stays aboard the International Space Station. It will also be the starting point for future NASA missions to the Moon and Mars and temporary host of the new Ares series rockets designed to take us there. Since the first days of the early NASA missions, in order to keep up with the demands of the intricate and critical Space Program, the launch complex - host to the large Vehicle Assembly Building, two launch pads, and myriad support facilities - has grown increasingly complex to accommodate the sophisticated technologies needed to manage today s space missions. To handle the complicated launch coordination safely, NASA found ways to automate mission-critical applications, resulting in streamlined decision-making. One of these methods, management software called the Control Monitor Unit (CMU), created in conjunction with McDonnell Douglas Space & Defense Systems, has since left NASA, and is finding its way into additional applications.

  9. Automated Cryocooler Monitor and Control System Software

    NASA Technical Reports Server (NTRS)

    Britchcliffe, Michael J.; Conroy, Bruce L.; Anderson, Paul E.; Wilson, Ahmad

    2011-01-01

    This software is used in an automated cryogenic control system developed to monitor and control the operation of small-scale cryocoolers. The system was designed to automate the cryogenically cooled low-noise amplifier system described in "Automated Cryocooler Monitor and Control System" (NPO-47246), NASA Tech Briefs, Vol. 35, No. 5 (May 2011), page 7a. The software contains algorithms necessary to convert non-linear output voltages from the cryogenic diode-type thermometers and vacuum pressure and helium pressure sensors, to temperature and pressure units. The control function algorithms use the monitor data to control the cooler power, vacuum solenoid, vacuum pump, and electrical warm-up heaters. The control algorithms are based on a rule-based system that activates the required device based on the operating mode. The external interface is Web-based. It acts as a Web server, providing pages for monitor, control, and configuration. No client software from the external user is required.

  10. PEM fuel cell monitoring system

    DOEpatents

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  11. Automated iodine monitor system. [for aqueous solutions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.

  12. A MOX fuel attribute monitor

    NASA Astrophysics Data System (ADS)

    Bliss, Mary; Jordan, David V.; Barnett, Debra S.; Redding, Rebecca L.; Pearce, Stephen K.

    2007-08-01

    Euratom performs safeguards monitoring of Fresh MOX fuel for domestic power production in the European Union. Video cameras monitor the reactor storage ponds. If video surveillance is lost for a certain amount of time a measurement is required to verify that no fuel was diverted. The attribute measurement to verify the continued presence of MOX fuel is neutron emission. Ideally this measurement would be made without moving or handling the fuel rod assembly. A prototype attribute measurement system was made using scintillating neutron sensitive glass waveguides developed by Pacific Northwest National Laboratory. Short lengths (5-20 cm) of the neutron sensitive fiber were mechanically spliced to 15 m lengths of commercial high numerical aperture fiber optic cable (Ceramoptec Optran Ultra 0.44). The light detector is a Hamamatsu R7400P photomultiplier tube. An electronics package was built to use the sensors with a GBS Elektronik MCA-166 multichannel analyzer and user interface. The MCA-166 is the system most commonly used by Euratom inspectors. It can also be run from a laptop computer using Maestro (Ortec) or other software. A MCNP model was made to compare to measurements made with several neutron sources including NIST traceable 252Cf.

  13. Monitoring arrangement for vented nuclear fuel elements

    DOEpatents

    Campana, Robert J.

    1981-01-01

    In a nuclear fuel reactor core, fuel elements are arranged in a closely packed hexagonal configuration, each fuel element having diametrically opposed vents permitting 180.degree. rotation of the fuel elements to counteract bowing. A grid plate engages the fuel elements and forms passages for communicating sets of three, four or six individual vents with respective monitor lines in order to communicate vented radioactive gases from the fuel elements to suitable monitor means in a manner readily permitting detection of leakage in individual fuel elements.

  14. Advanced prototype automated iodine monitor system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The technique of detecting and measuring parts-per-million concentrations of aqueous iodine by direct spectrophotometric means is discussed, and development of a prototype Automated Iodine Monitoring/Controller System (AIMS) is elaborated. The present effort is directed primarily toward reducing the power requirement and the weight of the AIMS. Other objectives include determining the maximum concentration of iodine that can be dissolved in an alcohol solution, and in an aqueous potassium iodide solution. Also discussed are the effects of a no flow condition on iodine measurements and the effect of pH on spectrophotometric iodine determinations.

  15. Fuel cell stack monitoring and system control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  16. Fuel Cell Stations Automate Processes, Catalyst Testing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  17. Fuel cell stack monitoring and system control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2005-01-25

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.

  18. Automated Cryocooler Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and

  19. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  20. Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace

    NASA Technical Reports Server (NTRS)

    Coopenbarger, Richard A.

    2010-01-01

    Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.

  1. Automated closure system for nuclear reactor fuel assemblies

    DOEpatents

    Christiansen, David W.; Brown, William F.

    1985-01-01

    A welder for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  2. Automated Monitoring with a BSP Fault-Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L.; Herzog, James P.

    2003-01-01

    The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals.

  3. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  4. Analysis of Trinity Power Metrics for Automated Monitoring

    SciTech Connect

    Michalenko, Ashley Christine

    2016-07-28

    This is a presentation from Los Alamos National Laboraotyr (LANL) about the analysis of trinity power metrics for automated monitoring. The following topics are covered: current monitoring efforts, motivation for analysis, tools used, the methodology, work performed during the summer, and future work planned.

  5. Automated Monitoring of Pipeline Rights-of-Way

    NASA Technical Reports Server (NTRS)

    Frost, Chard Ritchie

    2010-01-01

    NASA Ames Research Center and the Pipeline Research Council International, Inc. have partnered in the formation of a research program to identify and develop the key technologies required to enable automated detection of threats to gas and oil transmission and distribution pipelines. This presentation describes the Right-of-way Automated Monitoring (RAM) program and highlights research successes to date, continuing challenges to implementing the RAM objectives, and the program's ongoing work and plans.

  6. Automated Fuels Treatment Effectiveness Evaluation Using Remote-Sensing Information (AFTEERS)

    NASA Astrophysics Data System (ADS)

    Russell, A.; DeWinter, J. L.; Ekstrand, A. L.; Lorentz, K.; Drury, S.

    2013-12-01

    Recent U.S. Government Accountability Office (GAO) reports have identified a need for land managers to develop measures for evaluating the efficacy of fuels treatments for mitigating fire hazard on federal lands. Methods exist for evaluating fuels treatment effectiveness after wildfires; however, these techniques are time- and labor-intensive. As a result, fire managers have expressed a need for tools they can use to better evaluate the performance of fuels treatments. To address this need, scientists at Sonoma Technology, Inc., have developed a method for rapidly and efficiently assessing wildland fuels treatment effectiveness using satellite observations and associated map products. The Automated Fuels Treatment Effectiveness Evaluation Using Remote-Sensing Information (AFTEERS) project compares the Monitoring Trends in Burn Severity (MTBS) fire severity map products to fuels treatment, fire progression, terrain, and meteorological data sets to elucidate the underlying factors that influence how a fire burns. We used fuels treatment information from the Forest Service Activity Tracking Support System (FACTS) and National Fire Plan Operations and Reporting System (NFPORS) data sets; fire progression information from the Geospatial Multi-Agency Coordination Group (GeoMAC) database and from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Hazard Mapping System (HMS) remote-sensing fire detect products; vegetation type information from the Landscape Fire and Resource Management Planning Tools Project (LANDFIRE) and from the MODIS satellite instrument; and terrain slope, aspect, and elevation from LANDFIRE. We will present the results from several case studies to demonstrate how easy access to these data sets will help land managers assess the performance of individual fuels treatments across landscapes to support decision-making regarding the type and location of future fuels treatments. In the future, we hope to develop a tool that will be incorporated

  7. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis

    SciTech Connect

    Wieselquist, William A.; Thompson, Adam B.; Bowman, Stephen M.; Peterson, Joshua L.

    2016-04-01

    Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process data to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.

  8. Apparatus and method for automated monitoring of airborne bacterial spores

    NASA Technical Reports Server (NTRS)

    Ponce, Adrian (Inventor)

    2009-01-01

    An apparatus and method for automated monitoring of airborne bacterial spores. The apparatus is provided with an air sampler, a surface for capturing airborne spores, a thermal lysis unit to release DPA from bacterial spores, a source of lanthanide ions, and a spectrometer for excitation and detection of the characteristic fluorescence of the aromatic molecules in bacterial spores complexed with lanthanide ions. In accordance with the method: computer-programmed steps allow for automation of the apparatus for the monitoring of airborne bacterial spores.

  9. Applications of AI for automated monitoring - The SHARP system

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; James, Mark L.

    1990-01-01

    This paper describes a software system which utilizes artificial intelligence technology to automate several real-time mission operations functions. The paper gives an overview of Voyager spacecraft telecommunications operations at the Jet Propulsion Laboratory to highlight requirements for operations automation in the area of real-time monitoring and analysis. A knowledge-based system, called the 'Spacecraft Health Automated Reasoning Prototype' (SHARP), was developed to explore methods for automated ground data system health and status analysis. The prototype system was applied to Voyager spacecraft telecommunications operations, and installed in the Voyager real-time telecommunications operations area during the spacecraft's encounter with the planet Neptune. The paper reviews the design of the fault detection and diagnosis portions of SHARP, and discusses the performance of SHARP during the encounter. Two follow-on systems based on SHARP which are now in development are also discussed.

  10. Continuous emission monitoring and accounting automated systems at an HPP

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Ionkin, I. L.; Kondrateva, O. E.; Borovkova, A. M.; Seregin, V. A.; Morozov, I. V.

    2015-03-01

    Environmental and industrial emission monitoring at HPP's is a very urgent task today. Industrial monitoring assumes monitoring of emissions of harmful pollutants and optimization of fuel combustion technological processes at HPP's. Environmental monitoring is a system to assess ambient air quality with respect to a number of separate sources of harmful substances in pollution of atmospheric air of the area. Works on creating an industrial monitoring system are carried out at the National Research University Moscow Power Engineering Institute (MPEI) on the basis of the MPEI combined heat and power plant, and environmental monitoring stations are installed in Lefortovo raion, where the CHPP is located.

  11. 49 CFR 238.445 - Automated monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... end power status; (7) Alerter or deadman control; (8) Horn and bell; (9) Wheel slide; (10) Tilt system... limiting the speed of the train. (c) The monitoring system shall be designed with an automatic...

  12. Automated monitor and control for deep space network subsystems

    NASA Technical Reports Server (NTRS)

    Smyth, P.

    1989-01-01

    The problem of automating monitor and control loops for Deep Space Network (DSN) subsystems is considered and an overview of currently available automation techniques is given. The use of standard numerical models, knowledge-based systems, and neural networks is considered. It is argued that none of these techniques alone possess sufficient generality to deal with the demands imposed by the DSN environment. However, it is shown that schemes that integrate the better aspects of each approach and are referenced to a formal system model show considerable promise, although such an integrated technology is not yet available for implementation. Frequent reference is made to the receiver subsystem since this work was largely motivated by experience in developing an automated monitor and control loop for the advanced receiver.

  13. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    SciTech Connect

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each

  14. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, Mark Alexander

    1999-01-01

    The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.

  15. Pattern recognition monitoring of PEM fuel cell

    DOEpatents

    Meltser, M.A.

    1999-08-31

    The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.

  16. Automated Iodine Monitoring System Development (AIMS). [shuttle prototype

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The operating principle of the automated iodine monitoring/controller system (AIMS) is described along with several design modifications. The iodine addition system is also discussed along with test setups and calibration; a facsimile of the optical/mechanical portion of the iodine monitor was fabricated and tested. The appendices include information on shuttle prototype AIMS, preliminary prime item development specifications, preliminary failure modes and effects analysis, and preliminary operating and maintenance instructions.

  17. Microfabricated fuel heating value monitoring device

    DOEpatents

    Robinson, Alex L.; Manginell, Ronald P.; Moorman, Matthew W.

    2010-05-04

    A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

  18. Science Goal Monitor: Science Goal Driven Automation for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Pell, Melissa; Matusow, David; Bailyn, Charles

    2004-01-01

    Infusion of automation technologies into NASA s future missions will be essential because of the need to: (1) effectively handle an exponentially increasing volume of scientific data, (2) successfully meet dynamic, opportunistic scientific goals and objectives, and (3) substantially reduce mission operations staff and costs. While much effort has gone into automating routine spacecraft operations to reduce human workload and hence costs, applying intelligent automation to the science side, i.e., science data acquisition, data analysis and reactions to that data analysis in a timely and still scientifically valid manner, has been relatively under-emphasized. In order to introduce science driven automation in missions, we must be able to: capture and interpret the science goals of observing programs, represent those goals in machine interpretable language; and allow spacecrafts onboard systems to autonomously react to the scientist's goals. In short, we must teach our platforms to dynamically understand, recognize, and react to the scientists goals. The Science Goal Monitor (SGM) project at NASA Goddard Space Flight Center is a prototype software tool being developed to determine the best strategies for implementing science goal driven automation in missions. The tools being developed in SGM improve the ability to monitor and react to the changing status of scientific events. The SGM system enables scientists to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of science data to identify occurrences of key events previously specified by the scientist. When an event occurs, the system autonomously coordinates the execution of the scientist s desired reactions. Through SGM, we will improve om understanding about the capabilities needed onboard for success, develop metrics to understand the potential increase in science returns, and develop an operational prototype so that the perceived risks associated

  19. Automated biowaste sampling system feces monitoring system

    NASA Technical Reports Server (NTRS)

    Hunt, S. R.; Glanfield, E. J.

    1979-01-01

    The Feces Monitoring System (FMS) Program designed, fabricated, assembled and tested an engineering model waste collector system (WCS) to be used in support of life science and medical experiments related to Shuttle missions. The FMS design was patterned closely after the Shuttle WCS, including: interface provisions; mounting; configuration; and operating procedures. These similarities make it possible to eventually substitute an FMS for the Shuttle WCS of Orbiter. In addition, several advanced waste collection features, including the capability of real-time inertial fecal separation and fecal mass measurement and sampling were incorporated into the FMS design.

  20. SHARP: Automated monitoring of spacecraft health and status

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  1. Automated monitoring to reduce electron microscope downtime.

    PubMed

    Brunner, Matthias J; Resch, Guenter P

    2009-10-01

    High-end transmission electron microscopes are complex and sensitive instruments. Failure of one of the external supplies, malfunction of the microscope hardware or maloperation are typical reasons for subsystems to fail. Especially if undiscovered for a longer period of time, this can cause unnecessary downtime, compromising user access and increasing operating costs. Utilizing the software introduced in this article ("MoniTEM"), we have succeeded to reduce downtime of an FEI Tecnai Polara by coupling constant monitoring of critical subsystems with automatic, remote feedback to the system supervisor, ensuring immediate problem solving. The software described here is freely available from http://www.imba.oeaw.ac.at/monitem/ and can be readily adapted for use with other FEI transmission electron microscopes.

  2. Coupon Surveillance For Corrosion Monitoring In Nuclear Fuel Basin

    SciTech Connect

    Mickalonis, J. I.; Murphy, T. R.; Deible, R.

    2012-10-01

    Aluminum and stainless steel coupons were put into a nuclear fuel basin to monitor the effect of water chemistry on the corrosion of fuel cladding. These coupons have been monitored for over ten years. The corrosion and pitting data is being used to model the kinetics and estimate the damage that is occurring to the fuel cladding.

  3. Developing and applying modern methods of leakage monitoring and state estimation of fuel at the Novovoronezh nuclear power plant

    NASA Astrophysics Data System (ADS)

    Povarov, V. P.; Tereshchenko, A. B.; Kravchenko, Yu. N.; Pozychanyuk, I. V.; Gorobtsov, L. I.; Golubev, E. I.; Bykov, V. I.; Likhanskii, V. V.; Evdokimov, I. A.; Zborovskii, V. G.; Sorokin, A. A.; Kanyukova, V. D.; Aliev, T. N.

    2014-02-01

    The results of developing and implementing the modernized fuel leakage monitoring methods at the shut-down and running reactor of the Novovoronezh nuclear power plant (NPP) are presented. An automated computerized expert system integrated with an in-core monitoring system (ICMS) and installed at the Novovoronezh NPP unit no. 5 is described. If leaky fuel elements appear in the core, the system allows one to perform on-line assessment of the parameters of leaky fuel assemblies (FAs). The computer expert system units designed for optimizing the operating regimes and enhancing the fuel usage efficiency at the Novovoronezh NPP unit no. 5 are now being developed.

  4. Real-time bioacoustics monitoring and automated species identification

    PubMed Central

    Corrada-Bravo, Carlos; Campos-Cerqueira, Marconi; Milan, Carlos; Vega, Giovany; Alvarez, Rafael

    2013-01-01

    Traditionally, animal species diversity and abundance is assessed using a variety of methods that are generally costly, limited in space and time, and most importantly, they rarely include a permanent record. Given the urgency of climate change and the loss of habitat, it is vital that we use new technologies to improve and expand global biodiversity monitoring to thousands of sites around the world. In this article, we describe the acoustical component of the Automated Remote Biodiversity Monitoring Network (ARBIMON), a novel combination of hardware and software for automating data acquisition, data management, and species identification based on audio recordings. The major components of the cyberinfrastructure include: a solar powered remote monitoring station that sends 1-min recordings every 10 min to a base station, which relays the recordings in real-time to the project server, where the recordings are processed and uploaded to the project website (arbimon.net). Along with a module for viewing, listening, and annotating recordings, the website includes a species identification interface to help users create machine learning algorithms to automate species identification. To demonstrate the system we present data on the vocal activity patterns of birds, frogs, insects, and mammals from Puerto Rico and Costa Rica. PMID:23882441

  5. Fuel Cell/Electrochemical Cell Voltage Monitor

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  6. Science Goal Monitor: science goal driven automation for NASA missions

    NASA Astrophysics Data System (ADS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Pell, Melissa; Matusow, David; Bailyn, Charles

    2004-09-01

    Infusion of automation technologies into NASA's future missions will be essential because of the need to: (1) effectively handle an exponentially increasing volume of scientific data, (2) successfully meet dynamic, opportunistic scientific goals and objectives, and (3) substantially reduce mission operations staff and costs. While much effort has gone into automating routine spacecraft operations to reduce human workload and hence costs, applying intelligent automation to the science side, i.e., science data acquisition, data analysis and reactions to that data analysis in a timely and still scientifically valid manner, has been relatively under-emphasized. In order to introduce science driven automation in missions, we must be able to: capture and interpret the science goals of observing programs, represent those goals in machine interpretable language; and allow spacecrafts' onboard systems to autonomously react to the scientist's goals. In short, we must teach our platforms to dynamically understand, recognize, and react to the scientists' goals. The Science Goal Monitor (SGM) project at NASA Goddard Space Flight Center is a prototype software tool being developed to determine the best strategies for implementing science goal driven automation in missions. The tools being developed in SGM improve the ability to monitor and react to the changing status of scientific events. The SGM system enables scientists to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of science data to identify occurrences of key events previously specified by the scientist. When an event occurs, the system autonomously coordinates the execution of the scientist's desired reactions. Through SGM, we will improve our understanding about the capabilities needed onboard for success, develop metrics to understand the potential increase in science returns, and develop an "operational" prototype so that the perceived risks

  7. Automated ingestion detection for a health monitoring system.

    PubMed

    Walker, William P; Bhatia, Dinesh K

    2014-03-01

    Obesity is a global epidemic that imposes a financial burden and increased risk for a myriad of chronic diseases. Presented here is an overview of a prototype automated ingestion detection (AID) process implemented in a health monitoring system (HMS). The automated detection of ingestion supports personal record keeping which is essential during obesity management. Personal record keeping allows the care provider to monitor the therapeutic progress of a patient. The AID-HMS determines the levels of ingestion activity from sounds captured by an external throat microphone. Features are extracted from the sound recording and presented to machine learning classifiers, where a simple voting procedure is employed to determine instances of ingestion. Using a dataset acquired from seven individuals consisting of consumption of liquid and solid, speech, and miscellaneous sounds, > 94% of ingestion sounds are correctly identified with false positive rates around 9% based on 10-fold cross validation. The detected levels of ingestion activity are transmitted and stored on a remote web server, where information is displayed through a web application operating in a web browser. This information allows remote users (health provider) determine meal lengths and levels of ingestion activity during the meal. The AID-HMS also provides a basis for automated reinforcement for the patient.

  8. Automated workflow for large-scale selected reaction monitoring experiments.

    PubMed

    Malmström, Lars; Malmström, Johan; Selevsek, Nathalie; Rosenberger, George; Aebersold, Ruedi

    2012-03-02

    Targeted proteomics allows researchers to study proteins of interest without being drowned in data from other, less interesting proteins or from redundant or uninformative peptides. While the technique is mostly used for smaller, focused studies, there are several reasons to conduct larger targeted experiments. Automated, highly robust software becomes more important in such experiments. In addition, larger experiments are carried out over longer periods of time, requiring strategies to handle the sometimes large shift in retention time often observed. We present a complete proof-of-principle software stack that automates most aspects of selected reaction monitoring workflows, a targeted proteomics technology. The software allows experiments to be easily designed and carried out. The steps automated are the generation of assays, generation of mass spectrometry driver files and methods files, and the import and analysis of the data. All data are normalized to a common retention time scale, the data are then scored using a novel score model, and the error is subsequently estimated. We also show that selected reaction monitoring can be used for label-free quantification. All data generated are stored in a relational database, and the growing resource further facilitates the design of new experiments. We apply the technology to a large-scale experiment studying how Streptococcus pyogenes remodels its proteome under stimulation of human plasma.

  9. APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report

    SciTech Connect

    James Francfort; Dimitri Hochard

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the

  10. Brainstem Monitoring in the Neurocritical Care Unit: A Rationale for Real-Time, Automated Neurophysiological Monitoring.

    PubMed

    Stone, James L; Bailes, Julian E; Hassan, Ahmed N; Sindelar, Brian; Patel, Vimal; Fino, John

    2017-02-01

    Patients with severe traumatic brain injury or large intracranial space-occupying lesions (spontaneous cerebral hemorrhage, infarction, or tumor) commonly present to the neurocritical care unit with an altered mental status. Many experience progressive stupor and coma from mass effects and transtentorial brain herniation compromising the ascending arousal (reticular activating) system. Yet, little progress has been made in the practicality of bedside, noninvasive, real-time, automated, neurophysiological brainstem, or cerebral hemispheric monitoring. In this critical review, we discuss the ascending arousal system, brain herniation, and shortcomings of our current management including the neurological exam, intracranial pressure monitoring, and neuroimaging. We present a rationale for the development of nurse-friendly-continuous, automated, and alarmed-evoked potential monitoring, based upon the clinical and experimental literature, advances in the prognostication of cerebral anoxia, and intraoperative neurophysiological monitoring.

  11. Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles

    SciTech Connect

    Stephens, T. S.; Gonder, Jeff; Chen, Yuche; Lin, Z.; Liu, C.; Gohlke, D.

    2016-11-01

    This report details a study of the potential effects of connected and automated vehicle (CAV) technologies on vehicle miles traveled (VMT), vehicle fuel efficiency, and consumer costs. Related analyses focused on a range of light-duty CAV technologies in conventional powertrain vehicles -- from partial automation to full automation, with and without ridesharing -- compared to today's base-case scenario. Analysis results revealed widely disparate upper- and lower-bound estimates for fuel use and VMT, ranging from a tripling of fuel use to decreasing light-duty fuel use to below 40% of today's level. This wide range reflects uncertainties in the ways that CAV technologies can influence vehicle efficiency and use through changes in vehicle designs, driving habits, and travel behavior. The report further identifies the most significant potential impacting factors, the largest areas of uncertainty, and where further research is particularly needed.

  12. Automated Monitoring System for Waste Disposal Sites and Groundwater

    SciTech Connect

    S. E. Rawlinson

    2003-03-01

    A proposal submitted to the U.S. Department of Energy (DOE), Office of Science and Technology, Accelerated Site Technology Deployment (ASTD) program to deploy an automated monitoring system for waste disposal sites and groundwater, herein referred to as the ''Automated Monitoring System,'' was funded in fiscal year (FY) 2002. This two-year project included three parts: (1) deployment of cellular telephone modems on existing dataloggers, (2) development of a data management system, and (3) development of Internet accessibility. The proposed concept was initially (in FY 2002) to deploy cellular telephone modems on existing dataloggers and partially develop the data management system at the Nevada Test Site (NTS). This initial effort included both Bechtel Nevada (BN) and the Desert Research Institute (DRI). The following year (FY 2003), cellular modems were to be similarly deployed at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL), and the early data management system developed at the NTS was to be brought to those locations for site-specific development and use. Also in FY 2003, additional site-specific development of the complete system was to be conducted at the NTS. To complete the project, certain data, depending on site-specific conditions or restrictions involving distribution of data, were to made available through the Internet via the DRI/Western Region Climate Center (WRCC) WEABASE platform. If the complete project had been implemented, the system schematic would have looked like the figure on the following page.

  13. Tools for automated acoustic monitoring within the R package monitoR

    USGS Publications Warehouse

    Katz, Jonathan; Hafner, Sasha D.; Donovan, Therese

    2016-01-01

    The R package monitoR contains tools for managing an acoustic-monitoring program including survey metadata, template creation and manipulation, automated detection and results management. These tools are scalable for use with small projects as well as larger long-term projects and those with expansive spatial extents. Here, we describe typical workflow when using the tools in monitoR. Typical workflow utilizes a generic sequence of functions, with the option for either binary point matching or spectrogram cross-correlation detectors.

  14. An automated platform for phytoplankton ecology and aquatic ecosystem monitoring.

    PubMed

    Pomati, Francesco; Jokela, Jukka; Simona, Marco; Veronesi, Mauro; Ibelings, Bas W

    2011-11-15

    High quality monitoring data are vital for tracking and understanding the causes of ecosystem change. We present a potentially powerful approach for phytoplankton and aquatic ecosystem monitoring, based on integration of scanning flow-cytometry for the characterization and counting of algal cells with multiparametric vertical water profiling. This approach affords high-frequency data on phytoplankton abundance, functional traits and diversity, coupled with the characterization of environmental conditions for growth over the vertical structure of a deep water body. Data from a pilot study revealed effects of an environmental disturbance event on the phytoplankton community in Lake Lugano (Switzerland), characterized by a reduction in cytometry-based functional diversity and by a period of cyanobacterial dominance. These changes were missed by traditional limnological methods, employed in parallel to high-frequency monitoring. Modeling of phytoplankton functional diversity revealed the importance of integrated spatiotemporal data, including circadian time-lags and variability over the water column, to understand the drivers of diversity and dynamic processes. The approach described represents progress toward an automated and trait-based analysis of phytoplankton natural communities. Streamlining of high-frequency measurements may represent a resource for understanding, modeling and managing aquatic ecosystems under impact of environmental change, yielding insight into processes governing phytoplankton community resistance and resilience.

  15. The Automated Instrumentation and Monitoring System (AIMS) reference manual

    NASA Technical Reports Server (NTRS)

    Yan, Jerry; Hontalas, Philip; Listgarten, Sherry

    1993-01-01

    Whether a researcher is designing the 'next parallel programming paradigm,' another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software architects to uncover system behavior and to take advantage of specific application characteristics and hardware features. A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code instrumentor which automatically inserts active event recorders into the program's source code before compilation; a run time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which reconstructs program execution from the trace file; and a trace post-processor which compensate for data collection overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware test beds to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs written for Intel's NX operating system on the iPSC family of multi computers. A run-time performance-monitoring library for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC's CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI) supporting X-Windows (in particular, Xl IR5, Motif 1.1.3).

  16. Solving transportation problems; Automated monitoring system provides valuable information

    SciTech Connect

    Dillavou, J. )

    1989-07-01

    Montana-Dakota Utilities Co. is a public utility with electric and natural gas distribution systems. Its natural gas distribution operation serves more than 175,000 customers in a 168,000-sq-mile service area. Serving such a large geographical area with the required daily nomination and usage reporting conditions of the transportation contracts posed many potential problems from an operation point of view. MDU solved these problems by implementing a fully automated system. The Metretek data collection system is described in this paper. It provides MDU with the volume information required to balance and bill the transportation accounts as well as monitor end-use transportation customer requirements on a timely basis.

  17. Automated monitoring and quantitative analysis of feeding behaviour in Drosophila

    PubMed Central

    Itskov, Pavel M.; Moreira, José-Maria; Vinnik, Ekaterina; Lopes, Gonçalo; Safarik, Steve; Dickinson, Michael H.; Ribeiro, Carlos

    2014-01-01

    Food ingestion is one of the defining behaviours of all animals, but its quantification and analysis remain challenging. This is especially the case for feeding behaviour in small, genetically tractable animals such as Drosophila melanogaster. Here, we present a method based on capacitive measurements, which allows the detailed, automated and high-throughput quantification of feeding behaviour. Using this method, we were able to measure the volume ingested in single sips of an individual, and monitor the absorption of food with high temporal resolution. We demonstrate that flies ingest food by rhythmically extending their proboscis with a frequency that is not modulated by the internal state of the animal. Instead, hunger and satiety homeostatically modulate the microstructure of feeding. These results highlight similarities of food intake regulation between insects, rodents, and humans, pointing to a common strategy in how the nervous systems of different animals control food intake. PMID:25087594

  18. Automated extinction monitor for the NLOT site survey

    NASA Astrophysics Data System (ADS)

    Kumar Sharma, Tarun

    In order to search a few potential sites for the National Large Optical Telescope (NLOT) project, we have initiated a site survey program. Since, most of instruments used for the site survey are custom made, we also started developing our own site characterization instruments. In this process we have designed and developed a device called Automated Extinction Monitor (AEM) and installed the same at IAO, Hanle. The AEM is a small wide field robotic telescope, dedicated to record atmospheric extinction in one or more photometric bands. It gives very accurate statistics of the distribution of photometric nights. In addition to this, instrument also provides the measurement of sky brightness. Here we briefly describe overall instrument and initial results obtained.

  19. Method and apparatus for the automated testing of vehicle fuel evaporation control systems

    SciTech Connect

    Rogers, J.N.; Timmerman, G.

    1993-08-31

    Apparatus is described for testing a vehicle fuel evaporation control system comprising a fuel tank, a fuel vapor collection canister and a canister purge control valve, the apparatus comprising an inert gas source, means for connecting said source to the automobile fuel evaporation control system under test, means for monitoring the flow of said inert gas into said fuel evaporation control system, means for determining the integrity of said canister by detection of the outflow of said inert gas from said canister, and monitoring means connected to the exhaust pipe of the automobile to determine the presence of said inert gas in the engine exhaust.

  20. Automated brush plating process for solid oxide fuel cells

    DOEpatents

    Long, Jeffrey William

    2003-01-01

    A method of depositing a metal coating (28) on the interconnect (26) of a tubular, hollow fuel cell (10) contains the steps of providing the fuel cell (10) having an exposed interconnect surface (26); contacting the inside of the fuel cell (10) with a cathode (45) without use of any liquid materials; passing electrical current through a contacting applicator (46) which contains a metal electrolyte solution; passing the current from the applicator (46) to the cathode (45) and contacting the interconnect (26) with the applicator (46) and coating all of the exposed interconnect surface.

  1. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    SciTech Connect

    Collette, R.; King, J.; Buesch, C.; Keiser, Jr., D. D.; Williams, W.; Miller, B. D.; Schulthess, J.

    2016-04-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends when comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.

  2. Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing

    DOE PAGES

    Collette, R.; King, J.; Buesch, C.; ...

    2016-04-01

    The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less

  3. AUTOMATED RADIOLOGICAL MONITORING AT A RUSSIAN MINISTRY OF DEFENSE NAVAL SITE.

    SciTech Connect

    MOSKOWITZ,P.D.; POMERVILLE,J.; GAVRILOV,S.; KISSELEV,V.; DANIYLAN,V.; BELIKOV,A.; EGORKIN,A.; SOKOLOVSKI,Y.; ENDREGARD,M.; KROSSHAVN,M.; SUNDLING,C.V.; YOKSTAD,H.

    2001-02-25

    The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between the military establishments of the Kingdom of Norway, the Russian Federation, and the US. This paper discusses joint activities conducted over the past year among Norwegian, Russian, and US technical experts on a project to develop, demonstrate and implement automated radiological monitoring at Russian Navy facilities engaged in the dismantlement of nuclear-powered strategic ballistic missile launching submarines. Radiological monitoring is needed at these facilities to help protect workers engaged in the dismantlement program and the public living within the footprint of routine and accidental radiation exposure areas. By providing remote stand-alone monitoring, the Russian Navy will achieve added protection due to the defense-in-depth strategy afforded by local (at the site), regional (Kola) and national-level (Moscow) oversight. The system being implemented at the Polyaminsky Russian Naval Shipyard was developed from a working model tested at the Russian Institute for Nuclear Safety, Moscow, Russia. It includes Russian manufactured terrestrial and underwater gamma detectors, smart controllers for graded sampling, radio-modems for offsite transmission of the data, and a data fusion/display system: The data fusion/display system is derived from the Norwegian Picasso AMEC Environmental Monitoring software package. This computer package allows monitoring personnel to review the real-time and historical status of monitoring at specific sites and objects and to establish new monitoring protocols as required, for example, in an off-normal accident situation. Plans are being developed to implement the use of this system at most RF Naval sites handling spent nuclear fuel.

  4. AUTOMATED RADIOLOGICAL MONITORING AT A RUSSIAN MINISTRY OF DEFENCE NAVAL SITE.

    SciTech Connect

    MOSKOWITZ,P.D.; POMERVILLE,J.; GAVRILOV,S.; KISSELEV,V.; DANIYLAN,V.; BELIKOV,A.; EGORKIN,A.; SOKOLOVSKI,Y.; ENDREGARD,M.; KROSSHAVN,M.; SUNDLING,C.V.; YOKSTAD,H.

    2001-02-25

    The Arctic Military Environmental Cooperation (AMEC) Program is a cooperative effort between the military establishments of the Kingdom of Norway, the Russian Federation, and the US. This paper discusses joint activities conducted over the past year among Norwegian, Russian, and US technical experts on a project to develop, demonstrate and implement automated radiological monitoring at Russian Navy facilities engaged in the dismantlement of nuclear-powered strategic ballistic missile launching submarines. Radiological monitoring is needed at these facilities to help protect workers engaged in the dismantlement program and the public living within the footprint of routine and accidental radiation exposure areas. By providing remote stand-alone monitoring, the Russian Navy will achieve added protection due to the defense-in-depth strategy afforded by local (at the site), regional (Kola) and national-level (Moscow) oversight. The system being implemented at the Polyaminsky Russian Naval Shipyard was developed from a working model tested at the Russian Institute for Nuclear Safety, Moscow, Russia. It includes Russian manufactured terrestrial and underwater gamma detectors, smart controllers for graded sampling, radio-modems for offsite transmission of the data, and a data fusion/display system: The data fusion/display system is derived from the Norwegian Picasso AMEC Environmental Monitoring software package. This computer package allows monitoring personnel to review the real-time and historical status of monitoring at specific sites and objects and to establish new monitoring protocols as required, for example, in an off-normal accident situation. Plans are being developed to implement the use of this system at most RF Naval sites handling spent nuclear fuel.

  5. Accuracy of the Dinamap 1846 XT automated blood pressure monitor.

    PubMed

    Beaubien, E R; Card, C M; Card, S E; Biem, H J; Wilson, T W

    2002-09-01

    Accurate blood pressure (BP) measurement is important for the detection and treatment of hypertension. Despite widespread use of automated devices, there is limited published evidence for their reliability and accuracy. To determine the reliability and accuracy of the Dinamap 1846XT (Critikon Corporation, Tampa, FL, USA), a commonly used non-invasive oscillometric BP monitor The Dinamap was evaluated against the mercury manometer in 70 randomly selected adult hospitalised medical patients. Each individual underwent three sets of standardised BP measurement by automated method and three sets by mercury manometer by two independent observers. Reliability of BP measurement was assessed by repeated measures analysis. Dinamap accuracy was evaluated according to the American Association of Medical Instrumentation (AAMI) and British Hypertension Society (BHS) guidelines. Most patients were either normotensive or had stage I hypertension. The Dinamap tended to overestimate lower diastolic BP, and displayed poor reliability (P < 0.05). despite meeting aami guidelines, only 59% of systolic and 56% of diastolic dinamap readings were within 5 mm hg of the mercury manometer and 84% of systolic and 80% of diastolic readings were within 10 mm hg (bhs grade c). systolic and diastolic accuracy were worse with pressures >160/90 mm Hg (grade D) although these measures were based on a smaller sample of subjects. In conclusion the Dinamap yields inaccurate estimates of both systolic and diastolic BP even under standardised, and thus optimal conditions. This inaccuracy is exaggerated at higher BP (>160/90 mm Hg), although the number of measurements at higher pressures was small. We recommend that this device not be used when accurate BP measurement is needed for therapeutic decision-making.

  6. Automating slope monitoring in mines with terrestrial lidar scanners

    NASA Astrophysics Data System (ADS)

    Conforti, Dario

    2014-05-01

    Static terrestrial laser scanners (TLS) have been an important component of slope monitoring for some time, and many solutions for monitoring the progress of a slide have been devised over the years. However, all of these solutions have required users to operate the lidar equipment in the field, creating a high cost in time and resources, especially if the surveys must be performed very frequently. This paper presents a new solution for monitoring slides, developed using a TLS and an automated data acquisition, processing and analysis system. In this solution, a TLS is permanently mounted within sight of the target surface and connected to a control computer. The control software on the computer automatically triggers surveys according to a user-defined schedule, parses data into point clouds, and compares data against a baseline. The software can base the comparison against either the original survey of the site or the most recent survey, depending on whether the operator needs to measure the total or recent movement of the slide. If the displacement exceeds a user-defined safety threshold, the control computer transmits alerts via SMS text messaging and/or email, including graphs and tables describing the nature and size of the displacement. The solution can also be configured to trigger the external visual/audio alarm systems. If the survey areas contain high-traffic areas such as roads, the operator can mark them for exclusion in the comparison to prevent false alarms. To improve usability and safety, the control computer can connect to a local intranet and allow remote access through the software's web portal. This enables operators to perform most tasks with the TLS from their office, including reviewing displacement reports, downloading survey data, and adjusting the scan schedule. This solution has proved invaluable in automatically detecting and alerting users to potential danger within the monitored areas while lowering the cost and work required for

  7. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  8. Advances in Automated QA/QC for TRISO Fuel Particle Production

    SciTech Connect

    Hockey, Ronald L.; Bond, Leonard J.; Batishko, Charles R.; Gray, Joseph N.; Saurwein, John J.; Lowden, Richard A.

    2004-06-30

    Fuel in most Generation IV reactor designs typically encompasses billions of the TRISO particles. Present day QA/QC methods, done manually and in many cases destructively, cannot economically test a statistically significant fraction of the large number of the individual fuel particles required. Fully automated inspection technologies are essential to economical TRISO fuel particle production. A combination of in-line nondestructive (NDE) measurements employing electromagnetic induction and digital optical imaging analysis is currently under investigation and preliminary data indicate the potential for meeting the demands of this application. To calibrate high-speed NDE methods, surrogate fuel particle samples are being coated with layers containing a wide array of defect types found to degrade fuel performance and these are being characterized via high-resolution CT and digital radiographic images.

  9. Advances in fuel management and on-line core monitoring

    SciTech Connect

    Stout, R.B.; Hansen, L.E.; Patten, T.W.

    1988-01-01

    Advanced Nuclear Fuels Corporation (ANF) has developed and implemented advanced core power distribution monitoring methods for BWRs and PWRs based on the three dimensional nodal simulator codes used for incore fuel management design and analysis. The use of these methods has resulted in a more accurate assessment of the core power distribution and corresponding increased operating margins. These increased margins allow for more economical fuel cycle designs. Since the initial application in 1982, ANF has made enhancements to the incore monitoring system. These enhancements have permitted more rapid analysis of local power changes, power distribution projections during ascent to full power and on-line statistical analysis of the incore detector signal. The on-line analysis implemented in BWRs has also been developed for application PWRs. In the future, reactors are expected to operate with longer fuel cycles, more aggressive low radial leakage loadings, load follow and use higher burnup fuel. These advances will require more burnable neutron absorbers and more sophisticated fuel designs. To accommodate these advances, the fuel management methodologies and measurement system will require improvements. The state-of-the-art methods provided by ANF provide incore monitoring systems compatible with these expected needs.

  10. Fuel processor temperature monitoring and control

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2002-01-01

    In one embodiment, the method of the invention monitors one or more of the following conditions: a relatively low temperature value of the gas stream; a relatively high temperature value of the gas stream; and a rate-of-change of monitored temperature. In a preferred embodiment, the rate of temperature change is monitored to prevent the occurrence of an unacceptably high or low temperature condition. Here, at least two temperatures of the recirculating gas stream are monitored over a period of time. The rate-of-change of temperature versus time is determined. Then the monitored rate-of-change of temperature is compared to a preselected rate-of-change of value. The monitoring of rate-of-change of temperature provides proactive means for preventing occurrence of an unacceptably high temperature in the catalytic reactor.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, JCH FUEL SOLUTIONS, INC., JCH ENVIRO AUTOMATED FUEL CLEANING AND MAINTENANCE SYSTEM

    EPA Science Inventory

    The verification testing was conducted at the Cl facility in North Las Vegas, NV, on July 17 and 18, 2001. During this period, engine emissions, fuel consumption, and fuel quality were evaluated with contaminated and cleaned fuel.

    To facilitate this verification, JCH repre...

  12. An automated digital imaging system for environmental monitoring applications

    USGS Publications Warehouse

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  13. Automated catalyst processing for cloud electrode fabrication for fuel cells

    DOEpatents

    Goller, Glen J.; Breault, Richard D.

    1980-01-01

    A process for making dry carbon/polytetrafluoroethylene floc material, particularly useful in the manufacture of fuel cell electrodes, comprises of the steps of floccing a co-suspension of carbon particles and polytetrafluoroethylene particles, filtering excess liquids from the co-suspension, molding pellet shapes from the remaining wet floc solids without using significant pressure during the molding, drying the wet floc pellet shapes within the mold at temperatures no greater than about 150.degree. F., and removing the dry pellets from the mold.

  14. Solid recovered fuels in the cement industry--semi-automated sample preparation unit as a means for facilitated practical application.

    PubMed

    Aldrian, Alexia; Sarc, Renato; Pomberger, Roland; Lorber, Karl E; Sipple, Ernst-Michael

    2016-03-01

    One of the challenges for the cement industry is the quality assurance of alternative fuel (e.g., solid recovered fuel, SRF) in co-incineration plants--especially for inhomogeneous alternative fuels with large particle sizes (d95⩾100 mm), which will gain even more importance in the substitution of conventional fuels due to low production costs. Existing standards for sampling and sample preparation do not cover the challenges resulting from these kinds of materials. A possible approach to ensure quality monitoring is shown in the present contribution. For this, a specially manufactured, automated comminution and sample divider device was installed at a cement plant in Rohožnik. In order to prove its practical suitability with methods according to current standards, the sampling and sample preparation process were validated for alternative fuel with a grain size >30 mm (i.e., d95=approximately 100 mm), so-called 'Hotdisc SRF'. Therefore, series of samples were taken and analysed. A comparison of the analysis results with the yearly average values obtained through a reference investigation route showed good accordance. Further investigations during the validation process also showed that segregation or enrichment of material throughout the comminution plant does not occur. The results also demonstrate that compliance with legal standards regarding the minimum sample amount is not sufficient for inhomogeneous and coarse particle size alternative fuels. Instead, higher sample amounts after the first particle size reduction step are strongly recommended in order to gain a representative laboratory sample.

  15. Flexible method for monitoring fuel cell voltage

    DOEpatents

    Mowery, Kenneth D.; Ripley, Eugene V.

    2002-01-01

    A method for equalizing the measured voltage of each cluster in a fuel cell stack wherein at least one of the clusters has a different number of cells than the identical number of cells in the remaining clusters by creating a pseudo voltage for the different cell numbered cluster. The average cell voltage of the all of the cells in the fuel cell stack is calculated and multiplied by a constant equal to the difference in the number of cells in the identical cell clusters and the number of cells in the different numbered cell cluster. The resultant product is added to the actual voltage measured across the different numbered cell cluster to create a pseudo voltage which is equivalent in cell number to the number of cells in the other identical numbered cell clusters.

  16. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    SciTech Connect

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  17. Estimate of Fuel Consumption and GHG Emission Impact from an Automated Mobility District

    SciTech Connect

    Chen, Yuche; Young, Stanley; Qi, Xuewei; Gonder, Jeffrey

    2015-10-19

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  18. Electrochemical sensor for monitoring electrochemical potentials of fuel cell components

    DOEpatents

    Kunz, Harold R.; Breault, Richard D.

    1993-01-01

    An electrochemical sensor comprised of wires, a sheath, and a conduit can be utilized to monitor fuel cell component electric potentials during fuel cell shut down or steady state. The electrochemical sensor contacts an electrolyte reservoir plate such that the conduit wicks electrolyte through capillary action to the wires to provide water necessary for the electrolysis reaction which occurs thereon. A voltage is applied across the wires of the electrochemical sensor until hydrogen evolution occurs at the surface of one of the wires, thereby forming a hydrogen reference electrode. The voltage of the fuel cell component is then determined with relation to the hydrogen reference electrode.

  19. Reducing Fuel Consumption through Semi-Automated Platooning with Class 8 Tractor Trailer Combinations (Poster)

    SciTech Connect

    Lammert, M.; Gonder, J.

    2014-07-01

    This poster describes the National Renewable Energy Laboratory's evaluation of the fuel savings potential of semi-automated truck platooning. Platooning involves reducing aerodynamic drag by grouping vehicles together and decreasing the distance between them through the use of electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. The NREL study addressed the need for data on American style line-haul sleeper cabs with modern aerodynamics and over a range of trucking speeds common in the United States.

  20. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    SciTech Connect

    Jay W. Grate; Timothy A. DeVol

    2006-07-20

    The objectives of our research were to develop the first automated radiochemical process analyzer including sample pretreatment methodoology, and to initiate work on new detection approaches, especially using modified diode detectors.

  1. Automated Impedance Tomography for Monitoring Permeable Reactive Barrier Health

    SciTech Connect

    LaBrecque, D J; Adkins, P L

    2009-07-02

    The objective of this research was the development of an autonomous, automated electrical geophysical monitoring system which allows for near real-time assessment of Permeable Reactive Barrier (PRB) health and aging and which provides this assessment through a web-based interface to site operators, owners and regulatory agencies. Field studies were performed at four existing PRB sites; (1) a uranium tailing site near Monticello, Utah, (2) the DOE complex at Kansas City, Missouri, (3) the Denver Federal Center in Denver, Colorado and (4) the Asarco Smelter site in East Helena, Montana. Preliminary surface data over the PRB sites were collected (in December, 2005). After the initial round of data collection, the plan was modified to include studies inside the barriers in order to better understand barrier aging processes. In September 2006 an autonomous data collection system was designed and installed at the EPA PRB and the electrode setups in the barrier were revised and three new vertical electrode arrays were placed in dedicated boreholes which were in direct contact with the PRB material. Final data were collected at the Kansas City, Denver and Monticello, Utah PRB sites in the fall of 2007. At the Asarco Smelter site in East Helena, Montana, nearly continuous data was collected by the autonomous monitoring system from June 2006 to November 2007. This data provided us with a picture of the evolution of the barrier, enabling us to examine barrier changes more precisely and determine whether these changes are due to installation issues or are normal barrier aging. Two rounds of laboratory experiments were carried out during the project. We conducted column experiments to investigate the effect of mineralogy on the electrical signatures resulting from iron corrosion and mineral precipitation in zero valent iron (ZVI) columns. In the second round of laboratory experiments we observed the electrical response from simulation of actual field PRBs at two sites: the

  2. Cosmic ray muons for spent nuclear fuel monitoring

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Stylianos

    There is a steady increase in the volume of spent nuclear fuel stored on-site (at reactor) as currently there is no permanent disposal option. No alternative disposal path is available and storage of spent nuclear fuel in dry storage containers is anticipated for the near future. In this dissertation, a capability to monitor spent nuclear fuel stored within dry casks using cosmic ray muons is developed. The motivation stems from the need to investigate whether the stored content agrees with facility declarations to allow proliferation detection and international treaty verification. Cosmic ray muons are charged particles generated naturally in the atmosphere from high energy cosmic rays. Using muons for proliferation detection and international treaty verification of spent nuclear fuel is a novel approach to nuclear security that presents significant advantages. Among others, muons have the ability to penetrate high density materials, are freely available, no radiological sources are required and consequently there is a total absence of any artificial radiological dose. A methodology is developed to demonstrate the applicability of muons for nuclear nonproliferation monitoring of spent nuclear fuel dry casks. Purpose is to use muons to differentiate between spent nuclear fuel dry casks with different amount of loading, not feasible with any other technique. Muon scattering and transmission are used to perform monitoring and imaging of the stored contents of dry casks loaded with spent nuclear fuel. It is shown that one missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the scattering distributions with 300,000 muons or more. A Bayesian monitoring algorithm was derived to allow differentiation of a fully loaded dry cask from one with a fuel assembly missing in the order of minutes and negligible error rate. Muon scattering and transmission simulations are used to reconstruct the stored contents of sealed dry casks

  3. Automated chemical monitoring in new projects of nuclear power plant units

    NASA Astrophysics Data System (ADS)

    Lobanok, O. I.; Fedoseev, M. V.

    2013-07-01

    The development of automated chemical monitoring systems in nuclear power plant units for the past 30 years is briefly described. The modern level of facilities used to support the operation of automated chemical monitoring systems in Russia and abroad is shown. Hardware solutions suggested by the All-Russia Institute for Nuclear Power Plant Operation (which is the General Designer of automated process control systems for power units used in the AES-2006 and VVER-TOI Projects) are presented, including the structure of additional equipment for monitoring water chemistry (taking the Novovoronezh 2 nuclear power plant as an example). It is shown that the solutions proposed with respect to receiving and processing of input measurement signals and subsequent construction of standard control loops are unified in nature. Simultaneous receipt of information from different sources for ensuring that water chemistry is monitored in sufficient scope and with required promptness is one of the problems that have been solved successfully. It is pointed out that improved quality of automated chemical monitoring can be supported by organizing full engineering follow-up of the automated chemical monitoring system's equipment throughout its entire service life.

  4. Technology transfer potential of an automated water monitoring system. [market research

    NASA Technical Reports Server (NTRS)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  5. Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1998-01-01

    Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.

