Development of Automated Image Analysis Software for Suspended Marine Particle Classification
2003-09-30
Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Development of Automated Image Analysis Software for Suspended...objective is to develop automated image analysis software to reduce the effort and time required for manual identification of plankton images. Automated
Development of Automated Image Analysis Software for Suspended Marine Particle Classification
2002-09-30
Development of Automated Image Analysis Software for Suspended Marine Particle Classification Scott Samson Center for Ocean Technology...and global water column. 1 OBJECTIVES The project’s objective is to develop automated image analysis software to reduce the effort and time
Quantitative analysis of cardiovascular MR images.
van der Geest, R J; de Roos, A; van der Wall, E E; Reiber, J H
1997-06-01
The diagnosis of cardiovascular disease requires the precise assessment of both morphology and function. Nearly all aspects of cardiovascular function and flow can be quantified nowadays with fast magnetic resonance (MR) imaging techniques. Conventional and breath-hold cine MR imaging allow the precise and highly reproducible assessment of global and regional left ventricular function. During the same examination, velocity encoded cine (VEC) MR imaging provides measurements of blood flow in the heart and great vessels. Quantitative image analysis often still relies on manual tracing of contours in the images. Reliable automated or semi-automated image analysis software would be very helpful to overcome the limitations associated with the manual and tedious processing of the images. Recent progress in MR imaging of the coronary arteries and myocardial perfusion imaging with contrast media, along with the further development of faster imaging sequences, suggest that MR imaging could evolve into a single technique ('one stop shop') for the evaluation of many aspects of heart disease. As a result, it is very likely that the need for automated image segmentation and analysis software algorithms will further increase. In this paper the developments directed towards the automated image analysis and semi-automated contour detection for cardiovascular MR imaging are presented.
Oosterwijk, J C; Knepflé, C F; Mesker, W E; Vrolijk, H; Sloos, W C; Pattenier, H; Ravkin, I; van Ommen, G J; Kanhai, H H; Tanke, H J
1998-01-01
This article explores the feasibility of the use of automated microscopy and image analysis to detect the presence of rare fetal nucleated red blood cells (NRBCs) circulating in maternal blood. The rationales for enrichment and for automated image analysis for "rare-event" detection are reviewed. We also describe the application of automated image analysis to 42 maternal blood samples, using a protocol consisting of one-step enrichment followed by immunocytochemical staining for fetal hemoglobin (HbF) and FISH for X- and Y-chromosomal sequences. Automated image analysis consisted of multimode microscopy and subsequent visual evaluation of image memories containing the selected objects. The FISH results were compared with the results of conventional karyotyping of the chorionic villi. By use of manual screening, 43% of the slides were found to be positive (>=1 NRBC), with a mean number of 11 NRBCs (range 1-40). By automated microscopy, 52% were positive, with on average 17 NRBCs (range 1-111). There was a good correlation between both manual and automated screening, but the NRBC yield from automated image analysis was found to be superior to that from manual screening (P=.0443), particularly when the NRBC count was >15. Seven (64%) of 11 XY fetuses were correctly diagnosed by FISH analysis of automatically detected cells, and all discrepancies were restricted to the lower cell-count range. We believe that automated microscopy and image analysis reduce the screening workload, are more sensitive than manual evaluation, and can be used to detect rare HbF-containing NRBCs in maternal blood. PMID:9837832
Automated daily quality control analysis for mammography in a multi-unit imaging center.
Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli
2018-01-01
Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.
Automated X-ray image analysis for cargo security: Critical review and future promise.
Rogers, Thomas W; Jaccard, Nicolas; Morton, Edward J; Griffin, Lewis D
2017-01-01
We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo.
Automated Image Analysis Corrosion Working Group Update: February 1, 2018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, James G.
These are slides for the automated image analysis corrosion working group update. The overall goals were: automate the detection and quantification of features in images (faster, more accurate), how to do this (obtain data, analyze data), focus on Laser Scanning Confocal Microscope (LCM) data (laser intensity, laser height/depth, optical RGB, optical plus laser RGB).
Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly
2013-01-01
High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652
1982-01-27
Visible 3. 3 Ea r th Location, Colocation, and Normalization 4. IMAGE ANALYSIS 4. 1 Interactive Capabilities 4.2 Examples 5. AUTOMATED CLOUD...computer Interactive Data Access System (McIDAS) before image analysis and algorithm development were done. Earth-location is an automated procedure to...the factor l / s in (SSE) toward the gain settings given in Table 5. 4. IMAGE ANALYSIS 4.1 Interactive Capabilities The development of automated
Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy
NASA Astrophysics Data System (ADS)
Bucht, Curry; Söderberg, Per; Manneberg, Göran
2009-02-01
The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor. Morphometry of the corneal endothelium is presently done by semi-automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development of fully automated analysis of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images. The digitally enhanced images of the corneal endothelium were transformed, using the fast Fourier transform (FFT). Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.
Keane, Pearse A; Grossi, Carlota M; Foster, Paul J; Yang, Qi; Reisman, Charles A; Chan, Kinpui; Peto, Tunde; Thomas, Dhanes; Patel, Praveen J
2016-01-01
To describe an approach to the use of optical coherence tomography (OCT) imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness. In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available "spectral domain" OCT device (3D OCT-1000, Topcon). Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL). This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion. 67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days. We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging.
Grossi, Carlota M.; Foster, Paul J.; Yang, Qi; Reisman, Charles A.; Chan, Kinpui; Peto, Tunde; Thomas, Dhanes; Patel, Praveen J.
2016-01-01
Purpose To describe an approach to the use of optical coherence tomography (OCT) imaging in large, population-based studies, including methods for OCT image acquisition, storage, and the remote, rapid, automated analysis of retinal thickness. Methods In UK Biobank, OCT images were acquired between 2009 and 2010 using a commercially available “spectral domain” OCT device (3D OCT-1000, Topcon). Images were obtained using a raster scan protocol, 6 mm x 6 mm in area, and consisting of 128 B-scans. OCT image sets were stored on UK Biobank servers in a central repository, adjacent to high performance computers. Rapid, automated analysis of retinal thickness was performed using custom image segmentation software developed by the Topcon Advanced Biomedical Imaging Laboratory (TABIL). This software employs dual-scale gradient information to allow for automated segmentation of nine intraretinal boundaries in a rapid fashion. Results 67,321 participants (134,642 eyes) in UK Biobank underwent OCT imaging of both eyes as part of the ocular module. 134,611 images were successfully processed with 31 images failing segmentation analysis due to corrupted OCT files or withdrawal of subject consent for UKBB study participation. Average time taken to call up an image from the database and complete segmentation analysis was approximately 120 seconds per data set per login, and analysis of the entire dataset was completed in approximately 28 days. Conclusions We report an approach to the rapid, automated measurement of retinal thickness from nearly 140,000 OCT image sets from the UK Biobank. In the near future, these measurements will be publically available for utilization by researchers around the world, and thus for correlation with the wealth of other data collected in UK Biobank. The automated analysis approaches we describe may be of utility for future large population-based epidemiological studies, clinical trials, and screening programs that employ OCT imaging. PMID:27716837
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnowski, Thomas Paul; Giancardo, Luca; Li, Yaquin
2013-01-01
Automated retina image analysis has reached a high level of maturity in recent years, and thus the question of how validation is performed in these systems is beginning to grow in importance. One application of retina image analysis is in telemedicine, where an automated system could enable the automated detection of diabetic retinopathy and other eye diseases as a low-cost method for broad-based screening. In this work we discuss our experiences in developing a telemedical network for retina image analysis, including our progression from a manual diagnosis network to a more fully automated one. We pay special attention to howmore » validations of our algorithm steps are performed, both using data from the telemedicine network and other public databases.« less
Slide Set: Reproducible image analysis and batch processing with ImageJ.
Nanes, Benjamin A
2015-11-01
Most imaging studies in the biological sciences rely on analyses that are relatively simple. However, manual repetition of analysis tasks across multiple regions in many images can complicate even the simplest analysis, making record keeping difficult, increasing the potential for error, and limiting reproducibility. While fully automated solutions are necessary for very large data sets, they are sometimes impractical for the small- and medium-sized data sets common in biology. Here we present the Slide Set plugin for ImageJ, which provides a framework for reproducible image analysis and batch processing. Slide Set organizes data into tables, associating image files with regions of interest and other relevant information. Analysis commands are automatically repeated over each image in the data set, and multiple commands can be chained together for more complex analysis tasks. All analysis parameters are saved, ensuring transparency and reproducibility. Slide Set includes a variety of built-in analysis commands and can be easily extended to automate other ImageJ plugins, reducing the manual repetition of image analysis without the set-up effort or programming expertise required for a fully automated solution.
Automated image analysis of placental villi and syncytial knots in histological sections.
Kidron, Debora; Vainer, Ifat; Fisher, Yael; Sharony, Reuven
2017-05-01
Delayed villous maturation and accelerated villous maturation diagnosed in histologic sections are morphologic manifestations of pathophysiological conditions. The inter-observer agreement among pathologists in assessing these conditions is moderate at best. We investigated whether automated image analysis of placental villi and syncytial knots could improve standardization in diagnosing these conditions. Placentas of antepartum fetal death at or near term were diagnosed as normal, delayed or accelerated villous maturation. Histologic sections of 5 cases per group were photographed at ×10 magnification. Automated image analysis of villi and syncytial knots was performed, using ImageJ public domain software. Analysis of hundreds of histologic images was carried out within minutes on a personal computer, using macro commands. Compared to normal placentas, villi from delayed maturation were larger and fewer, with fewer and smaller syncytial knots. Villi from accelerated maturation were smaller. The data were further analyzed according to horizontal placental zones and groups of villous size. Normal placentas can be discriminated from placentas of delayed or accelerated villous maturation using automated image analysis. Automated image analysis of villi and syncytial knots is not equivalent to interpretation by the human eye. Each method has advantages and disadvantages in assessing the 2-dimensional histologic sections representing the complex, 3-dimensional villous tree. Image analysis of placentas provides quantitative data that might help in standardizing and grading of placentas for diagnostic and research purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automated image-based phenotypic analysis in zebrafish embryos
Vogt, Andreas; Cholewinski, Andrzej; Shen, Xiaoqiang; Nelson, Scott; Lazo, John S.; Tsang, Michael; Hukriede, Neil A.
2009-01-01
Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images presents an obstacle to utilizing the zebrafish as a high-throughput screening model. We have developed an automated system for imaging and analyzing zebrafish embryos in multi-well plates regardless of embryo orientation and without user intervention. Images of fluorescent embryos were acquired on a high-content reader and analyzed using an artificial intelligence-based image analysis method termed Cognition Network Technology (CNT). CNT reliably detected transgenic fluorescent embryos (Tg(fli1:EGFP)y1) arrayed in 96-well plates and quantified intersegmental blood vessel development in embryos treated with small molecule inhibitors of anigiogenesis. The results demonstrate it is feasible to adapt image-based high-content screening methodology to measure complex whole organism phenotypes. PMID:19235725
Automated Diatom Analysis Applied to Traditional Light Microscopy: A Proof-of-Concept Study
NASA Astrophysics Data System (ADS)
Little, Z. H. L.; Bishop, I.; Spaulding, S. A.; Nelson, H.; Mahoney, C.
2017-12-01
Diatom identification and enumeration by high resolution light microscopy is required for many areas of research and water quality assessment. Such analyses, however, are both expertise and labor-intensive. These challenges motivate the need for an automated process to efficiently and accurately identify and enumerate diatoms. Improvements in particle analysis software have increased the likelihood that diatom enumeration can be automated. VisualSpreadsheet software provides a possible solution for automated particle analysis of high-resolution light microscope diatom images. We applied the software, independent of its complementary FlowCam hardware, to automated analysis of light microscope images containing diatoms. Through numerous trials, we arrived at threshold settings to correctly segment 67% of the total possible diatom valves and fragments from broad fields of view. (183 light microscope images were examined containing 255 diatom particles. Of the 255 diatom particles present, 216 diatoms valves and fragments of valves were processed, with 170 properly analyzed and focused upon by the software). Manual analysis of the images yielded 255 particles in 400 seconds, whereas the software yielded a total of 216 particles in 68 seconds, thus highlighting that the software has an approximate five-fold efficiency advantage in particle analysis time. As in past efforts, incomplete or incorrect recognition was found for images with multiple valves in contact or valves with little contrast. The software has potential to be an effective tool in assisting taxonomists with diatom enumeration by completing a large portion of analyses. Benefits and limitations of the approach are presented to allow for development of future work in image analysis and automated enumeration of traditional light microscope images containing diatoms.
Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz
2016-01-01
The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692
Muralidhar, Gautam S; Channappayya, Sumohana S; Slater, John H; Blinka, Ellen M; Bovik, Alan C; Frey, Wolfgang; Markey, Mia K
2008-11-06
Automated analysis of fluorescence microscopy images of endothelial cells labeled for actin is important for quantifying changes in the actin cytoskeleton. The current manual approach is laborious and inefficient. The goal of our work is to develop automated image analysis methods, thereby increasing cell analysis throughput. In this study, we present preliminary results on comparing different algorithms for cell segmentation and image denoising.
General Staining and Segmentation Procedures for High Content Imaging and Analysis.
Chambers, Kevin M; Mandavilli, Bhaskar S; Dolman, Nick J; Janes, Michael S
2018-01-01
Automated quantitative fluorescence microscopy, also known as high content imaging (HCI), is a rapidly growing analytical approach in cell biology. Because automated image analysis relies heavily on robust demarcation of cells and subcellular regions, reliable methods for labeling cells is a critical component of the HCI workflow. Labeling of cells for image segmentation is typically performed with fluorescent probes that bind DNA for nuclear-based cell demarcation or with those which react with proteins for image analysis based on whole cell staining. These reagents, along with instrument and software settings, play an important role in the successful segmentation of cells in a population for automated and quantitative image analysis. In this chapter, we describe standard procedures for labeling and image segmentation in both live and fixed cell samples. The chapter will also provide troubleshooting guidelines for some of the common problems associated with these aspects of HCI.
Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy
NASA Astrophysics Data System (ADS)
Bucht, Curry; Söderberg, Per; Manneberg, Göran
2010-02-01
The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.
Shinde, V; Burke, K E; Chakravarty, A; Fleming, M; McDonald, A A; Berger, A; Ecsedy, J; Blakemore, S J; Tirrell, S M; Bowman, D
2014-01-01
Immunohistochemistry-based biomarkers are commonly used to understand target inhibition in key cancer pathways in preclinical models and clinical studies. Automated slide-scanning and advanced high-throughput image analysis software technologies have evolved into a routine methodology for quantitative analysis of immunohistochemistry-based biomarkers. Alongside the traditional pathology H-score based on physical slides, the pathology world is welcoming digital pathology and advanced quantitative image analysis, which have enabled tissue- and cellular-level analysis. An automated workflow was implemented that includes automated staining, slide-scanning, and image analysis methodologies to explore biomarkers involved in 2 cancer targets: Aurora A and NEDD8-activating enzyme (NAE). The 2 workflows highlight the evolution of our immunohistochemistry laboratory and the different needs and requirements of each biological assay. Skin biopsies obtained from MLN8237 (Aurora A inhibitor) phase 1 clinical trials were evaluated for mitotic and apoptotic index, while mitotic index and defects in chromosome alignment and spindles were assessed in tumor biopsies to demonstrate Aurora A inhibition. Additionally, in both preclinical xenograft models and an acute myeloid leukemia phase 1 trial of the NAE inhibitor MLN4924, development of a novel image algorithm enabled measurement of downstream pathway modulation upon NAE inhibition. In the highlighted studies, developing a biomarker strategy based on automated image analysis solutions enabled project teams to confirm target and pathway inhibition and understand downstream outcomes of target inhibition with increased throughput and quantitative accuracy. These case studies demonstrate a strategy that combines a pathologist's expertise with automated image analysis to support oncology drug discovery and development programs.
van der Laak, Jeroen A W M; Dijkman, Henry B P M; Pahlplatz, Martin M M
2006-03-01
The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the present study, a procedure is described for automated magnification calibration using digital images of a line replica. This procedure is based on analysis of the power spectrum of Fourier transformed replica images, and is compared to interactive measurement in the same images. Images were used with magnification ranging from 1,000 x to 200,000 x. The automated procedure deviated on average 0.10% from interactive measurements. Especially for catalase replicas, the coefficient of variation of automated measurement was considerably smaller (average 0.28%) compared to that of interactive measurement (average 3.5%). In conclusion, calibration of the magnification in digital images from transmission electron microscopy may be performed automatically, using the procedure presented here, with high precision and accuracy.
Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments
Sachs, Christian Carsten; Grünberger, Alexander; Helfrich, Stefan; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina
2016-01-01
Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso. PMID:27661996
Digital pathology: elementary, rapid and reliable automated image analysis.
Bouzin, Caroline; Saini, Monika L; Khaing, Kyi-Kyi; Ambroise, Jérôme; Marbaix, Etienne; Grégoire, Vincent; Bol, Vanesa
2016-05-01
Slide digitalization has brought pathology to a new era, including powerful image analysis possibilities. However, while being a powerful prognostic tool, immunostaining automated analysis on digital images is still not implemented worldwide in routine clinical practice. Digitalized biopsy sections from two independent cohorts of patients, immunostained for membrane or nuclear markers, were quantified with two automated methods. The first was based on stained cell counting through tissue segmentation, while the second relied upon stained area proportion within tissue sections. Different steps of image preparation, such as automated tissue detection, folds exclusion and scanning magnification, were also assessed and validated. Quantification of either stained cells or the stained area was found to be correlated highly for all tested markers. Both methods were also correlated with visual scoring performed by a pathologist. For an equivalent reliability, quantification of the stained area is, however, faster and easier to fine-tune and is therefore more compatible with time constraints for prognosis. This work provides an incentive for the implementation of automated immunostaining analysis with a stained area method in routine laboratory practice. © 2015 John Wiley & Sons Ltd.
Automated image quality assessment for chest CT scans.
Reeves, Anthony P; Xie, Yiting; Liu, Shuang
2018-02-01
Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.
Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M
2017-10-01
Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.
Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus
2017-01-01
Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748
Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions
Venkatraman, S.; Doktycz, M. J.; Qi, H.; ...
2006-01-01
The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less
Karaçalı, Bilge; Vamvakidou, Alexandra P; Tözeren, Aydın
2007-01-01
Background Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Methods Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Results Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Conclusion Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development. PMID:17822559
Cardiac imaging: working towards fully-automated machine analysis & interpretation.
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-03-01
Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.
NASA Astrophysics Data System (ADS)
Khansari, Maziyar M.; O'Neill, William; Penn, Richard; Blair, Norman P.; Chau, Felix; Shahidi, Mahnaz
2017-03-01
The conjunctiva is a densely vascularized tissue of the eye that provides an opportunity for imaging of human microcirculation. In the current study, automated fine structure analysis of conjunctival microvasculature images was performed to discriminate stages of diabetic retinopathy (DR). The study population consisted of one group of nondiabetic control subjects (NC) and 3 groups of diabetic subjects, with no clinical DR (NDR), non-proliferative DR (NPDR), or proliferative DR (PDR). Ordinary least square regression and Fisher linear discriminant analyses were performed to automatically discriminate images between group pairs of subjects. Human observers who were masked to the grouping of subjects performed image discrimination between group pairs. Over 80% and 70% of images of subjects with clinical and non-clinical DR were correctly discriminated by the automated method, respectively. The discrimination rates of the automated method were higher than human observers. The fine structure analysis of conjunctival microvasculature images provided discrimination of DR stages and can be potentially useful for DR screening and monitoring.
Gilhodes, Jean-Claude; Julé, Yvon; Kreuz, Sebastian; Stierstorfer, Birgit; Stiller, Detlef; Wollin, Lutz
2017-01-01
Current literature on pulmonary fibrosis induced in animal models highlights the need of an accurate, reliable and reproducible histological quantitative analysis. One of the major limits of histological scoring concerns the fact that it is observer-dependent and consequently subject to variability, which may preclude comparative studies between different laboratories. To achieve a reliable and observer-independent quantification of lung fibrosis we developed an automated software histological image analysis performed from digital image of entire lung sections. This automated analysis was compared to standard evaluation methods with regard to its validation as an end-point measure of fibrosis. Lung fibrosis was induced in mice by intratracheal administration of bleomycin (BLM) at 0.25, 0.5, 0.75 and 1 mg/kg. A detailed characterization of BLM-induced fibrosis was performed 14 days after BLM administration using lung function testing, micro-computed tomography and Ashcroft scoring analysis. Quantification of fibrosis by automated analysis was assessed based on pulmonary tissue density measured from thousands of micro-tiles processed from digital images of entire lung sections. Prior to analysis, large bronchi and vessels were manually excluded from the original images. Measurement of fibrosis has been expressed by two indexes: the mean pulmonary tissue density and the high pulmonary tissue density frequency. We showed that tissue density indexes gave access to a very accurate and reliable quantification of morphological changes induced by BLM even for the lowest concentration used (0.25 mg/kg). A reconstructed 2D-image of the entire lung section at high resolution (3.6 μm/pixel) has been performed from tissue density values allowing the visualization of their distribution throughout fibrotic and non-fibrotic regions. A significant correlation (p<0.0001) was found between automated analysis and the above standard evaluation methods. This correlation establishes automated analysis as a novel end-point measure of BLM-induced lung fibrosis in mice, which will be very valuable for future preclinical drug explorations.
Gilhodes, Jean-Claude; Kreuz, Sebastian; Stierstorfer, Birgit; Stiller, Detlef; Wollin, Lutz
2017-01-01
Current literature on pulmonary fibrosis induced in animal models highlights the need of an accurate, reliable and reproducible histological quantitative analysis. One of the major limits of histological scoring concerns the fact that it is observer-dependent and consequently subject to variability, which may preclude comparative studies between different laboratories. To achieve a reliable and observer-independent quantification of lung fibrosis we developed an automated software histological image analysis performed from digital image of entire lung sections. This automated analysis was compared to standard evaluation methods with regard to its validation as an end-point measure of fibrosis. Lung fibrosis was induced in mice by intratracheal administration of bleomycin (BLM) at 0.25, 0.5, 0.75 and 1 mg/kg. A detailed characterization of BLM-induced fibrosis was performed 14 days after BLM administration using lung function testing, micro-computed tomography and Ashcroft scoring analysis. Quantification of fibrosis by automated analysis was assessed based on pulmonary tissue density measured from thousands of micro-tiles processed from digital images of entire lung sections. Prior to analysis, large bronchi and vessels were manually excluded from the original images. Measurement of fibrosis has been expressed by two indexes: the mean pulmonary tissue density and the high pulmonary tissue density frequency. We showed that tissue density indexes gave access to a very accurate and reliable quantification of morphological changes induced by BLM even for the lowest concentration used (0.25 mg/kg). A reconstructed 2D-image of the entire lung section at high resolution (3.6 μm/pixel) has been performed from tissue density values allowing the visualization of their distribution throughout fibrotic and non-fibrotic regions. A significant correlation (p<0.0001) was found between automated analysis and the above standard evaluation methods. This correlation establishes automated analysis as a novel end-point measure of BLM-induced lung fibrosis in mice, which will be very valuable for future preclinical drug explorations. PMID:28107543
Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies.
Welikala, R A; Fraz, M M; Foster, P J; Whincup, P H; Rudnicka, A R; Owen, C G; Strachan, D P; Barman, S A
2016-04-01
Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost. Copyright © 2016 Elsevier Ltd. All rights reserved.
Automated detection of exudates for diabetic retinopathy screening
NASA Astrophysics Data System (ADS)
Fleming, Alan D.; Philip, Sam; Goatman, Keith A.; Williams, Graeme J.; Olson, John A.; Sharp, Peter F.
2007-12-01
Automated image analysis is being widely sought to reduce the workload required for grading images resulting from diabetic retinopathy screening programmes. The recognition of exudates in retinal images is an important goal for automated analysis since these are one of the indicators that the disease has progressed to a stage requiring referral to an ophthalmologist. Candidate exudates were detected using a multi-scale morphological process. Based on local properties, the likelihoods of a candidate being a member of classes exudate, drusen or background were determined. This leads to a likelihood of the image containing exudates which can be thresholded to create a binary decision. Compared to a clinical reference standard, images containing exudates were detected with sensitivity 95.0% and specificity 84.6% in a test set of 13 219 images of which 300 contained exudates. Depending on requirements, this method could form part of an automated system to detect images showing either any diabetic retinopathy or referable diabetic retinopathy.
Functional MRI Preprocessing in Lesioned Brains: Manual Versus Automated Region of Interest Analysis
Garrison, Kathleen A.; Rogalsky, Corianne; Sheng, Tong; Liu, Brent; Damasio, Hanna; Winstein, Carolee J.; Aziz-Zadeh, Lisa S.
2015-01-01
Functional magnetic resonance imaging (fMRI) has significant potential in the study and treatment of neurological disorders and stroke. Region of interest (ROI) analysis in such studies allows for testing of strong a priori clinical hypotheses with improved statistical power. A commonly used automated approach to ROI analysis is to spatially normalize each participant’s structural brain image to a template brain image and define ROIs using an atlas. However, in studies of individuals with structural brain lesions, such as stroke, the gold standard approach may be to manually hand-draw ROIs on each participant’s non-normalized structural brain image. Automated approaches to ROI analysis are faster and more standardized, yet are susceptible to preprocessing error (e.g., normalization error) that can be greater in lesioned brains. The manual approach to ROI analysis has high demand for time and expertise, but may provide a more accurate estimate of brain response. In this study, commonly used automated and manual approaches to ROI analysis were directly compared by reanalyzing data from a previously published hypothesis-driven cognitive fMRI study, involving individuals with stroke. The ROI evaluated is the pars opercularis of the inferior frontal gyrus. Significant differences were identified in task-related effect size and percent-activated voxels in this ROI between the automated and manual approaches to ROI analysis. Task interactions, however, were consistent across ROI analysis approaches. These findings support the use of automated approaches to ROI analysis in studies of lesioned brains, provided they employ a task interaction design. PMID:26441816
Cardiac imaging: working towards fully-automated machine analysis & interpretation
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-01-01
Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804
OpenComet: An automated tool for comet assay image analysis
Gyori, Benjamin M.; Venkatachalam, Gireedhar; Thiagarajan, P.S.; Hsu, David; Clement, Marie-Veronique
2014-01-01
Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time. PMID:24624335
OpenComet: an automated tool for comet assay image analysis.
Gyori, Benjamin M; Venkatachalam, Gireedhar; Thiagarajan, P S; Hsu, David; Clement, Marie-Veronique
2014-01-01
Reactive species such as free radicals are constantly generated in vivo and DNA is the most important target of oxidative stress. Oxidative DNA damage is used as a predictive biomarker to monitor the risk of development of many diseases. The comet assay is widely used for measuring oxidative DNA damage at a single cell level. The analysis of comet assay output images, however, poses considerable challenges. Commercial software is costly and restrictive, while free software generally requires laborious manual tagging of cells. This paper presents OpenComet, an open-source software tool providing automated analysis of comet assay images. It uses a novel and robust method for finding comets based on geometric shape attributes and segmenting the comet heads through image intensity profile analysis. Due to automation, OpenComet is more accurate, less prone to human bias, and faster than manual analysis. A live analysis functionality also allows users to analyze images captured directly from a microscope. We have validated OpenComet on both alkaline and neutral comet assay images as well as sample images from existing software packages. Our results show that OpenComet achieves high accuracy with significantly reduced analysis time.
Gavino, V C; Milo, G E; Cornwell, D G
1982-03-01
Image analysis was used for the automated measurement of colony frequency (f) and colony diameter (d) in cultures of smooth muscle cells, Initial studies with the inverted microscope showed that number of cells (N) in a colony varied directly with d: log N = 1.98 log d - 3.469 Image analysis generated the complement of a cumulative distribution for f as a function of d. The number of cells in each segment of the distribution function was calculated by multiplying f and the average N for the segment. These data were displayed as a cumulative distribution function. The total number of colonies (fT) and the total number of cells (NT) were used to calculate the average colony size (NA). Population doublings (PD) were then expressed as log2 NA. Image analysis confirmed previous studies in which colonies were sized and counted with an inverted microscope. Thus, image analysis is a rapid and automated technique for the measurement of clonal growth.
Automated tumor analysis for molecular profiling in lung cancer
Boyd, Clinton; James, Jacqueline A.; Loughrey, Maurice B.; Hougton, Joseph P.; Boyle, David P.; Kelly, Paul; Maxwell, Perry; McCleary, David; Diamond, James; McArt, Darragh G.; Tunstall, Jonathon; Bankhead, Peter; Salto-Tellez, Manuel
2015-01-01
The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics. PMID:26317646
Willis, B H; Barton, P; Pearmain, P; Bryan, S; Hyde, C
2005-03-01
To assess the effectiveness and cost-effectiveness of adding automated image analysis to cervical screening programmes. Searching of all major electronic databases to the end of 2000 was supplemented by a detailed survey for unpublished UK literature. Four systematic reviews were conducted according to recognised guidance. The review of 'clinical effectiveness' included studies assessing reproducibility and impact on health outcomes and processes in addition to evaluations of test accuracy. A discrete event simulation model was developed, although the economic evaluation ultimately relied on a cost-minimisation analysis. The predominant finding from the systematic reviews was the very limited amount of rigorous primary research. None of the included studies refers to the only commercially available automated image analysis device in 2002, the AutoPap Guided Screening (GS) System. The results of the included studies were debatably most compatible with automated image analysis being equivalent in test performance to manual screening. Concerning process, there was evidence that automation does lead to reductions in average slide processing times. In the PRISMATIC trial this was reduced from 10.4 to 3.9 minutes, a statistically significant and practically important difference. The economic evaluation tentatively suggested that the AutoPap GS System may be efficient. The key proviso is that credible data become available to support that the AutoPap GS System has test performance and processing times equivalent to those obtained for PAPNET. The available evidence is still insufficient to recommend implementation of automated image analysis systems. The priority for action remains further research, particularly the 'clinical effectiveness' of the AutoPap GS System. Assessing the cost-effectiveness of introducing automation alongside other approaches is also a priority.
RootGraph: a graphic optimization tool for automated image analysis of plant roots
Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N.; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J.
2015-01-01
This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions. PMID:26224880
Yousef Kalafi, Elham; Town, Christopher; Kaur Dhillon, Sarinder
2017-09-04
Identification of taxonomy at a specific level is time consuming and reliant upon expert ecologists. Hence the demand for automated species identification increased over the last two decades. Automation of data classification is primarily focussed on images, incorporating and analysing image data has recently become easier due to developments in computational technology. Research efforts in identification of species include specimens' image processing, extraction of identical features, followed by classifying them into correct categories. In this paper, we discuss recent automated species identification systems, categorizing and evaluating their methods. We reviewed and compared different methods in step by step scheme of automated identification and classification systems of species images. The selection of methods is influenced by many variables such as level of classification, number of training data and complexity of images. The aim of writing this paper is to provide researchers and scientists an extensive background study on work related to automated species identification, focusing on pattern recognition techniques in building such systems for biodiversity studies.
Software for Automated Image-to-Image Co-registration
NASA Technical Reports Server (NTRS)
Benkelman, Cody A.; Hughes, Heidi
2007-01-01
The project objectives are: a) Develop software to fine-tune image-to-image co-registration, presuming images are orthorectified prior to input; b) Create a reusable software development kit (SDK) to enable incorporation of these tools into other software; d) provide automated testing for quantitative analysis; and e) Develop software that applies multiple techniques to achieve subpixel precision in the co-registration of image pairs.
1980-03-01
interpreting/smoothing data containing a significant percentage of gross errors, and thus is ideally suited for applications in automated image ... analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of the paper describes the application of
Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.
Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A
2011-04-01
Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.
Automated frame selection process for high-resolution microendoscopy
NASA Astrophysics Data System (ADS)
Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2015-04-01
We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.
Eghrari, Allen O; Mumtaz, Aisha A; Garrett, Brian; Rezaei, Mahsa; Akhavan, Mina S; Riazuddin, S Amer; Gottsch, John D
2017-01-01
Retroillumination photography analysis is an objective tool for the assessment of the number and distribution of guttae in eyes affected with Fuchs corneal dystrophy (FCD). Current protocols include manual processing of images; here, we assess validity and interrater reliability of automated analysis across various levels of FCD severity. Retroillumination photographs of 97 FCD-affected corneas were acquired, and total counts of guttae were previously summated manually. For each cornea, a single image was loaded into ImageJ software. We reduced color variability and subtracted background noise. Reflection of light from each gutta was identified as a local area of maximum intensity and counted automatically. Noise tolerance level was titrated for each cornea by examining a small region of each image with automated overlay to ensure appropriate coverage of individual guttae. We tested interrater reliability of automated counts of guttae across a spectrum of clinical and educational experience. A set of 97 retroillumination photographs was analyzed. Clinical severity as measured by a modified Krachmer scale ranged from a severity level of 1 to 5 in the set of analyzed corneas. Automated counts by an ophthalmologist correlated strongly with Krachmer grading (R = 0.79) and manual counts (R = 0.88). Intraclass correlation coefficients demonstrated strong correlation at 0.924 (95% CI, 0.870-0.958) among cases analyzed by 3 students, and 0.869 (95% CI, 0.797-0.918) among cases for which images were analyzed by an ophthalmologist and 2 students. Automated retroillumination photography analysis allows for grading of FCD severity with high resolution across a spectrum of disease severity.
STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.
Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X
2009-08-01
This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.
Creation of a virtual cutaneous tissue bank
NASA Astrophysics Data System (ADS)
LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.
2000-04-01
Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.
Automated Micro-Object Detection for Mobile Diagnostics Using Lens-Free Imaging Technology
Roy, Mohendra; Seo, Dongmin; Oh, Sangwoo; Chae, Yeonghun; Nam, Myung-Hyun; Seo, Sungkyu
2016-01-01
Lens-free imaging technology has been extensively used recently for microparticle and biological cell analysis because of its high throughput, low cost, and simple and compact arrangement. However, this technology still lacks a dedicated and automated detection system. In this paper, we describe a custom-developed automated micro-object detection method for a lens-free imaging system. In our previous work (Roy et al.), we developed a lens-free imaging system using low-cost components. This system was used to generate and capture the diffraction patterns of micro-objects and a global threshold was used to locate the diffraction patterns. In this work we used the same setup to develop an improved automated detection and analysis algorithm based on adaptive threshold and clustering of signals. For this purpose images from the lens-free system were then used to understand the features and characteristics of the diffraction patterns of several types of samples. On the basis of this information, we custom-developed an automated algorithm for the lens-free imaging system. Next, all the lens-free images were processed using this custom-developed automated algorithm. The performance of this approach was evaluated by comparing the counting results with standard optical microscope results. We evaluated the counting results for polystyrene microbeads, red blood cells, HepG2, HeLa, and MCF7 cells lines. The comparison shows good agreement between the systems, with a correlation coefficient of 0.91 and linearity slope of 0.877. We also evaluated the automated size profiles of the microparticle samples. This Wi-Fi-enabled lens-free imaging system, along with the dedicated software, possesses great potential for telemedicine applications in resource-limited settings. PMID:27164146
Klukas, Christian; Chen, Dijun; Pape, Jean-Michel
2014-01-01
High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818
Automated identification of cone photoreceptors in adaptive optics retinal images.
Li, Kaccie Y; Roorda, Austin
2007-05-01
In making noninvasive measurements of the human cone mosaic, the task of labeling each individual cone is unavoidable. Manual labeling is a time-consuming process, setting the motivation for the development of an automated method. An automated algorithm for labeling cones in adaptive optics (AO) retinal images is implemented and tested on real data. The optical fiber properties of cones aided the design of the algorithm. Out of 2153 manually labeled cones from six different images, the automated method correctly identified 94.1% of them. The agreement between the automated and the manual labeling methods varied from 92.7% to 96.2% across the six images. Results between the two methods disagreed for 1.2% to 9.1% of the cones. Voronoi analysis of large montages of AO retinal images confirmed the general hexagonal-packing structure of retinal cones as well as the general cone density variability across portions of the retina. The consistency of our measurements demonstrates the reliability and practicality of having an automated solution to this problem.
Fully automated analysis of multi-resolution four-channel micro-array genotyping data
NASA Astrophysics Data System (ADS)
Abbaspour, Mohsen; Abugharbieh, Rafeef; Podder, Mohua; Tebbutt, Scott J.
2006-03-01
We present a fully-automated and robust microarray image analysis system for handling multi-resolution images (down to 3-micron with sizes up to 80 MBs per channel). The system is developed to provide rapid and accurate data extraction for our recently developed microarray analysis and quality control tool (SNP Chart). Currently available commercial microarray image analysis applications are inefficient, due to the considerable user interaction typically required. Four-channel DNA microarray technology is a robust and accurate tool for determining genotypes of multiple genetic markers in individuals. It plays an important role in the state of the art trend where traditional medical treatments are to be replaced by personalized genetic medicine, i.e. individualized therapy based on the patient's genetic heritage. However, fast, robust, and precise image processing tools are required for the prospective practical use of microarray-based genetic testing for predicting disease susceptibilities and drug effects in clinical practice, which require a turn-around timeline compatible with clinical decision-making. In this paper we have developed a fully-automated image analysis platform for the rapid investigation of hundreds of genetic variations across multiple genes. Validation tests indicate very high accuracy levels for genotyping results. Our method achieves a significant reduction in analysis time, from several hours to just a few minutes, and is completely automated requiring no manual interaction or guidance.
Multi-Dimensional Signal Processing Research Program
1981-09-30
applications to real-time image processing and analysis. A specific long-range application is the automated processing of aerial reconnaissance imagery...Non-supervised image segmentation is a potentially im- portant operation in the automated processing of aerial reconnaissance pho- tographs since it
Kozlowski, Cleopatra; Jeet, Surinder; Beyer, Joseph; Guerrero, Steve; Lesch, Justin; Wang, Xiaoting; DeVoss, Jason; Diehl, Lauri
2013-01-01
SUMMARY The DSS (dextran sulfate sodium) model of colitis is a mouse model of inflammatory bowel disease. Microscopic symptoms include loss of crypt cells from the gut lining and infiltration of inflammatory cells into the colon. An experienced pathologist requires several hours per study to score histological changes in selected regions of the mouse gut. In order to increase the efficiency of scoring, Definiens Developer software was used to devise an entirely automated method to quantify histological changes in the whole H&E slide. When the algorithm was applied to slides from historical drug-discovery studies, automated scores classified 88% of drug candidates in the same way as pathologists’ scores. In addition, another automated image analysis method was developed to quantify colon-infiltrating macrophages, neutrophils, B cells and T cells in immunohistochemical stains of serial sections of the H&E slides. The timing of neutrophil and macrophage infiltration had the highest correlation to pathological changes, whereas T and B cell infiltration occurred later. Thus, automated image analysis enables quantitative comparisons between tissue morphology changes and cell-infiltration dynamics. PMID:23580198
Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software.
Ebersberger, Ullrich; Marcus, Roy P; Schoepf, U Joseph; Lo, Gladys G; Wang, Yining; Blanke, Philipp; Geyer, Lucas L; Gray, J Cranston; McQuiston, Andrew D; Cho, Young Jun; Scheuering, Michael; Canstein, Christian; Nikolaou, Konstantin; Hoffmann, Ellen; Bamberg, Fabian
2014-01-01
To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. • Myocardial perfusion CT is attractive for comprehensive coronary heart disease assessment. • Traditional image analysis methods are cumbersome and time-consuming. • Automated 3D perfusion software shortens analysis times. • Automated 3D perfusion software increases standardisation of myocardial perfusion CT. • Automated, standardised analysis fosters myocardial perfusion CT integration into clinical practice.
Hashimoto, Shinichi; Ogihara, Hiroyuki; Suenaga, Masato; Fujita, Yusuke; Terai, Shuji; Hamamoto, Yoshihiko; Sakaida, Isao
2017-08-01
Visibility in capsule endoscopic images is presently evaluated through intermittent analysis of frames selected by a physician. It is thus subjective and not quantitative. A method to automatically quantify the visibility on capsule endoscopic images has not been reported. Generally, when designing automated image recognition programs, physicians must provide a training image; this process is called supervised learning. We aimed to develop a novel automated self-learning quantification system to identify visible areas on capsule endoscopic images. The technique was developed using 200 capsule endoscopic images retrospectively selected from each of three patients. The rate of detection of visible areas on capsule endoscopic images between a supervised learning program, using training images labeled by a physician, and our novel automated self-learning program, using unlabeled training images without intervention by a physician, was compared. The rate of detection of visible areas was equivalent for the supervised learning program and for our automatic self-learning program. The visible areas automatically identified by self-learning program correlated to the areas identified by an experienced physician. We developed a novel self-learning automated program to identify visible areas in capsule endoscopic images.
Automated three-dimensional quantification of myocardial perfusion and brain SPECT.
Slomka, P J; Radau, P; Hurwitz, G A; Dey, D
2001-01-01
To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.
Merging Dietary Assessment with the Adolescent Lifestyle
Schap, TusaRebecca E; Zhu, Fengqing M; Delp, Edward J; Boushey, Carol J
2013-01-01
The use of image-based dietary assessment methods shows promise for improving dietary self-report among children. The Technology Assisted Dietary Assessment (TADA) food record application is a self-administered food record specifically designed to address the burden and human error associated with conventional methods of dietary assessment. Users would take images of foods and beverages at all eating occasions using a mobile telephone or mobile device with an integrated camera, (e.g., Apple iPhone, Google Nexus One, Apple iPod Touch). Once the images are taken, the images are transferred to a back-end server for automated analysis. The first step in this process is image analysis, i.e., segmentation, feature extraction, and classification, allows for automated food identification. Portion size estimation is also automated via segmentation and geometric shape template modeling. The results of the automated food identification and volume estimation can be indexed with the Food and Nutrient Database for Dietary Studies (FNDDS) to provide a detailed diet analysis for use in epidemiologic or intervention studies. Data collected during controlled feeding studies in a camp-like setting have allowed for formative evaluation and validation of the TADA food record application. This review summarizes the system design and the evidence-based development of image-based methods for dietary assessment among children. PMID:23489518
van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J
2012-01-01
To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.
Automated fluorescent miscroscopic image analysis of PTBP1 expression in glioma
Becker, Aline; Elder, Brad; Puduvalli, Vinay; Winter, Jessica; Gurcan, Metin
2017-01-01
Multiplexed immunofluorescent testing has not entered into diagnostic neuropathology due to the presence of several technical barriers, amongst which includes autofluorescence. This study presents the implementation of a methodology capable of overcoming the visual challenges of fluorescent microscopy for diagnostic neuropathology by using automated digital image analysis, with long term goal of providing unbiased quantitative analyses of multiplexed biomarkers for solid tissue neuropathology. In this study, we validated PTBP1, a putative biomarker for glioma, and tested the extent to which immunofluorescent microscopy combined with automated and unbiased image analysis would permit the utility of PTBP1 as a biomarker to distinguish diagnostically challenging surgical biopsies. As a paradigm, we utilized second resections from patients diagnosed either with reactive brain changes (pseudoprogression) and recurrent glioblastoma (true progression). Our image analysis workflow was capable of removing background autofluorescence and permitted quantification of DAPI-PTBP1 positive cells. PTBP1-positive nuclei, and the mean intensity value of PTBP1 signal in cells. Traditional pathological interpretation was unable to distinguish between groups due to unacceptably high discordance rates amongst expert neuropathologists. Our data demonstrated that recurrent glioblastoma showed more DAPI-PTBP1 positive cells and a higher mean intensity value of PTBP1 signal compared to resections from second surgeries that showed only reactive gliosis. Our work demonstrates the potential of utilizing automated image analysis to overcome the challenges of implementing fluorescent microscopy in diagnostic neuropathology. PMID:28282372
Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B
2015-10-06
Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.
Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M.; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E.; Allen, Peter J.; Sempere, Lorenzo F.; Haab, Brian B.
2016-01-01
Certain experiments involve the high-throughput quantification of image data, thus requiring algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multi-color, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu’s method for selected images. SFT promises to advance the goal of full automation in image analysis. PMID:26339978
Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images.
Rangel-Fonseca, Piero; Gómez-Vieyra, Armando; Malacara-Hernández, Daniel; Wilson, Mario C; Williams, David R; Rossi, Ethan A
2013-12-01
Adaptive optics (AO) imaging methods allow the histological characteristics of retinal cell mosaics, such as photoreceptors and retinal pigment epithelium (RPE) cells, to be studied in vivo. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the cellular mosaics under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells; however, most of these methods are not well suited for characterizing the RPE mosaic. We have developed an algorithm for RPE cell segmentation and show its performance here on simulated and real fluorescence AO images of the RPE mosaic. Algorithm performance was compared to manual cell identification and yielded better than 91% correspondence. This method can be used to segment RPE cells for morphometric analysis of the RPE mosaic and speed the analysis of both healthy and diseased RPE mosaics.
Automated analysis of cell migration and nuclear envelope rupture in confined environments.
Elacqua, Joshua J; McGregor, Alexandra L; Lammerding, Jan
2018-01-01
Recent in vitro and in vivo studies have highlighted the importance of the cell nucleus in governing migration through confined environments. Microfluidic devices that mimic the narrow interstitial spaces of tissues have emerged as important tools to study cellular dynamics during confined migration, including the consequences of nuclear deformation and nuclear envelope rupture. However, while image acquisition can be automated on motorized microscopes, the analysis of the corresponding time-lapse sequences for nuclear transit through the pores and events such as nuclear envelope rupture currently requires manual analysis. In addition to being highly time-consuming, such manual analysis is susceptible to person-to-person variability. Studies that compare large numbers of cell types and conditions therefore require automated image analysis to achieve sufficiently high throughput. Here, we present an automated image analysis program to register microfluidic constrictions and perform image segmentation to detect individual cell nuclei. The MATLAB program tracks nuclear migration over time and records constriction-transit events, transit times, transit success rates, and nuclear envelope rupture. Such automation reduces the time required to analyze migration experiments from weeks to hours, and removes the variability that arises from different human analysts. Comparison with manual analysis confirmed that both constriction transit and nuclear envelope rupture were detected correctly and reliably, and the automated analysis results closely matched a manual analysis gold standard. Applying the program to specific biological examples, we demonstrate its ability to detect differences in nuclear transit time between cells with different levels of the nuclear envelope proteins lamin A/C, which govern nuclear deformability, and to detect an increase in nuclear envelope rupture duration in cells in which CHMP7, a protein involved in nuclear envelope repair, had been depleted. The program thus presents a versatile tool for the study of confined migration and its effect on the cell nucleus.
Eghrari, Allen O.; Mumtaz, Aisha A.; Garrett, Brian; Rezaei, Mahsa; Akhavan, Mina S.; Riazuddin, S. Amer; Gottsch, John D.
2016-01-01
Purpose Retroillumination photography analysis (RPA) is an objective tool for assessment of the number and distribution of guttae in eyes affected with Fuchs Corneal Dystrophy (FCD). Current protocols include manual processing of images; here we assess validity and interrater reliability of automated analysis across various levels of FCD severity. Methods Retroillumination photographs of 97 FCD-affected corneas were acquired and total counts of guttae previously summated manually. For each cornea, a single image was loaded into ImageJ software. We reduced color variability and subtracted background noise. Reflection of light from each gutta was identified as a local area of maximum intensity and counted automatically. Noise tolerance level was titrated for each cornea by examining a small region of each image with automated overlay to ensure appropriate coverage of individual guttae. We tested interrater reliability of automated counts of guttae across a spectrum of clinical and educational experience. Results A set of 97 retroillumination photographs were analyzed. Clinical severity as measured by a modified Krachmer scale ranged from a severity level of 1 to 5 in the set of analyzed corneas. Automated counts by an ophthalmologist correlated strongly with Krachmer grading (R2=0.79) and manual counts (R2=0.88). Intraclass correlation coefficient demonstrated strong correlation, at 0.924 (95% CI, 0.870- 0.958) among cases analyzed by three students, and 0.869 (95% CI, 0.797- 0.918) among cases for which images was analyzed by an ophthalmologist and two students. Conclusions Automated RPA allows for grading of FCD severity with high resolution across a spectrum of disease severity. PMID:27811565
Automated processing for proton spectroscopic imaging using water reference deconvolution.
Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W
1994-06-01
Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.
High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.
Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C
2007-10-09
High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.