  6. On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor

    SciTech Connect

    Ayman I. Hawari; Mohamed A. Bourham

    2010-04-22

    IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  7. Integrated monitoring and reviewing systems for the Rokkasho Spent Fuel Receipt and Storage Facility

    SciTech Connect

    Yokota, Yasuhiro; Ishikawa, Masayuki; Matsuda, Yuji

    1998-12-31

    The Rokkasho Spent Fuel Receipt and Storage (RSFS) Facility at the Rokkasho Reprocessing Plant (RRP) in Japan is expected to begin operations in 1998. Effective safeguarding by International Atomic Energy Agency (IAEA) and Japan Atomic Energy Bureau (JAEB) inspectors requires monitoring the time of transfer, direction of movement, and number of spent fuel assemblies transferred. At peak throughput, up to 1,000 spent fuel assemblies will be accepted by the facility in a 90-day period. In order for the safeguards inspector to efficiently review the resulting large amounts of inspection information, an unattended monitoring system was developed that integrates containment and surveillance (C/S) video with radiation monitors. This allows for an integrated review of the facility`s radiation data, C/S video, and operator declaration data. This paper presents an outline of the integrated unattended monitoring hardware and associated data reviewing software. The hardware consists of a multicamera optical surveillance (MOS) system radiation monitoring gamma-ray and neutron detector (GRAND) electronics, and an intelligent local operating network (ILON). The ILON was used for time synchronization and MOS video triggers. The new software consists of a suite of tools, each one specific to a single data type: radiation data, surveillance video, and operator declarations. Each tool can be used in a stand-alone mode as a separate ion application or configured to communicate and match time-synchronized data with any of the other tools. A data summary and comparison application (Integrated Review System [IRS]) coordinates the use of all of the data-specific review tools under a single-user interface. It therefore automates and simplifies the importation of data and the data-specific analyses.

  8. A semi-automated method of monitoring dam passage of American Eels Anguilla rostrata

    USGS Publications Warehouse

    Welsh, Stuart; Aldinger, Joni L.

    2014-01-01

    Fish passage facilities at dams have become an important focus of fishery management in riverine systems. Given the personnel and travel costs associated with physical monitoring programs, automated or semi-automated systems are an attractive alternative for monitoring fish passage facilities. We designed and tested a semi-automated system for eel ladder monitoring at Millville Dam on the lower Shenandoah River, West Virginia. A motion-activated eel ladder camera (ELC) photographed each yellow-phase American Eel Anguilla rostrata that passed through the ladder. Digital images (with date and time stamps) of American Eels allowed for total daily counts and measurements of eel TL using photogrammetric methods with digital imaging software. We compared physical counts of American Eels with camera-based counts; TLs obtained with a measuring board were compared with TLs derived from photogrammetric methods. Data from the ELC were consistent with data obtained by physical methods, thus supporting the semi-automated camera system as a viable option for monitoring American Eel passage. Time stamps on digital images allowed for the documentation of eel passage time—data that were not obtainable from physical monitoring efforts. The ELC has application to eel ladder facilities but can also be used to monitor dam passage of other taxa, such as crayfishes, lampreys, and water snakes.

  9. Interferometric tomography of fuel cells for monitoring membrane water content.

    PubMed

    Waller, Laura; Kim, Jungik; Shao-Horn, Yang; Barbastathis, George

    2009-08-17

    We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered backprojection tomographic algorithm, we are able to incorporate a priori information about the object distribution into a fast reconstruction algorithm which is suitable for real-time monitoring.

  10. Method for monitoring irradiated fuel using Cerenkov radiation

    DOEpatents

    Dowdy, E.J.; Nicholson, N.; Caldwell, J.T.

    1980-05-21

    A method is provided for monitoring irradiated nuclear fuel inventories located in a water-filled storage pond wherein the intensity of the Cerenkov radiation emitted from the water in the vicinity of the nuclear fuel is measured. This intensity is then compared with the expected intensity for nuclear fuel having a corresponding degree of irradiation exposure and time period after removal from a reactor core. Where the nuclear fuel inventory is located in an assembly having fuel pins or rods with intervening voids, the Cerenkov light intensity measurement is taken at selected bright sports corresponding to the water-filled interstices of the assembly in the water storage, the water-filled interstices acting as Cerenkov light channels so as to reduce cross-talk. On-line digital analysis of an analog video signal is possible, or video tapes may be used for later measurement using a video editor and an electrometer. Direct measurement of the Cerenkov radiation intensity also is possible using spot photometers pointed at the assembly.

  11. Microsoft Business Solutions-Axapta as a basis for automated monitoring of high technology products competitiveness

    NASA Astrophysics Data System (ADS)

    Tashchiyan, G. O.; Sushko, A. V.; Grichin, S. V.

    2015-09-01

    One of the conditions of normal performance of the Russian economy is the problem of high technology products competitiveness. Different tools of these products estimation are used nowadays, one of them is automated monitoring of the high technology products in mechanical engineering. This system is developed on the basis of “Innovator" software integrated in Microsoft Business Solutions-Axapta.

  12. Utility of an automated thermal-based approach for monitoring evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A very simple remote sensing-based model for water use monitoring is presented. The model acronym DATTUTDUT, (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature) is a Dutch word which loosely translates as “It’s unbelievable that it works”. DATTUTDUT is fully automated and o...

  13. Development of an automated potable water bactericide monitoring unit

    NASA Technical Reports Server (NTRS)

    Walsh, J. M.; Brawner, C. C.; Sauer, R. L.

    1975-01-01

    A monitor unit has been developed that permits the direct determination of the level of elemental iodine, used for microbiological control, in a spacecraft potable water supply system. Salient features of unit include low weight, volume and maintenance requirements, complete automatic operation, no inflight calibration, no expendables (except electrical current) and high accuracy and precision. This unit is capable of providing a signal to a controller that, in turn, automatically adjusts the addition rate of iodine to the potable water system so that a predetermined level of iodine can be maintained. In addition, the monitor provides a reading whereby the crewman can verify that the proper amount of iodine (within a range) is present in the water. A development history of the monitor is presented along with its design and theory of operation. Also presented are the results generated through testing of the unit in a simulated Shuttle potable water system.

  14. Monitoring and Control of the Automated Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Hugonnet, C.; D'Hoine, S.

    The objective of this paper is to present succinctly the architecture of the heart of the ATV Control Centre: the Monitoring and Control developed by CS for the French Space Agency (CNES) and the European Space Agency (ESA). At the moment, the Monitoring and Control is in the development phase, a first real time version will be delivered to CNES in July 2003, then a second version will be delivered in October including off line capabilities. The following paper introduces the high level specifications and the main driving performance criteria of the monitoring and control system in order to successfully operate these complex ATV space vehicles from the first flight planned in 2004. It presents the approach taken by CS and CNES in order to meet this challenge in a very short time. ATV-CC Monitoring and Control system is based on the reuse of flight proven components that are integrated in a software bus based architecture. The paper particularly shows the advantages of using new computer technologies in operational system: use of Object Oriented technologies from specification, design (UML) to development (C++, Java, PLSQL), use of a CORBA Object Request Broker for the exchange of messages and some centralised services, use of Java for the development of an ergonomic and standardised (for all functions of the M&C) Graphical User Interface and the extensive use of XML for data exchanges.

  15. Automated Monitoring Of Dielectric Properties Of Tree Trunks

    NASA Technical Reports Server (NTRS)

    Mcdonald, Kyle C.; Chun, William

    1996-01-01

    Semiautomated instrumentation system called "dielectric monitoring system" (DMS) developed for measuring microwave permittivities of selected components of plants, in particular, of active xylems in tree trunks. System set up with coaxial probes inserted in tree trunks to measure dielectric properties. Can be left to operate unattended to gather data on permittivities as function of time.

  16. Automated Instructional Monitors for Complex Operational Tasks. Final Report.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace

    A computer-based instructional system is described which incorporates diagnosis of students difficulties in acquiring complex concepts and skills. A computer automatically generated a simulated display. It then monitored and analyzed a student's work in the performance of assigned training tasks. Two major tasks were studied. The first,…

  17. Automated systems to monitor space radiation effect on photosynthetic organisms

    NASA Astrophysics Data System (ADS)

    Esposito, D.; di Costa, F.; Faraloni, C.; Fasolo, F.; Pace, E.; Perosino, M.; Torzillo, G.; Touloupakis, E.; Zanini, A.; Giardi, M. T.

    We developed automated biodevices to obtain, automatically, measures about the space radiation effect on living photosynthetic organisms, which can be used as biomass and oxygen-producing system on shuttles or ISS. Vitality measurements were performed by optical devices (fluorimeters) measuring fluorescence emission. Fluorescence methodology is a well known applied technique for studying photosynthetic activity, and in particular the oxygen-evolving process of photosynthetic organisms. Different strains of unicellular green algae are properly immobilized on agar growth medium and kept under survial light. The biodevices are characterised by the sensibility and selectivity of the biological component response, together with easy use, versatility, miniature size and low cost. We performed experiments in some facilities, in order to understand separately the effect of radiation of different LET, on the biochemical activity (gamma rays at Joint Research Centre -Varese, Italy; fast neutrons at CERF -- SPS beam at CERN -Geneva, Switzerland). The exposure to different radiation beams of the automatic devices, allowed us to test them under stress condition. In one year, these instrument are expected to be sent to space, inside a spacecraft, in order to study the effect of ionising cosmic radiation during an ESA flight.

  18. Automated video screening for unattended background monitoring in dynamic environments.

    SciTech Connect

    Carlson, Jeffrey J.

    2004-03-01

    This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A threat of specific interest to this project is the covert placement and subsequent remote detonation of bombs (e.g., briefcase bombs) inside crowded public facilities. Different from existing video motion detection systems, the video-screening technology described in this report is capable of detecting changes in the static background of an otherwise, dynamic environment - environments where motion and human activities are persistent. Our goal was to quickly detect changes in the background - even under conditions when the background is visible to the camera less than 5% of the time. Instead of subtracting the background to detect movement or changes in a scene, we subtracted the dynamic scene variations to produce an estimate of the static background. Subsequent comparisons of static background estimates are used to detect changes in the background. Detected changes can be used to alert security forces of the presence and location of potential threats. The results of this research are summarized in two MS Power-point presentations included with this report.

  19. Nonlinear signal processing of electroencephalograms for automated sleep monitoring

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Rowlands, D. D.; James, Daniel A.; Cutmore, T.

    2005-02-01

    An automated classification technique is desirable to identify the different stages of sleep. In this paper a technique for differentiating the characteristics of each sleep phase has been developed. This is an ideal pre-processor stage for classifying systems such as neural networks. A wavelet based continuous Morlet transform was developed to analyse the EEG signal in both the time and frequency domain. Test results using two 100 epoch EEG test data sets from pre-recorded EEG data are presented. Key rhythms in the EEG signal were identified and classified using the continuous wavelet transform. The wavelet results indicated each sleep phase contained different rhythms and artefacts (noise from muscle movement in the EEG); providing proof that an EEG can be classified accordingly. The coefficients founded by the wavelet transform have been emphasised by statistical techniques. Hypothesis testing was used to highlight major differences between adjacent sleep stages. Various signal processing methods such as power spectrum density and the discrete wavelet transform have been used to emphasise particular characteristics in an EEG. By implementing signal processing methods on an EEG data set specific rules for each sleep stage have been developed suitable for a neural network classification solution.

  20. Automated laser spectrofluorimeter for monitoring of myocardial metabolism

    NASA Astrophysics Data System (ADS)

    Popov, A. Yu.; Salmin, V. V.; Fursov, A. A.; Stepanenko, A. V.; Sokolovich, A. G.; Salmina, A. B.; Rebenkova, A. A.; Makarov, R. A.; Provorov, A. S.

    2006-09-01

    Methods of optical biopsy have a series of advantages before other methods of clinical diagnostics. The high accuracy of received results enables registration even small change of concentration of substances, and the opportunity of remote registration makes methods optical biopsy by an optimum means for noninvasive methods of diagnostics in medicine. The method of the fluorescent analysis allows to investigate dynamics of changes of a functional condition of organs and tissue in norm and pathologies, called by the various factors (an inflammation, ischemia, degenerative changes). Bring the results of development of expiremental setup for the laser fluorescent analysis of physiological and functional condition of various organs and tissue of organism. In expiremental setup was used pulse UF nitric laser with length of wave generation = 337 nm. For delivery of radiation to tissue, and, also, collection of a radiation of fluorescence were used various optic fiber scheme. The expiremental setup includes automated tunable monochromator and ADC, receiving a signal from photomultiplier tube. Driving of all blocks and processing of results is realize on IBM-compatible computer with the appropriate software. Was used the synchronous detecting for reducing of a background signal. Myocard at surgical introoperation by an accompanied condition of sharp ischemia was researches on these expiremental setup. Spectrofluorimetric criteria of an estimation of a condition of viscus at peritonitis were development.

  1. Automated monitoring: a potential solution for achieving sustainable improvement in hand hygiene practices.

    PubMed

    Levchenko, Alexander I; Boscart, Veronique M; Fernie, Geoff R

    2014-08-01

    Adequate hand hygiene is often considered as the most effective method of reducing the rates of hospital-acquired infections, which are one of the major causes of increased cost, morbidity, and mortality in healthcare. Electronic monitoring technologies provide a promising direction for achieving sustainable hand hygiene improvement by introducing the elements of automated feedback and creating the possibility to automatically collect individual hand hygiene performance data. The results of the multiphase testing of an automated hand hygiene reminding and monitoring system installed in a complex continuing care setting are presented. The study included a baseline Phase 1, with the system performing automated data collection only, a preintervention Phase 2 with hand hygiene status indicator enabled, two intervention Phases 3 and 4 with the system generating hand hygiene reminding signals and periodic performance feedback sessions provided, and a postintervention Phase 5 with only hand hygiene status indicator enabled and no feedback sessions provided. A significant increase in hand hygiene performance observed during the first intervention Phase 3 was sustained over the second intervention Phase 4, with the postintervention phase also indicating higher hand hygiene activity rates compared with the preintervention and baseline phases. The overall trends observed during the multiphase testing, the factors affecting acceptability of the automated hand hygiene monitoring system, and various strategies of technology deployment are discussed.

  2. Shrimp monitor/locator for conservation of fuel. Final report

    SciTech Connect

    Not Available

    1980-01-01

    A demonstration project of a new type Shrimp Detector/Monitor has been completed. The test project proved the efficiency of the Shrimp Monitor/Detector in detecting shrimp, in identifying the number and size, in real time, but indicated that improvement could be effected which would enhance the operation. Data obtained from the test cruises indicate significant savings in diesel fuel will occur for those trawlers using the Shrimp Monitor/Detector in place of the usual trynet operation; 25% savings for the series model number 400, (the prototype tested) and expected 35%+ if the advanced series model number 500 were used. Fabrication and operational costs for the Shrimp Monitor/Detector are reasonable and well within the financial abilities of the usual large offshore trawler. Research and testing during this program resulted in the design of an advanced model incorporating significant improvements, and fabrication was commenced but the extra cost involved beyond the set value of this contract made the further experiments non-viable. Recommendations have been submitted for an extended program to fabricate and test the advanced model series number 500 which may be of more value and interest, market use, to the operating offshore shrimp trawlers. A marketing/sales program will be instituted to place the Shrimp Monitor/Detector in the commercial area serving the shrimp fleet.

  3. Automated Groundwater Monitoring of Uranium at the Hanford Site, Washington - 13116

    SciTech Connect

    Burge, Scott R.; O'Hara, Matthew J.

    2013-07-01

    An automated groundwater monitoring system for the detection of uranyl ion in groundwater was deployed at the 300 Area Industrial Complex, Hanford Site, Washington. The research was conducted to determine if at-site, automated monitoring of contaminant movement in the subsurface is a viable alternative to the baseline manual sampling and analytical laboratory assay methods currently employed. The monitoring system used Arsenazo III, a colorimetric chelating compound, for the detection of the uranyl ion. The analytical system had a limit of quantification of approximately 10 parts per billion (ppb, μg/L). The EPA's drinking water maximum contaminant level (MCL) is 30 ppb [1]. In addition to the uranyl ion assay, the system was capable of acquiring temperature, conductivity, and river level data. The system was fully automated and could be operated remotely. The system was capable of collecting water samples from four sampling sources, quantifying the uranyl ion, and periodically performing a calibration of the analytical cell. The system communications were accomplished by way of cellular data link with the information transmitted through the internet. Four water sample sources were selected for the investigation: one location provided samples of Columbia River water, and the remaining three sources provided groundwater from aquifer sampling tubes positioned in a vertical array at the Columbia River shoreline. The typical sampling schedule was to sample the four locations twice per day with one calibration check per day. This paper outlines the instrumentation employed, the operation of the instrumentation, and analytical results for a period of time between July and August, 2012. The presentation includes the uranyl ion concentration and conductivity results from the automated sampling/analysis system, along with a comparison between the automated monitor's analytical performance and an independent laboratory analysis. Benefits of using the automated system as an

  4. Automated small scale oil seed processing plant for production of fuel for diesel engines

    SciTech Connect

    Thompson, J.C.; Peterson, C.L.

    1982-01-01

    University of Idaho seed processing research is centered about a CeCoCo oil expeller. A seed preheater-auger, seed bin, meal auger, and oil pump have been constructed to complete the system, which is automated and instrumented. The press, preheater, cake removal auger, and oil transfer pump are tied into a central panel where energy use is measured and the process controlled. Extracted oil weight, meal weight, process temperature, and input energy are all recorded during operation. The oil is transferred to tanks where it settles for 48 hours or more. It is then pumped through a filtering system and stored ready to be used as an engine fuel. The plant has processed over 11,000 kg of seed with an average extraction efficiency of 78 percent. 5 tables.

  5. Automated small-scale fuel alcohol plant: A means to add value to food processing waste

    SciTech Connect

    Wolfram, J.H.; Keller, J.; Wernimont, L.P.

    1993-12-31

    A small scale fuel grade alcohol plant was designed, constructed and operated a decade ago. This plant design incorporated several innovative processes and features that are still on the cutting edge for small scale alcohol production. The plant design could be scaled down or up to match the needs of food processing waste streams that contain sugars or starches as BOD. The novel features include automation requiring four hours of labor per 24 hour day and a plug flow low temperature cooking system which solubilizes and liquifies the starch in one step. This plant consistently produced high yield of alcohol. Yields of 2.6 gallons of absolute alcohol were produced from a bushel of corn. Potato waste grain dust and cheese whey were also processed in this plant as well as barley. Production energy for a 190 proof gallon was approximately 32,000 BTU. This paper discusses the design, results, and applicability of this plant to food processing industries.

  6. Automated, Multiplexed Electrical Impedance Spectroscopy Platform for Continuous Monitoring of Microtissue Spheroids.

    PubMed

    Bürgel, Sebastian C; Diener, Laurin; Frey, Olivier; Kim, Jin-Young; Hierlemann, Andreas

    2016-11-15

    Microtissue spheroids in microfluidic devices are increasingly used to establish novel in vitro organ models of the human body. As the spheroids are comparably sizable, it is difficult to monitor larger numbers of them by optical means. Therefore, electrical impedance spectroscopy (EIS) emerges as a viable alternative to probing spheroid properties. Current spheroid EIS systems are, however, not suitable for investigating multiple spheroids in parallel over extended time in an automated fashion. Here we address this issue by presenting an automated, multiplexed EIS (AMEIS) platform for impedance analysis in a microfluidic setting. The system was used to continuously monitor the effect of the anticancer drug fluorouracil (5-FU) on HCT116 cancer spheroids. Simultaneous EIS monitoring of up to 15 spheroids was performed in parallel over 4 days at a temporal resolution of 2 min without any need for pumps. The measurements were continuous in nature, and the setup was kept in a standard incubator under controlled conditions during the measurements. A baseline normalization method to improve robustness and to reduce the influence of slow changes in the medium conductivity on the spheroid EIS readings has been developed and validated by experiments and means of a finite-element model. The same method and platform was then used for online monitoring of cardiac spheroids. The beating frequency of each cardiac spheroid could be read out in a completely automated fashion. The developed system constitutes a promising method for simultaneously evaluating drug impact and/or toxic effects on multiple microtissue spheroids.

  7. Automated Monitoring and Analysis of Social Behavior in Drosophila

    PubMed Central

    Dankert, Heiko; Wang, Liming; Hoopfer, Eric D.; Anderson, David J.; Perona, Pietro

    2009-01-01

    We introduce a method based on machine vision for automatically measuring aggression and courtship in Drosophila melanogaster. The genetic and neural circuit bases of these innate social behaviors are poorly understood. High-throughput behavioral screening in this genetically tractable model organism is a potentially powerful approach, but it is currently very laborious. Our system monitors interacting pairs of flies, and computes their location, orientation and wing posture. These features are used for detecting behaviors exhibited during aggression and courtship. Among these, wing threat, lunging and tussling are specific to aggression; circling, wing extension (courtship “song”) and copulation are specific to courtship; locomotion and chasing are common to both. Ethograms may be constructed automatically from these measurements, saving considerable time and effort. This technology should enable large-scale screens for genes and neural circuits controlling courtship and aggression. PMID:19270697

  8. Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT)

    NASA Astrophysics Data System (ADS)

    Kuras, Olivier; Pritchard, Jonathan D.; Meldrum, Philip I.; Chambers, Jonathan E.; Wilkinson, Paul B.; Ogilvy, Richard D.; Wealthall, Gary P.

    2009-10-01

    Hydraulic processes in porous media can be monitored in a minimally invasive fashion by time-lapse electrical resistivity tomography (ERT). The permanent installation of specifically designed ERT instrumentation, telemetry and information technology (IT) infrastructure enables automation of data collection, transfer, processing, management and interpretation. Such an approach gives rise to a dramatic increase in temporal resolution, thus providing new insight into rapidly occurring subsurface processes. In this paper, we discuss a practical implementation of automated time-lapse ERT. We present the results of a recent study in which we used controlled hydraulic experiments in two test cells at reduced field scale to explore the limiting conditions for process monitoring with cross-borehole ERT measurements. The first experiment used three adjacent boreholes to monitor rapidly rising and falling water levels. For the second experiment, we injected a saline tracer into a homogeneous flow field in freshwater-saturated sand; the dynamics of the plume were then monitored with 2D measurements across a 9-borehole fence and 3D measurements across a 3 × 3 grid of boreholes. We investigated different strategies for practical data acquisition and show that simple re-ordering of ERT measurement schemes can help harmonise data collection with the nature of the monitored process. The methodology of automated time-lapse ERT was found to perform well in different monitoring scenarios (2D/3D plus time) at time scales associated with realistic subsurface processes. The limiting factor is the finite amount of time needed for the acquisition of sufficiently comprehensive datasets. We found that, given the complexity of our monitoring scenarios, typical frame rates of at least 1.5-3 images per hour were possible without compromising image quality.

  9. Analysing risk factors for urinary tract infection based on automated monitoring of hospital-acquired infection.

    PubMed

    Redder, J D; Leth, R A; Møller, J K

    2016-04-01

    Urinary tract infections account for as much as one-third of all nosocomial infections. The aim of this study was to examine previously reported characteristics of patients with hospital-acquired urinary tract infections (HA-UTI) using an automated infection monitoring system (Hospital-Acquired Infection Registry: HAIR). A matched case-control study was conducted to investigate the association of risk factors with HA-UTI. Patients with HA-UTI more frequently had indwelling urinary catheters or a disease in the genitourinary or nervous system than the controls. Automated hospital-acquired infection monitoring enables documentation of key risk factors to better evaluate infection control interventions in general or for selected groups of patients.

  10. Army Research Needs for Automated Neuropsychological Tests: Monitoring Soldier Health and Performance Status

    DTIC Science & Technology

    2007-01-01

    Archives of Clinical Neuropsychology 22S (2007) S7–S14 Army research needs for automated neuropsychological tests: Monitoring soldier health and...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 S8 K.E. Friedl et al. / Archives of Clinical Neuropsychology 22S...central role in post-deployment health research. K.E. Friedl et al. / Archives of Clinical Neuropsychology 22S (2007)

  11. 40 CFR 60.45 - Emissions and fuel monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil-fuel-fired steam generator that combusts only gaseous or liquid fossil fuel (excluding residual... sampling and analysis or fuel receipts. (2) For a fossil-fuel-fired steam generator that does not use...

  12. 40 CFR 60.45 - Emissions and fuel monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil-fuel-fired steam generator that combusts only gaseous or liquid fossil fuel (excluding residual... sampling and analysis or fuel receipts. (2) For a fossil-fuel-fired steam generator that does not use...

  13. 40 CFR 60.45 - Emissions and fuel monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil-fuel-fired steam generator that combusts only gaseous or liquid fossil fuel (excluding residual... sampling and analysis or fuel receipts. (2) For a fossil-fuel-fired steam generator that does not use...

  14. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    SciTech Connect

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  15. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  16. Single-cell bacteria growth monitoring by automated DEP-facilitated image analysis.

    PubMed

    Peitz, Ingmar; van Leeuwen, Rien

    2010-11-07

    Growth monitoring is the method of choice in many assays measuring the presence or properties of pathogens, e.g. in diagnostics and food quality. Established methods, relying on culturing large numbers of bacteria, are rather time-consuming, while in healthcare time often is crucial. Several new approaches have been published, mostly aiming at assaying growth or other properties of a small number of bacteria. However, no method so far readily achieves single-cell resolution with a convenient and easy to handle setup that offers the possibility for automation and high throughput. We demonstrate these benefits in this study by employing dielectrophoretic capturing of bacteria in microfluidic electrode structures, optical detection and automated bacteria identification and counting with image analysis algorithms. For a proof-of-principle experiment we chose an antibiotic susceptibility test with Escherichia coli and polymyxin B. Growth monitoring is demonstrated on single cells and the impact of the antibiotic on the growth rate is shown. The minimum inhibitory concentration as a standard diagnostic parameter is derived from a dose-response plot. This report is the basis for further integration of image analysis code into device control. Ultimately, an automated and parallelized setup may be created, using an optical microscanner and many of the electrode structures simultaneously. Sufficient data for a sound statistical evaluation and a confirmation of the initial findings can then be generated in a single experiment.

  17. Robowell: An automated process for monitoring ground water quality using established sampling protocols

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.

    1999-01-01

    Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.

  18. An automated qualification framework for the MeerKAT CAM (Control-And-Monitoring)

    NASA Astrophysics Data System (ADS)

    van den Heever, Lize; Marais, Neilen; Slabber, Martin

    2016-08-01

    This paper introduces and discusses the design of an Automated Qualification Framework (AQF) that was developed to automate as much as possible of the formal Qualification Testing of the Control And Monitoring (CAM) subsystem of the 64 dish MeerKAT radio telescope currently under construction in the Karoo region of South Africa. The AQF allows each Integrated CAM Test to reference the MeerKAT CAM requirement and associated verification requirement it covers and automatically produces the Qualification Test Procedure and Qualification Test Report from the test steps and evaluation steps annotated in the Integrated CAM Tests. The MeerKAT System Engineers are extremely happy with the AQF results, but mostly by the approach and process it enforces.

  19. Improved automated monitoring and new analysis algorithm for circadian phototaxis rhythms in Chlamydomonas

    PubMed Central

    Gaskill, Christa; Forbes-Stovall, Jennifer; Kessler, Bruce; Young, Mike; Rinehart, Claire A.; Jacobshagen, Sigrid

    2010-01-01

    Automated monitoring of circadian rhythms is an efficient way of gaining insight into oscillation parameters like period and phase for the underlying pacemaker of the circadian clock. Measurement of the circadian rhythm of phototaxis (swimming towards light) exhibited by the green alga Chlamydomonas reinhardtii has been automated by directing a narrow and dim light beam through a culture at regular intervals and determining the decrease in light transmittance due to the accumulation of cells in the beam. In this study, the monitoring process was optimized by constructing a new computer-controlled measuring machine that limits the test beam to wavelengths reported to be specific for phototaxis and by choosing an algal strain, which does not need background illumination between test light cycles for proper expression of the rhythm. As a result, period and phase of the rhythm are now unaffected by the time a culture is placed into the machine. Analysis of the rhythm data was also optimized through a new algorithm, whose robustness was demonstrated using virtual rhythms with various noises. The algorithm differs in particular from other reported algorithms by maximizing the fit of the data to a sinusoidal curve that dampens exponentially. The algorithm was also used to confirm the reproducibility of rhythm monitoring by the machine. Machine and algorithm can now be used for a multitude of circadian clock studies that require unambiguous period and phase determinations such as light pulse experiments to identify the photoreceptor(s) that reset the circadian clock in C. reinhardtii. PMID:20116270

  20. 40 CFR 60.4365 - How can I be exempted from monitoring the total sulfur content of the fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the total sulfur content of the fuel? 60.4365 Section 60.4365 Protection of Environment ENVIRONMENTAL... monitoring the total sulfur content of the fuel? You may elect not to monitor the total sulfur content of the fuel combusted in the turbine, if the fuel is demonstrated not to exceed potential sulfur emissions...

  1. 40 CFR 60.4365 - How can I be exempted from monitoring the total sulfur content of the fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the total sulfur content of the fuel? 60.4365 Section 60.4365 Protection of Environment ENVIRONMENTAL... monitoring the total sulfur content of the fuel? You may elect not to monitor the total sulfur content of the fuel combusted in the turbine, if the fuel is demonstrated not to exceed potential sulfur emissions...

  2. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.; ,

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  3. 40 CFR 60.45 - Emissions and fuel monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... or operators under the following conditions: (1) For a fossil-fuel-fired steam generator that burns only gaseous or liquid fossil fuel (excluding residual oil) with potential SO2 emissions rates of 26...

  4. Automated Identification of Volcanic Plumes using the Ozone Monitoring Instrument (OMI)

    NASA Astrophysics Data System (ADS)

    Flower, V. J. B.; Oommen, T.; Carn, S. A.

    2015-12-01

    Volcanic eruptions are a global phenomenon which are increasingly impacting human populations due to factors such as the extension of population centres into areas of higher risk, expansion of agricultural sectors to accommodate increased production or the increasing impact of volcanic plumes on air travel. In areas where extensive monitoring is present these impacts can be moderated by ground based monitoring and alert systems, however many volcanoes have little or no monitoring capabilities. In many of these regions volcanic alerts are generated by local communities with limited resources or formal communication systems, however additional eruption alerts can result from chance encounters with passing aircraft. In contrast satellite based remote sensing instruments possess the capability to provide near global daily monitoring, facilitating automated volcanic eruption detection. One such system generates eruption alerts through the detection of thermal anomalies, known as MODVOLC, and is currently operational utilising moderate resolution MODIS satellite data. Within this work we outline a method to distinguish SO2 eruptions from background levels recorded by the Ozone Monitoring Instrument (OMI) through the identification and classification of volcanic activity over a 5 year period. The incorporation of this data into a logistic regression model facilitated the classification of volcanic events with an overall accuracy of 80% whilst consistently identifying plumes with a mass of 400 tons or higher. The implementation of the developed model could facilitate the near real time identification of new and ongoing volcanic activity on a global scale.

  5. Fully Automated Field-Deployable Bioaerosol Monitoring System Using Carbon Nanotube-Based Biosensors.

    PubMed

    Kim, Junhyup; Jin, Joon-Hyung; Kim, Hyun Soo; Song, Wonbin; Shin, Su-Kyoung; Yi, Hana; Jang, Dae-Ho; Shin, Sehyun; Lee, Byung Yang

    2016-05-17

    Much progress has been made in the field of automated monitoring systems of airborne pathogens. However, they still lack the robustness and stability necessary for field deployment. Here, we demonstrate a bioaerosol automonitoring instrument (BAMI) specifically designed for the in situ capturing and continuous monitoring of airborne fungal particles. This was possible by developing highly sensitive and selective fungi sensors based on two-channel carbon nanotube field-effect transistors (CNT-FETs), followed by integration with a bioaerosol sampler, a Peltier cooler for receptor lifetime enhancement, and a pumping assembly for fluidic control. These four main components collectively cooperated with each other to enable the real-time monitoring of fungi. The two-channel CNT-FETs can detect two different fungal species simultaneously. The Peltier cooler effectively lowers the working temperature of the sensor device, resulting in extended sensor lifetime and receptor stability. The system performance was verified in both laboratory conditions and real residential areas. The system response was in accordance with reported fungal species distribution in the environment. Our system is versatile enough that it can be easily modified for the monitoring of other airborne pathogens. We expect that our system will expedite the development of hand-held and portable systems for airborne bioaerosol monitoring.

  6. Automated Internet-Based Control of Spacecraft Groundstations: Beacon-Based Health Monitoring Concept

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian; Twiggs, Robert; Swartwout, Michael

    1997-01-01

    This report serves as an update about the activities of Stanford University's Space Systems Development Laboratory (SSDL) in their beacon-based health monitoring experiment. Section 1 describes the goals of the project and the organization of the team. Section 2 provides an overview of the major components of the system, describing the general approach of automated health monitoring and the beacon signal relay. It also provides background about the SAPPHIRE spacecraft and ASSET operations system, which will be used for the experiment. Specific details about implementation and status of each element of the experiment are found in Section 3. Section 4 describes the experiment and future work, and references are contained in Section 5.

  7. VALIDATION OF AN AUTOMATED WIRELESS SYSTEM FOR SLEEP MONITORING DURING DAYTIME NAPS

    PubMed Central

    Cellini, Nicola; McDevitt, Elizabeth A.; Ricker, Ashley A.; Rowe, Kelly M.; Mednick, Sara C.

    2017-01-01

    An automated wireless system (WS) for sleep monitoring was recently developed and validated for assessing nighttime sleep. Here, we aimed to evaluate the validity of the WS to correctly monitor daytime sleep during naps compared to polysomnography (PSG). We found that the WS underestimated wake, sleep onset latency, wake after sleep onset, and overestimated total sleep time, sleep efficiency and duration of REM sleep. Sensitivity was moderate for wake (58.51%) and light sleep (66.92%) and strong for deep sleep (83.46%) and REM sleep (82.12%). These results demonstrated that the WS had a low ability to detect wake and systematically over-scored REM sleep, implicating the WS as an inadequate substitute for PSG in diagnosing sleep disorders or for research in which sleep staging is essential. PMID:24564261

  8. Multi-Canister overpack pressurization monitoring and control methodology for the spent nuclear fuel project

    SciTech Connect

    Pajunen, A.L., Westinghouse Hanford

    1996-07-19

    A control methodology is developed and monitoring alternatives evaluated for controlling pressurization in a Multi- Canister Overpack for the Hanford Spent Nuclear Fuel Project. Monitoring alternative evaluations include concept description, identification of uncertainties, and identification of experimental work required for implementation. A monitoring alternative is recommended and implementation requirements, risks and start up testing associated with the recommendation are discussed.

  9. NMR Express-analyser for quality monitoring of motor fuel

    NASA Astrophysics Data System (ADS)

    Protasov, E. A.; Protasov, D. E.

    2016-09-01

    A method for the rapid analysis of motor fuel quality was developed by artificial increase of the octane number through dissolving ferrocene in a low-octane gasoline (C10H10Fe). Measurements of the spin-lattice relaxation time of nuclear magnetic resonance is used for determination of ferrocene presence in standardized and real fuel from gas stations. The results of measurements of the relaxation characteristics among certain grades of motor fuel with dissolving ferrocene therein are presented.

  10. A new device to automate the monitoring of critical patients' urine output.

    PubMed

    Otero, Abraham; Apalkov, Andrey; Fernández, Roemi; Armada, Manuel

    2014-01-01

    Urine output (UO) is usually measured manually each hour in acutely ill patients. This task consumes a substantial amount of time. Furthermore, in the literature there is evidence that more frequent (minute-by-minute) UO measurement could impact clinical decision making and improve patient outcomes. However, it is not feasible to manually take minute-by-minute UO measurements. A device capable of automatically monitoring UO could save precious time of the healthcare staff and improve patient outcomes through a more precise and continuous monitoring of this parameter. This paper presents a device capable of automatically monitoring UO. It provides minute by minute measures and it can generate alarms that warn of deviations from therapeutic goals. It uses a capacitive sensor for the measurement of the UO collected within a rigid container. When the container is full, it automatically empties without requiring any internal or external power supply or any intervention by the nursing staff. In vitro tests have been conducted to verify the proper operation and accuracy in the measures of the device. These tests confirm the viability of the device to automate the monitoring of UO.

  11. A New Device to Automate the Monitoring of Critical Patients' Urine Output

    PubMed Central

    Otero, Abraham; Apalkov, Andrey; Fernández, Roemi; Armada, Manuel

    2014-01-01

    Urine output (UO) is usually measured manually each hour in acutely ill patients. This task consumes a substantial amount of time. Furthermore, in the literature there is evidence that more frequent (minute-by-minute) UO measurement could impact clinical decision making and improve patient outcomes. However, it is not feasible to manually take minute-by-minute UO measurements. A device capable of automatically monitoring UO could save precious time of the healthcare staff and improve patient outcomes through a more precise and continuous monitoring of this parameter. This paper presents a device capable of automatically monitoring UO. It provides minute by minute measures and it can generate alarms that warn of deviations from therapeutic goals. It uses a capacitive sensor for the measurement of the UO collected within a rigid container. When the container is full, it automatically empties without requiring any internal or external power supply or any intervention by the nursing staff. In vitro tests have been conducted to verify the proper operation and accuracy in the measures of the device. These tests confirm the viability of the device to automate the monitoring of UO. PMID:24605331

  12. Robotic Spent Fuel Monitoring – It is time to improve old approaches and old techniques!

    SciTech Connect

    Tobin, Stephen Joseph; Dasari, Venkateswara Rao; Trellue, Holly Renee

    2016-12-13

    This report describes various approaches and techniques associated with robotic spent fuel monitoring. The purpose of this description is to improve the quality of measured signatures, reduce the inspection burden on the IAEA, and to provide frequent verification.

  13. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Monitoring cognitive function and need with the automated neuropsychological assessment metrics in Decompression Sickness (DCS) research

    NASA Technical Reports Server (NTRS)

    Nesthus, Thomas E.; Schiflett, Sammuel G.

    1993-01-01

    Hypobaric decompression sickness (DCS) research presents the medical monitor with the difficult task of assessing the onset and progression of DCS largely on the basis of subjective symptoms. Even with the introduction of precordial Doppler ultrasound techniques for the detection of venous gas emboli (VGE), correct prediction of DCS can be made only about 65 percent of the time according to data from the Armstrong Laboratory's (AL's) hypobaric DCS database. An AL research protocol concerned with exercise and its effects on denitrogenation efficiency includes implementation of a performance assessment test battery to evaluate cognitive functioning during a 4-h simulated 30,000 ft (9144 m) exposure. Information gained from such a test battery may assist the medical monitor in identifying early signs of DCS and subtle neurologic dysfunction related to cases of asymptomatic, but advanced, DCS. This presentation concerns the selection and integration of a test battery and the timely graphic display of subject test results for the principal investigator and medical monitor. A subset of the Automated Neuropsychological Assessment Metrics (ANAM) developed through the Office of Military Performance Assessment Technology (OMPAT) was selected. The ANAM software provides a library of simple tests designed for precise measurement of processing efficiency in a variety of cognitive domains. For our application and time constraints, two tests requiring high levels of cognitive processing and memory were chosen along with one test requiring fine psychomotor performance. Accuracy, speed, and processing throughout variables as well as RMS error were collected. An automated mood survey provided 'state' information on six scales including anger, happiness, fear, depression, activity, and fatigue. An integrated and interactive LOTUS 1-2-3 macro was developed to import and display past and present task performance and mood-change information.

  15. Automated size-specific CT dose monitoring program: Assessing variability in CT dose

    SciTech Connect

    Christianson, Olav; Li Xiang; Frush, Donald; Samei, Ehsan

    2012-11-15

    Purpose: The potential health risks associated with low levels of ionizing radiation have created a movement in the radiology community to optimize computed tomography (CT) imaging protocols to use the lowest radiation dose possible without compromising the diagnostic usefulness of the images. Despite efforts to use appropriate and consistent radiation doses, studies suggest that a great deal of variability in radiation dose exists both within and between institutions for CT imaging. In this context, the authors have developed an automated size-specific radiation dose monitoring program for CT and used this program to assess variability in size-adjusted effective dose from CT imaging. Methods: The authors radiation dose monitoring program operates on an independent health insurance portability and accountability act compliant dosimetry server. Digital imaging and communication in medicine routing software is used to isolate dose report screen captures and scout images for all incoming CT studies. Effective dose conversion factors (k-factors) are determined based on the protocol and optical character recognition is used to extract the CT dose index and dose-length product. The patient's thickness is obtained by applying an adaptive thresholding algorithm to the scout images and is used to calculate the size-adjusted effective dose (ED{sub adj}). The radiation dose monitoring program was used to collect data on 6351 CT studies from three scanner models (GE Lightspeed Pro 16, GE Lightspeed VCT, and GE Definition CT750 HD) and two institutions over a one-month period and to analyze the variability in ED{sub adj} between scanner models and across institutions. Results: No significant difference was found between computer measurements of patient thickness and observer measurements (p= 0.17), and the average difference between the two methods was less than 4%. Applying the size correction resulted in ED{sub adj} that differed by up to 44% from effective dose estimates

  16. Tracking forest canopy stress from an automated proximal hyperspectral monitoring system

    NASA Astrophysics Data System (ADS)

    Woodgate, William; van Gorsel, Eva; Hughes, Dale; Cabello-Leblic, Arantxa

    2016-04-01

    Increasing climate variability and associated extreme weather events such as drought are likely to profoundly affect ecosystems, as many ecological processes are more sensitive to climate extremes than to changes in the mean states. However, the response of vegetation to these changes is one of the largest uncertainties in projecting future climate, carbon sequestration, and water resources. This remains a major limitation for long term climate prediction models integrating vegetation dynamics that are crucial for modelling the interplay of water, carbon and radiation fluxes. Satellite remote sensing data, such as that from the MODIS, Landsat and Sentinel missions, are the only viable means to study national and global vegetation trends. Highly accurate in-situ data is critical to better understand and validate our satellite products. Here, we developed a fully automated hyperspectral monitoring system installed on a flux monitoring tower at a mature Eucalypt forest site. The monitoring system is designed to provide a long-term (May 2014 - ongoing) and high temporal characterisation (3 acquisitions per day) of the proximal forest canopy to an unprecedented level of detail. The system comprises four main instruments: a thermal imaging camera and hyperspectral line camera (spectral ranges 7.5-14 μm and 0.4-1 μm, respectively), an upward pointing spectrometer (350-1000 nm), and hemispherical camera. The time series of hyperspectral and thermal imagery and flux tower data provides a unique dataset to study the impacts of logging, nutrient, and heat stress on trees and forest. Specifically, the monitoring system can be used to derive a range of physiological and structural indices that are also derived by satellites, such as PRI, TCARI/OSAVI, and NDVI. The monitoring system, to our knowledge, is the first fully automated data acquisition system that allows for spatially resolved spectral measurements at the sub-crown scale. Preliminary results indicate that canopy

  17. Use of automated monitoring to assess behavioral toxicology in fish: Linking behavior and physiology

    USGS Publications Warehouse

    Brewer, S.K.; DeLonay, A.J.; Beauvais, S.L.; Little, E.E.; Jones, S.B.

    1999-01-01

    We measured locomotory behaviors (distance traveled, speed, tortuosity of path, and rate of change in direction) with computer-assisted analysis in 30 day posthatch rainbow trout (Oncorhynchus mykiss) exposed to pesticides. We also examined cholinesterase inhibition as a potential endpoint linking physiology and behavior. Sublethal exposure to chemicals often causes changes in swimming behavior, reflecting alterations in sensory and motor systems. Swimming behavior also integrates functions of the nervous system. Rarely are the connections between physiology and behavior made. Although behavior is often suggested as a sensitive, early indicator of toxicity, behavioral toxicology has not been used to its full potential because conventional methods of behavioral assessment have relied on manual techniques, which are often time-consuming and difficult to quantify. This has severely limited the application and utility of behavioral procedures. Swimming behavior is particularly amenable to computerized assessment and automated monitoring. Locomotory responses are sensitive to toxicants and can be easily measured. We briefly discuss the use of behavior in toxicology and automated techniques used in behavioral toxicology. We also describe the system we used to determine locomotory behaviors of fish, and present data demonstrating the system's effectiveness in measuring alterations in response to chemical challenges. Lastly, we correlate behavioral and physiological endpoints.

  18. Automated selected reaction monitoring software for accurate label-free protein quantification.

    PubMed

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  19. Automated sample preparation for monitoring groundwater pollution by carbamate insecticides and their transformation products.

    PubMed

    Chiron, S; Valverde, A; Fernandez-Alba, A; Barceló, D

    1995-01-01

    We investigated automated on-line solid-phase extraction (SPE) followed by liquid chromatographic (LC) techniques for monitoring carbamates and their transformation products. Analytical determinations were performed by LC with UV or postcolumn fluorescence detection (U.S. Environmental Protection Agency Method 531.1 for carbamate insecticides) after preconcentration with on-line SPE using C18 Empore extraction disks. On-line SPE/LC/thermospray mass spectrometry with time-scheduled selected-ion monitoring was used as confirmatory method. The method was used to determine pesticide traces in well waters of a typical aquifer in the Almeria area (Andalucia, south of Spain) from March 1993 to February 1994. The major pollutants, found in highest amounts, were carbofuran, methiocarb, and methomyl, at levels of 0.32, 0.3, and 0.8 micrograms/L, respectively. According to results of seasonal variation studies, pollution by carbamate insecticides is sporadic and exceeds the limit of 0.5 micrograms/L for total pesticides allowed by the European Economic Community Drinking Water Directive only twice a year. 3-Hydroxycarbofuran and methiocarb sulfone also were detected, showing the importance of including the main toxic break-down products of carbamate insecticides in future monitoring programs.

  20. Automated in-situ laser scanner for monitoring forest Leaf Area Index.

    PubMed

    Culvenor, Darius S; Newnham, Glenn J; Mellor, Andrew; Sims, Neil C; Haywood, Andrew

    2014-08-14

    An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean.

  1. Automated In-Situ Laser Scanner for Monitoring Forest Leaf Area Index

    PubMed Central

    Culvenor, Darius S.; Newnham, Glenn J.; Mellor, Andrew; Sims, Neil C.; Haywood, Andrew

    2014-01-01

    An automated laser rangefinding instrument was developed to characterize overstorey and understorey vegetation dynamics over time. Design criteria were based on information needs within the statewide forest monitoring program in Victoria, Australia. The ground-based monitoring instrument captures the key vegetation structural information needed to overcome ambiguity in the estimation of forest Leaf Area Index (LAI) from satellite sensors. The scanning lidar instrument was developed primarily from low cost, commercially accessible components. While the 635 nm wavelength lidar is not ideally suited to vegetation studies, there was an acceptable trade-off between cost and performance. Tests demonstrated reliable range estimates to live foliage up to a distance of 60 m during night-time operation. Given the instrument's scan angle of 57.5 degrees zenith, the instrument is an effective tool for monitoring LAI in forest canopies up to a height of 30 m. An 18 month field trial of three co-located instruments showed consistent seasonal trends and mean LAI of between 1.32 to 1.56 and a temporal LAI variation of 8 to 17% relative to the mean. PMID:25196006

  2. Rare Adverse Event Monitoring of Medical Devices with the Use of an Automated Surveillance Tool

    PubMed Central

    Matheny, Michael E.; Arora, Nipun; Ohno-Machado, Lucila; Resnic, Frederic S.

    2007-01-01

    Prospective outcomes surveillance using population level data allows for statistical methodologies and confounder adjustment not supported by the FDA’s current monitoring system. We explored propensity score matching integrated into an automated surveillance tool as a method for confounder adjustment in an observational cohort. The application analyzed all patients undergoing PCI via femoral access route from 2002–2006. The rare outcome of interest was retroperitoneal hemorrhage (RPH) and the device was a vascular closure device (VCD). A propensity score model was developed to match VCD and non-VCD match patients. Our tool was able to detect sustained elevations in RPH among those patients who received a VCD. A root cause analysis revealed an association between high femoral access and RPH which prompted an educational program to modify clinical practice. Our results suggest use of propensity score matching can play a useful role in computer-based surveillance of rare events in a prospective cohort. PMID:18693890

  3. Rare adverse event monitoring of medical devices with the use of an automated surveillance tool.

    PubMed

    Matheny, Michael E; Arora, Nipun; Ohno-Machado, Lucila; Resnic, Frederic S

    2007-10-11

    Prospective outcomes surveillance using population level data allows for statistical methodologies and confounder adjustment not supported by the FDA's current monitoring system. We explored propensity score matching integrated into an automated surveillance tool as a method for confounder adjustment in an observational cohort. The application analyzed all patients undergoing PCI via femoral access route from 2002-2006. The rare outcome of interest was retroperitoneal hemorrhage (RPH) and the device was a vascular closure device (VCD). A propensity score model was developed to match VCD and non-VCD match patients. Our tool was able to detect sustained elevations in RPH among those patients who received a VCD. A root cause analysis revealed an association between high femoral access and RPH which prompted an educational program to modify clinical practice. Our results suggest use of propensity score matching can play a useful role in computer-based surveillance of rare events in a prospective cohort.

  4. Utility of an Automated Thermal-Based Approach for Monitoring Evapotranspiration

    NASA Astrophysics Data System (ADS)

    Timmermans, Wim J.; Kustas, William P.; Andreu, Ana

    2015-12-01

    A very simple remote sensing-based model for water use monitoring is presented. The model acronym DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature) is a Dutch word which loosely translates as "it's unbelievable that it works". DATTUTDUT is fully automated and only requires a surface temperature map, making it simple to use and providing a rapid estimate of spatially-distributed fluxes. The algorithm is first tested over a range of environmental and land-cover conditions using data from four short-term field experiments and then evaluated over a growing season in an agricultural region. Flux model output is in satisfactory agreement with observations and established remote sensing-based models, except under dry and partial canopy cover conditions. This suggests that DATTUTDUT has utility in identifying relative water use and as an operational tool providing initial estimates of ET anomalies in data-poor regions that would be confirmed using more robust modeling techniques.

  5. Automated tests for diagnosing and monitoring cognitive impairment: a diagnostic accuracy review.

    PubMed Central

    Aslam, Rabeea'h W; Bates, Vickie; Dundar, Yenal; Hounsome, Juliet; Richardson, Marty; Krishan, Ashma; Dickson, Rumona; Boland, Angela; Kotas, Eleanor; Fisher, Joanne; Sikdar, Sudip; Robinson, Louise

    2016-01-01

    BACKGROUND Cognitive impairment is a growing public health concern, and is one of the most distinctive characteristics of all dementias. The timely recognition of dementia syndromes can be beneficial, as some causes of dementia are treatable and are fully or partially reversible. Several automated cognitive assessment tools for assessing mild cognitive impairment (MCI) and early dementia are now available. Proponents of these tests cite as benefits the tests' repeatability and robustness and the saving of clinicians' time. However, the use of these tools to diagnose and/or monitor progressive cognitive impairment or response to treatment has not yet been evaluated. OBJECTIVES The aim of this review was to determine whether or not automated computerised tests could accurately identify patients with progressive cognitive impairment in MCI and dementia and, if so, to investigate their role in monitoring disease progression and/or response to treatment. DATA SOURCES Five electronic databases (MEDLINE, EMBASE, The Cochrane Library, ISI Web of Science and PsycINFO), plus ProQuest, were searched from 2005 to August 2015. The bibliographies of retrieved citations were also examined. Trial and research registers were searched for ongoing studies and reviews. A second search was run to identify individual test costs and acquisition costs for the various tools identified in the review. REVIEW METHODS Two reviewers independently screened all titles and abstracts to identify potentially relevant studies for inclusion in the review. Full-text copies were assessed independently by two reviewers. Data were extracted and assessed for risk of bias by one reviewer and independently checked for accuracy by a second. The results of the data extraction and quality assessment for each study are presented in structured tables and as a narrative summary. RESULTS The electronic searching of databases, including ProQuest, resulted in 13,542 unique citations. The titles and abstracts of these

  6. A method for monitoring the variability in nuclear absorption characteristics of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1988-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  7. The Earth Observation Monitor - Automated monitoring and alerting for spatial time-series data based on OGC web services

    NASA Astrophysics Data System (ADS)

    Eberle, J.; Hüttich, C.; Schmullius, C.