SEM AutoAnalysis: enhancing photomask and NIL defect disposition and review
NASA Astrophysics Data System (ADS)
Schulz, Kristian; Egodage, Kokila; Tabbone, Gilles; Ehrlich, Christian; Garetto, Anthony
2017-06-01
For defect disposition and repair verification regarding printability, AIMS™ is the state of the art measurement tool in industry. With its unique capability of capturing aerial images of photomasks it is the one method that comes closest to emulating the printing behaviour of a scanner. However for nanoimprint lithography (NIL) templates aerial images cannot be applied to evaluate the success of a repair process. Hence, for NIL defect dispositioning scanning, electron microscopy (SEM) imaging is the method of choice. In addition, it has been a standard imaging method for further root cause analysis of defects and defect review on optical photomasks which enables 2D or even 3D mask profiling at high resolutions. In recent years a trend observed in mask shops has been the automation of processes that traditionally were driven by operators. This of course has brought many advantages one of which is freeing cost intensive labour from conducting repetitive and tedious work. Furthermore, it reduces variability in processes due to different operator skill and experience levels which at the end contributes to eliminating the human factor. Taking these factors into consideration, one of the software based solutions available under the FAVOR® brand to support customer needs is the aerial image evaluation software, AIMS™ AutoAnalysis (AAA). It provides fully automated analysis of AIMS™ images and runs in parallel to measurements. This is enabled by its direct connection and communication with the AIMS™tools. As one of many positive outcomes, generating automated result reports is facilitated, standardizing the mask manufacturing workflow. Today, AAA has been successfully introduced into production at multiple customers and is supporting the workflow as described above. These trends indeed have triggered the demand for similar automation with respect to SEM measurements leading to the development of SEM AutoAnalysis (SAA). It aims towards a fully automated SEM image evaluation process utilizing a completely different algorithm due to the different nature of SEM images and aerial images. Both AAA and SAA are the building blocks towards an image evaluation suite in the mask shop industry.
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation
2013-01-01
The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.
Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid
2013-08-09
: The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.
Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan
2018-01-01
A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.
Extraction of the number of peroxisomes in yeast cells by automated image analysis.
Niemistö, Antti; Selinummi, Jyrki; Saleem, Ramsey; Shmulevich, Ilya; Aitchison, John; Yli-Harja, Olli
2006-01-01
An automated image analysis method for extracting the number of peroxisomes in yeast cells is presented. Two images of the cell population are required for the method: a bright field microscope image from which the yeast cells are detected and the respective fluorescent image from which the number of peroxisomes in each cell is found. The segmentation of the cells is based on clustering the local mean-variance space. The watershed transformation is thereafter employed to separate cells that are clustered together. The peroxisomes are detected by thresholding the fluorescent image. The method is tested with several images of a budding yeast Saccharomyces cerevisiae population, and the results are compared with manually obtained results.
Stewart, Ethan L; Hagerty, Christina H; Mikaberidze, Alexey; Mundt, Christopher C; Zhong, Ziming; McDonald, Bruce A
2016-07-01
Zymoseptoria tritici causes Septoria tritici blotch (STB) on wheat. An improved method of quantifying STB symptoms was developed based on automated analysis of diseased leaf images made using a flatbed scanner. Naturally infected leaves (n = 949) sampled from fungicide-treated field plots comprising 39 wheat cultivars grown in Switzerland and 9 recombinant inbred lines (RIL) grown in Oregon were included in these analyses. Measures of quantitative resistance were percent leaf area covered by lesions, pycnidia size and gray value, and pycnidia density per leaf and lesion. These measures were obtained automatically with a batch-processing macro utilizing the image-processing software ImageJ. All phenotypes in both locations showed a continuous distribution, as expected for a quantitative trait. The trait distributions at both sites were largely overlapping even though the field and host environments were quite different. Cultivars and RILs could be assigned to two or more statistically different groups for each measured phenotype. Traditional visual assessments of field resistance were highly correlated with quantitative resistance measures based on image analysis for the Oregon RILs. These results show that automated image analysis provides a promising tool for assessing quantitative resistance to Z. tritici under field conditions.
Research relative to automated multisensor image registration
NASA Technical Reports Server (NTRS)
Kanal, L. N.
1983-01-01
The basic aproaches to image registration are surveyed. Three image models are presented as models of the subpixel problem. A variety of approaches to the analysis of subpixel analysis are presented using these models.
NASA Astrophysics Data System (ADS)
Venkataraman, Sankar; Li, Wenjing
2008-03-01
Image analysis for automated diagnosis of cervical cancer has attained high prominence in the last decade. Automated image analysis at all levels requires a basic segmentation of the region of interest (ROI) within a given image. The precision of the diagnosis is often reflected by the precision in detecting the initial region of interest, especially when some features outside the ROI mimic the ones within the same. Work described here discusses algorithms that are used to improve the cervical region of interest as a part of automated cervical image diagnosis. A vital visual aid in diagnosing cervical cancer is the aceto-whitening of the cervix after the application of acetic acid. Color and texture are used to segment acetowhite regions within the cervical ROI. Vaginal walls along with cottonswabs sometimes mimic these essential features leading to several false positives. Work presented here is focused towards detecting in-focus vaginal wall boundaries and then extrapolating them to exclude vaginal walls from the cervical ROI. In addition, discussed here is a marker-controlled watershed segmentation that is used to detect cottonswabs from the cervical ROI. A dataset comprising 50 high resolution images of the cervix acquired after 60 seconds of acetic acid application were used to test the algorithm. Out of the 50 images, 27 benefited from a new cervical ROI. Significant improvement in overall diagnosis was observed in these images as false positives caused by features outside the actual ROI mimicking acetowhite region were eliminated.
IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis.
Rodríguez-Arribas, Mario; Pizarro-Estrella, Elisa; Gómez-Sánchez, Rubén; Yakhine-Diop, S M S; Gragera-Hidalgo, Antonio; Cristo, Alejandro; Bravo-San Pedro, Jose M; González-Polo, Rosa A; Fuentes, José M
2016-04-01
Most laboratories interested in autophagy use different imaging software for managing and analyzing heterogeneous parameters in immunofluorescence experiments (e.g., LC3-puncta quantification and determination of the number and size of lysosomes). One solution would be software that works on a user's laptop or workstation that can access all image settings and provide quick and easy-to-use analysis of data. Thus, we have designed and implemented an application called IFDOTMETER, which can run on all major operating systems because it has been programmed using JAVA (Sun Microsystems). Briefly, IFDOTMETER software has been created to quantify a variety of biological hallmarks, including mitochondrial morphology and nuclear condensation. The program interface is intuitive and user-friendly, making it useful for users not familiar with computer handling. By setting previously defined parameters, the software can automatically analyze a large number of images without the supervision of the researcher. Once analysis is complete, the results are stored in a spreadsheet. Using software for high-throughput cell image analysis offers researchers the possibility of performing comprehensive and precise analysis of a high number of images in an automated manner, making this routine task easier. © 2015 Society for Laboratory Automation and Screening.
Automated CT Scan Scores of Bronchiectasis and Air Trapping in Cystic Fibrosis
Swiercz, Waldemar; Heltshe, Sonya L.; Anthony, Margaret M.; Szefler, Paul; Klein, Rebecca; Strain, John; Brody, Alan S.; Sagel, Scott D.
2014-01-01
Background: Computer analysis of high-resolution CT (HRCT) scans may improve the assessment of structural lung injury in children with cystic fibrosis (CF). The goal of this cross-sectional pilot study was to validate automated, observer-independent image analysis software to establish objective, simple criteria for bronchiectasis and air trapping. Methods: HRCT scans of the chest were performed in 35 children with CF and compared with scans from 12 disease control subjects. Automated image analysis software was developed to count visible airways on inspiratory images and to measure a low attenuation density (LAD) index on expiratory images. Among the children with CF, relationships among automated measures, Brody HRCT scanning scores, lung function, and sputum markers of inflammation were assessed. Results: The number of total, central, and peripheral airways on inspiratory images and LAD (%) on expiratory images were significantly higher in children with CF compared with control subjects. Among subjects with CF, peripheral airway counts correlated strongly with Brody bronchiectasis scores by two raters (r = 0.86, P < .0001; r = 0.91, P < .0001), correlated negatively with lung function, and were positively associated with sputum free neutrophil elastase activity. LAD (%) correlated with Brody air trapping scores (r = 0.83, P < .0001; r = 0.69, P < .0001) but did not correlate with lung function or sputum inflammatory markers. Conclusions: Quantitative airway counts and LAD (%) on HRCT scans appear to be useful surrogates for bronchiectasis and air trapping in children with CF. Our automated methodology provides objective quantitative measures of bronchiectasis and air trapping that may serve as end points in CF clinical trials. PMID:24114359
An automated field phenotyping pipeline for application in grapevine research.
Kicherer, Anna; Herzog, Katja; Pflanz, Michael; Wieland, Markus; Rüger, Philipp; Kecke, Steffen; Kuhlmann, Heiner; Töpfer, Reinhard
2015-02-26
Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale.
An Automated Field Phenotyping Pipeline for Application in Grapevine Research
Kicherer, Anna; Herzog, Katja; Pflanz, Michael; Wieland, Markus; Rüger, Philipp; Kecke, Steffen; Kuhlmann, Heiner; Töpfer, Reinhard
2015-01-01
Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale. PMID:25730485
Automated quantitative cytological analysis using portable microfluidic microscopy.
Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva
2016-06-01
In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holographic Interferometry and Image Analysis for Aerodynamic Testing
1980-09-01
tunnels, (2) development of automated image analysis techniques for reducing quantitative flow-field data from holographic interferograms, and (3...investigation and development of software for the application of digital image analysis to other photographic techniques used in wind tunnel testing.
Nativ, Nir I; Chen, Alvin I; Yarmush, Gabriel; Henry, Scot D; Lefkowitch, Jay H; Klein, Kenneth M; Maguire, Timothy J; Schloss, Rene; Guarrera, James V; Berthiaume, Francois; Yarmush, Martin L
2014-02-01
Large-droplet macrovesicular steatosis (ld-MaS) in more than 30% of liver graft hepatocytes is a major risk factor for liver transplantation. An accurate assessment of the ld-MaS percentage is crucial for determining liver graft transplantability, which is currently based on pathologists' evaluations of hematoxylin and eosin (H&E)-stained liver histology specimens, with the predominant criteria being the relative size of the lipid droplets (LDs) and their propensity to displace a hepatocyte's nucleus to the cell periphery. Automated image analysis systems aimed at objectively and reproducibly quantifying ld-MaS do not accurately differentiate large LDs from small-droplet macrovesicular steatosis and do not take into account LD-mediated nuclear displacement; this leads to a poor correlation with pathologists' assessments. Here we present an improved image analysis method that incorporates nuclear displacement as a key image feature for segmenting and classifying ld-MaS from H&E-stained liver histology slides. 52,000 LDs in 54 digital images from 9 patients were analyzed, and the performance of the proposed method was compared against the performance of current image analysis methods and the ld-MaS percentage evaluations of 2 trained pathologists from different centers. We show that combining nuclear displacement and LD size information significantly improves the separation between large and small macrovesicular LDs (specificity = 93.7%, sensitivity = 99.3%) and the correlation with pathologists' ld-MaS percentage assessments (linear regression coefficient of determination = 0.97). This performance vastly exceeds that of other automated image analyzers, which typically underestimate or overestimate pathologists' ld-MaS scores. This work demonstrates the potential of automated ld-MaS analysis in monitoring the steatotic state of livers. The image analysis principles demonstrated here may help to standardize ld-MaS scores among centers and ultimately help in the process of determining liver graft transplantability. © 2013 American Association for the Study of Liver Diseases.
Watershed identification of polygonal patterns in noisy SAR images.
Moreels, Pierre; Smrekar, Suzanne E
2003-01-01
This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.
Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy.
Su, Ting-Wei; Erlinger, Anthony; Tseng, Derek; Ozcan, Aydogan
2010-10-01
We demonstrate a compact and lightweight platform to conduct automated semen analysis using a lensfree on-chip microscope. This holographic on-chip imaging platform weighs ∼46 g, measures ∼4.2 × 4.2 × 5.8 cm, and does not require any lenses, lasers or other bulky optical components to achieve phase and amplitude imaging of sperms over ∼24 mm(2) field-of-view with an effective numerical aperture of ∼0.2. Using this wide-field lensfree on-chip microscope, semen samples are imaged for ∼10 s, capturing a total of ∼20 holographic frames. Digital subtraction of these consecutive lensfree frames, followed by appropriate processing of the reconstructed images, enables automated quantification of the count, the speed and the dynamic trajectories of motile sperms, while summation of the same frames permits counting of immotile sperms. Such a compact and lightweight automated semen analysis platform running on a wide-field lensfree on-chip microscope could be especially important for fertility clinics, personal male fertility tests, as well as for field use in veterinary medicine such as in stud farming and animal breeding applications.
Merging dietary assessment with the adolescent lifestyle.
Schap, T E; Zhu, F; Delp, E J; Boushey, C J
2014-01-01
The use of image-based dietary assessment methods shows promise for improving dietary self-report among children. The Technology Assisted Dietary Assessment (TADA) food record application is a self-administered food record specifically designed to address the burden and human error associated with conventional methods of dietary assessment. Users would take images of foods and beverages at all eating occasions using a mobile telephone or mobile device with an integrated camera [e.g. Apple iPhone, Apple iPod Touch (Apple Inc., Cupertino, CA, USA); Nexus One (Google, Mountain View, CA, USA)]. Once the images are taken, the images are transferred to a back-end server for automated analysis. The first step in this process is image analysis (i.e. segmentation, feature extraction and classification), which allows for automated food identification. Portion size estimation is also automated via segmentation and geometric shape template modeling. The results of the automated food identification and volume estimation can be indexed with the Food and Nutrient Database for Dietary Studies to provide a detailed diet analysis for use in epidemiological or intervention studies. Data collected during controlled feeding studies in a camp-like setting have allowed for formative evaluation and validation of the TADA food record application. This review summarises the system design and the evidence-based development of image-based methods for dietary assessment among children. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.
Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng
2015-12-01
We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.
Automated in vivo 3D high-definition optical coherence tomography skin analysis system.
Ai Ping Yow; Jun Cheng; Annan Li; Srivastava, Ruchir; Jiang Liu; Wong, Damon Wing Kee; Hong Liang Tey
2016-08-01
The in vivo assessment and visualization of skin structures can be performed through the use of high resolution optical coherence tomography imaging, also known as HD-OCT. However, the manual assessment of such images can be exhaustive and time consuming. In this paper, we present an analysis system to automatically identify and quantify the skin characteristics such as the topography of the surface of the skin and thickness of the epidermis in HD-OCT images. Comparison of this system with manual clinical measurements demonstrated its potential for automatic objective skin analysis and diseases diagnosis. To our knowledge, this is the first report of an automated system to process and analyse HD-OCT skin images.
Industrial applications of automated X-ray inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.
2015-03-01
Many industries require that 100% of manufactured parts be X-ray inspected. Factors such as high production rates, focus on inspection quality, operator fatigue and inspection cost reduction translate to an increasing need for automating the inspection process. Automated X-ray inspection involves the use of image processing algorithms and computer software for analysis and interpretation of X-ray images. This paper presents industrial applications and illustrative case studies of automated X-ray inspection in areas such as automotive castings, fuel plates, air-bag inflators and tires. It is usually necessary to employ application-specific automated inspection strategies and techniques, since each application has unique characteristics and interpretation requirements.
Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H
2012-07-01
The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.
Garty, Guy; Chen, Youhua; Turner, Helen C; Zhang, Jian; Lyulko, Oleksandra V; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Lawrence Yao, Y; Brenner, David J
2011-08-01
Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. The RABiT analyses fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cut-off dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day.
Garty, Guy; Chen, Youhua; Turner, Helen; Zhang, Jian; Lyulko, Oleksandra; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y. Lawrence; Brenner, David J.
2011-01-01
Purpose Over the past five years the Center for Minimally Invasive Radiation Biodosimetry at Columbia University has developed the Rapid Automated Biodosimetry Tool (RABiT), a completely automated, ultra-high throughput biodosimetry workstation. This paper describes recent upgrades and reliability testing of the RABiT. Materials and methods The RABiT analyzes fingerstick-derived blood samples to estimate past radiation exposure or to identify individuals exposed above or below a cutoff dose. Through automated robotics, lymphocytes are extracted from fingerstick blood samples into filter-bottomed multi-well plates. Depending on the time since exposure, the RABiT scores either micronuclei or phosphorylation of the histone H2AX, in an automated robotic system, using filter-bottomed multi-well plates. Following lymphocyte culturing, fixation and staining, the filter bottoms are removed from the multi-well plates and sealed prior to automated high-speed imaging. Image analysis is performed online using dedicated image processing hardware. Both the sealed filters and the images are archived. Results We have developed a new robotic system for lymphocyte processing, making use of an upgraded laser power and parallel processing of four capillaries at once. This system has allowed acceleration of lymphocyte isolation, the main bottleneck of the RABiT operation, from 12 to 2 sec/sample. Reliability tests have been performed on all robotic subsystems. Conclusions Parallel handling of multiple samples through the use of dedicated, purpose-built, robotics and high speed imaging allows analysis of up to 30,000 samples per day. PMID:21557703
Huang, Jianyan; Maram, Jyotsna; Tepelus, Tudor C; Modak, Cristina; Marion, Ken; Sadda, SriniVas R; Chopra, Vikas; Lee, Olivia L
2017-08-07
To determine the reliability of corneal endothelial cell density (ECD) obtained by automated specular microscopy versus that of validated manual methods and factors that predict such reliability. Sharp central images from 94 control and 106 glaucomatous eyes were captured with Konan specular microscope NSP-9900. All images were analyzed by trained graders using Konan CellChek Software, employing the fully- and semi-automated methods as well as Center Method. Images with low cell count (input cells number <100) and/or guttata were compared with the Center and Flex-Center Methods. ECDs were compared and absolute error was used to assess variation. The effect on ECD of age, cell count, cell size, and cell size variation was evaluated. No significant difference was observed between the Center and Flex-Center Methods in corneas with guttata (p=0.48) or low ECD (p=0.11). No difference (p=0.32) was observed in ECD of normal controls <40 yrs old between the fully-automated method and manual Center Method. However, in older controls and glaucomatous eyes, ECD was overestimated by the fully-automated method (p=0.034) and semi-automated method (p=0.025) as compared to manual method. Our findings show that automated analysis significantly overestimates ECD in the eyes with high polymegathism and/or large cell size, compared to the manual method. Therefore, we discourage reliance upon the fully-automated method alone to perform specular microscopy analysis, particularly if an accurate ECD value is imperative. Copyright © 2017. Published by Elsevier España, S.L.U.
Trahearn, Nicholas; Tsang, Yee Wah; Cree, Ian A; Snead, David; Epstein, David; Rajpoot, Nasir
2017-06-01
Automation of downstream analysis may offer many potential benefits to routine histopathology. One area of interest for automation is in the scoring of multiple immunohistochemical markers to predict the patient's response to targeted therapies. Automated serial slide analysis of this kind requires robust registration to identify common tissue regions across sections. We present an automated method for co-localized scoring of Estrogen Receptor and Progesterone Receptor (ER/PR) in breast cancer core biopsies using whole slide images. Regions of tumor in a series of fifty consecutive breast core biopsies were identified by annotation on H&E whole slide images. Sequentially cut immunohistochemical stained sections were scored manually, before being digitally scanned and then exported into JPEG 2000 format. A two-stage registration process was performed to identify the annotated regions of interest in the immunohistochemistry sections, which were then scored using the Allred system. Overall correlation between manual and automated scoring for ER and PR was 0.944 and 0.883, respectively, with 90% of ER and 80% of PR scores within in one point or less of agreement. This proof of principle study indicates slide registration can be used as a basis for automation of the downstream analysis for clinically relevant biomarkers in the majority of cases. The approach is likely to be improved by implantation of safeguarding analysis steps post registration. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.
Nakanishi, Rine; Sankaran, Sethuraman; Grady, Leo; Malpeso, Jenifer; Yousfi, Razik; Osawa, Kazuhiro; Ceponiene, Indre; Nazarat, Negin; Rahmani, Sina; Kissel, Kendall; Jayawardena, Eranthi; Dailing, Christopher; Zarins, Christopher; Koo, Bon-Kwon; Min, James K; Taylor, Charles A; Budoff, Matthew J
2018-03-23
Our goal was to evaluate the efficacy of a fully automated method for assessing the image quality (IQ) of coronary computed tomography angiography (CCTA). The machine learning method was trained using 75 CCTA studies by mapping features (noise, contrast, misregistration scores, and un-interpretability index) to an IQ score based on manual ground truth data. The automated method was validated on a set of 50 CCTA studies and subsequently tested on a new set of 172 CCTA studies against visual IQ scores on a 5-point Likert scale. The area under the curve in the validation set was 0.96. In the 172 CCTA studies, our method yielded a Cohen's kappa statistic for the agreement between automated and visual IQ assessment of 0.67 (p < 0.01). In the group where good to excellent (n = 163), fair (n = 6), and poor visual IQ scores (n = 3) were graded, 155, 5, and 2 of the patients received an automated IQ score > 50 %, respectively. Fully automated assessment of the IQ of CCTA data sets by machine learning was reproducible and provided similar results compared with visual analysis within the limits of inter-operator variability. • The proposed method enables automated and reproducible image quality assessment. • Machine learning and visual assessments yielded comparable estimates of image quality. • Automated assessment potentially allows for more standardised image quality. • Image quality assessment enables standardization of clinical trial results across different datasets.
Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A
2008-06-01
Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.
NASA Astrophysics Data System (ADS)
Campbell, B. D.; Higgins, S. R.
2008-12-01
Developing a method for bridging the gap between macroscopic and microscopic measurements of reaction kinetics at the mineral-water interface has important implications in geological and chemical fields. Investigating these reactions on the nanometer scale with SPM is often limited by image analysis and data extraction due to the large quantity of data usually obtained in SPM experiments. Here we present a computer algorithm for automated analysis of mineral-water interface reactions. This algorithm automates the analysis of sequential SPM images by identifying the kinetically active surface sites (i.e., step edges), and by tracking the displacement of these sites from image to image. The step edge positions in each image are readily identified and tracked through time by a standard edge detection algorithm followed by statistical analysis on the Hough Transform of the edge-mapped image. By quantifying this displacement as a function of time, the rate of step edge displacement is determined. Furthermore, the total edge length, also determined from analysis of the Hough Transform, combined with the computed step speed, yields the surface area normalized rate of the reaction. The algorithm was applied to a study of the spiral growth of the calcite(104) surface from supersaturated solutions, yielding results almost 20 times faster than performing this analysis by hand, with results being statistically similar for both analysis methods. This advance in analysis of kinetic data from SPM images will facilitate the building of experimental databases on the microscopic kinetics of mineral-water interface reactions.
Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan
2017-06-01
Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3-100%) in the test set (n = 217) of manually labeled helminth eggs. In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images.
Holmström, Oscar; Linder, Nina; Ngasala, Billy; Mårtensson, Andreas; Linder, Ewert; Lundin, Mikael; Moilanen, Hannu; Suutala, Antti; Diwan, Vinod; Lundin, Johan
2017-01-01
ABSTRACT Background: Microscopy remains the gold standard in the diagnosis of neglected tropical diseases. As resource limited, rural areas often lack laboratory equipment and trained personnel, new diagnostic techniques are needed. Low-cost, point-of-care imaging devices show potential in the diagnosis of these diseases. Novel, digital image analysis algorithms can be utilized to automate sample analysis. Objective: Evaluation of the imaging performance of a miniature digital microscopy scanner for the diagnosis of soil-transmitted helminths and Schistosoma haematobium, and training of a deep learning-based image analysis algorithm for automated detection of soil-transmitted helminths in the captured images. Methods: A total of 13 iodine-stained stool samples containing Ascaris lumbricoides, Trichuris trichiura and hookworm eggs and 4 urine samples containing Schistosoma haematobium were digitized using a reference whole slide-scanner and the mobile microscopy scanner. Parasites in the images were identified by visual examination and by analysis with a deep learning-based image analysis algorithm in the stool samples. Results were compared between the digital and visual analysis of the images showing helminth eggs. Results: Parasite identification by visual analysis of digital slides captured with the mobile microscope was feasible for all analyzed parasites. Although the spatial resolution of the reference slide-scanner is higher, the resolution of the mobile microscope is sufficient for reliable identification and classification of all parasites studied. Digital image analysis of stool sample images captured with the mobile microscope showed high sensitivity for detection of all helminths studied (range of sensitivity = 83.3–100%) in the test set (n = 217) of manually labeled helminth eggs. Conclusions: In this proof-of-concept study, the imaging performance of a mobile, digital microscope was sufficient for visual detection of soil-transmitted helminths and Schistosoma haematobium. Furthermore, we show that deep learning-based image analysis can be utilized for the automated detection and classification of helminths in the captured images. PMID:28838305
NASA Astrophysics Data System (ADS)
Srivastava, Vishal; Dalal, Devjyoti; Kumar, Anuj; Prakash, Surya; Dalal, Krishna
2018-06-01
Moisture content is an important feature of fruits and vegetables. As 80% of apple content is water, so decreasing the moisture content will degrade the quality of apples (Golden Delicious). The computational and texture features of the apples were extracted from optical coherence tomography (OCT) images. A support vector machine with a Gaussian kernel model was used to perform automated classification. To evaluate the quality of wax coated apples during storage in vivo, our proposed method opens up the possibility of fully automated quantitative analysis based on the morphological features of apples. Our results demonstrate that the analysis of the computational and texture features of OCT images may be a good non-destructive method for the assessment of the quality of apples.
Automated macromolecular crystallization screening
Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.
2005-03-01
An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.
1989-03-01
KOWLEDGE INFERENCE IMAGE DAAAEENGINE DATABASE Automated Photointerpretation Testbed. 4.1.7 Fig. .1.1-2 An Initial Segmentation of an Image / zx...MRF) theory provide a powerful alternative texture model and have resulted in intensive research activity in MRF model- based texture analysis...interpretation process. 5. Additional, and perhaps more powerful , features have to be incorporated into the image segmentation procedure. 6. Object detection
Quantifying biodiversity using digital cameras and automated image analysis.
NASA Astrophysics Data System (ADS)
Roadknight, C. M.; Rose, R. J.; Barber, M. L.; Price, M. C.; Marshall, I. W.
2009-04-01
Monitoring the effects on biodiversity of extensive grazing in complex semi-natural habitats is labour intensive. There are also concerns about the standardization of semi-quantitative data collection. We have chosen to focus initially on automating the most time consuming aspect - the image analysis. The advent of cheaper and more sophisticated digital camera technology has lead to a sudden increase in the number of habitat monitoring images and information that is being collected. We report on the use of automated trail cameras (designed for the game hunting market) to continuously capture images of grazer activity in a variety of habitats at Moor House National Nature Reserve, which is situated in the North of England at an average altitude of over 600m. Rainfall is high, and in most areas the soil consists of deep peat (1m to 3m), populated by a mix of heather, mosses and sedges. The cameras have been continuously in operation over a 6 month period, daylight images are in full colour and night images (IR flash) are black and white. We have developed artificial intelligence based methods to assist in the analysis of the large number of images collected, generating alert states for new or unusual image conditions. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the manpower overheads and increase focus on important subsets in the collected data. By converting digital image data into statistical composite data it can be handled in a similar way to other biodiversity statistics thus improving the scalability of monitoring experiments. Unsupervised feature detection methods and supervised neural methods were tested and offered solutions to simplifying the process. Accurate (85 to 95%) categorization of faunal content can be obtained, requiring human intervention for only those images containing rare animals or unusual (undecidable) conditions, and enabling automatic deletion of images generated by erroneous triggering (e.g. cloud movements). This is the first step to a hierarchical image processing framework, where situation subclasses such as birds or climatic conditions can be fed into more appropriate automated or semi-automated data mining software.
Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.
Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong
2008-04-01
The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.
Histology image analysis for carcinoma detection and grading
He, Lei; Long, L. Rodney; Antani, Sameer; Thoma, George R.
2012-01-01
This paper presents an overview of the image analysis techniques in the domain of histopathology, specifically, for the objective of automated carcinoma detection and classification. As in other biomedical imaging areas such as radiology, many computer assisted diagnosis (CAD) systems have been implemented to aid histopathologists and clinicians in cancer diagnosis and research, which have been attempted to significantly reduce the labor and subjectivity of traditional manual intervention with histology images. The task of automated histology image analysis is usually not simple due to the unique characteristics of histology imaging, including the variability in image preparation techniques, clinical interpretation protocols, and the complex structures and very large size of the images themselves. In this paper we discuss those characteristics, provide relevant background information about slide preparation and interpretation, and review the application of digital image processing techniques to the field of histology image analysis. In particular, emphasis is given to state-of-the-art image segmentation methods for feature extraction and disease classification. Four major carcinomas of cervix, prostate, breast, and lung are selected to illustrate the functions and capabilities of existing CAD systems. PMID:22436890
Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy.
Wang, Quanli; Niemi, Jarad; Tan, Chee-Meng; You, Lingchong; West, Mike
2010-01-01
An increasingly common component of studies in synthetic and systems biology is analysis of dynamics of gene expression at the single-cell level, a context that is heavily dependent on the use of time-lapse movies. Extracting quantitative data on the single-cell temporal dynamics from such movies remains a major challenge. Here, we describe novel methods for automating key steps in the analysis of single-cell, fluorescent images-segmentation and lineage reconstruction-to recognize and track individual cells over time. The automated analysis iteratively combines a set of extended morphological methods for segmentation, and uses a neighborhood-based scoring method for frame-to-frame lineage linking. Our studies with bacteria, budding yeast and human cells, demonstrate the portability and usability of these methods, whether using phase, bright field or fluorescent images. These examples also demonstrate the utility of our integrated approach in facilitating analyses of engineered and natural cellular networks in diverse settings. The automated methods are implemented in freely available, open-source software.
Hovnanians, Ninel; Win, Theresa; Makkiya, Mohammed; Zheng, Qi; Taub, Cynthia
2017-11-01
To assess the efficiency and reproducibility of automated measurements of left ventricular (LV) volumes and LV ejection fraction (LVEF) in comparison to manually traced biplane Simpson's method. This is a single-center prospective study. Apical four- and two-chamber views were acquired in patients in sinus rhythm. Two operators independently measured LV volumes and LVEF using biplane Simpson's method. In addition, the image analysis software a2DQ on the Philips EPIQ system was applied to automatically assess the LV volumes and LVEF. Time spent on each analysis, using both methods, was documented. Concordance of echocardiographic measures was evaluated using intraclass correlation (ICC) and Bland-Altman analysis. Manual tracing and automated measurement of LV volumes and LVEF were performed in 184 patients with a mean age of 67.3 ± 17.3 years and BMI 28.0 ± 6.8 kg/m 2 . ICC and Bland-Altman analysis showed good agreements between manual and automated methods measuring LVEF, end-systolic, and end-diastolic volumes. The average analysis time was significantly less using the automated method than manual tracing (116 vs 217 seconds/patient, P < .0001). Automated measurement using the novel image analysis software a2DQ on the Philips EPIQ system produced accurate, efficient, and reproducible assessment of LV volumes and LVEF compared with manual measurement. © 2017, Wiley Periodicals, Inc.
Automation of immunohistochemical evaluation in breast cancer using image analysis
Prasad, Keerthana; Tiwari, Avani; Ilanthodi, Sandhya; Prabhu, Gopalakrishna; Pai, Muktha
2011-01-01
AIM: To automate breast cancer diagnosis and to study the inter-observer and intra-observer variations in the manual evaluations. METHODS: Breast tissue specimens from sixty cases were stained separately for estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2/neu). All cases were assessed by manual grading as well as image analysis. The manual grading was performed by an experienced expert pathologist. To study inter-observer and intra-observer variations, we obtained readings from another pathologist as the second observer from a different laboratory who has a little less experience than the first observer. We also took a second reading from the second observer to study intra-observer variations. Image analysis was carried out using in-house developed software (TissueQuant). A comparison of the results from image analysis and manual scoring of ER, PR and HER-2/neu was also carried out. RESULTS: The performance of the automated analysis in the case of ER, PR and HER-2/neu expressions was compared with the manual evaluations. The performance of the automated system was found to correlate well with the manual evaluations. The inter-observer variations were measured using Spearman correlation coefficient r and 95% confidence interval. In the case of ER expression, Spearman correlation r = 0.53, in the case of PR expression, r = 0.63, and in the case of HER-2/neu expression, r = 0.68. Similarly, intra-observer variations were also measured. In the case of ER, PR and HER-2/neu expressions, r = 0.46, 0.66 and 0.70, respectively. CONCLUSION: The automation of breast cancer diagnosis from immunohistochemically stained specimens is very useful for providing objective and repeatable evaluations. PMID:21611095
Milchenko, Mikhail; Snyder, Abraham Z; LaMontagne, Pamela; Shimony, Joshua S; Benzinger, Tammie L; Fouke, Sarah Jost; Marcus, Daniel S
2016-07-01
Neuroimaging research often relies on clinically acquired magnetic resonance imaging (MRI) datasets that can originate from multiple institutions. Such datasets are characterized by high heterogeneity of modalities and variability of sequence parameters. This heterogeneity complicates the automation of image processing tasks such as spatial co-registration and physiological or functional image analysis. Given this heterogeneity, conventional processing workflows developed for research purposes are not optimal for clinical data. In this work, we describe an approach called Heterogeneous Optimization Framework (HOF) for developing image analysis pipelines that can handle the high degree of clinical data non-uniformity. HOF provides a set of guidelines for configuration, algorithm development, deployment, interpretation of results and quality control for such pipelines. At each step, we illustrate the HOF approach using the implementation of an automated pipeline for Multimodal Glioma Analysis (MGA) as an example. The MGA pipeline computes tissue diffusion characteristics of diffusion tensor imaging (DTI) acquisitions, hemodynamic characteristics using a perfusion model of susceptibility contrast (DSC) MRI, and spatial cross-modal co-registration of available anatomical, physiological and derived patient images. Developing MGA within HOF enabled the processing of neuro-oncology MR imaging studies to be fully automated. MGA has been successfully used to analyze over 160 clinical tumor studies to date within several research projects. Introduction of the MGA pipeline improved image processing throughput and, most importantly, effectively produced co-registered datasets that were suitable for advanced analysis despite high heterogeneity in acquisition protocols.
Lee, Christina D; Chae, Junghoon; Schap, TusaRebecca E; Kerr, Deborah A; Delp, Edward J; Ebert, David S; Boushey, Carol J
2012-03-01
Diet is a critical element of diabetes self-management. An emerging area of research is the use of images for dietary records using mobile telephones with embedded cameras. These tools are being designed to reduce user burden and to improve accuracy of portion-size estimation through automation. The objectives of this study were to (1) assess the error of automatically determined portion weights compared to known portion weights of foods and (2) to compare the error between automation and human. Adolescents (n = 15) captured images of their eating occasions over a 24 h period. All foods and beverages served were weighed. Adolescents self-reported portion sizes for one meal. Image analysis was used to estimate portion weights. Data analysis compared known weights, automated weights, and self-reported portions. For the 19 foods, the mean ratio of automated weight estimate to known weight ranged from 0.89 to 4.61, and 9 foods were within 0.80 to 1.20. The largest error was for lettuce and the most accurate was strawberry jam. The children were fairly accurate with portion estimates for two foods (sausage links, toast) using one type of estimation aid and two foods (sausage links, scrambled eggs) using another aid. The automated method was fairly accurate for two foods (sausage links, jam); however, the 95% confidence intervals for the automated estimates were consistently narrower than human estimates. The ability of humans to estimate portion sizes of foods remains a problem and a perceived burden. Errors in automated portion-size estimation can be systematically addressed while minimizing the burden on people. Future applications that take over the burden of these processes may translate to better diabetes self-management. © 2012 Diabetes Technology Society.
Takahashi; Nakazawa; Watanabe; Konagaya
1999-01-01
We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.
Merouane, Amine; Rey-Villamizar, Nicolas; Lu, Yanbin; Liadi, Ivan; Romain, Gabrielle; Lu, Jennifer; Singh, Harjeet; Cooper, Laurence J N; Varadarajan, Navin; Roysam, Badrinath
2015-10-01
There is a need for effective automated methods for profiling dynamic cell-cell interactions with single-cell resolution from high-throughput time-lapse imaging data, especially, the interactions between immune effector cells and tumor cells in adoptive immunotherapy. Fluorescently labeled human T cells, natural killer cells (NK), and various target cells (NALM6, K562, EL4) were co-incubated on polydimethylsiloxane arrays of sub-nanoliter wells (nanowells), and imaged using multi-channel time-lapse microscopy. The proposed cell segmentation and tracking algorithms account for cell variability and exploit the nanowell confinement property to increase the yield of correctly analyzed nanowells from 45% (existing algorithms) to 98% for wells containing one effector and a single target, enabling automated quantification of cell locations, morphologies, movements, interactions, and deaths without the need for manual proofreading. Automated analysis of recordings from 12 different experiments demonstrated automated nanowell delineation accuracy >99%, automated cell segmentation accuracy >95%, and automated cell tracking accuracy of 90%, with default parameters, despite variations in illumination, staining, imaging noise, cell morphology, and cell clustering. An example analysis revealed that NK cells efficiently discriminate between live and dead targets by altering the duration of conjugation. The data also demonstrated that cytotoxic cells display higher motility than non-killers, both before and during contact. broysam@central.uh.edu or nvaradar@central.uh.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Computer system for scanning tunneling microscope automation
NASA Astrophysics Data System (ADS)
Aguilar, M.; García, A.; Pascual, P. J.; Presa, J.; Santisteban, A.
1987-03-01
A computerized system for the automation of a scanning tunneling microscope is presented. It is based on an IBM personal computer (PC) either an XT or an AT, which performs the control, data acquisition and storage operations, displays the STM "images" in real time, and provides image processing tools for the restoration and analysis of data. It supports different data acquisition and control cards and image display cards. The software has been designed in a modular way to allow the replacement of these cards and other equipment improvements as well as the inclusion of user routines for data analysis.
Shenouda, Ninette; Proudfoot, Nicole A; Currie, Katharine D; Timmons, Brian W; MacDonald, Maureen J
2018-05-01
Many commercial ultrasound systems are now including automated analysis packages for the determination of carotid intima-media thickness (cIMT); however, details regarding their algorithms and methodology are not published. Few studies have compared their accuracy and reliability with previously established automated software, and those that have were in asymptomatic adults. Therefore, this study compared cIMT measures from a fully automated ultrasound edge-tracking software (EchoPAC PC, Version 110.0.2; GE Medical Systems, Horten, Norway) to an established semi-automated reference software (Artery Measurement System (AMS) II, Version 1.141; Gothenburg, Sweden) in 30 healthy preschool children (ages 3-5 years) and 27 adults with coronary artery disease (CAD; ages 48-81 years). For both groups, Bland-Altman plots revealed good agreement with a negligible mean cIMT difference of -0·03 mm. Software differences were statistically, but not clinically, significant for preschool images (P = 0·001) and were not significant for CAD images (P = 0·09). Intra- and interoperator repeatability was high and comparable between software for preschool images (ICC, 0·90-0·96; CV, 1·3-2·5%), but slightly higher with the automated ultrasound than the semi-automated reference software for CAD images (ICC, 0·98-0·99; CV, 1·4-2·0% versus ICC, 0·84-0·89; CV, 5·6-6·8%). These findings suggest that the automated ultrasound software produces valid cIMT values in healthy preschool children and adults with CAD. Automated ultrasound software may be useful for ensuring consistency among multisite research initiatives or large cohort studies involving repeated cIMT measures, particularly in adults with documented CAD. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Automated analysis and classification of melanocytic tumor on skin whole slide images.
Xu, Hongming; Lu, Cheng; Berendt, Richard; Jha, Naresh; Mandal, Mrinal
2018-06-01
This paper presents a computer-aided technique for automated analysis and classification of melanocytic tumor on skin whole slide biopsy images. The proposed technique consists of four main modules. First, skin epidermis and dermis regions are segmented by a multi-resolution framework. Next, epidermis analysis is performed, where a set of epidermis features reflecting nuclear morphologies and spatial distributions is computed. In parallel with epidermis analysis, dermis analysis is also performed, where dermal cell nuclei are segmented and a set of textural and cytological features are computed. Finally, the skin melanocytic image is classified into different categories such as melanoma, nevus or normal tissue by using a multi-class support vector machine (mSVM) with extracted epidermis and dermis features. Experimental results on 66 skin whole slide images indicate that the proposed technique achieves more than 95% classification accuracy, which suggests that the technique has the potential to be used for assisting pathologists on skin biopsy image analysis and classification. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images
Cao, Jianfang; Chen, Lichao
2015-01-01
With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP) neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance. PMID:25838818
Dzyubachyk, Oleh; Essers, Jeroen; van Cappellen, Wiggert A; Baldeyron, Céline; Inagaki, Akiko; Niessen, Wiro J; Meijering, Erik
2010-10-01
Complete, accurate and reproducible analysis of intracellular foci from fluorescence microscopy image sequences of live cells requires full automation of all processing steps involved: cell segmentation and tracking followed by foci segmentation and pattern analysis. Integrated systems for this purpose are lacking. Extending our previous work in cell segmentation and tracking, we developed a new system for performing fully automated analysis of fluorescent foci in single cells. The system was validated by applying it to two common tasks: intracellular foci counting (in DNA damage repair experiments) and cell-phase identification based on foci pattern analysis (in DNA replication experiments). Experimental results show that the system performs comparably to expert human observers. Thus, it may replace tedious manual analyses for the considered tasks, and enables high-content screening. The described system was implemented in MATLAB (The MathWorks, Inc., USA) and compiled to run within the MATLAB environment. The routines together with four sample datasets are available at http://celmia.bigr.nl/. The software is planned for public release, free of charge for non-commercial use, after publication of this article.
Image Decoding of Photonic Crystal Beads Array in the Microfluidic Chip for Multiplex Assays
Yuan, Junjie; Zhao, Xiangwei; Wang, Xiaoxia; Gu, Zhongze
2014-01-01
Along with the miniaturization and intellectualization of biomedical instruments, the increasing demand of health monitoring at anywhere and anytime elevates the need for the development of point of care testing (POCT). Photonic crystal beads (PCBs) as one kind of good encoded microcarriers can be integrated with microfluidic chips in order to realize cost-effective and high sensitive multiplex bioassays. However, there are difficulties in analyzing them towards automated analysis due to the characters of the PCBs and the unique detection manner. In this paper, we propose a strategy to take advantage of automated image processing for the color decoding of the PCBs array in the microfluidic chip for multiplex assays. By processing and alignment of two modal images of epi-fluorescence and epi-white light, every intact bead in the image is accurately extracted and decoded by PC colors, which stand for the target species. This method, which shows high robustness and accuracy under various configurations, eliminates the high hardware requirement of spectroscopy analysis and user-interaction software, and provides adequate supports for the general automated analysis of POCT based on PCBs array. PMID:25341876
NASA Astrophysics Data System (ADS)
Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.
2017-06-01
This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.
NASA Astrophysics Data System (ADS)
Irshad, Humayun; Oh, Eun-Yeong; Schmolze, Daniel; Quintana, Liza M.; Collins, Laura; Tamimi, Rulla M.; Beck, Andrew H.
2017-02-01
The assessment of protein expression in immunohistochemistry (IHC) images provides important diagnostic, prognostic and predictive information for guiding cancer diagnosis and therapy. Manual scoring of IHC images represents a logistical challenge, as the process is labor intensive and time consuming. Since the last decade, computational methods have been developed to enable the application of quantitative methods for the analysis and interpretation of protein expression in IHC images. These methods have not yet replaced manual scoring for the assessment of IHC in the majority of diagnostic laboratories and in many large-scale research studies. An alternative approach is crowdsourcing the quantification of IHC images to an undefined crowd. The aim of this study is to quantify IHC images for labeling of ER status with two different crowdsourcing approaches, image-labeling and nuclei-labeling, and compare their performance with automated methods. Crowdsourcing- derived scores obtained greater concordance with the pathologist interpretations for both image-labeling and nuclei-labeling tasks (83% and 87%), as compared to the pathologist concordance achieved by the automated method (81%) on 5,338 TMA images from 1,853 breast cancer patients. This analysis shows that crowdsourcing the scoring of protein expression in IHC images is a promising new approach for large scale cancer molecular pathology studies.
Automated rice leaf disease detection using color image analysis
NASA Astrophysics Data System (ADS)
Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.
2011-06-01
In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.
Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario
2017-06-01
The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.
Collaborative real-time motion video analysis by human observer and image exploitation algorithms
NASA Astrophysics Data System (ADS)
Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen
2015-05-01
Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.
BATSE imaging survey of the Galactic plane
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Barret, D.; Bloser, P. F.; Zhang, S. N.; Robinson, C.; Harmon, B. A.
1997-01-01
The burst and transient source experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) provides all sky monitoring capability, occultation analysis and occultation imaging which enables new and fainter sources to be searched for in relatively crowded fields. The occultation imaging technique is used in combination with an automated BATSE image scanner, allowing an analysis of large data sets of occultation images for detections of candidate sources and for the construction of source catalogs and data bases. This automated image scanner system is being tested on archival data in order to optimize the search and detection thresholds. The image search system, its calibration results and preliminary survey results on archival data are reported on. The aim of the survey is to identify a complete sample of black hole candidates in the galaxy and constrain the number of black hole systems and neutron star systems.
SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.
Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A
2016-11-01
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution. © 2016 John Wiley & Sons Ltd.
Liese, Jan; Winter, Karsten; Glass, Änne; Bertolini, Julia; Kämmerer, Peer Wolfgang; Frerich, Bernhard; Schiefke, Ingolf; Remmerbach, Torsten W
2017-11-01
Uncertainties in detection of oral epithelial dysplasia (OED) frequently result from sampling error especially in inflammatory oral lesions. Endomicroscopy allows non-invasive, "en face" imaging of upper oral epithelium, but parameters of OED are unknown. Mucosal nuclei were imaged in 34 toluidine blue-stained oral lesions with a commercial endomicroscopy. Histopathological diagnosis showed four biopsies in "dys-/neoplastic," 23 in "inflammatory," and seven in "others" disease groups. Strength of different assessment strategies of nuclear scoring, nuclear count, and automated nuclear analysis were measured by area under ROC curve (AUC) to identify histopathological "dys-/neoplastic" group. Nuclear objects from automated image analysis were visually corrected. Best-performing parameters of nuclear-to-image ratios were the count of large nuclei (AUC=0.986) and 6-nearest neighborhood relation (AUC=0.896), and best parameters of nuclear polymorphism were the count of atypical nuclei (AUC=0.996) and compactness of nuclei (AUC=0.922). Excluding low-grade OED, nuclear scoring and count reached 100% sensitivity and 98% specificity for detection of dys-/neoplastic lesions. In automated analysis, combination of parameters enhanced diagnostic strength. Sensitivity of 100% and specificity of 87% were seen for distances of 6-nearest neighbors and aspect ratios even in uncorrected objects. Correction improved measures of nuclear polymorphism only. The hue of background color was stronger than nuclear density (AUC=0.779 vs 0.687) to detect dys-/neoplastic group indicating that macroscopic aspect is biased. Nuclear-to-image ratios are applicable for automated optical in vivo diagnostics for oral potentially malignant disorders. Nuclear endomicroscopy may promote non-invasive, early detection of dys-/neoplastic lesions by reducing sampling error. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Software for Analyzing Sequences of Flow-Related Images
NASA Technical Reports Server (NTRS)
Klimek, Robert; Wright, Ted
2004-01-01
Spotlight is a computer program for analysis of sequences of images generated in combustion and fluid physics experiments. Spotlight can perform analysis of a single image in an interactive mode or a sequence of images in an automated fashion. The primary type of analysis is tracking of positions of objects over sequences of frames. Features and objects that are typically tracked include flame fronts, particles, droplets, and fluid interfaces. Spotlight automates the analysis of object parameters, such as centroid position, velocity, acceleration, size, shape, intensity, and color. Images can be processed to enhance them before statistical and measurement operations are performed. An unlimited number of objects can be analyzed simultaneously. Spotlight saves results of analyses in a text file that can be exported to other programs for graphing or further analysis. Spotlight is a graphical-user-interface-based program that at present can be executed on Microsoft Windows and Linux operating systems. A version that runs on Macintosh computers is being considered.
Automated Ontology Generation Using Spatial Reasoning
NASA Astrophysics Data System (ADS)
Coalter, Alton; Leopold, Jennifer L.
Recently there has been much interest in using ontologies to facilitate knowledge representation, integration, and reasoning. Correspondingly, the extent of the information embodied by an ontology is increasing beyond the conventional is_a and part_of relationships. To address these requirements, a vast amount of digitally available information may need to be considered when building ontologies, prompting a desire for software tools to automate at least part of the process. The main efforts in this direction have involved textual information retrieval and extraction methods. For some domains extension of the basic relationships could be enhanced further by the analysis of 2D and/or 3D images. For this type of media, image processing algorithms are more appropriate than textual analysis methods. Herein we present an algorithm that, given a collection of 3D image files, utilizes Qualitative Spatial Reasoning (QSR) to automate the creation of an ontology for the objects represented by the images, relating the objects in terms of is_a and part_of relationships and also through unambiguous Relational Connection Calculus (RCC) relations.
Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i
Patrick, Matthew R.; Swanson, Don; Orr, Tim R.
2016-01-01
Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.
Automated analysis of angle closure from anterior chamber angle images.
Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin
2014-10-21
To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Color image processing and vision system for an automated laser paint-stripping system
NASA Astrophysics Data System (ADS)
Hickey, John M., III; Hise, Lawson
1994-10-01
Color image processing in machine vision systems has not gained general acceptance. Most machine vision systems use images that are shades of gray. The Laser Automated Decoating System (LADS) required a vision system which could discriminate between substrates of various colors and textures and paints ranging from semi-gloss grays to high gloss red, white and blue (Air Force Thunderbirds). The changing lighting levels produced by the pulsed CO2 laser mandated a vision system that did not require a constant color temperature lighting for reliable image analysis.