    2014-12-01

    Spatial time series data are freely available around the globe from earth observation satellites and meteorological stations for many years until now. They provide useful and important information to detect ongoing changes of the environment; but for end-users it is often too complex to extract this information out of the original time series datasets. This issue led to the development of the Earth Observation Monitor (EOM), an operational framework and research project to provide simple access, analysis and monitoring tools for global spatial time series data. A multi-source data processing middleware in the backend is linked to MODIS data from Land Processes Distributed Archive Center (LP DAAC) and Google Earth Engine as well as daily climate station data from NOAA National Climatic Data Center. OGC Web Processing Services are used to integrate datasets from linked data providers or external OGC-compliant interfaces to the EOM. Users can either use the web portal (webEOM) or the mobile application (mobileEOM) to execute these processing services and to retrieve the requested data for a given point or polygon in userfriendly file formats (CSV, GeoTiff). Beside providing just data access tools, users can also do further time series analyses like trend calculations, breakpoint detections or the derivation of phenological parameters from vegetation time series data. Furthermore data from climate stations can be aggregated over a given time interval. Calculated results can be visualized in the client and downloaded for offline usage. Automated monitoring and alerting of the time series data integrated by the user is provided by an OGC Sensor Observation Service with a coupled OGC Web Notification Service. Users can decide which datasets and parameters are monitored with a given filter expression (e.g., precipitation value higher than x millimeter per day, occurrence of a MODIS Fire point, detection of a time series anomaly). Datasets integrated in the SOS service are

  8. Development of surface enhanced Raman scattering (SERS) spectroscopy monitoring of fuel markers to prevent fraud

    NASA Astrophysics Data System (ADS)

    Wilkinson, Timothy; Clarkson, John; White, Peter C.; Meakin, Nicholas; McDonald, Ken

    2013-05-01

    Governments often tax fuel products to generate revenues to support and stimulate their economies. They also subsidize the cost of essential fuel products. Fuel taxation and subsidization practices are both subject to fraud. Oil marketing companies also suffer from fuel fraud with loss of legitimate sales and additional quality and liability issues. The use of an advanced marking system to identify and control fraud has been shown to be effective in controlling illegal activity. DeCipher has developed surface enhanced Raman scattering (SERS) spectroscopy as its lead technology for measuring markers in fuel to identify and control malpractice. SERS has many advantages that make it highly suitable for this purpose. The SERS instruments are portable and can be used to monitor fuel at any point in the supply chain. SERS shows high specificity for the marker, with no false positives. Multiple markers can also be detected in a single SERS analysis allowing, for example, specific regional monitoring of fuel. The SERS analysis from fuel is also quick, clear and decisive, with a measurement time of less than 5 minutes. We will present results highlighting our development of the use of a highly stable silver colloid as a SERS substrate to measure the markers at ppb levels. Preliminary results from the use of a solid state SERS substrate to measure fuel markers will also be presented.

  9. The Effects of Automated Prompting and Self-Monitoring on Homework Completion for a Student with Attention Deficit Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Blicha, Amy; Belfiore, Phillip J.

    2013-01-01

    This study examined the effects of an intervention consisting of automated prompting and self-monitoring on the level of independent homework task completion for an elementary-age student with attention deficit hyperactivity disorder (ADHD). Instituting a single subject, within series ABAB design, the results showed a consistent increase and…

  10. Automated Remote Monitoring of Depression: Acceptance Among Low-Income Patients in Diabetes Disease Management

    PubMed Central

    Ramirez, Magaly; Jin, Haomiao; Ell, Kathleen; Gross-Schulman, Sandra; Myerchin Sklaroff, Laura; Guterman, Jeffrey

    2016-01-01

    Background Remote patient monitoring is increasingly integrated into health care delivery to expand access and increase effectiveness. Automation can add efficiency to remote monitoring, but patient acceptance of automated tools is critical for success. From 2010 to 2013, the Diabetes-Depression Care-management Adoption Trial (DCAT)–a quasi-experimental comparative effectiveness research trial aimed at accelerating the adoption of collaborative depression care in a safety-net health care system–tested a fully automated telephonic assessment (ATA) depression monitoring system serving low-income patients with diabetes. Objective The aim of this study was to determine patient acceptance of ATA calls over time, and to identify factors predicting long-term patient acceptance of ATA calls. Methods We conducted two analyses using data from the DCAT technology-facilitated care arm, in which for 12 months the ATA system periodically assessed depression symptoms, monitored treatment adherence, prompted self-care behaviors, and inquired about patients’ needs for provider contact. Patients received assessments at 6, 12, and 18 months using Likert-scale measures of willingness to use ATA calls, preferred mode of reach, perceived ease of use, usefulness, nonintrusiveness, privacy/security, and long-term usefulness. For the first analysis (patient acceptance over time), we computed descriptive statistics of these measures. In the second analysis (predictive factors), we collapsed patients into two groups: those reporting “high” versus “low” willingness to use ATA calls. To compare them, we used independent t tests for continuous variables and Pearson chi-square tests for categorical variables. Next, we jointly entered independent factors found to be significantly associated with 18-month willingness to use ATA calls at the univariate level into a logistic regression model with backward selection to identify predictive factors. We performed a final logistic

  11. A Low Cost Automated Monitoring System for Landslides Using Dual Frequency GPS

    NASA Astrophysics Data System (ADS)

    Mills, H.; Edwards, S.

    2006-12-01

    Landslides are an existing and permanent threat to societies across the globe, generating financial and human losses whenever and wherever they occur. Drawing together the strands of science that provide increased understanding of landslide triggers through accurate modelling is therefore vital for the development of mitigation and management strategies. Together with climatic and geomorphological data a key input here is information on the precise location and timing of landslide events. However, the detailed monitoring of landslides and precursor movements is generally limited to episodic campaigns where limiting factors include equipment and mobilisation costs, time constraints and spatial resolution. This research has developed a geodetic tool of benefit to scientists involved in the development of closely coupled models that seek to explain trigger mechanisms such as rainfall duration and intensity and changes in groundwater pressure to actual real land movements. A fully automated low cost dual frequency GPS station for the continuous in-situ monitoring of landslide sites has been developed. System configuration combines a dual frequency GPS receiver, PC board with a GPRS modem and power supply to deliver 24hr/365day operation capability. Individual components have been chosen to provide the highest accuracies while minimising power consumption resulting in a system around half that of equivalent commercial systems. Measurement point-costs can be further reduced through the use of antenna switching and multi antenna arrays. Continuous data is delivered via mobile phone uplink and processed automatically using geodetic software. The developed system has been extensively tested on a purpose built platform capable of simulating ground movements. Co-mounted antennas have allowed direct comparisons with more expensive geodetic GPS receivers. The system is capable of delivering precise 3D coordinates with a 9 mm rms. The system can be up-scaled resulting in the

  12. The Automated Instrumentation and Monitoring System (AIMS): Design and Architecture. 3.2

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Schmidt, Melisa; Schulbach, Cathy; Bailey, David (Technical Monitor)

    1997-01-01

    Whether a researcher is designing the 'next parallel programming paradigm', another 'scalable multiprocessor' or investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be captured and displayed is invaluable. Careful analysis of such information can help computer and software architects to capture, and therefore, exploit behavioral variations among/within various parallel programs to take advantage of specific hardware characteristics. A software tool-set that facilitates performance evaluation of parallel applications on multiprocessors has been put together at NASA Ames Research Center under the sponsorship of NASA's High Performance Computing and Communications Program over the past five years. The Automated Instrumentation and Monitoring Systematic has three major software components: a source code instrumentor which automatically inserts active event recorders into program source code before compilation; a run-time performance monitoring library which collects performance data; and a visualization tool-set which reconstructs program execution based on the data collected. Besides being used as a prototype for developing new techniques for instrumenting, monitoring and presenting parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds to evaluate their impact on user productivity. Currently, the execution of FORTRAN and C programs on the Intel Paragon and PALM workstations can be automatically instrumented and monitored. Performance data thus collected can be displayed graphically on various workstations. The process of performance tuning with AIMS will be illustrated using various NAB Parallel Benchmarks. This report includes a description of the internal architecture of AIMS and a listing of the source code.

  13. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection

    NASA Astrophysics Data System (ADS)

    Magalhães, F.; Cunha, A.; Caetano, E.

    2012-04-01

    In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.

  14. Microbiological monitoring and automated event sampling at karst springs using LEO-satellites.

    PubMed

    Stadler, H; Skritek, P; Sommer, R; Mach, R L; Zerobin, W; Farnleitner, A H

    2008-01-01

    Data communication via Low-Earth-Orbit (LEO) Satellites between portable hydrometeorological measuring stations is the backbone of our system. This networking allows automated event sampling with short time increments also for E. coli field analysis. All activities of the course of the event-sampling can be observed on an internet platform based on a Linux-Server. Conventionally taken samples compared with the auto-sampling procedure revealed corresponding results and were in agreement with the ISO 9308-1 reference method. E. coli concentrations were individually corrected by event specific inactivation coefficients (0.10-0.14 day(-1)), compensating losses due to sample storage at spring temperature in the auto sampler.Two large summer events in 2005/2006 at an important alpine karst spring (LKAS2) were monitored including detailed analysis of E. coli dynamics (n = 271) together with comprehensive hydrological characterisations. High-resolution time series demonstrated a sudden increase of E. coli concentrations in spring water (approximately 2 log10 units) with a specific time delay after the beginning of the event. Statistical analysis suggested the spectral absorption coefficient measured at 254 nm (SAC254) as an early warning surrogate for real time monitoring of faecal input. Together with the LEO-satellite based system it is a helpful tool for early-warning systems in the field of drinking water protection.

  15. The effect of automated monitoring and real-time prompting on nurses' hand hygiene performance.

    PubMed

    Levchenko, Alexander I; Boscart, Veronique M; Fernie, Geoff R

    2013-10-01

    Adequate hand hygiene compliance by healthcare staff is considered an effective method to reduce hospital-acquired infections. The electronic system developed at Toronto Rehabilitation Institute automatically detects hand hygiene opportunities and records hand hygiene actions. It includes an optional visual hand hygiene status indication, generates real-time hand hygiene prompting signals, and enables automated monitoring of individual and aggregated hand hygiene performance. The system was installed on a complex continuous care unit at the entrance to 17 patient rooms and a utility room. A total of 93 alcohol gel and soap dispensers were instrumented and 14 nurses were provided with the personal wearable electronic monitors. The study included three phases with the system operating in three different modes: (1) an inactive mode during the first phase when hand hygiene opportunities and hand hygiene actions were recorded but prompting and visual indication functions were disabled, (2) only hand hygiene status indicators were enabled during the second phase, and (3) both hand hygiene status and real-time hand hygiene prompting signals were enabled during the third phase. Data collection was performed automatically during all of the three phases. The system indicated significantly higher hand hygiene activity rates and compliance during the third phase, with both hand hygiene indication and real-time prompting functions enabled. To increase the efficacy of the technology, its use was supplemented with individual performance reviews of the automatically collected data.

  16. Application of an automated wireless structural monitoring system for long-span suspension bridges

    SciTech Connect

    Kurata, M.; Lynch, J. P.; Linden, G. W. van der; Hipley, P.; Sheng, L.-H.

    2011-06-23

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  17. Application of AN Automated Wireless Structural Monitoring System for Long-Span Suspension Bridges

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Lynch, J. P.; van der Linden, G. W.; Hipley, P.; Sheng, L.-H.

    2011-06-01

    This paper describes an automated wireless structural monitoring system installed at the New Carquinez Bridge (NCB). The designed system utilizes a dense network of wireless sensors installed in the bridge but remotely controlled by a hierarchically designed cyber-environment. The early efforts have included performance verification of a dense network of wireless sensors installed on the bridge and the establishment of a cellular gateway to the system for remote access from the internet. Acceleration of the main bridge span was the primary focus of the initial field deployment of the wireless monitoring system. An additional focus of the study is on ensuring wireless sensors can survive for long periods without human intervention. Toward this end, the life-expectancy of the wireless sensors has been enhanced by embedding efficient power management schemes in the sensors while integrating solar panels for power harvesting. The dynamic characteristics of the NCB under daily traffic and wind loads were extracted from the vibration response of the bridge deck and towers. These results have been compared to a high-fidelity finite element model of the bridge.

  18. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  19. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect

    Dawn M. Scates; John K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  20. Greenhouse Gases in the South Atlantic: Testing and Automation of Instrumentation for Long-Term Monitoring

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Fisher, R.; Sriskantharajah, S.; Lanoisellé, M.; Etchells, A.; Manning, A.; Nisbet, E.

    2009-04-01

    Understanding ocean uptake of atmospheric CO2 by the Southern Ocean is important for modelling of future global warming scenarios, particularly since it was recently proposed that this sink was reducing (Le Quéré, et al., 2007). To help our understanding of this problem a new project aims to flask sample air from 5 South Atlantic sites and set up continuous monitoring at the 2 most accessible of these: Ascension Island and the Falklands. Flask sample measurements will include CO2 and CH4 mixing ratios and the ^13C measurement of both of these gases using the rapid continuous flow trace gas analysis system at Royal Holloway, University of London (RHUL). Routine precisions are ±0.03 per mil and ±0.05 per mil for CO2 and CH4, respectively (Fisher et al., 2006). A time series of ^13C in CH4 was maintained for Ascension Island from 2000-2005 and a time series for methane isotopes commenced for the Falkland Islands in autumn 2007. To meet the continuous monitoring requirements of the new project, three Picarro G1301 CO2 / CH4 / H2O Cavity Ring Down Spectrometers (CRDS) were installed at RHUL in October 2008 for testing, calibration and the development of an automated air inlet system suitable for analysis of calibration gases at the remote sites. Initial testing included calibration with NOAA calibrated and target gases, validation of the Picarro-defined H2O-correction of CO2, and derivation of an H2O-correction for CH4. Continuing checks on the H2O correction are made by having 2 instruments side-by-side taking air from the same inlet, but one having a combined Nafion / Mg-perchlorate drying system that utilizes the analysis system exhaust gas for the reverse flow through the Nafion and maintains water-levels at 0.05% for more than 2 weeks. These instruments are connected to the same air inlet as a GC measuring CH4 mixing ratio and a LiCor 6252 measuring CO2 mixing ratio at 30-minute and 1-minute intervals respectively. The third CRDS instrument is connected to a

  1. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, Kenny C.; Strain, Robert V.

    1983-01-01

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the dealy time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.

  2. A Continuous Automated Vault Inventory System (CAVIS) for accountability monitoring of stored nuclear materials

    SciTech Connect

    Pickett, C.A.; Barham, M.A.; Gafford, T.A.; Hutchinson, D.P.; Jordan, J.K.; Maxey, L.C.; Moran, B.W.; Muhs, J.; Nodine, R.; Simpson, M.L.

    1994-12-08

    Nearly all facilities that store hazardous (radioactive or non-radioactive) materials must comply with prevailing federal, state, and local laws. These laws usually have components that require periodic physical inspections to insure that all materials remain safely and securely stored. The inspections are generally labor intensive, slow, put personnel at risk, and only find anomalies after they have occurred. The system described in this paper was developed for monitoring stored nuclear materials resulting from weapons dismantlement, but its applications extend to any storage facility that meets the above criteria. The traditional special nuclear material (SNM) accountability programs, that are currently used within most of the Department of Energy (DOE) complex, require the physical entry of highly trained personnel into SNM storage vaults. This imposes the need for additional security measures, which typically mandate that extra security personnel be present while SNM inventories are performed. These requirements increase labor costs and put additional personnel at risk to radiation exposure. In some cases, individuals have received radiation exposure equivalent to the annual maximum during just one inventory verification. With increasing overhead costs, the current system is rapidly becoming too expensive to operate, the need for an automated method of inventory verification is evident. The Continuous Automated Vault Inventory System (CAVIS) described in this paper was designed and prototyped as a low cost, highly reliable, and user friendly system that is capable of providing, real-time weight, gamma. and neutron energy confirmation from each item stored in a SNM vault. This paper describes the sensor technologies, the CAVIS prototype system (built at Y- 12 for highly enriched uranium storage), the technical requirements that must be achieved to assure successful implementation, and descriptions of sensor technologies needed for a plutonium facility.

  3. Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells.

    PubMed

    Li, Lin-Mei; Wang, Wei; Zhang, Shu-Hui; Chen, Shi-Jing; Guo, Shi-Shang; Français, Olivier; Cheng, Jie-Ke; Huang, Wei-Hua

    2011-12-15

    Electrochemical techniques based on ultramicroelectrodes (UMEs) play a significant role in real-time monitoring of chemical messengers' release from single cells. Conversely, precise monitoring of cells in vitro strongly depends on the adequate construction of cellular physiological microenvironment. In this paper, we developed a multilayer microdevice which integrated high aspect ratio poly(dimethylsiloxane) (PDMS) microfluidic device for long-term automated perfusion culture of cells without shear stress and an independently addressable microelectrodes array (IAMEA) for electrochemical monitoring of the cultured cells in real time. Novel design using high aspect ratio between circular "moat" and ring-shaped micropillar array surrounding cell culture chamber combined with automated "circular-centre" and "bottom-up" perfusion model successfully provided continuous fresh medium and a stable and uniform microenvironment for cells. Two weeks automated culture of human umbilical endothelial cell line (ECV304) and neuronal differentiation of rat pheochromocytoma (PC12) cells have been realized using this device. Furthermore, the quantal release of dopamine from individual PC12 cells during their culture or propagation process was amperometrically monitored in real time. The multifunctional microdevice developed in this paper integrated cellular microenvironment construction and real-time monitoring of cells during their physiological process, and would possibly provide a versatile platform for cell-based biomedical analysis.

  4. 40 CFR 60.45 - Emissions and fuel monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... opacity monitoring system (COMS) for measuring opacity and a CEMS for measuring SO2 emissions, NOX... initiate investigation of the relevant equipment and control systems within 24 hours of the first discovery... tests, elect to perform subsequent monitoring using a digital opacity compliance system according to...

  5. High-Resolution Time-Lapse Monitoring of Unsaturated Flow using Automated GPR Data Collection

    NASA Astrophysics Data System (ADS)

    Mangel, A. R.; Moysey, S. M.; Lytle, B. A.; Bradford, J. H.

    2015-12-01

    High-resolution ground-penetrating radar (GPR) data provide the detailed information required to image subsurface structures. Recent advances in GPR monitoring now also make it possible to study transient hydrologic processes, but high-speed data acquisition is critical for this application. We therefore highlight the capabilities of our automated system to acquire time-lapse, high-resolution multifold GPR data during infiltration of water into soils. The system design allows for fast acquisition of constant-offset (COP) and common-midpoint profiles (CMP) to monitor unsaturated flow at multiple locations. Qualitative interpretation of the unprocessed COPs can provide substantial information regarding the hydrologic response of the system, such as the complexities of patterns associated with the wetting of the soil and geophysical evidence of non-uniform propagation of a wetting front. While we find that unprocessed images are informative, we show that the spatial variability of velocity introduced by infiltration events can complicate the images and that migration of the data is an effective tool to improve interpretability of the time-lapse images. The ability of the system to collect high density CMP data also introduces the potential for improving the velocity model along with the image via reflection tomography in the post-migrated domain. We show that for both simulated and empirical time-lapse GPR profiles we can resolve a propagating wetting front in the soil that is in good agreement with the response of in-situ soil moisture measurements. The data from these experiments illustrate the importance of high-speed, high-resolution GPR data acquisition for obtaining insight about the dynamics of hydrologic events. Continuing research is aimed at improving the quantitative analysis of surface-based GPR monitoring data for identifying preferential flow in soils.

  6. Distributed cyberinfrastructure tools for automated data processing of structural monitoring data

    NASA Astrophysics Data System (ADS)

    Zhang, Yilan; Kurata, Masahiro; Lynch, Jerome P.; van der Linden, Gwendolyn; Sederat, Hassan; Prakash, Atul

    2012-04-01

    The emergence of cost-effective sensing technologies has now enabled the use of dense arrays of sensors to monitor the behavior and condition of large-scale bridges. The continuous operation of dense networks of sensors presents a number of new challenges including how to manage such massive amounts of data that can be created by the system. This paper reports on the progress of the creation of cyberinfrastructure tools which hierarchically control networks of wireless sensors deployed in a long-span bridge. The internet-enabled cyberinfrastructure is centrally managed by a powerful database which controls the flow of data in the entire monitoring system architecture. A client-server model built upon the database provides both data-provider and system end-users with secured access to various levels of information of a bridge. In the system, information on bridge behavior (e.g., acceleration, strain, displacement) and environmental condition (e.g., wind speed, wind direction, temperature, humidity) are uploaded to the database from sensor networks installed in the bridge. Then, data interrogation services interface with the database via client APIs to autonomously process data. The current research effort focuses on an assessment of the scalability and long-term robustness of the proposed cyberinfrastructure framework that has been implemented along with a permanent wireless monitoring system on the New Carquinez (Alfred Zampa Memorial) Suspension Bridge in Vallejo, CA. Many data interrogation tools are under development using sensor data and bridge metadata (e.g., geometric details, material properties, etc.) Sample data interrogation clients including those for the detection of faulty sensors, automated modal parameter extraction.

  7. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    NASA Astrophysics Data System (ADS)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  8. Development of a fully automated network system for long-term health-care monitoring at home.

    PubMed

    Motoi, K; Kubota, S; Ikarashi, A; Nogawa, M; Tanaka, S; Nemoto, T; Yamakoshi, K

    2007-01-01

    Daily monitoring of health condition at home is very important not only as an effective scheme for early diagnosis and treatment of cardiovascular and other diseases, but also for prevention and control of such diseases. From this point of view, we have developed a prototype room for fully automated monitoring of various vital signs. From the results of preliminary experiments using this room, it was confirmed that (1) ECG and respiration during bathing, (2) excretion weight and blood pressure, and (3) respiration and cardiac beat during sleep could be monitored with reasonable accuracy by the sensor system installed in bathtub, toilet and bed, respectively.

  9. Model-based condition monitoring of PEM fuel cell using Hotelling T 2 control limit

    NASA Astrophysics Data System (ADS)

    Xue, X.; Tang, J.; Sammes, N.; Ding, Y.

    Although a variety of design and control strategies have been proposed to improve the performance of polymer electrolyte membrane (PEM) fuel cell systems, temporary faults in such systems still might occur during operations due to the complexity of the physical process and the functional limitations of some components. The development of an effective condition monitoring system that can detect these faults in a timely manner is complicated by the operating condition variation, the significant variability/uncertainty of the fuel cell system, and the measurement noise. In this research, we propose a model-based condition monitoring scheme that employs the Hotelling T 2 statistical analysis for fault detection of PEM fuel cells. Under a given operating condition, the instantaneous load current, the temperature and fuel/gas source pressures of the fuel cell are measured. These measurements are then fed into a lumped parameter dynamic fuel cell model for the establishment of the baseline under the same operating condition for comparison. The fuel cell operation is simulated under statistical sampling of parametric uncertainties with specified statistics (mean and variance) that account for the system variability/uncertainty and measurement noise. This yields a group of output voltages (under the same operating condition but with uncertainties) as the baseline. Fault detection is facilitated by comparing the real-time measurement of the fuel cell output voltage with the baseline voltages by employing the Hotelling T 2 statistical analysis. The baseline voltages are used to evaluate the output T 2 statistics under normal operating condition. Then, with a given confidence level the upper control limit can be specified. Fault condition will be declared if the T 2 statistics of real-time voltage measurement exceeds the upper control limit. This model-based robust condition monitoring scheme can deal with the operating condition variation, various uncertainties in a fuel cell

  10. Apparatus for and method of monitoring for breached fuel elements

    DOEpatents

    Gross, K.C.; Strain, R.V.

    1981-04-28

    This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector.

  11. Spectroscopic Online Monitoring for Process Control and Safeguarding of Radiochemical Fuel Reprocessing Streams

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Casella, Amanda J.; Peterson, James M.

    2013-02-24

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the spent nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. In addition, the ability for continuous online monitoring allows for numerous benefits. This paper reviews application of the absorption and vibrational spectroscopic techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical safeguards and process control.

  12. Laser-fluorescence monitoring of {sup 129}I in industrial reprocessing of nuclear fuel

    SciTech Connect

    Kireev, S.V.; Protsenko, E.D.; Shnyrev, L.S.; Veselov, V.K.; Isupov, V.K.

    1995-01-01

    A laser-fluorescence system is developed that uses a He-Ne (633 nm) laser for continuous monitoring of {sup 129}I during HNO{sub 3} dissolution of irradiated nuclear fuel. Tests at Khlopin Radium Institute indicated that the sensitivity of the {sup 129}I detection (at worst 8{center_dot}10{sup {minus}5} g/m{sup 3}) ensures reliable monitoring of this isotope both directly in the working gas during industrial reprocessing of irradiated nuclear fuel and following gas-purification systems at radiochemical plants.

  13. Water quality monitoring using an automated portable fiber optic biosensor: RAPTOR

    NASA Astrophysics Data System (ADS)

    Anderson, George P.; Rowe-Taitt, Chris A.

    2001-03-01

    The RAPTOR is a portable, automated biosensor capable of performing rapid, ten-minute assays on a sample for four target analytes simultaneously. Samples are analyzed using a fluorescent sandwich immunoassay on the surface of short polystyrene optical probes with capture antibody adsorbed to the probe surface. Target analytes bound to the fiber by capture antibodies are detected with fluorescently labeled tracer antibodies, which are held in a separate reservoir. Since target recognition is a two-step process, selectivity is enhanced, and the optical probes can be reused up to forty times, or until a positive result is obtained. This greatly reduces the logistical burden for field operations. Numerous assays for toxins, such as SEB and ricin, and bacteria, such as Bacillus anthracis and Francisella tularensis, have been developed for the RAPTOR. An assay of particular interest for water quality monitoring and the screening of fruits and vegetables is detection of Giardia cysts. Giardia lamblia is a parasitic protozoan common in the developing world that causes severe intestinal infections. Thus, a simple field assay for screening water supplies would be highly useful. Such an assay has been developed using the RAPTOR. The detection limit for Giardia cysts was 5x104/ml for a 10-minute assay.

  14. Water monitoring: automated and real time identification and classification of algae using digital microscopy.

    PubMed

    Coltelli, Primo; Barsanti, Laura; Evangelista, Valtere; Frassanito, Anna Maria; Gualtieri, Paolo

    2014-11-01

    Microalgae are unicellular photoautotrophs that grow in any habitat from fresh and saline water bodies, to hot springs and ice. Microalgae can be used as indicators to monitor water ecosystem conditions. These organisms react quickly and predictably to a broad range of environmental stressors, thus providing early signals of a changing environment. When grown extensively, microalgae may produce harmful effects on marine or freshwater ecology and fishery resources. Rapid and accurate recognition and classification of microalgae is one of the most important issues in water resource management. In this paper, a methodology for automatic and real time identification and enumeration of microalgae by means of image analysis is presented. The methodology is based on segmentation, shape feature extraction, pigment signature determination and neural network grouping; it attained 98.6% accuracy from a set of 53,869 images of 23 different microalgae representing the major algal phyla. In our opinion this methodology partly overcomes the lack of automated identification systems and is on the forefront of developing a computer-based image processing technique to automatically detect, recognize, identify and enumerate microalgae genera and species from all the divisions. This methodology could be useful for an appropriate and effective water resource management.

  15. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique.

    PubMed

    Selmeci, László; Seres, Leila; Antal, Magda; Lukács, Júlia; Regöly-Mérei, Andrea; Acsády, György

    2005-01-01

    Oxidative stress is known to be involved in many human pathological processes. Although there are numerous methods available for the assessment of oxidative stress, most of them are still not easily applicable in a routine clinical laboratory due to the complex methodology and/or lack of automation. In research into human oxidative stress, the simplification and automation of techniques represent a key issue from a laboratory point of view at present. In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. Here we describe in detail an automated version of the originally published microplate-based technique that we adapted for a Cobas Mira Plus clinical chemistry analyzer. AOPP reference values were measured in plasma samples from 266 apparently healthy volunteers (university students; 81 male and 185 female subjects) with a mean age of 21.3 years (range 18-33). Over a period of 18 months we determined AOPP concentrations in more than 300 patients in our department. Our experiences appear to demonstrate that this technique is especially suitable for monitoring oxidative stress in critically ill patients (sepsis, reperfusion injury, heart failure) even at daily intervals, since AOPP exhibited rapid responses in both directions. We believe that the well-established relationship between AOPP response and induced damage makes this simple, fast and inexpensive automated technique applicable in daily routine laboratory practice for assessing and monitoring oxidative stress in critically ill or other patients.

  16. Mass spectrometry-based monitoring of millisecond protein–ligand binding dynamics using an automated microfluidic platform

    SciTech Connect

    Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D.; Orton, Daniel J.; Geng, Tao; Baker, Erin S.; Kelly, Ryan T.

    2016-01-01

    Characterizing protein-ligand binding dynamics is crucial for understanding protein function and developing new therapeutic agents. We have developed a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and on-chip electrospray ionization to perform label-free, solution-based monitoring of protein-ligand binding dynamics. This platform offers many advantages including automated processing, rapid mixing, and low sample consumption.

  17. Evaluating the Validity of an Automated Device for Asthma Monitoring for Adolescents: Correlational Design

    PubMed Central

    Belyea, Michael J; Sterling, Mark; Bocko, Mark F

    2015-01-01

    Background Symptom monitoring is a cornerstone of asthma self-management. Conventional methods of symptom monitoring have fallen short in producing objective data and eliciting patients’ consistent adherence, particularly in teen patients. We have recently developed an Automated Device for Asthma Monitoring (ADAM) using a consumer mobile device as a platform to facilitate continuous and objective symptom monitoring in adolescents in vivo. Objective The objectives of the study were to evaluate the validity of the device using spirometer data, fractional exhaled nitric oxide (FeNO), existing measures of asthma symptoms/control and health care utilization data, and to examine the sensitivity and specificity of the device in discriminating asthma cases from nonasthma cases. Methods A total of 84 teens (42 teens with a current asthma diagnosis; 42 without asthma) aged between 13 and 17 years participated in the study. All participants used ADAM for 7 consecutive days during which participants with asthma completed an asthma diary two times a day. ADAM recorded the frequency of coughing for 24 hours throughout the 7-day trial. Pearson correlation and multiple regression were used to examine the relationships between ADAM data and asthma control, quality of life, and health care utilization at the time of the 7-day trial and 3 months later. A receiver operating characteristic (ROC) curve analysis was conducted to examine sensitivity and specificity based on the area under the curve (AUC) as an indicator of the device’s capacity to discriminate between asthma versus nonasthma cases. Results ADAM data (cough counts) were negatively associated with forced expiratory volume in first second of expiration (FEV1) (r=–.26, P=.05), forced vital capacity (FVC) (r=–.31, P=.02), and overall asthma control (r=–.41, P=.009) and positively associated with daily activity limitation (r=.46, P=.01), nighttime (r=.40, P=.02) and daytime symptoms (r=.38, P=.02), and health care

  18. Spectroscopic Online Monitoring for Process Control and Safeguarding of Radiochemical Fuel Reprocessing Streams - 13553

    SciTech Connect

    Bryan, S.A.; Levitskaia, T.G.; Casella, Amanda; Peterson, James

    2013-07-01

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper discusses application of absorption and vibrational spectroscopic techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical safeguards and process control. (authors)

  19. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain....

  20. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain....

  1. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain....

  2. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain....

  3. 41 CFR 102-34.75 - Who is responsible for monitoring our compliance with fuel economy standards for motor vehicles...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monitoring our compliance with fuel economy standards for motor vehicles we obtain? 102-34.75 Section 102-34... Vehicles § 102-34.75 Who is responsible for monitoring our compliance with fuel economy standards for motor... economy standards for motor vehicles they obtain....

  4. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  5. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Boyer, B. D.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2010-11-24

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  6. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents.

    PubMed

    Ohyama, Seiichi; Abe, Keiko; Ohsumi, Hitoshi; Kobayashi, Hirokazu; Miyazaki, Naotsugu; Miyadera, Koji; Akasaka, Kin-ichi

    2009-06-01

    Fully automated measuring equipment for aqueous boron (referred to as the online boron monitor) was developed on the basis of a rapid potentiometric determination method using a commercial BF4(-) ion-selective electrode (ISE). The equipment can measure boron compounds with concentration ranging from a few to several hundred mg/L, and the measurement is completed in less than 20 min without any pretreatment of the sample. In the monitor, a series of operations for the measurement, i.e., sampling and dispensing of the sample, addition of the chemicals, acquisition and processing of potentiometric data, rinsing of the measurement cell, and calibration of the BF4(-) ISE, is automated. To demonstrate the performance, we installed the monitor in full-scale coal-fired power plants and measured the effluent from a flue gas desulfurization unit. The boron concentration in the wastewater varied significantly depending on the type of coal and the load of power generation. An excellent correlation (R2 = 0.987) was obtained in the measurements between the online boron monitor and inductively coupled plasma atomic emission spectrometry, which proved that the developed monitor can serve as a useful tool for managing boron emission in industrial process effluent.

  7. Fully automated measuring equipment for aqueous boron and its application to online monitoring of industrial process effluents

    SciTech Connect

    Seiichi Ohyama; Keiko Abe; Hitoshi Ohsumi; Hirokazu Kobayashi; Naotsugu Miyazaki; Koji Miyadera; Kin-ichi Akasaka

    2009-06-15

    Fully automated measuring equipment for aqueous boron (referred to as the online boron monitor) was developed on the basis of a rapid potentiometric determination method using a commercial BF{sub 4}{sup -} ion-selective electrode (ISE). The equipment can measure boron compounds with concentration ranging from a few to several hundred mg/L, and the measurement is completed in less than 20 min without any pretreatment of the sample. In the monitor, a series of operations for the measurement, i.e., sampling and dispensing of the sample, addition of the chemicals, acquisition and processing of potentiometric data, rinsing of the measurement cell, and calibration of the BF{sub 4}{sup -} ISE, is automated. To demonstrate the performance, we installed the monitor in full-scale coal-fired power plants and measured the effluent from a flue gas desulfurization unit. The boron concentration in the wastewater varied significantly depending on the type of coal and the load of power generation. An excellent correlation (R{sup 2} = 0.987) was obtained in the measurements between the online boron monitor and inductively coupled plasma atomic emission spectrometry, which proved that the developed monitor can serve as a useful tool for managing boron emission in industrial process effluent. 22 refs., 6 figs.

  8. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation

    NASA Astrophysics Data System (ADS)

    Rainieri, Carlo; Fabbrocino, Giovanni

    2015-08-01

    In the last few decades large research efforts have been devoted to the development of methods for automated detection of damage and degradation phenomena at an early stage. Modal-based damage detection techniques are well-established methods, whose effectiveness for Level 1 (existence) and Level 2 (location) damage detection is demonstrated by several studies. The indirect estimation of tensile loads in cables and tie-rods is another attractive application of vibration measurements. It provides interesting opportunities for cheap and fast quality checks in the construction phase, as well as for safety evaluations and structural maintenance over the structure lifespan. However, the lack of automated modal identification and tracking procedures has been for long a relevant drawback to the extensive application of the above-mentioned techniques in the engineering practice. An increasing number of field applications of modal-based structural health and performance assessment are appearing after the development of several automated output-only modal identification procedures in the last few years. Nevertheless, additional efforts are still needed to enhance the robustness of automated modal identification algorithms, control the computational efforts and improve the reliability of modal parameter estimates (in particular, damping). This paper deals with an original algorithm for automated output-only modal parameter estimation. Particular emphasis is given to the extensive validation of the algorithm based on simulated and real datasets in view of continuous monitoring applications. The results point out that the algorithm is fairly robust and demonstrate its ability to provide accurate and precise estimates of the modal parameters, including damping ratios. As a result, it has been used to develop systems for vibration-based estimation of tensile loads in cables and tie-rods. Promising results have been achieved for non-destructive testing as well as continuous

  9. Monitoring polio supplementary immunization activities using an automated short text messaging system in Karachi, Pakistan

    PubMed Central

    Murtaza, A; Khoja, S; Zaidi, AK; Ali, SA

    2014-01-01

    Abstract Problem Polio remains endemic in many areas of Pakistan, including large urban centres such as Karachi. Approach During each of seven supplementary immunization activities against polio in Karachi, mobile phone numbers of the caregivers of a random sample of eligible children were obtained. A computer-based system was developed to send two questions – as short message service (SMS) texts – automatically to each number after the immunization activity: “Did the vaccinator visit your house?” and “Did the enrolled child in your household receive oral polio vaccine?” Persistent non-responders were phoned directly by an investigator. Local setting A cluster sampling technique was used to select representative samples of the caregivers of young children in Karachi in general and of such caregivers in three of the six “high-risk” districts of the city where polio cases were detected in 2011. Relevant changes In most of the supplementary immunization activities investigated, vaccine coverages estimated using the SMS system were very similar to those estimated by interviewing by phone those caregivers who never responded to the SMS messages. In the high-risk districts investigated, coverages estimated using the SMS system were also similar to those recorded – using lot quality assurance sampling – by the World Health Organization. Lessons learnt For the monitoring of coverage in supplementary immunization activities, automated SMS-based systems appear to be an attractive and relatively inexpensive option. Further research is needed to determine if coverage data collected by SMS-based systems provide estimates that are sufficiently accurate. Such systems may be useful in other large-scale immunization campaigns. PMID:24700982

  10. Reproductive management practices and performance of Canadian dairy herds using automated activity-monitoring systems.

    PubMed

    Neves, R C; LeBlanc, S J

    2015-04-01

    The objectives of this study were to describe the characteristics and motivations of producers who had implemented automated activity-monitoring (AAM) systems and to compare herd reproductive performance before and after the implementation of an AAM system and between herds with AAM and herds managing reproduction based on timed artificial insemination (TAI) or based on other programs. Freestall dairy herds located in Ontario and the western provinces of Canada and enrolled in Dairy Herd Improvement were surveyed through a mail questionnaire between April and July 2010. The data describe the characteristics and reproductive management practices of herds using AAM systems. A total of 505 questionnaires (29%) were returned. On average, 21-d pregnancy risk, conception risk, and 21-d insemination risk did not differ between herds managing reproduction based on an AAM system (18, 39, and 50%, respectively) or a TAI-based program (17, 38, and 49%, respectively). Herds that implemented an AAM system had a significant increase in annual pregnancy risk, from 15 to 17%, and insemination risk increased from 42 to 50%, whereas conception risk was unchanged (37 and 35%) following adoption of the system. The majority of respondents with AAM systems first used the system to manage reproduction in lactating cows. Most herds with AAM were performing artificial insemination twice per day, most commonly with an interval from the estrus alarm to artificial insemination of 7 to 12 h. The most commonly reported reason to adopt an AAM system was a desire to improve reproductive performance. These results support the findings from randomized trials that AAM-based programs can yield comparable reproductive performance to TAI-based programs.

  11. Microbial fuel cell-based biosensors for environmental monitoring: a review.

    PubMed

    Sun, Jian-Zhong; Peter Kingori, Gakai; Si, Rong-Wei; Zhai, Dan-Dan; Liao, Zhi-Hong; Sun, De-Zhen; Zheng, Tao; Yong, Yang-Chun

    2015-01-01

    The microbial fuel cell (MFC) is an innovative technology that was initially designed to harness energy from organic waste using microorganisms. It is striking how many promising applications beyond energy production have been explored in recent decades. In particular, MFC-based biosensors are considered to be the next generation biosensing technology for environmental monitoring. This review describes recent advances in this emerging technology of MFC-based biosensors, with a special emphasis on monitoring of biochemical oxygen demand and toxicity in the environment. The progress confirms that MFC-based biosensors could be used as self-powered portable biosensing devices with great potential in long-term and remote environmental monitoring.

  12. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors.

    PubMed

    Zhang, Yu Shrike; Aleman, Julio; Shin, Su Ryon; Kilic, Tugba; Kim, Duckjin; Mousavi Shaegh, Seyed Ali; Massa, Solange; Riahi, Reza; Chae, Sukyoung; Hu, Ning; Avci, Huseyin; Zhang, Weijia; Silvestri, Antonia; Sanati Nezhad, Amir; Manbohi, Ahmad; De Ferrari, Fabio; Polini, Alessandro; Calzone, Giovanni; Shaikh, Noor; Alerasool, Parissa; Budina, Erica; Kang, Jian; Bhise, Nupura; Ribas, João; Pourmand, Adel; Skardal, Aleksander; Shupe, Thomas; Bishop, Colin E; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali

    2017-03-06

    Organ-on-a-chip systems are miniaturized microfluidic 3D human tissue and organ models designed to recapitulate the important biological and physiological parameters of their in vivo counterparts. They have recently emerged as a viable platform for personalized medicine and drug screening. These in vitro models, featuring biomimetic compositions, architectures, and functions, are expected to replace the conventional planar, static cell cultures and bridge the gap between the currently used preclinical animal models and the human body. Multiple organoid models may be further connected together through the microfluidics in a similar manner in which they are arranged in vivo, providing the capability to analyze multiorgan interactions. Although a wide variety of human organ-on-a-chip models have been created, there are limited efforts on the integration of multisensor systems. However, in situ continual measuring is critical in precise assessment of the microenvironment parameters and the dynamic responses of the organs to pharmaceutical compounds over extended periods of time. In addition, automated and noninvasive capability is strongly desired for long-term monitoring. Here, we report a fully integrated modular physical, biochemical, and optical sensing platform through a fluidics-routing breadboard, which operates organ-on-a-chip units in a continual, dynamic, and automated manner. We believe that this platform technology has paved a potential avenue to promote the performance of current organ-on-a-chip models in drug screening by integrating a multitude of real-time sensors to achieve automated in situ monitoring of biophysical and biochemical parameters.

  13. Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring

    NASA Astrophysics Data System (ADS)

    Baglee, D.; Knowles, M. J.

    2012-05-01

    Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.

  14. InPRO: Automated Indoor Construction Progress Monitoring Using Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Hamledari, Hesam

    In this research, an envisioned automated intelligent robotic solution for automated indoor data collection and inspection that employs a series of unmanned aerial vehicles (UAV), entitled "InPRO", is presented. InPRO consists of four stages, namely: 1) automated path planning; 2) autonomous UAV-based indoor inspection; 3) automated computer vision-based assessment of progress; and, 4) automated updating of 4D building information models (BIM). The works presented in this thesis address the third stage of InPRO. A series of computer vision-based methods that automate the assessment of construction progress using images captured at indoor sites are introduced. The proposed methods employ computer vision and machine learning techniques to detect the components of under-construction indoor partitions. In particular, framing (studs), insulation, electrical outlets, and different states of drywall sheets (installing, plastering, and painting) are automatically detected using digital images. High accuracy rates, real-time performance, and operation without a priori information are indicators of the methods' promising performance.

  15. Evaluation of a Multi-Parameter Sensor for Automated, Continuous Cell Culture Monitoring in Bioreactors

    NASA Technical Reports Server (NTRS)

    Pappas, D.; Jeevarajan, A.; Anderson, M. M.

    2004-01-01

    offer automated, continuous monitoring of cell cultures with a temporal resolution of 1 minute, which is not attainable by sampling via handheld blood analyzer (i-STAT). Conclusion: The resulting bias and precision found in these cell culture-based studies is comparable to Paratrend sensor clinical results. Although the large error in p02 measurements (+/-18 mm Hg) may be acceptable for clinical applications, where Paratrend values are periodically adjusted to a BGA measurement, the O2 sensor in this bundle may not be reliable enough for the single-calibration requirement of sensors used in NASA's bioreactors. The pH and pC02 sensors in the bundle are reliable and stable over the measurement period, and can be used without recalibration to measure cell cultures in rn.jcrogravity biotechnology experiments. Future work will test additional Paratrend sensors to provide statistical assessment of sensor performance.

  16. Characterization of Used Nuclear Fuel with Multivariate Analysis for Process Monitoring

    SciTech Connect

    Dayman, Kenneth J.; Coble, Jamie B.; Orton, Christopher R.; Schwantes, Jon M.

    2014-01-01

    The Multi-Isotope Process (MIP) Monitor combines gamma spectroscopy and multivariate analysis to detect anomalies in various process streams in a nuclear fuel reprocessing system. Measured spectra are compared to models of nominal behavior at each measurement location to detect unexpected changes in system behavior. In order to improve the accuracy and specificity of process monitoring, fuel characterization may be used to more accurately train subsequent models in a full analysis scheme. This paper presents initial development of a reactor-type classifier that is used to select a reactor-specific partial least squares model to predict fuel burnup. Nuclide activities for prototypic used fuel samples were generated in ORIGEN-ARP and used to investigate techniques to characterize used nuclear fuel in terms of reactor type (pressurized or boiling water reactor) and burnup. A variety of reactor type classification algorithms, including k-nearest neighbors, linear and quadratic discriminant analyses, and support vector machines, were evaluated to differentiate used fuel from pressurized and boiling water reactors. Then, reactor type-specific partial least squares models were developed to predict the burnup of the fuel. Using these reactor type-specific models instead of a model trained for all light water reactors improved the accuracy of burnup predictions. The developed classification and prediction models were combined and applied to a large dataset that included eight fuel assembly designs, two of which were not used in training the models, and spanned the range of the initial 235U enrichment, cooling time, and burnup values expected of future commercial used fuel for reprocessing. Error rates were consistent across the range of considered enrichment, cooling time, and burnup values. Average absolute relative errors in burnup predictions for validation data both within and outside the training space were 0.0574% and 0.0597%, respectively. The errors seen in this

  17. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  18. Improved Segmented-Flow Tracer-Monitored Titration for Automated Measurement of Total Alkalinity in Seawater

    NASA Astrophysics Data System (ADS)

    Spaulding, R. S.; Hales, B.; Beck, J. C.; Degrandpre, M. D.

    2008-12-01

    The four measurable inorganic carbon parameters commonly measured as part of oceanic carbon cycle studies are total dissolved inorganic carbon (DIC), total alkalinity (AT), hydrogen ion concentration (pH) and partial pressure of CO2 (pCO2). AT determination is critical for anthropogenic CO2 inventory calculations and for quantifying CaCO3 saturation. Additionally, measurement of AT in combination with one other carbonate parameter can be used to describe the inorganic carbon equilibria. Current methods for measuring AT require calibrated volumetric flasks and burettes, gravimetry, or precise flow measurements. These methods also require analysis times of ˜15 min and sample volumes of ˜200 mL, and sample introduction is not automated, resulting in labor-intensive measurements and low temporal resolution. The Tracer Monitored Titration (TMT) system was previously developed at the University of Montana for AT measurements. The TMT is not dependent on accurate gravimetric, volumetric or flow rate measurements because it relies on a pH-sensitive indicator (tracer) to track the amount of titrant added to the sample. Sample and a titrant-indicator mixture are mechanically stirred in an optical flow cell and pH is calculated using the indicator equilibrium constant and the spectrophotometrically determined concentrations of the acid and base forms of the indicator. AT is then determined using these data in a non-linear least squares regression of the AT mass and proton balances. The precision and accuracy of the TMT are 2 and 4 micromol per kg in 16 min using 110-mL of sample. The TMT is dependent on complete mixing of titrant with the sample and accurate absorbance measurements. We have developed the segmented-flow TMT (SF- TMT) to improve on these aspects and decrease sample analysis time. The TMT uses segmented flow instead of active mixing and a white LED instead of a tungsten-halogen light source. Air is added to the liquid flow stream, producing segments of liquid

  19. Total Column Greenhouse Gas Monitoring in Central Munich: Automation and Measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Heinle, Ludwig; Paetzold, Johannes C.; Le, Long

    2016-04-01

    It is challenging to use in-situ surface measurements of CO2 and CH4 to derive emission fluxes in urban regions. Surface concentrations typically have high variance due to the influence of nearby sources, and they are strongly modulated by mesoscale transport phenomena that are difficult to simulate in atmospheric models. The integrated amount of a tracer through the whole atmosphere is a direct measure of the mass loading of the atmosphere given by emissions. Column measurements are insensitive to vertical redistribution of tracer mass, e.g. due to growth of the planetary boundary layer, and are also less influenced by nearby point sources, whose emissions are concentrated in a thin layer near the surface. Column observations are more compatible with the scale of atmospheric models and hence provide stronger constraints for inverse modeling. In Munich we are aiming at establishing a regional sensor network with differential column measurements, i.e. total column measurements of CO2 and CH4 inside and outside of the city. The inner-city station is equipped with a compact solar-tracking Fourier transform spectrometer (Bruker EM27/SUN) in the campus of Technische Universität München, and our measurements started in Aug. 2015. The measurements over seasons will be shown, as well as preliminary emission studies using these observations. To deploy the compact spectrometers for stationary monitoring of the urban emissions, an automatic protection and control system is mandatory and a challenging task. It will allow solar measurements whenever the sun is out and reliable protection of the instrument when it starts to rain. We have developed a simplified and highly reliable concept for the enclosure, aiming for a fully automated data collection station without the need of local human interactions. Furthermore, we are validating and combining the OCO-2 satellite-based measurements with our ground-based measurements. For this purpose, we have developed a software tool that

  20. Generic HPLC platform for automated enzyme reaction monitoring: Advancing the assay toolbox for transaminases and other PLP-dependent enzymes.

    PubMed

    Börner, Tim; Grey, Carl; Adlercreutz, Patrick

    2016-08-01

    Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes.

  1. Automated Collection of Real-Time Alerts of Citizens as a Useful Tool to Continuously Monitor Malodorous Emissions

    PubMed Central

    Brattoli, Magda; Mazzone, Antonio; Giua, Roberto; Assennato, Giorgio; de Gennaro, Gianluigi

    2016-01-01

    The evaluation of odor emissions and dispersion is a very arduous topic to face; the real-time monitoring of odor emissions, the identification of chemical components and, with proper certainty, the source of annoyance represent a challenge for stakeholders such as local authorities. The complaints of people, often not systematic and variously distributed, in general do not allow us to quantify the perceived annoyance. Experimental research has been performed to detect and evaluate olfactory annoyance, based on field testing of an innovative monitoring methodology grounded in automatic recording of citizen alerts. It has been applied in Taranto, in the south of Italy where a relevant industrial area is located, by using Odortel® for automated collection of citizen alerts. To evaluate its reliability, the collection system has been integrated with automated samplers, able to sample odorous air in real time, according to the citizen alerts of annoyance and, moreover, with meteorological data (especially the wind direction) and trends in odor marker compounds, recorded by air quality monitoring stations. The results have allowed us, for the first time, to manage annoyance complaints, test their reliability, and obtain information about the distribution and entity of the odor phenomena, such that we were able to identify, with supporting evidence, the source as an oil refinery plant. PMID:26927148

  2. Technical note: Validation of a commercial system for the continuous and automated monitoring of dairy cow activity.

    PubMed

    Tullo, E; Fontana, I; Gottardo, D; Sloth, K H; Guarino, M

    2016-09-01

    Current farm sizes do not allow the precise identification and tracking of individual cows and their health and behavioral records. Currently, the application of information technology within intensive dairy farming takes a key role in proper routine management to improve animal welfare and to enhance the comfort of dairy cows. An existing application based on information technology is represented by the GEA CowView system (GEA Farm Technologies, Bönen, Germany). This system is able to detect and monitor animal behavioral activities based on positioning, through the creation of a virtual map of the barn that outlines all the areas where cows have access. The aim of this study was to validate the accuracy, sensitivity, and specificity of data provided by the CowView system. The validation was performed by comparing data automatically obtained from the CowView system with those obtained by a manual labeling procedure performed on video recordings. Data used for the comparisons were represented by the zone-related activities performed by the selected dairy cows and were classified into 2 categories: activity and localization. The duration in seconds of each of the activities/localizations detected both with the manual labeling and with the automated system were used to evaluate the correlation coefficients among data; and subsequently the accuracy, sensitivity, specificity, and positive and negative predictive values of the automated monitoring system were calculated. The results of this validation study showed that the CowView automated monitoring system is able to identify the cow localization/position (alley, trough, cubicles) with high reliability in relation to the zone-related activities performed by dairy cows (accuracy higher than 95%). The results obtained support the CowView system as an innovative potential solution for the easier management of dairy cows.

  3. Technologies of Physical Monitoring and Mathematical Modeling for Estimation of Ground Forest Fuel Fire Condition

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.; Bazarov, Alexandr V.

    2016-02-01

    Description of new experimental installations for the control of parameters of environment with a view of monitoring of forest fires presented in article. Stationary and mobile variants developed. Typical results of operation of installations during a fire-dangerous season of 2015 in vicinities of Ulan-Ude (Republic Buryatiya, Russia) presented. One-dimensional mathematical model of forest fuel drying which can be used for monitoring of forest fire danger with attraction of environmental parameters data during fire-dangerous season offered. Verification of mathematical model with use of known experimental data spent.

  4. Using the source range monitor response to determine fuel relocation during the TMI-2 accident

    SciTech Connect

    Baratta, A.J.; Wu, H.Y.; Hsiao, M.Y.; Bandini, B.R.; Tolman, E.L.

    1987-01-01

    A number of researchers have analyzed the Three Mile Island Unit 2 (TMI-2) source range monitor (SRM) response during the TMI-2 accident. In each of these analyses, an intact core was assumed. Video and sonar inspections that took place during the defueling effort have shown that the core was extensively damaged. In this paper the authors report on an analysis of the TMI-2 SRM in which the times of fuel relocation were determined.

  5. A chemical sensor and biosensor based totally automated water quality monitor for extended space flight: Step 1

    NASA Technical Reports Server (NTRS)

    Smith, Robert S.

    1993-01-01

    The result of a literature search to consider what technologies should be represented in a totally automated water quality monitor for extended space flight is presented. It is the result of the first summer in a three year JOVE project. The next step will be to build a test platform at the Authors' school, St. John Fisher College. This will involve undergraduates in NASA related research. The test flow injection analysis system will be used to test the detection limit of sensors and the performance of sensors in groups. Sensor companies and research groups will be encouraged to produce sensors which are not currently available and are needed for this project.

  6. A rapid automated procedure for laboratory and shipboard spectrophotometric measurements of seawater alkalinity: continuously monitored single-step acid additions

    NASA Astrophysics Data System (ADS)

    Liu, X.; Byrne, R. H.; Lindemuth, M.; Easley, R. A.; Patsavas, M. C.

    2012-12-01

    An automated system for shipboard and laboratory alkalinity measurements is presented. The simple system, which consists of a Dosimat titrator to deliver acid volumetrically and a USB 4000 spectrophotometer to monitor the titration progress, provides fast, precise and accurate measurements of total alkalinity for oceanographic research. The analytical method is based on single-point HCl titrations of seawater samples of a known volume; bromol cresol purple is used as an indicator to determine the final pH. Field data from an Arctic cruise demonstrates accuracy and precision around 1 micro mol/kg and a sample processing rate of 6 min per sample.

  7. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Casella, Amanda J.; Peterson, James M.; Lines, Amanda M.; Jordan, Elizabeth A.; Verdugo, Dawn E.; Skomurski, Frances N.

    2011-07-19

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the spent nuclear fuel Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved spent nuclear fuel. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. In addition, the ability for continuous on-line monitoring allows for numerous benefits. Our team experimentally assessed the potential of Raman and vis-NIR spectrophotometric techniques for on-line real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. Both techniques demonstrated robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Static spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the PUREX suite of flowsheets, including metal oxide ions, such as

  8. Fully automated digital holographic processing for monitoring the dynamics of a vesicle suspension under shear flow

    PubMed Central

    Minetti, Christophe; Podgorski, Thomas; Coupier, Gwennou; Dubois, Frank

    2014-01-01

    We investigate the dynamics of a vesicle suspension under shear flow between plates using DHM with a spatially reduced coherent source. Holograms are grabbed at a frequency of 24 frames/sec. The distribution of the vesicle suspension is obtained after numerical processing of the digital holograms sequence resulting in a 4D distribution. Obtaining this distribution is not straightforward and requires special processing to automate the analysis. We present an original method that fully automates the analysis and provides distributions that are further analyzed to extract physical properties of the fluid. Details of the numerical implementation, as well as sample experimental results are presented. PMID:24877015

  9. Development of an automated sample preparation module for environmental monitoring of biowarfare agents.

    PubMed

    Hindson, Benjamin J; Brown, Steve B; Marshall, Graham D; McBride, Mary T; Makarewicz, Anthony J; Gutierrez, Dora M; Wolcott, Duane K; Metz, Thomas R; Madabhushi, Ramakrishna S; Dzenitis, John M; Colston, Billy W

    2004-07-01

    An automated sample preparation module, based upon sequential injection analysis (SIA), has been developed for use within an autonomous pathogen detection system. The SIA system interfaced aerosol sampling with multiplexed microsphere immunoassay-flow cytometric detection. Metering and sequestering of microspheres using SIA was found to be reproducible and reliable, over 24-h periods of autonomous operation. Four inbuilt immunoassay controls showed excellent immunoassay and system stability over five days of unattended continuous operation. Titration curves for two biological warfare agents, Bacillus anthracis and Yersinia pestis, obtained using the automated SIA procedure were shown to be similar to those generated using a manual microtiter plate procedure.

  10. Implementation of a novel postoperative monitoring system using automated Modified Early Warning Scores (MEWS) incorporating end-tidal capnography.

    PubMed

    Blankush, Joseph M; Freeman, Robbie; McIlvaine, Joy; Tran, Trung; Nassani, Stephen; Leitman, I Michael

    2016-10-20

    Modified Early Warning Scores (MEWS) provide real-time vital sign (VS) trending and reduce ICU admissions in post-operative patients. These early warning calculations classically incorporate oxygen saturation, heart rate, respiratory rate, systolic blood pressure, and temperature but have not previously included end-tidal CO2 (EtCO2), more recently identified as an independent predictor of critical illness. These systems may be subject to failure when physiologic data is incorrectly measured, leading to false alarms and increased workload. This study investigates whether the implementation of automated devices that utilize ongoing vital signs monitoring and MEWS calculations, inclusive of a score for end-tidal CO2 (EtCO2), can be feasibly implemented on the general care hospital floor and effectively identify derangements in a post-operative patient's condition while limiting the amount of false alarms that would serve to increase provider workload. From July to November 2014, post-operative patients meeting the inclusion criteria (BMI > 30 kg/m(2), history of obstructive sleep apnea, or the use of patient-controlled analgesia (PCA) or epidural narcotics) were monitored using automated devices that record minute-by-minute VS included in classic MEWS calculations as well as EtCO2. Automated messages via pagers were sent to providers for instances when the device measured elevated MEWS, abnormal EtCO2, and oxygen desaturations below 85 %. Data, including alarm and message details from the first 133 patients, were recorded and analyzed. Overall, 3.3 alarms and pages sounded per hour of monitoring. Device-only alarms sounded 2.7 times per hour-21 % were technical alarms. The remaining device-only alarms for concerning VS sounded 2.0/h, 70 % for falsely recorded VS. Pages for abnormal EtCO2 sounded 0.4/h (82 % false recordings) while pages for low blood oxygen saturation sounded 0.1/h (55 % false alarms). 143 times (0.1 pages/h) the devices calculated a MEWS

  11. Differential proteomic analysis of mouse macrophages exposed to adsorbate-loaded heavy fuel oil derived combustion particles using an automated sample-preparation workflow.

    PubMed

    Kanashova, Tamara; Popp, Oliver; Orasche, Jürgen; Karg, Erwin; Harndorf, Horst; Stengel, Benjamin; Sklorz, Martin; Streibel, Thorsten; Zimmermann, Ralf; Dittmar, Gunnar

    2015-08-01

    Ship diesel combustion particles are known to cause broad cytotoxic effects and thereby strongly impact human health. Particles from heavy fuel oil (HFO) operated ships are considered as particularly dangerous. However, little is known about the relevant components of the ship emission particles. In particular, it is interesting to know if the particle cores, consisting of soot and metal oxides, or the adsorbate layers, consisting of semi- and low-volatile organic compounds and salts, are more relevant. We therefore sought to relate the adsorbates and the core composition of HFO combustion particles to the early cellular responses, allowing for the development of measures that counteract their detrimental effects. Hence, the semi-volatile coating of HFO-operated ship diesel engine particles was removed by stepwise thermal stripping using different temperatures. RAW 264.7 macrophages were exposed to native and thermally stripped particles in submersed culture. Proteomic changes were monitored by two different quantitative mass spectrometry approaches, stable isotope labeling by amino acids in cell culture (SILAC) and dimethyl labeling. Our data revealed that cells reacted differently to native or stripped HFO combustion particles. Cells exposed to thermally stripped particles showed a very differential reaction with respect to the composition of the individual chemical load of the particle. The cellular reactions of the HFO particles included reaction to oxidative stress, reorganization of the cytoskeleton and changes in endocytosis. Cells exposed to the 280 °C treated particles showed an induction of RNA-related processes, a number of mitochondria-associated processes as well as DNA damage response, while the exposure to 580 °C treated HFO particles mainly induced the regulation of intracellular transport. In summary, our analysis based on a highly reproducible automated proteomic sample-preparation procedure shows a diverse cellular response, depending on the

  12. New York City Police Department Automated Fuel Monitoring System. Volume II. Documentation Report.

    DTIC Science & Technology

    1981-11-16

    1840 Victory Blvd. Raleigh, NC 27610 P.O. Box 5005 (919) 833-2250 Gendale, CA 91201 (213) 240-2540 E.J. Ward, Inc. Tokheim Corporation 8801 Tradeway...1600 Wabash Ave. San Antonio, TX 78217 Fort Wayne, IN 46801 (512) 824-7383 (219) 423-2552 E.S.I. Tuthill Corporation 1841 E. 3rd St. Fill-Rite Division...reports, and generally run the system. 1) 7wo (2) Cathode Ray Tube Terminals each with 1920 character display for use with IBM S/370 or S/370 comnatible

  13. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells.

    PubMed

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-03-09

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level.

  14. A New, Scalable and Low Cost Multi-Channel Monitoring System for Polymer Electrolyte Fuel Cells

    PubMed Central

    Calderón, Antonio José; González, Isaías; Calderón, Manuel; Segura, Francisca; Andújar, José Manuel

    2016-01-01

    In this work a new, scalable and low cost multi-channel monitoring system for Polymer Electrolyte Fuel Cells (PEFCs) has been designed, constructed and experimentally validated. This developed monitoring system performs non-intrusive voltage measurement of each individual cell of a PEFC stack and it is scalable, in the sense that it is capable to carry out measurements in stacks from 1 to 120 cells (from watts to kilowatts). The developed system comprises two main subsystems: hardware devoted to data acquisition (DAQ) and software devoted to real-time monitoring. The DAQ subsystem is based on the low-cost open-source platform Arduino and the real-time monitoring subsystem has been developed using the high-level graphical language NI LabVIEW. Such integration can be considered a novelty in scientific literature for PEFC monitoring systems. An original amplifying and multiplexing board has been designed to increase the Arduino input port availability. Data storage and real-time monitoring have been performed with an easy-to-use interface. Graphical and numerical visualization allows a continuous tracking of cell voltage. Scalability, flexibility, easy-to-use, versatility and low cost are the main features of the proposed approach. The system is described and experimental results are presented. These results demonstrate its suitability to monitor the voltage in a PEFC at cell level. PMID:27005630

  15. Development of a Fully Automated, GPS Based Monitoring System for Disaster Prevention and Emergency Preparedness: PPMS+RT

    PubMed Central

    Bond, Jason; Kim, Don; Chrzanowski, Adam; Szostak-Chrzanowski, Anna

    2007-01-01

    The increasing number of structural collapses, slope failures and other natural disasters has lead to a demand for new sensors, sensor integration techniques and data processing strategies for deformation monitoring systems. In order to meet extraordinary accuracy requirements for displacement detection in recent deformation monitoring projects, research has been devoted to integrating Global Positioning System (GPS) as a monitoring sensor. Although GPS has been used for monitoring purposes worldwide, certain environments pose challenges where conventional processing techniques cannot provide the required accuracy with sufficient update frequency. Described is the development of a fully automated, continuous, real-time monitoring system that employs GPS sensors and pseudolite technology to meet these requirements in such environments. Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based upon client needs. A test was conducted that illustrated a 10 mm displacement was remotely detected at a target point using the designed system. This information could then be used to signal an alarm if conditions are deemed to be unsafe.

  16. Neutron Monitoring Systems for the Characterisation of Nuclear Fuel and Waste - Methodology and Applications - 12055

    SciTech Connect

    Sokcic-Kostic, M.; Langer, F.; Schultheis, R.; Braehler, G.

    2012-07-01

    The most characteristic behaviour of nuclear fuel or waste contaminated by fission material or isotopes resulting from fissile processes is the emission of neutrons. At the same time because of the high penetration of the material by neutrons, they are an ideal probe for measurement by non-destructive assay. The detection and data analysis in this case is quite different compared to methods using gamma measuring techniques. Neutron detection monitors have been in routine operation for a long time, showing their excellent detection capabilities. The neutron monitors designed for different applications have demonstrated their capabilities during daily operation in the field of burned up fuel elements and for nuclear waste with alpha activity. Lately the data analysis was refined and the quality of the results was improved by using MCNP calculations. Last but not least the layout and the calibration of neutron monitors are nowadays unfeasible without support by MCNP simulations. In the field of non-destructive assay the neutron monitors are undisputed. (authors)

  17. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    PubMed

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

  18. Hanford Spent Nuclear Fuel Project evaluation of multi-canister overpack venting and monitoring options during staging of K basins fuel

    SciTech Connect

    Wiborg, J.C.

    1995-12-01

    This engineering study recommends whether multi-canister overpacks containing spent nuclear fuel from the Hanford K Basins should be staged in vented or a sealed, but ventable, condition during staging at the Canister Storage Building prior to hot vacuum conditioning and interim storage. The integrally related issues of MCO monitoring, end point criteria, and assessing the practicality of avoiding venting and Hot Vacuum Conditioning for a portion of the spent fuel are also considered.

  19. Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks.

    PubMed

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen

    2013-11-01

    One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine learning-based method for assessing activity quality in smart homes. To validate our approach we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We observed a statistically significant correlation (r=0.79) between automated assessment of task quality and direct observation scores. Using machine learning techniques to predict the cognitive health of the participants based on task quality is accomplished with an AUC value of 0.64. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments.

  20. Automated Performance Monitoring Data Analysis and Reporting within the Open Source R Environment

    NASA Astrophysics Data System (ADS)

    Kennel, J.; Tonkin, M. J.; Faught, W.; Lee, A.; Biebesheimer, F.

    2013-12-01

    Environmental scientists encounter quantities of data at a rate that in many cases outpaces our ability to appropriately store, visualize and convey the information. The free software environment, R, provides a framework for efficiently processing, analyzing, depicting and reporting on data from a multitude of formats in the form of traceable and quality-assured data summary reports. Automated data summary reporting leverages document markup languages such as markdown, HTML, or LaTeX using R-scripts capable of completing a variety of simple or sophisticated data processing, analysis and visualization tasks. Automated data summary reports seamlessly integrate analysis into report production with calculation outputs - such as plots, maps and statistics - included alongside report text. Once a site-specific template is set up, including data types, geographic base data and reporting requirements, reports can be (re-)generated trivially as the data evolve. The automated data summary report can be a stand-alone report, or it can be incorporated as an attachment to an interpretive report prepared by a subject-matter expert, thereby providing the technical basis to report on and efficiently evaluate large volumes of data resulting in a concise interpretive report. Hence, the data summary report does not replace the scientist, but relieves them of repetitive data processing tasks, facilitating a greater level of analysis. This is demonstrated using an implementation developed for monthly groundwater data reporting for a multi-constituent contaminated site, highlighting selected analysis techniques that can be easily incorporated in a data summary report.

  1. Automated delineation and characterization of watersheds for more than 3,000 surface-water-quality monitoring stations active in 2010 in Texas

    USGS Publications Warehouse

    Archuleta, Christy-Ann M.; Gonzales, Sophia L.; Maltby, David R.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality, developed computer scripts and applications to automate the delineation of watershed boundaries and compute watershed characteristics for more than 3,000 surface-water-quality monitoring stations in Texas that were active during 2010. Microsoft Visual Basic applications were developed using ArcGIS ArcObjects to format the source input data required to delineate watershed boundaries. Several automated scripts and tools were developed or used to calculate watershed characteristics using Python, Microsoft Visual Basic, and the RivEX tool. Automated methods were augmented by the use of manual methods, including those done using ArcMap software. Watershed boundaries delineated for the monitoring stations are limited to the extent of the Subbasin boundaries in the USGS Watershed Boundary Dataset, which may not include the total watershed boundary from the monitoring station to the headwaters.

  2. Failed fuel monitoring and surveillance techniques for liquid metal cooled fast reactors

    SciTech Connect

    Lambert, J.D.B.; Mikaili, R.; Gross, K.C.; Strain, R.V.; Aoyama, T.; Ukai, S.; Nomura, S.; Nakae, N.

    1995-05-01

    The Experimental Breeder Reactor II (EBR-II) has been used as a facility for irradiation of LMR fuels and components for thirty years. During this time many tests of experimental fuel were continued to cladding breach in order to study modes of element failure; the methods used to identify such failures are described in a parallel paper. This paper summarizes experience of monitoring the delayed-neutron (DN) and fission-gas (FG) release behavior of a smaller number of elements that continued operation in the run-beyond-cladding-breach (RBCB) mode. The scope of RBCB testing, the methods developed to characterize failures on-line, and examples of DN/FG behavior are described.

  3. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  4. Implementation and Impact of an Automated Group Monitoring and Feedback System to Promote Hand Hygiene Among Health Care Personnel

    PubMed Central

    Conway, Laurie J.; Riley, Linda; Saiman, Lisa; Cohen, Bevin; Alper, Paul; Larson, Elaine L.

    2015-01-01

    Article-at-a-Glance Background Despite substantial evidence to support the effectiveness of hand hygiene for preventing health care–associated infections, hand hygiene practice is often inadequate. Hand hygiene product dispensers that can electronically capture hand hygiene events have the potential to improve hand hygiene performance. A study on an automated group monitoring and feedback system was implemented from January 2012 through March 2013 at a 140-bed community hospital. Methods An electronic system that monitors the use of sanitizer and soap but does not identify individual health care personnel was used to calculate hand hygiene events per patient-hour for each of eight inpatient units and hand hygiene events per patient-visit for the six outpatient units. Hand hygiene was monitored but feedback was not provided during a six-month baseline period and three-month rollout period. During the rollout, focus groups were conducted to determine preferences for feedback frequency and format. During the six-month intervention period, graphical reports were e-mailed monthly to all managers and administrators, and focus groups were repeated. Results After the feedback began, hand hygiene increased on average by 0.17 events/patient-hour in inpatient units (interquartile range = 0.14, p = .008). In outpatient units, hand hygiene performance did not change significantly. A variety of challenges were encountered, including obtaining accurate census and staffing data, engendering confidence in the system, disseminating information in the reports, and using the data to drive improvement. Conclusions Feedback via an automated system was associated with improved hand hygiene performance in the short term. PMID:25252389

  5. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    NASA Astrophysics Data System (ADS)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining

  6. Geant4 Model Validation of Compton Suppressed System for Process monitoring of Spent Fuel

    SciTech Connect

    Bender, Sarah; Unlu, Kenan; Orton, Christopher R.; Schwantes, Jon M.

    2013-05-01

    Nuclear material accountancy is of continuous concern for the regulatory, safeguards, and verification communities. In particular, spent nuclear fuel reprocessing facilities pose one of the most difficult accountancy challenges: monitoring highly radioactive, fluid sample streams in near real-time. The Multi-Isotope Process monitor will allow for near-real-time indication of process alterations using passive gamma-ray detection coupled with multivariate analysis techniques to guard against potential material diversion or to enhance domestic process monitoring. The Compton continuum from the dominant 661.7 keV 137Cs fission product peak obscures lower energy lines which could be used for spectral and multivariate analysis. Compton suppression may be able to mitigate the challenges posed by the high continuum caused by scattering. A Monte Carlo simulation using the Geant4 toolkit is being developed to predict the expected suppressed spectrum from spent fuel samples to estimate the reduction in the Compton continuum. Despite the lack of timing information between decay events in the particle management of Geant4, encouraging results were recorded utilizing only the information within individual decays without accounting for accidental coincidences. The model has been validated with single and cascade decay emitters in two steps: as an unsuppressed system and with suppression activated. Results of the Geant4 model validation will be presented.

  7. Artificial Neural Network-Based Monitoring of the Fuel Assembly Temperature Sensor and FPGA Implementation

    SciTech Connect

    2015-07-01

    Numerous methods have been developed around the world to model the dynamic behavior and detect a faulty operating mode of a temperature sensor. In this context, we present in this study a new method based on the dependence between the fuel assembly temperature profile on control rods positions, and the coolant flow rate in a nuclear reactor. This seems to be possible since the insertion of control rods at different axial positions and variations in flow rate of the reactor coolant results in different produced thermal power in the reactor. This is closely linked to the instant fuel rod temperature profile. In a first step, we selected parameters to be used and confirmed the adequate correlation between the chosen parameters and those to be estimated by the proposed monitoring system. In the next step, we acquired and de-noised the data of corresponding parameters, the qualified data is then used to design and train the artificial neural network. The effective data denoising was done by using the wavelet transform to remove a various kind of artifacts such as inherent noise. With the suitable choice of wavelet level and smoothing method, it was possible for us to remove all the non-required artifacts with a view to verify and analyze the considered signal. In our work, several potential mother wavelet functions (Haar, Daubechies, Bi-orthogonal, Reverse Bi-orthogonal, Discrete Meyer and Symlets) were investigated to find the most similar function with the being processed signals. To implement the proposed monitoring system for the fuel rod temperature sensor (03 wire RTD sensor), we used the Bayesian artificial neural network 'BNN' technique to model the dynamic behavior of the considered sensor, the system correlate the estimated values with the measured for the concretization of the proposed system we propose an FPGA (field programmable gate array) implementation. The monitoring system use the correlation. (authors)

  8. Automated monitoring of early neurobehavioral changes in mice following traumatic brain injury

    PubMed Central

    Qu, Wenrui; Liu, Nai-kui; Xie, Xin-min (Simon); Li, Rui; Xu, Xiao-ming

    2016-01-01

    Traumatic brain injury often causes a variety of behavioral and emotional impairments that can develop into chronic disorders. Therefore, there is a need to shift towards identifying early symptoms that can aid in the prediction of traumatic brain injury outcomes and behavioral endpoints in patients with traumatic brain injury after early interventions. In this study, we used the SmartCage system, an automated quantitative approach to assess behavior alterations in mice during an early phase of traumatic brain injury in their home cages. Female C57BL/6 adult mice were subjected to moderate controlled cortical impact (CCI) injury. The mice then received a battery of behavioral assessments including neurological score, locomotor activity, sleep/wake states, and anxiety-like behaviors on days 1, 2, and 7 after CCI. Histological analysis was performed on day 7 after the last assessment. Spontaneous activities on days 1 and 2 after injury were significantly decreased in the CCI group. The average percentage of sleep time spent in both dark and light cycles were significantly higher in the CCI group than in the sham group. For anxiety-like behaviors, the time spent in a light compartment and the number of transitions between the dark/light compartments were all significantly reduced in the CCI group than in the sham group. In addition, the mice suffering from CCI exhibited a preference of staying in the dark compartment of a dark/light cage. The CCI mice showed reduced neurological score and histological abnormalities, which are well correlated to the automated behavioral assessments. Our findings demonstrate that the automated SmartCage system provides sensitive and objective measures for early behavior changes in mice following traumatic brain injury. PMID:27073377

  9. Heavy Oil Process Monitor: Automated On-Column Asphaltene Precipitation and Re-Dissolution

    SciTech Connect

    John F. Schabron; Joseph F. Rovani; Mark Sanderson

    2007-03-31

    An automated separation technique was developed that provides a new approach to measuring the distribution profiles of the most polar, or asphaltenic components of an oil, using a continuous flow system to precipitate and re-dissolve asphaltenes from the oil. Methods of analysis based on this new technique were explored. One method based on the new technique involves precipitation of a portion of residua sample in heptane on a polytetrafluoroethylene-packed (PTFE) column. The precipitated material is re-dissolved in three steps using solvents of increasing polarity: cyclohexane, toluene, and methylene chloride. The amount of asphaltenes that dissolve in cyclohexane is a useful diagnostic of the thermal history of oil, and its proximity to coke formation. For example, about 40 % (w/w) of the heptane asphaltenes from unpyrolyzed residua dissolves in cyclohexane. As pyrolysis progresses, this number decrease to below 15% as coke and toluene insoluble pre-coke materials appear. Currently, the procedure for the isolation of heptane asphaltenes and the determination of the amount of asphaltenes soluble in cyclohexane spans three days. The automated procedure takes one hour. Another method uses a single solvent, methylene chloride, to re-dissolve the material that precipitates on heptane on the PTFE-packed column. The area of this second peak can be used to calculate a value which correlates with gravimetric asphaltene content. Currently the gravimetric procedure to determine asphaltenes takes about 24 hours. The automated procedure takes 30 minutes. Results for four series of original and pyrolyzed residua were compared with data from the gravimetric methods. Methods based on the new on-column precipitation and re-dissolution technique provide significantly more detail about the polar constituent's oils than the gravimetric determination of asphaltenes.

  10. The development of an automated flight test management system for flight test planning and monitoring

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  11. Characterization and Application of Superlig 620 Solid Phase Extraction Resin for Automated Process Monitoring of 90Sr

    SciTech Connect

    Devol, Timothy A.; Clements, John P.; Farawila, Anne F.; O'Hara, Matthew J.; Egorov, Oleg; Grate, Jay W.

    2009-11-30

    Characterization of SuperLig® 620 solid phase extraction resin was performed in order to develop an automated on-line process monitor for 90Sr. The main focus was on strontium separation from barium, with the goal of developing an automated separation process for 90Sr in high-level wastes. High-level waste contains significant 137Cs activity, of which 137mBa is of great concern as an interference to the quantification of strontium. In addition barium, yttrium and plutonium were studied as potential interferences to strontium uptake and detection. A number of complexants were studied in a series of batch Kd experiments, as SuperLig® 620 was not previously known to elute strontium in typical mineral acids. The optimal separation was found using a 2M nitric acid load solution with a strontium elution step of ~0.49M ammonium citrate and a barium elution step of ~1.8M ammonium citrate. 90Sr quantification of Hanford high-level tank waste was performed on a sequential injection analysis microfluidics system coupled to a flow-cell detector. The results of the on-line procedure are compared to standard radiochemical techniques in this paper.

  12. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed

    Chouler, Jon; Di Lorenzo, Mirella

    2015-07-16

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.

  13. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed Central

    Chouler, Jon; Di Lorenzo, Mirella

    2015-01-01

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries. PMID:26193327

  14. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers.

    PubMed

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-21

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  15. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    NASA Astrophysics Data System (ADS)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  16. A Camera and Multi-Sensor Automated Station Design for Polar Physical and Biological Systems Monitoring: AMIGOS

    NASA Astrophysics Data System (ADS)

    Bohlander, J. A.; Ross, R.; Scambos, T.; Haran, T. M.; Bauer, R. J.

    2012-12-01

    The Automated Meteorology - Ice/Indigenous species - Geophysics Observation System (AMIGOS) consists of a set of measurement instruments and camera(s) controlled by a single-board computer with a simplified Linux operating system and an Iridium satellite modem supporting two-way communication. Primary features of the system relevant to polar operations are low power requirements, daily data uploading, reprogramming, tolerance for low temperatures, and various approaches for automatic resets and recovery from low power or cold shut-down. Instruments include a compact weather station, C/A or dual-frequency GPS, solar flux and reflectivity sensors, sonic snow gages, simplified radio-echo-sounder, and resistance thermometer string in the firn column. In the current state of development, there are two basic designs. One is intended for in situ observations of glacier conditions. The other design supports a high-resolution camera for monitoring biological or geophysical systems from short distances (100 m to 20 km). The stations have been successfully used in several locations for operational support, monitoring rapid ice changes in response to climate change or iceberg drift, and monitoring penguin colony activity. As of June, 2012, there are 9 AMIGOS systems installed, all on the Antarctic continent. The stations are a working prototype for a planned series of upgraded stations, currently termed 'Sentinels'. These stations would carry further instrumentation, communications, and processing capability to investigate ice - ocean interaction from ice tongue, ice shelf, or fjord coastline areas.

  17. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    PubMed Central

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-01-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips. PMID:27098564

  18. Quality control of CT systems by automated monitoring of key performance indicators: a two-year study.

    PubMed

    Nowik, Patrik; Bujila, Robert; Poludniowski, Gavin; Fransson, Annette

    2015-07-08

    The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two-year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service.

  19. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    Hall, Gregory Graham

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  20. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation (2005)

    SciTech Connect

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  1. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island - Unit 2 Independent Spent Fuel Storage Installation

    SciTech Connect

    Gregory G. Hall

    2003-02-01

    This report presents the results of the 2002 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  2. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  3. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect

    G. G. Hall

    2000-02-01

    This report presents the results of the 1999 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  4. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation (2005)

    SciTech Connect

    J. R. Newkirk; F. J. Borst

    2001-02-01

    This report presents the results of the 2003 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  5. An Automated Electronic Tongue for In-Situ Quick Monitoring of Trace Heavy Metals in Water Environment

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Li, Yi; Gao, Xiaoming; Guo, Hongsun; Zhao, Huixin; Wang, Ping

    2009-05-01

    An automated electronic tongue instrumentation has been developed for in-situ concentration determination of trace heavy metals in water environment. The electronic tongue contains two main parts. The sensor part consists of a silicon-based Hg-coated Au microelectrodes array (MEA) for the detection of Zn(II), Cd(II), Pb(II) and Cu(II) and a multiple light-addressable potentiometric sensor (MLAPS) for the detection of Fe(III) and Cr(VI). The control part employs pumps, valves and tubes to enable the pick-up and pretreatment of aqueous sample. The electronic tongue realized detection of the six metals mentioned above at part-per-billion (ppb) level without manual operation. This instrumentation will have wide application in quick monitoring and prediction the heavy metal pollution in lakes and oceans.

  6. Automated water monitor system field demonstration test report. Volume 2: Technical summary

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.

    1981-01-01

    The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported.

  7. A new state-observer of the inner PEM fuel cell pressures for enhanced system monitoring

    NASA Astrophysics Data System (ADS)

    Bethoux, Olivier; Godoy, Emmanuel; Roche, Ivan; Naccari, Bruno; Amira Taleb, Miassa; Koteiche, Mohamad; Nassif, Younane

    2014-06-01

    In embedded systems such as electric vehicles, Proton exchange membrane fuel cell (PEMFC) has been an attractive technology for many years especially in automotive applications. This paper deals with PEMFC operation monitoring which is a current target for improvement for attaining extended durability. In this paper, supervision of the PEMFC is done using knowledge-based models. Without extra sensors, it enables a clear insight of state variables of the gases in the membrane electrode assembly (MEA) which gives the PEMFC controller the ability to prevent abnormal operating conditions and associated irreversible degradations. First, a new state-observer oriented model of the PEM fuel cell is detailed. Based on this model, theoretical and practical observability issues are discussed. This analysis shows that convection phenomena can be considered negligible from the dynamic point of view; this leads to a reduced model. Finally a state-observer enables the estimation of the inner partial pressure of the cathode by using only the current and voltage measurements. This proposed model-based approach has been successfully tested on a PEM fuel cell simulator using a set of possible fault scenarios.

  8. Application of proton exchange membrane fuel cells for the monitoring and direct usage of biohydrogen produced by Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Oncel, S.; Vardar-Sukan, F.

    Photo-biologically produced hydrogen by Chlamydomonas reinhardtii is integrated with a proton exchange (PEM) fuel cell for online electricity generation. To investigate the fuel cell efficiency, the effect of hydrogen production on the open circuit fuel cell voltage is monitored during 27 days of batch culture. Values of volumetric hydrogen production, monitored by the help of the calibrated water columns, are related with the open circuit voltage changes of the fuel cell. From the analysis of this relation a dead end configuration is selected to use the fuel cell in its best potential. After the open circuit experiments external loads are tested for their effects on the fuel cell voltage and current generation. According to the results two external loads are selected for the direct usage of the fuel cell incorporating with the photobioreactors (PBR). Experiments with the PEM fuel cell generate a current density of 1.81 mA cm -2 for about 50 h with 10 Ω load and 0.23 mA cm -2 for about 80 h with 100 Ω load.

  9. Monitoring shipping fuel sulfur content regulations with in-situ measurements of shipping emissions

    NASA Astrophysics Data System (ADS)

    Kattner, Lisa; Mathieu-Ueffing, Barbara; Seyler, André; Aulinger, Armin; Burrows, John; Matthias, Volker; Neumann, Daniel; Richter, Andreas; Schmolke, Stefan; Theobald, Norbert; Wittrock, Folkard

    2015-04-01

    Air pollution from shipping emissions contributes to overall air quality problems and has direct health effects on the population especially in coastal regions and harbor cities. In order to reduce these emissions the International Maritime Organisation (IMO) has tightened the regulations for air pollution from ships. Since January 1st 2015, the allowed amount of sulfur in shipping fuel which is responsible for SO2 emissions, has dropped from 1% to 0,1% in the Emission Control area (ECA) that combines the North Sea and Baltic Sea. This effectively excludes the use of heavy fuel oils by ships in this area. However, until now there is no regular monitoring system available to verify that ships are complying with these new regulations. The project MeSMarT (Measurements of shipping emissions in the marine troposphere) has been established as a cooperation between the University of Bremen and the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) with the support of the Helmholtz-Zentrum Geesthacht to estimate the influence of shipping emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. Within the project, several hundred ships have been monitored with focus on their sulfur fuel content, which is estimated by the ratio of SO2 and CO2, both measured with in-situ instruments from measurement stations near the passing ships. It is shown how well ships have been complying to the sulfur content regulation so far and which ships and how many are affected by the new regulations. Three different measurement sites, ranging from measurements near the Elbe River to open sea measurements from a research vessel are compared to show if the distance to the coast has an effect on the fuel quality. First results from very recent measurements of 2015 will be presented to show how the new regulations are implemented and how this will result in reduced SO2 and thus better

  10. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.

    PubMed

    Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J

    2006-01-01

    An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.

  11. Spectroscopic and physicochemical measurements for on-line monitoring of used nuclear fuel separation processes

    SciTech Connect

    Nee, Ko; Nilsson, M.; Bryan, S.; Levitskaia, T.

    2013-07-01

    Separation processes for used nuclear fuel are often complicated and challenging due to the high constraints in purity of the products and safeguards of the process streams. In order to achieve a safe, secure and efficient separation process, the liquid streams in the separation process require close monitoring. Due to the high radiation environment, sampling of the materials is difficult. Availability of a detection technique that is remote, non-destructive and can avoid time-delay caused by retrieving samples would be beneficial and could minimize the exposure to personnel and provide material accountancy to avoid diversion (non-proliferation). For example, Ultra Violet (UV), Visible (Vis), Near-Infrared (NIR) and Raman spectroscopy that detect and quantify elements present in used nuclear fuel, e.g. lanthanides, actinides and molecules such as nitrate, can be used. In this work, we have carried out NIR and Raman spectroscopy to study aqueous solutions composed of different concentrations of nitric acid, sodium nitrate, and neodymium at varied temperatures. A chemometric model for online monitoring based on the PLS-Toolbox (MATLAB) software has been developed and validated to provide chemical composition of process streams based on spectroscopic data. In conclusion, both of our NIR and Raman spectra were useful for H{sup +} and NO{sub 3} prediction, and only NIR was helpful for the Nd{sup 3+} prediction.

  12. A comparison of timed artificial insemination and automated activity monitoring with hormone intervention in 3 commercial dairy herds.

    PubMed

    Dolecheck, K A; Silvia, W J; Heersche, G; Wood, C L; McQuerry, K J; Bewley, J M

    2016-02-01

    The objective of this study was to compare the reproductive performance of cows inseminated based on automated activity monitoring with hormone intervention (AAM) to cows from the same herds inseminated using only an intensive timed artificial insemination (TAI) program. Cows (n=523) from 3 commercial dairy herds participated in this study. To be considered eligible for participation, cows must have been classified with a body condition score of at least 2.50, but no more than 3.50, passed a reproductive tract examination, and experienced no incidences of clinical, recorded metabolic diseases in the current lactation. Within each herd, cows were balanced for parity and predicted milk yield, then randomly assigned to 1 of 2 treatments: TAI or AAM. Cows assigned to the TAI group were subjected to an ovulation synchronization protocol consisting of presynchronization, Ovsynch, and Resynch for up to 3 inseminations. Cows assigned to the AAM treatment were fitted with a leg-mounted accelerometer (AfiAct Pedometer Plus, Afimilk, Kibbutz Afikim, Israel) at least 10 d before the end of the herd voluntary waiting period (VWP). Cows in the AAM treatment were inseminated at times indicated by the automated alert system for up to 90 d after the VWP. If an open cow experienced no AAM alert for a 39±7-d period (beginning at the end of the VWP), hormone intervention in the form of a single injection of either PGF2α or GnRH (no TAI) was permitted as directed by the herd veterinarian. Subsequent to hormone intervention, cows were inseminated when alerted in estrus by the AAM system. Pregnancy was diagnosed by ultrasound 33 to 46 d after insemination. Pregnancy loss was determined via a second ultrasound after 60 d pregnant. Timed artificial insemination cows experienced a median 11.0 d shorter time to first service. Automated activity-monitored cows experienced a median 17.5-d shorter service interval. No treatment difference in probability of pregnancy to first AI, probability

  13. Automated system for acquisition and image processing for the control and monitoring boned nopal

    NASA Astrophysics Data System (ADS)

    Luevano, E.; de Posada, E.; Arronte, M.; Ponce, L.; Flores, T.

    2013-11-01

    This paper describes the design and fabrication of a system for acquisition and image processing to control the removal of thorns nopal vegetable (Opuntia ficus indica) in an automated machine that uses pulses of a laser of Nd: YAG. The areolas, areas where thorns grow on the bark of the Nopal, are located applying segmentation algorithms to the images obtained by a CCD. Once the position of the areolas is known, coordinates are sent to a motors system that controls the laser to interact with all areolas and remove the thorns of the nopal. The electronic system comprises a video decoder, memory for image and software storage, and digital signal processor for system control. The firmware programmed tasks on acquisition, preprocessing, segmentation, recognition and interpretation of the areolas. This system achievement identifying areolas and generating table of coordinates of them, which will be send the motor galvo system that controls the laser for removal

  14. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution†

    PubMed Central

    Johnson-Chavarria, Eric M.; Agrawal, Utsav; Tanyeri, Melikhan; Kuhlman, Thomas E.

    2014-01-01

    We report an automated microfluidic-based platform for single cell analysis that allows for cell culture in free solution with the ability to control the cell growth environment. Using this approach, cells are confined by the sole action of gentle fluid flow, thereby enabling non-perturbative analysis of cell growth away from solid boundaries. In addition, the single cell microbioreactor allows for precise and time-dependent control over cell culture media, with the combined ability to observe the dynamics of non-adherent cells over long time scales. As a proof-of-principle demonstration, we used the platform to observe dynamic cell growth, gene expression, and intracellular diffusion of repressor proteins while precisely tuning the cell growth environment. Overall, this microfluidic approach enables the direct observation of cellular dynamics with exquisite control over environmental conditions, which will be useful for quantifying the behaviour of single cells in well-defined media. PMID:24836754

  15. Automated analyser for monitoring trace amounts of volatile chloro-organic compounds in recirculated industrial water

    PubMed Central

    Janicki, Wacław; Wasik, Andrzej; Przyk, Elżbieta; Namieśnik, Jacek

    2002-01-01

    An automated analyser of volatile chloro-organic compounds in water was constructed and tested using standard mixtures of dichloromethane and dichloroethane. It was based on continuous, countercurrent gas stripping of the liquid sample followed by periodic trapping of the analytes on two traps alternately connected to the bubbler outlet, and thermal desorption. When one trap performed adsorption, the other underwent desorption and cooling. Analytes were detected by an ECD detector. Integration, calibration, calculations and overall operating cycle control was performed by a microcomputer. The instrument guarantees a 0.02 ppm Cl (w/w) detection limit, a 0—2 ppm detection range and 2 months of autonomous operation. Results are reported every 13 min. PMID:18924724

  16. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Kovalchuck, O.; Wong, C. Y. S.; Harris, A.; Garrity, S. R.

    2015-07-01

    The vegetation indices normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) provide indicators of pigmentation and photosynthetic activity that can be used to model photosynthesis from remote sensing with the light-use-efficiency model. To help develop and validate this approach, reliable proximal NDVI and PRI sensors have been needed. We tested new NDVI and PRI sensors, "spectral reflectance sensors" (SRS sensors; recently developed by Decagon Devices, during spring activation of photosynthetic activity in evergreen and deciduous stands. We also evaluated two methods of sensor cross-calibration - one that considered sky conditions (cloud cover) at midday only, and another that also considered diurnal sun angle effects. Cross-calibration clearly affected sensor agreement with independent measurements, with the best method dependent upon the study aim and time frame (seasonal vs. diurnal). The seasonal patterns of NDVI and PRI differed for evergreen and deciduous species, demonstrating the complementary nature of these two indices. Over the spring season, PRI was most strongly influenced by changing chlorophyll : carotenoid pool sizes, while over the diurnal timescale, PRI was most affected by the xanthophyll cycle epoxidation state. This finding demonstrates that the SRS PRI sensors can resolve different processes affecting PRI over different timescales. The advent of small, inexpensive, automated PRI and NDVI sensors offers new ways to explore environmental and physiological constraints on photosynthesis, and may be particularly well suited for use at flux tower sites. Wider application of automated sensors could lead to improved integration of flux and remote sensing approaches for studying photosynthetic carbon uptake, and could help define the concept of contrasting vegetation optical types.

  17. Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors

    NASA Astrophysics Data System (ADS)

    Gamon, J. A.; Kovalchuk, O.; Wong, C. Y. S.; Harris, A.; Garrity, S. R.

    2015-02-01

    The vegetation indices normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) provide indicators of pigmentation and photosynthetic activity that can be used to model photosynthesis from remote sensing with the light-use efficiency model. To help develop and validate this approach, reliable proximal NDVI and PRI sensors have been needed. We tested new NDVI and PRI sensors, "SRS" sensors recently developed by Decagon Devices, during spring activation of photosynthetic activity in evergreen and deciduous stands. We also evaluated two methods of sensor cross-calibration, one that considered sky conditions (cloud cover) at midday only, and the other that also considered diurnal sun angle effects. Cross-calibration clearly affected sensor agreement with independent measurements, with the best method dependent upon the study aim and time frame (seasonal vs. diurnal). The seasonal patterns of NDVI and PRI differed for evergreen and deciduous species, demonstrating the complementary nature of these two indices. Over the spring season, PRI was most strongly influenced by changing chlorophyll : carotenoid pool sizes, while over the diurnal time scale PRI was most affected by the xanthophyll cycle epoxidation state. This finding demonstrates that the SRS PRI sensors can resolve different processes affecting PRI over different time scales. The advent of small, inexpensive, automated PRI and NDVI sensors offers new ways to explore environmental and physiological constraints on photosynthesis, and may be particularly well-suited for use at flux tower sites. Wider application of automated sensors could lead to improved integration of flux and remote sensing approaches to studying photosynthetic carbon uptake, and could help define the concept of contrasting vegetation optical types.

  18. A Recursive Multiscale Correlation-Averaging Algorithm for an Automated Distributed Road Condition Monitoring System

    SciTech Connect

    Ndoye, Mandoye; Barker, Alan M; Krogmeier, James; Bullock, Darcy

    2011-01-01

    A signal processing approach is proposed to jointly filter and fuse spatially indexed measurements captured from many vehicles. It is assumed that these measurements are influenced by both sensor noise and measurement indexing uncertainties. Measurements from low-cost vehicle-mounted sensors (e.g., accelerometers and Global Positioning System (GPS) receivers) are properly combined to produce higher quality road roughness data for cost-effective road surface condition monitoring. The proposed algorithms are recursively implemented and thus require only moderate computational power and memory space. These algorithms are important for future road management systems, which will use on-road vehicles as a distributed network of sensing probes gathering spatially indexed measurements for condition monitoring, in addition to other applications, such as environmental sensing and/or traffic monitoring. Our method and the related signal processing algorithms have been successfully tested using field data.

  19. Real-time direct cell concentration and viability determination using a fully automated microfluidic platform for standalone process monitoring.

    PubMed

    Nunes, P S; Kjaerulff, S; Dufva, M; Mogensen, K B

    2015-06-21

    The industrial production of cells has a large unmet need for greater process monitoring, in addition to the standard temperature, pH and oxygen concentration determination. Monitoring the cell health by a vast range of fluorescence cell-based assays can greatly improve the feedback control and thereby ensure optimal cell production, by prolonging the fermentation cycle and increasing the bioreactor output. In this work, we report on the development of a fully automated microfluidic system capable of extracting samples directly from a bioreactor, diluting the sample, staining the cells, and determining the total cell and dead cells concentrations, within a time frame of 10.3 min. The platform consists of custom made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample to waste liquid management and image cytometry-based detection. The total concentration of cells is determined by brightfield microscopy, while fluorescence detection is used to detect propidium iodide stained non-viable cells. This method can be incorporated into facilities with bioreactors to monitor the cell concentration and viability during the cultivation process. Here, we demonstrate the microfluidic system performance by monitoring in real time the cell concentration and viability of yeast extracted directly from an in-house made bioreactor. This is the first demonstration of using the Dean drag force, generated due to the implementation of a curved microchannel geometry in conjunction with high flow rates, to promote passive mixing of cell samples and thus homogenization of the diluted cell plug. The autonomous operation of the fluidics furthermore allows implementation of intelligent protocols for administering air bubbles from the bioreactor in the microfluidic system, so that these will be guided away from the imaging region, thereby significantly improving both the robustness of the system and the quality of the data.

  20. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  1. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  2. Automated water monitor system field demonstration test report. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.

    1981-01-01

    A system that performs water quality monitoring on-line and in real time much as it would be done in a spacecraft, was developed and demonstrated. The system has the capability to determine conformance to high effluent quality standards and to increase the potential for reclamation and reuse of water.

  3. AUTOMATED LONG-TERM REMOTE MONITORING OF SEDIMENT-WATER INTERFACIAL FLUX

    EPA Science Inventory

    Advective flux across the sediment-water interface is temporally and spatially heterogeneous in nature. For contaminated sediment sites, monitoring spatial as well as temporal variation of advective flux is of importance to proper risk management. This project was conducted to ...

  4. Facility monitoring of chemical warfare agent simulants in air using an automated, field-deployable, miniature mass spectrometer.

    PubMed

    Smith, Jonell N; Noll, Robert J; Cooks, R Graham

    2011-05-30

    Vapors of four chemical warfare agent (CWA) stimulants, 2-chloroethyl ethyl sulfide (CEES), diethyl malonate (DEM), dimethyl methylphosphonate (DMMP), and methyl salicylate (MeS), were detected, identified, and quantitated using a fully automated, field-deployable, miniature mass spectrometer. Samples were ionized using a glow discharge electron ionization (GDEI) source, and ions were mass analyzed with a cylindrical ion trap (CIT) mass analyzer. A dual-tube thermal desorption system was used to trap compounds on 50:50 Tenax TA/Carboxen 569 sorbent before their thermal release. The sample concentrations ranged from low parts per billion [ppb] to two parts per million [ppm]. Limits of detection (LODs) ranged from 0.26 to 5.0 ppb. Receiver operating characteristic (ROC) curves are presented for each analyte. A sample of CEES at low ppb concentration was combined separately with two interferents, bleach (saturated vapor) and diesel fuel exhaust (1%), as a way to explore the capability of detecting the simulant in an environmental matrix. Also investigated was a mixture of the four CWA simulants (at concentrations in air ranging from 270 to 380 ppb). Tandem mass (MS/MS) spectral data were used to identify and quantify the individual components.

  5. A device for fully automated on-site process monitoring and control of trihalomethane concentrations in drinking water.

    PubMed

    Brown, Aaron W; Simone, Paul S; York, J C; Emmert, Gary L

    2015-01-01

    An instrument designed for fully automated on-line monitoring of trihalomethane concentrations in chlorinated drinking water is presented. The patented capillary membrane sampling device automatically samples directly from a water tap followed by injection of the sample into a gas chromatograph equipped with a nickel-63 electron capture detector. Detailed studies using individual trihalomethane species exhibited method detection limits ranging from 0.01-0.04 μg L(-1). Mean percent recoveries ranged from 77.1 to 86.5% with percent relative standard deviation values ranging from 1.2 to 4.6%. Out of more than 5200 samples analyzed, 95% of the concentration ranges were detectable, 86.5% were quantifiable. The failure rate was less than 2%. Using the data from the instrument, two different treatment processes were optimized so that total trihalomethane concentrations were maintained at acceptable levels while reducing treatment costs significantly. This ongoing trihalomethane monitoring program has been operating for more than ten months and has produced the longest continuous and most finely time-resolved data on trihalomethane concentrations reported in the literature.

  6. Digital Automation and Real-Time Monitoring of an Original Installation for "Wet Combustion" of Organic Wastes

    NASA Astrophysics Data System (ADS)

    Morozov, Yegor; Tikhomirov, Alexander A.; Saltykov, Mikhail; Trifonov, Sergey V.; Kudenko, D.. Yurii A.