Assessment of Automated Analyses of Cell Migration on Flat and Nanostructured Surfaces
Grădinaru, Cristian; Łopacińska, Joanna M.; Huth, Johannes; Kestler, Hans A.; Flyvbjerg, Henrik; Mølhave, Kristian
2012-01-01
Motility studies of cells often rely on computer software that analyzes time-lapse recorded movies and establishes cell trajectories fully automatically. This raises the question of reproducibility of results, since different programs could yield significantly different results of such automated analysis. The fact that the segmentation routines of such programs are often challenged by nanostructured surfaces makes the question more pertinent. Here we illustrate how it is possible to track cells on bright field microscopy images with image analysis routines implemented in an open-source cell tracking program, PACT (Program for Automated Cell Tracking). We compare the automated motility analysis of three cell tracking programs, PACT, Autozell, and TLA, using the same movies as input for all three programs. We find that different programs track overlapping, but different subsets of cells due to different segmentation methods. Unfortunately, population averages based on such different cell populations, differ significantly in some cases. Thus, results obtained with one software package are not necessarily reproducible by other software. PMID:24688640
Evaluation of an automated karyotyping system for chromosome aberration analysis
NASA Technical Reports Server (NTRS)
Prichard, Howard M.
1987-01-01
Chromosome aberration analysis is a promising complement to conventional radiation dosimetry, particularly in the complex radiation fields encountered in the space environment. The capabilities of a recently developed automated karyotyping system were evaluated both to determine current capabilities and limitations and to suggest areas where future development should be emphasized. Cells exposed to radiometric chemicals and to photon and particulate radiation were evaluated by manual inspection and by automated karyotyping. It was demonstrated that the evaluated programs were appropriate for image digitization, storage, and transmission. However, automated and semi-automated scoring techniques must be advanced significantly if in-flight chromosome aberration analysis is to be practical. A degree of artificial intelligence may be necessary to realize this goal.
Foreign object detection and removal to improve automated analysis of chest radiographs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogeweg, Laurens; Sanchez, Clara I.; Melendez, Jaime
2013-07-15
Purpose: Chest radiographs commonly contain projections of foreign objects, such as buttons, brassier clips, jewellery, or pacemakers and wires. The presence of these structures can substantially affect the output of computer analysis of these images. An automated method is presented to detect, segment, and remove foreign objects from chest radiographs.Methods: Detection is performed using supervised pixel classification with a kNN classifier, resulting in a probability estimate per pixel to belong to a projected foreign object. Segmentation is performed by grouping and post-processing pixels with a probability above a certain threshold. Next, the objects are replaced by texture inpainting.Results: The methodmore » is evaluated in experiments on 257 chest radiographs. The detection at pixel level is evaluated with receiver operating characteristic analysis on pixels within the unobscured lung fields and an A{sub z} value of 0.949 is achieved. Free response operator characteristic analysis is performed at the object level, and 95.6% of objects are detected with on average 0.25 false positive detections per image. To investigate the effect of removing the detected objects through inpainting, a texture analysis system for tuberculosis detection is applied to images with and without pathology and with and without foreign object removal. Unprocessed, the texture analysis abnormality score of normal images with foreign objects is comparable to those with pathology. After removing foreign objects, the texture score of normal images with and without foreign objects is similar, while abnormal images, whether they contain foreign objects or not, achieve on average higher scores.Conclusions: The authors conclude that removal of foreign objects from chest radiographs is feasible and beneficial for automated image analysis.« less
Hormann, Wymke; Hahn, Melanie; Gerlach, Stefan; Hochstrate, Nicola; Affeldt, Kai; Giesen, Joyce; Fechner, Kai; Damoiseaux, Jan G M C
2017-11-27
Antibodies directed against dsDNA are a highly specific diagnostic marker for the presence of systemic lupus erythematosus and of particular importance in its diagnosis. To assess anti-dsDNA antibodies, the Crithidia luciliae-based indirect immunofluorescence test (CLIFT) is one of the assays considered to be the best choice. To overcome the drawback of subjective result interpretation that inheres indirect immunofluorescence assays in general, automated systems have been introduced into the market during the last years. Among these systems is the EUROPattern Suite, an advanced automated fluorescence microscope equipped with different software packages, capable of automated pattern interpretation and result suggestion for ANA, ANCA and CLIFT analysis. We analyzed the performance of the EUROPattern Suite with its automated fluorescence interpretation for CLIFT in a routine setting, reflecting the everyday life of a diagnostic laboratory. Three hundred and twelve consecutive samples were collected, sent to the Central Diagnostic Laboratory of the Maastricht University Medical Centre with a request for anti-dsDNA analysis over a period of 7 months. Agreement between EUROPattern assay analysis and the visual read was 93.3%. Sensitivity and specificity were 94.1% and 93.2%, respectively. The EUROPattern Suite performed reliably and greatly supported result interpretation. Automated image acquisition is readily performed and automated image classification gives a reliable recommendation for assay evaluation to the operator. The EUROPattern Suite optimizes workflow and contributes to standardization between different operators or laboratories.
Automated quantification of pancreatic β-cell mass
Golson, Maria L.; Bush, William S.
2014-01-01
β-Cell mass is a parameter commonly measured in studies of islet biology and diabetes. However, the rigorous quantification of pancreatic β-cell mass using conventional histological methods is a time-consuming process. Rapidly evolving virtual slide technology with high-resolution slide scanners and newly developed image analysis tools has the potential to transform β-cell mass measurement. To test the effectiveness and accuracy of this new approach, we assessed pancreata from normal C57Bl/6J mice and from mouse models of β-cell ablation (streptozotocin-treated mice) and β-cell hyperplasia (leptin-deficient mice), using a standardized systematic sampling of pancreatic specimens. Our data indicate that automated analysis of virtual pancreatic slides is highly reliable and yields results consistent with those obtained by conventional morphometric analysis. This new methodology will allow investigators to dramatically reduce the time required for β-cell mass measurement by automating high-resolution image capture and analysis of entire pancreatic sections. PMID:24760991
Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate
2010-05-01
Breast cancer, cell signaling, cell proliferation, histology, image analysis 15. NUMBER OF PAGES - 51 16. PRICE CODE 17. SECURITY CLASSIFICATION...revealed by individual stains in multiplex combinations; and (3) software (FARSIGHT) for automated multispectral image analysis that (i) segments...Task 3. Develop computational algorithms for multispectral immunohistological image analysis FARSIGHT software was developed to quantify intrinsic
Automated microscopy for high-content RNAi screening
2010-01-01
Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs. PMID:20176920
Developing an Automated Science Analysis System for Mars Surface Exploration for MSL and Beyond
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Hart, S. D.; Shi, X.; Siegel, V. L.
2004-01-01
We are developing an automated science analysis system that could be utilized by robotic or human explorers on Mars (or even in remote locations on Earth) to improve the quality and quantity of science data returned. Three components of this system (our rock, layer, and horizon detectors) [1] have been incorporated into the JPL CLARITY system for possible use by MSL and future Mars robotic missions. Two other components include a multi-spectral image compression (SPEC) algorithm for pancam-type images with multiple filters and image fusion algorithms that identify the in focus regions of individual images in an image focal series [2]. Recently, we have been working to combine image and spectral data, and other knowledge to identify both rocks and minerals. Here we present our progress on developing an igneous rock detection system.
Artificial intelligence for geologic mapping with imaging spectrometers
NASA Technical Reports Server (NTRS)
Kruse, F. A.
1993-01-01
This project was a three year study at the Center for the Study of Earth from Space (CSES) within the Cooperative Institute for Research in Environmental Science (CIRES) at the University of Colorado, Boulder. The goal of this research was to develop an expert system to allow automated identification of geologic materials based on their spectral characteristics in imaging spectrometer data such as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). This requirement was dictated by the volume of data produced by imaging spectrometers, which prohibits manual analysis. The research described is based on the development of automated techniques for analysis of imaging spectrometer data that emulate the analytical processes used by a human observer. The research tested the feasibility of such an approach, implemented an operational system, and tested the validity of the results for selected imaging spectrometer data sets.
Alexander, Nathan S; Palczewska, Grazyna; Palczewski, Krzysztof
2015-08-01
Automated image segmentation is a critical step toward achieving a quantitative evaluation of disease states with imaging techniques. Two-photon fluorescence microscopy (TPM) has been employed to visualize the retinal pigmented epithelium (RPE) and provide images indicating the health of the retina. However, segmentation of RPE cells within TPM images is difficult due to small differences in fluorescence intensity between cell borders and cell bodies. Here we present a semi-automated method for segmenting RPE cells that relies upon multiple weak features that differentiate cell borders from the remaining image. These features were scored by a search optimization procedure that built up the cell border in segments around a nucleus of interest. With six images used as a test, our method correctly identified cell borders for 69% of nuclei on average. Performance was strongly dependent upon increasing retinosome content in the RPE. TPM image analysis has the potential of providing improved early quantitative assessments of diseases affecting the RPE.
Identification of suitable fundus images using automated quality assessment methods.
Şevik, Uğur; Köse, Cemal; Berber, Tolga; Erdöl, Hidayet
2014-04-01
Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an approach for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 consecutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accuracy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic retinal analysis system with sufficient performance scores.
Imaging mass spectrometry data reduction: automated feature identification and extraction.
McDonnell, Liam A; van Remoortere, Alexandra; de Velde, Nico; van Zeijl, René J M; Deelder, André M
2010-12-01
Imaging MS now enables the parallel analysis of hundreds of biomolecules, spanning multiple molecular classes, which allows tissues to be described by their molecular content and distribution. When combined with advanced data analysis routines, tissues can be analyzed and classified based solely on their molecular content. Such molecular histology techniques have been used to distinguish regions with differential molecular signatures that could not be distinguished using established histologic tools. However, its potential to provide an independent, complementary analysis of clinical tissues has been limited by the very large file sizes and large number of discrete variables associated with imaging MS experiments. Here we demonstrate data reduction tools, based on automated feature identification and extraction, for peptide, protein, and lipid imaging MS, using multiple imaging MS technologies, that reduce data loads and the number of variables by >100×, and that highlight highly-localized features that can be missed using standard data analysis strategies. It is then demonstrated how these capabilities enable multivariate analysis on large imaging MS datasets spanning multiple tissues. Copyright © 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Pertuz, Said; McDonald, Elizabeth S; Weinstein, Susan P; Conant, Emily F; Kontos, Despina
2016-04-01
To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board-approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration-cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging-based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment.
Three-dimensional murine airway segmentation in micro-CT images
NASA Astrophysics Data System (ADS)
Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.
2007-03-01
Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.
Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis
NASA Technical Reports Server (NTRS)
Vesecky, John F.; Samadani, Ramin; Smith, Martha P.; Daida, Jason M.; Bracewell, Ronald N.
1988-01-01
The European Space Agency's ERS-1 satellite, as well as others planned to follow, is expected to carry synthetic-aperture radars (SARs) over the polar regions beginning in 1989. A key component in utilization of these SAR data is an automated scheme for extracting the sea-ice velocity field from a time sequence of SAR images of the same geographical region. Two techniques for automated sea-ice tracking, image pyramid area correlation (hierarchical correlation) and feature tracking, are described. Each technique is applied to a pair of Seasat SAR sea-ice images. The results compare well with each other and with manually tracked estimates of the ice velocity. The advantages and disadvantages of these automated methods are pointed out. Using these ice velocity field estimates it is possible to construct one sea-ice image from the other member of the pair. Comparing the reconstructed image with the observed image, errors in the estimated velocity field can be recognized and a useful probable error display created automatically to accompany ice velocity estimates. It is suggested that this error display may be useful in segmenting the sea ice observed into regions that move as rigid plates of significant ice velocity shear and distortion.
Automated detection of diabetic retinopathy on digital fundus images.
Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D
2002-02-01
The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.
Automated detection of diabetic retinopathy lesions on ultrawidefield pseudocolour images.
Wang, Kang; Jayadev, Chaitra; Nittala, Muneeswar G; Velaga, Swetha B; Ramachandra, Chaithanya A; Bhaskaranand, Malavika; Bhat, Sandeep; Solanki, Kaushal; Sadda, SriniVas R
2018-03-01
We examined the sensitivity and specificity of an automated algorithm for detecting referral-warranted diabetic retinopathy (DR) on Optos ultrawidefield (UWF) pseudocolour images. Patients with diabetes were recruited for UWF imaging. A total of 383 subjects (754 eyes) were enrolled. Nonproliferative DR graded to be moderate or higher on the 5-level International Clinical Diabetic Retinopathy (ICDR) severity scale was considered as grounds for referral. The software automatically detected DR lesions using the previously trained classifiers and classified each image in the test set as referral-warranted or not warranted. Sensitivity, specificity and the area under the receiver operating curve (AUROC) of the algorithm were computed. The automated algorithm achieved a 91.7%/90.3% sensitivity (95% CI 90.1-93.9/80.4-89.4) with a 50.0%/53.6% specificity (95% CI 31.7-72.8/36.5-71.4) for detecting referral-warranted retinopathy at the patient/eye levels, respectively; the AUROC was 0.873/0.851 (95% CI 0.819-0.922/0.804-0.894). Diabetic retinopathy (DR) lesions were detected from Optos pseudocolour UWF images using an automated algorithm. Images were classified as referral-warranted DR with a high degree of sensitivity and moderate specificity. Automated analysis of UWF images could be of value in DR screening programmes and could allow for more complete and accurate disease staging. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Grimmer, Timo; Wutz, Carolin; Alexopoulos, Panagiotis; Drzezga, Alexander; Förster, Stefan; Förstl, Hans; Goldhardt, Oliver; Ortner, Marion; Sorg, Christian; Kurz, Alexander
2016-02-01
Biomarkers of Alzheimer disease (AD) can be imaged in vivo and can be used for diagnostic and prognostic purposes in people with cognitive decline and dementia. Indicators of amyloid deposition such as (11)C-Pittsburgh compound B ((11)C-PiB) PET are primarily used to identify or rule out brain diseases that are associated with amyloid pathology but have also been deployed to forecast the clinical course. Indicators of neuronal metabolism including (18)F-FDG PET demonstrate the localization and severity of neuronal dysfunction and are valuable for differential diagnosis and for predicting the progression from mild cognitive impairment (MCI) to dementia. It is a matter of debate whether to analyze these images visually or using automated techniques. Therefore, we compared the usefulness of both imaging methods and both analyzing strategies to predict dementia due to AD. In MCI participants, a baseline examination, including clinical and imaging assessments, and a clinical follow-up examination after a planned interval of 24 mo were performed. Of 28 MCI patients, 9 developed dementia due to AD, 2 developed frontotemporal dementia, and 1 developed moderate dementia of unknown etiology. The positive and negative predictive values and the accuracy of visual and fully automated analyses of (11)C-PiB for the prediction of progression to dementia due to AD were 0.50, 1.00, and 0.68, respectively, for the visual and 0.53, 1.00, and 0.71, respectively, for the automated analyses. Positive predictive value, negative predictive value, and accuracy of fully automated analyses of (18)F-FDG PET were 0.37, 0.78, and 0.50, respectively. Results of visual analyses were highly variable between raters but were superior to automated analyses. Both (18)F-FDG and (11)C-PiB imaging appear to be of limited use for predicting the progression from MCI to dementia due to AD in short-term follow-up, irrespective of the strategy of analysis. On the other hand, amyloid PET is extremely useful to rule out underlying AD. The findings of the present study favor a fully automated method of analysis for (11)C-PiB assessments and a visual analysis by experts for (18)F-FDG assessments. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
[Advances in automatic detection technology for images of thin blood film of malaria parasite].
Juan-Sheng, Zhang; Di-Qiang, Zhang; Wei, Wang; Xiao-Guang, Wei; Zeng-Guo, Wang
2017-05-05
This paper reviews the computer vision and image analysis studies aiming at automated diagnosis or screening of malaria in microscope images of thin blood film smears. On the basis of introducing the background and significance of automatic detection technology, the existing detection technologies are summarized and divided into several steps, including image acquisition, pre-processing, morphological analysis, segmentation, count, and pattern classification components. Then, the principles and implementation methods of each step are given in detail. In addition, the promotion and application in automatic detection technology of thick blood film smears are put forwarded as questions worthy of study, and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.
The optimization of edge and line detectors for forest image analysis
Zhiling Long; Joseph Picone; Victor A. Rudis
2000-01-01
Automated image analysis for forestry applications is becoming increasingly important with the rapid evolution of satellite and land-based remote imaging industries. Features derived from line information play a very important role in analyses of such images. Many edge and line detection algorithms have been proposed but few, if any, comprehensive studies exist that...
Automated analysis of high-content microscopy data with deep learning.
Kraus, Oren Z; Grys, Ben T; Ba, Jimmy; Chong, Yolanda; Frey, Brendan J; Boone, Charles; Andrews, Brenda J
2017-04-18
Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Arihiro, Koji; Oda, Miyo; Ogawa, Katsunari; Kaneko, Yoshie; Shimizu, Tomomi; Tanaka, Yuna; Marubashi, Yukari; Ishida, Katsunari; Takai, Chikako; Taoka, Chie; Kimura, Shuji; Shiroma, Noriyuki
2016-12-01
Although updated HER2 testing guidelines have been improved by a collaboration between the American Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP) in 2013, HER2 evaluation is still problematic because of issues involving CEP17 polysomy, heterogeneity, and HER2 score 2+ cases. The aim of this retrospective study was to evaluate the relationship between HER2 gene heterogeneity, or so called CEP17 polysomy, using breast carcinoma cells sampled by scraping and the IHC score graded by automated image analysis using whole slide image. We randomly selected 23 breast carcinoma cases with a HER2 score 0, 24 cases with a HER2 score 1+, 24 cases with HER2 score 2+, and 23 cases with HER2 score 3+ from the records of patients with breast cancer at Hiroshima University Hospital. We compared the results of fluorescent in situ hybridization (FISH) using formalin-fixed, paraffin-embedded (FFPE) tissues and cytological samples and compared the HER2 score calculated using an automated image analysis using wholly scanned slide images and visual counting. We successfully performed the FISH assay in 78 of 94 cases (83%) using FFPE tissues and in all 94 (100%) cases using cytological samples. Frequency of both HER2 amplification and CEP17 polysomy was higher when cytological samples were used than when FFPE tissue was used. Frequency of HER2 heterogeneity using cytological samples was higher that than using FFPE tissue, except for the IHC score 3+ cases. When assessment of HER2 status based on FISH using FFPE tissue cannot be accomplished, FISH using cytological samples should be considered. When intensity of HER2 is heterogeneous in the tumor tissue, particularly in cases regarded as score 2+, they should be evaluated by automated image analysis using the whole slide image. Copyright © 2016 Elsevier GmbH. All rights reserved.
Automated Diabetic Retinopathy Screening and Monitoring Using Retinal Fundus Image Analysis.
Bhaskaranand, Malavika; Ramachandra, Chaithanya; Bhat, Sandeep; Cuadros, Jorge; Nittala, Muneeswar Gupta; Sadda, SriniVas; Solanki, Kaushal
2016-02-16
Diabetic retinopathy (DR)-a common complication of diabetes-is the leading cause of vision loss among the working-age population in the western world. DR is largely asymptomatic, but if detected at early stages the progression to vision loss can be significantly slowed. With the increasing diabetic population there is an urgent need for automated DR screening and monitoring. To address this growing need, in this article we discuss an automated DR screening tool and extend it for automated estimation of microaneurysm (MA) turnover, a potential biomarker for DR risk. The DR screening tool automatically analyzes color retinal fundus images from a patient encounter for the various DR pathologies and collates the information from all the images belonging to a patient encounter to generate a patient-level screening recommendation. The MA turnover estimation tool aligns retinal images from multiple encounters of a patient, localizes MAs, and performs MA dynamics analysis to evaluate new, persistent, and disappeared lesion maps and estimate MA turnover rates. The DR screening tool achieves 90% sensitivity at 63.2% specificity on a data set of 40 542 images from 5084 patient encounters obtained from the EyePACS telescreening system. On a subset of 7 longitudinal pairs the MA turnover estimation tool identifies new and disappeared MAs with 100% sensitivity and average false positives of 0.43 and 1.6 respectively. The presented automated tools have the potential to address the growing need for DR screening and monitoring, thereby saving vision of millions of diabetic patients worldwide. © 2016 Diabetes Technology Society.
Poon, Candice C; Ebacher, Vincent; Liu, Katherine; Yong, Voon Wee; Kelly, John James Patrick
2018-05-03
Automated slide scanning and segmentation of fluorescently-labeled tissues is the most efficient way to analyze whole slides or large tissue sections. Unfortunately, many researchers spend large amounts of time and resources developing and optimizing workflows that are only relevant to their own experiments. In this article, we describe a protocol that can be used by those with access to a widefield high-content analysis system (WHCAS) to image any slide-mounted tissue, with options for customization within pre-built modules found in the associated software. Not originally intended for slide scanning, the steps detailed in this article make it possible to acquire slide scanning images in the WHCAS which can be imported into the associated software. In this example, the automated segmentation of brain tumor slides is demonstrated, but the automated segmentation of any fluorescently-labeled nuclear or cytoplasmic marker is possible. Furthermore, there are a variety of other quantitative software modules including assays for protein localization/translocation, cellular proliferation/viability/apoptosis, and angiogenesis that can be run. This technique will save researchers time and effort and create an automated protocol for slide analysis.
Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif
2008-03-01
High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.
Cest Analysis: Automated Change Detection from Very-High Remote Sensing Images
NASA Astrophysics Data System (ADS)
Ehlers, M.; Klonus, S.; Jarmer, T.; Sofina, N.; Michel, U.; Reinartz, P.; Sirmacek, B.
2012-08-01
A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye) new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST) analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT) and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment) with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST) of the change algorithms is applied to calculate the probability of change for a particular location. CEST was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan). CEST results are compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal component analysis, delta cue technique and post classification change detection. The new combined method shows superior results averaging between 45% and 15% improvement in accuracy.
NASA Astrophysics Data System (ADS)
Krappe, Sebastian; Benz, Michaela; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian
2015-03-01
The morphological analysis of bone marrow smears is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually with the use of bright field microscope. This is a time consuming, partly subjective and tedious process. Furthermore, repeated examinations of a slide yield intra- and inter-observer variances. For this reason an automation of morphological bone marrow analysis is pursued. This analysis comprises several steps: image acquisition and smear detection, cell localization and segmentation, feature extraction and cell classification. The automated classification of bone marrow cells is depending on the automated cell segmentation and the choice of adequate features extracted from different parts of the cell. In this work we focus on the evaluation of support vector machines (SVMs) and random forests (RFs) for the differentiation of bone marrow cells in 16 different classes, including immature and abnormal cell classes. Data sets of different segmentation quality are used to test the two approaches. Automated solutions for the morphological analysis for bone marrow smears could use such a classifier to pre-classify bone marrow cells and thereby shortening the examination duration.
Choe, Leila H; Lee, Kelvin H
2003-10-01
We investigate one approach to assess the quantitative variability in two-dimensional gel electrophoresis (2-DE) separations based on gel-to-gel variability, sample preparation variability, sample load differences, and the effect of automation on image analysis. We observe that 95% of spots present in three out of four replicate gels exhibit less than a 0.52 coefficient of variation (CV) in fluorescent stain intensity (% volume) for a single sample run on multiple gels. When four parallel sample preparations are performed, this value increases to 0.57. We do not observe any significant change in quantitative value for an increase or decrease in sample load of 30% when using appropriate image analysis variables. Increasing use of automation, while necessary in modern 2-DE experiments, does change the observed level of quantitative and qualitative variability among replicate gels. The number of spots that change qualitatively for a single sample run in parallel varies from a CV = 0.03 for fully manual analysis to CV = 0.20 for a fully automated analysis. We present a systematic method by which a single laboratory can measure gel-to-gel variability using only three gel runs.
Compact Microscope Imaging System Developed
NASA Technical Reports Server (NTRS)
McDowell, Mark
2001-01-01
The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.
Ughi, Giovanni Jacopo; Adriaenssens, Tom; Sinnaeve, Peter; Desmet, Walter; D’hooge, Jan
2013-01-01
Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for the in vivo investigation of coronary artery disease. While IVOCT visualizes atherosclerotic plaques with a resolution <20µm, image analysis in terms of tissue composition is currently performed by a time-consuming manual procedure based on the qualitative interpretation of image features. We illustrate an algorithm for the automated and systematic characterization of IVOCT atherosclerotic tissue. The proposed method consists in a supervised classification of image pixels according to textural features combined with the estimated value of the optical attenuation coefficient. IVOCT images of 64 plaques, from 49 in vivo IVOCT data sets, constituted the algorithm’s training and testing data sets. Validation was obtained by comparing automated analysis results to the manual assessment of atherosclerotic plaques. An overall pixel-wise accuracy of 81.5% with a classification feasibility of 76.5% and per-class accuracy of 89.5%, 72.1% and 79.5% for fibrotic, calcified and lipid-rich tissue respectively, was found. Moreover, measured optical properties were in agreement with previous results reported in literature. As such, an algorithm for automated tissue characterization was developed and validated using in vivo human data, suggesting that it can be applied to clinical IVOCT data. This might be an important step towards the integration of IVOCT in cardiovascular research and routine clinical practice. PMID:23847728
Karnowski, Thomas P [Knoxville, TN; Tobin, Jr., Kenneth W.; Muthusamy Govindasamy, Vijaya Priya [Knoxville, TN; Chaum, Edward [Memphis, TN
2012-07-10
A method for assigning a confidence metric for automated determination of optic disc location that includes analyzing a retinal image and determining at least two sets of coordinates locating an optic disc in the retinal image. The sets of coordinates can be determined using first and second image analysis techniques that are different from one another. An accuracy parameter can be calculated and compared to a primary risk cut-off value. A high confidence level can be assigned to the retinal image if the accuracy parameter is less than the primary risk cut-off value and a low confidence level can be assigned to the retinal image if the accuracy parameter is greater than the primary risk cut-off value. The primary risk cut-off value being selected to represent an acceptable risk of misdiagnosis of a disease having retinal manifestations by the automated technique.
Fast and objective detection and analysis of structures in downhole images
NASA Astrophysics Data System (ADS)
Wedge, Daniel; Holden, Eun-Jung; Dentith, Mike; Spadaccini, Nick
2017-09-01
Downhole acoustic and optical televiewer images, and formation microimager (FMI) logs are important datasets for structural and geotechnical analyses for the mineral and petroleum industries. Within these data, dipping planar structures appear as sinusoids, often in incomplete form and in abundance. Their detection is a labour intensive and hence expensive task and as such is a significant bottleneck in data processing as companies may have hundreds of kilometres of logs to process each year. We present an image analysis system that harnesses the power of automated image analysis and provides an interactive user interface to support the analysis of televiewer images by users with different objectives. Our algorithm rapidly produces repeatable, objective results. We have embedded it in an interactive workflow to complement geologists' intuition and experience in interpreting data to improve efficiency and assist, rather than replace the geologist. The main contributions include a new image quality assessment technique for highlighting image areas most suited to automated structure detection and for detecting boundaries of geological zones, and a novel sinusoid detection algorithm for detecting and selecting sinusoids with given confidence levels. Further tools are provided to perform rapid analysis of and further detection of structures e.g. as limited to specific orientations.
Quang, Timothy; Tran, Emily Q; Schwarz, Richard A; Williams, Michelle D; Vigneswaran, Nadarajah; Gillenwater, Ann M; Richards-Kortum, Rebecca
2017-10-01
The 5-year survival rate for patients with oral cancer remains low, in part because diagnosis often occurs at a late stage. Early and accurate identification of oral high-grade dysplasia and cancer can help improve patient outcomes. Multimodal optical imaging is an adjunctive diagnostic technique in which autofluorescence imaging is used to identify high-risk regions within the oral cavity, followed by high-resolution microendoscopy to confirm or rule out the presence of neoplasia. Multimodal optical images were obtained from 206 sites in 100 patients. Histologic diagnosis, either from a punch biopsy or an excised surgical specimen, was used as the gold standard for all sites. Histopathologic diagnoses of moderate dysplasia or worse were considered neoplastic. Images from 92 sites in the first 30 patients were used as a training set to develop automated image analysis methods for identification of neoplasia. Diagnostic performance was evaluated prospectively using images from 114 sites in the remaining 70 patients as a test set. In the training set, multimodal optical imaging with automated image analysis correctly classified 95% of nonneoplastic sites and 94% of neoplastic sites. Among the 56 sites in the test set that were biopsied, multimodal optical imaging correctly classified 100% of nonneoplastic sites and 85% of neoplastic sites. Among the 58 sites in the test set that corresponded to a surgical specimen, multimodal imaging correctly classified 100% of nonneoplastic sites and 61% of neoplastic sites. These findings support the potential of multimodal optical imaging to aid in the early detection of oral cancer. Cancer Prev Res; 10(10); 563-70. ©2017 AACR . ©2017 American Association for Cancer Research.
Automated detection of diabetic retinopathy: barriers to translation into clinical practice.
Abramoff, Michael D; Niemeijer, Meindert; Russell, Stephen R
2010-03-01
Automated identification of diabetic retinopathy (DR), the primary cause of blindness and visual loss for those aged 18-65 years, from color images of the retina has enormous potential to increase the quality, cost-effectiveness and accessibility of preventative care for people with diabetes. Through advanced image analysis techniques, retinal images are analyzed for abnormalities that define and correlate with the severity of DR. Translating automated DR detection into clinical practice will require surmounting scientific and nonscientific barriers. Scientific concerns, such as DR detection limits compared with human experts, can be studied and measured. Ethical, legal and political issues can be addressed, but are difficult or impossible to measure. The primary objective of this review is to survey the methods, potential benefits and limitations of automated detection in order to better manage translation into clinical practice, based on extensive experience with the systems we have developed.
van der Logt, Elise M. J.; Kuperus, Deborah A. J.; van Setten, Jan W.; van den Heuvel, Marius C.; Boers, James. E.; Schuuring, Ed; Kibbelaar, Robby E.
2015-01-01
HER2 assessment is routinely used to select patients with invasive breast cancer that might benefit from HER2-targeted therapy. The aim of this study was to validate a fully automated in situ hybridization (ISH) procedure that combines the automated Leica HER2 fluorescent ISH system for Bond with supervised automated analysis with the Visia imaging D-Sight digital imaging platform. HER2 assessment was performed on 328 formalin-fixed/paraffin-embedded invasive breast cancer tumors on tissue microarrays (TMA) and 100 (50 selected IHC 2+ and 50 random IHC scores) full-sized slides of resections/biopsies obtained for diagnostic purposes previously. For digital analysis slides were pre-screened at 20x and 100x magnification for all fluorescent signals and supervised-automated scoring was performed on at least two pictures (in total at least 20 nuclei were counted) with the D-Sight HER2 FISH analysis module by two observers independently. Results were compared to data obtained previously with the manual Abbott FISH test. The overall agreement with Abbott FISH data among TMA samples and 50 selected IHC 2+ cases was 98.8% (κ = 0.94) and 93.8% (κ = 0.88), respectively. The results of 50 additionally tested unselected IHC cases were concordant with previously obtained IHC and/or FISH data. The combination of the Leica FISH system with the D-Sight digital imaging platform is a feasible method for HER2 assessment in routine clinical practice for patients with invasive breast cancer. PMID:25844540
Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram
2016-01-01
Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Computer vision applications for coronagraphic optical alignment and image processing.
Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A
2013-05-10
Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.
Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy.
Görlitz, Frederik; Kelly, Douglas J; Warren, Sean C; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J; Stuhmeier, Frank; Neil, Mark A A; Tate, Edward W; Dunsby, Christopher; French, Paul M W
2017-01-18
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set.
Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy
Warren, Sean C.; Alibhai, Dominic; West, Lucien; Kumar, Sunil; Alexandrov, Yuriy; Munro, Ian; Garcia, Edwin; McGinty, James; Talbot, Clifford; Serwa, Remigiusz A.; Thinon, Emmanuelle; da Paola, Vincenzo; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Tate, Edward W.; Dunsby, Christopher; French, Paul M. W.
2017-01-01
We present an open source high content analysis instrument utilizing automated fluorescence lifetime imaging (FLIM) for assaying protein interactions using Förster resonance energy transfer (FRET) based readouts of fixed or live cells in multiwell plates. This provides a means to screen for cell signaling processes read out using intramolecular FRET biosensors or intermolecular FRET of protein interactions such as oligomerization or heterodimerization, which can be used to identify binding partners. We describe here the functionality of this automated multiwell plate FLIM instrumentation and present exemplar data from our studies of HIV Gag protein oligomerization and a time course of a FRET biosensor in live cells. A detailed description of the practical implementation is then provided with reference to a list of hardware components and a description of the open source data acquisition software written in µManager. The application of FLIMfit, an open source MATLAB-based client for the OMERO platform, to analyze arrays of multiwell plate FLIM data is also presented. The protocols for imaging fixed and live cells are outlined and a demonstration of an automated multiwell plate FLIM experiment using cells expressing fluorescent protein-based FRET constructs is presented. This is complemented by a walk-through of the data analysis for this specific FLIM FRET data set. PMID:28190060
Automation of Vapor-Diffusion Growth of Protein Crystals
NASA Technical Reports Server (NTRS)
Hamrick, David T.; Bray, Terry L.
2005-01-01
Some improvements have been made in a system of laboratory equipment developed previously for studying the crystallization of proteins from solution by use of dynamically controlled flows of dry gas. The improvements involve mainly (1) automation of dispensing of liquids for starting experiments, (2) automatic control of drying of protein solutions during the experiments, and (3) provision for automated acquisition of video images for monitoring experiments in progress and for post-experiment analysis. The automation of dispensing of liquids was effected by adding an automated liquid-handling robot that can aspirate source solutions and dispense them in either a hanging-drop or a sitting-drop configuration, whichever is specified, in each of 48 experiment chambers. A video camera of approximately the size and shape of a lipstick dispenser was added to a mobile stage that is part of the robot, in order to enable automated acquisition of images in each experiment chamber. The experiment chambers were redesigned to enable the use of sitting drops, enable backlighting of each specimen, and facilitate automation.
Lesion Border Detection in Dermoscopy Images
Celebi, M. Emre; Schaefer, Gerald; Iyatomi, Hitoshi; Stoecker, William V.
2009-01-01
Background Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, computerized analysis of dermoscopy images has become an important research area. One of the most important steps in dermoscopy image analysis is the automated detection of lesion borders. Methods In this article, we present a systematic overview of the recent border detection methods in the literature paying particular attention to computational issues and evaluation aspects. Conclusion Common problems with the existing approaches include the acquisition, size, and diagnostic distribution of the test image set, the evaluation of the results, and the inadequate description of the employed methods. Border determination by dermatologists appears to depend upon higher-level knowledge, therefore it is likely that the incorporation of domain knowledge in automated methods will enable them to perform better, especially in sets of images with a variety of diagnoses. PMID:19121917
Classification of Korla fragrant pears using NIR hyperspectral imaging analysis
NASA Astrophysics Data System (ADS)
Rao, Xiuqin; Yang, Chun-Chieh; Ying, Yibin; Kim, Moon S.; Chao, Kuanglin
2012-05-01
Korla fragrant pears are small oval pears characterized by light green skin, crisp texture, and a pleasant perfume for which they are named. Anatomically, the calyx of a fragrant pear may be either persistent or deciduous; the deciduouscalyx fruits are considered more desirable due to taste and texture attributes. Chinese packaging standards require that packed cases of fragrant pears contain 5% or less of the persistent-calyx type. Near-infrared hyperspectral imaging was investigated as a potential means for automated sorting of pears according to calyx type. Hyperspectral images spanning the 992-1681 nm region were acquired using an EMCCD-based laboratory line-scan imaging system. Analysis of the hyperspectral images was performed to select wavebands useful for identifying persistent-calyx fruits and for identifying deciduous-calyx fruits. Based on the selected wavebands, an image-processing algorithm was developed that targets automated classification of Korla fragrant pears into the two categories for packaging purposes.
NASA Astrophysics Data System (ADS)
Wollman, Adam J. M.; Miller, Helen; Foster, Simon; Leake, Mark C.
2016-10-01
Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphologically complex structures of fluorescently labelled proteins present in clusters of other types of cells.
NASA Astrophysics Data System (ADS)
White, Joshua S.; Matthews, Jeanna N.; Stacy, John L.
2012-06-01
Phishing website analysis is largely still a time-consuming manual process of discovering potential phishing sites, verifying if suspicious sites truly are malicious spoofs and if so, distributing their URLs to the appropriate blacklisting services. Attackers increasingly use sophisticated systems for bringing phishing sites up and down rapidly at new locations, making automated response essential. In this paper, we present a method for rapid, automated detection and analysis of phishing websites. Our method relies on near real-time gathering and analysis of URLs posted on social media sites. We fetch the pages pointed to by each URL and characterize each page with a set of easily computed values such as number of images and links. We also capture a screen-shot of the rendered page image, compute a hash of the image and use the Hamming distance between these image hashes as a form of visual comparison. We provide initial results demonstrate the feasibility of our techniques by comparing legitimate sites to known fraudulent versions from Phishtank.com, by actively introducing a series of minor changes to a phishing toolkit captured in a local honeypot and by performing some initial analysis on a set of over 2.8 million URLs posted to Twitter over a 4 days in August 2011. We discuss the issues encountered during our testing such as resolvability and legitimacy of URL's posted on Twitter, the data sets used, the characteristics of the phishing sites we discovered, and our plans for future work.
Automated processing of zebrafish imaging data: a survey.
Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine
2013-09-01
Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.
Automated Processing of Zebrafish Imaging Data: A Survey
Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine
2013-01-01
Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125
Rexhepaj, Elton; Brennan, Donal J; Holloway, Peter; Kay, Elaine W; McCann, Amanda H; Landberg, Goran; Duffy, Michael J; Jirstrom, Karin; Gallagher, William M
2008-01-01
Manual interpretation of immunohistochemistry (IHC) is a subjective, time-consuming and variable process, with an inherent intra-observer and inter-observer variability. Automated image analysis approaches offer the possibility of developing rapid, uniform indicators of IHC staining. In the present article we describe the development of a novel approach for automatically quantifying oestrogen receptor (ER) and progesterone receptor (PR) protein expression assessed by IHC in primary breast cancer. Two cohorts of breast cancer patients (n = 743) were used in the study. Digital images of breast cancer tissue microarrays were captured using the Aperio ScanScope XT slide scanner (Aperio Technologies, Vista, CA, USA). Image analysis algorithms were developed using MatLab 7 (MathWorks, Apple Hill Drive, MA, USA). A fully automated nuclear algorithm was developed to discriminate tumour from normal tissue and to quantify ER and PR expression in both cohorts. Random forest clustering was employed to identify optimum thresholds for survival analysis. The accuracy of the nuclear algorithm was initially confirmed by a histopathologist, who validated the output in 18 representative images. In these 18 samples, an excellent correlation was evident between the results obtained by manual and automated analysis (Spearman's rho = 0.9, P < 0.001). Optimum thresholds for survival analysis were identified using random forest clustering. This revealed 7% positive tumour cells as the optimum threshold for the ER and 5% positive tumour cells for the PR. Moreover, a 7% cutoff level for the ER predicted a better response to tamoxifen than the currently used 10% threshold. Finally, linear regression was employed to demonstrate a more homogeneous pattern of expression for the ER (R = 0.860) than for the PR (R = 0.681). In summary, we present data on the automated quantification of the ER and the PR in 743 primary breast tumours using a novel unsupervised image analysis algorithm. This novel approach provides a useful tool for the quantification of biomarkers on tissue specimens, as well as for objective identification of appropriate cutoff thresholds for biomarker positivity. It also offers the potential to identify proteins with a homogeneous pattern of expression.
Song, Yang; Cai, Weidong; Feng, David Dagan; Chen, Mei
2013-01-01
Automated segmentation of cell nuclei in microscopic images is critical to high throughput analysis of the ever increasing amount of data. Although cell nuclei are generally visually distinguishable for human, automated segmentation faces challenges when there is significant intensity inhomogeneity among cell nuclei or in the background. In this paper, we propose an effective method for automated cell nucleus segmentation using a three-step approach. It first obtains an initial segmentation by extracting salient regions in the image, then reduces false positives using inter-region feature discrimination, and finally refines the boundary of the cell nuclei using intra-region contrast information. This method has been evaluated on two publicly available datasets of fluorescence microscopic images with 4009 cells, and has achieved superior performance compared to popular state of the art methods using established metrics.
Automated analysis of clonal cancer cells by intravital imaging
Coffey, Sarah Earley; Giedt, Randy J; Weissleder, Ralph
2013-01-01
Longitudinal analyses of single cell lineages over prolonged periods have been challenging particularly in processes characterized by high cell turn-over such as inflammation, proliferation, or cancer. RGB marking has emerged as an elegant approach for enabling such investigations. However, methods for automated image analysis continue to be lacking. Here, to address this, we created a number of different multicolored poly- and monoclonal cancer cell lines for in vitro and in vivo use. To classify these cells in large scale data sets, we subsequently developed and tested an automated algorithm based on hue selection. Our results showed that this method allows accurate analyses at a fraction of the computational time required by more complex color classification methods. Moreover, the methodology should be broadly applicable to both in vitro and in vivo analyses. PMID:24349895
Spade, Daniel J; Bai, Cathy Yue; Lambright, Christy; Conley, Justin M; Boekelheide, Kim; Gray, L Earl
2018-06-15
In utero exposure to certain phthalate esters results in testicular toxicity, characterized at the tissue level by induction of multinucleated germ cells (MNGs) in rat, mouse, and human fetal testis. Phthalate exposures also result in a decrease in testicular testosterone in rats. The anti-androgenic effects of phthalates have been more thoroughly quantified than testicular pathology due to the significant time requirement associated with manual counting of MNGs on histological sections. An automated counting method was developed in ImageJ to quantify MNGs in digital images of hematoxylin-stained rat fetal testis tissue sections. Timed pregnant Sprague Dawley rats were exposed by daily oral gavage from gestation day 17 to 21 with one of eight phthalate test compounds or corn oil vehicle. Both the manual counting method and the automated image analysis method identified di-n-butyl phthalate, butyl benzyl phthalate, dipentyl phthalate, and di-(2-ethylhexyl) phthalate as positive for induction of MNGs. Dimethyl phthalate, diethyl phthalate, the brominated phthalate di-(2-ethylhexyl) tetrabromophthalate, and dioctyl terephthalate were negative. The correlation between automated and manual scoring metrics was high (r = 0.923). Results of MNG analysis were consistent with these compounds' anti-androgenic activities, which were confirmed in an ex vivo testosterone production assay. In conclusion, we have developed a reliable image analysis method that can be used to facilitate dose-response studies for the reproducible induction of MNGs by in utero phthalate exposure. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Joong Yong; Tuell, Grady
2010-04-01
The Data Processing System (DPS) of the Coastal Zone Mapping and Imaging Lidar (CZMIL) has been designed to automatically produce a number of novel environmental products through the fusion of Lidar, spectrometer, and camera data in a single software package. These new products significantly transcend use of the system as a bathymeter, and support use of CZMIL as a complete coastal and benthic mapping tool. The DPS provides a spinning globe capability for accessing data files; automated generation of combined topographic and bathymetric point clouds; a fully-integrated manual editor and data analysis tool; automated generation of orthophoto mosaics; automated generation of reflectance data cubes from the imaging spectrometer; a coupled air-ocean spectral optimization model producing images of chlorophyll and CDOM concentrations; and a fusion based capability to produce images and classifications of the shallow water seafloor. Adopting a multitasking approach, we expect to achieve computation of the point clouds, DEMs, and reflectance images at a 1:1 processing to acquisition ratio.
Computer vision for microscopy diagnosis of malaria.
Tek, F Boray; Dempster, Andrew G; Kale, Izzet
2009-07-13
This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.
Sun, Wanxin; Chang, Shi; Tai, Dean C S; Tan, Nancy; Xiao, Guangfa; Tang, Huihuan; Yu, Hanry
2008-01-01
Liver fibrosis is associated with an abnormal increase in an extracellular matrix in chronic liver diseases. Quantitative characterization of fibrillar collagen in intact tissue is essential for both fibrosis studies and clinical applications. Commonly used methods, histological staining followed by either semiquantitative or computerized image analysis, have limited sensitivity, accuracy, and operator-dependent variations. The fibrillar collagen in sinusoids of normal livers could be observed through second-harmonic generation (SHG) microscopy. The two-photon excited fluorescence (TPEF) images, recorded simultaneously with SHG, clearly revealed the hepatocyte morphology. We have systematically optimized the parameters for the quantitative SHG/TPEF imaging of liver tissue and developed fully automated image analysis algorithms to extract the information of collagen changes and cell necrosis. Subtle changes in the distribution and amount of collagen and cell morphology are quantitatively characterized in SHG/TPEF images. By comparing to traditional staining, such as Masson's trichrome and Sirius red, SHG/TPEF is a sensitive quantitative tool for automated collagen characterization in liver tissue. Our system allows for enhanced detection and quantification of sinusoidal collagen fibers in fibrosis research and clinical diagnostics.
Automated clinical system for chromosome analysis
NASA Technical Reports Server (NTRS)
Castleman, K. R.; Friedan, H. J.; Johnson, E. T.; Rennie, P. A.; Wall, R. J. (Inventor)
1978-01-01
An automatic chromosome analysis system is provided wherein a suitably prepared slide with chromosome spreads thereon is placed on the stage of an automated microscope. The automated microscope stage is computer operated to move the slide to enable detection of chromosome spreads on the slide. The X and Y location of each chromosome spread that is detected is stored. The computer measures the chromosomes in a spread, classifies them by group or by type and also prepares a digital karyotype image. The computer system can also prepare a patient report summarizing the result of the analysis and listing suspected abnormalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Amanda M.; Daly, Don S.; Willse, Alan R.
The Automated Microarray Image Analysis (AMIA) Toolbox for MATLAB is a flexible, open-source microarray image analysis tool that allows the user to customize analysis of sets of microarray images. This tool provides several methods of identifying and quantify spot statistics, as well as extensive diagnostic statistics and images to identify poor data quality or processing. The open nature of this software allows researchers to understand the algorithms used to provide intensity estimates and to modify them easily if desired.
Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo
2013-09-01
The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.
NASA Astrophysics Data System (ADS)
Vasuki, Yathunanthan; Holden, Eun-Jung; Kovesi, Peter; Micklethwaite, Steven
2014-08-01
Recent advances in data acquisition technologies, such as Unmanned Aerial Vehicles (UAVs), have led to a growing interest in capturing high-resolution rock surface images. However, due to the large volumes of data that can be captured in a short flight, efficient analysis of this data brings new challenges, especially the time it takes to digitise maps and extract orientation data. We outline a semi-automated method that allows efficient mapping of geological faults using photogrammetric data of rock surfaces, which was generated from aerial photographs collected by a UAV. Our method harnesses advanced automated image analysis techniques and human data interaction to rapidly map structures and then calculate their dip and dip directions. Geological structures (faults, joints and fractures) are first detected from the primary photographic dataset and the equivalent three dimensional (3D) structures are then identified within a 3D surface model generated by structure from motion (SfM). From this information the location, dip and dip direction of the geological structures are calculated. A structure map generated by our semi-automated method obtained a recall rate of 79.8% when compared against a fault map produced using expert manual digitising and interpretation methods. The semi-automated structure map was produced in 10 min whereas the manual method took approximately 7 h. In addition, the dip and dip direction calculation, using our automated method, shows a mean±standard error of 1.9°±2.2° and 4.4°±2.6° respectively with field measurements. This shows the potential of using our semi-automated method for accurate and efficient mapping of geological structures, particularly from remote, inaccessible or hazardous sites.
Sharawy, Nivin; Mukhtar, Ahmed; Islam, Sufia; Mahrous, Reham; Mohamed, Hassan; Ali, Mohamed; Hakeem, Amr A; Hossny, Osama; Refaa, Amera; Saka, Ahmed; Cerny, Vladimir; Whynot, Sara; George, Ronald B; Lehmann, Christian
2017-01-01
The outcome of patients in septic shock has been shown to be related to changes within the microcirculation. Modern imaging technologies are available to generate high resolution video recordings of the microcirculation in humans. However, evaluation of the microcirculation is not yet implemented in the routine clinical monitoring of critically ill patients. This is mainly due to large amount of time and user interaction required by the current video analysis software. The aim of this study was to validate a newly developed automated method (CCTools®) for microcirculatory analysis of sublingual capillary perfusion in septic patients in comparison to standard semi-automated software (AVA3®). 204 videos from 47 patients were recorded using incident dark field (IDF) imaging. Total vessel density (TVD), proportion of perfused vessels (PPV), perfused vessel density (PVD), microvascular flow index (MFI) and heterogeneity index (HI) were measured using AVA3® and CCTools®. Significant differences between the numeric results obtained by the two different software packages were observed. The values for TVD, PVD and MFI were statistically related though. The automated software technique successes to show septic shock induced microcirculation alterations in near real time. However, we found wide degrees of agreement between AVA3® and CCTools® values due to several technical factors that should be considered in the future studies.