    2016-07-01

    An original method for "wet combustion" of organic wastes, which is being developed at the IBP SB RAS, is a very promising approach for regeneration of nutrient solutions for plants in future spacecraft closed Bioregenerative Life Support Systems (BLSS). The method is quick, ecofriendly, does not require special conditions such as high pressure and temperature, and the resulting nitrogen stays in forms easy for further preparation of the fertilizer. An experimental testbed of a new-generation closed ecosystem is being currently run at the IBP SB RAS to examine compatibility of the latest technologies for accelerating the cycling. Integration of "wet combustion" of organic wastes into the information system of closed ecosystem experimental testbed has been studied as part of preparatory work. Digital automation and real-time monitoring of original "wet combustion" installation operation parameters have been implemented. The new system enabled remotely controlled or automatic work of the installation. Data are stored in standard easily processed formats, allowing further mathematical processing where necessary. During ongoing experiments on improving "wet combustion" of organic wastes, automatic monitoring can notice slight changes in process parameters and record them in more detail. The ultimate goal of the study is to include the "wet combustion" installation into future full-scale experiment with humans, thus reducing the time spent by the crew on life support issues while living in the BLSS. The work was carried out with the financial support of the Russian Scientific Foundation (project 14-14-00599).

  7. Prototypic automated continuous recreational water quality monitoring of nine Chicago beaches.

    PubMed

    Shively, Dawn A; Nevers, Meredith B; Breitenbach, Cathy; Phanikumar, Mantha S; Przybyla-Kelly, Kasia; Spoljaric, Ashley M; Whitman, Richard L

    2016-01-15

    Predictive empirical modeling is used in many locations worldwide as a rapid, alternative recreational water quality management tool to eliminate delayed notifications associated with traditional fecal indicator bacteria (FIB) culturing (referred to as the persistence model, PM) and to prevent errors in releasing swimming advisories. The goal of this study was to develop a fully automated water quality management system for multiple beaches using predictive empirical models (EM) and state-of-the-art technology. Many recent EMs rely on samples or data collected manually, which adds to analysis time and increases the burden to the beach manager. In this study, data from water quality buoys and weather stations were transmitted through cellular telemetry to a web hosting service. An executable program simultaneously retrieved and aggregated data for regression equations and calculated EM results each morning at 9:30 AM; results were transferred through RSS feed to a website, mapped to each beach, and received by the lifeguards to be posted at the beach. Models were initially developed for five beaches, but by the third year, 21 beaches were managed using refined and validated modeling systems. The adjusted R(2) of the regressions relating Escherichia coli to hydrometeorological variables for the EMs were greater than those for the PMs, and ranged from 0.220 to 0.390 (2011) and 0.103 to 0.381 (2012). Validation results in 2013 revealed reduced predictive capabilities; however, three of the originally modeled beaches showed improvement in 2013 compared to 2012. The EMs generally showed higher accuracy and specificity than those of the PMs, and sensitivity was low for both approaches. In 2012 EM accuracy was 70-97%; specificity, 71-100%; and sensitivity, 0-64% and in 2013 accuracy was 68-97%; specificity, 73-100%; and sensitivity 0-36%. Factors that may have affected model capabilities include instrument malfunction, non-point source inputs, and sparse calibration data

  8. Prototypic automated continuous recreational water quality monitoring of nine Chicago beaches

    USGS Publications Warehouse

    Dawn Shively,; Nevers, Meredith; Cathy Breitenbach,; Phanikumar, Mantha S.; Kasia Przybyla-Kelly,; Ashley M. Spoljaric,; Richard L. Whitman,

    2015-01-01

    Predictive empirical modeling is used in many locations worldwide as a rapid, alternative recreational water quality management tool to eliminate delayed notifications associated with traditional fecal indicator bacteria (FIB) culturing (referred to as the persistence model, PM) and to prevent errors in releasing swimming advisories. The goal of this study was to develop a fully automated water quality management system for multiple beaches using predictive empirical models (EM) and state-of-the-art technology. Many recent EMs rely on samples or data collected manually, which adds to analysis time and increases the burden to the beach manager. In this study, data from water quality buoys and weather stations were transmitted through cellular telemetry to a web hosting service. An executable program simultaneously retrieved and aggregated data for regression equations and calculated EM results each morning at 9:30 AM; results were transferred through RSS feed to a website, mapped to each beach, and received by the lifeguards to be posted at the beach. Models were initially developed for five beaches, but by the third year, 21 beaches were managed using refined and validated modeling systems. The adjusted R2 of the regressions relating Escherichia coli to hydrometeorological variables for the EMs were greater than those for the PMs, and ranged from 0.220 to 0.390 (2011) and 0.103 to 0.381 (2012). Validation results in 2013 revealed reduced predictive capabilities; however, three of the originally modeled beaches showed improvement in 2013 compared to 2012. The EMs generally showed higher accuracy and specificity than those of the PMs, and sensitivity was low for both approaches. In 2012 EM accuracy was 70–97%; specificity, 71–100%; and sensitivity, 0–64% and in 2013 accuracy was 68–97%; specificity, 73–100%; and sensitivity 0–36%. Factors that may have affected model capabilities include instrument malfunction, non-point source inputs, and sparse

  9. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    NASA Technical Reports Server (NTRS)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  10. Bluetooth wireless monitoring, diagnosis and calibration interface for control system of fuel cell bus in Olympic demonstration

    NASA Astrophysics Data System (ADS)

    Hua, Jianfeng; Lin, Xinfan; Xu, Liangfei; Li, Jianqiu; Ouyang, Minggao

    With the worldwide deterioration of the natural environment and the fossil fuel crisis, the possible commercialization of fuel cell vehicles has become a hot topic. In July 2008, Beijing started a clean public transportation plan for the 29th Olympic games. Three fuel cell city buses and 497 other low-emission vehicles are now serving the Olympic core area and Beijing urban areas. The fuel cell buses will operate along a fixed bus line for 1 year as a public demonstration of green energy vehicles. Due to the specialized nature of fuel cell engines and electrified power-train systems, measurement, monitoring and calibration devices are indispensable. Based on the latest Bluetooth wireless technology, a novel Bluetooth universal data interface was developed for the control system of the fuel cell city bus. On this platform, a series of wireless portable control auxiliary systems have been implemented, including wireless calibration, a monitoring system and an in-system programming platform, all of which are ensuring normal operation of the fuel cell buses used in the demonstration.

  11. HEAVY OIL PROCESS MONITOR: AUTOMATED ON-COLUMN ASPHALTENE PRECIPITATION AND RE-DISSOLUTION

    SciTech Connect

    John F. Schabron; Joseph F. Rovani Jr; Mark Sanderson

    2006-06-01

    About 37-50% (w/w) of the heptane asphaltenes from unpyrolyzed residua dissolve in cyclohexane. As pyrolysis progresses, this number decrease to below 15% as coke and toluene insoluble pre-coke materials appear. This solubility measurement can be used after coke begins to form, unlike the flocculation titration, which cannot be applied to multi-phase systems. Currently, the procedure for the isolation of heptane asphaltenes and the determination of the amount of asphaltenes soluble in cyclohexane spans three days. A more rapid method to measure asphaltene solubility was explored using a novel on-column asphaltene precipitation and re-dissolution technique. This was automated using high performance liquid chromatography (HPLC) equipment with a step gradient sequence using the solvents: heptane, cyclohexane, toluene:methanol (98:2). Results for four series of original and pyrolyzed residua were compared with data from the gravimetric method. The measurement time was reduced from three days to forty minutes. The separation was expanded further with the use of four solvents: heptane, cyclohexane, toluene, and cyclohexanone or methylene chloride. This provides a fourth peak which represents the most polar components, in the oil.

  12. An automated method for large-scale monitoring of seed dispersal by ants

    PubMed Central

    Bologna, Audrey; Toffin, Etienne; Detrain, Claire; Campo, Alexandre

    2017-01-01

    Myrmecochory is the process of seed dispersal by ants; however, it is highly challenging to study, mainly because of the small size of both partners and the comparatively large range of dispersal. The mutualistic interaction between ants and seeds involves the former retrieving diaspores, consuming their elaiosome (a nutrient-rich appendage), and the rejection of seeds from the nest. Here, we introduce a semi-automated method based on stitching high resolution images together, allowing the study of myrmecochory in a controlled environment over time. We validate the effectiveness of our method in detecting and discriminating seeds and ants. We show that the number of retrieved diaspores varies highly among colonies, and is independent of both their size and activity level, even though the dynamics of diaspore collection are correlated with the arrival of ants at the food source. We find that all retrieved seeds are rejected from the nest in a clustered pattern, and, surprisingly, they are also frequently redispersed within the arena afterwards, despite lacking elaiosome. This finding suggests that the dispersal pattern might be more complex and dynamic than expected. Our method unveils new insights on the mechanisms of myrmecochory, and could be usefully adapted to study other dispersal phenomena. PMID:28071733

  13. Computational Gene Mapping to Analyze Continuous Automated Real-Time Vital Signs Monitoring Data

    DTIC Science & Technology

    2013-09-23

    baseline study group of 191 adult (>17 years) patients was identified with TBI severe enough to require intracranial pressure (ICP) monitoring and...of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) [6,7]. Using receiver operating characteristic (ROC) techniques, prognostic...other adverse VS-related events in 6-hour intervals from the time of admission through the first 72 hours. “Noninvasive Intracranial Pressure

  14. Interoperability for Space Mission Monitor and Control: Applying Technologies from Manufacturing Automation and Process Control Industries

    NASA Technical Reports Server (NTRS)

    Jones, Michael K.

    1998-01-01

    Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.

  15. The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals

    PubMed Central

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler; Weeks, Holley; Zimmerman, Patrick R.; Harper, Michael T.; Hristova, Rada A.; Zimmerman, R. Scott; Branco, Antonio F.

    2015-01-01

    Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy). The sulfur hexafluoride (SF6) tracer gas method is commonly used to measure enteric CH4 production by animal scientists and more recently, application of an Automated Head-Chamber System (AHCS) (GreenFeed, C-Lock, Inc., Rapid City, SD), which is the focus of this experiment, has been growing. AHCS is an automated system to monitor CH4 and carbon dioxide (CO2) mass fluxes from the breath of ruminant animals. In a typical AHCS operation, small quantities of baiting feed are dispensed to individual animals to lure them to AHCS multiple times daily. As the animal visits AHCS, a fan system pulls air past the animal’s muzzle into an intake manifold, and through an air collection pipe where continuous airflow rates are measured. A sub-sample of air is pumped out of the pipe into non-dispersive infra-red sensors for continuous measurement of CH4 and CO2 concentrations. Field comparisons of AHCS to respiration chambers or SF6 have demonstrated that AHCS produces repeatable and accurate CH4 emission results, provided that animal visits to AHCS are sufficient so emission estimates are representative of the diurnal rhythm of rumen gas production. Here, we demonstrate the use of AHCS to measure CO2 and CH4 fluxes from dairy cows given a control diet or a diet supplemented with technical-grade cashew nut shell liquid. PMID:26383886

  16. The Use of an Automated System (GreenFeed) to Monitor Enteric Methane and Carbon Dioxide Emissions from Ruminant Animals.

    PubMed

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler; Weeks, Holley; Zimmerman, Patrick R; Harper, Michael T; Hristova, Rada A; Zimmerman, R Scott; Branco, Antonio F

    2015-09-07

    Ruminant animals (domesticated or wild) emit methane (CH4) through enteric fermentation in their digestive tract and from decomposition of manure during storage. These processes are the major sources of greenhouse gas (GHG) emissions from animal production systems. Techniques for measuring enteric CH4 vary from direct measurements (respiration chambers, which are highly accurate, but with limited applicability) to various indirect methods (sniffers, laser technology, which are practical, but with variable accuracy). The sulfur hexafluoride (SF6) tracer gas method is commonly used to measure enteric CH4 production by animal scientists and more recently, application of an Automated Head-Chamber System (AHCS) (GreenFeed, C-Lock, Inc., Rapid City, SD), which is the focus of this experiment, has been growing. AHCS is an automated system to monitor CH4 and carbon dioxide (CO2) mass fluxes from the breath of ruminant animals. In a typical AHCS operation, small quantities of baiting feed are dispensed to individual animals to lure them to AHCS multiple times daily. As the animal visits AHCS, a fan system pulls air past the animal's muzzle into an intake manifold, and through an air collection pipe where continuous airflow rates are measured. A sub-sample of air is pumped out of the pipe into non-dispersive infra-red sensors for continuous measurement of CH4 and CO2 concentrations. Field comparisons of AHCS to respiration chambers or SF6 have demonstrated that AHCS produces repeatable and accurate CH4 emission results, provided that animal visits to AHCS are sufficient so emission estimates are representative of the diurnal rhythm of rumen gas production. Here, we demonstrate the use of AHCS to measure CO2 and CH4 fluxes from dairy cows given a control diet or a diet supplemented with technical-grade cashew nut shell liquid.

  17. Automated control and monitoring of thermal processing using high temperature, short time pasteurization.

    PubMed

    Schlesser, J E; Armstrong, D J; Cinar, A; Ramanauskas, P; Negiz, A

    1997-10-01

    High temperature, short time pasteurization was used to evaluate a computer-based system for controlling the pasteurization process, acquiring data, and monitoring records. Software was used for the control of hot water temperature, flow rate through the centrifugal timing pump, and diversion of under-processed product. Three types of control strategies were conducted: single loop, cascade, and multivariable. The single loop control strategy showed the most rapid responses to temperature changes, but the temperature response curve was slowest to return to its set point. The cascade control strategy showed slower recoveries to temperature changes, but the temperature response curve was smoother. The multivariable control strategy responded slightly faster than the cascade control strategy, and the temperature response curve was slightly smoother than the cascade control strategy. The multivariable control strategy was able to control the flow diversion valve by the use of a lethality controller. The data acquisition system, used to monitor the data obtained from the high temperature, short-time pasteurization system, was within +/- 0.1 degree C of the temperature recorded by the safety thermal limit recorder. Reliability was determined by examining the changes in the position of the flow diversion valve to identify process deviations and by comparing the changes to the event marker on circular charts. The data acquisition system was an effective alternative for monitoring the completeness of data.

  18. Automated system for monitoring groundwater levels at an experimental low-level waste disposal site

    SciTech Connect

    Newbold, J.D.; Bogle, M.A.

    1984-06-01

    One of the major problems with disposing of low-level solid wastes in the eastern United States is the potential for water-waste interactions and leachate migration. To monitor groundwater fluctuations and the frequency with which groundwater comes into contact with a group of experimental trenches, work at Oak Ridge National Laboratory's Engineered Test Facility (ETF) has employed a network of water level recorders that feed information from 15 on-site wells to a centralized data recording system. The purpose of this report is to describe the monitoring system being used and to document the computer programs that have been developed to process the data. Included in this report are data based on more than 2 years of water level information for ETF wells 1 through 12 and more than 6 months of data from all 15 wells. The data thus reflect both long-term trends as well as a large number of short-term responses to individual storm events. The system was designed to meet the specific needs of the ETF, but the hardware and computer routines have generic application to a variety of groundwater monitoring situations. 5 references.

  19. [Nephro-urological monitoring technology based on radionuclide functional tests (tasks of an automated workplace)].

    PubMed

    Averinova, S G; Kashkadaeva, A V; Shiriaev, S V; Nechipaĭ, A M; Dmitrieva, G D

    1999-01-01

    The paper deals with a diagnostic informational and analytical system (DIAS). The system is based on the current concept of a dynamic model of nephro-urological clearance macroregulation under retention factors at the pre-, intra-, and postrenal levels during drug load tests. DIAS includes a package of dynamic renoscintigraphic techniques, as well as original software support. A system for parameters of renal clearance regulation has been developed, which is effective at nephro-urological screening and monitoring at all treatment stages for cancer patients. A two-detector chamber which permits the mounting of a detector at an angle to the patient's body is the optimum diagnostic apparatus for a cancer clinic. The use of functional tests makes it possible to examine the regulatory reserves for each kidney, followed up by the choice of adequate corrective measures to prevent renal failure during treatment. In some cases, DIAS monitoring frequently shows a higher sensitivity to the signs of latent renal failure than does routine clinical and laboratory monitoring. The effective radiation dose taken by a patient during a study by the DIAS technology aimed at reducing radioopaque doses is 100-150 times higher than that at an X-ray study and is an order less than during routine urinary tests.

  20. Exposing Exposure: Enhancing Patient Safety through Automated Data Mining of Nuclear Medicine Reports for Quality Assurance and Organ Dose Monitoring

    PubMed Central

    Ikuta, Ichiro; Wasser, Elliot J.; Warden, Graham I.; Gerbaudo, Victor H.; Khorasani, Ramin

    2012-01-01

    Purpose: To develop and validate an open-source informatics toolkit capable of creating a radiation exposure data repository from existing nuclear medicine report archives and to demonstrate potential applications of such data for quality assurance and longitudinal patient-specific radiation dose monitoring. Materials and Methods: This study was institutional review board approved and HIPAA compliant. Informed consent was waived. An open-source toolkit designed to automate the extraction of data on radiopharmaceuticals and administered activities from nuclear medicine reports was developed. After iterative code training, manual validation was performed on 2359 nuclear medicine reports randomly selected from September 17, 1985, to February 28, 2011. Recall (sensitivity) and precision (positive predictive value) were calculated with 95% binomial confidence intervals. From the resultant institutional data repository, examples of usage in quality assurance efforts and patient-specific longitudinal radiation dose monitoring obtained by calculating organ doses from the administered activity and radiopharmaceutical of each examination were provided. Results: Validation statistics yielded a combined recall of 97.6% ± 0.7 (95% confidence interval) and precision of 98.7% ± 0.5. Histograms of administered activity for fluorine 18 fluorodeoxyglucose and iodine 131 sodium iodide were generated. An organ dose heatmap which displays a sample patient’s dose accumulation from multiple nuclear medicine examinations was created. Conclusion: Large-scale repositories of radiation exposure data can be extracted from institutional nuclear medicine report archives with high recall and precision. Such repositories enable new approaches in radiation exposure patient safety initiatives and patient-specific radiation dose monitoring. © RSNA, 2012 PMID:22627599

  1. Towards an automated monitoring of human settlements in South Africa using high resolution SPOT satellite imagery

    NASA Astrophysics Data System (ADS)

    Kemper, T.; Mudau, N.; Mangara, P.; Pesaresi, M.

    2015-04-01

    Urban areas in sub-Saharan Africa are growing at an unprecedented pace. Much of this growth is taking place in informal settlements. In South Africa more than 10% of the population live in urban informal settlements. South Africa has established a National Informal Settlement Development Programme (NUSP) to respond to these challenges. This programme is designed to support the National Department of Human Settlement (NDHS) in its implementation of the Upgrading Informal Settlements Programme (UISP) with the objective of eventually upgrading all informal settlements in the country. Currently, the NDHS does not have access to an updated national dataset captured at the same scale using source data that can be used to understand the status of informal settlements in the country. This pilot study is developing a fully automated workflow for the wall-to-wall processing of SPOT-5 satellite imagery of South Africa. The workflow includes an automatic image information extraction based on multiscale textural and morphological image features extraction. The advanced image feature compression and optimization together with innovative learning and classification techniques allow a processing of the SPOT-5 images using the Landsat-based National Land Cover (NLC) of South Africa from the year 2000 as low-resolution thematic reference layers as. The workflow was tested on 42 SPOT scenes based on a stratified sampling. The derived building information was validated against a visually interpreted building point data set and produced an accuracy of 97 per cent. Given this positive result, is planned to process the most recent wall-to-wall coverage as well as the archived imagery available since 2007 in the near future.

  2. Evaluation of the Colin STBP-680 at rest and during exercise: an automated blood pressure monitor using R-wave gating.

    PubMed

    Bond, V; Bassett, D R; Howley, E T; Lewis, J; Walker, A J; Swan, P D; Tearney, R J; Adams, R G

    1993-06-01

    The application of automated blood pressure measurement during exercise has been limited by inaccuracies introduced by the effects of accompanying motion and noise. We evaluated a newly developed automated blood pressure monitor for measuring exercise blood pressure (Colin STBP-680; Colin, San Antonio, Texas, USA). The STBP-680 uses acoustic transduction with the assistance of the electrocardiogram R-wave to trigger the sampling period for blood pressure measurement. The automated monitor readings were compared with simultaneous technician mercury sphygmomanometric readings in the same arm. Blood pressure was measured in 18 men at rest and during exercise at 40% VO2 peak, (low intensity), 70% VO2 peak (moderate intensity) and VO2 peak (high intensity) on the cycle ergometer. Mean(s.d.) systolic blood pressure difference between the automated monitor and mercury manometer readings at rest and during exercise at low, moderate and high work intensities were 3(0) mmHg, 3(2) mmHg, 1(1) mmHg, and 0(11) mmHg respectively (analysis of variance; P > 0.05). Resting diastolic blood pressure obtained with the STBP-680 was similar to the mercury manometer readings (78(10) versus 81(7) mmHg (P > 0.05). Exercise diastolic pressure at the low level of work intensity was almost identical between the automated monitor and mercury manometer readings (64(8) versus 65(10) mmHg (not significant)). Diastolic blood pressure readings between the STBP-680 and mercury manometer showed a greater difference at the moderate and high workloads (11 mmHg and 9 mmHg, respectively), but this difference was not significant (P > 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A batch-mode cube microbial fuel cell based "shock" biosensor for wastewater quality monitoring.

    PubMed

    Liu, Bingchuan; Lei, Yu; Li, Baikun

    2014-12-15

    A single chamber batch-mode cube microbial fuel cell (CMFC) was explored as a novel self-sustained biosensor for real-time monitoring the toxicity shocks (sudden change in toxins concentration) of representative toxic metals in wastewater influent. Four types of shocks, including chromium, iron, nitrate, and sodium acetate, were selected to represent the shocks of acute-toxic heavy metal, low-toxic metal, common nutrient, and organic contaminant in wastewater, respectively. Wastewater was used as the inoculum in CMFCs for anodic electrogenic bacteria that were fully acclimated within 3 days, which indicated that this self-powered sensor can be quickly adapted to wastewater. The results showed that the CMFC was able to distinguish shocks of toxins from non-toxins based on voltage signal changes. Anode open circuit potential (OCP) values were well correlated with the CMFC voltage changes, indicating that the voltage changes were mainly dependent on the activity of the electrogenic bacteria on the anode surfaces.

  4. Automated System Of Monitoring Of The Physical Condition Of The Staff Of The Enterprise

    NASA Astrophysics Data System (ADS)

    Pilipenko, A.

    2017-01-01

    In the work the author solves an important applied problem of increasing of safety of engineering procedures and production using technologies of monitoring of a condition of employees. The author offers a work algorithm, structural and basic electric schemes of system of collection of data of employee’s condition of the enterprise and some parameters of the surrounding environment. In the article the author offers an approach to increasing of efficiency of acceptance of management decisions at the enterprise at the expense of the prompt analysis of information about employee’s condition and productivity of his work and also about various parameters influencing these factors.

  5. Automated Monitoring of Non-Volcanic Tremors in Southwest Japan Subduction Zone

    NASA Astrophysics Data System (ADS)

    Suda, N.; Ishihara, Y.; Nakata, R.; Kusumi, T.

    2005-12-01

    Activities of low-frequency tremors, which occur in the non-volcanic region of southwest Japan along the subduction zone of the Philippine Sea plate, often show slow migration of tremor sources with a speed of about 10 km/day and quasi-periodicity of occurrence with an interval of 2--6 months. Such characteristics seem to be related to fluid liberated from the subducting slab. Monitoring of tremor activities therefore may lead us to elucidation of fluid property and its role in the subduction zone. To monitor activities of low-frequency tremors in real-time, we have developed the automatic detection and hypocenter determination system using real-time data from the commutation-satellite seismic telemetry system. We divide the tremor region into 6 subregions, and use 8--12 vertical-component seismic data to monitor the tremor activity in each subregion. Before applying the detection method, we preprocess real-time data by applying the bandpass filter with a frequency band of 1--10 Hz, resampling them from 100 Hz to 20 Hz, calculating their envelopes, and finally applying the moving average with a time window of 3 seconds. The automatic detection method is based on a two-step numerical statistical test: the first test is for examining whether given two envelopes with a length of 2 minutes are correlated or not, and the second for examining whether an event occur or not in this time window using results of the first test. If an event is detected then the automatic hypocenter determination method is applied. In this method time lags for the maximum cross-correlations obtained in the detection method are utilized as traveltime difference data, and hypocenters are determined by minimizing the absolute residual using the simplex method. The results obtained by the automatic detection method are consistent to those determined by visual inspection of waveforms, and also the results obtained by the automatic hypocenter determination are consistent to those determined by the

  6. MO-G-BRE-03: Automated Continuous Monitoring of Patient Setup with Second-Check Independent Image Registration

    SciTech Connect

    Jiang, X; Fox, T; Schreibmann, E

    2014-06-15

    Purpose: To create a non-supervised quality assurance program to monitor image-based patient setup. The system acts a secondary check by independently computing shifts and rotations and interfaces with Varian's database to verify therapist's work and warn against sub-optimal setups. Methods: Temporary digitally-reconstructed radiographs (DRRs) and OBI radiographic image files created by Varian's treatment console during patient setup are intercepted and used as input in an independent registration module customized for accuracy that determines the optimal rotations and shifts. To deal with the poor quality of OBI images, a histogram equalization of the live images to the DDR counterparts is performed as a pre-processing step. A search for the most sensitive metric was performed by plotting search spaces subject to various translations and convergence analysis was applied to ensure the optimizer finds the global minima. Final system configuration uses the NCC metric with 150 histogram bins and a one plus one optimizer running for 2000 iterations with customized scales for translations and rotations in a multi-stage optimization setup that first corrects and translations and subsequently rotations. Results: The system was installed clinically to monitor and provide almost real-time feedback on patient positioning. On a 2 month-basis uncorrected pitch values were of a mean 0.016° with standard deviation of 1.692°, and couch rotations of − 0.090°± 1.547°. The couch shifts were −0.157°±0.466° cm for the vertical, 0.045°±0.286 laterally and 0.084°± 0.501° longitudinally. Uncorrected pitch angles were the most common source of discrepancies. Large variations in the pitch angles were correlated with patient motion inside the mask. Conclusion: A system for automated quality assurance of therapist's registration was designed and tested in clinical practice. The approach complements the clinical software's automated registration in terms of algorithm

  7. An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring.

    PubMed

    Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa

    2011-04-01

    The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.

  8. Evaluation of two automatic sphygmomanometers in Hong Kong: implications for the future development of automated blood pressure monitors in clinical practice.

    PubMed

    Yung, P M; Lau, B W

    2001-08-01

    The application of automated devices in measuring patients' blood pressure has been widely adopted in nursing practice. This study compared blood pressure recordings of two automated blood pressure monitors which were commonly used in clinical settings in Hong Kong. Single-arm recordings were obtained from 31 subjects with both devices. Ten blood pressure recordings were obtained for each subject, with half of the subjects taking five measurements from one device first and five measurements from the other device second, and vice versa. A total of 155 sets of measurements were available for analysis. The results indicated that there was no significant difference in the variation of systolic, diastolic, mean arterial pressure and heart rate between these two devices. Implications for future research and development of an improved automated blood pressure device are made.

  9. Automated Production of Test Data to Aid Integration of Gaia First Look Monitor Software

    NASA Astrophysics Data System (ADS)

    Cross, N.; Heyrovsky, A.

    2012-09-01

    Gaia is an ESA cornerstone mission, expected to launch in 2013. Parallaxes for 1 billion stars with up to 10 μas accuracy will be measured using Gaia. Data from Gaia will be processed by 3 pipelines: Initial Data Treatment First Look (IDT-FL), Astrometric Global Iterative Solution (AGIS) and Intermediate Data Update (IDU). IDT-FL runs daily, to process the incoming data and match them to the existing catalogue. FL does sanity checks on the IDT output and issues alerts for any problems. In this paper we describe the production of test data and and tests designed to help develop Detailed First Look Monitor (DFLM) code for FL. These diagnostic tests help to bridge the gap between simple JUnit tests and the full IDT-FL integration tests, by testing the complex setup and infrastructure of the DFLM diagnostics and analyses.

  10. Image processing algorithm for automated monitoring of metal transfer in double-electrode GMAW

    NASA Astrophysics Data System (ADS)

    Wang, Zhen Zhou; Zhang, Yu Ming

    2007-07-01

    Controlled metal transfer in gas metal arc welding (GMAW) implies controllable weld quality. To understand, analyse and control the metal transfer process, the droplet should be monitored and tracked. To process the metal transfer images in double-electrode GMAW (DE-GMAW), a novel modification of GMAW, a brightness-based algorithm is proposed to locate the droplet and compute the droplet size automatically. Although this algorithm can locate the droplet with adequate accuracy, its accuracy in droplet size computation needs improvements. To this end, the correlation among adjacent images due to the droplet development is taken advantage of to improve the algorithm. Experimental results verified that the improved algorithm can automatically locate the droplets and compute the droplet size with an adequate accuracy.

  11. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    NASA Technical Reports Server (NTRS)

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-01-01

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  12. [Stress and strain analysis in monitoring functions in a fully automated production plant].

    PubMed

    Rutenfranz, J; Kylian, H; Schmidt, K H; Klimmer, F; Bubser, R; Brandenburg, U; Marschall, B

    1989-01-01

    The introduction of new technologies in the automobile industry produces a substantial structural change. This change may lead to a decrease in physical work with a contrary increase in mental and emotional stress at monitoring and controlling tasks. A summarizing analysis of the stress was made by means of the "Arbeitswissenschaftliches Erhebungsverfahren zur Tätigkeitsanalyse (AET)" and for characteristic working conditions the energy expenditure during work was measured. As indicators of strain, the heart rate was registered continuously with portable magnetic tape recorders and additionally the urinary excretion of adrenaline and noradrenaline was analyzed. During and after the implementation of new technologies a shift from physical to mental and/or emotional stress could be observed, but the remaining components of physical load are not to be disregarded and the changing strain patterns have to be analyzed carefully during the transitional stages of the implementation process.

  13. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    SciTech Connect

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-12-31

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  14. MBMS Monitoring of ClearFuels/Rentech PDU: Cooperative Research and Development Final Report, CRADA Number CRD-10-386

    SciTech Connect

    Carpenter, D.

    2014-06-01

    NREL will provide detailed on-site biomass gasifier syngas monitoring, using the NREL transportable Molecular Beam Mass Spectrometer. This information will be used to optimize the parameters of the gasifier operation, insuring the quality of the syngas made in the Rentech gasifier and its compatibility with catalytic conversion to fuels.

  15. The value of automated high-frequency nutrient monitoring in inference of biogeochemical processes, temporal variability and trends

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2013-04-01

    Stream water quality signals integrate catchment-scale processes responsible for delivery and biogeochemical transformation of the key biotic macronutrients (N, C, P). This spatial and temporal integration is particularly pronounced in the groundwater-dominated streams, as in-stream nutrient dynamics are mediated by the processes occurring within riparian and hyporheic ecotones. In this paper we show long-term high-frequency in-stream macronutrient dynamics from a small agricultural catchment located in the North West England. Hourly in-situ measurements of total and reactive phosphorus (Systea, IT), nitrate (Hach Lange, DE) and physical water quality parameters (turbidity, specific conductivity, dissolved oxygen, temperature, pH; WaterWatch, UK) were carried out on the lowland, gaining reach of the River Leith. High-frequency data show complex non-linear nutrient concentration-discharge relationships. The dominance of hysteresis effects suggests the presence of a temporally varying apportionment of allochthonous and autochthonous nutrient sources. Varying direction, magnitude and dynamics of the hysteretic responses between storm events is driven by the variation in the contributing source areas and shows the importance of the coupling of catchment-scale, in-stream, riparian and hyporheic biogeochemical cycles. The synergistic effect of physical (temperature-driven, the hyporheic exchange controlled by diffusion) and biogeochemical drivers (stream and hyporheic metabolism) on in-stream nutrient concentrations manifests itself in observed diurnal patterns. As inferred from the high-frequency nutrient monitoring, the diurnal dynamics are of the greatest importance under baseflow conditions. Understanding the role and relative importance of these processes can be difficult due to spatial and temporal heterogeneity of the key mechanisms involved. This study shows the importance of in-situ, fine temporal resolution, automated monitoring approaches in providing evidence

  16. A prototype of an automated high resolution InSAR volcano-monitoring system in the MED-SUV project

    NASA Astrophysics Data System (ADS)

    Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas

    2016-04-01

    Volcanic processes which produce a variety of geological and hydrological hazards are difficult to predict and capable of triggering natural disasters on regional to global scales. Therefore it is important to monitor volcano continuously and with a high spatial and temporal sampling rate. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities and it helps for the better understanding and modelling of the involved geophysical processes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide a powerful tool for observing the eruptive activities and measuring the surface changes of millimetre accuracy. All the mentioned techniques with deformation time series extraction address the challenges by exploiting medium to large SAR image stacks. The process of selecting, ordering, downloading, storing, logging, extracting and preparing the data for processing is very time consuming has to be done manually for every single data-stack. In many cases it is even an iterative process which has to be done regularly and continuously. Therefore, data processing becomes slow which causes significant delays in data delivery. The SAR Satellite based High Resolution Data Acquisition System, which will be developed at DLR, will automate this entire time consuming tasks and allows an operational volcano monitoring system. Every 24 hours the system runs for searching new acquired scene over the volcanoes and keeps track of the data orders, log the status and download the provided data via ftp-transfer including E-Mail alert. Furthermore, the system will deliver specified reports and maps to a database for review and use by specialists. The user interaction will be minimized and iterative processes will be totally avoided. In this presentation, a prototype of SAR Satellite based High Resolution Data

  17. Nuclear Energy Research Initiative Project No. 02 103 Innovative Low Cost Approaches to Automating QA/QC of Fuel Particle Production Using On Line Nondestructive Methods for Higher Reliability Final Project Report

    SciTech Connect

    Ahmed, Salahuddin; Batishko, Charles R.; Flake, Matthew; Good, Morris S.; Mathews, Royce; Morra, Marino; Panetta, Paul D.; Pardini, Allan F.; Sandness, Gerald A.; Tucker, Brian J.; Weier, Dennis R.; Hockey, Ronald L.; Gray, Joseph N.; Saurwein, John J.; Bond, Leonard J.; Lowden, Richard A.; Miller, James H.

    2006-02-28

    This Nuclear Energy Research Initiative (NERI) project was tasked with exploring, adapting, developing and demonstrating innovative nondestructive test methods to automate nuclear coated particle fuel inspection so as to provide the United States (US) with necessary improved and economical Quality Assurance and Control (QA/QC) that is needed for the fuels for several reactor concepts being proposed for both near term deployment [DOE NE & NERAC, 2001] and Generation IV nuclear systems. Replacing present day QA/QC methods, done manually and in many cases destructively, with higher speed automated nondestructive methods will make fuel production for advanced reactors economically feasible. For successful deployment of next generation reactors that employ particle fuels, or fuels in the form of pebbles based on particles, extremely large numbers of fuel particles will require inspection at throughput rates that do not significantly impact the proposed manufacturing processes. The focus of the project is nondestructive examination (NDE) technologies that can be automated for production speeds and make either: (I) On Process Measurements or (II) In Line Measurements. The inspection technologies selected will enable particle “quality” qualification as a particle or group of particles passes a sensor. A multiple attribute dependent signature will be measured and used for qualification or process control decisions. A primary task for achieving this objective is to establish standard signatures for both good/acceptable particles and the most problematic types of defects using several nondestructive methods.

  18. APHAKIC PHACOEMULSIFICATION AND AUTOMATED ANTERIOR VITRECTOMY, AND POSTRETURN MONITORING OF A REHABILITATED HARBOR SEAL (PHOCA VITULINA RICHARDSI) PUP.

    PubMed

    Esson, Douglas W; Nollens, Hendrik H; Schmitt, Todd L; Fritz, Kevin J; Simeone, Claire A; Stewart, Brent S

    2015-09-01

    A female harbor seal pup rescued along the coast of San Diego on 13 June 2012 was diagnosed with bilateral mature cataracts, apparently congenital, in association with vitreal herniation in the anterior chamber of each eye. The cataracts were surgically removed on 1 August 2012 with single-port aphakic phacoemulsification and automated anterior vitrectomy. Postoperative monitoring during the next several weeks indicated that vision had been functionally repaired and that she could visually orient to and capture live fish in three different environments and in the presence of other animals. Consequently, we equipped the seal with a satellite-linked radio transmitter and returned her to the Pacific Ocean on 21 November 2012, and then monitored her movements until radio contact ended on 2 March 2013. She remained along the San Diego coast from 21 November until 5 December 2012 when she relocated to the Coronado Islands and remained there until 26 December. She then traveled directly to San Clemente Island and remained foraging in the near-shore kelp beds there through 2 March 2013, when radio contact ended. To our knowledge, this is the first published report of cataract treatment in a marine mammal using high-frequency ultrasound to emulsify the lenses followed by suction removal of the emulsified microfragments (i.e., phacoemulsification). Moreover, the rapid postoperative recovery of the seal and its quick acclimation, orientation, navigation, and foraging in marine habitats after return to the Pacific Ocean indicates that these surgical procedures can be safe and effective treatments for cataracts in seals, with substantially reduced postsurgical complications relative to other types of lens fragmentation and removal procedures.

  19. Semi-automated tracking and continuous monitoring of inferior vena cava diameter in simulated and experimental ultrasound imaging.

    PubMed

    Mesin, Luca; Pasquero, Paolo; Albani, Stefano; Porta, Massimo; Roatta, Silvestro

    2015-03-01

    Assessment of respirophasic fluctuations in the diameter of the inferior vena cava (IVC) is detrimentally affected by its concomitant displacements. This study was aimed at presenting and validating a method to compensate for IVC movement artifacts while continuously measuring IVC diameter in an automated fashion (with minimal interaction with the user) from a longitudinal B-mode ultrasound clip. Performance was tested on both experimental ultrasound clips collected from four healthy patients and simulations, implementing rigid IVC displacements and pulsation. Compared with traditional M-mode measurements, the new approach systematically reduced errors in caval index assessment (range over maximum diameter value) to an extent depending on individual vessel geometry, IVC movement and choice of the M-line (the line along which the diameter is computed). In experimental recordings, this approach identified both the cardiac and respiratory components of IVC movement and pulsatility and evidenced the spatial dependence of IVC pulsatility. IVC tracking appears to be a promising approach to reduce movement artifacts and to improve the reliability of IVC diameter monitoring.

  20. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea

    PubMed Central

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  1. Regeneration of recombinant antigen microarrays for the automated monitoring of antibodies against zoonotic pathogens in swine sera.

    PubMed

    Meyer, Verena K; Kober, Catharina; Niessner, Reinhard; Seidel, Michael

    2015-01-23

    The ability to regenerate immobilized proteins like recombinant antigens (rAgs) on surfaces is an unsolved problem for flow-based immunoassays on microarray analysis systems. The regeneration on microarray chip surfaces is achieved by changing the protein structures and desorption of antibodies. Afterwards, reactivation of immobilized protein antigens is necessary for reconstitution processes. Any backfolding should be managed in a way that antibodies are able to detect the protein antigens in the next measurement cycle. The regeneration of rAg microarrays was examined for the first time on the MCR3 flow-based chemiluminescence (CL) microarray analysis platform. The aim was to reuse rAg microarray chips in order to reduce the screening effort and costs. An antibody capturing format was used to detect antibodies against zoonotic pathogens in sera of slaughtered pigs. Different denaturation and reactivation buffers were tested. Acidic glycine-SDS buffer (pH 2.5) and 8 M guanidinium hydrochloride showed the best results in respect of denaturation efficiencies. The highest CL signals after regeneration were achieved with a carbonate buffer containing 10 mM DTT and 0.1% BSA for reactivation. Antibodies against Yersinia spp. and hepatitis E virus (HEV) were detected in swine sera on one immunochip over 4 days and 25 measurement cycles. Each cycle took 10 min for detection and regeneration. By using the rAg microarray chip, a fast and automated screening of antibodies against pathogens in sera of slaughtered pigs would be possible for zoonosis monitoring.

  2. High-Throughput, Automated Protein A Purification Platform with Multiattribute LC-MS Analysis for Advanced Cell Culture Process Monitoring.

    PubMed

    Dong, Jia; Migliore, Nicole; Mehrman, Steven J; Cunningham, John; Lewis, Michael J; Hu, Ping

    2016-09-06

    The levels of many product related variants observed during the production of monoclonal antibodies are dependent on control of the manufacturing process, especially the cell culture process. However, it is difficult to characterize samples pulled from the bioreactor due to the low levels of product during the early stages of the process and the high levels of interfering reagents. Furthermore, analytical results are often not available for several days, which slows the process development cycle and prevents "real time" adjustments to the manufacturing process. To reduce the delay and enhance our ability to achieve quality targets, we have developed a low-volume, high-throughput, and high-content analytical platform for at-line product quality analysis. This workflow includes an automated, 96-well plate protein A purification step to isolate antibody product from the cell culture fermentation broth, followed by rapid, multiattribute LC-MS analysis. We have demonstrated quantitative correlations between particular process parameters with the levels of glycosylated and glycated species in a series of small scale experiments, but the platform could be used to monitor other attributes and applied across the biopharmaceutical industry.

  3. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  4. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    PubMed

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  5. Exposing Exposure: Automated Anatomy-specific CT Radiation Exposure Extraction for Quality Assurance and Radiation Monitoring

    PubMed Central

    Warden, Graham I.; Farkas, Cameron E.; Ikuta, Ichiro; Prevedello, Luciano M.; Andriole, Katherine P.; Khorasani, Ramin

    2012-01-01

    control and optimization, and cumulative patient- and anatomy-specific radiation exposure monitoring. Conclusion: Large-scale anatomy-specific radiation exposure data repositories can be created with high fidelity from existing digital image archives by using open-source informatics tools. ©RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12111822/-/DC1 PMID:22668563

  6. Analysis of the Optimal Duration of Behavioral Observations Based on an Automated Continuous Monitoring System in Tree Swallows (Tachycineta bicolor): Is One Hour Good Enough?

    PubMed Central

    Lendvai, Ádám Z.; Akçay, Çağlar; Ouyang, Jenny Q.; Dakin, Roslyn; Domalik, Alice D.; St John, Prianka S.; Stanback, Mark; Moore, Ignacio T.; Bonier, Frances

    2015-01-01

    Studies of animal behavior often rely on human observation, which introduces a number of limitations on sampling. Recent developments in automated logging of behaviors make it possible to circumvent some of these problems. Once verified for efficacy and accuracy, these automated systems can be used to determine optimal sampling regimes for behavioral studies. Here, we used a radio-frequency identification (RFID) system to quantify parental effort in a bi-parental songbird species: the tree swallow (Tachycineta bicolor). We found that the accuracy of the RFID monitoring system was similar to that of video-recorded behavioral observations for quantifying parental visits. Using RFID monitoring, we also quantified the optimum duration of sampling periods for male and female parental effort by looking at the relationship between nest visit rates estimated from sampling periods with different durations and the total visit numbers for the day. The optimum sampling duration (the shortest observation time that explained the most variation in total daily visits per unit time) was 1h for both sexes. These results show that RFID and other automated technologies can be used to quantify behavior when human observation is constrained, and the information from these monitoring technologies can be useful for evaluating the efficacy of human observation methods. PMID:26559407

  7. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    PubMed

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells.

  8. Microbial fuel cells for inexpensive continuous in-situ monitoring of groundwater quality.

    PubMed

    Velasquez-Orta, S B; Werner, D; Varia, J C; Mgana, S

    2017-03-19

    Online monitoring of groundwater quality in shallow wells to detect faecal or organic pollution could dramatically improve understanding of health risks in unplanned peri-urban settlements. Microbial fuel cells (MFC) are devices able to generate electricity from the organic matter content in faecal pollution making them suitable as biosensors. In this work, we evaluate the suitability of four microbial fuel cell systems placed in different regions of a groundwater well for the low-cost monitoring of a faecal pollution event. Concepts created include the use of a sediment/bulk liquid MFC (SED/BL), a sediment/sediment MFC (SED/SED), a bulk liquid/air MFC (BL/Air), and a bulk liquid/bulk liquid MFC (BL/BL). MFC electrodes assembly aimed to use inexpensive, durable, materials, which would produce a signal after a contamination event without external energy or chemical inputs. All MFC configurations were responsive to a contamination event, however SED/SED and BL/Air MFC concepts failed to deliver a reproducible output within the tested period of time. BL/BL MFC and SED/BL MFCs presented an increase in the average current after contamination from -0.75 ± 0.35 μA to -0.66 ± 0.41 μA, and 0.07 ± 0.2 mA to 0.11 ± 0.03 mA, respectively. Currents produced by the SED/BL MFC (SMFC) were considerably higher than for the BL/BL MFCs, making them more responsive, readable and graphically visible. A factorial design of experiments (DOE) was applied to evaluate which environmental and design factors had the greatest effect on current response in a contamination event. Within the ranges of variables tested, salinity, temperature and external resistance, only temperature presented a statistically significant effect (p = 0.045). This showed that the biosensor response would be sensitive to fluctuations in temperature but not to changes in salinity, or external resistances produced from placing electrodes at different distances within a groundwater well.

  9. COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel

    SciTech Connect

    Rector, D.R.; Wheeler, C.L.

    1986-01-01

    The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37/sup 0/C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8/sup 0/C (100/sup 0/F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance.

  10. Separation, real-time migration monitoring and selective zone retrieval using a computer controlled system for automated analysis.

    PubMed

    Gombocz, E; Cortez, E

    1995-01-01

    High throughput routine analysis of dsDNA fragments or molecular weight determination of proteins via electrophoresis still require significant efforts to obtain results of high reproducibility and accuracy. This paper analyses the use of a fully automated multi-purpose real-time gel electrophoresis system in these applications and evaluates the benefits of this new concept for routine and research. By comparing currently used systems with this new approach, it also addresses the analytical use of information resulting from real-time dynamic migration monitoring via fluorescence photometry over commonly obtained results from post-run fixation, visualization and evaluation at a single time of the separation. The simultaneous separation of components in multi-gel systems, pre-concentration of sample components, and the ability to perform in-gel assays for biological activity are discussed on basis of routine gel separations of restriction enzyme digested DNA fragments, native and denaturing protein separations and enzyme activity determination. Interactive, selective retrieval of separated components in the nano- to microgram range is carried out for real-time isolation of proteins or dsDNA fragments. Results are compared to blotting in respect to ease of use and transfer efficiency and for immediate availability of macromolecules for sequencing or mass spectroscopy. The Windows-based operating software is critically reviewed for functionality, user-friendliness, graphical data representation and GLP compliance for LIMS oriented forensic or certified laboratories. A statistical evaluation of lane-to-lane and gel-to-gel reproducibility of mobility data, quantification and molecular weight determination concludes the paper.

  11. Automated Status Notification System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA Lewis Research Center's Automated Status Notification System (ASNS) was born out of need. To prevent "hacker attacks," Lewis' telephone system needed to monitor communications activities 24 hr a day, 7 days a week. With decreasing staff resources, this continuous monitoring had to be automated. By utilizing existing communications hardware, a UNIX workstation, and NAWK (a pattern scanning and processing language), we implemented a continuous monitoring system.

  12. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    SciTech Connect

    Krichinsky, Alan M; Bates, Bruce E; Chesser, Joel B; Koo, Sinsze; Whitaker, J Michael

    2009-12-01

    operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.

  13. Proof of concept experiments of the multi-isotope process monitor: An online, nondestructive, near real-time monitor for spent nuclear fuel reprocessing facilities

    NASA Astrophysics Data System (ADS)

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

    2012-04-01

    Operators, national regulatory agencies and the IAEA will require the development of advanced technologies to efficiently control and safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of non-destructive, near real-time (NRT), autonomous process monitoring. This paper describes results from proof-of-principle experiments designed to test the multi-isotope process (MIP) monitor, a novel approach to monitoring and safeguarding reprocessing facilities. The MIP Monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in NRT. Commercial spent nuclear fuel of various irradiation histories was dissolved and separated using a PUREX-based batch solvent extraction. Extractions were performed at various nitric acid concentrations to mimic both normal and off-normal industrial plant operating conditions. Principal component analysis (PCA) was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup and cooling time. Partial least squares (PLS) regression was applied to attempt to quantify both the acid concentration and burnup of the dissolved spent fuel during the initial separation stage of recycle. The MIP Monitor demonstrated sensitivity to induced variations of acid concentration, including the distinction of ±1.3 M variation from normal process conditions by way of PCA. Acid concentration was predicted using measurements from the organic extract and PLS resulting in predictions with <0.7 M relative error. Quantification of burnup levels from dissolved fuel spectra using PLS was demonstrated to be within 2.5% of previously measured values.

  14. Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell.

    PubMed

    Rasmussen, Michelle; Minteer, Shelley D

    2015-12-01

    A microbial fuel cell was constructed with biofilms of Enterobacter cloacae grown on the anode. Bioelectrocatalysis was observed when the biofilm was grown in media containing sucrose as the carbon source and methylene blue as the mediator. The presence of arsenic caused a decrease in bioelectrocatalytic current. Biofilm growth in the presence of arsenic resulted in lower power outputs whereas addition of arsenic showed no immediate result in power output due to the short term arsenic resistance of the bacteria and slow transport of arsenic across cellular membranes to metabolic enzymes. Calibration curves plotted from the maximum current and maximum power of power curves after growth show that this system is able to quantify both arsenate and arsenate with low detection limits (46 μM for arsenate and 4.4 μM for arsenite). This system could be implemented as a method for long-term monitoring of arsenic concentration in environments where arsenic contamination could occur and alter the metabolism of the organisms resulting in a decrease in power output of the self-powered sensor.

  15. Proof of concept simulations of the Multi-Isotope Process monitor: An online, nondestructive, near-real-time safeguards monitor for nuclear fuel reprocessing facilities

    NASA Astrophysics Data System (ADS)

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

    2011-02-01

    The International Atomic Energy Agency will require the development of advanced technologies to effectively safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of nondestructive, near-real-time, autonomous process monitoring. This paper describes recent results from model simulations designed to test the Multi-Isotope Process (MIP) monitor, a novel addition to a safeguards system for reprocessing facilities. The MIP monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in near-real-time. Three computer models including ORIGEN-ARP, AMUSE, and SYNTH were used in series to predict spent nuclear fuel composition, estimate element partitioning during separation, and simulate spectra from product and raffinate streams using a variety of gamma detectors, respectively. Simulations were generated for fuel with various irradiation histories and under a variety of plant operating conditions. Principal component analysis was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup, and cooling time. Hierarchical cluster analysis and partial least squares (PLS) were also used in the analysis. The MIP monitor was found to be sensitive to induced variations of several operating parameters including distinguishing ±2.5% variation from normal process acid concentrations. The ability of PLS to predict burnup levels from simulated spectra was also demonstrated to be within 3.5% of measured values.