Automated segmentation of foveal avascular zone in fundus fluorescein angiography.
Zheng, Yalin; Gandhi, Jagdeep Singh; Stangos, Alexandros N; Campa, Claudio; Broadbent, Deborah M; Harding, Simon P
2010-07-01
PURPOSE. To describe and evaluate the performance of a computerized automated segmentation technique for use in quantification of the foveal avascular zone (FAZ). METHODS. A computerized technique for automated segmentation of the FAZ using images from fundus fluorescein angiography (FFA) was applied to 26 transit-phase images obtained from patients with various grades of diabetic retinopathy. The area containing the FAZ zone was first extracted from the original image and smoothed by a Gaussian kernel (sigma = 1.5). An initializing contour was manually placed inside the FAZ of the smoothed image and iteratively moved by the segmentation program toward the FAZ boundary. Five tests with different initializing curves were run on each of 26 images to assess reproducibility. The accuracy of the program was also validated by comparing results obtained by the program with the FAZ boundaries manually delineated by medical retina specialists. Interobserver performance was then evaluated by comparing delineations from two of the experts. RESULTS. One-way analysis of variance indicated that the disparities between different tests were not statistically significant, signifying excellent reproducibility for the computer program. There was a statistically significant linear correlation between the results obtained by automation and manual delineations by experts. CONCLUSIONS. This automated segmentation program can produce highly reproducible results that are comparable to those made by clinical experts. It has the potential to assist in the detection and management of foveal ischemia and to be integrated into automated grading systems.
Maruoka, Sachiko; Nakakura, Shunsuke; Matsuo, Naoko; Yoshitomi, Kayo; Katakami, Chikako; Tabuchi, Hitoshi; Chikama, Taiichiro; Kiuchi, Yoshiaki
2017-10-30
To evaluate two specular microscopy analysis methods across different endothelial cell densities (ECDs). Endothelial images of one eye from each of 45 patients were taken by using three different specular microscopes (three replicates each). To determine the consistency of the center-dot method, we compared SP-6000 and SP-2000P images. CME-530 and SP-6000 images were compared to assess the consistency of the fully automated method. The SP-6000 images from the two methods were compared. Intraclass correlation coefficients (ICCs) for the three measurements were calculated, and parametric multiple comparisons tests and Bland-Altman analysis were performed. The ECD mean value was 2425 ± 883 (range 516-3707) cells/mm 2 . ICC values were > 0.9 for all three microscopes for ECD, but the coefficients of variation (CVs) were 0.3-0.6. For ECD measurements, Bland-Altman analysis revealed that the mean difference was 42 cells/mm 2 between the SP-2000P and SP-6000 for the center-dot method; 57 cells/mm 2 between the SP-6000 measurements from both methods; and -5 cells/mm 2 between the SP-6000 and CME-530 for the fully automated method (95% limits of agreement: - 201 to 284 cell/mm 2 , - 410 to 522 cells/mm 2 , and - 327 to 318 cells/mm 2 , respectively). For CV measurements, the mean differences were - 3, - 12, and 13% (95% limits of agreement - 18 to 11, - 26 to 2, and - 5 to 32%, respectively). Despite using three replicate measurements, the precision of the center-dot method with the SP-2000P and SP-6000 software was only ± 10% for ECD data and was even worse for the fully automated method. Japan Clinical Trials Register ( http://www.umin.ac.jp/ctr/index/htm9 ) number UMIN 000015236.
NASA Technical Reports Server (NTRS)
Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)
1992-01-01
Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.
Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar
Buscombe, Daniel D.
2017-01-01
In recent years, lightweight, inexpensive, vessel-mounted ‘recreational grade’ sonar systems have rapidly grown in popularity among aquatic scientists, for swath imaging of benthic substrates. To promote an ongoing ‘democratization’ of acoustical imaging of shallow water environments, methods to carry out geometric and radiometric correction and georectification of sonar echograms are presented, based on simplified models for sonar-target geometry and acoustic backscattering and attenuation in shallow water. Procedures are described for automated removal of the acoustic shadows, identification of bed-water interface for situations when the water is too turbid or turbulent for reliable depth echosounding, and for automated bed substrate classification based on singlebeam full-waveform analysis. These methods are encoded in an open-source and freely-available software package, which should further facilitate use of recreational-grade sidescan sonar, in a fully automated and objective manner. The sequential correction, mapping, and analysis steps are demonstrated using a data set from a shallow freshwater environment.
Shingrani, Rahul; Krenz, Gary; Molthen, Robert
2010-01-01
With advances in medical imaging scanners, it has become commonplace to generate large multidimensional datasets. These datasets require tools for a rapid, thorough analysis. To address this need, we have developed an automated algorithm for morphometric analysis incorporating A Visualization Workshop computational and image processing libraries for three-dimensional segmentation, vascular tree generation and structural hierarchical ordering with a two-stage numeric optimization procedure for estimating vessel diameters. We combine this new technique with our mathematical models of pulmonary vascular morphology to quantify structural and functional attributes of lung arterial trees. Our physiological studies require repeated measurements of vascular structure to determine differences in vessel biomechanical properties between animal models of pulmonary disease. Automation provides many advantages including significantly improved speed and minimized operator interaction and biasing. The results are validated by comparison with previously published rat pulmonary arterial micro-CT data analysis techniques, in which vessels were manually mapped and measured using intense operator intervention. Published by Elsevier Ireland Ltd.
Dysli, Chantal; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin S.
2015-01-01
Purpose Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. Methods Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b+Prph2Rd2/J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. Results Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. Conclusions Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. Translational Relevance The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions. PMID:26336634
Towards a framework for agent-based image analysis of remote-sensing data
Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera
2015-01-01
Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects’ properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA). PMID:27721916
Towards a framework for agent-based image analysis of remote-sensing data.
Hofmann, Peter; Lettmayer, Paul; Blaschke, Thomas; Belgiu, Mariana; Wegenkittl, Stefan; Graf, Roland; Lampoltshammer, Thomas Josef; Andrejchenko, Vera
2015-04-03
Object-based image analysis (OBIA) as a paradigm for analysing remotely sensed image data has in many cases led to spatially and thematically improved classification results in comparison to pixel-based approaches. Nevertheless, robust and transferable object-based solutions for automated image analysis capable of analysing sets of images or even large image archives without any human interaction are still rare. A major reason for this lack of robustness and transferability is the high complexity of image contents: Especially in very high resolution (VHR) remote-sensing data with varying imaging conditions or sensor characteristics, the variability of the objects' properties in these varying images is hardly predictable. The work described in this article builds on so-called rule sets. While earlier work has demonstrated that OBIA rule sets bear a high potential of transferability, they need to be adapted manually, or classification results need to be adjusted manually in a post-processing step. In order to automate these adaptation and adjustment procedures, we investigate the coupling, extension and integration of OBIA with the agent-based paradigm, which is exhaustively investigated in software engineering. The aims of such integration are (a) autonomously adapting rule sets and (b) image objects that can adopt and adjust themselves according to different imaging conditions and sensor characteristics. This article focuses on self-adapting image objects and therefore introduces a framework for agent-based image analysis (ABIA).
CognitionMaster: an object-based image analysis framework
2013-01-01
Background Automated image analysis methods are becoming more and more important to extract and quantify image features in microscopy-based biomedical studies and several commercial or open-source tools are available. However, most of the approaches rely on pixel-wise operations, a concept that has limitations when high-level object features and relationships between objects are studied and if user-interactivity on the object-level is desired. Results In this paper we present an open-source software that facilitates the analysis of content features and object relationships by using objects as basic processing unit instead of individual pixels. Our approach enables also users without programming knowledge to compose “analysis pipelines“ that exploit the object-level approach. We demonstrate the design and use of example pipelines for the immunohistochemistry-based cell proliferation quantification in breast cancer and two-photon fluorescence microscopy data about bone-osteoclast interaction, which underline the advantages of the object-based concept. Conclusions We introduce an open source software system that offers object-based image analysis. The object-based concept allows for a straight-forward development of object-related interactive or fully automated image analysis solutions. The presented software may therefore serve as a basis for various applications in the field of digital image analysis. PMID:23445542
Automated Tracking of Cell Migration with Rapid Data Analysis.
DuChez, Brian J
2017-09-01
Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Sanyal, Parikshit; Ganguli, Prosenjit; Barui, Sanghita; Deb, Prabal
2018-01-01
The Pap stained cervical smear is a screening tool for cervical cancer. Commercial systems are used for automated screening of liquid based cervical smears. However, there is no image analysis software used for conventional cervical smears. The aim of this study was to develop and test the diagnostic accuracy of a software for analysis of conventional smears. The software was developed using Python programming language and open source libraries. It was standardized with images from Bethesda Interobserver Reproducibility Project. One hundred and thirty images from smears which were reported Negative for Intraepithelial Lesion or Malignancy (NILM), and 45 images where some abnormality has been reported, were collected from the archives of the hospital. The software was then tested on the images. The software was able to segregate images based on overall nuclear: cytoplasmic ratio, coefficient of variation (CV) in nuclear size, nuclear membrane irregularity, and clustering. 68.88% of abnormal images were flagged by the software, as well as 19.23% of NILM images. The major difficulties faced were segmentation of overlapping cell clusters and separation of neutrophils. The software shows potential as a screening tool for conventional cervical smears; however, further refinement in technique is required.
Microscopic image analysis for reticulocyte based on watershed algorithm
NASA Astrophysics Data System (ADS)
Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.
2007-12-01
We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.
A methodology for the semi-automatic digital image analysis of fragmental impactites
NASA Astrophysics Data System (ADS)
Chanou, A.; Osinski, G. R.; Grieve, R. A. F.
2014-04-01
A semi-automated digital image analysis method is developed for the comparative textural study of impact melt-bearing breccias. This method uses the freeware software ImageJ developed by the National Institute of Health (NIH). Digital image analysis is performed on scans of hand samples (10-15 cm across), based on macroscopic interpretations of the rock components. All image processing and segmentation are done semi-automatically, with the least possible manual intervention. The areal fraction of components is estimated and modal abundances can be deduced, where the physical optical properties (e.g., contrast, color) of the samples allow it. Other parameters that can be measured include, for example, clast size, clast-preferred orientations, average box-counting dimension or fragment shape complexity, and nearest neighbor distances (NnD). This semi-automated method allows the analysis of a larger number of samples in a relatively short time. Textures, granulometry, and shape descriptors are of considerable importance in rock characterization. The methodology is used to determine the variations of the physical characteristics of some examples of fragmental impactites.
Semi-automated identification of cones in the human retina using circle Hough transform
Bukowska, Danuta M.; Chew, Avenell L.; Huynh, Emily; Kashani, Irwin; Wan, Sue Ling; Wan, Pak Ming; Chen, Fred K
2015-01-01
A large number of human retinal diseases are characterized by a progressive loss of cones, the photoreceptors critical for visual acuity and color perception. Adaptive Optics (AO) imaging presents a potential method to study these cells in vivo. However, AO imaging in ophthalmology is a relatively new phenomenon and quantitative analysis of these images remains difficult and tedious using manual methods. This paper illustrates a novel semi-automated quantitative technique enabling registration of AO images to macular landmarks, cone counting and its radius quantification at specified distances from the foveal center. The new cone counting approach employs the circle Hough transform (cHT) and is compared to automated counting methods, as well as arbitrated manual cone identification. We explore the impact of varying the circle detection parameter on the validity of cHT cone counting and discuss the potential role of using this algorithm in detecting both cones and rods separately. PMID:26713186
NASA Technical Reports Server (NTRS)
2003-01-01
In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.
Image analysis and modeling in medical image computing. Recent developments and advances.
Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T
2012-01-01
Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.
Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L
2018-01-01
An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.
Crick, Alex J; Cammarota, Eugenia; Moulang, Katie; Kotar, Jurij; Cicuta, Pietro
2015-01-01
Live optical microscopy has become an essential tool for studying the dynamical behaviors and variability of single cells, and cell-cell interactions. However, experiments and data analysis in this area are often extremely labor intensive, and it has often not been achievable or practical to perform properly standardized experiments on a statistically viable scale. We have addressed this challenge by developing automated live imaging platforms, to help standardize experiments, increasing throughput, and unlocking previously impossible ones. Our real-time cell tracking programs communicate in feedback with microscope and camera control software, and they are highly customizable, flexible, and efficient. As examples of our current research which utilize these automated platforms, we describe two quite different applications: egress-invasion interactions of malaria parasites and red blood cells, and imaging of immune cells which possess high motility and internal dynamics. The automated imaging platforms are able to track a large number of motile cells simultaneously, over hours or even days at a time, greatly increasing data throughput and opening up new experimental possibilities. Copyright © 2015 Elsevier Inc. All rights reserved.
Jurrus, Elizabeth; Watanabe, Shigeki; Giuly, Richard J.; Paiva, Antonio R. C.; Ellisman, Mark H.; Jorgensen, Erik M.; Tasdizen, Tolga
2013-01-01
Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes. PMID:22644867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurrus, Elizabeth R.; Watanabe, Shigeki; Giuly, Richard J.
2013-01-01
Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated processmore » first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.« less
Multiplex Quantitative Histologic Analysis of Human Breast Cancer Cell Signaling and Cell Fate
2008-05-01
stains. 15. SUBJECT TERMS Breast cancer, cell signaling, cell proliferation, histology, image analysis 16. SECURITY CLASSIFICATION OF: 17...fluorescence, and these DAPI-stained nuclei are often not counted during subsequent image analysis ). To study two analytes in the same tumor section or...analytes (p-ERK, p-AKT, Ki67) and for epithelial cytokeratin (CK), so that tumor cells may be identified during subsequent automated image analysis (as
Li, Jieyue; Newberg, Justin Y; Uhlén, Mathias; Lundberg, Emma; Murphy, Robert F
2012-01-01
The Human Protein Atlas contains immunofluorescence images showing subcellular locations for thousands of proteins. These are currently annotated by visual inspection. In this paper, we describe automated approaches to analyze the images and their use to improve annotation. We began by training classifiers to recognize the annotated patterns. By ranking proteins according to the confidence of the classifier, we generated a list of proteins that were strong candidates for reexamination. In parallel, we applied hierarchical clustering to group proteins and identified proteins whose annotations were inconsistent with the remainder of the proteins in their cluster. These proteins were reexamined by the original annotators, and a significant fraction had their annotations changed. The results demonstrate that automated approaches can provide an important complement to visual annotation.
Lefman, Jonathan; Morrison, Robert; Subramaniam, Sriram
2007-01-01
We report the development of a novel, multi-specimen imaging system for high-throughput transmission electron microscopy. Our cartridge-based loading system, called the “Gatling”, permits the sequential examination of as many as 100 specimens in the microscope for room temperature electron microscopy using mechanisms for rapid and automated specimen exchange. The software for the operation of the Gatling and automated data acquisition has been implemented in an updated version of our in-house program AutoEM. In the current implementation of the system, the time required to deliver 95 specimens into the microscope and collect overview images from each is about 13 hours. Regions of interest are identified from a low magnification atlas generation from each specimen and an unlimited number of higher magnifications images can be subsequently acquired from these regions using fully automated data acquisition procedures that can be controlled from a remote interface. We anticipate that the availability of the Gatling will greatly accelerate the speed of data acquisition for a variety of applications in biology, materials science and nanotechnology that require rapid screening and image analysis of multiple specimens. PMID:17240161
Automated aerial image based CD metrology initiated by pattern marking with photomask layout data
NASA Astrophysics Data System (ADS)
Davis, Grant; Choi, Sun Young; Jung, Eui Hee; Seyfarth, Arne; van Doornmalen, Hans; Poortinga, Eric
2007-05-01
The photomask is a critical element in the lithographic image transfer process from the drawn layout to the final structures on the wafer. The non-linearity of the imaging process and the related MEEF impose a tight control requirement on the photomask critical dimensions. Critical dimensions can be measured in aerial images with hardware emulation. This is a more recent complement to the standard scanning electron microscope measurement of wafers and photomasks. Aerial image measurement includes non-linear, 3-dimensional, and materials effects on imaging that cannot be observed directly by SEM measurement of the mask. Aerial image measurement excludes the processing effects of printing and etching on the wafer. This presents a unique contribution to the difficult process control and modeling tasks in mask making. In the past, aerial image measurements have been used mainly to characterize the printability of mask repair sites. Development of photomask CD characterization with the AIMS TM tool was motivated by the benefit of MEEF sensitivity and the shorter feedback loop compared to wafer exposures. This paper describes a new application that includes: an improved interface for the selection of meaningful locations using the photomask and design layout data with the Calibre TM Metrology Interface, an automated recipe generation process, an automated measurement process, and automated analysis and result reporting on a Carl Zeiss AIMS TM system.
Aguzzi, Jacopo; Costa, Corrado; Robert, Katleen; Matabos, Marjolaine; Antonucci, Francesca; Juniper, S. Kim; Menesatti, Paolo
2011-01-01
The development and deployment of sensors for undersea cabled observatories is presently biased toward the measurement of habitat variables, while sensor technologies for biological community characterization through species identification and individual counting are less common. The VENUS cabled multisensory network (Vancouver Island, Canada) deploys seafloor camera systems at several sites. Our objective in this study was to implement new automated image analysis protocols for the recognition and counting of benthic decapods (i.e., the galatheid squat lobster, Munida quadrispina), as well as for the evaluation of changes in bacterial mat coverage (i.e., Beggiatoa spp.), using a camera deployed in Saanich Inlet (103 m depth). For the counting of Munida we remotely acquired 100 digital photos at hourly intervals from 2 to 6 December 2009. In the case of bacterial mat coverage estimation, images were taken from 2 to 8 December 2009 at the same time frequency. The automated image analysis protocols for both study cases were created in MatLab 7.1. Automation for Munida counting incorporated the combination of both filtering and background correction (Median- and Top-Hat Filters) with Euclidean Distances (ED) on Red-Green-Blue (RGB) channels. The Scale-Invariant Feature Transform (SIFT) features and Fourier Descriptors (FD) of tracked objects were then extracted. Animal classifications were carried out with the tools of morphometric multivariate statistic (i.e., Partial Least Square Discriminant Analysis; PLSDA) on Mean RGB (RGBv) value for each object and Fourier Descriptors (RGBv+FD) matrices plus SIFT and ED. The SIFT approach returned the better results. Higher percentages of images were correctly classified and lower misclassification errors (an animal is present but not detected) occurred. In contrast, RGBv+FD and ED resulted in a high incidence of records being generated for non-present animals. Bacterial mat coverage was estimated in terms of Percent Coverage and Fractal Dimension. A constant Region of Interest (ROI) was defined and background extraction by a Gaussian Blurring Filter was performed. Image subtraction within ROI was followed by the sum of the RGB channels matrices. Percent Coverage was calculated on the resulting image. Fractal Dimension was estimated using the box-counting method. The images were then resized to a dimension in pixels equal to a power of 2, allowing subdivision into sub-multiple quadrants. In comparisons of manual and automated Percent Coverage and Fractal Dimension estimates, the former showed an overestimation tendency for both parameters. The primary limitations on the automatic analysis of benthic images were habitat variations in sediment texture and water column turbidity. The application of filters for background corrections is a required preliminary step for the efficient recognition of animals and bacterial mat patches. PMID:22346657
NASA Astrophysics Data System (ADS)
Jerosch, K.; Lüdtke, A.; Schlüter, M.; Ioannidis, G. T.
2007-02-01
The combination of new underwater technology as remotely operating vehicles (ROVs), high-resolution video imagery, and software to compute georeferenced mosaics of the seafloor provides new opportunities for marine geological or biological studies and applications in offshore industry. Even during single surveys by ROVs or towed systems large amounts of images are compiled. While these underwater techniques are now well-engineered, there is still a lack of methods for the automatic analysis of the acquired image data. During ROV dives more than 4200 georeferenced video mosaics were compiled for the HÅkon Mosby Mud Volcano (HMMV). Mud volcanoes as HMMV are considered as significant source locations for methane characterised by unique chemoautotrophic communities as Beggiatoa mats. For the detection and quantification of the spatial distribution of Beggiatoa mats an automated image analysis technique was developed, which applies watershed transformation and relaxation-based labelling of pre-segmented regions. Comparison of the data derived by visual inspection of 2840 video images with the automated image analysis revealed similarities with a precision better than 90%. We consider this as a step towards a time-efficient and accurate analysis of seafloor images for computation of geochemical budgets and identification of habitats at the seafloor.
Directional analysis and filtering for dust storm detection in NOAA-AVHRR imagery
NASA Astrophysics Data System (ADS)
Janugani, S.; Jayaram, V.; Cabrera, S. D.; Rosiles, J. G.; Gill, T. E.; Rivera Rivera, N.
2009-05-01
In this paper, we propose spatio-spectral processing techniques for the detection of dust storms and automatically finding its transport direction in 5-band NOAA-AVHRR imagery. Previous methods that use simple band math analysis have produced promising results but have drawbacks in producing consistent results when low signal to noise ratio (SNR) images are used. Moreover, in seeking to automate the dust storm detection, the presence of clouds in the vicinity of the dust storm creates a challenge in being able to distinguish these two types of image texture. This paper not only addresses the detection of the dust storm in the imagery, it also attempts to find the transport direction and the location of the sources of the dust storm. We propose a spatio-spectral processing approach with two components: visualization and automation. Both approaches are based on digital image processing techniques including directional analysis and filtering. The visualization technique is intended to enhance the image in order to locate the dust sources. The automation technique is proposed to detect the transport direction of the dust storm. These techniques can be used in a system to provide timely warnings of dust storms or hazard assessments for transportation, aviation, environmental safety, and public health.
Pertuz, Said; McDonald, Elizabeth S.; Weinstein, Susan P.; Conant, Emily F.
2016-01-01
Purpose To assess a fully automated method for volumetric breast density (VBD) estimation in digital breast tomosynthesis (DBT) and to compare the findings with those of full-field digital mammography (FFDM) and magnetic resonance (MR) imaging. Materials and Methods Bilateral DBT images, FFDM images, and sagittal breast MR images were retrospectively collected from 68 women who underwent breast cancer screening from October 2011 to September 2012 with institutional review board–approved, HIPAA-compliant protocols. A fully automated computer algorithm was developed for quantitative estimation of VBD from DBT images. FFDM images were processed with U.S. Food and Drug Administration–cleared software, and the MR images were processed with a previously validated automated algorithm to obtain corresponding VBD estimates. Pearson correlation and analysis of variance with Tukey-Kramer post hoc correction were used to compare the multimodality VBD estimates. Results Estimates of VBD from DBT were significantly correlated with FFDM-based and MR imaging–based estimates with r = 0.83 (95% confidence interval [CI]: 0.74, 0.90) and r = 0.88 (95% CI: 0.82, 0.93), respectively (P < .001). The corresponding correlation between FFDM and MR imaging was r = 0.84 (95% CI: 0.76, 0.90). However, statistically significant differences after post hoc correction (α = 0.05) were found among VBD estimates from FFDM (mean ± standard deviation, 11.1% ± 7.0) relative to MR imaging (16.6% ± 11.2) and DBT (19.8% ± 16.2). Differences between VDB estimates from DBT and MR imaging were not significant (P = .26). Conclusion Fully automated VBD estimates from DBT, FFDM, and MR imaging are strongly correlated but show statistically significant differences. Therefore, absolute differences in VBD between FFDM, DBT, and MR imaging should be considered in breast cancer risk assessment. © RSNA, 2015 Online supplemental material is available for this article. PMID:26491909
Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging
Patel, Tapan P.; Man, Karen; Firestein, Bonnie L.; Meaney, David F.
2017-01-01
Background Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s–1000 +neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. New method Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. Results We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. Comparison with existing method(s) We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. Conclusions We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. PMID:25629800
Kumar, Sunil; Alibhai, Dominic; Margineanu, Anca; Laine, Romain; Kennedy, Gordon; McGinty, James; Warren, Sean; Kelly, Douglas; Alexandrov, Yuriy; Munro, Ian; Talbot, Clifford; Stuckey, Daniel W; Kimberly, Christopher; Viellerobe, Bertrand; Lacombe, Francois; Lam, Eric W-F; Taylor, Harriet; Dallman, Margaret J; Stamp, Gordon; Murray, Edward J; Stuhmeier, Frank; Sardini, Alessandro; Katan, Matilda; Elson, Daniel S; Neil, Mark A A; Dunsby, Chris; French, Paul M W
2011-01-01
A fluorescence lifetime imaging (FLIM) technology platform intended to read out changes in Förster resonance energy transfer (FRET) efficiency is presented for the study of protein interactions across the drug-discovery pipeline. FLIM provides a robust, inherently ratiometric imaging modality for drug discovery that could allow the same sensor constructs to be translated from automated cell-based assays through small transparent organisms such as zebrafish to mammals. To this end, an automated FLIM multiwell-plate reader is described for high content analysis of fixed and live cells, tomographic FLIM in zebrafish and FLIM FRET of live cells via confocal endomicroscopy. For cell-based assays, an exemplar application reading out protein aggregation using FLIM FRET is presented, and the potential for multiple simultaneous FLIM (FRET) readouts in microscopy is illustrated. PMID:21337485
Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review
NASA Astrophysics Data System (ADS)
van Rikxoort, Eva M.; van Ginneken, Bram
2013-09-01
Computed tomography (CT) is the modality of choice for imaging the lungs in vivo. Sub-millimeter isotropic images of the lungs can be obtained within seconds, allowing the detection of small lesions and detailed analysis of disease processes. The high resolution of thoracic CT and the high prevalence of lung diseases require a high degree of automation in the analysis pipeline. The automated segmentation of pulmonary structures in thoracic CT has been an important research topic for over a decade now. This systematic review provides an overview of current literature. We discuss segmentation methods for the lungs, the pulmonary vasculature, the airways, including airway tree construction and airway wall segmentation, the fissures, the lobes and the pulmonary segments. For each topic, the current state of the art is summarized, and topics for future research are identified.
Tcheng, David K.; Nayak, Ashwin K.; Fowlkes, Charless C.; Punyasena, Surangi W.
2016-01-01
Discriminating between black and white spruce (Picea mariana and Picea glauca) is a difficult palynological classification problem that, if solved, would provide valuable data for paleoclimate reconstructions. We developed an open-source visual recognition software (ARLO, Automated Recognition with Layered Optimization) capable of differentiating between these two species at an accuracy on par with human experts. The system applies pattern recognition and machine learning to the analysis of pollen images and discovers general-purpose image features, defined by simple features of lines and grids of pixels taken at different dimensions, size, spacing, and resolution. It adapts to a given problem by searching for the most effective combination of both feature representation and learning strategy. This results in a powerful and flexible framework for image classification. We worked with images acquired using an automated slide scanner. We first applied a hash-based “pollen spotting” model to segment pollen grains from the slide background. We next tested ARLO’s ability to reconstruct black to white spruce pollen ratios using artificially constructed slides of known ratios. We then developed a more scalable hash-based method of image analysis that was able to distinguish between the pollen of black and white spruce with an estimated accuracy of 83.61%, comparable to human expert performance. Our results demonstrate the capability of machine learning systems to automate challenging taxonomic classifications in pollen analysis, and our success with simple image representations suggests that our approach is generalizable to many other object recognition problems. PMID:26867017
Enhancement of automated blood flow estimates (ENABLE) from arterial spin-labeled MRI.
Shirzadi, Zahra; Stefanovic, Bojana; Chappell, Michael A; Ramirez, Joel; Schwindt, Graeme; Masellis, Mario; Black, Sandra E; MacIntosh, Bradley J
2018-03-01
To validate a multiparametric automated algorithm-ENhancement of Automated Blood fLow Estimates (ENABLE)-that identifies useful and poor arterial spin-labeled (ASL) difference images in multiple postlabeling delay (PLD) acquisitions and thereby improve clinical ASL. ENABLE is a sort/check algorithm that uses a linear combination of ASL quality features. ENABLE uses simulations to determine quality weighting factors based on an unconstrained nonlinear optimization. We acquired a set of 6-PLD ASL images with 1.5T or 3.0T systems among 98 healthy elderly and adults with mild cognitive impairment or dementia. We contrasted signal-to-noise ratio (SNR) of cerebral blood flow (CBF) images obtained with ENABLE vs. conventional ASL analysis. In a subgroup, we validated our CBF estimates with single-photon emission computed tomography (SPECT) CBF images. ENABLE produced significantly increased SNR compared to a conventional ASL analysis (Wilcoxon signed-rank test, P < 0.0001). We also found the similarity between ASL and SPECT was greater when using ENABLE vs. conventional ASL analysis (n = 51, Wilcoxon signed-rank test, P < 0.0001) and this similarity was strongly related to ASL SNR (t = 24, P < 0.0001). These findings suggest that ENABLE improves CBF image quality from multiple PLD ASL in dementia cohorts at either 1.5T or 3.0T, achieved by multiparametric quality features that guided postprocessing of dementia ASL. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:647-655. © 2017 International Society for Magnetic Resonance in Medicine.
Singh, Swaroop S; Kim, Desok; Mohler, James L
2005-05-11
Androgen acts via androgen receptor (AR) and accurate measurement of the levels of AR protein expression is critical for prostate research. The expression of AR in paired specimens of benign prostate and prostate cancer from 20 African and 20 Caucasian Americans was compared to demonstrate an application of this system. A set of 200 immunopositive and 200 immunonegative nuclei were collected from the images using a macro developed in Image Pro Plus. Linear Discriminant and Logistic Regression analyses were performed on the data to generate classification coefficients. Classification coefficients render the automated image analysis software independent of the type of immunostaining or image acquisition system used. The image analysis software performs local segmentation and uses nuclear shape and size to detect prostatic epithelial nuclei. AR expression is described by (a) percentage of immunopositive nuclei; (b) percentage of immunopositive nuclear area; and (c) intensity of AR expression among immunopositive nuclei or areas. The percent positive nuclei and percent nuclear area were similar by race in both benign prostate hyperplasia and prostate cancer. In prostate cancer epithelial nuclei, African Americans exhibited 38% higher levels of AR immunostaining than Caucasian Americans (two sided Student's t-tests; P < 0.05). Intensity of AR immunostaining was similar between races in benign prostate. The differences measured in the intensity of AR expression in prostate cancer were consistent with previous studies. Classification coefficients are required due to non-standardized immunostaining and image collection methods across medical institutions and research laboratories and helps customize the software for the specimen under study. The availability of a free, automated system creates new opportunities for testing, evaluation and use of this image analysis system by many research groups who study nuclear protein expression.
Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji
2018-06-09
Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hong, Hyundae; Benac, Jasenka; Riggsbee, Daniel; Koutsky, Keith
2014-03-01
High throughput (HT) phenotyping of crops is essential to increase yield in environments deteriorated by climate change. The controlled environment of a greenhouse offers an ideal platform to study the genotype to phenotype linkages for crop screening. Advanced imaging technologies are used to study plants' responses to resource limitations such as water and nutrient deficiency. Advanced imaging technologies coupled with automation make HT phenotyping in the greenhouse not only feasible, but practical. Monsanto has a state of the art automated greenhouse (AGH) facility. Handling of the soil, pots water and nutrients are all completely automated. Images of the plants are acquired by multiple hyperspectral and broadband cameras. The hyperspectral cameras cover wavelengths from visible light through short wave infra-red (SWIR). Inhouse developed software analyzes the images to measure plant morphological and biochemical properties. We measure phenotypic metrics like plant area, height, and width as well as biomass. Hyperspectral imaging allows us to measure biochemcical metrics such as chlorophyll, anthocyanin, and foliar water content. The last 4 years of AGH operations on crops like corn, soybean, and cotton have demonstrated successful application of imaging and analysis technologies for high throughput plant phenotyping. Using HT phenotyping, scientists have been showing strong correlations to environmental conditions, such as water and nutrient deficits, as well as the ability to tease apart distinct differences in the genetic backgrounds of crops.
del Río, Joaquín; Aguzzi, Jacopo; Costa, Corrado; Menesatti, Paolo; Sbragaglia, Valerio; Nogueras, Marc; Sarda, Francesc; Manuèl, Antoni
2013-10-30
Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals' visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented "3D Thin-Plate Spline" warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes' bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results indicate that automation efficiency is limited by optimum visibility conditions. Data sets from manual counting present the larger day-night fluctuations in comparison to those derived from automation. This comparison indicates that the automation protocol subestimate fish numbers but it is anyway suitable for the study of community activity rhythms.
del Río, Joaquín; Aguzzi, Jacopo; Costa, Corrado; Menesatti, Paolo; Sbragaglia, Valerio; Nogueras, Marc; Sarda, Francesc; Manuèl, Antoni
2013-01-01
Field measurements of the swimming activity rhythms of fishes are scant due to the difficulty of counting individuals at a high frequency over a long period of time. Cabled observatory video monitoring allows such a sampling at a high frequency over unlimited periods of time. Unfortunately, automation for the extraction of biological information (i.e., animals' visual counts per unit of time) is still a major bottleneck. In this study, we describe a new automated video-imaging protocol for the 24-h continuous counting of fishes in colorimetrically calibrated time-lapse photographic outputs, taken by a shallow water (20 m depth) cabled video-platform, the OBSEA. The spectral reflectance value for each patch was measured between 400 to 700 nm and then converted into standard RGB, used as a reference for all subsequent calibrations. All the images were acquired within a standardized Region Of Interest (ROI), represented by a 2 × 2 m methacrylate panel, endowed with a 9-colour calibration chart, and calibrated using the recently implemented “3D Thin-Plate Spline” warping approach in order to numerically define color by its coordinates in n-dimensional space. That operation was repeated on a subset of images, 500 images as a training set, manually selected since acquired under optimum visibility conditions. All images plus those for the training set were ordered together through Principal Component Analysis allowing the selection of 614 images (67.6%) out of 908 as a total corresponding to 18 days (at 30 min frequency). The Roberts operator (used in image processing and computer vision for edge detection) was used to highlights regions of high spatial colour gradient corresponding to fishes' bodies. Time series in manual and visual counts were compared together for efficiency evaluation. Periodogram and waveform analysis outputs provided very similar results, although quantified parameters in relation to the strength of respective rhythms were different. Results indicate that automation efficiency is limited by optimum visibility conditions. Data sets from manual counting present the larger day-night fluctuations in comparison to those derived from automation. This comparison indicates that the automation protocol subestimate fish numbers but it is anyway suitable for the study of community activity rhythms. PMID:24177726
Automated Image Registration Using Morphological Region of Interest Feature Extraction
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2005-01-01
With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.
[Research applications in digital radiology. Big data and co].
Müller, H; Hanbury, A
2016-02-01
Medical imaging produces increasingly complex images (e.g. thinner slices and higher resolution) with more protocols, so that image reading has also become much more complex. More information needs to be processed and usually the number of radiologists available for these tasks has not increased to the same extent. The objective of this article is to present current research results from projects on the use of image data for clinical decision support. An infrastructure that can allow large volumes of data to be accessed is presented. In this way the best performing tools can be identified without the medical data having to leave secure servers. The text presents the results of the VISCERAL and Khresmoi EU-funded projects, which allow the analysis of previous cases from institutional archives to support decision-making and for process automation. The results also represent a secure evaluation environment for medical image analysis. This allows the use of data extracted from past cases to solve information needs occurring when diagnosing new cases. The presented research prototypes allow direct extraction of knowledge from the visual data of the images and to use this for decision support or process automation. Real clinical use has not been tested but several subjective user tests showed the effectiveness and efficiency of the process. The future in radiology will clearly depend on better use of the important knowledge in clinical image archives to automate processes and aid decision-making via big data analysis. This can help concentrate the work of radiologists towards the most important parts of diagnostics.
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
Automated spot defect characterization in a field portable night vision goggle test set
NASA Astrophysics Data System (ADS)
Scopatz, Stephen; Ozten, Metehan; Aubry, Gilles; Arquetoux, Guillaume
2018-05-01
This paper discusses a new capability developed for and results from a field portable test set for Gen 2 and Gen 3 Image Intensifier (I2) tube-based Night Vision Goggles (NVG). A previous paper described the test set and the automated and semi-automated tests supported for NVGs including a Knife Edge MTF test to replace the operator's interpretation of the USAF 1951 resolution chart. The major improvement and innovation detailed in this paper is the use of image analysis algorithms to automate the characterization of spot defects of I² tubes with the same test set hardware previously presented. The original and still common Spot Defect Test requires the operator to look through the NVGs at target of concentric rings; compare the size of the defects to a chart and manually enter the results into a table based on the size and location of each defect; this is tedious and subjective. The prior semi-automated improvement captures and displays an image of the defects and the rings; allowing the operator determine the defects with less eyestrain; while electronically storing the image and the resulting table. The advanced Automated Spot Defect Test utilizes machine vision algorithms to determine the size and location of the defects, generates the result table automatically and then records the image and the results in a computer-generated report easily usable for verification. This is inherently a more repeatable process that ensures consistent spot detection independent of the operator. Results of across several NVGs will be presented.
A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.
Todd, Douglas W; Philip, Rohit C; Niihori, Maki; Ringle, Ryan A; Coyle, Kelsey R; Zehri, Sobia F; Zabala, Leanne; Mudery, Jordan A; Francis, Ross H; Rodriguez, Jeffrey J; Jacob, Abraham
2017-08-01
Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.
MO-PIS-Exhibit Hall-01: Tools for TG-142 Linac Imaging QA I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, M; Wiesmeyer, M
2014-06-15
Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The therapy topic this year is solutions for TG-142 recommendations for linear accelerator imaging QA. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Automated Imaging QA for TG-142 with RIT Presentation Time: 2:45 – 3:15 PM This presentation will discuss software tools for automated imaging QA and phantom analysis for TG-142.more » All modalities used in radiation oncology will be discussed, including CBCT, planar kV imaging, planar MV imaging, and imaging and treatment coordinate coincidence. Vendor supplied phantoms as well as a variety of third-party phantoms will be shown, along with appropriate analyses, proper phantom setup procedures and scanning settings, and a discussion of image quality metrics. Tools for process automation will be discussed which include: RIT Cognition (machine learning for phantom image identification), RIT Cerberus (automated file system monitoring and searching), and RunQueueC (batch processing of multiple images). In addition to phantom analysis, tools for statistical tracking, trending, and reporting will be discussed. This discussion will include an introduction to statistical process control, a valuable tool in analyzing data and determining appropriate tolerances. An Introduction to TG-142 Imaging QA Using Standard Imaging Products Presentation Time: 3:15 – 3:45 PM Medical Physicists want to understand the logic behind TG-142 Imaging QA. What is often missing is a firm understanding of the connections between the EPID and OBI phantom imaging, the software “algorithms” that calculate the QA metrics, the establishment of baselines, and the analysis and interpretation of the results. The goal of our brief presentation will be to establish and solidify these connections. Our talk will be motivated by the Standard Imaging, Inc. phantom and software solutions. We will present and explain each of the image quality metrics in TG-142 in terms of the theory, mathematics, and algorithms used to implement them in the Standard Imaging PIPSpro software. In the process, we will identify the regions of phantom images that are analyzed by each algorithm. We then will discuss the process of the creation of baselines and typical ranges of acceptable values for each imaging quality metric.« less
High-resolution, continuous field-of-view (FOV), non-rotating imaging system
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L. (Inventor); Stirbl, Robert C. (Inventor); Aghazarian, Hrand (Inventor); Padgett, Curtis W. (Inventor)
2010-01-01
A high resolution CMOS imaging system especially suitable for use in a periscope head. The imaging system includes a sensor head for scene acquisition, and a control apparatus inclusive of distributed processors and software for device-control, data handling, and display. The sensor head encloses a combination of wide field-of-view CMOS imagers and narrow field-of-view CMOS imagers. Each bank of imagers is controlled by a dedicated processing module in order to handle information flow and image analysis of the outputs of the camera system. The imaging system also includes automated or manually controlled display system and software for providing an interactive graphical user interface (GUI) that displays a full 360-degree field of view and allows the user or automated ATR system to select regions for higher resolution inspection.
NASA Astrophysics Data System (ADS)
Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.
2012-02-01
Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.
Automated thermal mapping techniques using chromatic image analysis
NASA Technical Reports Server (NTRS)
Buck, Gregory M.
1989-01-01
Thermal imaging techniques are introduced using a chromatic image analysis system and temperature sensitive coatings. These techniques are used for thermal mapping and surface heat transfer measurements on aerothermodynamic test models in hypersonic wind tunnels. Measurements are made on complex vehicle configurations in a timely manner and at minimal expense. The image analysis system uses separate wavelength filtered images to analyze surface spectral intensity data. The system was initially developed for quantitative surface temperature mapping using two-color thermographic phosphors but was found useful in interpreting phase change paint and liquid crystal data as well.
Experiments on automatic classification of tissue malignancy in the field of digital pathology
NASA Astrophysics Data System (ADS)
Pereira, J.; Barata, R.; Furtado, Pedro
2017-06-01
Automated analysis of histological images helps diagnose and further classify breast cancer. Totally automated approaches can be used to pinpoint images for further analysis by the medical doctor. But tissue images are especially challenging for either manual or automated approaches, due to mixed patterns and textures, where malignant regions are sometimes difficult to detect unless they are in very advanced stages. Some of the major challenges are related to irregular and very diffuse patterns, as well as difficulty to define winning features and classifier models. Although it is also hard to segment correctly into regions, due to the diffuse nature, it is still crucial to take low-level features over individualized regions instead of the whole image, and to select those with the best outcomes. In this paper we report on our experiments building a region classifier with a simple subspace division and a feature selection model that improves results over image-wide and/or limited feature sets. Experimental results show modest accuracy for a set of classifiers applied over the whole image, while the conjunction of image division, per-region low-level extraction of features and selection of features, together with the use of a neural network classifier achieved the best levels of accuracy for the dataset and settings we used in the experiments. Future work involves deep learning techniques, adding structures semantics and embedding the approach as a tumor finding helper in a practical Medical Imaging Application.
Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo
2008-01-01
Background Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Methods Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). Results We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. Conclusion The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes. PMID:18627634
Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo
2008-07-16
Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes.
Robust binarization of degraded document images using heuristics
NASA Astrophysics Data System (ADS)
Parker, Jon; Frieder, Ophir; Frieder, Gideon
2013-12-01
Historically significant documents are often discovered with defects that make them difficult to read and analyze. This fact is particularly troublesome if the defects prevent software from performing an automated analysis. Image enhancement methods are used to remove or minimize document defects, improve software performance, and generally make images more legible. We describe an automated, image enhancement method that is input page independent and requires no training data. The approach applies to color or greyscale images with hand written script, typewritten text, images, and mixtures thereof. We evaluated the image enhancement method against the test images provided by the 2011 Document Image Binarization Contest (DIBCO). Our method outperforms all 2011 DIBCO entrants in terms of average F1 measure - doing so with a significantly lower variance than top contest entrants. The capability of the proposed method is also illustrated using select images from a collection of historic documents stored at Yad Vashem Holocaust Memorial in Israel.
AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.
Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J
2015-04-01
A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.
An approach for automated analysis of particle holograms
NASA Technical Reports Server (NTRS)
Stanton, A. C.; Caulfield, H. J.; Stewart, G. W.
1984-01-01
A simple method for analyzing droplet holograms is proposed that is readily adaptable to automation using modern image digitizers and analyzers for determination of the number, location, and size distributions of spherical or nearly spherical droplets. The method determines these parameters by finding the spatial location of best focus of the droplet images. With this location known, the particle size may be determined by direct measurement of image area in the focal plane. Particle velocity and trajectory may be determined by comparison of image locations at different instants in time. The method is tested by analyzing digitized images from a reconstructed in-line hologram, and the results show that the method is more accurate than a time-consuming plane-by-plane search for sharpest focus.
Spotlight-8 Image Analysis Software
NASA Technical Reports Server (NTRS)
Klimek, Robert; Wright, Ted
2006-01-01
Spotlight is a cross-platform GUI-based software package designed to perform image analysis on sequences of images generated by combustion and fluid physics experiments run in a microgravity environment. Spotlight can perform analysis on a single image in an interactive mode or perform analysis on a sequence of images in an automated fashion. Image processing operations can be employed to enhance the image before various statistics and measurement operations are performed. An arbitrarily large number of objects can be analyzed simultaneously with independent areas of interest. Spotlight saves results in a text file that can be imported into other programs for graphing or further analysis. Spotlight can be run on Microsoft Windows, Linux, and Apple OS X platforms.
Image segmentation evaluation for very-large datasets
NASA Astrophysics Data System (ADS)
Reeves, Anthony P.; Liu, Shuang; Xie, Yiting
2016-03-01
With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.
Schoening, Timm; Bergmann, Melanie; Ontrup, Jörg; Taylor, James; Dannheim, Jennifer; Gutt, Julian; Purser, Autun; Nattkemper, Tim W
2012-01-01
Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS.
Schoening, Timm; Bergmann, Melanie; Ontrup, Jörg; Taylor, James; Dannheim, Jennifer; Gutt, Julian; Purser, Autun; Nattkemper, Tim W.
2012-01-01
Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS. PMID:22719868
Artificial neural network-aided image analysis system for cell counting.
Sjöström, P J; Frydel, B R; Wahlberg, L U
1999-05-01
In histological preparations containing debris and synthetic materials, it is difficult to automate cell counting using standard image analysis tools, i.e., systems that rely on boundary contours, histogram thresholding, etc. In an attempt to mimic manual cell recognition, an automated cell counter was constructed using a combination of artificial intelligence and standard image analysis methods. Artificial neural network (ANN) methods were applied on digitized microscopy fields without pre-ANN feature extraction. A three-layer feed-forward network with extensive weight sharing in the first hidden layer was employed and trained on 1,830 examples using the error back-propagation algorithm on a Power Macintosh 7300/180 desktop computer. The optimal number of hidden neurons was determined and the trained system was validated by comparison with blinded human counts. System performance at 50x and lO0x magnification was evaluated. The correlation index at 100x magnification neared person-to-person variability, while 50x magnification was not useful. The system was approximately six times faster than an experienced human. ANN-based automated cell counting in noisy histological preparations is feasible. Consistent histology and computer power are crucial for system performance. The system provides several benefits, such as speed of analysis and consistency, and frees up personnel for other tasks.
Automated detection and classification of dice
NASA Astrophysics Data System (ADS)
Correia, Bento A. B.; Silva, Jeronimo A.; Carvalho, Fernando D.; Guilherme, Rui; Rodrigues, Fernando C.; de Silva Ferreira, Antonio M.
1995-03-01
This paper describes a typical machine vision system in an unusual application, the automated visual inspection of a Casino's playing tables. The SORTE computer vision system was developed at INETI under a contract with the Portuguese Gaming Inspection Authorities IGJ. It aims to automate the tasks of detection and classification of the dice's scores on the playing tables of the game `Banca Francesa' (which means French Banking) in Casinos. The system is based on the on-line analysis of the images captured by a monochrome CCD camera placed over the playing tables, in order to extract relevant information concerning the score indicated by the dice. Image processing algorithms for real time automatic throwing detection and dice classification were developed and implemented.
Semi-Automated Identification of Rocks in Images
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin; Castano, Andres; Anderson, Robert
2006-01-01
Rock Identification Toolkit Suite is a computer program that assists users in identifying and characterizing rocks shown in images returned by the Mars Explorer Rover mission. Included in the program are components for automated finding of rocks, interactive adjustments of outlines of rocks, active contouring of rocks, and automated analysis of shapes in two dimensions. The program assists users in evaluating the surface properties of rocks and soil and reports basic properties of rocks. The program requires either the Mac OS X operating system running on a G4 (or more capable) processor or a Linux operating system running on a Pentium (or more capable) processor, plus at least 128MB of random-access memory.
Kwak, Jihoon; Genovesio, Auguste; Kang, Myungjoo; Hansen, Michael Adsett Edberg; Han, Sung-Jun
2015-01-01
Genotoxicity testing is an important component of toxicity assessment. As illustrated by the European registration, evaluation, authorization, and restriction of chemicals (REACH) directive, it concerns all the chemicals used in industry. The commonly used in vivo mammalian tests appear to be ill adapted to tackle the large compound sets involved, due to throughput, cost, and ethical issues. The somatic mutation and recombination test (SMART) represents a more scalable alternative, since it uses Drosophila, which develops faster and requires less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila wings required for the SMART limits its usage. To overcome this limitation, we have developed an automated SMART readout. It consists of automated imaging, followed by an image analysis pipeline that measures individual wing genotoxicity scores. Finally, we have developed a wing score-based dose-dependency approach that can provide genotoxicity profiles. We have validated our method using 6 compounds, obtaining profiles almost identical to those obtained from manual measures, even for low-genotoxicity compounds such as urethane. The automated SMART, with its faster and more reliable readout, fulfills the need for a high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools we provide should facilitate the optimization and dissemination of our methods. PMID:25830368
Image analysis tools and emerging algorithms for expression proteomics
English, Jane A.; Lisacek, Frederique; Morris, Jeffrey S.; Yang, Guang-Zhong; Dunn, Michael J.