  16. A national system for monitoring the population of agricultural pests using an integrated approach of remote sensing data from in situ automated traps and satellite images

    NASA Astrophysics Data System (ADS)

    Diofantos, Hadjimitsis G.; Panayiotis, Philimis; Elias, Psimolophitis; Georgiou, George K.; Kyriacos, Themistocleous

    2010-10-01

    A national system for monitoring the population increase of agricultural pest "Lobesia Botrana" (vine moth/fly that attacks grapes) in Cyprus has been developed. The system comprises of automated delta traps with GPS that use wireless(Wi-Fi) camera, automated image analysis for identification of the specific fly species, Wi-Fi technology for transferring the data using mobile telephony network to a central station for result presentation and analysis. A GIS database was developed and included details of the pilot vineyards, environmental conditions and daily data of the number of captured flies from each automated trap. The results were compared with MODIS and LANDSAT satellite thermal images since the appearance of the vine fly is greatly dependent on the microclimate temperatures (degree days). Results showed that satellite data can estimate accurately the appearance of the vine fly. The proposed system can be an important tool for the improvement of a national Integrated Pest Management (IPM) system and it can also be used for monitoring other agricultural pests and insects.

  17. DEdicated MONitor of EXotransits and Transients (DEMONEXT): Low-Cost Robotic and Automated Telescope for Followup of Exoplanetary Transits and Transients

    NASA Astrophysics Data System (ADS)

    Villanueva, Steven; Eastman, Jason D.; Gaudi, B. Scott; Pogge, Richard W.; Stassun, Keivan G.; Trueblood, Mark; Trueblood, Patricia

    2017-01-01

    We present the design, development, and early science from the DEdicated MONitor of EXotransits and Transients (DEMONEXT), an automated and robotic 20 inch telescope jointly funded by The Ohio State University and Vanderbilt University. The telescope is a PlaneWave CDK20 f/6.8 Corrected Dall-Kirkham Astrograph telescope on a Mathis Instruments MI-750/1000 Fork Mount located at Winer Observatory in Sonoita, AZ. DEMONEXT has a Hedrick electronic focuser, Finger Lakes Instrumentation (FLI) CFW-3-10 filter wheel, and a 2048 x 2048 pixel FLI Proline CCD3041 camera with a pixel scale of 0.90 arc-seconds per pixel and a 30.7 x 30.7 arc-minute field-of-view. The telescope's automation, controls, and scheduling are implemented in Python, including a facility to add new targets in real time for rapid follow-up of time-critical targets. DEMONEXT will be used for the confirmation and detailed investigation of newly discovered planet candidates from the Kilodegree Extremely Little Telescope (KELT) survey, exploration of the atmospheres of Hot Jupiters via transmission spectroscopy and thermal emission measurements, and monitoring of select eclipsing binary star systems as benchmarks for models of stellar evolution. DEMONEXT will enable rapid confirmation imaging of supernovae, flare stars, tidal disruption events, and other transients discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN).

  18. Performance of the COBAS AMPLICOR HCV MONITOR Test, Version 2.0, an Automated Reverse Transcription-PCR Quantitative System for Hepatitis C Virus Load Determination

    PubMed Central

    Gerken, G.; Rothaar, T.; Rumi, M. G.; Soffredini, R.; Trippler, M.; Blunk, M. J.; Butcher, A.; Soviero, S.; Colucci, G.

    2000-01-01

    A clinical evaluation of an automated quantitative PCR assay, the COBAS AMPLICOR HCV MONITOR test, version 2.0 (v2.0), was carried out to assess the performance of this test in comparison with that of the previous, manual version, the AMPLICOR HCV MONITOR test, and with that of nested PCR. Serial dilutions of serum samples infected with genotype 1b, 2a, or 3, as well as synthetic RNA transcripts and serum samples derived from 87 patients with chronic hepatitis C and infected with genotype 1a, 1b, 2a, 2b, 3a, 3b, 4, or 5, were analyzed to determine the ability of the system to efficiently quantify various hepatitis C virus (HCV) genotypes. These experiments showed that the COBAS AMPLICOR HCV MONITOR test, v2.0, has mean intra-assay, interassay, and interoperator coefficients of variation that range from 22 to 34.5% and a 3-logarithm dynamic range, which spans from 103 to 106 copies/ml. Compared to the previous, manual version of the test, the COBAS AMPLICOR HCV MONITOR test, v2.0, showed an improved efficacy for all genotypes, especially genotypes 2, 3, and 4, whose estimated concentrations were on average 1 logarithm higher. When used to monitor patients under treatment, however, both versions showed the same patterns of viremia, indicating that the COBAS AMPLICOR HCV MONITOR test, v2.0, and the AMPLICOR HCV MONITOR test were equally effective at detecting relative viremia changes in serial samples. As expected, the automated test was less sensitive than nested PCR; among specimens from a cohort of patients treated with interferon, nested PCR identified three more viremic specimens, which probably contained very low concentrations of HCV RNA. PMID:10834978

  19. Using the source range monitor response to determine fuel relocation during the TMI-2 (Three Mile Island Unit 2) accident

    SciTech Connect

    Baratta, A.J.; Wu, H.Y.; Hsia, M.Y.; Bandini, B.R.; Tolman, E.L.

    1987-01-01

    A number of researchers have analyzed the Three Mile Island Unit 2 (TMI-2) source range monitor (SRM) response during the TMI-2 accident. In each of these analyses, an intact core was assumed. Video and sonar inspections that took place during the defueling effort have shown that the core was extensively damaged. In this paper the authors report on an analysis of the TMI-2 SRM in which the times of fuel relocation were determined.

  20. Apparatus for inspecting fuel elements

    DOEpatents

    Oakley, David J.; Groves, Oliver J.; Kaiser, Bruce J.

    1986-01-01

    Disclosed is an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  1. Apparatus for inspecting fuel elements

    DOEpatents

    Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

    1984-12-21

    This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

  2. Self-potential and Complex Conductivity Monitoring of In Situ Hydrocarbon Remediation in Microbial Fuel Cell

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Revil, A.; Ren, Z.; Karaoulis, M.; Mendonca, C. A.

    2013-12-01

    Petroleum hydrocarbon contamination of soil and groundwater in both non-aqueous phase liquid and dissolved forms generated from spills and leaks is a wide spread environmental issue. Traditional cleanup of hydrocarbon contamination in soils and ground water using physical, chemical, and biological remedial techniques is often expensive and ineffective. Recent studies show that the microbial fuel cell (MFC) can simultaneously enhance biodegradation of hydrocarbons in soil and groundwater and yield electricity. Non-invasive geophysical techniques such as self-potential (SP) and complex conductivity (induced polarization) have shown the potential to detect and characterize the nature of electron transport mechanism of in situ bioremediation of organic contamination plumes. In this study, we deployed both SP and complex conductivity in lab scale MFCs to monitor time-laps geophysical response of degradation of hydrocarbons by MFC. Two different sizes of MFC reactors were used in this study (DI=15 cm cylinder reactor and 94.5cm x 43.5 cm rectangle reactor), and the initial hydrocarbon concentration is 15 g diesel/kg soil. SP and complex conductivity measurements were measured using non-polarizing Ag/AgCl electrodes. Sensitivity study was also performed using COMSOL Multiphysics to test different electrode configurations. The SP measurements showed stronger anomalies adjacent to the MFC than locations afar, and both real and imaginary parts of complex conductivity are greater in areas close to MFC than areas further away and control samples without MFC. The joint use of SP and complex conductivity could in situ evaluate the dynamic changes of electrochemical parameters during this bioremediation process at spatiotemporal scales unachievable with traditional sampling methods. The joint inversion of these two methods to evaluate the efficiency of MFC enhanced hydrocarbon remediation in the subsurface.

  3. NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects

    SciTech Connect

    2015-09-01

    This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.

  4. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm(2), and that with a sensor is 426 mW/cm(2). Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  5. Xenon International Automated Control

    SciTech Connect

    2016-08-05

    The Xenon International Automated Control software monitors, displays status, and allows for manual operator control as well as fully automatic control of multiple commercial and PNNL designed hardware components to generate and transmit atmospheric radioxenon concentration measurements every six hours.

  6. Automated system for the on-line monitoring of powder blending processes using near-infrared spectroscopy. Part I. System development and control.

    PubMed

    Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K

    1996-03-01

    An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.

  7. SECONDARY STANDARD CALIBRATION, MEASUREMENT AND IRRADIATION CAPABILITIES OF THE INDIVIDUAL MONITORING SERVICE AT THE HELMHOLTZ ZENTRUM MÜNCHEN: ASPECTS OF UNCERTAINTY AND AUTOMATION.

    PubMed

    Greiter, M B; Denk, J; Hoedlmoser, H

    2016-09-01

    The individual monitoring service at the Helmholtz Zentrum München has adopted the recommendations of the ISO 4037 and 6980 standards series as base of its dosimetric systems for X-ray, gamma and beta dosimetry. These standards define technical requirements for radiation spectra and measurement processes, but leave flexibility in the implementation of irradiations as well as in the resulting uncertainty in dose or dose rate. This article provides an example for their practical implementation in the Munich IAEA/WHO secondary standard dosimetry laboratory. It focusses on two aspects: automation issues and uncertainties in calibration.

  8. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    SciTech Connect

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  9. Concepts and Strategies for Transparency Monitoring of Nuclear Materials at the Back End of the Fuel/Weapons Cycle

    SciTech Connect

    COSTIN, LAURENCE; DAVIES, PETER; PREGENZER, ARIAN L.

    1999-10-01

    Representatives of the Department of Energy, the national laboratories, the Waste Isolation Pilot Plant (WIPP), and others gathered to initiate the development of broad-based concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle, including both geologic disposal and monitored retrievable storage. The workshop focused on two key questions: ''Why should we monitor?'' and ''What should we monitor?'' These questions were addressed by identifying the range of potential stakeholders, concerns that stakeholders may have, and the information needed to address those concerns. The group constructed a strategic framework for repository transparency implementation, organized around the issues of safety (both operational and environmental), diversion (assuring legitimate use and security), and viability (both political and economic). Potential concerns of the international community were recognized as the possibility of material diversion, the multinational impacts of potential radionuclide releases, and public and political perceptions of unsafe repositories. The workshop participants also identified potential roles that the WIPP may play as a monitoring technology development and demonstration test-bed facility. Concepts for WIPP'S potential test-bed role include serving as (1) an international monitoring technology and development testing facility, (2) an international demonstration facility, and (3) an education and technology exchange center on repository transparency technologies.

  10. Used fuel storage monitoring using novel 4He scintillation fast neutron detectors and neutron energy discrimination analysis

    NASA Astrophysics Data System (ADS)

    Kelley, Ryan P.

    With an increasing quantity of spent nuclear fuel being stored at power plants across the United States, the demand exists for a new method of cask monitoring. Certifying these casks for transportation and long-term storage is a unique dilemma: their sealed nature lends added security, but at the cost of requiring non-invasive measurement techniques to verify their contents. This research will design and develop a new method of passively scanning spent fuel casks using 4He scintillation detectors to make this process more accurate. 4He detectors are a relatively new technological development whose full capabilities have not yet been exploited. These detectors take advantage of the high 4He cross section for elastic scattering at fast neutron energies, particularly the resonance around 1 MeV. If one of these elastic scattering interactions occurs within the detector, the 4He nucleus takes energy from the incident neutron, then de-excites by scintillation. Photomultiplier Tubes (PMTs) at either end of the detector tube convert this emitted light into an electrical signal. The goal of this research is to use the neutron spectroscopy features of 4He scintillation detectors to maintain accountability of spent fuel in storage. This project will support spent fuel safeguards and the detection of fissile material, in order to minimize the risk of nuclear proliferation and terrorism.

  11. Development of an on-line fuel failure monitoring system for CANDU reactors

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen Jason

    Although relatively rare in CANDU plants, fuel defects have always been an important operating concern for CANDU fuel operation and behaviour, and play a critical role in health, safety, and the economics of an operating reactor. A fuel defect occurs when a fuel element has a breach in its sheath resulting in fission product (FP) release and/or uranium fuel loss into the reactor primary heat transport system (PHTS). The unintended release of FP and fuel material into the PHTS creates elevated radiation fields and hazards for the reactor operator. The intent of this thesis is to develop an online real-time system that can analyse PHTS activity and infer information relating to otherwise unknown defect(s) in the reactor core. A MATLABRTM based Graphical User Interface (GUI) programme called COLDD (CANDU On-Line Defected fuel Diagnostic) has been developed to provide detailed diagnostics of PHTS activities. COLDD is based on new techniques, a new empirical diffusion coefficient, new algorithms, and refinement of existing techniques. Several techniques are based on detailed mechanistic models that are presented in detail, while other techniques are based on empirical rules from experimental and commercial experience; the diversity of techniques are shown to be self-consistent. The techniques employed by COLDD are compared to techniques used internationally by other defected fuel diagnostic tools for non-CANDU type reactors. The ability for COLDD to perform successful defected fuel diagnostics is dependent on the quality of the data provided. A detailed sensitivity analysis is performed to determine key measurement parameters. Techniques are also developed to allow operators to perform robust error checking of data to ensure consistency. COLDD is validated against theoretical, experimental, and commercial reactor data, and shown to be stable and consistent in all cases. The plethora of analysis modes are shown to be self-consistent. The version of COLDD described in

  12. The Development of Automated Detection Techniques for Passive Acoustic Monitoring as a Tool for Studying Beaked Whale Distribution and Habitat Preferences in the California Current Ecosystem

    NASA Astrophysics Data System (ADS)

    Yack, Tina M.

    The objectives of this research were to test available automated detection methods for passive acoustic monitoring and integrate the best available method into standard marine mammal monitoring protocols for ship based surveys. The goal of the first chapter was to evaluate the performance and utility of PAMGUARD 1.0 Core software for use in automated detection of marine mammal acoustic signals during towed array surveys. Three different detector configurations of PAMGUARD were compared. These automated detection algorithms were evaluated by comparing them to the results of manual detections made by an experienced bio-acoustician (author TMY). This study provides the first detailed comparisons of PAMGUARD automated detection algorithms to manual detection methods. The results of these comparisons clearly illustrate the utility of automated detection methods for odontocete species. Results of this work showed that the majority of whistles and click events can be reliably detected using PAMGUARD software. The second chapter moves beyond automated detection to examine and test automated classification algorithms for beaked whale species. Beaked whales are notoriously elusive and difficult to study, especially using visual survey methods. The purpose of the second chapter was to test, validate, and compare algorithms for detection of beaked whales in acoustic line-transect survey data. Using data collected at sea from the PAMGUARD classifier developed in Chapter 2 it was possible to measure the clicks from visually verified Baird's beaked whale encounters and use this data to develop classifiers that could discriminate Baird's beaked whales from other beaked whale species in future work. Echolocation clicks from Baird's beaked whales, Berardius bairdii, were recorded during combined visual and acoustic shipboard surveys of cetacean populations in the California Current Ecosystem (CCE) and with autonomous, long-term recorders at four different sites in the Southern

  13. Raman-based Oxygen and Nitrogen Sensor for Monitoring Empty Airplane Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Chen, Peter C.

    2004-01-01

    The purpose of this project was to develop a Raman-based method for detecting oxygen and nitrogen in empty fuel tanks. The need for such a method comes from the potential danger of allowing explosive oxygen-fuel mixtures to accumulate in empty airplane fuel tanks. An explosion resulting from such a mixture is believed to have caused the Flight TWA 800 disaster in 1996. Recently, (e.g., February 17,2004 press release) the FAA announced its intentions to make fuel tank inerting mandatory. One potential solution to this problem is to use an inert gas such as nitrogen to flood the empty fue1 tanks in order to reduce the concentration of oxygen.

  14. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this section will be considered inherently low in sulfur content. (i) Pilot gas for heaters and flares... produced in process units that are intolerant to sulfur contamination, such as fuel gas streams produced...

  15. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section will be considered inherently low in sulfur content. (i) Pilot gas for heaters and flares... produced in process units that are intolerant to sulfur contamination, such as fuel gas streams produced...

  16. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this section will be considered inherently low in sulfur content. (i) Pilot gas for heaters and flares... produced in process units that are intolerant to sulfur contamination, such as fuel gas streams produced...

  17. Real Time Monitoring of Temperature of a Micro Proton Exchange Membrane Fuel Cell

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Hu, Yuh-Chung; Shih, Wen-Pin; Fan, Wei-Yuan; Chuang, Chih-Wei

    2009-01-01

    Silicon micro-hole arrays (Si-MHA) were fabricated as a gas diffusion layer (GDL) in a micro fuel cell using the micro-electro-mechanical-systems (MEMS) fabrication technique. The resistance temperature detector (RTD) sensor was integrated with the GDL on a bipolar plate to measure the temperature inside the fuel cell. Experimental results demonstrate that temperature was generally linearly related to resistance and that accuracy and sensitivity were within 0.5 °C and 1.68×10−3/°C, respectively. The best experimental performance was 9.37 mW/cm2 at an H2/O2 dry gas flow rate of 30/30 SCCM. Fuel cell temperature during operation was 27 °C, as measured using thermocouples in contact with the backside of the electrode. Fuel cell operating temperature measured in situ was 30.5 °C. PMID:22573963

  18. Monitoring of Olympic National Park Beaches to determine fate and effects of spilled bunker C fuel oil

    SciTech Connect

    Strand, J.A.; Cullinan, V.I.; Crecelius, E.A.; Fortman, T.J.; Citterman, R.J.; Fleischmann, M.L.

    1990-10-01

    On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that has been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine (1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, (2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and (3) how rapidly the oil has left the ecosystem. 45 refs., 18 figs., 8 tabs.

  19. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly.

    PubMed

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-04-21

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation.

  20. Nuclear Energy Research Initiative Annual Report-Innovative Approaches to Automating QA/QC of Fuel Particle Production Using On-Line Nondestructive Methods for Higher Reliability.

    SciTech Connect

    Hockey, Ronald L.; Bond, Leonard J.; Ahmed, Salahuddin; Sandness, Gerald A.; Gray, Joseph N.; Batishko, Charles R.; Flake, Matthew; Panetta, Paul D.; Saurwein, John J.; Lowden, Richard A.; Good, Morris S.

    2004-04-20

    This document summarizes the activities performed and progress made in FY-03. Various approaches for automating the particle fuel production QC process using on-line nondestructive methods for higher reliability were evaluated. In this first-year of a three-year project, surrogate fuel particles made available for testing included leftovers from initial coater development runs. These particles had a high defect fraction and the particle properties spanned a wide range, providing the opportunity to examine worst-case conditions before refining the inspection methods to detect more subtle coating features. Particles specifically designed to evaluate the NDE methods being investigated under this project will be specified and fabricated at ORNL early next reporting period. The literature was reviewed for existing inspection technology and to identify many of the fuel particle conditions thought to degrade its performance. A modeling study, including the electromagnetic and techniques, showed that the in-line electromagnetic methods should provide measurable responses to missing layers, kernel diameter, and changes in coating layer thickness, with reasonable assumptions made for material conductivities. The modeling study for the ultrasonic methods provided the resonant frequencies that should be measured using the resonant ultrasound technique, and the results from these calculations were published in the proceedings for two conferences. The notion of a particle quality index to relate coating properties to fabrication process parameters was explored. Progress was made in understanding the fabrication process. GA identified key literature in this area and Saurwein (2003a) provided a literature review/summary. This literature has been reviewed. An approach previously applied to flexible manufacturing was adopted and the modification and development of the concepts to meet TRISO particle fuel manufacturing and QA/QC needs initiated. This approach establishes

  1. MONITORING SPENT NUCLEAR FUEL REPROCESSING CONDITIONS NON-DESTRUCTIVELY AND IN NEAR-REAL-TIME USING THE MULTI-ISOTOPE PROCESS (MIP) MONITOR

    SciTech Connect

    Orton, Christopher R.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard; Schwantes, Jon M.

    2010-05-07

    Researchers from Pacific Northwest National Laboratory and The Ohio State University are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, nondestructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. Signatures from these indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout an existing facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory testing is currently under way and significant results are available. Recent experimental results, along with an overview of the method are presented.

  2. DEdicated MONitor of EXotransits and Transients (DEMONEXT): a low-cost robotic and automated telescope for followup of exoplanetary transits and other transient events

    NASA Astrophysics Data System (ADS)

    Villanueva, S.; Eastman, J. D.; Gaudi, B. S.; Pogge, R. W.; Stassun, K. G.; Trueblood, M.; Trueblood, P.

    2016-07-01

    We present the design and development of the DEdicatedMONitor of EXotransits and Transients (DEMONEXT), an automated and robotic 20 inch telescope jointly funded by The Ohio State University and Vanderbilt University. The telescope is a PlaneWave CDK20 f/6.8 Corrected Dall-Kirkham Astrograph telescope on a Mathis Instruments MI-750/1000 Fork Mount located atWiner Observatory in Sonoita, AZ. DEMONEXT has a Hedrick electronic focuser, Finger Lakes Instrumentation (FLI) CFW-3-10 filter wheel, and a 2048 x 2048 pixel FLI Proline CCD3041 camera with a pixel scale of 0.90 arc-seconds per pixel and a 30.7× 30.7 arc-minute field-of-view. The telescope's automation, controls, and scheduling are implemented in Python, including a facility to add new targets in real time for rapid follow-up of time-critical targets. DEMONEXT will be used for the confirmation and detailed investigation of newly discovered planet candidates from the Kilodegree Extremely Little Telescope (KELT) survey, exploration of the atmospheres of Hot Jupiters via transmission spectroscopy and thermal emission measurements, and monitoring of select eclipsing binary star systems as benchmarks for models of stellar evolution. DEMONEXT will enable rapid confirmation imaging of supernovae, flare stars, tidal disruption events, and other transients discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN). DEMONEXT will also provide follow-up observations of single-transit planets identified by the Transiting Exoplanet Survey Satellite (TESS) mission, and to validate long-period eclipsing systems discovered by Gaia.

  3. Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    SciTech Connect

    Dawn Scates

    2010-10-01

    A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000ºC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

  4. Performance of a microbial fuel cell-based biosensor for online monitoring in an integrated system combining microbial fuel cell and upflow anaerobic sludge bed reactor.

    PubMed

    Jia, Hui; Yang, Guang; Wang, Jie; Ngo, Huu Hao; Guo, Wenshan; Zhang, Hongwei; Zhang, Xinbo

    2016-10-01

    A hybrid system integrating a microbial fuel cell (MFC)-based biosensor with upflow anaerobic sludge blanket (UASB) was investigated for real-time online monitoring of the internal operation of the UASB reactor. The features concerned were its rapidity and steadiness with a constant operation condition. In addition, the signal feedback mechanism was examined by the relationship between voltage and time point of changed COD concentration. The sensitivity of different concentrations was explored by comparing the signal feedback time point between the voltage and pH. Results showed that the electrical signal feedback was more sensitive than pH and the thresholds of sensitivity were S=3×10(-5)V/(mg/L) and S=8×10(-5)V/(mg/L) in different concentration ranges, respectively. Although only 0.94% of the influent COD was translated into electricity and applied for biosensing, this integrated system indicated great potential without additional COD consumption for real-time monitoring.

  5. A fiber optics system for monitoring utilization of ZnO adsorbent beds during desulfurization for logistic fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sujan, Achintya; Yang, Hongyun; Dimick, Paul; Tatarchuk, Bruce J.

    2016-05-01

    An in-situ fiber optic based technique for direct measurement of capacity utilization of ZnO adsorbent beds by monitoring bed color changes during desulfurization for fuel cell systems is presented. Adsorbents composed of bulk metal oxides (ZnO) and supported metal oxides (ZnO/SiO2 and Cusbnd ZnO/SiO2) for H2S removal at 22 °C are examined. Adsorbent bed utilization at breakthrough is determined by the optical sensor as the maximum derivative of area under UV-vis spectrum from 250 to 800 nm observed as a function of service time. Since the response time of the sensor due to bed color change is close to bed breakthrough time, a series of probes along the bed predicts utilization of the portion of bed prior to H2S breakthrough. The efficacy of the optical sensor is evaluated as a function of inlet H2S concentration, H2S flow rate and desulfurization in presence of CO, CO2 and moisture in feed. A 6 mm optical probe is employed to measure utilization of a 3/16 inch ZnO extrudate bed for H2S removal. It is envisioned that with the application of the optical sensor, desulfurization can be carried out at high adsorbent utilization and low operational costs during on-board miniaturized fuel processing for logistic fuel cell power systems.

  6. A simple and rapid method for monitoring dissolved oxygen in water with a submersible microbial fuel cell (SBMFC).

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A submersible microbial fuel cell (SBMFC) was developed as a biosensor for in situ and real time monitoring of dissolved oxygen (DO) in environmental waters. Domestic wastewater was utilized as a sole fuel for powering the sensor. The sensor performance was firstly examined with tap water at varying DO levels. With an external resistance of 1000Ω, the current density produced by the sensor (5.6 ± 0.5-462.2 ± 0.5 mA/m(2)) increased linearly with DO level up to 8.8 ± 0.3mg/L (regression coefficient, R(2)=0.9912), while the maximum response time for each measurement was less than 4 min. The current density showed different response to DO levels when different external resistances were applied, but a linear relationship was always observed. Investigation of the sensor performance at different substrate concentrations indicates that the organic matter contained in the domestic wastewater was sufficient to power the sensing activities. The sensor ability was further explored under different environmental conditions (e.g. pH, temperature, conductivity, and alternative electron acceptor), and the results indicated that a calibration would be required before field application. Lastly, the sensor was tested with different environmental waters and the results showed no significant difference (p>0.05) with that measured by DO meter. The simple, compact SBMFC sensor showed promising potential for direct, inexpensive and rapid DO monitoring in various environmental waters.

  7. Alternative Fuels Compatibility with Army Equipment Testing - In-Line Monitoring

    DTIC Science & Technology

    2012-02-01

    determine the water and particulate contamination levels, respectively, in aviation fuel for decades. The Aqua-glo uses dyed pads that fluoresce as...G.B., Kohl, K.B., and Bequette, L.L., “Effect of Sand and Fine Debris on Helicopter Systems”, SwRI Project Number 18-04484, Contract Number OO- CMP

  8. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    SciTech Connect

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong; Dae, Dongsun; Whitehouse, Andrew I.

    2015-07-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  9. ON-LINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS AT SPENT FUEL REPROCESSING PLANTS

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Casella, Amanda J.

    2014-10-20

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent nuclear fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource-efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major non-radioactive flowsheet chemicals using UV-vis-near infrared and Raman spectroscopy. This paper provides an overview of the methods and reports our on-going efforts to develop and demonstrate the technologies. Our ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection of that diversion, from a solvent extraction scheme was demonstrated using a centrifugal contactor system operating a tributyl phosphate based extraction. A portion of the feed from a counter-current extraction system was diverted while a continuous extraction experiment was underway; the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be

  10. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.

    PubMed

    Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi

    2009-01-01

    Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.

  11. Intelligent Production Monitoring and Control based on Three Main Modules for Automated Manufacturing Cells in the Automotive Industry

    NASA Astrophysics Data System (ADS)

    Berger, Ulrich; Kretzschmann, Ralf; Algebra, A. Vargas Veronica

    2008-06-01

    The automotive industry is distinguished by regionalization and customization of products. As consequence, the diversity of products will increase while the lot sizes will decrease. Thus, more product types will be handled along the process chain and common production paradigms will fail. Although Rapid Manufacturing (RM) methodology will be used for producing small individual lot sizes, new solution for joining and assembling these components are needed. On the other hand, the non-availability of existing operational knowledge and the absence of dynamic and explicit knowledge retrieval minimize the achievement of on-demand capabilities. Thus, in this paper, an approach for an Intelligent Production System will be introduced. The concept is based on three interlinked main modules: a Technology Data Catalogue (TDC) based on an ontology system, an Automated Scheduling Processor (ASP) based on graph theory and a central Programmable Automation Controller (PAC) for real-time sensor/actor communication. The concept is being implemented in a laboratory set-up with several assembly and joining processes and will be experimentally validated in some research and development projects.

  12. Temporal and Individual Variation in Offspring Provisioning by Tree Swallows: A New Method of Automated Nest Attendance Monitoring

    PubMed Central

    Rose, Alexandra P.

    2009-01-01

    Studies of the ecology and evolution of avian nesting behavior have been limited by the difficulty and expense of sampling nest attendance behavior across entire days or throughout a substantial portion of the nestling period. Direct observation of nesting birds using human observers and most automated devices requires sub-sampling of the nestling period, which does not allow for the quantification of the duration of chick-feeding by parents within a day, and may also inadequately capture temporal variation in the rate at which chicks are fed. Here I describe an inexpensive device, the Automated Perch Recorder (APR) system, which collects accurate, long-term data on hourly rates of nest visitation, the duration of a pair's workday, and the total number of visits the pair makes to their nest across the entire period for which it is deployed. I also describe methods for verifying the accuracy of the system in the field, and several examples of how these data can be used to explore the causes of variation in and tradeoffs between the rate at which birds feed their chicks and the total length of time birds spend feeding chicks in a day. PMID:19119316

  13. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant.

    PubMed

    Okochi, Mina; Mima, Koji; Miyata, Maki; Shinozaki, Youhei; Haraguchi, Satoshi; Fujisawa, Minoru; Kaneko, Masao; Masukata, Tadashi; Matsunaga, Tadashi

    2004-09-30

    An on-line biosensor consisting of immobilized Thiobacillus ferrooxidans and an oxygen electrode was developed for automated monitoring of acute toxicity in water samples. T. ferrooxidans is an obligatory acidophilic, autotrophic bacterium and derives its energy by the oxidation of ferrous ion, elemental sulfur, and reduced sulfur compounds including metal sulfides. The assay is based on the monitoring of a current increase by addition of toxicoids, which is caused by the inhibition of bacterial respiration and decrease in oxygen consumption. Optimum cell number on the membrane was 5.0 x 10(8) cells. The steady-state current was obtained when concentration of FeSO4 was above 3.6 mM at pH 3. The sensor response of T. ferrooxidans immobilized membrane for 5.0 microM KCN was within an error of 10% for 30 membranes. A linear relationship was obtained at KCN concentration in the range of 0.5-3.0 microM in a flow-type monitoring system. Minimum detectable concentrations of KCN, Na2S, and NaN3 were 0.5, 1.2, and 0.07 microM, respectively. The monitoring system contained two biosensors and these sensors were cleaned with sulfuric acid (pH 1.5) twice a day. This treatment could remove fouling on microbial immobilized membrane by natural water and ferrous precipitation in the flow cell. This flow-type monitoring sensor was operated continuously for 5 months. Also, T. ferrooxidans immobilized membrane can be stored for one month at 4 degrees C when preserved with wet absorbent cotton under argon gas.

  14. Automated continuous monitoring of inorganic and total mercury in wastewater and other waters by flow-injection analysis and cold-vapour atomic absorption spectrometry

    PubMed Central

    Birnie, S. E.

    1988-01-01

    An automated continuous monitoring system for the determination of inorganic and total mercury by flow-injection analysis followed by cold-vapour atomic absorption spectrometry is described. The method uses a typical flow-injection manifold where digestion and reduction of the injected sample takes place. Mercury is removed by aeration from the flowing stream in a specially designed air-liquid separator and swept into a silica cell for absorption measurement at a wavelength of 253.7 nm. A calibration curve up to 10 μg Hg ml-1 using three different path length cells is obtained with a detection limit of 0.02 μg Hg ml-1. The sampling rate of an injection every 3 min produces 20 results per hour from a flowing stream. PMID:18925201

  15. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    SciTech Connect

    HUNACEK, G.S.

    2000-08-01

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

  16. On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging

    DOEpatents

    Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael

    2016-01-12

    A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.

  17. Evaluating an Automated Approach for Monitoring Forest Disturbances in the Pacific Northwest from Logging, Fire and Insect Outbreaks with Landsat Time Series Data

    NASA Technical Reports Server (NTRS)

    R.Neigh, Christopher S.; Bolton, Douglas K.; Williams, Jennifer J.; Diabate, Mouhamad

    2014-01-01

    Forests are the largest aboveground sink for atmospheric carbon (C), and understanding how they change through time is critical to reduce our C-cycle uncertainties. We investigated a strong decline in Normalized Difference Vegetation Index (NDVI) from 1982 to 1991 in Pacific Northwest forests, observed with the National Ocean and Atmospheric Administration's (NOAA) series of Advanced Very High Resolution Radiometers (AVHRRs). To understand the causal factors of this decline, we evaluated an automated classification method developed for Landsat time series stacks (LTSS) to map forest change. This method included: (1) multiple disturbance index thresholds; and (2) a spectral trajectory-based image analysis with multiple confidence thresholds. We produced 48 maps and verified their accuracy with air photos, monitoring trends in burn severity data and insect aerial detection survey data. Area-based accuracy estimates for change in forest cover resulted in producer's and user's accuracies of 0.21 +/- 0.06 to 0.38 +/- 0.05 for insect disturbance, 0.23 +/- 0.07 to 1 +/- 0 for burned area and 0.74 +/- 0.03 to 0.76 +/- 0.03 for logging. We believe that accuracy was low for insect disturbance because air photo reference data were temporally sparse, hence missing some outbreaks, and the annual anniversary time step is not dense enough to track defoliation and progressive stand mortality. Producer's and user's accuracy for burned area was low due to the temporally abrupt nature of fire and harvest with a similar response of spectral indices between the disturbance index and normalized burn ratio. We conclude that the spectral trajectory approach also captures multi-year stress that could be caused by climate, acid deposition, pathogens, partial harvest, thinning, etc. Our study focused on understanding the transferability of previously successful methods to new ecosystems and found that this automated method does not perform with the same accuracy in Pacific Northwest forests

  18. Monitoring of the physical status of Mars-500 subjects as a model of structuring an automated system in support of the training process in an exploration mission

    NASA Astrophysics Data System (ADS)

    Fomina, Elena; Savinkina, Alexandra; Kozlovskaya, Inesa; Lysova, Nataliya; Angeli, Tomas; Chernova, Maria; Uskov, Konstantin; Kukoba, Tatyana; Sonkin, Valentin; Ba, Norbert

    Physical training sessions aboard the ISS are performed under the permanent continuous control from Earth. Every week the instructors give their recommendations on how to proceed with the training considering the results of analysis of the daily records of training cosmonauts and data of the monthly fitness testing. It is obvious that in very long exploration missions this system of monitoring will be inapplicable. For this reason we venture to develop an automated system to control the physical training process using the current ISS locomotion test parameters as the leading criteria. Simulation of an extended exploration mission in experiment MARS-500 enabled the trial application of the automated system for assessing shifts in cosmonauts’ physical status in response to exercises of varying category and dismissal periods. Methods. Six subjects spent 520 days in the analog of an interplanetary vehicle at IBMP (Moscow). A variety of training regimens and facilities were used to maintain a high level of physical performance of the subjects. The resistance exercises involved expanders, strength training device (MDS) and vibrotraining device (Galileo). The cycling exercises were performed on the bicycle ergometer (VB-3) and a treadmill with the motor in or out of motion. To study the effect of prolonged periods of dismissal from training on physical performance, the training flow was interrupted for a month once in the middle and then at the end of isolation. In addition to the in-flight locomotion test integrated into the automated training control system, the physical status of subjects was attested by analysis of the records of the monthly incremental testing on the bicycle ergometer and MDS. Results. It was demonstrated that the recommended training regimens maintained high physical performance levels despite the limited motor activities in isolation. According to the locomotion testing, the subjects increased velocity significantly and reduced the physiological

  19. Use of Chia Plant to Monitor Urban Fossil Fuel CO2 Emission: An Example From Irvine, CA in 2010

    NASA Astrophysics Data System (ADS)

    Xu, X.; Stills, A.; Trumbore, S.; Randerson, J. T.; Yi, J.

    2011-12-01

    Δ14CO2 is a unique tracer for quantifying anthropogenic CO2 emissions. However, monitoring 14CO2 change and distribution in an urban environment is challenging because of its large spatial and temporal variations. We have tested the potential use of a chia plant (Salvia hispanica) as an alternative way to collect a time-integrated CO2 sample for radiocarbon analysis. The results show that Δ14C of the new growth of chia sprouts and chia leaves are consistent with the Δ14C of air samples collected during the growing period, indicating the new growth has no inherited C from seeds and thus records atmospheric 14CO2. Time-integrated air samples and chia leaf samples significantly reduced the noises of Δ14CO2 in an urban environment. We report here an example of monitoring 14CO2 change in Irvine, CA from Mar 2010 to Mar 2011 utilizing such a method. The results showed a clear seasonal cycle with high (close to remote air background level) Δ14C in summer and low Δ14C in winter months in this urban area. Excess (above remote air background) fossil fuel CO2 was calculated to be closed to 0 ppm in June to about 16 ppm from November 2010 to February 2011. Monthly mean Δ14CO2 was anti-correlated with monthly mean CO mixing ratio, indicating Δ14CO2 is mainly controlled by fossil fuel CO2 mixing with clean on-shore marine air. In summary, this study has shown encouraging result that chia plant can be potentially used as a convenient and inexpensive sampling method for time-integrated atmospheric 14CO2. Combined with other annual plants this provides the opportunity to map out time-integrated fossil fuel-derived CO2 in major cities at low cost. This in turn can be used to: 1) establish a baseline for fossil fuel emissions reductions in cities in the future; 2) provide invaluable information for validating emission models.

  20. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    2017-04-01

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gamma spectra were used to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. This approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.

  1. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect

    Xiao, Hai; Dong, Junhang; Lin, Jerry; Romero, Van

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  2. A 3D paper-based enzymatic fuel cell for self-powered, low-cost glucose monitoring.

    PubMed

    Fischer, Christopher; Fraiwan, Arwa; Choi, Seokheun

    2016-05-15

    In this work, we demonstrate a novel low-cost, self-powered paper-based biosensor for glucose monitoring. The device operating mechanism is based on a glucose/oxygen enzymatic fuel cell using an electrochemical energy conversion as a transducing element for glucose monitoring. The self-powered glucose biosensor features (i) a 3D origami paper-based structure for easy system integration onto paper, (ii) an air-cathode on paper for low-cost production and easy operation, and (iii) a screen printed chitosan/glucose oxidase anode for stable current generation as an analytical signal for glucose monitoring. The sensor showed a linear range of output current at 1-5mM glucose (R(2)=0.996) with a sensitivity of 0.02 µA mM(-1). The advantages offered by such a device, including a low cost, lack of external power sources/sophisticated external transducers, and the capacity to rapidly generate reliable results, are well suited for the clinical and social settings of the developing world.

  3. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    SciTech Connect

    Mark Schanfein

    2009-07-01

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  4. Automated monitoring of phosphatidylcholine biosyntheses in Plasmodium falciparum by electrospray ionization mass spectrometry through stable isotope labeling experiments.

    PubMed

    Enjalbal, Christine; Roggero, Rodolphe; Cerdan, Rachel; Martinez, Jean; Vial, Henri; Aubagnac, Jean-Louis

    2004-08-01

    The metabolic pathways contributing to phosphatidylcholine biosyntheses in Plasmodium falciparum, the malaria-causing parasite, was explored by electrospray ionization mass spectrometry. Phosphatidylcholine produced by the CDP-choline pathway and by the methylation of phosphatidylethanolamine was identified and quantified through isotopic labeling experiments. A straightforward method based on cone voltage directed in-source fragmentations and relative abundance measurement of endogenous versus deuterated specific fragment ions was developed for simple and rapid automated data acquisition. Such high-throughput analytical protocol allowed us to measure the relative contribution of two different metabolic pathways leading to phosphatidylcholine without performing technically more demanding and time-consuming MS/MS or LC/MS experiments.

  5. An alternative method for monitoring carbonyls, and the development of a 24-port fully automated carbonyl sampler for PAMS program

    SciTech Connect

    Parmar, S.S.; Ugarova, L.; Fernandes, C.; Guyton, J.; Lee, C.P.

    1994-12-31

    The authors have investigated the possibility of collecting different aldehydes and ketones on different sorbents such as silica gel, molecular sieve and charcoal followed by solvent extraction, DNPH derivatization and HPLC/UV analysis. Carbonyl collection efficiencies for these sorbents were calculated relative to a DNPH coated C{sub 18} sep-pak cartridge. From a limited number of laboratory experiments, at various concentrations, it appears that silica gel tubes can be used for sampling aldehydes (collection efficiencies {approximately} 1), whereas charcoal tubes are suitable for collecting ketones. Molecular sieve was found to be unsuitable for collecting most of the carbonyl studied. The authors also report the development of a fully automated 24-port carbonyl sampler specially designed for EPA`s PAMS program.

  6. Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage

    SciTech Connect

    Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

    1984-01-01

    It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

  7. Hydrogen Monitoring Requirements in the Global Technical Regulation on Hydrogen and Fuel Cell Vehicles: Preprint

    SciTech Connect

    Buttner, William; Rivkin, Carl; Burgess, Robert; Hartmann, Kevin; Bubar, Max; Post, Matthew; Boon-Brett, Lois; Weidner, Eveline; Moretto, Pietro

    2016-07-01

    The United Nations Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular fuel cell electric vehicles (FCEV). GTR Number 13 has been formally implemented and will serve as the basis for the national regulatory standards for FCEV safety in North America (Canada, United States), Japan, Korea, and the European Union. The GTR defines safety requirement for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, in order to be binding, methods to verify compliance to the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance to the hydrogen release requirement as specified in the GTR.

  8. Design and construction of a prototype advanced on-line fuel burn-up monitoring system for the modular pebble bed reactor

    SciTech Connect

    Su, Bingjing; Hawari, Ayman, I.

    2004-03-30

    Modular Pebble Bed Reactor (MPBR) is a high temperature gas-cooled nuclear power reactor currently under study as a next generation reactor system. In addition to its inherently safe design, a unique feature of this reactor is its multi-pass fuel circulation in which the fuel pebbles are randomly loaded and continuously cycled through the core until they reach their prescribed End-of-Life burn-up limit. Unlike the situation with a conventional light water reactor, depending solely on computational methods to perform in-core fuel management for MPBR will be highly inaccurate. An on-line measurement system is needed to accurately assess whether a given pebble has reached its End-of-Life burn-up limit and thereby provide an on-line, automated go/no-go decision on fuel disposition on a pebble-by-pebble basis. This project investigated approaches to analyzing fuel pebbles in real time using gamma spectroscopy and possibly using passive neutron counting of spontaneous fission neutrons to provide the speed, accuracy, and burn-up range required for burnup determination of MPBR. It involved all phases necessary to develop and construct a burn-up monitor, including a review of the design requirements of the system, identification of detection methodologies, modeling and development of potential designs, and finally, the construction and testing of an operational detector system. Based upon the research work performed in this project, the following conclusions are made. In terms of using gamma spectrometry, two possible approaches were identified for burnup assay. The first approach is based on the measurement of the absolute activity of Cs-137. However, due to spectral interference and the need for absolute calibration of the spectrometer, the uncertainty in burnup determination using this approach was found to range from {approx} {+-}40% at beginning of life to {approx} {+-}10% at the discharge burnup. An alternative approach is to use a relative burnup indicator. In this

  9. "SmartMonitor"--an intelligent security system for the protection of individuals and small properties with the possibility of home automation.

    PubMed

    Frejlichowski, Dariusz; Gościewska, Katarzyna; Forczmański, Paweł; Hofman, Radosław

    2014-06-05

    "SmartMonitor" is an intelligent security system based on image analysis that combines the advantages of alarm, video surveillance and home automation systems. The system is a complete solution that automatically reacts to every learned situation in a pre-specified way and has various applications, e.g., home and surrounding protection against unauthorized intrusion, crime detection or supervision over ill persons. The software is based on well-known and proven methods and algorithms for visual content analysis (VCA) that were appropriately modified and adopted to fit specific needs and create a video processing model which consists of foreground region detection and localization, candidate object extraction, object classification and tracking. In this paper, the "SmartMonitor" system is presented along with its architecture, employed methods and algorithms, and object analysis approach. Some experimental results on system operation are also provided. In the paper, focus is put on one of the aforementioned functionalities of the system, namely supervision over ill persons.

  10. Toward an automated low-cost three-dimensional crop surface monitoring system using oblique stereo imagery from consumer-grade smart cameras

    NASA Astrophysics Data System (ADS)

    Brocks, Sebastian; Bendig, Juliane; Bareth, Georg

    2016-10-01

    Crop surface models (CSMs) representing plant height above ground level are a useful tool for monitoring in-field crop growth variability and enabling precision agriculture applications. A semiautomated system for generating CSMs was implemented. It combines an Android application running on a set of smart cameras for image acquisition and transmission and a set of Python scripts automating the structure-from-motion (SfM) software package Agisoft Photoscan and ArcGIS. Only ground-control-point (GCP) marking was performed manually. This system was set up on a barley field experiment with nine different barley cultivars in the growing period of 2014. Images were acquired three times a day for a period of two months. CSMs were successfully generated for 95 out of 98 acquisitions between May 2 and June 30. The best linear regressions of the CSM-derived plot-wise averaged plant-heights compared to manual plant height measurements taken at four dates resulted in a coefficient of determination R2 of 0.87 and a root-mean-square error (RMSE) of 0.08 m, with Willmott's refined index of model performance dr equaling 0.78. In total, 103 mean plot heights were used in the regression based on the noon acquisition time. The presented system succeeded in semiautomatedly monitoring crop height on a plot scale to field scale.

  11. An Automated Measurement And Analysis System For Resistivity-Based Monitoring Of Chemical Self-Assembly On Thin Gold Films

    NASA Astrophysics Data System (ADS)

    Alkhatib, Tareif

    While DNA array-based technologies hold great promise applications in biochemical field for the functionalization of gold surface, surprisingly little is known about the surface structures of bound probes and the impact of the surface on hybridization reactions. It is interesting to note that, in spite of the tremendous potential held by these new DNA technologies, little has been done in the way of physical characterization of the surface in the air. For example, the stability of the resistances of the immobilized gold devices has not been examined in great detail as a function of time, nor has the role of mercaptohexanol protective layer on the resistance been rigorously examined. In this work, the stability of DNA functionalized thin gold film was examined in relation to temperature, light as well as the presence of mercaptohexanol, DI Water, Ethanol and complimentary strand of DNA. Furthermore, we examined the stability in air and in liquid, also we describe the preparatory procedure for samples hexanethiol-capped DNA strands on silicon wafers, the automated system used for measurement and data analysis. A review of the available and relevant literature is presented as well as a discussion of conclusions regarding the observed behavior of the gold film resistivity in light of the available previous work and theoretical arguments.

  12. Groundwater Monitoring for the 100-K Area Fuel-Storage Basins: July 1996 Through April 1998

    SciTech Connect

    VG Johnson; CJ Chou; MJ Hartman; WD Webber

    1999-01-08

    This report presents the results of groundwater monitoring and summarizes current interpretations of conditions influencing groundwater quality and flow in the 100-K Area. The interpretations build on previous work, and statisticzd evaluations of contaminant concentrations were ptiormed for the period July 1996 through April 1998. No new basin leaks are indicated by data from this period. Tritium from a 1993 leak in the KE Basin has been detected in groundwater and appears to be dissi- pating. Tritium and strontium-90 from inactive injection wells/drain fields are still evident near the KW and KE Basins. These contaminants have increased as a result of infiltration of surface water or a higher- " than-average water table. Inactive condensate cribs near the KW and KE Basins resulted in very high tritium and carbon-14 activities in some wells. Recent tritium decreases are attributed to changes in groundwater-flow direction caused by the higher-than-average river stage in 1996-1998, which caused the contaminant plumes to move away from the monitoring wells. Results of the groundwater-monitoring program were used to identi~ and correct factors that may contribute to contaminant increases. For example, some sources of surface-water infiltration have been diverted. Additional work to reduce infiltration through contaminated sediments is planned for fiscal year 1999. Seismic monitoring was recently initiated in the 1OO-K Area to provide an early warning of earth- quake events that could cause basin leakage. The early warning will alert operators to check water-loss rates and consider the need for immediate action.

  13. Data Acquisition System for In Situ Monitoring of Chemoelectrical Potential in Living Plant Fuel Cells.

    PubMed

    Chee, Fuei Pien; Chen, Cheng Ann; Chang, Jackson Hian Wui; Choo, Ying Ying; Dayou, Jedol

    2016-01-01

    Photosynthesis process in plants generates numerous sources of bioenergy. However, only a small fraction is readily exploited for electrical energy. The impact of environmental factors is one of the significant physiological influences on the electrical potential of the plants. Hence, we developed a data acquisition (DAQ) system for instantaneous monitoring of electrical potential in plants and Aloe vera was used as a plant sample. The static response characterization, capability index (P/T), and Pearson's coefficient of correlation procedures were applied to assess the reliability of the obtained data. This developed system offers the capability of in situ monitoring and detecting gradual changes in the electrical potential of plants up to a correlational strength of greater than 0.7. Interpretation of the electrical signal mechanisms in the Aloe vera plant and the optimization of the electricity can be achieved through the application of this monitoring system. This system, therefore, can serve as a tool to measure and analyze the electrical signals in plants at different conditions.

  14. Data Acquisition System for In Situ Monitoring of Chemoelectrical Potential in Living Plant Fuel Cells

    PubMed Central

    Choo, Ying Ying

    2016-01-01

    Photosynthesis process in plants generates numerous sources of bioenergy. However, only a small fraction is readily exploited for electrical energy. The impact of environmental factors is one of the significant physiological influences on the electrical potential of the plants. Hence, we developed a data acquisition (DAQ) system for instantaneous monitoring of electrical potential in plants and Aloe vera was used as a plant sample. The static response characterization, capability index (P/T), and Pearson's coefficient of correlation procedures were applied to assess the reliability of the obtained data. This developed system offers the capability of in situ monitoring and detecting gradual changes in the electrical potential of plants up to a correlational strength of greater than 0.7. Interpretation of the electrical signal mechanisms in the Aloe vera plant and the optimization of the electricity can be achieved through the application of this monitoring system. This system, therefore, can serve as a tool to measure and analyze the electrical signals in plants at different conditions. PMID:27660638

  15. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    SciTech Connect

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  16. Automated flow-based anion-exchange method for high-throughput isolation and real-time monitoring of RuBisCO in plant extracts.

    PubMed

    Suárez, Ruth; Miró, Manuel; Cerdà, Víctor; Perdomo, Juan Alejandro; Galmés, Jeroni

    2011-06-15

    In this work, a miniaturized, completely enclosed multisyringe-flow system is proposed for high-throughput purification of RuBisCO from Triticum aestivum extracts. The automated method capitalizes on the uptake of the target protein at 4°C onto Q-Sepharose Fast Flow strong anion-exchanger packed in a cylindrical microcolumn (105 × 4 mm) followed by a stepwise ionic-strength gradient elution (0-0.8 mol/L NaCl) to eliminate concomitant extract components and retrieve highly purified RuBisCO. The manifold is furnished downstream with a flow-through diode-array UV/vis spectrophotometer for real-time monitoring of the column effluent at the protein-specific wavelength of 280 nm to detect the elution of RuBisCO. Quantitation of RuBisCO and total soluble proteins in the eluate fractions were undertaken using polyacrylamide gel electrophoresis (PAGE) and the spectrophotometric Bradford assay, respectively. A comprehensive investigation of the effect of distinct concentration gradients on the isolation of RuBisCO and experimental conditions (namely, type of resin, column dimensions and mobile-phase flow rate) upon column capacity and analyte breakthrough was effected. The assembled set-up was aimed to critically ascertain the efficiency of preliminary batchwise pre-treatments of crude plant extracts (viz., polyethylenglycol (PEG) precipitation, ammonium sulphate precipitation and sucrose gradient centrifugation) in terms of RuBisCO purification and absolute recovery prior to automated anion-exchange column separation. Under the optimum physical and chemical conditions, the flow-through column system is able to admit crude plant extracts and gives rise to RuBisCO purification yields better than 75%, which might be increased up to 96 ± 9% with a prior PEG fractionation followed by sucrose gradient step.