2012-01-01
Since their origins in academic endeavours in the 1970s, computational analysis tools have matured into a number of established commercial packages that underpin research in expression proteomics. In this paper we describe the image analysis pipeline for the established 2-D Gel Electrophoresis (2-DE) technique of protein separation, and by first covering signal analysis for Mass Spectrometry (MS), we also explain the current image analysis workflow for the emerging high-throughput ‘shotgun’ proteomics platform of Liquid Chromatography coupled to MS (LC/MS). The bioinformatics challenges for both methods are illustrated and compared, whilst existing commercial and academic packages and their workflows are described from both a user’s and a technical perspective. Attention is given to the importance of sound statistical treatment of the resultant quantifications in the search for differential expression. Despite wide availability of proteomics software, a number of challenges have yet to be overcome regarding algorithm accuracy, objectivity and automation, generally due to deterministic spot-centric approaches that discard information early in the pipeline, propagating errors. We review recent advances in signal and image analysis algorithms in 2-DE, MS, LC/MS and Imaging MS. Particular attention is given to wavelet techniques, automated image-based alignment and differential analysis in 2-DE, Bayesian peak mixture models and functional mixed modelling in MS, and group-wise consensus alignment methods for LC/MS. PMID:21046614
Automated sample area definition for high-throughput microscopy.
Zeder, M; Ellrott, A; Amann, R
2011-04-01
High-throughput screening platforms based on epifluorescence microscopy are powerful tools in a variety of scientific fields. Although some applications are based on imaging geometrically defined samples such as microtiter plates, multiwell slides, or spotted gene arrays, others need to cope with inhomogeneously located samples on glass slides. The analysis of microbial communities in aquatic systems by sample filtration on membrane filters followed by multiple fluorescent staining, or the investigation of tissue sections are examples. Therefore, we developed a strategy for flexible and fast definition of sample locations by the acquisition of whole slide overview images and automated sample recognition by image analysis. Our approach was tested on different microscopes and the computer programs are freely available (http://www.technobiology.ch). Copyright © 2011 International Society for Advancement of Cytometry.
Collins, Adam; Huett, Alan
2018-05-15
We present a high-content screen (HCS) for the simultaneous analysis of multiple phenotypes in HeLa cells expressing an autophagy reporter (mcherry-LC3) and one of 224 GFP-fused proteins from the Crohn's Disease (CD)-associated bacterium, Adherent Invasive E. coli (AIEC) strain LF82. Using automated confocal microscopy and image analysis (CellProfiler), we localised GFP fusions within cells, and monitored their effects upon autophagy (an important innate cellular defence mechanism), cellular and nuclear morphology, and the actin cytoskeleton. This data will provide an atlas for the localisation of 224 AIEC proteins within human cells, as well as a dataset to analyse their effects upon many aspects of host cell morphology. We also describe an open-source, automated, image-analysis workflow to identify bacterial effectors and their roles via the perturbations induced in reporter cell lines when candidate effectors are exogenously expressed.
Target identification by image analysis.
Fetz, V; Prochnow, H; Brönstrup, M; Sasse, F
2016-05-04
Covering: 1997 to the end of 2015Each biologically active compound induces phenotypic changes in target cells that are characteristic for its mode of action. These phenotypic alterations can be directly observed under the microscope or made visible by labelling structural elements or selected proteins of the cells with dyes. A comparison of the cellular phenotype induced by a compound of interest with the phenotypes of reference compounds with known cellular targets allows predicting its mode of action. While this approach has been successfully applied to the characterization of natural products based on a visual inspection of images, recent studies used automated microscopy and analysis software to increase speed and to reduce subjective interpretation. In this review, we give a general outline of the workflow for manual and automated image analysis, and we highlight natural products whose bacterial and eucaryotic targets could be identified through such approaches.
Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath
2009-01-01
Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697
Crowdsourcing and Automated Retinal Image Analysis for Diabetic Retinopathy.
Mudie, Lucy I; Wang, Xueyang; Friedman, David S; Brady, Christopher J
2017-09-23
As the number of people with diabetic retinopathy (DR) in the USA is expected to increase threefold by 2050, the need to reduce health care costs associated with screening for this treatable disease is ever present. Crowdsourcing and automated retinal image analysis (ARIA) are two areas where new technology has been applied to reduce costs in screening for DR. This paper reviews the current literature surrounding these new technologies. Crowdsourcing has high sensitivity for normal vs abnormal images; however, when multiple categories for severity of DR are added, specificity is reduced. ARIAs have higher sensitivity and specificity, and some commercial ARIA programs are already in use. Deep learning enhanced ARIAs appear to offer even more improvement in ARIA grading accuracy. The utilization of crowdsourcing and ARIAs may be a key to reducing the time and cost burden of processing images from DR screening.
NASA Technical Reports Server (NTRS)
2006-01-01
Frequently, scientists grow crystals by dissolving a protein in a specific liquid solution, and then allowing that solution to evaporate. The methods used next have been, variously, invasive (adding a dye that is absorbed by the protein), destructive (crushing protein/salt-crystal mixtures and observing differences between the crushing of salt and protein), or costly and time-consuming (X-ray crystallography). In contrast to these methods, a new technology for monitoring protein growth, developed in part through NASA Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center, is noninvasive, nondestructive, rapid, and more cost effective than X-ray analysis. The partner for this SBIR, Photon-X, Inc., of Huntsville, Alabama, developed spatial phase imaging technology that can monitor crystal growth in real time and in an automated mode. Spatial phase imaging scans for flaws quickly and produces a 3-D structured image of a crystal, showing volumetric growth analysis for future automated growth.
Automated metastatic brain lesion detection: a computer aided diagnostic and clinical research tool
NASA Astrophysics Data System (ADS)
Devine, Jeremy; Sahgal, Arjun; Karam, Irene; Martel, Anne L.
2016-03-01
The accurate localization of brain metastases in magnetic resonance (MR) images is crucial for patients undergoing stereotactic radiosurgery (SRS) to ensure that all neoplastic foci are targeted. Computer automated tumor localization and analysis can improve both of these tasks by eliminating inter and intra-observer variations during the MR image reading process. Lesion localization is accomplished using adaptive thresholding to extract enhancing objects. Each enhancing object is represented as a vector of features which includes information on object size, symmetry, position, shape, and context. These vectors are then used to train a random forest classifier. We trained and tested the image analysis pipeline on 3D axial contrast-enhanced MR images with the intention of localizing the brain metastases. In our cross validation study and at the most effective algorithm operating point, we were able to identify 90% of the lesions at a precision rate of 60%.
Study of living single cells in culture: automated recognition of cell behavior.
Bodin, P; Papin, S; Meyer, C; Travo, P
1988-07-01
An automated system capable of analyzing the behavior, in real time, of single living cells in culture, in a noninvasive and nondestructive way, has been developed. A large number of cell positions in single culture dishes were recorded using a computer controlled, robotized microscope. During subsequent observations, binary images obtained from video image analysis of the microscope visual field allowed the identification of the recorded cells. These cells could be revisited automatically every few minutes. Long-term studies of the behavior of cells make possible the analysis of cellular locomotary and mitotic activities as well as determination of cell shape (chosen from a defined library) for several hours or days in a fully automated way with observations spaced up to 30 minutes. Short-term studies of the behavior of cells permit the study, in a semiautomatic way, of acute effects of drugs (5 to 15 minutes) on changes of surface area and length of cells.
Garteiser, Philippe; Doblas, Sabrina; Towner, Rheal A; Griffin, Timothy M
2013-11-01
To use an automated water-suppressed magnetic resonance imaging (MRI) method to objectively assess adipose tissue (AT) volumes in whole body and specific regional body components (subcutaneous, thoracic and peritoneal) of obese and lean mice. Water-suppressed MR images were obtained on a 7T, horizontal-bore MRI system in whole bodies (excluding head) of 26 week old male C57BL6J mice fed a control (10% kcal fat) or high-fat diet (60% kcal fat) for 20 weeks. Manual (outlined regions) versus automated (Gaussian fitting applied to threshold-weighted images) segmentation procedures were compared for whole body AT and regional AT volumes (i.e., subcutaneous, thoracic, and peritoneal). The AT automated segmentation method was compared to dual-energy X-ray (DXA) analysis. The average AT volumes for whole body and individual compartments correlated well between the manual outlining and the automated methods (R2>0.77, p<0.05). Subcutaneous, peritoneal, and total body AT volumes were increased 2-3 fold and thoracic AT volume increased more than 5-fold in diet-induced obese mice versus controls (p<0.05). MRI and DXA-based method comparisons were highly correlative (R2=0.94, p<0.0001). Automated AT segmentation of water-suppressed MRI data using a global Gaussian filtering algorithm resulted in a fairly accurate assessment of total and regional AT volumes in a pre-clinical mouse model of obesity. © 2013 Elsevier Inc. All rights reserved.
Development of an automated asbestos counting software based on fluorescence microscopy.
Alexandrov, Maxym; Ichida, Etsuko; Nishimura, Tomoki; Aoki, Kousuke; Ishida, Takenori; Hirota, Ryuichi; Ikeda, Takeshi; Kawasaki, Tetsuo; Kuroda, Akio
2015-01-01
An emerging alternative to the commonly used analytical methods for asbestos analysis is fluorescence microscopy (FM), which relies on highly specific asbestos-binding probes to distinguish asbestos from interfering non-asbestos fibers. However, all types of microscopic asbestos analysis require laborious examination of large number of fields of view and are prone to subjective errors and large variability between asbestos counts by different analysts and laboratories. A possible solution to these problems is automated counting of asbestos fibers by image analysis software, which would lower the cost and increase the reliability of asbestos testing. This study seeks to develop a fiber recognition and counting software for FM-based asbestos analysis. We discuss the main features of the developed software and the results of its testing. Software testing showed good correlation between automated and manual counts for the samples with medium and high fiber concentrations. At low fiber concentrations, the automated counts were less accurate, leading us to implement correction mode for automated counts. While the full automation of asbestos analysis would require further improvements in accuracy of fiber identification, the developed software could already assist professional asbestos analysts and record detailed fiber dimensions for the use in epidemiological research.
"First generation" automated DNA sequencing technology.
Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M
2011-10-01
Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.
Automated 3D renal segmentation based on image partitioning
NASA Astrophysics Data System (ADS)
Yeghiazaryan, Varduhi; Voiculescu, Irina D.
2016-03-01
Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.
NASA Astrophysics Data System (ADS)
Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.
2017-03-01
In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.
Haring, Martijn T; Liv, Nalan; Zonnevylle, A Christiaan; Narvaez, Angela C; Voortman, Lenard M; Kruit, Pieter; Hoogenboom, Jacob P
2017-03-02
In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.
Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.
2017-01-01
In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample. PMID:28252673
High-throughput high-volume nuclear imaging for preclinical in vivo compound screening§.
Macholl, Sven; Finucane, Ciara M; Hesterman, Jacob; Mather, Stephen J; Pauplis, Rachel; Scully, Deirdre; Sosabowski, Jane K; Jouannot, Erwan
2017-12-01
Preclinical single-photon emission computed tomography (SPECT)/CT imaging studies are hampered by low throughput, hence are found typically within small volume feasibility studies. Here, imaging and image analysis procedures are presented that allow profiling of a large volume of radiolabelled compounds within a reasonably short total study time. Particular emphasis was put on quality control (QC) and on fast and unbiased image analysis. 2-3 His-tagged proteins were simultaneously radiolabelled by 99m Tc-tricarbonyl methodology and injected intravenously (20 nmol/kg; 100 MBq; n = 3) into patient-derived xenograft (PDX) mouse models. Whole-body SPECT/CT images of 3 mice simultaneously were acquired 1, 4, and 24 h post-injection, extended to 48 h and/or by 0-2 h dynamic SPECT for pre-selected compounds. Organ uptake was quantified by automated multi-atlas and manual segmentations. Data were plotted automatically, quality controlled and stored on a collaborative image management platform. Ex vivo uptake data were collected semi-automatically and analysis performed as for imaging data. >500 single animal SPECT images were acquired for 25 proteins over 5 weeks, eventually generating >3500 ROI and >1000 items of tissue data. SPECT/CT images clearly visualized uptake in tumour and other tissues even at 48 h post-injection. Intersubject uptake variability was typically 13% (coefficient of variation, COV). Imaging results correlated well with ex vivo data. The large data set of tumour, background and systemic uptake/clearance data from 75 mice for 25 compounds allows identification of compounds of interest. The number of animals required was reduced considerably by longitudinal imaging compared to dissection experiments. All experimental work and analyses were accomplished within 3 months expected to be compatible with drug development programmes. QC along all workflow steps, blinding of the imaging contract research organization to compound properties and automation provide confidence in the data set. Additional ex vivo data were useful as a control but could be omitted from future studies in the same centre. For even larger compound libraries, radiolabelling could be expedited and the number of imaging time points adapted to increase weekly throughput. Multi-atlas segmentation could be expanded via SPECT/MRI; however, this would require an MRI-compatible mouse hotel. Finally, analysis of nuclear images of radiopharmaceuticals in clinical trials may benefit from the automated analysis procedures developed.
Multi-Modal Glioblastoma Segmentation: Man versus Machine
Pica, Alessia; Schucht, Philippe; Beck, Jürgen; Verma, Rajeev Kumar; Slotboom, Johannes; Reyes, Mauricio; Wiest, Roland
2014-01-01
Background and Purpose Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. Methods We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. Results Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. Conclusions In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity. PMID:24804720
Fully automated muscle quality assessment by Gabor filtering of second harmonic generation images
NASA Astrophysics Data System (ADS)
Paesen, Rik; Smolders, Sophie; Vega, José Manolo de Hoyos; Eijnde, Bert O.; Hansen, Dominique; Ameloot, Marcel
2016-02-01
Although structural changes on the sarcomere level of skeletal muscle are known to occur due to various pathologies, rigorous studies of the reduced sarcomere quality remain scarce. This can possibly be explained by the lack of an objective tool for analyzing and comparing sarcomere images across biological conditions. Recent developments in second harmonic generation (SHG) microscopy and increasing insight into the interpretation of sarcomere SHG intensity profiles have made SHG microscopy a valuable tool to study microstructural properties of sarcomeres. Typically, sarcomere integrity is analyzed by fitting a set of manually selected, one-dimensional SHG intensity profiles with a supramolecular SHG model. To circumvent this tedious manual selection step, we developed a fully automated image analysis procedure to map the sarcomere disorder for the entire image at once. The algorithm relies on a single-frequency wavelet-based Gabor approach and includes a newly developed normalization procedure allowing for unambiguous data interpretation. The method was validated by showing the correlation between the sarcomere disorder, quantified by the M-band size obtained from manually selected profiles, and the normalized Gabor value ranging from 0 to 1 for decreasing disorder. Finally, to elucidate the applicability of our newly developed protocol, Gabor analysis was used to study the effect of experimental autoimmune encephalomyelitis on the sarcomere regularity. We believe that the technique developed in this work holds great promise for high-throughput, unbiased, and automated image analysis to study sarcomere integrity by SHG microscopy.
Becker, François; Fourgeau, Patrice; Carpentier, Patrick H; Ouchène, Amina
2018-06-01
We postulate that blue telangiectasia and brownish pigmentation at ankle level, early markers of chronic venous insufficiency, can be quantified for longitudinal studies of chronic venous disease in Caucasian people. Objectives and methods To describe a photographic technique specially developed for this purpose. The pictures were acquired using a dedicated photo stand to position the foot in a reproducible way, with a normalized lighting and acquisition protocol. The image analysis was performed with a tool developed using algorithms optimized to detect and quantify blue telangiectasia and brownish pigmentation and their relative surface in the region of interest. To test the short-term reproducibility of the measures. Results The quantification of the blue telangiectasia and of the brownish pigmentation using an automated digital photo analysis is feasible. The short-term reproducibility is good for blue telangiectasia quantification. It is a less accurate for the brownish pigmentation. Conclusion The blue telangiectasia of the corona phlebectatica and the ankle flare can be assessed using a clinimetric approach based on the automated digital photo analysis.
Quantitative image analysis of immunohistochemical stains using a CMYK color model
Pham, Nhu-An; Morrison, Andrew; Schwock, Joerg; Aviel-Ronen, Sarit; Iakovlev, Vladimir; Tsao, Ming-Sound; Ho, James; Hedley, David W
2007-01-01
Background Computer image analysis techniques have decreased effects of observer biases, and increased the sensitivity and the throughput of immunohistochemistry (IHC) as a tissue-based procedure for the evaluation of diseases. Methods We adapted a Cyan/Magenta/Yellow/Key (CMYK) model for automated computer image analysis to quantify IHC stains in hematoxylin counterstained histological sections. Results The spectral characteristics of the chromogens AEC, DAB and NovaRed as well as the counterstain hematoxylin were first determined using CMYK, Red/Green/Blue (RGB), normalized RGB and Hue/Saturation/Lightness (HSL) color models. The contrast of chromogen intensities on a 0–255 scale (24-bit image file) as well as compared to the hematoxylin counterstain was greatest using the Yellow channel of a CMYK color model, suggesting an improved sensitivity for IHC evaluation compared to other color models. An increase in activated STAT3 levels due to growth factor stimulation, quantified using the Yellow channel image analysis was associated with an increase detected by Western blotting. Two clinical image data sets were used to compare the Yellow channel automated method with observer-dependent methods. First, a quantification of DAB-labeled carbonic anhydrase IX hypoxia marker in 414 sections obtained from 138 biopsies of cervical carcinoma showed strong association between Yellow channel and positive color selection results. Second, a linear relationship was also demonstrated between Yellow intensity and visual scoring for NovaRed-labeled epidermal growth factor receptor in 256 non-small cell lung cancer biopsies. Conclusion The Yellow channel image analysis method based on a CMYK color model is independent of observer biases for threshold and positive color selection, applicable to different chromogens, tolerant of hematoxylin, sensitive to small changes in IHC intensity and is applicable to simple automation procedures. These characteristics are advantageous for both basic as well as clinical research in an unbiased, reproducible and high throughput evaluation of IHC intensity. PMID:17326824
Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma
NASA Astrophysics Data System (ADS)
Larraona-Puy, Marta; Ghita, Adrian; Zoladek, Alina; Perkins, William; Varma, Sandeep; Leach, Iain H.; Koloydenko, Alexey A.; Williams, Hywel; Notingher, Ioan
2009-09-01
We investigate the potential of Raman microspectroscopy (RMS) for automated evaluation of excised skin tissue during Mohs micrographic surgery (MMS). The main aim is to develop an automated method for imaging and diagnosis of basal cell carcinoma (BCC) regions. Selected Raman bands responsible for the largest spectral differences between BCC and normal skin regions and linear discriminant analysis (LDA) are used to build a multivariate supervised classification model. The model is based on 329 Raman spectra measured on skin tissue obtained from 20 patients. BCC is discriminated from healthy tissue with 90+/-9% sensitivity and 85+/-9% specificity in a 70% to 30% split cross-validation algorithm. This multivariate model is then applied on tissue sections from new patients to image tumor regions. The RMS images show excellent correlation with the gold standard of histopathology sections, BCC being detected in all positive sections. We demonstrate the potential of RMS as an automated objective method for tumor evaluation during MMS. The replacement of current histopathology during MMS by a ``generalization'' of the proposed technique may improve the feasibility and efficacy of MMS, leading to a wider use according to clinical need.
NASA Astrophysics Data System (ADS)
Rasmussen, John C.; Bautista, Merrick; Tan, I.-Chih; Adams, Kristen E.; Aldrich, Melissa; Marshall, Milton V.; Fife, Caroline E.; Maus, Erik A.; Smith, Latisha A.; Zhang, Jingdan; Xiang, Xiaoyan; Zhou, Shaohua Kevin; Sevick-Muraca, Eva M.
2011-02-01
Recently, we demonstrated near-infrared (NIR) fluorescence imaging for quantifying real-time lymphatic propulsion in humans following intradermal injections of microdose amounts of indocyanine green. However computational methods for image analysis are underdeveloped, hindering the translation and clinical adaptation of NIR fluorescent lymphatic imaging. In our initial work we used ImageJ and custom MatLab programs to manually identify lymphatic vessels and individual propulsion events using the temporal transit of the fluorescent dye. In addition, we extracted the apparent velocities of contractile propagation and time periods between propulsion events. Extensive time and effort were required to analyze the 6-8 gigabytes of NIR fluorescent images obtained for each subject. To alleviate this bottleneck, we commenced development of ALFIA, an integrated software platform which will permit automated, near real-time analysis of lymphatic function using NIR fluorescent imaging. However, prior to automation, the base algorithms calculating the apparent velocity and period must be validated to verify that they produce results consistent with the proof-of-concept programs. To do this, both methods were used to analyze NIR fluorescent images of two subjects and the number of propulsive events identified, the average apparent velocities, and the average periods for each subject were compared. Paired Student's t-tests indicate that the differences between their average results are not significant. With the base algorithms validated, further development and automation of ALFIA can be realized, significantly reducing the amount of user interaction required, and potentially enabling the near real-time, clinical evaluation of NIR fluorescent lymphatic imaging.
NASA Astrophysics Data System (ADS)
Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.
2012-12-01
Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.
Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina
2016-05-01
Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.
Automating PACS quality control with the Vanderbilt image processing enterprise resource
NASA Astrophysics Data System (ADS)
Esparza, Michael L.; Welch, E. Brian; Landman, Bennett A.
2012-02-01
Precise image acquisition is an integral part of modern patient care and medical imaging research. Periodic quality control using standardized protocols and phantoms ensures that scanners are operating according to specifications, yet such procedures do not ensure that individual datasets are free from corruption; for example due to patient motion, transient interference, or physiological variability. If unacceptable artifacts are noticed during scanning, a technologist can repeat a procedure. Yet, substantial delays may be incurred if a problematic scan is not noticed until a radiologist reads the scans or an automated algorithm fails. Given scores of slices in typical three-dimensional scans and widevariety of potential use cases, a technologist cannot practically be expected inspect all images. In large-scale research, automated pipeline systems have had great success in achieving high throughput. However, clinical and institutional workflows are largely based on DICOM and PACS technologies; these systems are not readily compatible with research systems due to security and privacy restrictions. Hence, quantitative quality control has been relegated to individual investigators and too often neglected. Herein, we propose a scalable system, the Vanderbilt Image Processing Enterprise Resource (VIPER) to integrate modular quality control and image analysis routines with a standard PACS configuration. This server unifies image processing routines across an institutional level and provides a simple interface so that investigators can collaborate to deploy new analysis technologies. VIPER integrates with high performance computing environments has successfully analyzed all standard scans from our institutional research center over the course of the last 18 months.
Can Automated Imaging for Optic Disc and Retinal Nerve Fiber Layer Analysis Aid Glaucoma Detection?
Banister, Katie; Boachie, Charles; Bourne, Rupert; Cook, Jonathan; Burr, Jennifer M; Ramsay, Craig; Garway-Heath, David; Gray, Joanne; McMeekin, Peter; Hernández, Rodolfo; Azuara-Blanco, Augusto
2016-05-01
To compare the diagnostic performance of automated imaging for glaucoma. Prospective, direct comparison study. Adults with suspected glaucoma or ocular hypertension referred to hospital eye services in the United Kingdom. We evaluated 4 automated imaging test algorithms: the Heidelberg Retinal Tomography (HRT; Heidelberg Engineering, Heidelberg, Germany) glaucoma probability score (GPS), the HRT Moorfields regression analysis (MRA), scanning laser polarimetry (GDx enhanced corneal compensation; Glaucoma Diagnostics (GDx), Carl Zeiss Meditec, Dublin, CA) nerve fiber indicator (NFI), and Spectralis optical coherence tomography (OCT; Heidelberg Engineering) retinal nerve fiber layer (RNFL) classification. We defined abnormal tests as an automated classification of outside normal limits for HRT and OCT or NFI ≥ 56 (GDx). We conducted a sensitivity analysis, using borderline abnormal image classifications. The reference standard was clinical diagnosis by a masked glaucoma expert including standardized clinical assessment and automated perimetry. We analyzed 1 eye per patient (the one with more advanced disease). We also evaluated the performance according to severity and using a combination of 2 technologies. Sensitivity and specificity, likelihood ratios, diagnostic, odds ratio, and proportion of indeterminate tests. We recruited 955 participants, and 943 were included in the analysis. The average age was 60.5 years (standard deviation, 13.8 years); 51.1% were women. Glaucoma was diagnosed in at least 1 eye in 16.8%; 32% of participants had no glaucoma-related findings. The HRT MRA had the highest sensitivity (87.0%; 95% confidence interval [CI], 80.2%-92.1%), but lowest specificity (63.9%; 95% CI, 60.2%-67.4%); GDx had the lowest sensitivity (35.1%; 95% CI, 27.0%-43.8%), but the highest specificity (97.2%; 95% CI, 95.6%-98.3%). The HRT GPS sensitivity was 81.5% (95% CI, 73.9%-87.6%), and specificity was 67.7% (95% CI, 64.2%-71.2%); OCT sensitivity was 76.9% (95% CI, 69.2%-83.4%), and specificity was 78.5% (95% CI, 75.4%-81.4%). Including only eyes with severe glaucoma, sensitivity increased: HRT MRA, HRT GPS, and OCT would miss 5% of eyes, and GDx would miss 21% of eyes. A combination of 2 different tests did not improve the accuracy substantially. Automated imaging technologies can aid clinicians in diagnosing glaucoma, but may not replace current strategies because they can miss some cases of severe glaucoma. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Araki, Tadashi; Kumar, P Krishna; Suri, Harman S; Ikeda, Nobutaka; Gupta, Ajay; Saba, Luca; Rajan, Jeny; Lavra, Francesco; Sharma, Aditya M; Shafique, Shoaib; Nicolaides, Andrew; Laird, John R; Suri, Jasjit S
2016-07-01
The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.35 ± 0.95 mm for JDB and 6.20 ± 1.35 mm for HKDB. The precision-of-merit was: 97.4 % and 98.0 % w.r.t to two manual tracings for JDB and 99.7 % and 97.9 % w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.
NASA Astrophysics Data System (ADS)
Sosik, H. M.; Olson, R. J.; Brownlee, E.; Brosnahan, M.; Crockford, E. T.; Peacock, E.; Shalapyonok, A.
2016-12-01
Imaging FlowCytobot (IFCB) was developed to fill a need for automated identification and monitoring of nano- and microplankton, especially phytoplankton in the size range 10 200 micrometer, which are important in coastal blooms (including harmful algal blooms). IFCB uses a combination of flow cytometric and video technology to capture high resolution (1 micrometer) images of suspended particles. This proven, now commercially available, submersible instrument technology has been deployed in fixed time series locations for extended periods (months to years) and in shipboard laboratories where underway water is automatically analyzed during surveys. Building from these successes, we have now constructed and evaluated three new prototype IFCB designs that extend measurement and deployment capabilities. To improve cell counting statistics without degrading image quality, a high throughput version (IFCB-HT) incorporates in-flow acoustic focusing to non-disruptively pre-concentrate cells before the measurement area of the flow cell. To extend imaging to all heterotrophic cells (even those that do not exhibit chlorophyll fluorescence), Staining IFCB (IFCB-S) incorporates automated addition of a live-cell fluorescent stain (fluorescein diacetate) to samples before analysis. A horizontally-oriented IFCB-AV design addresses the need for spatial surveying from surface autonomous vehicles, including design features that reliably eliminate air bubbles and mitigate wave motion impacts. Laboratory evaluation and test deployments in waters near Woods Hole show the efficacy of each of these enhanced IFCB designs.
Shahidi, Shoaleh; Bahrampour, Ehsan; Soltanimehr, Elham; Zamani, Ali; Oshagh, Morteza; Moattari, Marzieh; Mehdizadeh, Alireza
2014-09-16
Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods.
Automated biodosimetry using digital image analysis of fluorescence in situ hybridization specimens.
Castleman, K R; Schulze, M; Wu, Q
1997-11-01
Fluorescence in situ hybridization (FISH) of metaphase chromosome spreads is valuable for monitoring the radiation dose to circulating lymphocytes. At low dose levels, the number of cells that must be examined to estimate aberration frequencies is quite large. An automated microscope that can perform this analysis autonomously on suitably prepared specimens promises to make practical the large-scale studies that will be required for biodosimetry in the future. This paper describes such an instrument that is currently under development. We use metaphase specimens in which the five largest chromosomes have been hybridized with different-colored whole-chromosome painting probes. An automated multiband fluorescence microscope locates the spreads and counts the number of chromosome components of each color. Digital image analysis is used to locate and isolate the cells, count chromosome components, and estimate the proportions of abnormal cells. Cells exhibiting more than two chromosomal fragments in any color correspond to a clastogenic event. These automatically derived counts are corrected for statistical bias and used to estimate the overall rate of chromosome breakage. Overlap of fluorophore emission spectra prohibits isolation of the different chromosomes into separate color channels. Image processing effectively isolates each fluorophore to a single monochrome image, simplifying the task of counting chromosome fragments and reducing the error in the algorithm. Using proportion estimation, we remove the bias introduced by counting errors, leaving accuracy restricted by sample size considerations alone.
NASA Astrophysics Data System (ADS)
Mozgovoy, Dmitry k.; Hnatushenko, Volodymyr V.; Vasyliev, Volodymyr V.
2018-04-01
Vegetation and water bodies are a fundamental element of urban ecosystems, and water mapping is critical for urban and landscape planning and management. A methodology of automated recognition of vegetation and water bodies on the territory of megacities in satellite images of sub-meter spatial resolution of the visible and IR bands is proposed. By processing multispectral images from the satellite SuperView-1A, vector layers of recognized plant and water objects were obtained. Analysis of the results of image processing showed a sufficiently high accuracy of the delineation of the boundaries of recognized objects and a good separation of classes. The developed methodology provides a significant increase of the efficiency and reliability of updating maps of large cities while reducing financial costs. Due to the high degree of automation, the proposed methodology can be implemented in the form of a geo-information web service functioning in the interests of a wide range of public services and commercial institutions.
Choudhry, Priya
2016-01-01
Counting cells and colonies is an integral part of high-throughput screens and quantitative cellular assays. Due to its subjective and time-intensive nature, manual counting has hindered the adoption of cellular assays such as tumor spheroid formation in high-throughput screens. The objective of this study was to develop an automated method for quick and reliable counting of cells and colonies from digital images. For this purpose, I developed an ImageJ macro Cell Colony Edge and a CellProfiler Pipeline Cell Colony Counting, and compared them to other open-source digital methods and manual counts. The ImageJ macro Cell Colony Edge is valuable in counting cells and colonies, and measuring their area, volume, morphology, and intensity. In this study, I demonstrate that Cell Colony Edge is superior to other open-source methods, in speed, accuracy and applicability to diverse cellular assays. It can fulfill the need to automate colony/cell counting in high-throughput screens, colony forming assays, and cellular assays. PMID:26848849
Automated detection of fundus photographic red lesions in diabetic retinopathy.
Larsen, Michael; Godt, Jannik; Larsen, Nicolai; Lund-Andersen, Henrik; Sjølie, Anne Katrin; Agardh, Elisabet; Kalm, Helle; Grunkin, Michael; Owens, David R
2003-02-01
To compare a fundus image-analysis algorithm for automated detection of hemorrhages and microaneurysms with visual detection of retinopathy in patients with diabetes. Four hundred fundus photographs (35-mm color transparencies) were obtained in 200 eyes of 100 patients with diabetes who were randomly selected from the Welsh Community Diabetic Retinopathy Study. A gold standard reference was defined by classifying each patient as having or not having diabetic retinopathy based on overall visual grading of the digitized transparencies. A single-lesion visual grading was made independently, comprising meticulous outlining of all single lesions in all photographs and used to develop the automated red lesion detection system. A comparison of visual and automated single-lesion detection in replicating the overall visual grading was then performed. Automated red lesion detection demonstrated a specificity of 71.4% and a resulting sensitivity of 96.7% in detecting diabetic retinopathy when applied at a tentative threshold setting for use in diabetic retinopathy screening. The accuracy of 79% could be raised to 85% by adjustment of a single user-supplied parameter determining the balance between the screening priorities, for which a considerable range of options was demonstrated by the receiver-operating characteristic (area under the curve 90.3%). The agreement of automated lesion detection with overall visual grading (0.659) was comparable to the mean agreement of six ophthalmologists (0.648). Detection of diabetic retinopathy by automated detection of single fundus lesions can be achieved with a performance comparable to that of experienced ophthalmologists. The results warrant further investigation of automated fundus image analysis as a tool for diabetic retinopathy screening.
Basic research planning in mathematical pattern recognition and image analysis
NASA Technical Reports Server (NTRS)
Bryant, J.; Guseman, L. F., Jr.
1981-01-01
Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.
Automatic brain MR image denoising based on texture feature-based artificial neural networks.
Chang, Yu-Ning; Chang, Herng-Hua
2015-01-01
Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.
Spectral Analysis of Breast Cancer on Tissue Microarrays: Seeing Beyond Morphology
2005-04-01
Harvey N., Szymanski J.J., Bloch J.J., Mitchell M. investigation of image feature extraction by a genetic algorithm. Proc. SPIE 1999;3812:24-31. 11...automated feature extraction using multiple data sources. Proc. SPIE 2003;5099:190-200. 15 4 Spectral-Spatial Analysis of Urine Cytology Angeletti et al...Appendix Contents: 1. Harvey, N.R., Levenson, R.M., Rimm, D.L. (2003) Investigation of Automated Feature Extraction Techniques for Applications in
Zhou, Zhi; Pons, Marie Noëlle; Raskin, Lutgarde; Zilles, Julie L
2007-05-01
When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method and duration of sample dispersion were optimized to reduce the interference of cell aggregates. An automated image analysis program that detects cells from 4',6'-diamidino-2-phenylindole (DAPI) micrographs and extracts the maximum and mean fluorescence intensities for each cell from corresponding FISH images was developed with the software Visilog. Intensity thresholds were not consistent even for duplicate analyses, so alternative ways of classifying signals were investigated. In the resulting method, the intensity data were divided into clusters using fuzzy c-means clustering, and the resulting clusters were classified as target (positive) or nontarget (negative). A manual quality control confirmed this classification. With this method, 50.4, 72.1, and 64.9% of the cells in two swine manure samples and one soil sample, respectively, were positive as determined with a 16S rRNA-targeted bacterial probe (S-D-Bact-0338-a-A-18). Manual counting resulted in corresponding values of 52.3, 70.6, and 61.5%, respectively. In two swine manure samples and one soil sample 21.6, 12.3, and 2.5% of the cells were positive with an archaeal probe (S-D-Arch-0915-a-A-20), respectively. Manual counting resulted in corresponding values of 22.4, 14.0, and 2.9%, respectively. This automated method should facilitate quantitative analysis of FISH images for a variety of complex environmental samples.
Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study
NASA Technical Reports Server (NTRS)
Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia
2015-01-01
Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seibert, J; Imbergamo, P
The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, highmore » contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.« less
Automated facial acne assessment from smartphone images
NASA Astrophysics Data System (ADS)
Amini, Mohammad; Vasefi, Fartash; Valdebran, Manuel; Huang, Kevin; Zhang, Haomiao; Kemp, William; MacKinnon, Nicholas
2018-02-01
A smartphone mobile medical application is presented, that provides analysis of the health of skin on the face using a smartphone image and cloud-based image processing techniques. The mobile application employs the use of the camera to capture a front face image of a subject, after which the captured image is spatially calibrated based on fiducial points such as position of the iris of the eye. A facial recognition algorithm is used to identify features of the human face image, to normalize the image, and to define facial regions of interest (ROI) for acne assessment. We identify acne lesions and classify them into two categories: those that are papules and those that are pustules. Automated facial acne assessment was validated by performing tests on images of 60 digital human models and 10 real human face images. The application was able to identify 92% of acne lesions within five facial ROIs. The classification accuracy for separating papules from pustules was 98%. Combined with in-app documentation of treatment, lifestyle factors, and automated facial acne assessment, the app can be used in both cosmetic and clinical dermatology. It allows users to quantitatively self-measure acne severity and treatment efficacy on an ongoing basis to help them manage their chronic facial acne.
Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.
Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I
2016-03-01
MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.
Quantitative Medical Image Analysis for Clinical Development of Therapeutics
NASA Astrophysics Data System (ADS)
Analoui, Mostafa
There has been significant progress in development of therapeutics for prevention and management of several disease areas in recent years, leading to increased average life expectancy, as well as of quality of life, globally. However, due to complexity of addressing a number of medical needs and financial burden of development of new class of therapeutics, there is a need for better tools for decision making and validation of efficacy and safety of new compounds. Numerous biological markers (biomarkers) have been proposed either as adjunct to current clinical endpoints or as surrogates. Imaging biomarkers are among rapidly increasing biomarkers, being examined to expedite effective and rational drug development. Clinical imaging often involves a complex set of multi-modality data sets that require rapid and objective analysis, independent of reviewer's bias and training. In this chapter, an overview of imaging biomarkers for drug development is offered, along with challenges that necessitate quantitative and objective image analysis. Examples of automated and semi-automated analysis approaches are provided, along with technical review of such methods. These examples include the use of 3D MRI for osteoarthritis, ultrasound vascular imaging, and dynamic contrast enhanced MRI for oncology. Additionally, a brief overview of regulatory requirements is discussed. In conclusion, this chapter highlights key challenges and future directions in this area.
Platform for Automated Real-Time High Performance Analytics on Medical Image Data.
Allen, William J; Gabr, Refaat E; Tefera, Getaneh B; Pednekar, Amol S; Vaughn, Matthew W; Narayana, Ponnada A
2018-03-01
Biomedical data are quickly growing in volume and in variety, providing clinicians an opportunity for better clinical decision support. Here, we demonstrate a robust platform that uses software automation and high performance computing (HPC) resources to achieve real-time analytics of clinical data, specifically magnetic resonance imaging (MRI) data. We used the Agave application programming interface to facilitate communication, data transfer, and job control between an MRI scanner and an off-site HPC resource. In this use case, Agave executed the graphical pipeline tool GRAphical Pipeline Environment (GRAPE) to perform automated, real-time, quantitative analysis of MRI scans. Same-session image processing will open the door for adaptive scanning and real-time quality control, potentially accelerating the discovery of pathologies and minimizing patient callbacks. We envision this platform can be adapted to other medical instruments, HPC resources, and analytics tools.
Localization-based super-resolution imaging meets high-content screening.
Beghin, Anne; Kechkar, Adel; Butler, Corey; Levet, Florian; Cabillic, Marine; Rossier, Olivier; Giannone, Gregory; Galland, Rémi; Choquet, Daniel; Sibarita, Jean-Baptiste
2017-12-01
Single-molecule localization microscopy techniques have proven to be essential tools for quantitatively monitoring biological processes at unprecedented spatial resolution. However, these techniques are very low throughput and are not yet compatible with fully automated, multiparametric cellular assays. This shortcoming is primarily due to the huge amount of data generated during imaging and the lack of software for automation and dedicated data mining. We describe an automated quantitative single-molecule-based super-resolution methodology that operates in standard multiwell plates and uses analysis based on high-content screening and data-mining software. The workflow is compatible with fixed- and live-cell imaging and allows extraction of quantitative data like fluorophore photophysics, protein clustering or dynamic behavior of biomolecules. We demonstrate that the method is compatible with high-content screening using 3D dSTORM and DNA-PAINT based super-resolution microscopy as well as single-particle tracking.
Fink, Christine; Uhlmann, Lorenz; Klose, Christina; Haenssle, Holger A
2018-05-17
Reliable and accurate assessment of severity in psoriasis is very important in order to meet indication criteria for initiation of systemic treatment or to evaluate treatment efficacy. The most acknowledged tool for measuring the extent of psoriatic skin changes is the Psoriasis Area and Severity Index (PASI). However, the calculation of PASI can be tedious and subjective and high intraobserver and interobserver variability is an important concern. Therefore, there is a great need for a standardised and objective method that guarantees a reproducible PASI calculation. Within this study we will investigate the precision and reproducibility of automated, computer-guided PASI measurements in comparison to trained physicians to address these limitations. Non-interventional analyses of PASI calculations by either physicians in a prospective versus retrospective setting or an automated computer-guided algorithm in 120 patients with plaque psoriasis. All retrospective PASI calculations by physicians or by the computer algorithm are based on total body digital images. The primary objective of this study is comparison of automated computer-guided PASI measurements by means of digital image analysis versus conventional, prospective or retrospective physicians' PASI assessments. Secondary endpoints include (1) the assessment of physicians' interobserver variance in PASI calculations, (2) the assessment of physicians' intraobserver variance in PASI assessments of the same patients' images after a time interval of at least 4 weeks, (3) the assessment of the deviation between physicians' prospective versus retrospective PASI calculations, and (4) the reproducibility of automated computer-guided PASI measurements by assessment of two sets of total body digital images of the same patients taken at one time point. Ethical approval was provided by the Ethics Committee of the Medical Faculty of the University of Heidelberg (ethics approval number S-379/2016). DRKS00011818; Results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Automated microaneurysm detection in diabetic retinopathy using curvelet transform
NASA Astrophysics Data System (ADS)
Ali Shah, Syed Ayaz; Laude, Augustinus; Faye, Ibrahima; Tang, Tong Boon
2016-10-01
Microaneurysms (MAs) are known to be the early signs of diabetic retinopathy (DR). An automated MA detection system based on curvelet transform is proposed for color fundus image analysis. Candidates of MA were extracted in two parallel steps. In step one, blood vessels were removed from preprocessed green band image and preliminary MA candidates were selected by local thresholding technique. In step two, based on statistical features, the image background was estimated. The results from the two steps allowed us to identify preliminary MA candidates which were also present in the image foreground. A collection set of features was fed to a rule-based classifier to divide the candidates into MAs and non-MAs. The proposed system was tested with Retinopathy Online Challenge database. The automated system detected 162 MAs out of 336, thus achieved a sensitivity of 48.21% with 65 false positives per image. Counting MA is a means to measure the progression of DR. Hence, the proposed system may be deployed to monitor the progression of DR at early stage in population studies.
Automated microaneurysm detection in diabetic retinopathy using curvelet transform.
Ali Shah, Syed Ayaz; Laude, Augustinus; Faye, Ibrahima; Tang, Tong Boon
2016-10-01
Microaneurysms (MAs) are known to be the early signs of diabetic retinopathy (DR). An automated MA detection system based on curvelet transform is proposed for color fundus image analysis. Candidates of MA were extracted in two parallel steps. In step one, blood vessels were removed from preprocessed green band image and preliminary MA candidates were selected by local thresholding technique. In step two, based on statistical features, the image background was estimated. The results from the two steps allowed us to identify preliminary MA candidates which were also present in the image foreground. A collection set of features was fed to a rule-based classifier to divide the candidates into MAs and non-MAs. The proposed system was tested with Retinopathy Online Challenge database. The automated system detected 162 MAs out of 336, thus achieved a sensitivity of 48.21% with 65 false positives per image. Counting MA is a means to measure the progression of DR. Hence, the proposed system may be deployed to monitor the progression of DR at early stage in population studies.
NASA Astrophysics Data System (ADS)
Agrawal, Ritu; Sharma, Manisha; Singh, Bikesh Kumar
2018-04-01
Manual segmentation and analysis of lesions in medical images is time consuming and subjected to human errors. Automated segmentation has thus gained significant attention in recent years. This article presents a hybrid approach for brain lesion segmentation in different imaging modalities by combining median filter, k means clustering, Sobel edge detection and morphological operations. Median filter is an essential pre-processing step and is used to remove impulsive noise from the acquired brain images followed by k-means segmentation, Sobel edge detection and morphological processing. The performance of proposed automated system is tested on standard datasets using performance measures such as segmentation accuracy and execution time. The proposed method achieves a high accuracy of 94% when compared with manual delineation performed by an expert radiologist. Furthermore, the statistical significance test between lesion segmented using automated approach and that by expert delineation using ANOVA and correlation coefficient achieved high significance values of 0.986 and 1 respectively. The experimental results obtained are discussed in lieu of some recently reported studies.
Automated selection of the most epithelium-rich areas in gynecologic tumor sections.
Schipper, N W; Baak, J P; Smeulders, A W
1991-12-01
The paper describes an image analysis technique for automated selection of the epithelium-rich areas in standard paraffin tissue sections of ovarian and endometrial premalignancies and malignancies. Two staining procedures were evaluated, Feulgen (pararosanilin) and CAM 5.2, demonstrating the presence of cytokeratin 8 and 18; both were counterstained with naphthol yellow. The technique is based on the corresponding image processing method of automated estimation of the percentage of epithelium in interactively selected microscope fields. With the technique, one image is recorded with a filter to demonstrate where epithelium and stroma lie. This filter is chosen according to the type of staining: it is yellow (lambda = 552 nm) for Feulgen and blue (lambda = 470 nm) for anticytokeratin CAM 5.2. When stroma cannot be distinguished from lumina with the green filter or from epithelium with the blue filter, a second image is recorded from the same microscope field, with a blue filter (lambda = 420 nm) for Feulgen and a yellow filter (lambda = 576 nm) for anticytokeratin CAM 5.2. Discrimination between epithelium and stroma is based on the image contrast range and the packing of nuclei in the yellow image and on the automated classification of the gray value histogram peaks in the blue image. For Feulgen stain the method was evaluated on 30 ovarian tumors of the common epithelial types (8 borderline tumors and 22 carcinomas with various degrees of differentiation) and 30 endometrial carcinomas of different grades.(ABSTRACT TRUNCATED AT 250 WORDS)
Semi-automated scoring of triple-probe FISH in human sperm using confocal microscopy.
Branch, Francesca; Nguyen, GiaLinh; Porter, Nicholas; Young, Heather A; Martenies, Sheena E; McCray, Nathan; Deloid, Glen; Popratiloff, Anastas; Perry, Melissa J
2017-09-01
Structural and numerical sperm chromosomal aberrations result from abnormal meiosis and are directly linked to infertility. Any live births that arise from aneuploid conceptuses can result in syndromes such as Kleinfelter, Turners, XYY and Edwards. Multi-probe fluorescence in situ hybridization (FISH) is commonly used to study sperm aneuploidy, however manual FISH scoring in sperm samples is labor-intensive and introduces errors. Automated scoring methods are continuously evolving. One challenging aspect for optimizing automated sperm FISH scoring has been the overlap in excitation and emission of the fluorescent probes used to enumerate the chromosomes of interest. Our objective was to demonstrate the feasibility of combining confocal microscopy and spectral imaging with high-throughput methods for accurately measuring sperm aneuploidy. Our approach used confocal microscopy to analyze numerical chromosomal abnormalities in human sperm using enhanced slide preparation and rigorous semi-automated scoring methods. FISH for chromosomes X, Y, and 18 was conducted to determine sex chromosome disomy in sperm nuclei. Application of online spectral linear unmixing was used for effective separation of four fluorochromes while decreasing data acquisition time. Semi-automated image processing, segmentation, classification, and scoring were performed on 10 slides using custom image processing and analysis software and results were compared with manual methods. No significant differences in disomy frequencies were seen between the semi automated and manual methods. Samples treated with pepsin were observed to have reduced background autofluorescence and more uniform distribution of cells. These results demonstrate that semi-automated methods using spectral imaging on a confocal platform are a feasible approach for analyzing numerical chromosomal aberrations in sperm, and are comparable to manual methods. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Roysam, Badrinath; Minervini, Martha I.; Demetris, Anthony J
2013-01-01
Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. “-Omics” analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: a) spatial-temporal relationships; b) rare events/cells; c) complex structural context; and d) integration into a “systems” model. Nevertheless, except for immunostaining, no transformative advancements have “modernized” routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology - global “–omic” analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. PMID:22053785
Sieracki, M E; Reichenbach, S E; Webb, K L
1989-01-01
The accurate measurement of bacterial and protistan cell biomass is necessary for understanding their population and trophic dynamics in nature. Direct measurement of fluorescently stained cells is often the method of choice. The tedium of making such measurements visually on the large numbers of cells required has prompted the use of automatic image analysis for this purpose. Accurate measurements by image analysis require an accurate, reliable method of segmenting the image, that is, distinguishing the brightly fluorescing cells from a dark background. This is commonly done by visually choosing a threshold intensity value which most closely coincides with the outline of the cells as perceived by the operator. Ideally, an automated method based on the cell image characteristics should be used. Since the optical nature of edges in images of light-emitting, microscopic fluorescent objects is different from that of images generated by transmitted or reflected light, it seemed that automatic segmentation of such images may require special considerations. We tested nine automated threshold selection methods using standard fluorescent microspheres ranging in size and fluorescence intensity and fluorochrome-stained samples of cells from cultures of cyanobacteria, flagellates, and ciliates. The methods included several variations based on the maximum intensity gradient of the sphere profile (first derivative), the minimum in the second derivative of the sphere profile, the minimum of the image histogram, and the midpoint intensity. Our results indicated that thresholds determined visually and by first-derivative methods tended to overestimate the threshold, causing an underestimation of microsphere size. The method based on the minimum of the second derivative of the profile yielded the most accurate area estimates for spheres of different sizes and brightnesses and for four of the five cell types tested. A simple model of the optical properties of fluorescing objects and the video acquisition system is described which explains how the second derivative best approximates the position of the edge. Images PMID:2516431
Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition.