  17. A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality.

    PubMed

    Di Lorenzo, Mirella; Thomson, Alexander R; Schneider, Kenneth; Cameron, Petra J; Ieropoulos, Ioannis

    2014-12-15

    The heavy use of chemicals for agricultural, industrial and domestic purposes has increased the risk of freshwater contamination worldwide. Consequently, the demand for efficient new analytical tools for on-line and on-site water quality monitoring has become particularly urgent. In this study, a small-scale single chamber air-cathode microbial fuel cell (SCMFC), fabricated by rapid prototyping layer-by-layer 3D printing, was tested as a biosensor for continuous water quality monitoring. When acetate was fed as the rate-limiting substrate, the SCMFC acted as a sensor for chemical oxygen demand (COD) in water. The linear detection range was 3-164 ppm, with a sensitivity of 0.05 μA mM(-1) cm(-2) with respect to the anode total surface area. The response time was as fast as 2.8 min. At saturating acetate concentrations (COD>164 ppm), the miniature SCMFC could rapidly detect the presence of cadmium in water with high sensitivity (0.2 μg l(-1) cm(-2)) and a lower detection limit of only 1 μg l(-1). The biosensor dynamic range was 1-25 μg l(-1). Within this range of concentrations, cadmium affected only temporarily the electroactive biofilm at the anode. When the SCMFCs were again fed with fresh wastewater and no pollutant, the initial steady-state current was recovered within 12 min.

  18. The Generic Spacecraft Analyst Assistant (GenSAA): A tool for automating spacecraft monitoring with expert systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Luczak, Edward C.

    1991-01-01

    Flight Operations Analysts (FOAs) in the Payload Operations Control Center (POCC) are responsible for monitoring a satellite's health and safety. As satellites become more complex and data rates increase, FOAs are quickly approaching a level of information saturation. The FOAs in the spacecraft control center for the COBE (Cosmic Background Explorer) satellite are currently using a fault isolation expert system named the Communications Link Expert Assistance Resource (CLEAR), to assist in isolating and correcting communications link faults. Due to the success of CLEAR and several other systems in the control center domain, many other monitoring and fault isolation expert systems will likely be developed to support control center operations during the early 1990s. To facilitate the development of these systems, a project was initiated to develop a domain specific tool, named the Generic Spacecraft Analyst Assistant (GenSAA). GenSAA will enable spacecraft analysts to easily build simple real-time expert systems that perform spacecraft monitoring and fault isolation functions. Lessons learned during the development of several expert systems at Goddard, thereby establishing the foundation of GenSAA's objectives and offering insights in how problems may be avoided in future project, are described. This is followed by a description of the capabilities, architecture, and usage of GenSAA along with a discussion of its application to future NASA missions.

  19. Development and testing of an automated High-resolution InSAR volcano-monitoring system in the MED-SUV project

    NASA Astrophysics Data System (ADS)

    Chowdhury, Tanvir Ahmed; Minet, Christian; Fritz, Thomas; Rodriguez Gonzalez, Fernando

    2015-04-01

    Volcanic unrest which produces a variety of geological and hydrological hazards is difficult to predict. Therefore it is important to monitor volcanoes continuously. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities. Besides the improvements of the understanding of geophysical processes underlying the volcanic systems of Vesuvius/ Campi Flegrei and Mt. Etna, one of the main goals of the MED-SUV (MEDiterranean SUpersite Volcanoes) project is to design a system for automatically monitoring ground deformations over active volcanoes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide powerful tools for observing the surface changes with millimeter accuracy. All the mentioned techniques address the challenges by exploiting medium to large SAR image stacks. The generation of interferometric products constitutes a major effort in terms of processing and planning. It requires a high degree of automation, robustness and quality control of the overall process. As a consequence of these requirements and constrains, the Integrated Wide Area Processor (IWAP) developed at DLR is introduced in the framework of a remote sensing task of MED-SUV project. The IWAP has been conceived and designed to optimize the processing workflow in order to minimize the processing time. Moreover, a quality control concept has been developed and integrated in the workflow. The IWAP is structured into three parts: (i) firstly, preparation of an order file containing some configuration parameters and invokes the processor; (ii) secondly, upon request from the processor, the operator performs some manual interactions by means of visual interfaces; (iii) analysis of the final product supported by extensive product visualization. This visualization supports the interpretation of the results without the need of

  20. Compact and fully automated system for monitoring photodynamic therapy, based on two LEDs and a single CCD

    NASA Astrophysics Data System (ADS)

    Kleshnin, M. S.; Fiks, I. I.; Plekhanov, V. I.; Gamayunov, S. V.; Turchin, I. V.

    2015-11-01

    Photodynamic therapy is one of the most promising methods for the treatment of oncological, inflammatory and degenerative diseases of the skin. This technique is based on light irradiation of a photosensitizer that has been injected into the patient’s body prior to the procedure, with determination of the efficacy of treatment requiring proper assessment of the drug concentration in the tissue lesion and the extent of sensitizer photobleaching during irradiation. We have developed a compact and low cost device based on a fluorescence imaging for localizing the tumor in the patient’s body, tracking the position of the tissue lesion during involuntary movements of the patient, estimating accumulation of the sensitizer in the tumor relative to the surrounding tissues and monitoring photobleaching of the sensitizer during laser irradiation. The system that has been created is compatible with any therapeutic laser and includes a single CCD camera and two LEDs, one in the excitation band and the other in the emission band of the ‘Photoditazin’ sensitizer. In this letter we also present the test results of the device in model experiments and in preliminary clinical trials. The results obtained clearly show the efficacy of the system for monitoring sensitizer photobleaching during photodynamic therapy.

  1. Food intake monitoring: an acoustical approach to automated food intake activity detection and classification of consumed food.

    PubMed

    Päßler, Sebastian; Wolff, Matthias; Fischer, Wolf-Joachim

    2012-06-01

    Obesity and nutrition-related diseases are currently growing challenges for medicine. A precise and timesaving method for food intake monitoring is needed. For this purpose, an approach based on the classification of sounds produced during food intake is presented. Sounds are recorded non-invasively by miniature microphones in the outer ear canal. A database of 51 participants eating seven types of food and consuming one drink has been developed for algorithm development and model training. The database is labeled manually using a protocol with introductions for annotation. The annotation procedure is evaluated using Cohen's kappa coefficient. The food intake activity is detected by the comparison of the signal energy of in-ear sounds to environmental sounds recorded by a reference microphone. Hidden Markov models are used for the recognition of single chew or swallowing events. Intake cycles are modeled as event sequences in finite-state grammars. Classification of consumed food is realized by a finite-state grammar decoder based on the Viterbi algorithm. We achieved a detection accuracy of 83% and a food classification accuracy of 79% on a test set of 10% of all records. Our approach faces the need of monitoring the time and occurrence of eating. With differentiation of consumed food, a first step toward the goal of meal weight estimation is taken.

  2. Evaluation of the Paratrend Multi-Analyte Sensor for Potential Utilization in Long-Duration Automated Cell Culture Monitoring

    NASA Technical Reports Server (NTRS)

    Hwang, Emma Y.; Pappas, Dimitri; Jeevarajan, Antony S.; Anderson, Melody M.

    2004-01-01

    BACKGROUND: Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments. While several single-analyte sensors exist to measure culture health, a multi-analyte sensor would simplify the cell culture system. One such multi-analyte sensor, the Paratrend 7 manufactured by Diametrics Medical, consists of three optical fibers for measuring pH, dissolved carbon dioxide (pCO(2)), dissolved oxygen (pO(2)), and a thermocouple to measure temperature. The sensor bundle was designed for intra-vascular measurements in clinical settings, and can be used in bioreactors operated both on the ground and in NASA's Space Shuttle and International Space Station (ISS) experiments. METHODS: A Paratrend 7 sensor was placed at the outlet of a bioreactor inoculated with BHK-21 (baby hamster kidney) cells. The pH, pCO(2), pO(2), and temperature data were transferred continuously to an external computer. Cell culture medium, manually extracted from the bioreactor through a sampling port, was also assayed using a bench top blood gas analyzer (BGA). RESULTS: Two Paratrend 7 sensors were used over a single cell culture experiment (64 days). When compared to the manually obtained BGA samples, the sensor had good agreement for pH, pCO(2), and pO(2) with bias (and precision) 0.005(0.024), 8.0 mmHg (4.4 mmHg), and 11 mmHg (17 mmHg), respectively for the first two sensors. A third Paratrend sensor (operated for 141 days) had similar agreement (0.02+/-0.15 for pH, -4+/-8 mm Hg for pCO(2), and 24+/-18 mmHg for pO(2)). CONCLUSION: The resulting biases and precisions are com- parable to Paratrend sensor clinical results. Although the pO(2) differences may be acceptable for clinically relevant measurement ranges, the O(2) sensor in this bundle may not be reliable enough for the ranges of pO(2) in these cell culture studies without periodic calibration.

  3. Radiation doses resulting from variations in spent fuel/waste management systems without Monitored Retrievable Storage

    SciTech Connect

    Schneider, K.J.; Pelto, P.J.; Lavender, J.C.; Daling, P.M.; Fecht, B.A.

    1987-02-01

    This paper presents results of analyses of radiological dose impacts on the public and the workers of nine potential transportation-related changes in the operation of a hypothetical high-level waste management system that does not include a Monitored Retrievable Storage (MRS) facility. The analyses were performed for the US Department of Energy (DOE) to determine if some of the benefits proposed for the improved performance waste management system (one with an MRS facility) could also benefit the authorized system (one without an MRS facility). The study showed that most of the alternatives evaluated would reduce the radiation doses to the public and the workers. Of the alternatives evaluated, the primary means for reducing these radiation doses is to increase the capacity of the transportation casks.

  4. Unattended Monitoring of HEU Production in Gaseous Centrifuge Enrichment Plants using Automated Aerosol Collection and Laser-based Enrichment Assay

    SciTech Connect

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-08-11

    Nuclear power is enjoying rapid growth as government energy policies and public demand shift toward low carbon energy production. Pivotal to the global nuclear power renaissance is the development and deployment of robust safeguards instrumentation that allows the limited resources of the IAEA to keep pace with the expansion of the nuclear fuel cycle. Undeclared production of highly enriched uranium (HEU) remains a primary proliferation concern for modern gaseous centrifuge enrichment plants (GCEPs), due to their massive separative work unit (SWU) processing power and comparably short cascade equilibrium timescale. The Pacific Northwest National Laboratory is developing an unattended safeguards instrument, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely detection of HEU production within a GCEP. This approach is based on laser vaporization of aerosol particulates, followed by laser spectroscopy to characterize the uranium enrichment level. Our prior investigation demonstrated single-shot detection sensitivity approaching the femtogram range and relative isotope ratio uncertainty better than 10% using gadolinium as a surrogate for uranium. In this paper we present measurement results on standard samples containing traces of depleted, natural, and low enriched uranium, as well as measurements on aerodynamic size uranium particles mixed in background materials (e.g., dust, minerals, soils). Improvements and optimizations in the detection electronics, signal timing, calibration, and laser alignment have lead to significant improvements in detection sensitivity and enrichment accuracy, contributing to an overall reduction in the false alarm probability. The sample substrate media was also found to play a significant role in facilitating laser-induced vaporization and the production of energetic plasma conditions, resulting in ablation optimization and further improvements in the isotope abundance sensitivity.

  5. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function

    PubMed Central

    Jain, Abhishek; Graveline, Amanda; Waterhouse, Anna; Vernet, Andyna; Flaumenhaft, Robert; Ingber, Donald E.

    2016-01-01

    Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic. PMID:26733371

  6. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function.

    PubMed

    Jain, Abhishek; Graveline, Amanda; Waterhouse, Anna; Vernet, Andyna; Flaumenhaft, Robert; Ingber, Donald E

    2016-01-06

    Accurate assessment of blood haemostasis is essential for the management of patients who use extracorporeal devices, receive anticoagulation therapy or experience coagulopathies. However, current monitoring devices do not measure effects of haemodynamic forces that contribute significantly to platelet function and thrombus formation. Here we describe a microfluidic device that mimics a network of stenosed arteriolar vessels, permitting evaluation of blood clotting within small sample volumes under pathophysiological flow. By applying a clotting time analysis based on a phenomenological mathematical model of thrombus formation, coagulation and platelet function can be accurately measured in vitro in patient blood samples. When the device is integrated into an extracorporeal circuit in pig endotoxemia or heparin therapy models, it produces real-time readouts of alterations in coagulation ex vivo that are more reliable than standard clotting assays. Thus, this disposable device may be useful for personalized diagnostics and for real-time surveillance of antithrombotic therapy in clinic.

  7. Automated high-performance cIMT measurement techniques using patented AtheroEdge™: a screening and home monitoring system.

    PubMed

    Molinari, Filippo; Meiburger, Kristen M; Suri, Jasjit

    2011-01-01

    The evaluation of the carotid artery wall is fundamental for the assessment of cardiovascular risk. This paper presents the general architecture of an automatic strategy, which segments the lumen-intima and media-adventitia borders, classified under a class of Patented AtheroEdge™ systems (Global Biomedical Technologies, Inc, CA, USA). Guidelines to produce accurate and repeatable measurements of the intima-media thickness are provided and the problem of the different distance metrics one can adopt is confronted. We compared the results of a completely automatic algorithm that we developed with those of a semi-automatic algorithm, and showed final segmentation results for both techniques. The overall rationale is to provide user-independent high-performance techniques suitable for screening and remote monitoring.

  8. Toward Real-Time Continuous, Automated Hydrogeophysical Monitoring of Aquifer Storage and Recovery: Results of a Pilot-Scale Experiment, Charleston, South Carolina

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.; Singha, K.; Versteeg, R. J.; Johnson, C. D.; Petkewich, M. D.; Richardson, A.; Rowe, T.; Lane, J. W.

    2005-12-01

    Aquifer storage and recovery (ASR) is used increasingly as a water-resources management tool, particularly in arid and coastal areas. ASR involves subsurface freshwater injection and storage during periods of water surplus and subsequent extraction during periods of water deficit or high demand. In coastal areas, injection into brackish-to-saline aquifers creates freshwater zones, the shapes and extents of which are controlled by aquifer heterogeneity and ground-water flow. ASR efficiency is limited by a lack of information about (1) the spatial and temporal distribution of injected freshwater and (2) possible degradation of aquifer properties resulting from injections. Without such knowledge, ASR managers cannot optimize injection and extraction schemes, nor can they predict or prevent breakthrough of brackish water at pumping wells. In this study, we examine the potential of hydrogeophysical monitoring as a management tool for ASR operations. In August-September 2005, time-lapse electrical resistivity tomography (ERT), combined with conventional chemical and hydraulic sampling, was conducted during a pilot-scale ASR experiment in an Atlantic Coastal Plain aquifer in Charleston, SC. The field site consists of 4 wells including three observation wells arranged symmetrically around a central injection/extraction well at radial distances of about 9 m. The wells are 140-155 m deep. Sand and limestone sections of the Santee Limestone/Black Mingo aquifer served as target zones for injection, storage, recovery, and ERT monitoring. We acquired time-lapse ERT data sets every 2.5 hours during 120 hours of injection, 48 hours of quiescent storage, and 96 hours of extraction. A key aspect of this work was the use of an autonomous remote monitoring system developed by Idaho National Laboratory (INL), which controls data collection, automated data upload to a central server, and parsing of the data into a relational database. In addition, this system provides a web interface

  9. Personnel Department Automation.

    ERIC Educational Resources Information Center

    Wilkinson, David

    In 1989, the Austin Independent School District's Office of Research and Evaluation was directed to monitor the automation of personnel information and processes in the district's Department of Personnel. Earlier, a study committee appointed by the Superintendent during the 1988-89 school year identified issues related to Personnel Department…

  10. Building Automation Systems.

    ERIC Educational Resources Information Center

    Honeywell, Inc., Minneapolis, Minn.

    A number of different automation systems for use in monitoring and controlling building equipment are described in this brochure. The system functions include--(1) collection of information, (2) processing and display of data at a central panel, and (3) taking corrective action by sounding alarms, making adjustments, or automatically starting and…

  11. Therapeutic drug monitoring of haloperidol, perphenazine, and zuclopenthixol in serum by a fully automated sequential solid phase extraction followed by high-performance liquid chromatography.

    PubMed

    Angelo, H R; Petersen, A

    2001-04-01

    In Denmark, haloperidol, perphenazine, and zuclopenthixol are among the most frequently requested antipsychotics for therapeutic drug monitoring. With the number of requests made at the authors' laboratory, the only rational analysis is one that can measure all three drugs simultaneously. The authors therefore decided to develop an automated high-performance liquid chromatography (HPLC) method. Two milliliters serum, 2.0 mL 10 mmol/L sodium phosphate buffer (pH 5.5), and 150 microL internal standard (trifluoperazine) solution were pipetted into HPLC vials and extracted on an ASPEC XL equipped with 1 mL (50 mg) Isolute C2 (EC) extraction columns and acetonitrile-methanol-ammonium acetate buffer (60:34:6) as extracting solution. Three hundred fifty microliters was analyzed by HPLC; a 150 x 4.6-mm S5CN Spherisorb column with a mobile phase of 10 mmol/L ammonium acetate buffer-methanol (1:9), a flow rate of 0.6-1.7 mL/min, and ultraviolet detection at 256 and 245 nm were used. Reproducibility was 5-12% and the lower limit of quantitation was 10, 1, and 5 nmol/L (4, 0.4, and 2 ng/mL) for haloperidol, perphenazine, and zuclopenthixol, respectively. The method was found to be sufficiently selective and robust for routine analysis.

  12. 40 CFR 60.4365 - How can I be exempted from monitoring the total sulfur content of the fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... information to make the required demonstration: (a) The fuel quality characteristics in a current, valid purchase contract, tariff sheet or transportation contract for the fuel, specifying that the maximum...

  13. Automated analysis of long-term bridge behavior and health using a cyber-enabled wireless monitoring system

    NASA Astrophysics Data System (ADS)

    O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen

    2014-04-01

    A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP

  14. A fully automated meltwater monitoring and collection system for spatially distributed isotope analysis in snowmelt-dominated catchments

    NASA Astrophysics Data System (ADS)

    Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James

    2016-04-01

    In many mountainous catchments the seasonal snowpack stores a significant volume of water, which is released as streamflow during the melting period. The predicted change in future climate will bring new challenges in water resource management in snow-dominated headwater catchments and their receiving lowlands. To improve predictions of hydrologic extreme events, particularly summer droughts, it is important characterize the relationship between winter snowpack and summer (low) flows in such areas (e.g., Godsey et al., 2014). In this context, stable water isotopes (18O, 2H) are a powerful tool for fingerprinting the sources of streamflow and tracing water flow pathways. For this reason, we have established an isotope sampling network in the Alptal catchment (46.4 km2) in Central-Switzerland as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Samples of precipitation (daily), snow cores (weekly) and runoff (daily) are analyzed for their isotopic signature in a regular cycle. Precipitation is also sampled along a horizontal transect at the valley bottom, and along an elevational transect. Additionally, the analysis of snow meltwater is of importance. As the sample collection of snow meltwater in mountainous terrain is often impractical, we have developed a fully automatic snow lysimeter system, which measures meltwater volume and collects samples for isotope analysis at daily intervals. The system consists of three lysimeters built from Decagon-ECRN-100 High Resolution Rain Gauges as standard component that allows monitoring of meltwater flow. Each lysimeter leads the meltwater into a 10-liter container that is automatically sampled and then emptied daily. These water samples are replaced regularly and analyzed afterwards on their isotopic composition in the lab. Snow melt events as well as system status can be monitored in real time. In our presentation we describe the automatic snow lysimeter

  15. Multi-objective genetic algorithm for the automated planning of a wireless sensor network to monitor a critical facility

    NASA Astrophysics Data System (ADS)

    Jourdan, Damien B.; de Weck, Olivier L.

    2004-09-01

    This paper examines the optimal placement of nodes for a Wireless Sensor Network (WSN) designed to monitor a critical facility in a hostile region. The sensors are dropped from an aircraft, and they must be connected (directly or via hops) to a High Energy Communication Node (HECN), which serves as a relay from the ground to a satellite or a high-altitude aircraft. The sensors are assumed to have fixed communication and sensing ranges. The facility is modeled as circular and served by two roads. This simple model is used to benchmark the performance of the optimizer (a Multi-Objective Genetic Algorithm, or MOGA) in creating WSN designs that provide clear assessments of movements in and out of the facility, while minimizing both the likelihood of sensors being discovered and the number of sensors to be dropped. The algorithm is also tested on two other scenarios; in the first one the WSN must detect movements in and out of a circular area, and in the second one it must cover uniformly a square region. The MOGA is shown again to perform well on those scenarios, which shows its flexibility and possible application to more complex mission scenarios with multiple and diverse targets of observation.

  16. Development and validation of an automated static headspace gas chromatography-mass spectrometry (SHS-GC-MS) method for monitoring the formation of ethyl methane sulfonate from ethanol and methane sulfonic acid.

    PubMed

    Jacq, Karine; Delaney, Ed; Teasdale, Andrew; Eyley, Steve; Taylor-Worth, Karen; Lipczynski, Andrew; Reif, Van D; Elder, David P; Facchine, Kevin L; Golec, Simon; Oestrich, Rolf Schulte; Sandra, Pat; David, Frank

    2008-12-15

    An automated sample preparation and analysis procedure was developed to monitor the formation of ethyl methane sulfonate from reaction mixtures containing ethanol and methane sulfonic acid. The system is based on a liquid handling robot combined with a static headspace module. The formed ethyl methane sulfonate is analysed after derivatisation with pentafluorothiophenol using static headspace-gas chromatography-mass spectrometry (SHS-GC-MS). Using the automated reaction-derivatisation-headspace GC-MS system, the formation of ethyl methane sulfonate can be monitored in different reaction mixtures under different reaction conditions, including temperature, water content and pH. Excellent linearity, repeatability and robustness were obtained, allowing the system to be used in kinetic studies.

  17. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.

    PubMed

    Chang, Shih-Hsien; Wu, Chih-Hung; Wang, Ruei-Cyun; Lin, Chi-Wen

    2017-05-15

    A low-cost mini tubular microbial fuel cell (MFC) was developed for treating groundwater that contained benzene in monitoring wells. Experimental results indicate that increasing the length and density, and reducing the size of the char particles in the anode effectively reduced the internal resistance. Additionally, a thinner polyvinyl alcohol (PVA) hydrogel separator and PVA with a higher molecular weight improved electricity generation. The optimal parameters for the MFC were an anode density of 1.22 g cm(-3), a coke of 150 μm, an anode length of 6 cm, a PVA of 105,600 g mol(-1), and a separator thickness of 1 cm. Results of continuous-flow experiments reveal that the increasing the sets of MFCs and connecting them in parallel markedly improved the degradation of benzene. More than 95% of benzene was removed and electricity of 38 mW m(-2) was generated. The MFC ran continuously up to 120 days without maintenance.

  18. Automated Ground-based Time-lapse Camera Monitoring of West Greenland ice sheet outlet Glaciers: Challenges and Solutions

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Box, J. E.; Balog, J.; Lewinter, A.

    2008-12-01

    Monitoring Greenland outlet glaciers using remotely sensed data has drawn a great attention in earth science communities for decades and time series analysis of sensory data has provided important variability information of glacier flow by detecting speed and thickness changes, tracking features and acquiring model input. Thanks to advancements of commercial digital camera technology and increased solid state storage, we activated automatic ground-based time-lapse camera stations with high spatial/temporal resolution in west Greenland outlet and collected one-hour interval data continuous for more than one year at some but not all sites. We believe that important information of ice dynamics are contained in these data and that terrestrial mono-/stereo-photogrammetry can provide theoretical/practical fundamentals in data processing along with digital image processing techniques. Time-lapse images over periods in west Greenland indicate various phenomenon. Problematic is rain, snow, fog, shadows, freezing of water on camera enclosure window, image over-exposure, camera motion, sensor platform drift, and fox chewing of instrument cables, and the pecking of plastic window by ravens. Other problems include: feature identification, camera orientation, image registration, feature matching in image pairs, and feature tracking. Another obstacle is that non-metric digital camera contains large distortion to be compensated for precise photogrammetric use. Further, a massive number of images need to be processed in a way that is sufficiently computationally efficient. We meet these challenges by 1) identifying problems in possible photogrammetric processes, 2) categorizing them based on feasibility, and 3) clarifying limitation and alternatives, while emphasizing displacement computation and analyzing regional/temporal variability. We experiment with mono and stereo photogrammetric techniques in the aide of automatic correlation matching for efficiently handling the enormous

  19. Solving the problems concerned with modernization of power unit monitoring and control systems using the distributed facilities and technologies available in the SARGON computerized automation system. Part 2: Standard solutions for problems relating to modernization of power unit monitoring and control systems

    NASA Astrophysics Data System (ADS)

    Mendelevich, V. A.

    2013-04-01

    Typical problems encountered in modernizing control and monitoring systems of the main thermal power equipment used at power stations are considered, and ways of solving them through the use of distributed tools available in the SARGON computerized automation system for control of essential equipment are discussed.

  20. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  1. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    SciTech Connect

    Mike lewis

    2013-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  2. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010

    SciTech Connect

    David B. Frederick

    2011-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  3. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011

    SciTech Connect

    David Frederick

    2012-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  4. User`s manual for the data acquisition system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California

    SciTech Connect

    Widing, M.A.; Leser, C.C.

    1995-04-01

    This report describes the use of the data acquisition software developed by Argonne National Laboratory and installed at the fuel oil spill site at Sandia National Laboratories. This software provides various programs for interacting with the monitoring and logging system that collects electronic data from sensors installed downhole in the study area. This manual provides basic information on the design and use of these user interfaces, which assists the site coordinator in monitoring the status of the data collection process. Four software programs are included in the data acquisition software suite to provide the following capabilities: datalogger interaction, file management, and data security.

  5. Automated gas chromatography

    DOEpatents

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  6. Biogeochemical processing of nutrients in groundwater-fed stream during baseflow conditions - the value of fluorescence spectroscopy and automated high-frequency nutrient monitoring

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena; Heathwaite, Louise

    2014-05-01

    Recent research in groundwater-dominated streams indicates that organic matter plays an important role in nutrient transformations at the surface-groundwater interface known as the hyporheic zone. Mixing of water and nutrient fluxes in the hyporheic zone controls in-stream nutrients availability, dynamics and export to downstream reaches. In particular, benthic sediments can form adsorptive sinks for organic matter and reactive nutrients (nitrogen and phosphorus) that sustain a variety of hyporheic processes e.g. denitrification, microbial uptake. Thus, hyporheic metabolism can have an important effect on both quantity (concentration) and quality (labile vs. refractory character) of organic matter. Here high-frequency nutrient monitoring combined with spectroscopic analysis was used to provide insights into biogeochemical processing of a small, agricultural stream in the NE England subject to diffuse nutrient pollution. Biogeochemical data were collected hourly for a week at baseflow conditions when in-stream-hyporheic nutrient dynamics have the greatest impact on stream health. In-stream nutrients (total phosphorus, reactive phosphorus, nitrate nitrogen) and water quality parameters (turbidity, specific conductivity, pH, temperature, dissolved oxygen, redox potential) were measured in situ hourly by an automated bank-side laboratory. Concurrent hourly autosamples were retrieved daily and analysed for nutrients and fine sediments including spectroscopic analyses of dissolved organic matter - excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet-visible (UV-Vis) absorbance spectroscopy. Our results show that organic matter can potentially be utilised as a natural, environmental tracer of the biogeochemical processes occurring at the surface-groundwater interface in streams. High-frequency spectroscopic characterisation of in-stream organic matter can provide useful quantitative and qualitative information on fluxes of reactive nutrients in

  7. Influence of milk yield, stage of lactation, and body condition on dairy cattle lying behaviour measured using an automated activity monitoring sensor.

    PubMed

    Bewley, Jeffrey M; Boyce, Robert E; Hockin, Jeremy; Munksgaard, Lene; Eicher, Susan D; Einstein, Mark E; Schutz, Michael M

    2010-02-01

    Time spent lying by lactating Holstein-Friesian cows of varying body condition scores (BCS) and milk yield was measured using an animal activity monitor. A 3-week average BCS was calculated for each cow; and in total, 84 cows were selected with 28 cows each among three BCS categories (Thin: BCS<2.75; Moderate: 2.75 > or = BCS<3.25; Heavy: BCS> or = 3.25) and two stage of lactation categories (<150 days in milk or >150 days in milk). Cows were kept in two management systems: parlour/freestall (n=60) or automated milking system/freestall (n=24). Behaviour was recorded for 5.3+/-0.1 d for each cow. Production levels were considered using a 28-d rolling average of daily milk production. Cows that exhibited clinical lameness before or during the observation period were excluded from analyses. For cows exhibiting oestrus, the day prior to, day of, and day following breeding were removed. The final analysis included 77 cows (408 d of observation). A mixed model was fitted to describe average daily hours spent lying. Results demonstrated that lying time increased as days in milk (DIM) increased (P=0.05). Variables that were tested but not significant (P>0.05) were BCS category, parity category (1 or 2) and 28-d rolling average daily milk production. Although a numerical trend for increasing hours spent lying with increasing BCS was observed, after accounting for other factors in the mixed model, BCS did not significantly impact lying time. Continued investigation of these management factors that impact lying time and bouts, using new technologies, more cows, and more herds will help dairy owners better manage facilities and cow movements to optimize this essential behaviour.

  8. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Moser, R. L.; Veatch, M.

    1983-01-01

    Generic power-system elements and their potential faults are identified. Automation functions and their resulting benefits are defined and automation functions between power subsystem, central spacecraft computer, and ground flight-support personnel are partitioned. All automation activities were categorized as data handling, monitoring, routine control, fault handling, planning and operations, or anomaly handling. Incorporation of all these classes of tasks, except for anomaly handling, in power subsystem hardware and software was concluded to be mandatory to meet the design and operational requirements of the space station. The key drivers are long mission lifetime, modular growth, high-performance flexibility, a need to accommodate different electrical user-load equipment, onorbit assembly/maintenance/servicing, and potentially large number of power subsystem components. A significant effort in algorithm development and validation is essential in meeting the 1987 technology readiness date for the space station.

  9. Automation or De-automation

    NASA Astrophysics Data System (ADS)

    Gorlach, Igor; Wessel, Oliver

    2008-09-01

    In the global automotive industry, for decades, vehicle manufacturers have continually increased the level of automation of production systems in order to be competitive. However, there is a new trend to decrease the level of automation, especially in final car assembly, for reasons of economy and flexibility. In this research, the final car assembly lines at three production sites of Volkswagen are analysed in order to determine the best level of automation for each, in terms of manufacturing costs, productivity, quality and flexibility. The case study is based on the methodology proposed by the Fraunhofer Institute. The results of the analysis indicate that fully automated assembly systems are not necessarily the best option in terms of cost, productivity and quality combined, which is attributed to high complexity of final car assembly systems; some de-automation is therefore recommended. On the other hand, the analysis shows that low automation can result in poor product quality due to reasons related to plant location, such as inadequate workers' skills, motivation, etc. Hence, the automation strategy should be formulated on the basis of analysis of all relevant aspects of the manufacturing process, such as costs, quality, productivity and flexibility in relation to the local context. A more balanced combination of automated and manual assembly operations provides better utilisation of equipment, reduces production costs and improves throughput.

  10. High-throughput automated molecular biology platform for production of fuel ethanol yeast capable of expressing high-value heterologous proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of fuel ethanol currently produced in the United States is made from corn starch. Projections indicate that corn supplies will not be able to meet the increasing demand for biofuels. Lignocellulosic biomass, an abundant and renewable carbon source, has the potential to supplement star...

  11. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  12. Monitoring

    SciTech Connect

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  13. Automation pilot

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An important concept of the Action Information Management System (AIMS) approach is to evaluate office automation technology in the context of hands on use by technical program managers in the conduct of human acceptance difficulties which may accompany the transition to a significantly changing work environment. The improved productivity and communications which result from application of office automation technology are already well established for general office environments, but benefits unique to NASA are anticipated and these will be explored in detail.

  14. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (iv) of this section will be considered inherently low in sulfur content. (i) Pilot gas for heaters... streams produced in process units that are intolerant to sulfur contamination, such as fuel gas...

  15. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices and flares.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (iv) of this section will be considered inherently low in sulfur content. (i) Pilot gas for heaters... streams produced in process units that are intolerant to sulfur contamination, such as fuel gas...

  16. A novel method for in-situ monitoring of local voltage, temperature and humidity distributions in fuel cells using flexible multi-functional micro sensors.

    PubMed

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it.

  17. A Novel Method for In-Situ Monitoring of Local Voltage, Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors

    PubMed Central

    Lee, Chi-Yuan; Fan, Wei-Yuan; Chang, Chih-Ping

    2011-01-01

    In this investigation, micro voltage, temperature and humidity sensors were fabricated and integrated for the first time on a stainless steel foil using micro-electro-mechanical systems (MEMS). These flexible multi-functional micro sensors have the advantages of high temperature resistance, flexibility, smallness, high sensitivity and precision of location. They were embedded in a proton exchange membrane fuel cell (PEMFC) and used to simultaneously measure variations in the inner voltage, temperature and humidity. The accuracy and reproducibility of the calibrated results obtained using the proposed micro sensors is excellent. The experimental results indicate that, at high current density and 100%RH or 75%RH, the relative humidity midstream and downstream saturates due to severe flooding. The performance of the PEM fuel cell can be stabilized using home-made flexible multi-functional micro sensors by the in-situ monitoring of local voltage, temperature and humidity distributions within it. PMID:22319361

  18. Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly †

    PubMed Central

    De Pauw, Ben; Lamberti, Alfredo; Ertveldt, Julien; Rezayat, Ali; van Tichelen, Katrien; Vanlanduit, Steve; Berghmans, Francis

    2016-01-01

    Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel assembly may cause the latter to vibrate and hence suffer degradation as a result of, for example, fretting wear or mechanical fatigue. In this paper, we demonstrate the use of optical fiber sensors to measure the fuel assembly vibration in a lead-bismuth eutectic cooled installation which can be used as input to assess vibration-related safety hazards. We show that the vibration characteristics of the fuel pins in the fuel assembly can be experimentally determined with minimal intrusiveness and with high precision owing to the small dimensions and properties of the sensors. In particular, we were able to record local strain level differences of about 0.2 μϵ allowing us to reliably estimate the vibration amplitudes and modal parameters of the fuel assembly based on optical fiber sensor readings during different stages of the operation of the facility, including the onset of the coolant circulation and steady-state operation. PMID:27110782

  19. Future of Fuel Savings

    NASA Technical Reports Server (NTRS)

    Hughes, David

    2004-01-01

    Using automation to free up controllers for more strategic management of air traffic is one approach being studied by NASA as it seeks to boost airspace system capacity and efficiency, thereby saving fuel. Heinz Erzberger, a NASA Ames Research Center senior scientist, says the Advanced Airspace Concept (AAC) has been studied for several years. It could increase efficiency 15% by providing optimal routes that cut airlines direct operating costs. A 25% increase in landings on existing runways could follow an important benefit. AAC is one of the efforts to be reviewed by the Joint Planning and Development Organization, an FAA-led initiative by six federal agencies to redesign the U.S. air transportation system by 2025. The main goal is to triple air traffic capacity within 20 years to avert the sort of gridlock that would make fuel consumption only one of many travel nightmares. The automated system approach would allow aircraft to fly optimal trajectories. A trajectory would be defined in the standard three dimensions and eventually include the fourth, time. The management of air traffic by the data-linked exchange of trajectories would start at high altitude and eventually move down to lower altitudes. The automated concept is an outgrowth of the type of tools developed by NASA for use by FAA controllers in managing traffic flows over the years, including ones that optimize routings for the best fuel burn. But AAC would push automation further to reduce workload so controllers can focus on "solving strategic control problems, managing traffic flow during changing weather and ... other unusal events." One key component, the automated trajectory server (ATS), is a ground systems that would rely on software to manage flight path requests from aircrews and controllers. But, Erzberger acknowledges, "The FAA's current plan for upgrades to air traffic services does not include [allowing] the future ground system to issue separation-critical clearances of trajectory changes

  20. Classification of Automated Search Traffic

    NASA Astrophysics Data System (ADS)

    Buehrer, Greg; Stokes, Jack W.; Chellapilla, Kumar; Platt, John C.

    As web search providers seek to improve both relevance and response times, they are challenged by the ever-increasing tax of automated search query traffic. Third party systems interact with search engines for a variety of reasons, such as monitoring a web site’s rank, augmenting online games, or possibly to maliciously alter click-through rates. In this paper, we investigate automated traffic (sometimes referred to as bot traffic) in the query stream of a large search engine provider. We define automated traffic as any search query not generated by a human in real time. We first provide examples of different categories of query logs generated by automated means. We then develop many different features that distinguish between queries generated by people searching for information, and those generated by automated processes. We categorize these features into two classes, either an interpretation of the physical model of human interactions, or as behavioral patterns of automated interactions. Using the these detection features, we next classify the query stream using multiple binary classifiers. In addition, a multiclass classifier is then developed to identify subclasses of both normal and automated traffic. An active learning algorithm is used to suggest which user sessions to label to improve the accuracy of the multiclass classifier, while also seeking to discover new classes of automated traffic. Performance analysis are then provided. Finally, the multiclass classifier is used to predict the subclass distribution for the search query stream.

  1. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE PAGES

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    2017-01-17

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  2. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  3. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect

    Alfred Wickline

    2006-09-01

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada, as shown in Figure 1-1. Field activities were conducted in accordance with the revised sampling approach outlined in the Addendum to the Closure Report (CR) for CAU 329 (NNSA/NSO, 2005) to support data collection requirements. The previous annual monitoring program for CAU 329 was initiated in August 2000 using soil-gas samples collected from three specific intervals at the DRA-0 and DRA-3 monitoring wells. Results of four sampling events from 2000 through 2003 indicated there is uncertainty in the approach to establish a rate of natural attenuation as specified in ''Streamlined Approach for Environmental Restoration (SAFER) Work Plan for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada'' (DOE/NV, 1999). As a result, the Addendum to the CR (NNSA/NSO, 2005) was completed to address this uncertainty by modifying the previous approach. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination.

  4. Office automation.

    PubMed

    Arenson, R L

    1986-03-01

    By now, the term "office automation" should have more meaning for those readers who are not intimately familiar with the subject. Not all of the preceding material pertains to every department or practice, but certainly, word processing and simple telephone management are key items. The size and complexity of the organization will dictate the usefulness of electronic mail and calendar management, and the individual radiologist's personal needs and habits will determine the usefulness of the home computer. Perhaps the most important ingredient for success in the office automation arena relates to the ability to integrate information from various systems in a simple and flexible manner. Unfortunately, this is perhaps the one area that most office automation systems have ignored or handled poorly. In the personal computer world, there has been much emphasis recently on integration of packages such as spreadsheet, database management, word processing, graphics, time management, and communications. This same philosophy of integration has been applied to a few office automation systems, but these are generally vendor-specific and do not allow for a mixture of foreign subsystems. During the next few years, it is likely that a few vendors will emerge as dominant in this integrated office automation field and will stress simplicity and flexibility as major components.

  5. Habitat automation

    NASA Technical Reports Server (NTRS)

    Swab, Rodney E.

    1992-01-01

    A habitat, on either the surface of the Moon or Mars, will be designed and built with the proven technologies of that day. These technologies will be mature and readily available to the habitat designer. We believe an acceleration of the normal pace of automation would allow a habitat to be safer and more easily maintained than would be the case otherwise. This document examines the operation of a habitat and describes elements of that operation which may benefit from an increased use of automation. Research topics within the automation realm are then defined and discussed with respect to the role they can have in the design of the habitat. Problems associated with the integration of advanced technologies into real-world projects at NASA are also addressed.

  6. Operator versus computer control of adaptive automation

    NASA Technical Reports Server (NTRS)

    Hilburn, Brian; Molloy, Robert; Wong, Dick; Parasuraman, Raja

    1993-01-01

    Adaptive automation refers to real-time allocation of functions between the human operator and automated subsystems. The article reports the results of a series of experiments whose aim is to examine the effects of adaptive automation on operator performance during multi-task flight simulation, and to provide an empirical basis for evaluations of different forms of adaptive logic. The combined results of these studies suggest several things. First, it appears that either excessively long, or excessively short, adaptation cycles can limit the effectiveness of adaptive automation in enhancing operator performance of both primary flight and monitoring tasks. Second, occasional brief reversions to manual control can counter some of the monitoring inefficiency typically associated with long cycle automation, and further, that benefits of such reversions can be sustained for some time after return to automated control. Third, no evidence was found that the benefits of such reversions depend on the adaptive logic by which long-cycle adaptive switches are triggered.

  7. Automated Formative Evaluations for Reading Comprehension in an English as a Foreign Language Course: Benefits on Performance, User Satisfaction, and Monitoring of Higher Education Students in Chile

    ERIC Educational Resources Information Center

    Lazzeri, Santos; Cabezas, Ximena; Ojeda, Luis; Leiva, Francisca

    2015-01-01

    We assess the effect of automated formative evaluations on reading comprehension skills in a course of English for Specific Purposes (ESP) in the area of kinesiology at the Universidad Austral de Chile-Valdivia (UACh). The evaluations were implemented using Questionmark's Perception (QMP) (Questionmark-Corporation, 2015). We investigate: (1) Do…

  8. An Automated Approach to Peanut dring with real-time monitoring of in-shell Kernel Moisture Content with a Microwave Sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Today’s peanut drying processes utilize decision support software based on modeling and require substantial human interaction for moisture sampling. These conditions increase the likelihood of peanuts being overdried or underdried. This research addresses the need for an automated controller with re...

  9. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    PubMed

    Almeida, Eduardo S; Silva, Luiz A J; Sousa, Raquel M F; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments.

  10. Test methods for evaluating reformulated fuels

    SciTech Connect

    Croudace, M.C.

    1994-12-31

    The US Environmental Protection Agency (EPA) introduced regulations in the 1989 Clean Air Act Amendment governing the reformulation of gasoline and diesel fuels to improve air quality. These statutes drove the need for a fast and accurate method for analyzing product composition, especially aromatic and oxygenate content. The current method, gas chromatography, is slow, expensive, non portable, and requires a trained chemist to perform the analysis. The new mid-infrared spectroscopic method uses light to identify and quantify the different components in fuels. Each individual fuel component absorbs a specific wavelength of light depending on the molecule`s unique chemical structure. The quantity of light absorbed is proportional to the concentration of that fuel component in the mixture. The mid-infrared instrument has significant advantages; it is easy to use, rugged, portable, fully automated and cost effective. It can be used to measure multiple oxygenate or aromatic components in unknown fuel mixtures. Regulatory agencies have begun using this method in field compliance testing; petroleum refiners and marketers use it to monitor compliance, product quality and blending accuracy.

  11. THE MULTI-ISOTOPE PROCESS (MIP) MONITOR: A NEAR-REAL-TIME, NON-DESTRUCTIVE, INDICATOR OF SPENT NUCLEAR FUEL REPROCESSING CONDITIONS

    SciTech Connect

    Schwantes, Jon M.; Orton, Christopher R.; Fraga, Carlos G.; Douglas, Matthew; Christensen, Richard

    2010-05-07

    Researchers from Pacific Northwest National Laboratory and The Ohio State University are working to develop a system for monitoring spent nuclear fuel reprocessing facilities on-line, non-destructively, and in near-real-time. This method, known as the Multi-Isotope Process (MIP) Monitor, is based upon the measurement of distribution patterns of a suite of indicator (radioactive) isotopes present within product and waste streams of a nuclear reprocessing facility. Signatures from these indicator isotopes are monitored on-line by gamma spectrometry and compared, in near-real-time, to patterns representing "normal" process conditions using multivariate pattern recognition software. By targeting gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, high-resolution gamma detectors that may be easily deployed throughout an existing facility. In addition, utilization of a suite of radio-elements, including ones with multiple oxidation states, increases the likelihood that attempts to divert material via process manipulation would be detected. Proof-of-principle modeling exercises simulating changes in acid strength have been completed and the results are promising. Laboratory validation is currently under way and significant results are available. The latest experimental results, along with an overview of the method will be presented.

  12. An investigation towards real time dose rate monitoring, and fuel rod detection in a First Generation Magnox Storage Pond (FGMSP).

    PubMed

    Jackson, Sarah F; Monk, Stephen D; Riaz, Zahid

    2014-12-01

    The First Generation Magnox Storage Pond (FGMSP) is located on the Sellafield Nuclear Site, housing legacy spent Magnox nuclear fuel. Some of which has since corroded, forming a layer of Corroded Magnox Sludge (CMS) creating one of the largest decommissioning challenges the UK has faced. In this work the composition, physical properties and potentially high hazard nature of CMS are discussed, as are the gamma emission spectra of spent Magnox fuel rods typical of the ilk stored. We assess the potential use of a RadLine gamma detector to dose rate map this area and provide fuel rod detection. RadLine consists of a small scintillator, fibre optic cable and photon counter. The probe has the unusual advantage of not being electrically active and therefore fully submersible underwater, with the option to deploy hundreds of metres in length. Our experimental method encompasses general purpose Monte Carlo radiation transport code, MCNP, where we describe the modelling of CMS and pond liquor in comprehensive detail, including their radiological spectrum, chemical composition data, and physical properties. This investigation concludes that the maximum energy deposited within the scintillator crystal due to ambient CMS corresponds to a dose rate of 5.65Gy h(-1), thus above this value positive detection of a fuel rod would be anticipated. It is additionally established that the detectable region is within a 20cm range.

  13. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... either an environmental impact statement or an environmental assessment, as appropriate. The environmental report shall contain the information specified in § 51.45 and shall address the siting evaluation... the environmental impact of the storage of spent fuel at an ISFSI beyond the term of the license...

  14. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... installation (ISFSI) or monitored retrievable storage installation (MRS) license. 51.61 Section 51.61 Energy... installation (ISFSI) or monitored retrievable storage installation (MRS) license. Each applicant for issuance... installation (MRS) pursuant to part 72 of this chapter shall submit with its application to: ATTN:...

  15. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... installation (ISFSI) or monitored retrievable storage installation (MRS) license. 51.61 Section 51.61 Energy... installation (ISFSI) or monitored retrievable storage installation (MRS) license. Each applicant for issuance... installation (MRS) pursuant to part 72 of this chapter shall submit with its application to: ATTN:...

  16. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... installation (ISFSI) or monitored retrievable storage installation (MRS) license. 51.61 Section 51.61 Energy... installation (ISFSI) or monitored retrievable storage installation (MRS) license. Each applicant for issuance... installation (MRS) pursuant to part 72 of this chapter shall submit with its application to: ATTN:...

  17. 10 CFR 51.61 - Environmental report-independent spent fuel storage installation (ISFSI) or monitored retrievable...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... installation (ISFSI) or monitored retrievable storage installation (MRS) license. 51.61 Section 51.61 Energy... installation (ISFSI) or monitored retrievable storage installation (MRS) license. Each applicant for issuance... installation (MRS) pursuant to part 72 of this chapter shall submit with its application to: ATTN:...

  18. Automating Finance

    ERIC Educational Resources Information Center

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  19. Automated output-only dynamic identification of civil engineering structures

    NASA Astrophysics Data System (ADS)

    Rainieri, C.; Fabbrocino, G.

    2010-04-01

    Modal-based damage detection algorithms are well-known techniques for structural health assessment, but they are not commonly used due to the lack of automated modal identification and tracking procedures. Development of such procedures is not a trivial task since traditional modal identification requires extensive interaction from an expert user. Nevertheless, computational efforts have to be carefully considered. If fast on-line data processing is crucial for quickly varying in time systems (such as a rocket burning fuel), a number of vibration-based condition monitoring applications are performed at very different time scales, resulting in satisfactory time steps for on-line data analysis. Moreover, promising results in the field of automated modal identification have been recently achieved. In the present paper, a literature review on this topic is presented and recent developments concerning fully automated output-only modal identification procedures are described. Some case studies are also reported in order to validate the approach. They are characterized by different levels of complexity, in terms of mode coupling, dynamic interaction effects and level of vibration. Advantages and drawbacks of the proposed approach will be pointed out with reference to available experimental results. The final objective is the implementation of a fully automated system for vibration-based structural health monitoring of civil engineering structures and identification of adequate requirements about sensor number and layout, record duration and hardware characteristics able to ensure a reliable low-cost health assessment of constructions. Results of application of the proposed methodology to modal parameter estimation in operational conditions and during ground motions induced by the recent L'Aquila earthquake will be finally presented and discussed.

  20. Automated gas chromatography

    DOEpatents

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  1. The Automated Logistics Element Planning System (ALEPS)

    NASA Technical Reports Server (NTRS)

    Schwaab, Douglas G.

    1991-01-01

    The design and functions of ALEPS (Automated Logistics Element Planning System) is a computer system that will automate planning and decision support for Space Station Freedom Logistical Elements (LEs) resupply and return operations. ALEPS provides data management, planning, analysis, monitoring, interfacing, and flight certification for support of LE flight load planning activities. The prototype ALEPS algorithm development is described.

  2. Automating the analytical laboratory via the Chemical Analysis Automation paradigm

    SciTech Connect

    Hollen, R.; Rzeszutko, C.

    1997-10-01

    To address the need for standardization within the analytical chemistry laboratories of the nation, the Chemical Analysis Automation (CAA) program within the US Department of Energy, Office of Science and Technology`s Robotic Technology Development Program is developing laboratory sample analysis systems that will automate the environmental chemical laboratories. The current laboratory automation paradigm consists of islands-of-automation that do not integrate into a system architecture. Thus, today the chemist must perform most aspects of environmental analysis manually using instrumentation that generally cannot communicate with other devices in the laboratory. CAA is working towards a standardized and modular approach to laboratory automation based upon the Standard Analysis Method (SAM) architecture. Each SAM system automates a complete chemical method. The building block of a SAM is known as the Standard Laboratory Module (SLM). The SLM, either hardware or software, automates a subprotocol of an analysis method and can operate as a standalone or as a unit within a SAM. The CAA concept allows the chemist to easily assemble an automated analysis system, from sample extraction through data interpretation, using standardized SLMs without the worry of hardware or software incompatibility or the necessity of generating complicated control programs. A Task Sequence Controller (TSC) software program schedules and monitors the individual tasks to be performed by each SLM configured within a SAM. The chemist interfaces with the operation of the TSC through the Human Computer Interface (HCI), a logical, icon-driven graphical user interface. The CAA paradigm has successfully been applied in automating EPA SW-846 Methods 3541/3620/8081 for the analysis of PCBs in a soil matrix utilizing commercially available equipment in tandem with SLMs constructed by CAA.

  3. The effects of group and single housing and automated animal monitoring on urinary corticosterone levels in male C57BL/6 mice.