Sheik-Khalil, Enas; Bray, Mark-Anthony; Özkaya Şahin, Gülsen; Scarlatti, Gabriella; Jansson, Marianne; Carpenter, Anne E; Fenyö, Eva Maria
2014-08-30
Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay. Neutralization of virus particles is measured as a reduction in the number of fluorescent plaques, and inhibition of cell-cell fusion as a reduction in plaque area. We found neutralization strength to be a significant factor in the ability of virus to form syncytia. Further, we introduce the inhibitory concentration of plaque area reduction (ICpar) as an additional measure of antiviral activity, i.e. fusion inhibition. We present an automated image based high-throughput, high-content HIV plaque reduction assay. This allows, for the first time, simultaneous evaluation of neutralization and inhibition of cell-cell fusion within the same assay, by quantifying the reduction in number of plaques and mean plaque area, respectively. Inhibition of cell-to-cell fusion requires higher quantities of inhibitory reagent than inhibition of virus neutralization.
Cryo-imaging in a toxicological study on mouse fetuses
NASA Astrophysics Data System (ADS)
Roy, Debashish; Gargesha, Madhusudhana; Sloter, Eddie; Watanabe, Michiko; Wilson, David
2010-03-01
We applied the Case cryo-imaging system to detect signals of developmental toxicity in transgenic mouse fetuses resulting from maternal exposure to a developmental environmental toxicant (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). We utilized a fluorescent transgenic mouse model that expresses Green Fluorescent Protein (GFP) exclusively in smooth muscles under the control of the smooth muscle gamma actin (SMGA) promoter (SMGA/EGFP mice kindly provided by J. Lessard, U. Cincinnati). Analysis of cryo-image data volumes, comprising of very high-resolution anatomical brightfield and molecular fluorescence block face images, revealed qualitative and quantitative morphological differences in control versus exposed fetuses. Fetuses randomly chosen from pregnant females euthanized on gestation day (GD) 18 were either manually examined or cryo-imaged. For cryo-imaging, fetuses were embedded, frozen and cryo-sectioned at 20 μm thickness and brightfield color and fluorescent block-face images were acquired with an in-plane resolution of ~15 μm. Automated 3D volume visualization schemes segmented out the black embedding medium and blended fluorescence and brightfield data to produce 3D reconstructions of all fetuses. Comparison of Treatment groups TCDD GD13, TCDD GD14 and control through automated analysis tools highlighted differences not observable by prosectors performing traditional fresh dissection. For example, severe hydronephrosis, suggestive of irreversible kidney damage, was detected by cryoimaging in fetuses exposed to TCDD. Automated quantification of total fluorescence in smooth muscles revealed suppressed fluorescence in TCDD-exposed fetuses. This application demonstrated that cryo-imaging can be utilized as a routine high-throughput screening tool to assess the effects of potential toxins on the developmental biology of small animals.
Chen, C; Li, H; Zhou, X; Wong, S T C
2008-05-01
Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.
Evaluating wood failure in plywood shear by optical image analysis
Charles W. McMillin
1984-01-01
This exploratory study evaulates the potential of using an automatic image analysis method to measure percent wood failure in plywood shear specimens. The results suggest that this method my be as accurate as the visual method in tracking long-term gluebond quality. With further refinement, the method could lead to automated equipment replacing the subjective visual...
Adaptive Algorithms for Automated Processing of Document Images
2011-01-01
ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University
Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.
Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai; Madabhushi, Anant
2016-01-01
Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of "Deep Learning" strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies.
Luz, Maria; Manzey, Dietrich; Modemann, Susanne; Strauss, Gero
2015-01-01
Image-guided navigation (IGN) systems provide automation support of intra-operative information analysis and decision-making for surgeons. Previous research showed that navigated-control (NC) systems which represent high levels of decision-support and directly intervene in surgeons' workflow provide benefits with respect to patient safety and surgeons' physiological stress but also involve several cost effects (e.g. prolonged surgery duration, reduced secondary-task performance). It was hypothesised that less automated distance-control (DC) systems would provide a better solution in terms of human performance consequences. N = 18 surgeons performed a simulated mastoidectomy with NC, DC and without IGN assistance. Effects on surgical performance, physiological effort, workload and situation awareness (SA) were compared. As expected, DC technology had the same benefits as the NC system but also led to less unwanted side effects on surgery duration, subjective workload and SA. This suggests that IGN systems just providing information analysis support are overall more beneficial than higher automated decision-support. This study investigates human performance consequences of different concepts of IGN support for surgeons. Less automated DC systems turned out to provide advantages for patient safety and surgeons' stress similar to higher automated NC systems with, at the same time, reduced negative consequences on surgery time and subjective workload.
Some selected quantitative methods of thermal image analysis in Matlab.
Koprowski, Robert
2016-05-01
The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Seuss, Hannes; Janka, Rolf; Prümmer, Marcus; Cavallaro, Alexander; Hammon, Rebecca; Theis, Ragnar; Sandmair, Martin; Amann, Kerstin; Bäuerle, Tobias; Uder, Michael; Hammon, Matthias
2017-04-01
Volumetric analysis of the kidney parenchyma provides additional information for the detection and monitoring of various renal diseases. Therefore the purposes of the study were to develop and evaluate a semi-automated segmentation tool and a modified ellipsoid formula for volumetric analysis of the kidney in non-contrast T2-weighted magnetic resonance (MR)-images. Three readers performed semi-automated segmentation of the total kidney volume (TKV) in axial, non-contrast-enhanced T2-weighted MR-images of 24 healthy volunteers (48 kidneys) twice. A semi-automated threshold-based segmentation tool was developed to segment the kidney parenchyma. Furthermore, the three readers measured renal dimensions (length, width, depth) and applied different formulas to calculate the TKV. Manual segmentation served as a reference volume. Volumes of the different methods were compared and time required was recorded. There was no significant difference between the semi-automatically and manually segmented TKV (p = 0.31). The difference in mean volumes was 0.3 ml (95% confidence interval (CI), -10.1 to 10.7 ml). Semi-automated segmentation was significantly faster than manual segmentation, with a mean difference = 188 s (220 vs. 408 s); p < 0.05. Volumes did not differ significantly comparing the results of different readers. Calculation of TKV with a modified ellipsoid formula (ellipsoid volume × 0.85) did not differ significantly from the reference volume; however, the mean error was three times higher (difference of mean volumes -0.1 ml; CI -31.1 to 30.9 ml; p = 0.95). Applying the modified ellipsoid formula was the fastest way to get an estimation of the renal volume (41 s). Semi-automated segmentation and volumetric analysis of the kidney in native T2-weighted MR data delivers accurate and reproducible results and was significantly faster than manual segmentation. Applying a modified ellipsoid formula quickly provides an accurate kidney volume.
Automated Analysis of CT Images for the Inspection of Hardwood Logs
Harbin Li; A. Lynn Abbott; Daniel L. Schmoldt
1996-01-01
This paper investigates several classifiers for labeling internal features of hardwood logs using computed tomography (CT) images. A primary motivation is to locate and classify internal defects so that an optimal cutting strategy can be chosen. Previous work has relied on combinations of low-level processing, image segmentation, autoregressive texture modeling, and...
Automated image analysis of alpha-particle autoradiographs of human bone
NASA Astrophysics Data System (ADS)
Hatzialekou, Urania; Henshaw, Denis L.; Fews, A. Peter
1988-01-01
Further techniques [4,5] for the analysis of CR-39 α-particle autoradiographs have been developed for application to α-autoradiography of autopsy bone at natural levels for exposure. The most significant new approach is the use of fully automated image analysis using a system developed in this laboratory. A 5 cm × 5 cm autoradiograph of tissue in which the activity is below 1 Bq kg -1 is scanned to both locate and measure the recorded α-particle tracks at a rate of 5 cm 2/h. Improved methods of calibration have also been developed. The techniques are described and in order to illustrate their application, a bone sample contaminated with 239Pu is analysed. Results from natural levels are the subject of a separate publication.
Shi, Peng; Zhong, Jing; Hong, Jinsheng; Huang, Rongfang; Wang, Kaijun; Chen, Yunbin
2016-08-26
Nasopharyngeal carcinoma is one of the malignant neoplasm with high incidence in China and south-east Asia. Ki-67 protein is strictly associated with cell proliferation and malignant degree. Cells with higher Ki-67 expression are always sensitive to chemotherapy and radiotherapy, the assessment of which is beneficial to NPC treatment. It is still challenging to automatically analyze immunohistochemical Ki-67 staining nasopharyngeal carcinoma images due to the uneven color distributions in different cell types. In order to solve the problem, an automated image processing pipeline based on clustering of local correlation features is proposed in this paper. Unlike traditional morphology-based methods, our algorithm segments cells by classifying image pixels on the basis of local pixel correlations from particularly selected color spaces, then characterizes cells with a set of grading criteria for the reference of pathological analysis. Experimental results showed high accuracy and robustness in nucleus segmentation despite image data variance. Quantitative indicators obtained in this essay provide a reliable evidence for the analysis of Ki-67 staining nasopharyngeal carcinoma microscopic images, which would be helpful in relevant histopathological researches.
Automated liver elasticity calculation for 3D MRE
NASA Astrophysics Data System (ADS)
Dzyubak, Bogdan; Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.
2017-03-01
Magnetic Resonance Elastography (MRE) is a phase-contrast MRI technique which calculates quantitative stiffness images, called elastograms, by imaging the propagation of acoustic waves in tissues. It is used clinically to diagnose liver fibrosis. Automated analysis of MRE is difficult as the corresponding MRI magnitude images (which contain anatomical information) are affected by intensity inhomogeneity, motion artifact, and poor tissue- and edge-contrast. Additionally, areas with low wave amplitude must be excluded. An automated algorithm has already been successfully developed and validated for clinical 2D MRE. 3D MRE acquires substantially more data and, due to accelerated acquisition, has exacerbated image artifacts. Also, the current 3D MRE processing does not yield a confidence map to indicate MRE wave quality and guide ROI selection, as is the case in 2D. In this study, extension of the 2D automated method, with a simple wave-amplitude metric, was developed and validated against an expert reader in a set of 57 patient exams with both 2D and 3D MRE. The stiffness discrepancy with the expert for 3D MRE was -0.8% +/- 9.45% and was better than discrepancy with the same reader for 2D MRE (-3.2% +/- 10.43%), and better than the inter-reader discrepancy observed in previous studies. There were no automated processing failures in this dataset. Thus, the automated liver elasticity calculation (ALEC) algorithm is able to calculate stiffness from 3D MRE data with minimal bias and good precision, while enabling stiffness measurements to be fully reproducible and to be easily performed on the large 3D MRE datasets.
Nema, Shubham; Hasan, Whidul; Bhargava, Anamika; Bhargava, Yogesh
2016-09-15
Behavioural neuroscience relies on software driven methods for behavioural assessment, but the field lacks cost-effective, robust, open source software for behavioural analysis. Here we propose a novel method which we called as ZebraTrack. It includes cost-effective imaging setup for distraction-free behavioural acquisition, automated tracking using open-source ImageJ software and workflow for extraction of behavioural endpoints. Our ImageJ algorithm is capable of providing control to users at key steps while maintaining automation in tracking without the need for the installation of external plugins. We have validated this method by testing novelty induced anxiety behaviour in adult zebrafish. Our results, in agreement with established findings, showed that during state-anxiety, zebrafish showed reduced distance travelled, increased thigmotaxis and freezing events. Furthermore, we proposed a method to represent both spatial and temporal distribution of choice-based behaviour which is currently not possible to represent using simple videograms. ZebraTrack method is simple and economical, yet robust enough to give results comparable with those obtained from costly proprietary software like Ethovision XT. We have developed and validated a novel cost-effective method for behavioural analysis of adult zebrafish using open-source ImageJ software. Copyright © 2016 Elsevier B.V. All rights reserved.
Kumar, Aparna; Rao, Arvind; Bhavani, Santosh; Newberg, Justin Y; Murphy, Robert F
2014-12-23
Molecular biomarkers are changes measured in biological samples that reflect disease states. Such markers can help clinicians identify types of cancer or stages of progression, and they can guide in tailoring specific therapies. Many efforts to identify biomarkers consider genes that mutate between normal and cancerous tissues or changes in protein or RNA expression levels. Here we define location biomarkers, proteins that undergo changes in subcellular location that are indicative of disease. To discover such biomarkers, we have developed an automated pipeline to compare the subcellular location of proteins between two sets of immunohistochemistry images. We used the pipeline to compare images of healthy and tumor tissue from the Human Protein Atlas, ranking hundreds of proteins in breast, liver, prostate, and bladder based on how much their location was estimated to have changed. The performance of the system was evaluated by determining whether proteins previously known to change location in tumors were ranked highly. We present a number of candidate location biomarkers for each tissue, and identify biochemical pathways that are enriched in proteins that change location. The analysis technology is anticipated to be useful not only for discovering new location biomarkers but also for enabling automated analysis of biomarker distributions as an aid to determining diagnosis.
Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar
2016-02-01
Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.
NASA Astrophysics Data System (ADS)
Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Sacco, G. F.; Manipon, G.; Linick, J. P.; Fielding, E. J.; Lundgren, P.; Farr, T. G.; Webb, F.; Rosen, P. A.; Simons, M.
2017-12-01
The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating high-level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques including Interferometric Synthetic Aperture Radar (InSAR), differential Global Positioning System, and SAR-based change detection have become critical additions to our toolset for understanding and mapping the damage and deformation caused by earthquakes, volcanic eruptions, floods, landslides, and groundwater extraction. Up until recently, processing of these data sets has been handcrafted for each study or event and has not generated products rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by the California Institute of Technology and by NASA through the Jet Propulsion Laboratory, has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition to supporting the growing science and hazard response communities, the ARIA project has developed the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the influx of raw SAR data from geodetic imaging missions such as ESA's Sentinel-1A/B, now operating with repeat intervals as short as 6 days, and the upcoming NASA NISAR mission. We will present the progress and results we have made on automating the analysis of Sentinel-1A/B SAR data for hazard monitoring and response, with emphasis on recent developments and end user engagement in flood extent mapping and deformation time series for both volcano monitoring and mapping of groundwater-related subsidence
Improvement of automatic hemorrhage detection methods using brightness correction on fundus images
NASA Astrophysics Data System (ADS)
Hatanaka, Yuji; Nakagawa, Toshiaki; Hayashi, Yoshinori; Kakogawa, Masakatsu; Sawada, Akira; Kawase, Kazuhide; Hara, Takeshi; Fujita, Hiroshi
2008-03-01
We have been developing several automated methods for detecting abnormalities in fundus images. The purpose of this study is to improve our automated hemorrhage detection method to help diagnose diabetic retinopathy. We propose a new method for preprocessing and false positive elimination in the present study. The brightness of the fundus image was changed by the nonlinear curve with brightness values of the hue saturation value (HSV) space. In order to emphasize brown regions, gamma correction was performed on each red, green, and blue-bit image. Subsequently, the histograms of each red, blue, and blue-bit image were extended. After that, the hemorrhage candidates were detected. The brown regions indicated hemorrhages and blood vessels and their candidates were detected using density analysis. We removed the large candidates such as blood vessels. Finally, false positives were removed by using a 45-feature analysis. To evaluate the new method for the detection of hemorrhages, we examined 125 fundus images, including 35 images with hemorrhages and 90 normal images. The sensitivity and specificity for the detection of abnormal cases was were 80% and 88%, respectively. These results indicate that the new method may effectively improve the performance of our computer-aided diagnosis system for hemorrhages.
Automated measurement of uptake in cerebellum, liver, and aortic arch in full-body FDG PET/CT scans.
Bauer, Christian; Sun, Shanhui; Sun, Wenqing; Otis, Justin; Wallace, Audrey; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M; Beichel, Reinhard R
2012-06-01
The purpose of this work was to develop and validate fully automated methods for uptake measurement of cerebellum, liver, and aortic arch in full-body PET/CT scans. Such measurements are of interest in the context of uptake normalization for quantitative assessment of metabolic activity and/or automated image quality control. Cerebellum, liver, and aortic arch regions were segmented with different automated approaches. Cerebella were segmented in PET volumes by means of a robust active shape model (ASM) based method. For liver segmentation, a largest possible hyperellipsoid was fitted to the liver in PET scans. The aortic arch was first segmented in CT images of a PET/CT scan by a tubular structure analysis approach, and the segmented result was then mapped to the corresponding PET scan. For each of the segmented structures, the average standardized uptake value (SUV) was calculated. To generate an independent reference standard for method validation, expert image analysts were asked to segment several cross sections of each of the three structures in 134 F-18 fluorodeoxyglucose (FDG) PET/CT scans. For each case, the true average SUV was estimated by utilizing statistical models and served as the independent reference standard. For automated aorta and liver SUV measurements, no statistically significant scale or shift differences were observed between automated results and the independent standard. In the case of the cerebellum, the scale and shift were not significantly different, if measured in the same cross sections that were utilized for generating the reference. In contrast, automated results were scaled 5% lower on average although not shifted, if FDG uptake was calculated from the whole segmented cerebellum volume. The estimated reduction in total SUV measurement error ranged between 54.7% and 99.2%, and the reduction was found to be statistically significant for cerebellum and aortic arch. With the proposed methods, the authors have demonstrated that automated SUV uptake measurements in cerebellum, liver, and aortic arch agree with expert-defined independent standards. The proposed methods were found to be accurate and showed less intra- and interobserver variability, compared to manual analysis. The approach provides an alternative to manual uptake quantification, which is time-consuming. Such an approach will be important for application of quantitative PET imaging to large scale clinical trials. © 2012 American Association of Physicists in Medicine.
Gill, S; Younie, S; Rolfo, A; Thomas, J; Siva, S; Fox, C; Kron, T; Phillips, D; Tai, K H; Foroudi, F
2012-10-01
To compare the treatment time and cost of prostate cancer fiducial marker image-guided radiotherapy (IGRT) using orthogonal kilovoltage imaging (KVI) and automated couch shifts and orthogonal electronic portal imaging (EPI) and manual couch shifts. IGRT treatment delivery times were recorded automatically on either unit. Costing was calculated from real costs derived from the implementation of a new radiotherapy centre. To derive cost per minute for EPI and KVI units the total annual setting up and running costs were divided by the total annual working time. The cost per IGRT fraction was calculated by multiplying the cost per minute by the duration of treatment. A sensitivity analysis was conducted to test the robustness of our analysis. Treatment times without couch shift were compared. Time data were analysed for 8648 fractions, 6057 from KVI treatment and 2591 from EPI treatment from a total of 294 patients. The median time for KVI treatment was 6.0 min (interquartile range 5.1-7.4 min) and for EPI treatment it was 10.0 min (interquartile range 8.3-11.8 min) (P value < 0.0001). The cost per fraction for KVI was A$258.79 and for EPI was A$345.50. The cost saving per fraction for KVI varied between A$66.09 and A$101.64 by sensitivity analysis. In patients where no couch shift was made, the median treatment delivery time for EPI was 8.8 min and for KVI was 5.1 min. Treatment time is less on KVI units compared with EPI units. This is probably due to automation of couch shift and faster evaluation of imaging on KVI units. Annual running costs greatly outweigh initial setting up costs and therefore the cost per fraction was less with KVI, despite higher initial costs. The selection of appropriate IGRT equipment can make IGRT practical within radiotherapy departments. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Nielsen, Patricia Switten; Riber-Hansen, Rikke; Schmidt, Henrik; Steiniche, Torben
2016-04-09
Staging of melanoma includes quantification of a proliferation index, i.e., presumed melanocytic mitoses of H&E stains are counted manually in hot spots. Yet, its reproducibility and prognostic impact increases by immunohistochemical dual staining for phosphohistone H3 (PHH3) and MART1, which also may enable fully automated quantification by image analysis. To ensure manageable workloads and repeatable measurements in modern pathology, the study aimed to present an automated quantification of proliferation with automated hot-spot selection in PHH3/MART1-stained melanomas. Formalin-fixed, paraffin-embedded tissue from 153 consecutive stage I/II melanoma patients was immunohistochemically dual-stained for PHH3 and MART1. Whole slide images were captured, and the number of PHH3/MART1-positive cells was manually and automatically counted in the global tumor area and in a manually and automatically selected hot spot, i.e., a fixed 1-mm(2) square. Bland-Altman plots and hypothesis tests compared manual and automated procedures, and the Cox proportional hazards model established their prognostic impact. The mean difference between manual and automated global counts was 2.9 cells/mm(2) (P = 0.0071) and 0.23 cells per hot spot (P = 0.96) for automated counts in manually and automatically selected hot spots. In 77 % of cases, manual and automated hot spots overlapped. Fully manual hot-spot counts yielded the highest prognostic performance with an adjusted hazard ratio of 5.5 (95 % CI, 1.3-24, P = 0.024) as opposed to 1.3 (95 % CI, 0.61-2.9, P = 0.47) for automated counts with automated hot spots. The automated index and automated hot-spot selection were highly correlated to their manual counterpart, but altogether their prognostic impact was noticeably reduced. Because correct recognition of only one PHH3/MART1-positive cell seems important, extremely high sensitivity and specificity of the algorithm is required for prognostic purposes. Thus, automated analysis may still aid and improve the pathologists' detection of mitoses in melanoma and possibly other malignancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, J; Christianson, O; Samei, E
Purpose: Flood-field uniformity evaluation is an essential element in the assessment of nuclear medicine (NM) gamma cameras. It serves as the central element of the quality control (QC) program, acquired and analyzed on a daily basis prior to clinical imaging. Uniformity images are traditionally analyzed using pixel value-based metrics which often fail to capture subtle structure and patterns caused by changes in gamma camera performance requiring additional visual inspection which is subjective and time demanding. The goal of this project was to develop and implement a robust QC metrology for NM that is effective in identifying non-uniformity issues, reporting issuesmore » in a timely manner for efficient correction prior to clinical involvement, all incorporated into an automated effortless workflow, and to characterize the program over a two year period. Methods: A new quantitative uniformity analysis metric was developed based on 2D noise power spectrum metrology and confirmed based on expert observer visual analysis. The metric, termed Structured Noise Index (SNI) was then integrated into an automated program to analyze, archive, and report on daily NM QC uniformity images. The effectiveness of the program was evaluated over a period of 2 years. Results: The SNI metric successfully identified visually apparent non-uniformities overlooked by the pixel valuebased analysis methods. Implementation of the program has resulted in nonuniformity identification in about 12% of daily flood images. In addition, due to the vigilance of staff response, the percentage of days exceeding trigger value shows a decline over time. Conclusion: The SNI provides a robust quantification of the NM performance of gamma camera uniformity. It operates seamlessly across a fleet of multiple camera models. The automated process provides effective workflow within the NM spectra between physicist, technologist, and clinical engineer. The reliability of this process has made it the preferred platform for NM uniformity analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.
2012-10-02
An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSImore » QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.« less
NASA Astrophysics Data System (ADS)
Kemper, Björn; Lenz, Philipp; Bettenworth, Dominik; Krausewitz, Philipp; Domagk, Dirk; Ketelhut, Steffi
2015-05-01
Digital holographic microscopy (DHM) has been demonstrated to be a versatile tool for high resolution non-destructive quantitative phase imaging of surfaces and multi-modal minimally-invasive monitoring of living cell cultures in-vitro. DHM provides quantitative monitoring of physiological processes through functional imaging and structural analysis which, for example, gives new insight into signalling of cellular water permeability and cell morphology changes due to toxins and infections. Also the analysis of dissected tissues quantitative DHM phase contrast prospects application fields by stain-free imaging and the quantification of tissue density changes. We show that DHM allows imaging of different tissue layers with high contrast in unstained tissue sections. As the investigation of fixed samples represents a very important application field in pathology, we also analyzed the influence of the sample preparation. The retrieved data demonstrate that the quality of quantitative DHM phase images of dissected tissues depends strongly on the fixing method and common staining agents. As in DHM the reconstruction is performed numerically, multi-focus imaging is achieved from a single digital hologram. Thus, we evaluated the automated refocussing feature of DHM for application on different types of dissected tissues and revealed that on moderately stained samples highly reproducible holographic autofocussing can be achieved. Finally, it is demonstrated that alterations of the spatial refractive index distribution in murine and human tissue samples represent a reliable absolute parameter that is related of different degrees of inflammation in experimental colitis and Crohn's disease. This paves the way towards the usage of DHM in digital pathology for automated histological examinations and further studies to elucidate the translational potential of quantitative phase microscopy for the clinical management of patients, e.g., with inflammatory bowel disease.
Automated quantification of renal fibrosis with Sirius Red and polarization contrast microscopy
Street, Jonathan M.; Souza, Ana Carolina P.; Alvarez‐Prats, Alejandro; Horino, Taro; Hu, Xuzhen; Yuen, Peter S. T.; Star, Robert A.
2014-01-01
Abstract Interstitial fibrosis is commonly measured by histology. The Masson trichrome stain is widely used, with semiquantitative scores subjectively assigned by trained operators. We have developed an objective technique combining Sirius Red staining, polarization contrast microscopy, and automated analysis. Repeated analysis of the same sections by the same operator (r = 0.99) or by different operators (r = 0.98) was highly consistent for Sirius Red, while Masson trichrome performed less consistently (r = 0.61 and 0.72, respectively). These techniques performed equally well when comparing sections from the left and right kidneys of mice. Poor correlation between Sirius Red and Masson trichrome may reflect different specificities, as enhanced birefringence with Sirius Red staining is specific for collagen type I and III fibrils. Combining whole‐section imaging and automated image analysis with Sirius Red/polarization contrast is a rapid, reproducible, and precise technique that is complementary to Masson trichrome. It also prevents biased selection of fields as fibrosis is measured on the entire kidney section. This new tool shall enhance our search for novel therapeutics and noninvasive biomarkers for fibrosis. To listen to podcast click here PMID:25052492
Soto-Pedre, Enrique; Navea, Amparo; Millan, Saray; Hernaez-Ortega, Maria C; Morales, Jesús; Desco, Maria C; Pérez, Pablo
2015-02-01
To assess the safety and workload reduction of an automated 'disease/no disease' grading system for diabetic retinopathy (DR) within a systematic screening programme. Single 45° macular field image per eye was obtained from consecutive patients attending a regional primary care based DR screening programme in Valencia (Spain). The sensitivity and specificity of automated system operating as 'one or more than one microaneurysm detection for disease presence' grader were determined relative to a manual grading as gold standard. Data on age, gender and diabetes mellitus were also recorded. A total of 5278 patients with diabetes were screened. The median age and duration of diabetes was 69 years and 6.9 years, respectively. Estimated prevalence of DR was 15.6%. The software classified 43.9% of the patients as having no DR and 26.1% as having ungradable images. Detection of DR was achieved with 94.5% sensitivity (95% CI 92.6- 96.5) and 68.8% specificity (95%CI 67.2-70.4). The overall accuracy of the automated system was 72.5% (95%CI 71.1-73.9). The present retinal image processing algorithm that can act as prefilter to flag out images with pathological lesions can be implemented in practice. Our results suggest that it could be considered when implementing DR screening programmes. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Image sequence analysis workstation for multipoint motion analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-08-01
This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.
Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.
Arganda-Carreras, Ignacio; Andrey, Philippe
2017-01-01
With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.
NASA Astrophysics Data System (ADS)
Sharma, Archie; Corona, Enrique; Mitra, Sunanda; Nutter, Brian S.
2006-03-01
Early detection of structural damage to the optic nerve head (ONH) is critical in diagnosis of glaucoma, because such glaucomatous damage precedes clinically identifiable visual loss. Early detection of glaucoma can prevent progression of the disease and consequent loss of vision. Traditional early detection techniques involve observing changes in the ONH through an ophthalmoscope. Stereo fundus photography is also routinely used to detect subtle changes in the ONH. However, clinical evaluation of stereo fundus photographs suffers from inter- and intra-subject variability. Even the Heidelberg Retina Tomograph (HRT) has not been found to be sufficiently sensitive for early detection. A semi-automated algorithm for quantitative representation of the optic disc and cup contours by computing accumulated disparities in the disc and cup regions from stereo fundus image pairs has already been developed using advanced digital image analysis methodologies. A 3-D visualization of the disc and cup is achieved assuming camera geometry. High correlation among computer-generated and manually segmented cup to disc ratios in a longitudinal study involving 159 stereo fundus image pairs has already been demonstrated. However, clinical usefulness of the proposed technique can only be tested by a fully automated algorithm. In this paper, we present a fully automated algorithm for segmentation of optic cup and disc contours from corresponding stereo disparity information. Because this technique does not involve human intervention, it eliminates subjective variability encountered in currently used clinical methods and provides ophthalmologists with a cost-effective and quantitative method for detection of ONH structural damage for early detection of glaucoma.
NASA Astrophysics Data System (ADS)
Cohen, Mike-Ely; Lefort, Muriel; Bergeret-Cassagne, Héloïse; Hachi, Siham; Li, Ang; Russ, Gilles; Lazard, Diane; Menegaux, Fabrice; Leenhardt, Laurence; Trésallet, Christophe; Frouin, Frédérique
2015-03-01
Recurrent nerve paralysis (RP) is one of the most frequent complications of thyroid surgery. It reduces vocal fold mobility. Nasal endoscopy, a mini-invasive procedure, is the conventional way to detect RP. We suggest a new approach based on laryngeal ultrasound and a specific data analysis was designed to help with the automated detection of RP. Ten subjects were enrolled for this feasibility study: four controls, three patients with RP and three patients without RP according to nasal endoscopy. The ultrasound protocol was based on a ten seconds B-mode acquisition in a coronal plane during normal breathing. Image processing included three steps: 1) automated detection of two consecutive closing and opening images, corresponding to extreme positions of vocal folds in the sequence of B-mode images, using principal component analysis of the image sequence; 2) positioning of three landmarks and robust tracking of these points using a multi-pyramidal refined optical flow approach; 3) estimation of quantitative parameters indicating left and right fractions of mobility, and motion symmetry. Results provided by automated image processing were compared to those obtained by an expert. Detection of extreme images was accurate; tracking of landmarks was reliable in 80% of cases. Motion symmetry indices showed similar values for controls and patients without RP. Fraction of mobility was reduced in cases of RP. Thus, our CAD system helped in the detection of RP. Laryngeal ultrasound combined with appropriate image processing helped in the diagnosis of recurrent nerve paralysis and could be proposed as a first-line method.
Automated Age-related Macular Degeneration screening system using fundus images.
Kunumpol, P; Umpaipant, W; Kanchanaranya, N; Charoenpong, T; Vongkittirux, S; Kupakanjana, T; Tantibundhit, C
2017-07-01
This work proposed an automated screening system for Age-related Macular Degeneration (AMD), and distinguishing between wet or dry types of AMD using fundus images to assist ophthalmologists in eye disease screening and management. The algorithm employs contrast-limited adaptive histogram equalization (CLAHE) in image enhancement. Subsequently, discrete wavelet transform (DWT) and locality sensitivity discrimination analysis (LSDA) were used to extract features for a neural network model to classify the results. The results showed that the proposed algorithm was able to distinguish between normal eyes, dry AMD, or wet AMD with 98.63% sensitivity, 99.15% specificity, and 98.94% accuracy, suggesting promising potential as a medical support system for faster eye disease screening at lower costs.
López, Carlos; Jaén Martinez, Joaquín; Lejeune, Marylène; Escrivà, Patricia; Salvadó, Maria T; Pons, Lluis E; Alvaro, Tomás; Baucells, Jordi; García-Rojo, Marcial; Cugat, Xavier; Bosch, Ramón
2009-10-01
The volume of digital image (DI) storage continues to be an important problem in computer-assisted pathology. DI compression enables the size of files to be reduced but with the disadvantage of loss of quality. Previous results indicated that the efficiency of computer-assisted quantification of immunohistochemically stained cell nuclei may be significantly reduced when compressed DIs are used. This study attempts to show, with respect to immunohistochemically stained nuclei, which morphometric parameters may be altered by the different levels of JPEG compression, and the implications of these alterations for automated nuclear counts, and further, develops a method for correcting this discrepancy in the nuclear count. For this purpose, 47 DIs from different tissues were captured in uncompressed TIFF format and converted to 1:3, 1:23 and 1:46 compression JPEG images. Sixty-five positive objects were selected from these images, and six morphological parameters were measured and compared for each object in TIFF images and those of the different compression levels using a set of previously developed and tested macros. Roundness proved to be the only morphological parameter that was significantly affected by image compression. Factors to correct the discrepancy in the roundness estimate were derived from linear regression models for each compression level, thereby eliminating the statistically significant differences between measurements in the equivalent images. These correction factors were incorporated in the automated macros, where they reduced the nuclear quantification differences arising from image compression. Our results demonstrate that it is possible to carry out unbiased automated immunohistochemical nuclear quantification in compressed DIs with a methodology that could be easily incorporated in different systems of digital image analysis.
Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone
Ascenzi, Maria-Grazia; Du, Xia; Harding, James I; Beylerian, Emily N; de Silva, Brian M; Gross, Ben J; Kastein, Hannah K; Wang, Weiguang; Lyons, Karen M; Schaeffer, Hayden
2014-01-01
Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cell. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth. PMID:25525552
Faron, Matthew L; Buchan, Blake W; Vismara, Chiara; Lacchini, Carla; Bielli, Alessandra; Gesu, Giovanni; Liebregts, Theo; van Bree, Anita; Jansz, Arjan; Soucy, Genevieve; Korver, John; Ledeboer, Nathan A
2016-03-01
Recently, systems have been developed to create total laboratory automation for clinical microbiology. These systems allow for the automation of specimen processing, specimen incubation, and imaging of bacterial growth. In this study, we used the WASPLab to validate software that discriminates and segregates positive and negative chromogenic methicillin-resistant Staphylococcus aureus (MRSA) plates by recognition of pigmented colonies. A total of 57,690 swabs submitted for MRSA screening were enrolled in the study. Four sites enrolled specimens following their standard of care. Chromogenic agar used at these sites included MRSASelect (Bio-Rad Laboratories, Redmond, WA), chromID MRSA (bioMérieux, Marcy l'Etoile, France), and CHROMagar MRSA (BD Diagnostics, Sparks, MD). Specimens were plated and incubated using the WASPLab. The digital camera took images at 0 and 16 to 24 h and the WASPLab software determined the presence of positive colonies based on a hue, saturation, and value (HSV) score. If the HSV score fell within a defined threshold, the plate was called positive. The performance of the digital analysis was compared to manual reading. Overall, the digital software had a sensitivity of 100% and a specificity of 90.7% with the specificity ranging between 90.0 and 96.0 across all sites. The results were similar using the three different agars with a sensitivity of 100% and specificity ranging between 90.7 and 92.4%. These data demonstrate that automated digital analysis can be used to accurately sort positive from negative chromogenic agar cultures regardless of the pigmentation produced. Copyright © 2016 Faron et al.
Grab a coffee: your aerial images are already analyzed
NASA Astrophysics Data System (ADS)
Garetto, Anthony; Rademacher, Thomas; Schulz, Kristian
2015-07-01
For over 2 decades the AIMTM platform has been utilized in mask shops as the standard for actinic review of photomask sites in order to perform defect disposition and repair review. Throughout this time the measurement throughput of the systems has been improved in order to keep pace with the requirements demanded by a manufacturing environment, however the analysis of the sites captured has seen little improvement and remained a manual process. This manual analysis of aerial images is time consuming, subject to error and unreliability and contributes to holding up turn-around time (TAT) and slowing process flow in a manufacturing environment. AutoAnalysis, the first application available for the FAVOR® platform, offers a solution to these problems by providing fully automated data transfer and analysis of AIMTM aerial images. The data is automatically output in a customizable format that can be tailored to your internal needs and the requests of your customers. Savings in terms of operator time arise from the automated analysis which no longer needs to be performed. Reliability is improved as human error is eliminated making sure the most defective region is always and consistently captured. Finally the TAT is shortened and process flow for the back end of the line improved as the analysis is fast and runs in parallel to the measurements. In this paper the concept and approach of AutoAnalysis will be presented as well as an update to the status of the project. A look at the benefits arising from the automation and the customizable approach of the solution will be shown.
Analysis of digitized cervical images to detect cervical neoplasia
NASA Astrophysics Data System (ADS)
Ferris, Daron G.
2004-05-01
Cervical cancer is the second most common malignancy in women worldwide. If diagnosed in the premalignant stage, cure is invariably assured. Although the Papanicolaou (Pap) smear has significantly reduced the incidence of cervical cancer where implemented, the test is only moderately sensitive, highly subjective and skilled-labor intensive. Newer optical screening tests (cervicography, direct visual inspection and speculoscopy), including fluorescent and reflective spectroscopy, are fraught with certain weaknesses. Yet, the integration of optical probes for the detection and discrimination of cervical neoplasia with automated image analysis methods may provide an effective screening tool for early detection of cervical cancer, particularly in resource poor nations. Investigative studies are needed to validate the potential for automated classification and recognition algorithms. By applying image analysis techniques for registration, segmentation, pattern recognition, and classification, cervical neoplasia may be reliably discriminated from normal epithelium. The National Cancer Institute (NCI), in cooperation with the National Library of Medicine (NLM), has embarked on a program to begin this and other similar investigative studies.
Kudella, Patrick Wolfgang; Moll, Kirsten; Wahlgren, Mats; Wixforth, Achim; Westerhausen, Christoph
2016-04-18
Rosetting is associated with severe malaria and a primary cause of death in Plasmodium falciparum infections. Detailed understanding of this adhesive phenomenon may enable the development of new therapies interfering with rosette formation. For this, it is crucial to determine parameters such as rosetting and parasitaemia of laboratory strains or patient isolates, a bottleneck in malaria research due to the time consuming and error prone manual analysis of specimens. Here, the automated, free, stand-alone analysis software automated rosetting analyzer for micrographs (ARAM) to determine rosetting rate, rosette size distribution as well as parasitaemia with a convenient graphical user interface is presented. Automated rosetting analyzer for micrographs is an executable with two operation modes for automated identification of objects on images. The default mode detects red blood cells and fluorescently labelled parasitized red blood cells by combining an intensity-gradient with a threshold filter. The second mode determines object location and size distribution from a single contrast method. The obtained results are compared with standardized manual analysis. Automated rosetting analyzer for micrographs calculates statistical confidence probabilities for rosetting rate and parasitaemia. Automated rosetting analyzer for micrographs analyses 25 cell objects per second reliably delivering identical results compared to manual analysis. For the first time rosette size distribution is determined in a precise and quantitative manner employing ARAM in combination with established inhibition tests. Additionally ARAM measures the essential observables parasitaemia, rosetting rate and size as well as location of all detected objects and provides confidence intervals for the determined observables. No other existing software solution offers this range of function. The second, non-malaria specific, analysis mode of ARAM offers the functionality to detect arbitrary objects. Automated rosetting analyzer for micrographs has the capability to push malaria research to a more quantitative and statistically significant level with increased reliability due to operator independence. As an installation file for Windows © 7, 8.1 and 10 is available for free, ARAM offers a novel open and easy-to-use platform for the malaria community to elucidate resetting. © 7, 8.1 and 10 is available for free, ARAM offers a novel open and easy-to-use platform for the malaria community to elucidate rosetting.
Gater, Deborah L; Widatalla, Namareq; Islam, Kinza; AlRaeesi, Maryam; Teo, Jeremy C M; Pearson, Yanthe E
2017-12-13
The transformation of normal macrophage cells into lipid-laden foam cells is an important step in the progression of atherosclerosis. One major contributor to foam cell formation in vivo is the intracellular accumulation of cholesterol. Here, we report the effects of various combinations of low-density lipoprotein, sterols, lipids and other factors on human macrophages, using an automated image analysis program to quantitatively compare single cell properties, such as cell size and lipid content, in different conditions. We observed that the addition of cholesterol caused an increase in average cell lipid content across a range of conditions. All of the sterol-lipid mixtures examined were capable of inducing increases in average cell lipid content, with variations in the distribution of the response, in cytotoxicity and in how the sterol-lipid combination interacted with other activating factors. For example, cholesterol and lipopolysaccharide acted synergistically to increase cell lipid content while also increasing cell survival compared with the addition of lipopolysaccharide alone. Additionally, ergosterol and cholesteryl hemisuccinate caused similar increases in lipid content but also exhibited considerably greater cytotoxicity than cholesterol. The use of automated image analysis enables us to assess not only changes in average cell size and content, but also to rapidly and automatically compare population distributions based on simple fluorescence images. Our observations add to increasing understanding of the complex and multifactorial nature of foam-cell formation and provide a novel approach to assessing the heterogeneity of macrophage response to a variety of factors.
Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis.
Myburgh, Hermanus C; van Zijl, Willemien H; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude
2016-03-01
Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations.
Karnowski, T P; Aykac, D; Giancardo, L; Li, Y; Nichols, T; Tobin, K W; Chaum, E
2011-01-01
The automated detection of diabetic retinopathy and other eye diseases in images of the retina has great promise as a low-cost method for broad-based screening. Many systems in the literature which perform automated detection include a quality estimation step and physiological feature detection, including the vascular tree and the optic nerve / macula location. In this work, we study the robustness of an automated disease detection method with respect to the accuracy of the optic nerve location and the quality of the images obtained as judged by a quality estimation algorithm. The detection algorithm features microaneurysm and exudate detection followed by feature extraction on the detected population to describe the overall retina image. Labeled images of retinas ground-truthed to disease states are used to train a supervised learning algorithm to identify the disease state of the retina image and exam set. Under the restrictions of high confidence optic nerve detections and good quality imagery, the system achieves a sensitivity and specificity of 94.8% and 78.7% with area-under-curve of 95.3%. Analysis of the effect of constraining quality and the distinction between mild non-proliferative diabetic retinopathy, normal retina images, and more severe disease states is included.
Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis
Myburgh, Hermanus C.; van Zijl, Willemien H.; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude
2016-01-01
Background Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. Methods A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. Findings An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. Interpretation The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~ 64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations. PMID:27077122
Investigation of a novel approach to scoring Giemsa-stained malaria-infected thin blood films.
Proudfoot, Owen; Drew, Nathan; Scholzen, Anja; Xiang, Sue; Plebanski, Magdalena
2008-04-21
Daily assessment of the percentage of erythrocytes that are infected ('percent-parasitaemia') across a time-course is a necessary step in many experimental studies of malaria, but represents a time-consuming and unpopular task among researchers. The most common method is extensive microscopic examination of Giemsa-stained thin blood-films. This study explored a method for the assessment of percent-parasitaemia that does not require extended periods of microscopy and results in a descriptive and permanent record of parasitaemia data that is highly amenable to subsequent 'data-mining'. Digital photography was utilized in conjunction with a basic purpose-written computer programme to test the viability of the concept. Partial automation of the determination of percent parasitaemia was then explored, resulting in the successful customization of commercially available broad-spectrum image analysis software towards this aim. Lastly, automated discrimination between infected and uninfected RBCs based on analysis of digital parameters of individual cell images was explored in an effort to completely automate the calculation of an accurate percent-parasitaemia.
Automated diagnosis of fetal alcohol syndrome using 3D facial image analysis
Fang, Shiaofen; McLaughlin, Jason; Fang, Jiandong; Huang, Jeffrey; Autti-Rämö, Ilona; Fagerlund, Åse; Jacobson, Sandra W.; Robinson, Luther K.; Hoyme, H. Eugene; Mattson, Sarah N.; Riley, Edward; Zhou, Feng; Ward, Richard; Moore, Elizabeth S.; Foroud, Tatiana
2012-01-01
Objectives Use three-dimensional (3D) facial laser scanned images from children with fetal alcohol syndrome (FAS) and controls to develop an automated diagnosis technique that can reliably and accurately identify individuals prenatally exposed to alcohol. Methods A detailed dysmorphology evaluation, history of prenatal alcohol exposure, and 3D facial laser scans were obtained from 149 individuals (86 FAS; 63 Control) recruited from two study sites (Cape Town, South Africa and Helsinki, Finland). Computer graphics, machine learning, and pattern recognition techniques were used to automatically identify a set of facial features that best discriminated individuals with FAS from controls in each sample. Results An automated feature detection and analysis technique was developed and applied to the two study populations. A unique set of facial regions and features were identified for each population that accurately discriminated FAS and control faces without any human intervention. Conclusion Our results demonstrate that computer algorithms can be used to automatically detect facial features that can discriminate FAS and control faces. PMID:18713153
Automated image segmentation-assisted flattening of atomic force microscopy images.
Wang, Yuliang; Lu, Tongda; Li, Xiaolai; Wang, Huimin
2018-01-01
Atomic force microscopy (AFM) images normally exhibit various artifacts. As a result, image flattening is required prior to image analysis. To obtain optimized flattening results, foreground features are generally manually excluded using rectangular masks in image flattening, which is time consuming and inaccurate. In this study, a two-step scheme was proposed to achieve optimized image flattening in an automated manner. In the first step, the convex and concave features in the foreground were automatically segmented with accurate boundary detection. The extracted foreground features were taken as exclusion masks. In the second step, data points in the background were fitted as polynomial curves/surfaces, which were then subtracted from raw images to get the flattened images. Moreover, sliding-window-based polynomial fitting was proposed to process images with complex background trends. The working principle of the two-step image flattening scheme were presented, followed by the investigation of the influence of a sliding-window size and polynomial fitting direction on the flattened images. Additionally, the role of image flattening on the morphological characterization and segmentation of AFM images were verified with the proposed method.
Accuracy of a remote quantitative image analysis in the whole slide images.
Słodkowska, Janina; Markiewicz, Tomasz; Grala, Bartłomiej; Kozłowski, Wojciech; Papierz, Wielisław; Pleskacz, Katarzyna; Murawski, Piotr
2011-03-30
The rationale for choosing a remote quantitative method supporting a diagnostic decision requires some empirical studies and knowledge on scenarios including valid telepathology standards. The tumours of the central nervous system [CNS] are graded on the base of the morphological features and the Ki-67 labelling Index [Ki-67 LI]. Various methods have been applied for Ki-67 LI estimation. Recently we have introduced the Computerized Analysis of Medical Images [CAMI] software for an automated Ki-67 LI counting in the digital images. Aims of our study was to explore the accuracy and reliability of a remote assessment of Ki-67 LI with CAMI software applied to the whole slide images [WSI]. The WSI representing CNS tumours: 18 meningiomas and 10 oligodendrogliomas were stored on the server of the Warsaw University of Technology. The digital copies of entire glass slides were created automatically by the Aperio ScanScope CS with objective 20x or 40x. Aperio's Image Scope software provided functionality for a remote viewing of WSI. The Ki-67 LI assessment was carried on within 2 out of 20 selected fields of view (objective 40x) representing the highest labelling areas in each WSI. The Ki-67 LI counting was performed by 3 various methods: 1) the manual reading in the light microscope - LM, 2) the automated counting with CAMI software on the digital images - DI , and 3) the remote quantitation on the WSIs - as WSI method. The quality of WSIs and technical efficiency of the on-line system were analysed. The comparative statistical analysis was performed for the results obtained by 3 methods of Ki-67 LI counting. The preliminary analysis showed that in 18% of WSI the results of Ki-67 LI differed from those obtained in other 2 methods of counting when the quality of the glass slides was below the standard range. The results of our investigations indicate that the remote automated Ki-67 LI analysis performed with the CAMI algorithm on the whole slide images of meningiomas and oligodendrogliomas could be successfully used as an alternative method to the manual reading as well as to the digital images quantitation with CAMI software. According to our observation a need of a remote supervision/consultation and training for the effective use of remote quantitative analysis of WSI is necessary.
Automated classification of articular cartilage surfaces based on surface texture.
Stachowiak, G P; Stachowiak, G W; Podsiadlo, P
2006-11-01
In this study the automated classification system previously developed by the authors was used to classify articular cartilage surfaces with different degrees of wear. This automated system classifies surfaces based on their texture. Plug samples of sheep cartilage (pins) were run on stainless steel discs under various conditions using a pin-on-disc tribometer. Testing conditions were specifically designed to produce different severities of cartilage damage due to wear. Environmental scanning electron microscope (SEM) (ESEM) images of cartilage surfaces, that formed a database for pattern recognition analysis, were acquired. The ESEM images of cartilage were divided into five groups (classes), each class representing different wear conditions or wear severity. Each class was first examined and assessed visually. Next, the automated classification system (pattern recognition) was applied to all classes. The results of the automated surface texture classification were compared to those based on visual assessment of surface morphology. It was shown that the texture-based automated classification system was an efficient and accurate method of distinguishing between various cartilage surfaces generated under different wear conditions. It appears that the texture-based classification method has potential to become a useful tool in medical diagnostics.
Development of an Automated Imaging Pipeline for the Analysis of the Zebrafish Larval Kidney
Westhoff, Jens H.; Giselbrecht, Stefan; Schmidts, Miriam; Schindler, Sebastian; Beales, Philip L.; Tönshoff, Burkhard; Liebel, Urban; Gehrig, Jochen
2013-01-01
The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems. PMID:24324758
Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney.
Westhoff, Jens H; Giselbrecht, Stefan; Schmidts, Miriam; Schindler, Sebastian; Beales, Philip L; Tönshoff, Burkhard; Liebel, Urban; Gehrig, Jochen
2013-01-01
The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.
Solvepol: A Reduction Pipeline for Imaging Polarimetry Data
NASA Astrophysics Data System (ADS)
Ramírez, Edgar A.; Magalhães, Antônio M.; Davidson, James W., Jr.; Pereyra, Antonio; Rubinho, Marcelo
2017-05-01
We present a newly, fully automated, data pipeline, Solvepol, designed to reduce and analyze polarimetric data. It has been optimized for imaging data from the Instituto de Astronomía, Geofísica e Ciências Atmosféricas (IAG) of the University of São Paulo (USP), calcite Savart prism plate-based IAGPOL polarimeter. Solvepol is also the basis of a reduction pipeline for the wide-field optical polarimeter that will execute SOUTH POL, a survey of the polarized southern sky. Solvepol was written using the Interactive data language (IDL) and is based on the Image Reduction and Analysis Facility (IRAF) task PCCDPACK, developed by our polarimetry group. We present and discuss reduced data from standard stars and other fields and compare these results with those obtained in the IRAF environment. Our analysis shows that Solvepol, in addition to being a fully automated pipeline, produces results consistent with those reduced by PCCDPACK and reported in the literature.
Knee X-ray image analysis method for automated detection of Osteoarthritis
Shamir, Lior; Ling, Shari M.; Scott, William W.; Bos, Angelo; Orlov, Nikita; Macura, Tomasz; Eckley, D. Mark; Ferrucci, Luigi; Goldberg, Ilya G.
2008-01-01
We describe a method for automated detection of radiographic Osteoarthritis (OA) in knee X-ray images. The detection is based on the Kellgren-Lawrence classification grades, which correspond to the different stages of OA severity. The classifier was built using manually classified X-rays, representing the first four KL grades (normal, doubtful, minimal and moderate). Image analysis is performed by first identifying a set of image content descriptors and image transforms that are informative for the detection of OA in the X-rays, and assigning weights to these image features using Fisher scores. Then, a simple weighted nearest neighbor rule is used in order to predict the KL grade to which a given test X-ray sample belongs. The dataset used in the experiment contained 350 X-ray images classified manually by their KL grades. Experimental results show that moderate OA (KL grade 3) and minimal OA (KL grade 2) can be differentiated from normal cases with accuracy of 91.5% and 80.4%, respectively. Doubtful OA (KL grade 1) was detected automatically with a much lower accuracy of 57%. The source code developed and used in this study is available for free download at www.openmicroscopy.org. PMID:19342330
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks.
Yi, Faliu; Yang, Lin; Wang, Shidan; Guo, Lei; Huang, Chenglong; Xie, Yang; Xiao, Guanghua
2018-02-27
Pathological angiogenesis has been identified in many malignancies as a potential prognostic factor and target for therapy. In most cases, angiogenic analysis is based on the measurement of microvessel density (MVD) detected by immunostaining of CD31 or CD34. However, most retrievable public data is generally composed of Hematoxylin and Eosin (H&E)-stained pathology images, for which is difficult to get the corresponding immunohistochemistry images. The role of microvessels in H&E stained images has not been widely studied due to their complexity and heterogeneity. Furthermore, identifying microvessels manually for study is a labor-intensive task for pathologists, with high inter- and intra-observer variation. Therefore, it is important to develop automated microvessel-detection algorithms in H&E stained pathology images for clinical association analysis. In this paper, we propose a microvessel prediction method using fully convolutional neural networks. The feasibility of our proposed algorithm is demonstrated through experimental results on H&E stained images. Furthermore, the identified microvessel features were significantly associated with the patient clinical outcomes. This is the first study to develop an algorithm for automated microvessel detection in H&E stained pathology images.
Rueckl, Martin; Lenzi, Stephen C; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W
2017-01-01
The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca 2+ -imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca 2+ imaging datasets, particularly when these have been acquired at different spatial scales.
Rueckl, Martin; Lenzi, Stephen C.; Moreno-Velasquez, Laura; Parthier, Daniel; Schmitz, Dietmar; Ruediger, Sten; Johenning, Friedrich W.
2017-01-01
The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca2+-imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca2+ imaging datasets, particularly when these have been acquired at different spatial scales. PMID:28706482
Wang, Xinggang; Yang, Wei; Weinreb, Jeffrey; Han, Juan; Li, Qiubai; Kong, Xiangchuang; Yan, Yongluan; Ke, Zan; Luo, Bo; Liu, Tao; Wang, Liang
2017-11-13
Prostate cancer (PCa) is a major cause of death since ancient time documented in Egyptian Ptolemaic mummy imaging. PCa detection is critical to personalized medicine and varies considerably under an MRI scan. 172 patients with 2,602 morphologic images (axial 2D T2-weighted imaging) of the prostate were obtained. A deep learning with deep convolutional neural network (DCNN) and a non-deep learning with SIFT image feature and bag-of-word (BoW), a representative method for image recognition and analysis, were used to distinguish pathologically confirmed PCa patients from prostate benign conditions (BCs) patients with prostatitis or prostate benign hyperplasia (BPH). In fully automated detection of PCa patients, deep learning had a statistically higher area under the receiver operating characteristics curve (AUC) than non-deep learning (P = 0.0007 < 0.001). The AUCs were 0.84 (95% CI 0.78-0.89) for deep learning method and 0.70 (95% CI 0.63-0.77) for non-deep learning method, respectively. Our results suggest that deep learning with DCNN is superior to non-deep learning with SIFT image feature and BoW model for fully automated PCa patients differentiation from prostate BCs patients. Our deep learning method is extensible to image modalities such as MR imaging, CT and PET of other organs.
High-Content Screening for Quantitative Cell Biology.
Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J
2016-08-01
High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Frapid: achieving full automation of FRAP for chemical probe validation
Yapp, Clarence; Rogers, Catherine; Savitsky, Pavel; Philpott, Martin; Müller, Susanne
2016-01-01
Fluorescence Recovery After Photobleaching (FRAP) is an established method for validating chemical probes against the chromatin reading bromodomains, but so far requires constant human supervision. Here, we present Frapid, an automated open source code implementation of FRAP that fully handles cell identification through fuzzy logic analysis, drug dispensing with a custom-built fluid handler, image acquisition & analysis, and reporting. We successfully tested Frapid on 3 bromodomains as well as on spindlin1 (SPIN1), a methyl lysine binder, for the first time. PMID:26977352
Saha, Sajib Kumar; Fernando, Basura; Cuadros, Jorge; Xiao, Di; Kanagasingam, Yogesan
2018-04-27
Fundus images obtained in a telemedicine program are acquired at different sites that are captured by people who have varying levels of experience. These result in a relatively high percentage of images which are later marked as unreadable by graders. Unreadable images require a recapture which is time and cost intensive. An automated method that determines the image quality during acquisition is an effective alternative. To determine the image quality during acquisition, we describe here an automated method for the assessment of image quality in the context of diabetic retinopathy. The method explicitly applies machine learning techniques to access the image and to determine 'accept' and 'reject' categories. 'Reject' category image requires a recapture. A deep convolution neural network is trained to grade the images automatically. A large representative set of 7000 colour fundus images was used for the experiment which was obtained from the EyePACS that were made available by the California Healthcare Foundation. Three retinal image analysis experts were employed to categorise these images into 'accept' and 'reject' classes based on the precise definition of image quality in the context of DR. The network was trained using 3428 images. The method shows an accuracy of 100% to successfully categorise 'accept' and 'reject' images, which is about 2% higher than the traditional machine learning method. On a clinical trial, the proposed method shows 97% agreement with human grader. The method can be easily incorporated with the fundus image capturing system in the acquisition centre and can guide the photographer whether a recapture is necessary or not.
Ganapathy, Sreelatha; Muraleedharan, Aparna; Sathidevi, Puthumangalathu Savithri; Chand, Parkash; Rajkumar, Ravi Philip
2016-09-01
DNA damage analysis plays an important role in determining the approaches for treatment and prevention of various diseases like cancer, schizophrenia and other heritable diseases. Comet assay is a sensitive and versatile method for DNA damage analysis. The main objective of this work is to implement a fully automated tool for the detection and quantification of DNA damage by analysing comet assay images. The comet assay image analysis consists of four stages: (1) classifier (2) comet segmentation (3) comet partitioning and (4) comet quantification. Main features of the proposed software are the design and development of four comet segmentation methods, and the automatic routing of the input comet assay image to the most suitable one among these methods depending on the type of the image (silver stained or fluorescent stained) as well as the level of DNA damage (heavily damaged or lightly/moderately damaged). A classifier stage, based on support vector machine (SVM) is designed and implemented at the front end, to categorise the input image into one of the above four groups to ensure proper routing. Comet segmentation is followed by comet partitioning which is implemented using a novel technique coined as modified fuzzy clustering. Comet parameters are calculated in the comet quantification stage and are saved in an excel file. Our dataset consists of 600 silver stained images obtained from 40 Schizophrenia patients with different levels of severity, admitted to a tertiary hospital in South India and 56 fluorescent stained images obtained from different internet sources. The performance of "CometQ", the proposed standalone application for automated analysis of comet assay images, is evaluated by a clinical expert and is also compared with that of a most recent and related software-OpenComet. CometQ gave 90.26% positive predictive value (PPV) and 93.34% sensitivity which are much higher than those of OpenComet, especially in the case of silver stained images. The results are validated using confusion matrix and Jaccard index (JI). Comet assay images obtained after DNA damage repair by incubation in the nutrient medium were also analysed, and CometQ showed a significant change in all the comet parameters in most of the cases. Results show that CometQ is an accurate and efficient tool with good sensitivity and PPV for DNA damage analysis using comet assay images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Automated Grading System for Evaluation of Superficial Punctate Keratitis Associated With Dry Eye.
Rodriguez, John D; Lane, Keith J; Ousler, George W; Angjeli, Endri; Smith, Lisa M; Abelson, Mark B
2015-04-01
To develop an automated method of grading fluorescein staining that accurately reproduces the clinical grading system currently in use. From the slit lamp photograph of the fluorescein-stained cornea, the region of interest was selected and punctate dot number calculated using software developed with the OpenCV computer vision library. Images (n = 229) were then divided into six incremental severity categories based on computed scores. The final selection of 54 photographs represented the full range of scores: nine images from each of six categories. These were then evaluated by three investigators using a clinical 0 to 4 corneal staining scale. Pearson correlations were calculated to compare investigator scores, and mean investigator and automated scores. Lin's Concordance Correlation Coefficients (CCC) and Bland-Altman plots were used to assess agreement between methods and between investigators. Pearson's correlation between investigators was 0.914; mean CCC between investigators was 0.882. Bland-Altman analysis indicated that scores assessed by investigator 3 were significantly higher than those of investigators 1 and 2 (paired t-test). The predicted grade was calculated to be: Gpred = 1.48log(Ndots) - 0.206. The two-point Pearson's correlation coefficient between the methods was 0.927 (P < 0.0001). The CCC between predicted automated score Gpred and mean investigator score was 0.929, 95% confidence interval (0.884-0.957). Bland-Altman analysis did not indicate bias. The difference in SD between clinical and automated methods was 0.398. An objective, automated analysis of corneal staining provides a quality assurance tool to be used to substantiate clinical grading of key corneal staining endpoints in multicentered clinical trials of dry eye.
SlideJ: An ImageJ plugin for automated processing of whole slide images.
Della Mea, Vincenzo; Baroni, Giulia L; Pilutti, David; Di Loreto, Carla
2017-01-01
The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images-up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations.
Automated measurement of cell motility and proliferation
Bahnson, Alfred; Athanassiou, Charalambos; Koebler, Douglas; Qian, Lei; Shun, Tongying; Shields, Donna; Yu, Hui; Wang, Hong; Goff, Julie; Cheng, Tao; Houck, Raymond; Cowsert, Lex
2005-01-01
Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell objects, and uncertainty in the outlining and positioning of cells by automated image analysis. Exponential growth, as monitored by total cell area, did not linearly correlate with absolute cell number, but proved valuable for selection of reliable tracking data and for disclosing between-experiment variations in cell growth. Conclusion These results demonstrate the applicability of a system that uses fully automated image acquisition and analysis to study cell motility and growth. Cellular motility response is determined in an unbiased and comparatively high throughput manner. Abundant ancillary data provide opportunities for uniform filtering according to criteria that select for biological relevance and for providing insight into features of system performance. Data quality measures have been developed that can serve as a basis for the design and quality control of experiments that are facilitated by automation and the 384 well plate format. This system is applicable to large-scale studies such as drug screening and research into effects of complex combinations of factors and matrices on cell phenotype. PMID:15831094
Automated Morphological Analysis of Microglia After Stroke.
Heindl, Steffanie; Gesierich, Benno; Benakis, Corinne; Llovera, Gemma; Duering, Marco; Liesz, Arthur
2018-01-01
Microglia are the resident immune cells of the brain and react quickly to changes in their environment with transcriptional regulation and morphological changes. Brain tissue injury such as ischemic stroke induces a local inflammatory response encompassing microglial activation. The change in activation status of a microglia is reflected in its gradual morphological transformation from a highly ramified into a less ramified or amoeboid cell shape. For this reason, the morphological changes of microglia are widely utilized to quantify microglial activation and studying their involvement in virtually all brain diseases. However, the currently available methods, which are mainly based on manual rating of immunofluorescent microscopic images, are often inaccurate, rater biased, and highly time consuming. To address these issues, we created a fully automated image analysis tool, which enables the analysis of microglia morphology from a confocal Z-stack and providing up to 59 morphological features. We developed the algorithm on an exploratory dataset of microglial cells from a stroke mouse model and validated the findings on an independent data set. In both datasets, we could demonstrate the ability of the algorithm to sensitively discriminate between the microglia morphology in the peri-infarct and the contralateral, unaffected cortex. Dimensionality reduction by principal component analysis allowed to generate a highly sensitive compound score for microglial shape analysis. Finally, we tested for concordance of results between the novel automated analysis tool and the conventional manual analysis and found a high degree of correlation. In conclusion, our novel method for the fully automatized analysis of microglia morphology shows excellent accuracy and time efficacy compared to traditional analysis methods. This tool, which we make openly available, could find application to study microglia morphology using fluorescence imaging in a wide range of brain disease models.
Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.
Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades
2015-01-01
DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA gel electrophoresis images, called GELect, which was written in Java and made available through the imageJ framework. With a novel automated image processing workflow, the tool can accurately segment lanes from a gel matrix, intelligently extract distorted and even doublet bands that are difficult to identify by existing image processing tools. Consequently, genotyping from DNA gel electrophoresis can be performed automatically allowing users to efficiently conduct large scale DNA fingerprinting via DNA gel electrophoresis. The software is freely available from http://www.biotec.or.th/gi/tools/gelect.
Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun
2018-07-01
Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland-Altman plot shows that 95% of the data are between the 2SD agreement lines. We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.
Glaucoma risk index: automated glaucoma detection from color fundus images.
Bock, Rüdiger; Meier, Jörg; Nyúl, László G; Hornegger, Joachim; Michelson, Georg
2010-06-01
Glaucoma as a neurodegeneration of the optic nerve is one of the most common causes of blindness. Because revitalization of the degenerated nerve fibers of the optic nerve is impossible early detection of the disease is essential. This can be supported by a robust and automated mass-screening. We propose a novel automated glaucoma detection system that operates on inexpensive to acquire and widely used digital color fundus images. After a glaucoma specific preprocessing, different generic feature types are compressed by an appearance-based dimension reduction technique. Subsequently, a probabilistic two-stage classification scheme combines these features types to extract the novel Glaucoma Risk Index (GRI) that shows a reasonable glaucoma detection performance. On a sample set of 575 fundus images a classification accuracy of 80% has been achieved in a 5-fold cross-validation setup. The GRI gains a competitive area under ROC (AUC) of 88% compared to the established topography-based glaucoma probability score of scanning laser tomography with AUC of 87%. The proposed color fundus image-based GRI achieves a competitive and reliable detection performance on a low-priced modality by the statistical analysis of entire images of the optic nerve head. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Isse, K; Lesniak, A; Grama, K; Roysam, B; Minervini, M I; Demetris, A J
2012-01-01
Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. "-Omics" analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: (a) spatial-temporal relationships; (b) rare events/cells; (c) complex structural context; and (d) integration into a "systems" model. Nevertheless, except for immunostaining, no transformative advancements have "modernized" routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology-global "-omic" analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. ©Copyright 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.
Rabal, Obdulia; Link, Wolfgang; Serelde, Beatriz G; Bischoff, James R; Oyarzabal, Julen
2010-04-01
Here we report the development and validation of a complete solution to manage and analyze the data produced by image-based phenotypic screening campaigns of small-molecule libraries. In one step initial crude images are analyzed for multiple cytological features, statistical analysis is performed and molecules that produce the desired phenotypic profile are identified. A naïve Bayes classifier, integrating chemical and phenotypic spaces, is built and utilized during the process to assess those images initially classified as "fuzzy"-an automated iterative feedback tuning. Simultaneously, all this information is directly annotated in a relational database containing the chemical data. This novel fully automated method was validated by conducting a re-analysis of results from a high-content screening campaign involving 33 992 molecules used to identify inhibitors of the PI3K/Akt signaling pathway. Ninety-two percent of confirmed hits identified by the conventional multistep analysis method were identified using this integrated one-step system as well as 40 new hits, 14.9% of the total, originally false negatives. Ninety-six percent of true negatives were properly recognized too. A web-based access to the database, with customizable data retrieval and visualization tools, facilitates the posterior analysis of annotated cytological features which allows identification of additional phenotypic profiles; thus, further analysis of original crude images is not required.
Automated Liver Elasticity Calculation for 3D MRE
Dzyubak, Bogdan; Glaser, Kevin J.; Manduca, Armando; Ehman, Richard L.
2017-01-01
Magnetic Resonance Elastography (MRE) is a phase-contrast MRI technique which calculates quantitative stiffness images, called elastograms, by imaging the propagation of acoustic waves in tissues. It is used clinically to diagnose liver fibrosis. Automated analysis of MRE is difficult as the corresponding MRI magnitude images (which contain anatomical information) are affected by intensity inhomogeneity, motion artifact, and poor tissue- and edge-contrast. Additionally, areas with low wave amplitude must be excluded. An automated algorithm has already been successfully developed and validated for clinical 2D MRE. 3D MRE acquires substantially more data and, due to accelerated acquisition, has exacerbated image artifacts. Also, the current 3D MRE processing does not yield a confidence map to indicate MRE wave quality and guide ROI selection, as is the case in 2D. In this study, extension of the 2D automated method, with a simple wave-amplitude metric, was developed and validated against an expert reader in a set of 57 patient exams with both 2D and 3D MRE. The stiffness discrepancy with the expert for 3D MRE was −0.8% ± 9.45% and was better than discrepancy with the same reader for 2D MRE (−3.2% ± 10.43%), and better than the inter-reader discrepancy observed in previous studies. There were no automated processing failures in this dataset. Thus, the automated liver elasticity calculation (ALEC) algorithm is able to calculate stiffness from 3D MRE data with minimal bias and good precision, while enabling stiffness measurements to be fully reproducible and to be easily performed on the large 3D MRE datasets. PMID:29033488
SlideJ: An ImageJ plugin for automated processing of whole slide images
Baroni, Giulia L.; Pilutti, David; Di Loreto, Carla
2017-01-01
The digital slide, or Whole Slide Image, is a digital image, acquired with specific scanners, that represents a complete tissue sample or cytological specimen at microscopic level. While Whole Slide image analysis is recognized among the most interesting opportunities, the typical size of such images—up to Gpixels- can be very demanding in terms of memory requirements. Thus, while algorithms and tools for processing and analysis of single microscopic field images are available, Whole Slide images size makes the direct use of such tools prohibitive or impossible. In this work a plugin for ImageJ, named SlideJ, is proposed with the objective to seamlessly extend the application of image analysis algorithms implemented in ImageJ for single microscopic field images to a whole digital slide analysis. The plugin has been complemented by examples of macro in the ImageJ scripting language to demonstrate its use in concrete situations. PMID:28683129
Chakrabarty, Lipi; Joshi, Gopal Datt; Chakravarty, Arunava; Raman, Ganesh V; Krishnadas, S R; Sivaswamy, Jayanthi
2016-07-01
To describe and evaluate the performance of an automated CAD system for detection of glaucoma from color fundus photographs. Color fundus photographs of 2252 eyes from 1126 subjects were collected from 2 centers: Aravind Eye Hospital, Madurai and Coimbatore, India. The images of 1926 eyes (963 subjects) were used to train an automated image analysis-based system, which was developed to provide a decision on a given fundus image. A total of 163 subjects were clinically examined by 2 ophthalmologists independently and their diagnostic decisions were recorded. The consensus decision was defined to be the clinical reference (gold standard). Fundus images of eyes with disagreement in diagnosis were excluded from the study. The fundus images of the remaining 314 eyes (157 subjects) were presented to 4 graders and their diagnostic decisions on the same were collected. The performance of the system was evaluated on the 314 images, using the reference standard. The sensitivity and specificity of the system and 4 independent graders were determined against the clinical reference standard. The system achieved an area under receiver operating characteristic curve of 0.792 with a sensitivity of 0.716 and specificity of 0.717 at a selected threshold for the detection of glaucoma. The agreement with the clinical reference standard as determined by Cohen κ is 0.45 for the proposed system. This is comparable to that of the image-based decisions of 4 ophthalmologists. An automated system was presented for glaucoma detection from color fundus photographs. The overall evaluation results indicated that the presented system was comparable in performance to glaucoma classification by a manual grader solely based on fundus image examination.
Applications Of Binary Image Analysis Techniques
NASA Astrophysics Data System (ADS)
Tropf, H.; Enderle, E.; Kammerer, H. P.
1983-10-01
After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.
Mining textural knowledge in biological images: Applications, methods and trends.
Di Cataldo, Santa; Ficarra, Elisa
2017-01-01
Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can be evidence of certain pathologies. This makes automated texture analysis fundamental in many applications of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteristics and challenges, the design of texture analysis systems for biological images has attracted ever-growing attention in the last few years. In this paper, we perform a critical review of this important topic. First, we provide a general definition of texture analysis and discuss its role in the context of bioimaging, with examples of applications from the recent literature. Then, we review the main approaches to automated texture analysis, with special attention to the methods of feature extraction and encoding that can be successfully applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as well as a glimpse into the latest and future trends of research in this area.
An, Gao; Hong, Li; Zhou, Xiao-Bing; Yang, Qiong; Li, Mei-Qing; Tang, Xiang-Yang
2017-03-01
We investigated and compared the functionality of two 3D visualization software provided by a CT vendor and a third-party vendor, respectively. Using surgical anatomical measurement as baseline, we evaluated the accuracy of 3D visualization and verified their utility in computer-aided anatomical analysis. The study cohort consisted of 50 adult cadavers fixed with the classical formaldehyde method. The computer-aided anatomical analysis was based on CT images (in DICOM format) acquired by helical scan with contrast enhancement, using a CT vendor provided 3D visualization workstation (Syngo) and a third-party 3D visualization software (Mimics) that was installed on a PC. Automated and semi-automated segmentations were utilized in the 3D visualization workstation and software, respectively. The functionality and efficiency of automated and semi-automated segmentation methods were compared. Using surgical anatomical measurement as a baseline, the accuracy of 3D visualization based on automated and semi-automated segmentations was quantitatively compared. In semi-automated segmentation, the Mimics 3D visualization software outperformed the Syngo 3D visualization workstation. No significant difference was observed in anatomical data measurement by the Syngo 3D visualization workstation and the Mimics 3D visualization software (P>0.05). Both the Syngo 3D visualization workstation provided by a CT vendor and the Mimics 3D visualization software by a third-party vendor possessed the needed functionality, efficiency and accuracy for computer-aided anatomical analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.
Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network.
Smith, Kenneth P; Kang, Anthony D; Kirby, James E
2018-03-01
Microscopic interpretation of stained smears is one of the most operator-dependent and time-intensive activities in the clinical microbiology laboratory. Here, we investigated application of an automated image acquisition and convolutional neural network (CNN)-based approach for automated Gram stain classification. Using an automated microscopy platform, uncoverslipped slides were scanned with a 40× dry objective, generating images of sufficient resolution for interpretation. We collected 25,488 images from positive blood culture Gram stains prepared during routine clinical workup. These images were used to generate 100,213 crops containing Gram-positive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative rods, or background (no cells). These categories were targeted for proof-of-concept development as they are associated with the majority of bloodstream infections. Our CNN model achieved a classification accuracy of 94.9% on a test set of image crops. Receiver operating characteristic (ROC) curve analysis indicated a robust ability to differentiate between categories with an area under the curve of >0.98 for each. After training and validation, we applied the classification algorithm to new images collected from 189 whole slides without human intervention. Sensitivity and specificity were 98.4% and 75.0% for Gram-positive cocci in chains and pairs, 93.2% and 97.2% for Gram-positive cocci in clusters, and 96.3% and 98.1% for Gram-negative rods. Taken together, our data support a proof of concept for a fully automated classification methodology for blood-culture Gram stains. Importantly, the algorithm was highly adept at identifying image crops with organisms and could be used to present prescreened, classified crops to technologists to accelerate smear review. This concept could potentially be extended to all Gram stain interpretive activities in the clinical laboratory. Copyright © 2018 American Society for Microbiology.
Are we at a crossroads or a plateau? Radiomics and machine learning in abdominal oncology imaging.
Summers, Ronald M
2018-05-05
Advances in radiomics and machine learning have driven a technology boom in the automated analysis of radiology images. For the past several years, expectations have been nearly boundless for these new technologies to revolutionize radiology image analysis and interpretation. In this editorial, I compare the expectations with the realities with particular attention to applications in abdominal oncology imaging. I explore whether these technologies will leave us at a crossroads to an exciting future or to a sustained plateau and disillusionment.
Jamaludin, Amir; Lootus, Meelis; Kadir, Timor; Zisserman, Andrew; Urban, Jill; Battié, Michele C; Fairbank, Jeremy; McCall, Iain
2017-05-01
Investigation of the automation of radiological features from magnetic resonance images (MRIs) of the lumbar spine. To automate the process of grading lumbar intervertebral discs and vertebral bodies from MRIs. MR imaging is the most common imaging technique used in investigating low back pain (LBP). Various features of degradation, based on MRIs, are commonly recorded and graded, e.g., Modic change and Pfirrmann grading of intervertebral discs. Consistent scoring and grading is important for developing robust clinical systems and research. Automation facilitates this consistency and reduces the time of radiological analysis considerably and hence the expense. 12,018 intervertebral discs, from 2009 patients, were graded by a radiologist and were then used to train: (1) a system to detect and label vertebrae and discs in a given scan, and (2) a convolutional neural network (CNN) model that predicts several radiological gradings. The performance of the model, in terms of class average accuracy, was compared with the intra-observer class average accuracy of the radiologist. The detection system achieved 95.6% accuracy in terms of disc detection and labeling. The model is able to produce predictions of multiple pathological gradings that consistently matched those of the radiologist. The model identifies 'Evidence Hotspots' that are the voxels that most contribute to the degradation scores. Automation of radiological grading is now on par with human performance. The system can be beneficial in aiding clinical diagnoses in terms of objectivity of gradings and the speed of analysis. It can also draw the attention of a radiologist to regions of degradation. This objectivity and speed is an important stepping stone in the investigation of the relationship between MRIs and clinical diagnoses of back pain in large cohorts. Level 3.
Keenan, S J; Diamond, J; McCluggage, W G; Bharucha, H; Thompson, D; Bartels, P H; Hamilton, P W
2000-11-01
The histological grading of cervical intraepithelial neoplasia (CIN) remains subjective, resulting in inter- and intra-observer variation and poor reproducibility in the grading of cervical lesions. This study has attempted to develop an objective grading system using automated machine vision. The architectural features of cervical squamous epithelium are quantitatively analysed using a combination of computerized digital image processing and Delaunay triangulation analysis; 230 images digitally captured from cases previously classified by a gynaecological pathologist included normal cervical squamous epithelium (n=30), koilocytosis (n=46), CIN 1 (n=52), CIN 2 (n=56), and CIN 3 (n=46). Intra- and inter-observer variation had kappa values of 0.502 and 0.415, respectively. A machine vision system was developed in KS400 macro programming language to segment and mark the centres of all nuclei within the epithelium. By object-oriented analysis of image components, the positional information of nuclei was used to construct a Delaunay triangulation mesh. Each mesh was analysed to compute triangle dimensions including the mean triangle area, the mean triangle edge length, and the number of triangles per unit area, giving an individual quantitative profile of measurements for each case. Discriminant analysis of the geometric data revealed the significant discriminatory variables from which a classification score was derived. The scoring system distinguished between normal and CIN 3 in 98.7% of cases and between koilocytosis and CIN 1 in 76.5% of cases, but only 62.3% of the CIN cases were classified into the correct group, with the CIN 2 group showing the highest rate of misclassification. Graphical plots of triangulation data demonstrated the continuum of morphological change from normal squamous epithelium to the highest grade of CIN, with overlapping of the groups originally defined by the pathologists. This study shows that automated location of nuclei in cervical biopsies using computerized image analysis is possible. Analysis of positional information enables quantitative evaluation of architectural features in CIN using Delaunay triangulation meshes, which is effective in the objective classification of CIN. This demonstrates the future potential of automated machine vision systems in diagnostic histopathology. Copyright 2000 John Wiley & Sons, Ltd.
An Imaging And Graphics Workstation For Image Sequence Analysis
NASA Astrophysics Data System (ADS)
Mostafavi, Hassan
1990-01-01
This paper describes an application-specific engineering workstation designed and developed to analyze imagery sequences from a variety of sources. The system combines the software and hardware environment of the modern graphic-oriented workstations with the digital image acquisition, processing and display techniques. The objective is to achieve automation and high throughput for many data reduction tasks involving metric studies of image sequences. The applications of such an automated data reduction tool include analysis of the trajectory and attitude of aircraft, missile, stores and other flying objects in various flight regimes including launch and separation as well as regular flight maneuvers. The workstation can also be used in an on-line or off-line mode to study three-dimensional motion of aircraft models in simulated flight conditions such as wind tunnels. The system's key features are: 1) Acquisition and storage of image sequences by digitizing real-time video or frames from a film strip; 2) computer-controlled movie loop playback, slow motion and freeze frame display combined with digital image sharpening, noise reduction, contrast enhancement and interactive image magnification; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored image sequence; 4) automatic and manual field-of-view and spatial calibration; 5) image sequence data base generation and management, including the measurement data products; 6) off-line analysis software for trajectory plotting and statistical analysis; 7) model-based estimation and tracking of object attitude angles; and 8) interface to a variety of video players and film transport sub-systems.
Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas
2017-01-01
Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.
Fully automated chest wall line segmentation in breast MRI by using context information
NASA Astrophysics Data System (ADS)
Wu, Shandong; Weinstein, Susan P.; Conant, Emily F.; Localio, A. Russell; Schnall, Mitchell D.; Kontos, Despina
2012-03-01
Breast MRI has emerged as an effective modality for the clinical management of breast cancer. Evidence suggests that computer-aided applications can further improve the diagnostic accuracy of breast MRI. A critical and challenging first step for automated breast MRI analysis, is to separate the breast as an organ from the chest wall. Manual segmentation or user-assisted interactive tools are inefficient, tedious, and error-prone, which is prohibitively impractical for processing large amounts of data from clinical trials. To address this challenge, we developed a fully automated and robust computerized segmentation method that intensively utilizes context information of breast MR imaging and the breast tissue's morphological characteristics to accurately delineate the breast and chest wall boundary. A critical component is the joint application of anisotropic diffusion and bilateral image filtering to enhance the edge that corresponds to the chest wall line (CWL) and to reduce the effect of adjacent non-CWL tissues. A CWL voting algorithm is proposed based on CWL candidates yielded from multiple sequential MRI slices, in which a CWL representative is generated and used through a dynamic time warping (DTW) algorithm to filter out inferior candidates, leaving the optimal one. Our method is validated by a representative dataset of 20 3D unilateral breast MRI scans that span the full range of the American College of Radiology (ACR) Breast Imaging Reporting and Data System (BI-RADS) fibroglandular density categorization. A promising performance (average overlay percentage of 89.33%) is observed when the automated segmentation is compared to manually segmented ground truth obtained by an experienced breast imaging radiologist. The automated method runs time-efficiently at ~3 minutes for each breast MR image set (28 slices).
Quantification of fibre polymerization through Fourier space image analysis
Nekouzadeh, Ali; Genin, Guy M.
2011-01-01
Quantification of changes in the total length of randomly oriented and possibly curved lines appearing in an image is a necessity in a wide variety of biological applications. Here, we present an automated approach based upon Fourier space analysis. Scaled, band-pass filtered power spectral densities of greyscale images are integrated to provide a quantitative measurement of the total length of lines of a particular range of thicknesses appearing in an image. A procedure is presented to correct for changes in image intensity. The method is most accurate for two-dimensional processes with fibres that do not occlude one another. PMID:24959096
Comparison of Inoculation with the InoqulA and WASP Automated Systems with Manual Inoculation
Croxatto, Antony; Dijkstra, Klaas; Prod'hom, Guy
2015-01-01
The quality of sample inoculation is critical for achieving an optimal yield of discrete colonies in both monomicrobial and polymicrobial samples to perform identification and antibiotic susceptibility testing. Consequently, we compared the performance between the InoqulA (BD Kiestra), the WASP (Copan), and manual inoculation methods. Defined mono- and polymicrobial samples of 4 bacterial species and cloudy urine specimens were inoculated on chromogenic agar by the InoqulA, the WASP, and manual methods. Images taken with ImagA (BD Kiestra) were analyzed with the VisionLab version 3.43 image analysis software to assess the quality of growth and to prevent subjective interpretation of the data. A 3- to 10-fold higher yield of discrete colonies was observed following automated inoculation with both the InoqulA and WASP systems than that with manual inoculation. The difference in performance between automated and manual inoculation was mainly observed at concentrations of >106 bacteria/ml. Inoculation with the InoqulA system allowed us to obtain significantly more discrete colonies than the WASP system at concentrations of >107 bacteria/ml. However, the level of difference observed was bacterial species dependent. Discrete colonies of bacteria present in 100- to 1,000-fold lower concentrations than the most concentrated populations in defined polymicrobial samples were not reproducibly recovered, even with the automated systems. The analysis of cloudy urine specimens showed that InoqulA inoculation provided a statistically significantly higher number of discrete colonies than that with WASP and manual inoculation. Consequently, the automated InoqulA inoculation greatly decreased the requirement for bacterial subculture and thus resulted in a significant reduction in the time to results, laboratory workload, and laboratory costs. PMID:25972424
Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby Braswell
2008-01-01
We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...
Automated, on-board terrain analysis for precision landings
NASA Technical Reports Server (NTRS)
Rahman, Zia-ur; Jobson, Daniel J.; Woodell, Glenn A.; Hines, Glenn D.
2006-01-01
Advances in space robotics technology hinge to a large extent upon the development and deployment of sophisticated new vision-based methods for automated in-space mission operations and scientific survey. To this end, we have developed a new concept for automated terrain analysis that is based upon a generic image enhancement platform|multi-scale retinex (MSR) and visual servo (VS) processing. This pre-conditioning with the MSR and the vs produces a "canonical" visual representation that is largely independent of lighting variations, and exposure errors. Enhanced imagery is then processed with a biologically inspired two-channel edge detection process, followed by a smoothness based criteria for image segmentation. Landing sites can be automatically determined by examining the results of the smoothness-based segmentation which shows those areas in the image that surpass a minimum degree of smoothness. Though the msr has proven to be a very strong enhancement engine, the other elements of the approach|the vs, terrain map generation, and smoothness-based segmentation|are in early stages of development. Experimental results on data from the Mars Global Surveyor show that the imagery can be processed to automatically obtain smooth landing sites. In this paper, we describe the method used to obtain these landing sites, and also examine the smoothness criteria in terms of the imager and scene characteristics. Several examples of applying this method to simulated and real imagery are shown.
SAND: an automated VLBI imaging and analysing pipeline - I. Stripping component trajectories
NASA Astrophysics Data System (ADS)
Zhang, M.; Collioud, A.; Charlot, P.
2018-02-01
We present our implementation of an automated very long baseline interferometry (VLBI) data-reduction pipeline that is dedicated to interferometric data imaging and analysis. The pipeline can handle massive VLBI data efficiently, which makes it an appropriate tool to investigate multi-epoch multiband VLBI data. Compared to traditional manual data reduction, our pipeline provides more objective results as less human interference is involved. The source extraction is carried out in the image plane, while deconvolution and model fitting are performed in both the image plane and the uv plane for parallel comparison. The output from the pipeline includes catalogues of CLEANed images and reconstructed models, polarization maps, proper motion estimates, core light curves and multiband spectra. We have developed a regression STRIP algorithm to automatically detect linear or non-linear patterns in the jet component trajectories. This algorithm offers an objective method to match jet components at different epochs and to determine their proper motions.
Object localization in handheld thermal images for fireground understanding
NASA Astrophysics Data System (ADS)
Vandecasteele, Florian; Merci, Bart; Jalalvand, Azarakhsh; Verstockt, Steven
2017-05-01
Despite the broad application of the handheld thermal imaging cameras in firefighting, its usage is mostly limited to subjective interpretation by the person carrying the device. As remedies to overcome this limitation, object localization and classification mechanisms could assist the fireground understanding and help with the automated localization, characterization and spatio-temporal (spreading) analysis of the fire. An automated understanding of thermal images can enrich the conventional knowledge-based firefighting techniques by providing the information from the data and sensing-driven approaches. In this work, transfer learning is applied on multi-labeling convolutional neural network architectures for object localization and recognition in monocular visual, infrared and multispectral dynamic images. Furthermore, the possibility of analyzing fire scene images is studied and their current limitations are discussed. Finally, the understanding of the room configuration (i.e., objects location) for indoor localization in reduced visibility environments and the linking with Building Information Models (BIM) are investigated.
Medina, Christopher S; Manifold-Wheeler, Brett; Gonzales, Aaron; Bearer, Elaine L
2017-07-05
Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-µm 3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter
NASA Astrophysics Data System (ADS)
Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi
2013-03-01
Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.
Automated segmentation of murine lung tumors in x-ray micro-CT images
NASA Astrophysics Data System (ADS)
Swee, Joshua K. Y.; Sheridan, Clare; de Bruin, Elza; Downward, Julian; Lassailly, Francois; Pizarro, Luis
2014-03-01
Recent years have seen micro-CT emerge as a means of providing imaging analysis in pre-clinical study, with in-vivo micro-CT having been shown to be particularly applicable to the examination of murine lung tumors. Despite this, existing studies have involved substantial human intervention during the image analysis process, with the use of fully-automated aids found to be almost non-existent. We present a new approach to automate the segmentation of murine lung tumors designed specifically for in-vivo micro-CT-based pre-clinical lung cancer studies that addresses the specific requirements of such study, as well as the limitations human-centric segmentation approaches experience when applied to such micro-CT data. Our approach consists of three distinct stages, and begins by utilizing edge enhancing and vessel enhancing non-linear anisotropic diffusion filters to extract anatomy masks (lung/vessel structure) in a pre-processing stage. Initial candidate detection is then performed through ROI reduction utilizing obtained masks and a two-step automated segmentation approach that aims to extract all disconnected objects within the ROI, and consists of Otsu thresholding, mathematical morphology and marker-driven watershed. False positive reduction is finally performed on initial candidates through random-forest-driven classification using the shape, intensity, and spatial features of candidates. We provide validation of our approach using data from an associated lung cancer study, showing favorable results both in terms of detection (sensitivity=86%, specificity=89%) and structural recovery (Dice Similarity=0.88) when compared against manual specialist annotation.
NASA Astrophysics Data System (ADS)
Hutchings, Joanne; Kendall, Catherine; Shepherd, Neil; Barr, Hugh; Stone, Nicholas
2010-11-01
Rapid Raman mapping has the potential to be used for automated histopathology diagnosis, providing an adjunct technique to histology diagnosis. The aim of this work is to evaluate the feasibility of automated and objective pathology classification of Raman maps using linear discriminant analysis. Raman maps of esophageal tissue sections are acquired. Principal component (PC)-fed linear discriminant analysis (LDA) is carried out using subsets of the Raman map data (6483 spectra). An overall (validated) training classification model performance of 97.7% (sensitivity 95.0 to 100% and specificity 98.6 to 100%) is obtained. The remainder of the map spectra (131,672 spectra) are projected onto the classification model resulting in Raman images, demonstrating good correlation with contiguous hematoxylin and eosin (HE) sections. Initial results suggest that LDA has the potential to automate pathology diagnosis of esophageal Raman images, but since the classification of test spectra is forced into existing training groups, further work is required to optimize the training model. A small pixel size is advantageous for developing the training datasets using mapping data, despite lengthy mapping times, due to additional morphological information gained, and could facilitate differentiation of further tissue groups, such as the basal cells/lamina propria, in the future, but larger pixels sizes (and faster mapping) may be more feasible for clinical application.
Image analysis for estimating the weight of live animals
NASA Astrophysics Data System (ADS)
Schofield, C. P.; Marchant, John A.
1991-02-01
Many components of animal production have been automated. For example weighing feeding identification and yield recording on cattle pigs poultry and fish. However some of these tasks still require a considerable degree of human input and more effective automation could lead to better husbandry. For example if the weight of pigs could be monitored more often without increasing labour input then this information could be used to measure growth rates and control fat level allowing accurate prediction of market dates and optimum carcass quality to be achieved with improved welfare at minimum cost. Some aspects of animal production have defied automation. For example attending to the well being of housed animals is the preserve of the expert stockman. He gathers visual data about the animals in his charge (in more plain words goes and looks at their condition and behaviour) and processes this data to draw conclusions and take actions. Automatically collecting data on well being implies that the animals are not disturbed from their normal environment otherwise false conclusions will be drawn. Computer image analysis could provide the data required without the need to disturb the animals. This paper describes new work at the Institute of Engineering Research which uses image analysis to estimate the weight of pigs as a starting point for the wider range of applications which have been identified. In particular a technique has been developed to
Sharma, Ashish; Oakley, Jonathan D.; Schiffman, Joyce C.; Budenz, Donald L.; Anderson, Douglas R.
2010-01-01
OBJECTIVE To evaluate a new automated analysis of optic disc images obtained by spectral domain optical coherence tomography (SD-OCT). Areas of the optic disc, cup, and neural rim in SD-OCT images were compared with these areas from stereoscopic photographs, to represent the current traditional optic nerve evaluation. The repeatability of measurements by each method was determined and compared. DESIGN Evaluation of diagnostic technology. PARTICIPANTS 119 healthy eyes, 23 eyes with glaucoma, and 7 suspect eyes METHODS Optic disc and cup margins were traced from stereoscopic photographs by three individuals independently. Optic disc margins and rim widths were determined automatically in SD-OCT. A subset of photographs was examined and traced a second time, and duplicate SD-OCT images were also analyzed. MAIN OUTCOME MEASUREMENTS Agreement among photograph readers, between duplicate readings, and between SD-OCT and photographs were quantified by the intraclass correlation coefficient (ICC), by the root mean square (RMS), and the standard deviation (SD) of the differences. RESULTS Optic disc areas tended to be slightly larger when judged in photographs than by SD-OCT, while cup areas were similar. Cup and optic disc areas showed good correlation (0.8) between average photographic reading and SD-OCT, but only fair correlation of rim areas (0.4). The SD-OCT was highly reproducible (ICC of 0.96 to 0.99). Each reader was also consistent with himself on duplicate readings of 21 photographs (ICC 0.80 to 0.88 for rim area, 0.95 to 0.98 for all other measurements), but reproducibility was not as good as SD-OCT. Measurements derived from SD-OCT did not differ from photographic readings more than the readings of photographs by different readers differed from each other. CONCLUSIONS Designation of the cup and optic disc boundaries by an automated analysis of SD-OCT was within the range of variable designations by different readers from color stereoscopic photographs, but use of different landmarks typically made the designation of the optic disc size somewhat smaller in the automated analysis. There was better repeatability among measurements from SD-OCT than from among readers of photographs. The repeatability of automated measurement of SD-OCT images is promising for use both in diagnosis and in monitoring of progression. PMID:21397334
Kanungo, Jyotshnabala; Lantz, Susan; Paule, Merle G
2011-01-01
We describe an imaging procedure to measure axon length in zebrafish embryos in vivo. Automated fluorescent image acquisition was performed with the ImageXpress Micro high content screening reader and further analysis of axon lengths was performed on archived images using AcuityXpress software. We utilized the Neurite Outgrowth Application module with a customized protocol (journal) to measure the axons. Since higher doses of ethanol (2-2.5%, v/v) have been shown to deform motor neurons and axons during development, here we used ethanol to treat transgenic [hb9:GFP (green fluorescent protein)] zebrafish embryos at 28 hpf (hours post-fertilization). These embryos express GFP in the motor neurons and their axons. Embryos after ethanol treatment were arrayed in 384-well plates for automated fluorescent image acquisition in vivo. Average axon lengths of high dose ethanol-treated embryos were significantly lower than the control. Another experiment showed that there was no significant difference in the axon lengths between the embryos grown for 24h at 22°C and 28.5°C. These test experiments demonstrate that using axon development as an end-point, compound screening can be performed in a time-efficient manner. Published by Elsevier Inc.
Wyatt, S K; Barck, K H; Kates, L; Zavala-Solorio, J; Ross, J; Kolumam, G; Sonoda, J; Carano, R A D
2015-11-01
The ability to non-invasively measure body composition in mouse models of obesity and obesity-related disorders is essential for elucidating mechanisms of metabolic regulation and monitoring the effects of novel treatments. These studies aimed to develop a fully automated, high-throughput micro-computed tomography (micro-CT)-based image analysis technique for longitudinal quantitation of adipose, non-adipose and lean tissue as well as bone and demonstrate utility for assessing the effects of two distinct treatments. An initial validation study was performed in diet-induced obesity (DIO) and control mice on a vivaCT 75 micro-CT system. Subsequently, four groups of DIO mice were imaged pre- and post-treatment with an experimental agonistic antibody specific for anti-fibroblast growth factor receptor 1 (anti-FGFR1, R1MAb1), control immunoglobulin G antibody, a known anorectic antiobesity drug (rimonabant, SR141716), or solvent control. The body composition analysis technique was then ported to a faster micro-CT system (CT120) to markedly increase throughput as well as to evaluate the use of micro-CT image intensity for hepatic lipid content in DIO and control mice. Ex vivo chemical analysis and colorimetric analysis of the liver triglycerides were performed as the standard metrics for correlation with body composition and hepatic lipid status, respectively. Micro-CT-based body composition measures correlate with ex vivo chemical analysis metrics and enable distinction between DIO and control mice. R1MAb1 and rimonabant have differing effects on body composition as assessed by micro-CT. High-throughput body composition imaging is possible using a modified CT120 system. Micro-CT also provides a non-invasive assessment of hepatic lipid content. This work describes, validates and demonstrates utility of a fully automated image analysis technique to quantify in vivo micro-CT-derived measures of adipose, non-adipose and lean tissue, as well as bone. These body composition metrics highly correlate with standard ex vivo chemical analysis and enable longitudinal evaluation of body composition and therapeutic efficacy monitoring.
Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I
2010-11-19
Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.
Towards Automatic Image Segmentation Using Optimised Region Growing Technique
NASA Astrophysics Data System (ADS)
Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi
Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.
Howat, William J; Blows, Fiona M; Provenzano, Elena; Brook, Mark N; Morris, Lorna; Gazinska, Patrycja; Johnson, Nicola; McDuffus, Leigh‐Anne; Miller, Jodi; Sawyer, Elinor J; Pinder, Sarah; van Deurzen, Carolien H M; Jones, Louise; Sironen, Reijo; Visscher, Daniel; Caldas, Carlos; Daley, Frances; Coulson, Penny; Broeks, Annegien; Sanders, Joyce; Wesseling, Jelle; Nevanlinna, Heli; Fagerholm, Rainer; Blomqvist, Carl; Heikkilä, Päivi; Ali, H Raza; Dawson, Sarah‐Jane; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli‐Matti; Cox, Angela; Brock, Ian W; Cross, Simon S; Reed, Malcolm W; Couch, Fergus J; Olson, Janet E; Devillee, Peter; Mesker, Wilma E; Seyaneve, Caroline M; Hollestelle, Antoinette; Benitez, Javier; Perez, Jose Ignacio Arias; Menéndez, Primitiva; Bolla, Manjeet K; Easton, Douglas F; Schmidt, Marjanka K; Pharoah, Paul D; Sherman, Mark E
2014-01-01
Abstract Breast cancer risk factors and clinical outcomes vary by tumour marker expression. However, individual studies often lack the power required to assess these relationships, and large‐scale analyses are limited by the need for high throughput, standardized scoring methods. To address these limitations, we assessed whether automated image analysis of immunohistochemically stained tissue microarrays can permit rapid, standardized scoring of tumour markers from multiple studies. Tissue microarray sections prepared in nine studies containing 20 263 cores from 8267 breast cancers stained for two nuclear (oestrogen receptor, progesterone receptor), two membranous (human epidermal growth factor receptor 2 and epidermal growth factor receptor) and one cytoplasmic (cytokeratin 5/6) marker were scanned as digital images. Automated algorithms were used to score markers in tumour cells using the Ariol system. We compared automated scores against visual reads, and their associations with breast cancer survival. Approximately 65–70% of tissue microarray cores were satisfactory for scoring. Among satisfactory cores, agreement between dichotomous automated and visual scores was highest for oestrogen receptor (Kappa = 0.76), followed by human epidermal growth factor receptor 2 (Kappa = 0.69) and progesterone receptor (Kappa = 0.67). Automated quantitative scores for these markers were associated with hazard ratios for breast cancer mortality in a dose‐response manner. Considering visual scores of epidermal growth factor receptor or cytokeratin 5/6 as the reference, automated scoring achieved excellent negative predictive value (96–98%), but yielded many false positives (positive predictive value = 30–32%). For all markers, we observed substantial heterogeneity in automated scoring performance across tissue microarrays. Automated analysis is a potentially useful tool for large‐scale, quantitative scoring of immunohistochemically stained tissue microarrays available in consortia. However, continued optimization, rigorous marker‐specific quality control measures and standardization of tissue microarray designs, staining and scoring protocols is needed to enhance results. PMID:27499890
Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang
2015-04-01
Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision the broad utility of the framework for diverse problems across different length scales and imaging methods.