    PubMed

    Kamakura, Remi; Kovalainen, Miia; Leppäluoto, Juhani; Herzig, Karl-Heinz; Mäkelä, Kari A

    2016-02-01

    Mice are used extensively in physiological research. Automated home-cage systems have been developed to study single-housed animals. Increased stress by different housing conditions might affect greatly the results when investigating metabolic responses. Urinary corticosteroid concentration is considered as a stress marker. The aim of the study was to compare the effects of different housing conditions and an automated home-cage system with indirect calorimetry located in an environmental chamber on corticosterone levels in mice. Male mice were housed in different conditions and in automated home-cage system to evaluate the effects of housing and measuring conditions on urine corticosterone levels. Corticosterone levels in single-housed mice in the laboratory animal center were consistently lower compared with the group-housed mice. Single-housed mice in a separate, small animal unit showed a rise in their corticosterone levels a day after they were separated to their individual cages, which decreased during the following 2 days. The corticosterone levels of group-housed mice in the same unit were increased during the first 7 days and then decreased. On day 7, the corticosterone concentrations of group-housed mice were significantly higher compared with that of single-housed mice, including the metabolic measurement protocol. In conclusion, single housing caused less stress when compared with group-housed mice. In addition, the urine corticosterone levels were decreased in single-housed mice before the metabolic measurement started. Thus, stress does not affect the results when utilizing the automated system for measuring metabolic parameters like food and water intake and calorimetry.

  4. Automated validation of a computer operating system

    NASA Technical Reports Server (NTRS)

    Dervage, M. M.; Milberg, B. A.

    1970-01-01

    Programs apply selected input/output loads to complex computer operating system and measure performance of that system under such loads. Technique lends itself to checkout of computer software designed to monitor automated complex industrial systems.

  5. Automated analysis of oxidative metabolites

    NASA Technical Reports Server (NTRS)

    Furner, R. L. (Inventor)

    1974-01-01

    An automated system for the study of drug metabolism is described. The system monitors the oxidative metabolites of aromatic amines and of compounds which produce formaldehyde on oxidative dealkylation. It includes color developing compositions suitable for detecting hyroxylated aromatic amines and formaldehyde.

  6. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  7. Direct blood culturing on solid medium outperforms an automated continuously monitored broth-based blood culture system in terms of time to identification and susceptibility testing

    PubMed Central

    Idelevich, E.A.; Grünastel, B.; Peters, G.; Becker, K.

    2015-01-01

    Pathogen identification and antimicrobial susceptibility testing (AST) should be available as soon as possible for patients with bloodstream infections. We investigated whether a lysis-centrifugation (LC) blood culture (BC) method, combined with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification and Vitek 2 AST, provides a time advantage in comparison with the currently used automated broth-based BC system. Seven bacterial reference strains were added each to 10 mL human blood in final concentrations of 100, 10 and 1 CFU/mL. Inoculated blood was added to the Isolator 10 tube and centrifuged at 3000 g for 30 min, then 1.5 mL sediment was distributed onto five 150-mm agar plates. Growth was observed hourly and microcolonies were subjected to MALDI-TOF MS and Vitek 2 as soon as possible. For comparison, seeded blood was introduced into an aerobic BC bottle and incubated in the BACTEC 9240 automated BC system. For all species/concentration combinations except one, successful identification and Vitek 2 inoculation were achieved even before growth detection by BACTEC. The fastest identification and inoculation for AST were achieved with Escherichia coli in concentrations of 100 CFU/mL and 10 CFU/mL (after 7 h each, while BACTEC flagged respective samples positive after 9.5 h and 10 h). Use of the LC-BC method allows skipping of incubation in automated BC systems and, used in combination with rapid diagnostics from microcolonies, provides a considerable advantage in time to result. This suggests that the usefulness of direct BC on solid medium should be re-evaluated in the era of rapid microbiology. PMID:26909155

  8. Automated real-time monitoring of the plasmasphere by means of ground-based magnetometer arrays in Europe and South Africa

    NASA Astrophysics Data System (ADS)

    Neska, M.; Collier, A.; Heilig, B.; Jozwiak, W.; Raita, T.; Vellante, M.

    2013-12-01

    The EMMA (Europe) / SANSA (South Africa) magnetometer network created in the frame of the PLASMON project serves for determining the plasmasphere's mass distribution basing on the FLR (field line resonance) technique. This determination shall be done in a fully automated way and in real time. Current data from all stations are delivered to the PLASMON center within ca. 10 minutes. The central server performs a detection of FLR frequencies for appropriate magnetometer pairs according to the FLRID algorithm. Subsequently, the plasmasphere's mass is determined by the FLRINV algorithm. First results of the whole system's working are presented.

  9. Advances in monitoring dynamic hydrologic conditions in the vadose zone through automated high-resolution ground-penetrating radar imaging and analysis

    NASA Astrophysics Data System (ADS)

    Mangel, Adam R.

    This body of research focuses on resolving physical and hydrological heterogeneities in the subsurface with ground-penetrating radar (GPR). Essentially, there are two facets of this research centered on the goal of improving the collective understanding of unsaturated flow processes: i) modifications to commercially available equipment to optimize hydrologic value of the data and ii) the development of novel methods for data interpretation and analysis in a hydrologic context given the increased hydrologic value of the data. Regarding modifications to equipment, automation of GPR data collection substantially enhances our ability to measure changes in the hydrologic state of the subsurface at high spatial and temporal resolution (Chapter 1). Additionally, automated collection shows promise for quick high-resolution mapping of dangerous subsurface targets, like unexploded ordinance, that may have alternate signals depending on the hydrologic environment (Chapter 5). Regarding novel methods for data inversion, dispersive GPR data collected during infiltration can constrain important information about the local 1D distribution of water in waveguide layers (Chapters 2 and 3), however, more data is required for reliably analyzing complicated patterns produced by the wetting of the soil. In this regard, data collected in 2D and 3D geometries can further illustrate evidence of heterogeneous flow, while maintaining the content for resolving wave velocities and therefore, water content. This enables the use of algorithms like reflection tomography, which show the ability of the GPR data to independently resolve water content distribution in homogeneous soils (Chapter 5). In conclusion, automation enables the non-invasive study of highly dynamic hydrologic processes by providing the high resolution data required to interpret and resolve spatial and temporal wetting patterns associated with heterogeneous flow. By automating the data collection, it also allows for the novel

  10. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  11. Automating existing stations

    SciTech Connect

    Little, J.E.

    1986-09-01

    The task was to automate 20 major compressor stations along ANR Pipeline Co.'s Southeastern and Southwestern pipelines in as many months. Meeting this schedule required standardized hardware and software design. Working with Bristol Babcock Co., ANR came up with an off-the-shelf station automation package suitable for a variety of compressor stations. The project involved 148 engines with 488,880-hp in the 20 stations. ANR Pipeline developed software for these engines and compressors, including horsepower prediction and efficiency. The system places processors ''intelligence'' at each station and engine to monitor and control operations. The station processor receives commands from the company's gas dispatch center at Detroit and informs dispatchers of alarms, conditions, and decision it makes. The automation system is controlled by the Detroit center through a central communications network. Operating orders from the center are sent to the station processor, which obeys orders using the most efficient means of operation at the station's disposal. In a malfunction, a control and communications backup system takes over. Commands and information are directly transmitted between the center and the individual compressor stations. Stations receive their orders based on throughput, with suction and discharge pressure overrides. Additionally, a discharge temperature override protects pipeline coatings.

  12. Quality assurance plan for the data acquisition and management system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California

    SciTech Connect

    Peerenboom, J.P.; Leser, C.C.; Ramsey, G.M.; Widing, M.A.

    1995-04-01

    In February 1975, the accidental puncture of an underground transfer line buried about 4 ft below the ground surface at the SNL installation in Livermore, California, resulted in the release of approximately 225.5 m{sup 3} of No. 2 diesel fuel. This report describes the formal quality assurance plan that will be used for the data acquisition and management system developed to monitor a bioremediation pilot study by Argonne National Laboratory in association with Sandia National Laboratories. The data acquisition and management system will record the site data during the bioremediation effort and assist users in site analysis. The designs of the three major subsystems of this system are described in this report. Quality assurance criteria are defined for the management, performance, and assessment of the system. Finally, the roles and responsibilities for configuration management of this system are defined for the entire life cycle of the project.

  13. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  14. Real-time remote monitoring of temperature and humidity within a proton exchange membrane fuel cell using flexible sensors.

    PubMed

    Kuo, Long-Sheng; Huang, Hao-Hsiu; Yang, Cheng-Hao; Chen, Ping-Hei

    2011-01-01

    This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH(-1) and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10(-3) °C(-1). The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm(-2) and 15.90 mW·cm(-2), with only 7.17% power loss.

  15. Real-Time Remote Monitoring of Temperature and Humidity Within a Proton Exchange Membrane Fuel Cell Using Flexible Sensors

    PubMed Central

    Kuo, Long-Sheng; Huang, Hao-Hsiu; Yang, Cheng-Hao; Chen, Ping-Hei

    2011-01-01

    This study developed portable, non-invasive flexible humidity and temperature microsensors and an in situ wireless sensing system for a proton exchange membrane fuel cell (PEMFC). The system integrated three parts: a flexible capacitive humidity microsensor, a flexible resistive temperature microsensor, and a radio frequency (RF) module for signal transmission. The results show that the capacitive humidity microsensor has a high sensitivity of 0.83 pF%RH−1 and the resistive temperature microsensor also exhibits a high sensitivity of 2.94 × 10−3 °C−1. The established RF module transmits the signals from the two microsensors. The transmission distance can reach 4 m and the response time is less than 0.25 s. The performance measurements demonstrate that the maximum power density of the fuel cell with and without these microsensors are 14.76 mW·cm−2 and 15.90 mW·cm−2, with only 7.17% power loss. PMID:22164099

  16. The effects of marine vessel fuel sulfur regulations on ambient PM2.5 at coastal and near coastal monitoring sites in the U.S.

    NASA Astrophysics Data System (ADS)

    Kotchenruther, Robert A.

    2017-02-01

    In August of 2012 the U.S. began implementing fuel sulfur limits on certain large commercial marine vessels within 200 nautical miles (nm) of its coasts as part of a North American Emissions Control Area (NA-ECA). The NA-ECA limited fuel sulfur use in these vessels to below 1% in 2012 and to below 0.1% starting in 2015. This work uses ambient PM2.5 monitoring data from the U.S. IMPROVE network and Positive Matrix Factorization (PMF) receptor modeling to assess the effectiveness of the NA-ECA at reducing ambient PM2.5 from high-sulfur residual fuel oil (RFO) use. RFO combustion emissions of PM2.5 are known to have a fairly unique vanadium (V) and nickel (Ni) trace metal signature. To determine if IMPROVE sites were affected by residual fuel oil combustion, V and Ni data from 65 IMPROVE sites in coastal States of the U.S. were analyzed from 2010 to 2011, the two years prior to NA-ECA implementation. 22 of these IMPROVE sites had a V and Ni correlation coefficient (r2) greater than 0.65 and were selected for further analysis by PMF. The slopes of the correlations between V and Ni at these 22 sites ranged from 2.2 to 4.1, consistent with reported V:Ni emission ratios from RFO combustion. Each of the 22 IMPROVE sites was modeled independently with PMF, using the available PM2.5 chemical speciation data from 2010 to 2015. PMF model solutions for the 22 sites contained from 5 to 9 factors, depending on the site. At every site a PMF factor was identified that was associated with RFO combustion, however, 9 sites had PMF factors where RFO combustion was mixed with other aerosol sources. For the remaining 13 sites, PM2.5 from RFO combustion was analyzed for three time periods; 2010-2011 representing the time period prior to the NA-ECA implementation (pre-NA-ECA), 2013-2014 representing the time period where fuel sulfur was limited to 1.0% (NA-ECA 1.0% S), and 2015 representing the time period where fuel sulfur was limited to 0.1% (NA-ECA 0.1% S). All 13 sites indicated

  17. Sensors and Automated Analyzers for Radionuclides

    SciTech Connect

    Grate, Jay W.; Egorov, Oleg B.

    2003-03-27

    The production of nuclear weapons materials has generated large quantities of nuclear waste and significant environmental contamination. We have developed new, rapid, automated methods for determination of radionuclides using sequential injection methodologies to automate extraction chromatographic separations, with on-line flow-through scintillation counting for real time detection. This work has progressed in two main areas: radionuclide sensors for water monitoring and automated radiochemical analyzers for monitoring nuclear waste processing operations. Radionuclide sensors have been developed that collect and concentrate radionuclides in preconcentrating minicolumns with dual functionality: chemical selectivity for radionuclide capture and scintillation for signal output. These sensors can detect pertechnetate to below regulatory levels and have been engineered into a prototype for field testing. A fully automated process monitor has been developed for total technetium in nuclear waste streams. This instrument performs sample acidification, speciation adjustment, separation and detection in fifteen minutes or less.

  18. Real-time monitoring of phenazines excretion in Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes.

    PubMed

    Qiao, Yan; Qiao, Ya-Juan; Zou, Long; Ma, Cai-Xia; Liu, Jian-Hua

    2015-12-01

    Phenazines are a kind of metabolites that can mediate extracellular Pseudomonas aeruginosa (P. aeruginosa) cells in microbial fuel cells (MFCs). However, it is still not clear that whether and how the excretion profile of phenazines is affected by the operating MFC. Here, we report a real time analysis approach based on a cavity microelectrode electrochemical sensor to investigate the phenazines excretion behavior of P. aeruginosa during MFC operation. The phenazine concentration increases at first 72 h, reaches a plateau and decreases after 120 h and also shows local dependent variation. It is dependent on the MFC current generation profile but also affect by the biofilm formation. Accordingly, a mechanism about phenazines excretion in MFC anode and the phenazines mediated extracellular electron transfer of the P. aeruginosa anode is proposed. This work provides a novel strategy for self-mediated extracellular electron transfer analysis in the operating MFCs.

  19. High-resolution monitoring of marine protists based on an observation strategy integrating automated on-board filtration and molecular analyses

    NASA Astrophysics Data System (ADS)

    Metfies, Katja; Schroeder, Friedhelm; Hessel, Johanna; Wollschläger, Jochen; Micheller, Sebastian; Wolf, Christian; Kilias, Estelle; Sprong, Pim; Neuhaus, Stefan; Frickenhaus, Stephan; Petersen, Wilhelm

    2016-11-01

    Information on recent biomass distribution and biogeography of photosynthetic marine protists with adequate temporal and spatial resolution is urgently needed to better understand the consequences of environmental change for marine ecosystems. Here we introduce and review a molecular-based observation strategy for high-resolution assessment of these protists in space and time. It is the result of extensive technology developments, adaptations and evaluations which are documented in a number of different publications, and the results of the recently completed field testing which are introduced in this paper. The observation strategy is organized at four different levels. At level 1, samples are collected at high spatiotemporal resolution using the remotely controlled automated filtration system AUTOFIM. Resulting samples can either be preserved for later laboratory analyses, or directly subjected to molecular surveillance of key species aboard the ship via an automated biosensor system or quantitative polymerase chain reaction (level 2). Preserved samples are analyzed at the next observational levels in the laboratory (levels 3 and 4). At level 3 this involves molecular fingerprinting methods for a quick and reliable overview of differences in protist community composition. Finally, selected samples can be used to generate a detailed analysis of taxonomic protist composition via the latest next generation sequencing technology (NGS) at level 4. An overall integrated dataset of the results based on the different analyses provides comprehensive information on the diversity and biogeography of protists, including all related size classes. At the same time the cost of the observation is optimized with respect to analysis effort and time.

  20. MCO Monitoring activity description

    SciTech Connect

    SEXTON, R.A.

    1998-11-09

    Spent Nuclear Fuel remaining from Hanford's N-Reactor operations in the 1970s has been stored under water in the K-Reactor Basins. This fuel will be repackaged, dried and stored in a new facility in the 200E Area. The safety basis for this process of retrieval, drying, and interim storage of the spent fuel has been established. The monitoring of MCOS in dry storage is a currently identified issue in the SNF Project. This plan outlines the key elements of the proposed monitoring activity. Other fuel stored in the K-Reactor Basins, including SPR fuel, will have other monitoring considerations and is not addressed by this activity description.

  1. Design of automation tools for management of descent traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational

  2. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    SciTech Connect

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  3. FePO4 based single chamber air-cathode microbial fuel cell for online monitoring levofloxacin.

    PubMed

    Zeng, Libin; Li, Xinyong; Shi, Yueran; Qi, Yefei; Huang, Daqiong; Tadé, Moses; Wang, Shaobin; Liu, Shaomin

    2017-05-15

    A bio-electrochemical strategy was developed for constructing a simple and sensitive levofloxacin (LEV) sensor based on a single chamber microbial fuel cell (SC-MFC) using FePO4 nanoparticles (NPs) as the cathode catalyst instead of traditional Pt/C. In this assembled sensor device, FePO4 NPs dramatically promoted the electrooxidation of oxygen on the cathode, which helps to accelerate the voltage output from SC-MFC and can provide a powerful guarantee for LEV detection. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to fully characterize the FePO4 NPs. Under the optimized COD condition (3mM), the LEV with a concentration range of 0.1-1000µg/L could be detected successfully, and exhibited the excellent linear interval in the concentration range of 0.1-100µg/L. During this range of concentrations of LEV, a temporary effect on the anode of exoelectrogenic bacterial in less than 10min could occur, and then came back to the normal. It exhibited a long-term stability, maintaining the stable electricity production for 14 months of continuous running. Besides, the detection mechanism was investigated by quantum chemical calculation using density functional theory (DFT).

  4. Influence of milk yeild stage of lactation, and body conditions on dairy cattle lying behavior measured using an automated activity monitoring sensor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lying times of lactating Holstein-Friesian cows of varying body condition scores (BCS) and milk yield were measured using IceTag™ animal activity monitors in the Barony College dairy herd. A three-week average BCS was calculated for each cow; and in total 84 cows were selected equally between 3...

  5. Solving the problems concerned with modernization of power unit monitoring and control systems using the distributed facilities and technologies available in the sargon computerized automation system. Part 1: Tools of PTC "sargon" for distributed systems

    NASA Astrophysics Data System (ADS)

    Mendelevich, V. A.

    2013-02-01

    The first part of this article describes the tools intended to construct distributed automated process control systems for the main thermal power equipment of power stations that are available in the SARGON computerized automation system.

  6. Effects of Village Power Quality on Fuel Consumption and Operating Expenses

    SciTech Connect

    Richard Wies; Ron Johnson

    2008-12-31

    Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind

  7. D-MSR: a distributed network management scheme for real-time monitoring and process control applications in wireless industrial automation.

    PubMed

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-06-27

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.

  8. Design and implementation of an Internet based effective controlling and monitoring system with wireless fieldbus communications technologies for process automation--an experimental study.

    PubMed

    Cetinceviz, Yucel; Bayindir, Ramazan

    2012-05-01

    The network requirements of control systems in industrial applications increase day by day. The Internet based control system and various fieldbus systems have been designed in order to meet these requirements. This paper describes an Internet based control system with wireless fieldbus communication designed for distributed processes. The system was implemented as an experimental setup in a laboratory. In industrial facilities, the process control layer and the distance connection of the distributed control devices in the lowest levels of the industrial production environment are provided with fieldbus networks. In this paper, the Internet based control system that will be able to meet the system requirements with a new-generation communication structure, which is called wired/wireless hybrid system, has been designed on field level and carried out to cover all sectors of distributed automation, from process control, to distributed input/output (I/O). The system has been accomplished by hardware structure with a programmable logic controller (PLC), a communication processor (CP) module, two industrial wireless modules and a distributed I/O module, Motor Protection Package (MPP) and software structure with WinCC flexible program used for the screen of Scada (Supervisory Control And Data Acquisition), SIMATIC MANAGER package program ("STEP7") used for the hardware and network configuration and also for downloading control program to PLC.

  9. Automated analyser for monitoring the contents of hydrocarbons in gas emitted from exploratory bore-holes in the gas and oil industry

    PubMed Central

    Janicki, Wacław; Żwan, Paweł; Namieśnik, Jacek

    2003-01-01

    An automated analyser for total hydrocarbon contents and hydrocarbon composition (from methane to pentanes) was constructed and tested in both laboratory and field exploitation. It used two-channel analysis: continuous measurements of total hydrocarbon contents and periodic (90 or 150 s) composition analysis after separation of hydrocarbons on a gas chromatographic column. Flame ionization detectors were used in both channels. A simple 16-bit analogue-to-digital converter was used (4.8, practically four orders of magnitude), while the full measuring range (six orders of magnitude) was ensured by automatic dilution of the sample (or standard) with clean air. Full control of the operating (calibration/analyses) cycle was performed by microcomputer. An external programme, based on a computer provided with full information on the instrument operating conditions, presents the results of calibrations/analyses and enables them to be archived in a standard database used in the oil/gas drilling industry (N-LAB) by providing a suitable link. The instrument measuring range was 1 ppm to 100% with precision not worse than 5% at the detection limit. The analyser can operate autonomously for two months, recalibrating itself daily. PMID:18924624

  10. D-MSR: A Distributed Network Management Scheme for Real-Time Monitoring and Process Control Applications in Wireless Industrial Automation

    PubMed Central

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-01-01

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687

  11. Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere.

    PubMed

    Tanner, David; Helmig, Detlev; Hueber, Jacques; Goldan, Paul

    2006-04-07

    An unattended, automated, on-line, cryogen-free, remotely controlled gas chromatography (GC) system was developed and has been deployed for more than 1 year for the continuous determination of C(2) to C(6) hydrocarbons at an observatory located at 2225 m elevation, on the summit caldera of an inactive volcano on the island of Pico, Azores. The GC instrument is tailored to the measurement challenges at this remote and high altitude site. All consumable gases are prepared in situ. Total power use remains below 700 W at all times. Sample collection and analysis is performed without use of cryogen. Hydrocarbons are concentrated on a one-stage trapping/injection system consisting of a Peltier-cooled multi-bed solid adsorbent trap. Analytes are detected after thermal desorption and separation on an alumina-PLOT (porous-layer open tubular) column by flame ionization detection (FID). Sample focusing, desorption, separation and detection parameters were thoroughly investigated to ensure quantitative collection and subsequent injection onto the GC system. GC operation is controlled remotely and data are downloaded daily. Sample volumes (600 and 3000 ml) are alternated for analysis of C(2) to C(3) and C(3) to C(6) hydrocarbons, respectively. Detection limits are in the low parts per trillion by volume (pptv) range, sufficient for quantification of the compounds of interest at their central North Atlantic lower free troposphere background concentrations.

  12. Analysis and detection of functional outliers in water quality parameters from different automated monitoring stations in the Nalón river basin (Northern Spain).

    PubMed

    Piñeiro Di Blasi, J I; Martínez Torres, J; García Nieto, P J; Alonso Fernández, J R; Díaz Muñiz, C; Taboada, J

    2015-01-01

    The purposes and intent of the authorities in establishing water quality standards are to provide enhancement of water quality and prevention of pollution to protect the public health or welfare in accordance with the public interest for drinking water supplies, conservation of fish, wildlife and other beneficial aquatic life, and agricultural, industrial, recreational, and other reasonable and necessary uses as well as to maintain and improve the biological integrity of the waters. In this way, water quality controls involve a large number of variables and observations, often subject to some outliers. An outlier is an observation that is numerically distant from the rest of the data or that appears to deviate markedly from other members of the sample in which it occurs. An interesting analysis is to find those observations that produce measurements that are different from the pattern established in the sample. Therefore, identification of atypical observations is an important concern in water quality monitoring and a difficult task because of the multivariate nature of water quality data. Our study provides a new method for detecting outliers in water quality monitoring parameters, using turbidity, conductivity and ammonium ion as indicator variables. Until now, methods were based on considering the different parameters as a vector whose components were their concentration values. This innovative approach lies in considering water quality monitoring over time as continuous curves instead of discrete points, that is to say, the dataset of the problem are considered as a time-dependent function and not as a set of discrete values in different time instants. This new methodology, which is based on the concept of functional depth, was applied to the detection of outliers in water quality monitoring samples in the Nalón river basin with success. Results of this study were discussed here in terms of origin, causes, etc. Finally, the conclusions as well as advantages of

  13. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Lopaka; Kamibayashi, Kevan; Antolik, Loren; Werner, Cynthia

    2015-07-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely "off-the-shelf" components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  14. Automated Water Analyser Computer Supported System (AWACSS) Part II: Intelligent, remote-controlled, cost-effective, on-line, water-monitoring measurement system.

    PubMed

    Tschmelak, Jens; Proll, Guenther; Riedt, Johannes; Kaiser, Joachim; Kraemmer, Peter; Bárzaga, Luis; Wilkinson, James S; Hua, Ping; Hole, J Patrick; Nudd, Richard; Jackson, Michael; Abuknesha, Ram; Barceló, Damià; Rodriguez-Mozaz, Sara; de Alda, Maria J López; Sacher, Frank; Stien, Jan; Slobodník, Jaroslav; Oswald, Peter; Kozmenko, Helena; Korenková, Eva; Tóthová, Lívia; Krascsenits, Zoltan; Gauglitz, Guenter

    2005-02-15

    A novel analytical system AWACSS (Automated Water Analyser Computer Supported System) based on immunochemical technology has been evaluated that can measure several organic pollutants at low nanogram per litre level in a single few-minutes analysis without any prior sample pre-concentration or pre-treatment steps. Having in mind actual needs of water-sector managers related to the implementation of the Drinking Water Directive (DWD) [98/83/EC, 1998. Council Directive (98/83/EC) of 3 November 1998 relating to the quality of water intended for human consumption. Off. J. Eur. Commun. L330, 32-54] and Water Framework Directive (WFD) [2000/60/EC, 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Commun. L327, 1-72], drinking, ground, surface, and waste waters were major media used for the evaluation of the system performance. The first part article gave the reader an overview of the aims and scope of the AWACSS project as well as details about basic technology, immunoassays, software, and networking developed and utilised within the research project. The second part reports on the system performance, first real sample measurements, and an international collaborative trial (inter-laboratory tests) to compare the biosensor with conventional anayltical methods. The systems' capability for analysing a wide range of environmental organic micro-pollutants, such as modern pesticides, endocrine disrupting compounds and pharmaceuticals in surface, ground, drinking and waste water is shown. In addition, a protocol using reconstitution of extracts of solid samples, developed and applied for analysis of river sediments and food samples, is presented. Finally, the overall performance of the AWACSS system in comparison to the conventional analytical techniques, which included liquid and gas chromatographic systems with diode-array UV and mass

  15. Performance monitoring of advanced technology wood stoves: Field testing for fuel savings, creosote buildup and emissions: Volume 1, Final report

    SciTech Connect

    Not Available

    1987-11-01

    This report presents the results of a two-year study in Vermont and New York monitoring woodstove performance. The objective of the study was to determine the effectiveness of catalytic and non-catalytic low-emission woodstove technology in reducing wood use, creosote and particulate emissions. Measurements of wood use and creosote accumulation in chimney systems were made in a total of 68 homes over a period of two heating seasons. Forty-two of these homes were equipped with instrumentation to measure particulate emissions and directly-measured wood use. Catalytic woodstoves, catalytic add-on/retrofit devices and non-catalytic low-emission stoves were provided by various woodstove manufacturers for use by volunteer homeowners during the study period. Conventional technology stoves were also included to provide baseline data. Averaged results indicate that the low-emission non-catalytic stoves and catalytic stoves had lower creosote accumulation, wood use, and particulate emissions than the conventional technology stoves, although the range of values was quite large. The reductions in particulate emissions by the catalytic and low-emission stoves were not as great as could be expected based on laboratory testing. The large number of variables affecting stove performance in ''real world'' conditions make identifying causative factors difficult. Additional analysis of data and further testing are currently planned. 5 refs., 61 figs., 23 tabs.

  16. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: focusing on impact of anodic biofilm on sensor applicability.

    PubMed

    Zhang, Yifeng; Angelidaki, Irini

    2011-10-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm-colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm-colonized anode showed linear relationship with BOD content, to up to 250 mg/L (∼233 ± 1 mA/m(2)), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine-triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m(2)) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol-ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers.

  17. Transfer and Evaluation of an Automated, Low-Cost Real-Time Reverse Transcription-PCR Test for Diagnosis and Monitoring of Human Immunodeficiency Virus Type 1 Infection in a West African Resource-Limited Setting

    PubMed Central

    Rouet, Francois; Ekouevi, Didier K.; Chaix, Marie-Laure; Burgard, Marianne; Inwoley, Andre; Tony, Thomas D'Aquin; Danel, Christine; Anglaret, Xavier; Leroy, Valeriane; Msellati, Philippe; Dabis, Francois; Rouzioux, Christine

    2005-01-01

    There is an urgent need for low-cost human immunodeficiency virus type 1 (HIV-1) viral load (VL) monitoring technologies in resource-limited settings. An automated TaqMan real-time reverse transcription-PCR (RT-PCR) assay was transferred to the laboratory of the Centre de Diagnostic et de Recherches sur le SIDA, Abidjan, Côte d'Ivoire, and assessed for HIV-1 RNA VL testing in 806 plasma samples collected within four ANRS research programs. The detection threshold and reproducibility of the assay were first determined. The quantitative results obtained with this assay were compared with two commercial HIV-1 RNA kits (the Versant version 3.0 and Monitor version 1.5 assays) in specimens harboring mainly the circulating recombinant form 02 strain (CRF02). The clinical evaluation of this test was done in different situations including the early diagnosis of pediatric infection and the monitoring of antiretroviral-treated patients. The quantification limit of our method was 300 copies/ml. The HIV-1 RNA values obtained by real-time PCR assay were highly correlated with those obtained by the Versant kit (r = 0.901; P < 0.001) and the Monitor test (r = 0.856; P < 0.001) and homogeneously distributed according to HIV-1 genotypes. For the early diagnosis of pediatric HIV-1 infection, the sensitivity and specificity of the real-time PCR assay were both 100% (95% confidence intervals of 93.7 to 100.0 and 98.3 to 100.0, respectively), compared to the Versant results. Following initiation of antiretroviral treatment, the kinetics of HIV-1 RNA levels were very comparable, with a similar proportion of adults and children below the detection limit during follow-up with our technique and the Versant assay. The TaqMan real-time PCR ($12 per test) is now routinely used to monitor HIV-1 infection in our laboratory. This technology should be further evaluated in limited-resource countries where strains other than CRF02 are prevalent. PMID:15956387

  18. Compact, Automated, Frequency-Agile Microspectrofluorimeter

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.

    1995-01-01

    Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.

  19. Micro-flow-injection analysis (μFIA) immunoassay of herbicide residue 2,6-dichlorobenzamide – towards automated at-line monitoring using modular microfluidics.

    PubMed

    Uthuppu, Basil; Heiskanen, Arto; Kofoed, Dan; Aamand, Jens; Jørgensen, Claus; Dufva, Martin; Jakobsen, Mogens Havsteen

    2015-03-07

    As a part of developing new systems for continuously monitoring the presence of pesticides in groundwater, a microfluidic amperometric immunosensor was developed for detecting the herbicide residue 2,6-dichlorobenzamide (BAM) in water. A competitive immunosorbent assay served as the sensing mechanism and amperometry was applied for detection. Both the immunoreaction chip (IRC) and detection (D) unit are integrated on a modular microfluidic platform with in-built micro-flow-injection analysis (μFIA) function. The immunosorbent, immobilized in the channel of the IRC, was found to have high long-term stability and withstand many regeneration cycles, both of which are key requirements for systems utilized in continuous monitoring. The IRC was regenerated during 51 cycles in a heterogeneous competitive assay out of which 27 were without the analyte (the highest possible signal level) in order to assess the regeneration capability of the immunosorbent. Detection of BAM standard solutions was performed in the concentration range from 62.5 μg L(-1) to 0.0008 μg L(-1). Non-linear regression of the data using the four-parameter logistic equation generated a sigmoidal standard curve showing an IC50 value (concentration that reduces the signal by 50%) of 0.25 μg L(-1). The strongest signal variation is observed in the concentration range between 0.02 and 2.5 μg L(-1), which includes the 0.1 μg L(-1) threshold limit set by the European Commission for BAM in drinking water. The presented results demonstrate the potential of the constructed μFIA immunosensor as an at-line monitoring system for controlling the quality of ground water supply.

  20. An automated SO2 camera system for continuous, real-time monitoring of gas emissions from Kīlauea Volcano's summit Overlook Crater

    USGS Publications Warehouse

    Kern, Christoph; Sutton, Jeff; Elias, Tamar; Lee, Robert Lopaka; Kamibayashi, Kevan P.; Antolik, Loren; Werner, Cynthia A.

    2015-01-01

    SO2 camera systems allow rapid two-dimensional imaging of sulfur dioxide (SO2) emitted from volcanic vents. Here, we describe the development of an SO2 camera system specifically designed for semi-permanent field installation and continuous use. The integration of innovative but largely “off-the-shelf” components allowed us to assemble a robust and highly customizable instrument capable of continuous, long-term deployment at Kīlauea Volcano's summit Overlook Crater. Recorded imagery is telemetered to the USGS Hawaiian Volcano Observatory (HVO) where a novel automatic retrieval algorithm derives SO2 column densities and emission rates in real-time. Imagery and corresponding emission rates displayed in the HVO operations center and on the internal observatory website provide HVO staff with useful information for assessing the volcano's current activity. The ever-growing archive of continuous imagery and high-resolution emission rates in combination with continuous data from other monitoring techniques provides insight into shallow volcanic processes occurring at the Overlook Crater. An exemplary dataset from September 2013 is discussed in which a variation in the efficiency of shallow circulation and convection, the processes that transport volatile-rich magma to the surface of the summit lava lake, appears to have caused two distinctly different phases of lake activity and degassing. This first successful deployment of an SO2 camera for continuous, real-time volcano monitoring shows how this versatile technique might soon be adapted and applied to monitor SO2 degassing at other volcanoes around the world.

  1. Status of spent-fuel shipping cask development

    SciTech Connect

    Hall, I.K.; Hinschberger, T.S.

    1989-01-01

    The purpose of the Cask Systems Development Program is to develop a variety of cask systems that can safely and economically transport commercial spent fuel and high-level waste from the generating sites to a federal geologic repository or monitored retrievable storage (MRS) facility. This paper is limited to a discussion of the status of from-reactor spent-fuel cask development; future cask development plans include MRS-to-repository casks, specialty casks for nonstandard spent fuel and nonfuel materials, and defense high-level waste casks. Spent-fuel casks must be available in the late 1990s to support the U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) shipments from utilities. DOE-Idaho, with the support of EG G Idaho, Inc., Sandia National Laboratories, and selected cask developing contractors, has been assigned the responsibility for developing a new generation of cask systems. Four categories of spent fuel casks were initially proposed: (1) legal weight truck (LWT) casks (2) overweight truck (OWT) casks (3) rail/barge (R/B) casks (4) dual purpose (DP) storage/transport casks. Casks are being designed for reduced occupational radiation exposure at the receiving facility by facilitating the use of remote handling equipment. Automation of remote handling systems may be used to reduce cask turnaround time. Reducing turnaround time promotes reduced radiation exposure to occupational workers and improves cask utilization efficiency.

  2. Automated klarf-based defect inspection by electron-beam inspection tool: a novel approach to inline monitoring and/or process change validation

    NASA Astrophysics Data System (ADS)

    Cai, Na; Zeng, Xuefeng; Wu, Kevin; Song, Ho Young; Gao, Weihong; Tian, Qing; Lei, Chris; Gao, Kewen; Wang, Liuchen; Zhao, Yan

    2016-03-01

    We report an optical inspection guided e-beam inspection method for inline monitoring and/or process change validation. We illustrate its advantage through the case of detection of buried voids/unlanding vias, which are identified as yield-limiting defects to cause electrical connectivity failures. We inspected a back end of line (BEOL) wafer after the copper electro plating and chemical mechanical planarization (CMP) process with bright field inspection (BFI) and employed EBI to inspect full wafer with guidance of BFI klarf file. The dark voltage contrast defects were detected and confirmed as buried voids by transmission electron microscopy (TEM).

  3. Flight-deck automation - Promises and problems

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.; Curry, R. E.

    1980-01-01

    The paper analyzes the role of human factors in flight-deck automation, identifies problem areas, and suggests design guidelines. Flight-deck automation using microprocessor technology and display systems improves performance and safety while leading to a decrease in size, cost, and power consumption. On the other hand negative factors such as failure of automatic equipment, automation-induced error compounded by crew error, crew error in equipment set-up, failure to heed automatic alarms, and loss of proficiency must also be taken into account. Among the problem areas discussed are automation of control tasks, monitoring of complex systems, psychosocial aspects of automation, and alerting and warning systems. Guidelines are suggested for designing, utilising, and improving control and monitoring systems. Investigation into flight-deck automation systems is important as the knowledge gained can be applied to other systems such as air traffic control and nuclear power generation, but the many problems encountered with automated systems need to be analyzed and overcome in future research.

  4. A Review of NDE Methods for Detecting and Monitoring of Atmospheric SCC in Dry Cask Storage Canisters for Used Nuclear Fuel

    SciTech Connect

    Meyer, Ryan M.; Hanson, Brady D.; Sorenson, Ken B.

    2013-04-01

    Dry cask storage systems (DCSSs) for used nuclear fuel (UNF) were originally envisioned for storage periods of short duration (~ a few decades). However, uncertainty challenges the opening of a permanent repository for UNF implying that UNF will need to remain in dry storage for much longer durations than originally envisioned (possibly for centuries). Thus, aging degradation of DCSSs becomes an issue that may not have been sufficiently considered in the design phase and that can challenge the efficacy of very long-term storage of UNF. A particular aging degradation concern is atmospheric stress corrosion cracking (SCC) of DCSSs located in marine environments. In this report, several nondestructive (NDE) methods are evaluated with respect to their potential for effective monitoring of atmospheric SCC in welded canisters of DCSSs. Several of the methods are selected for evaluation based on their usage for in-service inspection applications in the nuclear power industry. The technologies considered include bulk ultrasonic techniques, acoustic emission, visual techniques, eddy current, and guided ultrasonic waves.

  5. Review of NDE Methods for Detection and Monitoring of Atmospheric SCC in Welded Canisters for the Storage of Used Nuclear Fuel

    SciTech Connect

    Meyer, Ryan M.; Pardini, Allan F.; Hanson, Brady D.; Sorenson, Ken B.

    2013-01-14

    Dry cask storage systems (DCSSs) for used nuclear fuel (UNF) were originally envisioned for storage periods of short duration (~ a few decades). However, uncertainty challenges the opening of a permanent repository for UNF implying that UNF will need to remain in dry storage for much longer durations than originally envisioned (possibly for centuries). Thus, aging degradation of DCSSs becomes an issue that may not have been sufficiently considered in the design phase and that can challenge the efficacy of very long-term storage of UNF. A particular aging degradation concern is atmospheric stress corrosion cracking (SCC) of DCSSs located in marine environments. In this report, several nondestructive (NDE) methods are evaluated with respect to their potential for effective monitoring of atmospheric SCC in welded canisters of DCSSs. Several of the methods are selected for evaluation based on their usage for in-service inspection applications in the nuclear power industry. The technologies considered include bulk ultrasonic techniques, acoustic emission, visual techniques, eddy current, and guided ultrasonic waves.

  6. Automating the multiprocessing environment

    NASA Technical Reports Server (NTRS)

    Arpasi, Dale J.

    1989-01-01

    An approach to automate the programming and operation of tree-structured networks of multiprocessor systems is discussed. A conceptual, knowledge-based operating environment is presented, and requirements for two major technology elements are identified as follows: (1) An intelligent information translator is proposed for implementating information transfer between dissimilar hardware and software, thereby enabling independent and modular development of future systems and promoting a language-independence of codes and information; (2) A resident system activity manager, which recognizes the systems capabilities and monitors the status of all systems within the environment, is proposed for integrating dissimilar systems into effective parallel processing resources to optimally meet user needs. Finally, key computational capabilities which must be provided before the environment can be realized are identified.

  7. Berkeley automated supernova search

    SciTech Connect

    Kare, J.T.; Pennypacker, C.R.; Muller, R.A.; Mast, T.S.; Crawford, F.S.; Burns, M.S.

    1981-01-01

    The Berkeley automated supernova search employs a computer controlled 36-inch telescope and charge coupled device (CCD) detector to image 2500 galaxies per night. A dedicated minicomputer compares each galaxy image with stored reference data to identify supernovae in real time. The threshold for detection is m/sub v/ = 18.8. We plan to monitor roughly 500 galaxies in Virgo and closer every night, and an additional 6000 galaxies out to 70 Mpc on a three night cycle. This should yield very early detection of several supernovae per year for detailed study, and reliable premaximum detection of roughly 100 supernovae per year for statistical studies. The search should be operational in mid-1982.

  8. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect

    Borup, R. L.; Inbody, M. A.; Perry, W. L.; Parkinson, W. J. ,

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  9. Autocorrelation standard deviation and root mean square frequency analysis of polymer electrolyte membrane fuel cell to monitor for hydrogen and air undersupply

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Mukherjee, Santanu; Bates, Alex; Zickel, Benjamin; Park, Sam; Son, Byung Rak; Choi, Jae Sung; Kwon, Osung; Lee, Dong Ha; Chung, Hyun-Youl

    2015-12-01

    Proton exchange membrane fuel cells are a promising energy conversion device which can help to solve urgent environmental and economic problems. Among the various types of fuel cells, the air breathing proton exchange membrane fuel cell, which minimizes the balance of plant, has drawn a lot of attention due to its superior energy density. In this study a compact, air breathing, proton exchange membrane fuel cell based on Nafion and a Pt/C membrane electrode assembly was designed. The fuel cell was tested using a Scribner Associates 850e fuel cell test station. Specifically, the hydrogen fuel and oxygen starvation of the fuel cell were accurately and systematically tested and analyzed using a frequency analysis method which can analyze the input and output frequency. The analysis of the frequency variation under a fuel starvation condition was done using RMSF (root mean square frequency) and ACSD (autocorrelation standard deviation). The study reveals two significant results: first, the fuel starvations show entirely different phenomenon in both RMSF and ACSD and second, the results of the Autocorrelation show clearer results for fuel starvation detection than the results with RMSF.

  10. Physiological Self-Regulation and Adaptive Automation

    NASA Technical Reports Server (NTRS)

    Prinzell, Lawrence J.; Pope, Alan T.; Freeman, Frederick G.

    2007-01-01

    Adaptive automation has been proposed as a solution to current problems of human-automation interaction. Past research has shown the potential of this advanced form of automation to enhance pilot engagement and lower cognitive workload. However, there have been concerns voiced regarding issues, such as automation surprises, associated with the use of adaptive automation. This study examined the use of psychophysiological self-regulation training with adaptive automation that may help pilots deal with these problems through the enhancement of cognitive resource management skills. Eighteen participants were assigned to 3 groups (self-regulation training, false feedback, and control) and performed resource management, monitoring, and tracking tasks from the Multiple Attribute Task Battery. The tracking task was cycled between 3 levels of task difficulty (automatic, adaptive aiding, manual) on the basis of the electroencephalogram-derived engagement index. The other two tasks remained in automatic mode that had a single automation failure. Those participants who had received self-regulation training performed significantly better and reported lower National Aeronautics and Space Administration Task Load Index scores than participants in the false feedback and control groups. The theoretical and practical implications of these results for adaptive automation are discussed.

  11. Fuel conservation for fishing vessels. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The fuel monitoring system provided information that was sufficiently precise and generally reliable enough to be of use in making operational decisions. The curve of fuel consumption versus speed for a vessel will vary with changes in draft, trim, and bottom cleanliness. Therefore, although generalized fuel consumption/speed curves would be of value to an operator, maximum fuel savings can only be effected by applying the actual present fuel consumption, as supplied by a fuel monitor, and true ground speed, as derived by a LORAN C system, to the decision making process. The dividing line between maximum profits and minimum fuel consumption may be a fine line requiring information from a fuel monitor to assist the operator in making the proper decision. This study also addressed the relationship of engine maintenance and fuel monitoring systems.

  12. A Post-Occupancy Monitored Evaluation of the Dimmable Lighting, Automated Shading, and Underfloor Air Distribution System in The New York Times Building

    SciTech Connect

    Lee, E. S.; Fernandes, L. L.; Coffey, B.; McNeil, A.; Clear, R.; Webster, T.; Bauman, F.; Dickerhoff, D.; Heinzerling, D.; Hoyt, T.

    2013-01-01

    With aggressive goals to reduce national energy use and carbon emissions, the U.S. Department of Energy (DOE) will be looking to exemplary buildings that have already invested in new approaches to achieving the energy performance goals now needed at a national level. The New York Times Building, in New York, New York, incorporates a number of innovative technologies, systems and processes and could become model for widespread replication in new and existing buildings. A year-long monitored study was conducted to verify energy performance, assess occupant comfort and satisfaction with the indoor environment, and evaluate impact on maintenance and operations. Lessons learned were derived from the analysis; these lessons could help identify and shape policy, financial, or supporting strategies to accelerate diffusion in the commercial building market.

  13. A post-occupancy monitored evaluation of the dimmable lighting, automated shading, and underfloor air distribution system in The New York Times Building

    SciTech Connect

    Lee, Eleanor S.; Fernandes, Luis L.; Coffey, Brian; McNeil, Andrew; Clear, Robert; Webster, Tom; Bauman, Fred; Dickerhoff, Darryl; Heinzerling, David; Hoyt, Tyler

    2013-01-01

    With aggressive goals to reduce national energy use and carbon emissions, the US Department of Energy will be looking to exemplary buildings that have already invested in new approaches to achieving the energy performance goals now needed at a national level. The New York Times Building, in New York, New York, incorporates a number of innovative technologies, systems and processes and could become a model for widespread replication in new and existing buildings. Post-occupancy data are invaluable in establishing confidence in innovation. A year-long monitored study was conducted to verify energy performance, assess occupant comfort and satisfaction with the indoor environment, and evaluate impacts on maintenance and operations. Lessons learned were derived from the analysis; these lessons could help identify and shape policy, financial, or supporting strategies to accelerate diffusion in the commercial building market.

  14. Design and development of an automated, portable and handheld tablet personal computer-based data acquisition system for monitoring electromyography signals during rehabilitation.

    PubMed

    Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S

    2013-03-01

    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.

  15. Applying automated data acquisition and management technology to bioremediation

    SciTech Connect

    Widing, M.A.; Leser, C.

    1995-06-01

    Operating a bioremediation process requires timely and accurate analysis of physical and chemical parameters that can affect the system. At a fuel oil spill site, the operation of an in-situ bioremediation system, consisting of fluid and nutrient injection, fluid withdrawal, and aeration cycles, is monitored by means of electronic downhole sensors and on-site chemical analysis. A data acquisition and management system was designed and implemented to rapidly analyze data for operational decision malting. A hardware suite, containing an electronic monitoring system data acquisition computer, and data analysis workstation, was also developed. Through the use of both commercial software products and custom software, suites of data management and analysis tools were provided. The data acquisition suite of software tools assisted in programming dataloggers, automatically recording monitored data, and integrating these data with manually sampled chemical data. The data analysis suite of software tools assisted in downloading data to remote workstations, sampling the database for trend analysis, and automating the interface to commercial analysis packages.

  16. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  17. Automated and sensitive determination of four anabolic androgenic steroids in urine by online turbulent flow solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry: a novel approach for clinical monitoring and doping control.

    PubMed

    Guo, Feng; Shao, Jing; Liu, Qian; Shi, Jian-Bo; Jiang, Gui-Bin

    2014-07-01

    A novel method for automated and sensitive analysis of testosterone, androstenedione, methyltestosterone and methenolone in urine samples by online turbulent flow solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry was developed. The optimization and validation of the method were discussed in detail. The Turboflow C18-P SPE column showed the best extraction efficiency for all the analytes. Nanogram per liter (ng/L) level of AAS could be determined directly and the limits of quantification (LOQs) were 0.01 ng/mL, which were much lower than normally concerned concentrations for these typical anabolic androgenic steroids (AAS) (0.1 ng/mL). The linearity range was from the LOQ to 100 ng/mL for each compound, with the coefficients of determination (r(2)) ranging from 0.9990 to 0.9999. The intraday and interday relative standard deviations (RSDs) ranged from 1.1% to 14.5% (n=5). The proposed method was successfully applied to the analysis of urine samples collected from 24 male athletes and 15 patients of prostate cancer. The proposed method provides an alternative practical way to rapidly determine AAS in urine samples, especially for clinical monitoring and doping control.

  18. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density

  19. Light Obscuration Particle Counter Fuel Contamination Limits

    DTIC Science & Technology

    2015-10-08

    The 3 UNCLASSIFIED Energy Institute (EI) has published guidance documents and test methods relating to fuel quality measurement using... Energy (11) have conducted laboratory and field evaluations of particle counter technologies for fuel contamination monitoring. Testing has concluded...AND USE OF LIQUID FUELS Charleston, South Carolina USA 4-8 October 2015 LIGHT OBSCURATION PARTICLE COUNTER FUEL CONTAMINATION LIMITS Joel

  20. A semi-automated mass spectrometric immunoassay coupled to selected reaction monitoring (MSIA-SRM) reveals novel relationships between circulating PCSK9 and metabolic phenotypes in patient cohorts.

    PubMed

    Gauthier, Marie-Soleil; Pérusse, Joëlle R; Awan, Zuhier; Bouchard, Annie; Tessier, Sylvain; Champagne, Josée; Krastins, Bryan; Byram, Gregory; Chabot, Katherine; Garneau, Pierre; Rabasa-Lhoret, Rémi; Faubert, Denis; Lopez, Mary F; Seidah, Nabil G; Coulombe, Benoit

    2015-06-15

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of circulating low density lipoprotein cholesterol (LDL-C) levels. Besides its full-length mature form, multiple variants of PCSK9 have been reported such as forms that are truncated, mutated and/or with posttranslational modifications (PTMs). Previous studies have demonstrated that most of these variants affect PCSK9's function and thereby LDL-C levels. Commercial ELISA kits are available for quantification of PCSK9, but do not allow discrimination between the various forms and PTMs of the protein. To address this issue and given the complexity and wide dynamic range of the plasma proteome, we have developed a mass spectrometric immunoassay coupled to selected reaction monitoring (MSIA-SRM) for the multiplexed quantification of several forms of circulating PCSK9 in human plasma. Our MSIA-SRM assay quantifies peptides spanning the various protein domains and the S688 phosphorylation site. The assay was applied in two distinct cohorts of obese patients and healthy pregnant women stratified by their circulating LDL-C levels. Seven PCSK9 peptides were monitored in plasma samples: one in the prodomain prior to the autocleavage site at Q152, one in the catalytic domain prior to the furin cleavage site at R218, two in the catalytic domain following R218, one in the cysteine and histidine rich domain (CHRD) and the C-terminal peptide phosphorylated at S688 and unmodified. The latter was not detectable in sufficient amounts to be quantified in human plasma. All peptides were measured with high reproducibility and with LLOQ and LOD below the clinical range. The abundance of 5 of the 6 detectable PCSK9 peptides was higher in obese patients stratified with high circulating LDL-C levels as compared to those with low LDL-C (p < 0.05). The same 5 peptides showed good and statistically significant correlations with LDL-C levels (0.55 < r < 0.65; 0.0002 ⩽ p ⩽ 0.002), but not the S688 phosphorylated