Automated extraction of radiation dose information for CT examinations.
Cook, Tessa S; Zimmerman, Stefan; Maidment, Andrew D A; Kim, Woojin; Boonn, William W
2010-11-01
Exposure to radiation as a result of medical imaging is currently in the spotlight, receiving attention from Congress as well as the lay press. Although scanner manufacturers are moving toward including effective dose information in the Digital Imaging and Communications in Medicine headers of imaging studies, there is a vast repository of retrospective CT data at every imaging center that stores dose information in an image-based dose sheet. As such, it is difficult for imaging centers to participate in the ACR's Dose Index Registry. The authors have designed an automated extraction system to query their PACS archive and parse CT examinations to extract the dose information stored in each dose sheet. First, an open-source optical character recognition program processes each dose sheet and converts the information to American Standard Code for Information Interchange (ASCII) text. Each text file is parsed, and radiation dose information is extracted and stored in a database which can be queried using an existing pathology and radiology enterprise search tool. Using this automated extraction pipeline, it is possible to perform dose analysis on the >800,000 CT examinations in the PACS archive and generate dose reports for all of these patients. It is also possible to more effectively educate technologists, radiologists, and referring physicians about exposure to radiation from CT by generating report cards for interpreted and performed studies. The automated extraction pipeline enables compliance with the ACR's reporting guidelines and greater awareness of radiation dose to patients, thus resulting in improved patient care and management. Copyright © 2010 American College of Radiology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Litjens, G.; Ehteshami Bejnordi, B.; Timofeeva, N.; Swadi, G.; Kovacs, I.; Hulsbergen-van de Kaa, C.; van der Laak, J.
2015-03-01
Automated detection of prostate cancer in digitized H and E whole-slide images is an important first step for computer-driven grading. Most automated grading algorithms work on preselected image patches as they are too computationally expensive to calculate on the multi-gigapixel whole-slide images. An automated multi-resolution cancer detection system could reduce the computational workload for subsequent grading and quantification in two ways: by excluding areas of definitely normal tissue within a single specimen or by excluding entire specimens which do not contain any cancer. In this work we present a multi-resolution cancer detection algorithm geared towards the latter. The algorithm methodology is as follows: at a coarse resolution the system uses superpixels, color histograms and local binary patterns in combination with a random forest classifier to assess the likelihood of cancer. The five most suspicious superpixels are identified and at a higher resolution more computationally expensive graph and gland features are added to refine classification for these superpixels. Our methods were evaluated in a data set of 204 digitized whole-slide H and E stained images of MR-guided biopsy specimens from 163 patients. A pathologist exhaustively annotated the specimens for areas containing cancer. The performance of our system was evaluated using ten-fold cross-validation, stratified according to patient. Image-based receiver operating characteristic (ROC) analysis was subsequently performed where a specimen containing cancer was considered positive and specimens without cancer negative. We obtained an area under the ROC curve of 0.96 and a 0.4 specificity at a 1.0 sensitivity.
Automated abdominal plane and circumference estimation in 3D US for fetal screening
NASA Astrophysics Data System (ADS)
Lorenz, C.; Brosch, T.; Ciofolo-Veit, C.; Klinder, T.; Lefevre, T.; Cavallaro, A.; Salim, I.; Papageorghiou, A. T.; Raynaud, C.; Roundhill, D.; Rouet, L.; Schadewaldt, N.; Schmidt-Richberg, A.
2018-03-01
Ultrasound is increasingly becoming a 3D modality. Mechanical and matrix array transducers are able to deliver 3D images with good spatial and temporal resolution. The 3D imaging facilitates the application of automated image analysis to enhance workflows, which has the potential to make ultrasound a less operator dependent modality. However, the analysis of the more complex 3D images and definition of all examination standards on 2D images pose barriers to the use of 3D in daily clinical practice. In this paper, we address a part of the canonical fetal screening program, namely the localization of the abdominal cross-sectional plane with the corresponding measurement of the abdominal circumference in this plane. For this purpose, a fully automated pipeline has been designed starting with a random forest based anatomical landmark detection. A feature trained shape model of the fetal torso including inner organs with the abdominal cross-sectional plane encoded into the model is then transformed into the patient space using the landmark localizations. In a free-form deformation step, the model is individualized to the image, using a torso probability map generated by a convolutional neural network as an additional feature image. After adaptation, the abdominal plane and the abdominal torso contour in that plane are directly obtained. This allows the measurement of the abdominal circumference as well as the rendering of the plane for visual assessment. The method has been trained on 126 and evaluated on 42 abdominal 3D US datasets. An average plane offset error of 5.8 mm and an average relative circumference error of 4.9 % in the evaluation set could be achieved.
An automated digital imaging system for environmental monitoring applications
Bogle, Rian; Velasco, Miguel; Vogel, John
2013-01-01
Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.
Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.
2014-01-01
Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307
Automated camera-phone experience with the frequency of imaging necessary to capture diet.
Arab, Lenore; Winter, Ashley
2010-08-01
Camera-enabled cell phones provide an opportunity to strengthen dietary recall through automated imaging of foods eaten during a specified period. To explore the frequency of imaging needed to capture all foods eaten, we examined the number of images of individual foods consumed in a pilot study of automated imaging using camera phones set to an image-capture frequency of one snapshot every 10 seconds. Food images were tallied from 10 young adult subjects who wore the phone continuously during the work day and consented to share their images. Based on the number of images received for each eating experience, the pilot data suggest that automated capturing of images at a frequency of once every 10 seconds is adequate for recording foods consumed during regular meals, whereas a greater frequency of imaging is necessary to capture snacks and beverages eaten quickly. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.
Automated imaging system for single molecules
Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel
2012-09-18
There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.
Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias
2014-01-01
Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation. PMID:24810913
[Medical imaging in tumor precision medicine: opportunities and challenges].
Xu, Jingjing; Tan, Yanbin; Zhang, Minming
2017-05-25
Tumor precision medicine is an emerging approach for tumor diagnosis, treatment and prevention, which takes account of individual variability of environment, lifestyle and genetic information. Tumor precision medicine is built up on the medical imaging innovations developed during the past decades, including the new hardware, new imaging agents, standardized protocols, image analysis and multimodal imaging fusion technology. Also the development of automated and reproducible analysis algorithm has extracted large amount of information from image-based features. With the continuous development and mining of tumor clinical and imaging databases, the radiogenomics, radiomics and artificial intelligence have been flourishing. Therefore, these new technological advances bring new opportunities and challenges to the application of imaging in tumor precision medicine.
Automated analysis of hot spot X-ray images at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Khan, S. F.; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Kyrala, G. A.; Springer, P.; Bradley, D. K.; Town, R. P. J.
2016-11-01
At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ˜4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.
Automated analysis of hot spot X-ray images at the National Ignition Facility
Khan, S. F.; Izumi, N.; Glenn, S.; ...
2016-09-02
At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. Here, for implosions with temperatures above ~4keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.
Automated analysis of hot spot X-ray images at the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S. F., E-mail: khan9@llnl.gov; Izumi, N.; Glenn, S.
At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.
Automated analysis of hot spot X-ray images at the National Ignition Facility.
Khan, S F; Izumi, N; Glenn, S; Tommasini, R; Benedetti, L R; Ma, T; Pak, A; Kyrala, G A; Springer, P; Bradley, D K; Town, R P J
2016-11-01
At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.
Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.
2015-01-01
Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID:26257609
Daniel, Kaemmerer; Maria, Athelogou; Amelie, Lupp; Isabell, Lenhardt; Stefan, Schulz; Luisa, Peter; Merten, Hommann; Vikas, Prasad; Gerd, Binnig; Paul, Baum Richard
2014-01-01
Background: Manual evaluation of somatostatin receptor (SSTR) immunohistochemistry (IHC) is a time-consuming and cost-intensive procedure. Aim of the study was to compare manual evaluation of SSTR subtype IHC to an automated software-based analysis, and to in-vivo imaging by SSTR-based PET/CT. Methods: We examined 25 gastroenteropancreatic neuroendocrine tumor (GEP-NET) patients and correlated their in-vivo SSTR-PET/CT data (determined by the standardized uptake values SUVmax,-mean) with the corresponding ex-vivo IHC data of SSTR subtype (1, 2A, 4, 5) expression. Exactly the same lesions were imaged by PET/CT, resected and analyzed by IHC in each patient. After manual evaluation, the IHC slides were digitized and automatically evaluated for SSTR expression by Definiens XD software. A virtual IHC score “BB1” was created for comparing the manual and automated analysis of SSTR expression. Results: BB1 showed a significant correlation with the corresponding conventionally determined Her2/neu score of the SSTR-subtypes 2A (rs: 0.57), 4 (rs: 0.44) and 5 (rs: 0.43). BB1 of SSTR2A also significantly correlated with the SUVmax (rs: 0.41) and the SUVmean (rs: 0.50). Likewise, a significant correlation was seen between the conventionally evaluated SSTR2A status and the SUVmax (rs: 0.42) and SUVmean (rs: 0.62).Conclusion: Our data demonstrate that the evaluation of the SSTR status by automated analysis (BB1 score), using digitized histopathology slides (“virtual microscopy”), corresponds well with the SSTR2A, 4 and 5 expression as determined by conventional manual histopathology. The BB1 score also exhibited a significant association to the SSTR-PET/CT data in accordance with the high affinity profile of the SSTR analogues used for imaging. PMID:25197368
Celik, Turgay; Lee, Hwee Kuan; Petznick, Andrea; Tong, Louis
2013-01-01
Background Infrared (IR) meibography is an imaging technique to capture the Meibomian glands in the eyelids. These ocular surface structures are responsible for producing the lipid layer of the tear film which helps to reduce tear evaporation. In a normal healthy eye, the glands have similar morphological features in terms of spatial width, in-plane elongation, length. On the other hand, eyes with Meibomian gland dysfunction show visible structural irregularities that help in the diagnosis and prognosis of the disease. However, currently there is no universally accepted algorithm for detection of these image features which will be clinically useful. We aim to develop a method of automated gland segmentation which allows images to be classified. Methods A set of 131 meibography images were acquired from patients from the Singapore National Eye Center. We used a method of automated gland segmentation using Gabor wavelets. Features of the imaged glands including orientation, width, length and curvature were extracted and the IR images enhanced. The images were classified as ‘healthy’, ‘intermediate’ or ‘unhealthy’, through the use of a support vector machine classifier (SVM). Half the images were used for training the SVM and the other half for validation. Independently of this procedure, the meibographs were classified by an expert clinician into the same 3 grades. Results The algorithm correctly detected 94% and 98% of mid-line pixels of gland and inter-gland regions, respectively, on healthy images. On intermediate images, correct detection rates of 92% and 97% of mid-line pixels of gland and inter-gland regions were achieved respectively. The true positive rate of detecting healthy images was 86%, and for intermediate images, 74%. The corresponding false positive rates were 15% and 31% respectively. Using the SVM, the proposed method has 88% accuracy in classifying images into the 3 classes. The classification of images into healthy and unhealthy classes achieved a 100% accuracy, but 7/38 intermediate images were incorrectly classified. Conclusions This technique of image analysis in meibography can help clinicians to interpret the degree of gland destruction in patients with dry eye and meibomian gland dysfunction.
De la Torre, Fernando; Chu, Wen-Sheng; Xiong, Xuehan; Vicente, Francisco; Ding, Xiaoyu; Cohn, Jeffrey
2016-01-01
Within the last 20 years, there has been an increasing interest in the computer vision community in automated facial image analysis algorithms. This has been driven by applications in animation, market research, autonomous-driving, surveillance, and facial editing among others. To date, there exist several commercial packages for specific facial image analysis tasks such as facial expression recognition, facial attribute analysis or face tracking. However, free and easy-to-use software that incorporates all these functionalities is unavailable. This paper presents IntraFace (IF), a publicly-available software package for automated facial feature tracking, head pose estimation, facial attribute recognition, and facial expression analysis from video. In addition, IFincludes a newly develop technique for unsupervised synchrony detection to discover correlated facial behavior between two or more persons, a relatively unexplored problem in facial image analysis. In tests, IF achieved state-of-the-art results for emotion expression and action unit detection in three databases, FERA, CK+ and RU-FACS; measured audience reaction to a talk given by one of the authors; and discovered synchrony for smiling in videos of parent-infant interaction. IF is free of charge for academic use at http://www.humansensing.cs.cmu.edu/intraface/. PMID:27346987
De la Torre, Fernando; Chu, Wen-Sheng; Xiong, Xuehan; Vicente, Francisco; Ding, Xiaoyu; Cohn, Jeffrey
2015-05-01
Within the last 20 years, there has been an increasing interest in the computer vision community in automated facial image analysis algorithms. This has been driven by applications in animation, market research, autonomous-driving, surveillance, and facial editing among others. To date, there exist several commercial packages for specific facial image analysis tasks such as facial expression recognition, facial attribute analysis or face tracking. However, free and easy-to-use software that incorporates all these functionalities is unavailable. This paper presents IntraFace (IF), a publicly-available software package for automated facial feature tracking, head pose estimation, facial attribute recognition, and facial expression analysis from video. In addition, IFincludes a newly develop technique for unsupervised synchrony detection to discover correlated facial behavior between two or more persons, a relatively unexplored problem in facial image analysis. In tests, IF achieved state-of-the-art results for emotion expression and action unit detection in three databases, FERA, CK+ and RU-FACS; measured audience reaction to a talk given by one of the authors; and discovered synchrony for smiling in videos of parent-infant interaction. IF is free of charge for academic use at http://www.humansensing.cs.cmu.edu/intraface/.
Quantitative analyses for elucidating mechanisms of cell fate commitment in the mouse blastocyst
NASA Astrophysics Data System (ADS)
Saiz, Néstor; Kang, Minjung; Puliafito, Alberto; Schrode, Nadine; Xenopoulos, Panagiotis; Lou, Xinghua; Di Talia, Stefano; Hadjantonakis, Anna-Katerina
2015-03-01
In recent years we have witnessed a shift from qualitative image analysis towards higher resolution, quantitative analyses of imaging data in developmental biology. This shift has been fueled by technological advances in both imaging and analysis software. We have recently developed a tool for accurate, semi-automated nuclear segmentation of imaging data from early mouse embryos and embryonic stem cells. We have applied this software to the study of the first lineage decisions that take place during mouse development and established analysis pipelines for both static and time-lapse imaging experiments. In this paper we summarize the conclusions from these studies to illustrate how quantitative, single-cell level analysis of imaging data can unveil biological processes that cannot be revealed by traditional qualitative studies.
Lee, Hyunkwang; Troschel, Fabian M; Tajmir, Shahein; Fuchs, Georg; Mario, Julia; Fintelmann, Florian J; Do, Synho
2017-08-01
Pretreatment risk stratification is key for personalized medicine. While many physicians rely on an "eyeball test" to assess whether patients will tolerate major surgery or chemotherapy, "eyeballing" is inherently subjective and difficult to quantify. The concept of morphometric age derived from cross-sectional imaging has been found to correlate well with outcomes such as length of stay, morbidity, and mortality. However, the determination of the morphometric age is time intensive and requires highly trained experts. In this study, we propose a fully automated deep learning system for the segmentation of skeletal muscle cross-sectional area (CSA) on an axial computed tomography image taken at the third lumbar vertebra. We utilized a fully automated deep segmentation model derived from an extended implementation of a fully convolutional network with weight initialization of an ImageNet pre-trained model, followed by post processing to eliminate intramuscular fat for a more accurate analysis. This experiment was conducted by varying window level (WL), window width (WW), and bit resolutions in order to better understand the effects of the parameters on the model performance. Our best model, fine-tuned on 250 training images and ground truth labels, achieves 0.93 ± 0.02 Dice similarity coefficient (DSC) and 3.68 ± 2.29% difference between predicted and ground truth muscle CSA on 150 held-out test cases. Ultimately, the fully automated segmentation system can be embedded into the clinical environment to accelerate the quantification of muscle and expanded to volume analysis of 3D datasets.
An Imaging System for Satellite Hypervelocity Impact Debris Characterization
NASA Astrophysics Data System (ADS)
Moraguez, M.; Liou, J.; Fitz-Coy, N.; Patankar, K.; Cowardin, H.
This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.
An Imaging System for Satellite Hypervelocity Impact Debris Characterization
NASA Technical Reports Server (NTRS)
Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather
2015-01-01
This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.
Support vector machine as a binary classifier for automated object detection in remotely sensed data
NASA Astrophysics Data System (ADS)
Wardaya, P. D.
2014-02-01
In the present paper, author proposes the application of Support Vector Machine (SVM) for the analysis of satellite imagery. One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization. Specifically, the SVM is applied in its basic nature as a binary classifier where it classifies two classes namely, object and background. The algorithm aims at effectively detecting an object from its background with the minimum training data. The synthetic image containing noises is used for algorithm testing. Furthermore, it is implemented to perform remote sensing image analysis such as identification of Island vegetation, water body, and oil spill from the satellite imagery. It is indicated that SVM provides the fast and accurate analysis with the acceptable result.
Integrated system for automated financial document processing
NASA Astrophysics Data System (ADS)
Hassanein, Khaled S.; Wesolkowski, Slawo; Higgins, Ray; Crabtree, Ralph; Peng, Antai
1997-02-01
A system was developed that integrates intelligent document analysis with multiple character/numeral recognition engines in order to achieve high accuracy automated financial document processing. In this system, images are accepted in both their grayscale and binary formats. A document analysis module starts by extracting essential features from the document to help identify its type (e.g. personal check, business check, etc.). These features are also utilized to conduct a full analysis of the image to determine the location of interesting zones such as the courtesy amount and the legal amount. These fields are then made available to several recognition knowledge sources such as courtesy amount recognition engines and legal amount recognition engines through a blackboard architecture. This architecture allows all the available knowledge sources to contribute incrementally and opportunistically to the solution of the given recognition query. Performance results on a test set of machine printed business checks using the integrated system are also reported.
De Diego, Nuria; Fürst, Tomáš; Humplík, Jan F; Ugena, Lydia; Podlešáková, Kateřina; Spíchal, Lukáš
2017-01-01
High-throughput plant phenotyping platforms provide new possibilities for automated, fast scoring of several plant growth and development traits, followed over time using non-invasive sensors. Using Arabidops is as a model offers important advantages for high-throughput screening with the opportunity to extrapolate the results obtained to other crops of commercial interest. In this study we describe the development of a highly reproducible high-throughput Arabidopsis in vitro bioassay established using our OloPhen platform, suitable for analysis of rosette growth in multi-well plates. This method was successfully validated on example of multivariate analysis of Arabidopsis rosette growth in different salt concentrations and the interaction with varying nutritional composition of the growth medium. Several traits such as changes in the rosette area, relative growth rate, survival rate and homogeneity of the population are scored using fully automated RGB imaging and subsequent image analysis. The assay can be used for fast screening of the biological activity of chemical libraries, phenotypes of transgenic or recombinant inbred lines, or to search for potential quantitative trait loci. It is especially valuable for selecting genotypes or growth conditions that improve plant stress tolerance.
NASA Astrophysics Data System (ADS)
Zielinski, Jerzy S.
The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems that were addressed in this work: (i) registration, i.e. automated methods of data acquisition and the ability to align multiple data sets with each other; (ii) visualization and reconstruction, i.e. the environment in which registered data sets can be displayed on a plane or in multidimensional space; (iii) segmentation, i.e. automated and semi-automated methods to create models of relevant anatomy from images; (iv) simulation and prediction, i.e. techniques that can be used to simulate growth end evolution of researched phenomenon. Mathematical models can not only be used to verify experimental findings, but also to make qualitative and quantitative predictions, that might serve as guidelines for the future development of technology and/or treatment.
Automated Content Detection for Cassini Images
NASA Astrophysics Data System (ADS)
Stanboli, A.; Bue, B.; Wagstaff, K.; Altinok, A.
2017-06-01
NASA missions generate numerous images ever organized in increasingly large archives. Image archives are currently not searchable by image content. We present an automated content detection prototype that can enable content search.
Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.; Douglas, J.; Patterson, L.
2015-07-15
Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.« less
Automatic high throughput empty ISO container verification
NASA Astrophysics Data System (ADS)
Chalmers, Alex
2007-04-01
Encouraging results are presented for the automatic analysis of radiographic images of a continuous stream of ISO containers to confirm they are truly empty. A series of image processing algorithms are described that process real-time data acquired during the actual inspection of each container and assigns each to one of the classes "empty", "not empty" or "suspect threat". This research is one step towards achieving fully automated analysis of cargo containers.
Segmentation Of Polarimetric SAR Data
NASA Technical Reports Server (NTRS)
Rignot, Eric J. M.; Chellappa, Rama
1994-01-01
Report presents one in continuing series of studies of segmentation of polarimetric synthetic-aperture-radar, SAR, image data into regions. Studies directed toward refinement of method of automated analysis of SAR data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyhan, M; Yue, N
Purpose: To validate an automated image processing algorithm designed to detect the center of radiochromic film used for in vivo film dosimetry against the current gold standard of manual selection. Methods: An image processing algorithm was developed to automatically select the region of interest (ROI) in *.tiff images that contain multiple pieces of radiochromic film (0.5x1.3cm{sup 2}). After a user has linked a calibration file to the processing algorithm and selected a *.tiff file for processing, an ROI is automatically detected for all films by a combination of thresholding and erosion, which removes edges and any additional markings for orientation.more » Calibration is applied to the mean pixel values from the ROIs and a *.tiff image is output displaying the original image with an overlay of the ROIs and the measured doses. Validation of the algorithm was determined by comparing in vivo dose determined using the current gold standard (manually drawn ROIs) versus automated ROIs for n=420 scanned films. Bland-Altman analysis, paired t-test, and linear regression were performed to demonstrate agreement between the processes. Results: The measured doses ranged from 0.2-886.6cGy. Bland-Altman analysis of the two techniques (automatic minus manual) revealed a bias of -0.28cGy and a 95% confidence interval of (5.5cGy,-6.1cGy). These values demonstrate excellent agreement between the two techniques. Paired t-test results showed no statistical differences between the two techniques, p=0.98. Linear regression with a forced zero intercept demonstrated that Automatic=0.997*Manual, with a Pearson correlation coefficient of 0.999. The minimal differences between the two techniques may be explained by the fact that the hand drawn ROIs were not identical to the automatically selected ones. The average processing time was 6.7seconds in Matlab on an IntelCore2Duo processor. Conclusion: An automated image processing algorithm has been developed and validated, which will help minimize user interaction and processing time of radiochromic film used for in vivo dosimetry.« less
Reeves, Anthony P; Xie, Yiting; Liu, Shuang
2017-04-01
With the advent of fully automated image analysis and modern machine learning methods, there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually used in academic studies do not scale to large datasets. This method includes protocols for the documentation of many regions in very large image datasets; the documentation may be incrementally updated by new image data and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms have been developed to achieve over 90% acceptable image segmentation on the complete dataset.
Anima: Modular Workflow System for Comprehensive Image Data Analysis
Rantanen, Ville; Valori, Miko; Hautaniemi, Sampsa
2014-01-01
Modern microscopes produce vast amounts of image data, and computational methods are needed to analyze and interpret these data. Furthermore, a single image analysis project may require tens or hundreds of analysis steps starting from data import and pre-processing to segmentation and statistical analysis; and ending with visualization and reporting. To manage such large-scale image data analysis projects, we present here a modular workflow system called Anima. Anima is designed for comprehensive and efficient image data analysis development, and it contains several features that are crucial in high-throughput image data analysis: programing language independence, batch processing, easily customized data processing, interoperability with other software via application programing interfaces, and advanced multivariate statistical analysis. The utility of Anima is shown with two case studies focusing on testing different algorithms developed in different imaging platforms and an automated prediction of alive/dead C. elegans worms by integrating several analysis environments. Anima is a fully open source and available with documentation at www.anduril.org/anima. PMID:25126541
Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N
2017-10-01
Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.
Burrell, Thomas; Fozard, Susan; Holroyd, Geoff H; French, Andrew P; Pound, Michael P; Bigley, Christopher J; James Taylor, C; Forde, Brian G
2017-01-01
Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. The 'Microphenotron' platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the 'Phytostrip', a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m 2 , giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability.
An image analysis system for near-infrared (NIR) fluorescence lymph imaging
NASA Astrophysics Data System (ADS)
Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.
2011-03-01
Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.
Green, Walton A.; Little, Stefan A.; Price, Charles A.; Wing, Scott L.; Smith, Selena Y.; Kotrc, Benjamin; Doria, Gabriela
2014-01-01
The reticulate venation that is characteristic of a dicot leaf has excited interest from systematists for more than a century, and from physiological and developmental botanists for decades. The tools of digital image acquisition and computer image analysis, however, are only now approaching the sophistication needed to quantify aspects of the venation network found in real leaves quickly, easily, accurately, and reliably enough to produce biologically meaningful data. In this paper, we examine 120 leaves distributed across vascular plants (representing 118 genera and 80 families) using two approaches: a semiquantitative scoring system called “leaf ranking,” devised by the late Leo Hickey, and an automated image-analysis protocol. In the process of comparing these approaches, we review some methodological issues that arise in trying to quantify a vein network, and discuss the strengths and weaknesses of automatic data collection and human pattern recognition. We conclude that subjective leaf rank provides a relatively consistent, semiquantitative measure of areole size among other variables; that modal areole size is generally consistent across large sections of a leaf lamina; and that both approaches—semiquantitative, subjective scoring; and fully quantitative, automated measurement—have appropriate places in the study of leaf venation. PMID:25202646
Using machine learning techniques to automate sky survey catalog generation
NASA Technical Reports Server (NTRS)
Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.
1993-01-01
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.
Zhen, Li; Yang, Xin; Ting, Yuen Ha; Chen, Min; Leung, Tak Yeung
2013-09-01
To investigate the agreement between manual and semi-automated system and the effect of different image settings on intracranial translucency (IT) measurement. A prospective study was conducted on 55 women carrying singleton pregnancy who attended first trimester Down syndrome screening. IT was measured both manually and by semi-automated system at the same default image setting. The IT measurements were then repeated with the post-processing changes in the image setting one at a time. The difference in IT measurements between the altered and the original images were assessed. Intracranial translucency was successfully measured on 55 images both manually and by semi-automated method. There was strong agreement in IT measurements between the two methods with a mean difference (manual minus semi-automated) of 0.011 mm (95% confidence interval--0.052 mm-0.094 mm). There were statistically significant variations in both manual and semi-automated IT measurement after changing the Gain and the Contrast. The greatest changes occurred when the Contrast was reduced to 1 (IT reduced by 0.591 mm in semi-automated; 0.565 mm in manual), followed by when the Gain was increased to 15 (IT reduced by 0.424 mm in semi-automated; 0.524 mm in manual). The image settings may affect IT identification and measurement. Increased Gain and reduced Contrast are the most influential factors and may cause under-measurement of IT. © 2013 John Wiley & Sons, Ltd.
Coutinho, Rita; Clear, Andrew J.; Mazzola, Emanuele; Owen, Andrew; Greaves, Paul; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Neuberg, Donna; Calaminici, Maria; Gribben, John G.
2015-01-01
Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma. PMID:25425693
Coutinho, Rita; Clear, Andrew J; Mazzola, Emanuele; Owen, Andrew; Greaves, Paul; Wilson, Andrew; Matthews, Janet; Lee, Abigail; Alvarez, Rute; da Silva, Maria Gomes; Cabeçadas, José; Neuberg, Donna; Calaminici, Maria; Gribben, John G
2015-03-01
Gene expression studies have identified the microenvironment as a prognostic player in diffuse large B-cell lymphoma. However, there is a lack of simple immune biomarkers that can be applied in the clinical setting and could be helpful in stratifying patients. Immunohistochemistry has been used for this purpose but the results are inconsistent. We decided to reinvestigate the immune microenvironment and its impact using immunohistochemistry, with two systems of image analysis, in a large set of patients with diffuse large B-cell lymphoma. Diagnostic tissue from 309 patients was arrayed onto tissue microarrays. Results from 161 chemoimmunotherapy-treated patients were used for outcome prediction. Positive cells, percentage stained area and numbers of pixels/area were quantified and results were compared with the purpose of inferring consistency between the two semi-automated systems. Measurement cutpoints were assessed using a recursive partitioning algorithm classifying results according to survival. Kaplan-Meier estimators and Fisher exact tests were evaluated to check for significant differences between measurement classes, and for dependence between pairs of measurements, respectively. Results were validated by multivariate analysis incorporating the International Prognostic Index. The concordance between the two systems of image analysis was surprisingly high, supporting their applicability for immunohistochemistry studies. Patients with a high density of CD3 and FoxP3 by both methods had a better outcome. Automated analysis should be the preferred method for immunohistochemistry studies. Following the use of two methods of semi-automated analysis we suggest that CD3 and FoxP3 play a role in predicting response to chemoimmunotherapy in diffuse large B-cell lymphoma. Copyright© Ferrata Storti Foundation.
Akagi, Jin; Khoshmanesh, Khashayar; Evans, Barbara; Hall, Chris J.; Crosier, Kathryn E.; Cooper, Jonathan M.; Crosier, Philip S.; Wlodkowic, Donald
2012-01-01
Zebrafish (Danio rerio) has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP). The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale. PMID:22606275
Rapid SAR and GPS Measurements and Models for Hazard Science and Situational Awareness
NASA Astrophysics Data System (ADS)
Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Moore, A. W.; Rosen, P. A.; Simons, M.; Webb, F.; Linick, J.; Fielding, E. J.; Lundgren, P.; Sacco, G. F.; Polet, J.; Manipon, G.
2016-12-01
The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR), Differential Global Positioning System (DGPS), SAR-based change detection, and image pixel tracking have recently become critical additions to our toolset for understanding and mapping the damage caused by earthquakes, volcanic eruptions, landslides, and floods. Analyses of these data sets are still largely handcrafted following each event and are not generated rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition, the ARIA project is developing the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the imminent increase in raw data from geodetic imaging missions planned for launch by NASA, as well as international space agencies. We will present the progress we have made on automating the analysis of SAR data for hazard monitoring and response using data from Sentinel 1a/b as well as continuous GPS stations. Since the beginning of our project, our team has imaged events and generated response products for events around the world. These response products have enabled many conversations with those in the disaster response community about the potential usefulness of rapid SAR and GPS-based information. We will present progress on our data system technology that enables rapid and reliable production of imagery, as well as lessons learned from our engagement with FEMA and others in the hazard response community on the important actionable information that they need.
SU-E-P-49: Evaluation of Image Quality and Radiation Dose of Various Unenhanced Head CT Protocols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Khan, M; Alapati, K
2015-06-15
Purpose: To evaluate the diagnostic value of various unenhanced head CT protocols and predicate acceptable radiation dose level for head CT exam. Methods: Our retrospective analysis included 3 groups, 20 patients per group, who underwent clinical routine unenhanced adult head CT examination. All exams were performed axially with 120 kVp. Three protocols, 380 mAs without iterative reconstruction and automAs, 340 mAs with iterative reconstruction without automAs, 340 mAs with iterative reconstruction and automAs, were applied on each group patients respectively. The images were reconstructed with H30, J30 for brain window and H60, J70 for bone window. Images acquired with threemore » protocols were randomized and blindly reviewed by three radiologists. A 5 point scale was used to rate each exam The percentage of exam score above 3 and average scores of each protocol were calculated for each reviewer and tissue types. Results: For protocols without automAs, the average scores of bone window with iterative reconstruction were higher than those without iterative reconstruction for each reviewer although the radiation dose was 10 percentage lower. 100 percentage exams were scored 3 or higher and the average scores were above 4 for both brain and bone reconstructions. The CTDIvols are 64.4 and 57.8 mGy of 380 and 340 mAs, respectively. With automAs, the radiation dose varied with head size, resulting in 47.5 mGy average CTDIvol between 39.5 and 56.5 mGy. 93 and 98 percentage exams were scored great than 3 for brain and bone windows, respectively. The diagnostic confidence level and image quality of exams with AutomAs were less than those without AutomAs for each reviewer. Conclusion: According to these results, the mAs was reduced to 300 with automAs OFF for head CT exam. The radiation dose was 20 percentage lower than the original protocol and the CTDIvol was reduced to 51.2 mGy.« less
Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.
Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis
2014-04-01
Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the system could help the physician in the assessment of cardiovascular image analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Healy, Sinead; McMahon, Jill; Owens, Peter; Dockery, Peter; FitzGerald, Una
2018-02-01
Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal. For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms. Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining. We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology. As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells. Copyright © 2017 Elsevier B.V. All rights reserved.
2008-09-01
automated processing of images for color correction, segmentation of foreground targets from sediment and classification of targets to taxonomic category...element in the development of HabCam as a tool for habitat characterization is the automated processing of images for color correction, segmentation of
Forsythe, Alex; Street, Nichola; Helmy, Mai
2017-08-01
Differences between norm ratings collected when participants are asked to consider more than one picture characteristic are contrasted with the traditional methodological approaches of collecting ratings separately for image constructs. We present data that suggest that reporting normative data, based on methodological procedures that ask participants to consider multiple image constructs simultaneously, could potentially confounded norm data. We provide data for two new image constructs, beauty and the extent to which participants encountered the stimuli in their everyday lives. Analysis of this data suggests that familiarity and encounter are tapping different image constructs. The extent to which an observer encounters an object predicts human judgments of visual complexity. Encountering an image was also found to be an important predictor of beauty, but familiarity with that image was not. Taken together, these results suggest that continuing to collect complexity measures from human judgments is a pointless exercise. Automated measures are more reliable and valid measures, which are demonstrated here as predicting human preferences.
Rey-Villamizar, Nicolas; Somasundar, Vinay; Megjhani, Murad; Xu, Yan; Lu, Yanbin; Padmanabhan, Raghav; Trett, Kristen; Shain, William; Roysam, Badri
2014-01-01
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
Winkelman, James W; Tanasijevic, Milenko J; Zahniser, David J
2017-08-01
- A novel automated slide-based approach to the complete blood count and white blood cell differential count is introduced. - To present proof of concept for an image-based approach to complete blood count, based on a new slide preparation technique. A preliminary data comparison with the current flow-based technology is shown. - A prototype instrument uses a proprietary method and technology to deposit a precise volume of undiluted peripheral whole blood in a monolayer onto a glass microscope slide so that every cell can be distinguished, counted, and imaged. The slide is stained, and then multispectral image analysis is used to measure the complete blood count parameters. Images from a 600-cell white blood cell differential count, as well as 5000 red blood cells and a variable number of platelets, that are present in 600 high-power fields are made available for a technologist to view on a computer screen. An initial comparison of the basic complete blood count parameters was performed, comparing 1857 specimens on both the new instrument and a flow-based hematology analyzer. - Excellent correlations were obtained between the prototype instrument and a flow-based system. The primary parameters of white blood cell, red blood cell, and platelet counts resulted in correlation coefficients (r) of 0.99, 0.99, and 0.98, respectively. Other indices included hemoglobin (r = 0.99), hematocrit (r = 0.99), mean cellular volume (r = 0.90), mean corpuscular hemoglobin (r = 0.97), and mean platelet volume (r = 0.87). For the automated white blood cell differential counts, r values were calculated for neutrophils (r = 0.98), lymphocytes (r = 0.97), monocytes (r = 0.76), eosinophils (r = 0.96), and basophils (r = 0.63). - Quantitative results for components of the complete blood count and automated white blood cell differential count can be developed by image analysis of a monolayer preparation of a known volume of peripheral blood.
Automated Analysis of Composition and Style of Photographs and Paintings
ERIC Educational Resources Information Center
Yao, Lei
2013-01-01
Computational aesthetics is a newly emerging cross-disciplinary field with its core situated in traditional research areas such as image processing and computer vision. Using a computer to interpret aesthetic terms for images is very challenging. In this dissertation, I focus on solving specific problems about analyzing the composition and style…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aykac, Deniz; Chaum, Edward; Fox, Karen
A telemedicine network with retina cameras and automated quality control, physiological feature location, and lesion/anomaly detection is a low-cost way of achieving broad-based screening for diabetic retinopathy (DR) and other eye diseases. In the process of a routine eye-screening examination, other non-image data is often available which may be useful in automated diagnosis of disease. In this work, we report on the results of combining this non-image data with image data, using the protocol and processing steps of a prototype system for automated disease diagnosis of retina examinations from a telemedicine network. The system includes quality assessments, automated physiology detection,more » and automated lesion detection to create an archive of known cases. Non-image data such as diabetes onset date and hemoglobin A1c (HgA1c) for each patient examination are included as well, and the system is used to create a content-based image retrieval engine capable of automated diagnosis of disease into 'normal' and 'abnormal' categories. The system achieves a sensitivity and specificity of 91.2% and 71.6% using hold-one-out validation testing.« less
Performance Test Data Analysis of Scintillation Cameras
NASA Astrophysics Data System (ADS)
Demirkaya, Omer; Mazrou, Refaat Al
2007-10-01
In this paper, we present a set of image analysis tools to calculate the performance parameters of gamma camera systems from test data acquired according to the National Electrical Manufacturers Association NU 1-2001 guidelines. The calculation methods are either completely automated or require minimal user interaction; minimizing potential human errors. The developed methods are robust with respect to varying conditions under which these tests may be performed. The core algorithms have been validated for accuracy. They have been extensively tested on images acquired by the gamma cameras from different vendors. All the algorithms are incorporated into a graphical user interface that provides a convenient way to process the data and report the results. The entire application has been developed in MATLAB programming environment and is compiled to run as a stand-alone program. The developed image analysis tools provide an automated, convenient and accurate means to calculate the performance parameters of gamma cameras and SPECT systems. The developed application is available upon request for personal or non-commercial uses. The results of this study have been partially presented in Society of Nuclear Medicine Annual meeting as an InfoSNM presentation.
Temporal lobe epilepsy: quantitative MR volumetry in detection of hippocampal atrophy.
Farid, Nikdokht; Girard, Holly M; Kemmotsu, Nobuko; Smith, Michael E; Magda, Sebastian W; Lim, Wei Y; Lee, Roland R; McDonald, Carrie R
2012-08-01
To determine the ability of fully automated volumetric magnetic resonance (MR) imaging to depict hippocampal atrophy (HA) and to help correctly lateralize the seizure focus in patients with temporal lobe epilepsy (TLE). This study was conducted with institutional review board approval and in compliance with HIPAA regulations. Volumetric MR imaging data were analyzed for 34 patients with TLE and 116 control subjects. Structural volumes were calculated by using U.S. Food and Drug Administration-cleared software for automated quantitative MR imaging analysis (NeuroQuant). Results of quantitative MR imaging were compared with visual detection of atrophy, and, when available, with histologic specimens. Receiver operating characteristic analyses were performed to determine the optimal sensitivity and specificity of quantitative MR imaging for detecting HA and asymmetry. A linear classifier with cross validation was used to estimate the ability of quantitative MR imaging to help lateralize the seizure focus. Quantitative MR imaging-derived hippocampal asymmetries discriminated patients with TLE from control subjects with high sensitivity (86.7%-89.5%) and specificity (92.2%-94.1%). When a linear classifier was used to discriminate left versus right TLE, hippocampal asymmetry achieved 94% classification accuracy. Volumetric asymmetries of other subcortical structures did not improve classification. Compared with invasive video electroencephalographic recordings, lateralization accuracy was 88% with quantitative MR imaging and 85% with visual inspection of volumetric MR imaging studies but only 76% with visual inspection of clinical MR imaging studies. Quantitative MR imaging can depict the presence and laterality of HA in TLE with accuracy rates that may exceed those achieved with visual inspection of clinical MR imaging studies. Thus, quantitative MR imaging may enhance standard visual analysis, providing a useful and viable means for translating volumetric analysis into clinical practice.
Automated management for pavement inspection system (AMPIS)
NASA Astrophysics Data System (ADS)
Chung, Hung Chi; Girardello, Roberto; Soeller, Tony; Shinozuka, Masanobu
2003-08-01
An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system providing a convenient and efficient pavement inspection and management.
GIS-based automated management of highway surface crack inspection system
NASA Astrophysics Data System (ADS)
Chung, Hung-Chi; Shinozuka, Masanobu; Soeller, Tony; Girardello, Roberto
2004-07-01
An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system that can provide convenient and efficient pavement inspection and management.
Fantuzzo, J. A.; Mirabella, V. R.; Zahn, J. D.
2017-01-01
Abstract Synapse formation analyses can be performed by imaging and quantifying fluorescent signals of synaptic markers. Traditionally, these analyses are done using simple or multiple thresholding and segmentation approaches or by labor-intensive manual analysis by a human observer. Here, we describe Intellicount, a high-throughput, fully-automated synapse quantification program which applies a novel machine learning (ML)-based image processing algorithm to systematically improve region of interest (ROI) identification over simple thresholding techniques. Through processing large datasets from both human and mouse neurons, we demonstrate that this approach allows image processing to proceed independently of carefully set thresholds, thus reducing the need for human intervention. As a result, this method can efficiently and accurately process large image datasets with minimal interaction by the experimenter, making it less prone to bias and less liable to human error. Furthermore, Intellicount is integrated into an intuitive graphical user interface (GUI) that provides a set of valuable features, including automated and multifunctional figure generation, routine statistical analyses, and the ability to run full datasets through nested folders, greatly expediting the data analysis process. PMID:29218324
Collecting and Animating Online Satellite Images.
ERIC Educational Resources Information Center
Irons, Ralph
1995-01-01
Describes how to generate automated classroom resources from the Internet. Topics covered include viewing animated satellite weather images using file transfer protocol (FTP); sources of images on the Internet; shareware available for viewing images; software for automating image retrieval; procedures for animating satellite images; and storing…
NASA Astrophysics Data System (ADS)
Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey
2012-12-01
This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning.
Automated Analysis of Planktic Foraminifers Part III: Neural Network Classification
NASA Astrophysics Data System (ADS)
Schiebel, R.; Bollmann, J.; Quinn, P.; Vela, M.; Schmidt, D. N.; Thierstein, H. R.
2003-04-01
The abundance and assemblage composition of microplankton, together with the chemical and stable isotopic composition of their shells, are among the most successful methods in paleoceanography and paleoclimatology. However, the manual collection of statistically significant numbers of unbiased, reproducible data is time consuming. Consequently, automated microfossil analysis and species recognition has been a long-standing goal in micropaleontology. We have developed a Windows based software package COGNIS for the segmentation, preprocessing, and classification of automatically acquired microfossil images (see Part II, Bollmann et al., this volume), using operator designed neural network structures. With a five-layered convolutional neural network we obtain an average recognition rate of 75 % (max. 88 %) for 6 taxa (N. dutertrei, N. pachyderma dextral, N. pachyderma sinistral, G. inflata, G. menardii/tumida, O. universa), represented by 50 images each for 20 classes (separation of spiral and umbilical views, and of sinistral and dextral forms). Our investigation indicates that neural networks hold great potential for the automated classification of planktic foraminifers and offer new perspectives in micropaleontology, paleoceanography, and paleoclimatology (see Part I, Schmidt et al., this volume).
Rodenacker, K; Aubele, M; Hutzler, P; Adiga, P S
1997-01-01
In molecular pathology numerical chromosome aberrations have been found to be decisive for the prognosis of malignancy in tumours. The existence of such aberrations can be detected by interphase fluorescence in situ hybridization (FISH). The gain or loss of certain base sequences in the desoxyribonucleic acid (DNA) can be estimated by counting the number of FISH signals per cell nucleus. The quantitative evaluation of such events is a necessary condition for a prospective use in diagnostic pathology. To avoid occlusions of signals, the cell nucleus has to be analyzed in three dimensions. Confocal laser scanning microscopy is the means to obtain series of optical thin sections from fluorescence stained or marked material to fulfill the conditions mentioned above. A graphical user interface (GUI) to a software package for display, inspection, count and (semi-)automatic analysis of 3-D images for pathologists is outlined including the underlying methods of 3-D image interaction and segmentation developed. The preparative methods are briefly described. Main emphasis is given to the methodical questions of computer-aided analysis of large 3-D image data sets for pathologists. Several automated analysis steps can be performed for segmentation and succeeding quantification. However tumour material is in contrast to isolated or cultured cells even for visual inspection, a difficult material. For the present a fully automated digital image analysis of 3-D data is not in sight. A semi-automatic segmentation method is thus presented here.
Leiner, Tim; Vink, Eva E.; Blankestijn, Peter J.; van den Berg, Cornelis A.T.
2017-01-01
Purpose Renal dynamic contrast‐enhanced (DCE) MRI provides information on renal perfusion and filtration. However, clinical implementation is hampered by challenges in postprocessing as a result of misalignment of the kidneys due to respiration. We propose to perform automated image registration using the fat‐only images derived from a modified Dixon reconstruction of a dual‐echo acquisition because these provide consistent contrast over the dynamic series. Methods DCE data of 10 hypertensive patients was used. Dual‐echo images were acquired at 1.5 T with temporal resolution of 3.9 s during contrast agent injection. Dixon fat, water, and in‐phase and opposed‐phase (OP) images were reconstructed. Postprocessing was automated. Registration was performed both to fat images and OP images for comparison. Perfusion and filtration values were extracted from a two‐compartment model fit. Results Automatic registration to fat images performed better than automatic registration to OP images with visible contrast enhancement. Median vertical misalignment of the kidneys was 14 mm prior to registration, compared to 3 mm and 5 mm with registration to fat images and OP images, respectively (P = 0.03). Mean perfusion values and MR‐based glomerular filtration rates (GFR) were 233 ± 64 mL/100 mL/min and 60 ± 36 mL/minute, respectively, based on fat‐registered images. MR‐based GFR correlated with creatinine‐based GFR (P = 0.04) for fat‐registered images. For unregistered and OP‐registered images, this correlation was not significant. Conclusion Absence of contrast changes on Dixon fat images improves registration in renal DCE MRI and enables automated postprocessing, resulting in a more accurate estimation of GFR. Magn Reson Med 80:66–76, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29134673
Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia
2016-07-01
High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Precision Relative Positioning for Automated Aerial Refueling from a Stereo Imaging System
2015-03-01
PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS Kyle P. Werner, 2Lt, USAF AFIT-ENG-MS-15-M-048...REFUELING FROM A STEREO IMAGING SYSTEM THESIS Presented to the Faculty Department of Electrical and Computer Engineering Graduate School of...RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-048 PRECISION RELATIVE POSITIONING FOR AUTOMATED AERIAL REFUELING FROM A STEREO IMAGING SYSTEM THESIS
Chen, Liang; Carlton Jones, Anoma Lalani; Mair, Grant; Patel, Rajiv; Gontsarova, Anastasia; Ganesalingam, Jeban; Math, Nikhil; Dawson, Angela; Aweid, Basaam; Cohen, David; Mehta, Amrish; Wardlaw, Joanna; Rueckert, Daniel; Bentley, Paul
2018-05-15
Purpose To validate a random forest method for segmenting cerebral white matter lesions (WMLs) on computed tomographic (CT) images in a multicenter cohort of patients with acute ischemic stroke, by comparison with fluid-attenuated recovery (FLAIR) magnetic resonance (MR) images and expert consensus. Materials and Methods A retrospective sample of 1082 acute ischemic stroke cases was obtained that was composed of unselected patients who were treated with thrombolysis or who were undergoing contemporaneous MR imaging and CT, and a subset of International Stroke Thrombolysis-3 trial participants. Automated delineations of WML on images were validated relative to experts' manual tracings on CT images, and co-registered FLAIR MR imaging, and ratings were performed by using two conventional ordinal scales. Analyses included correlations between CT and MR imaging volumes, and agreements between automated and expert ratings. Results Automated WML volumes correlated strongly with expert-delineated WML volumes at MR imaging and CT (r 2 = 0.85 and 0.71 respectively; P < .001). Spatial-similarity of automated maps, relative to WML MR imaging, was not significantly different to that of expert WML tracings on CT images. Individual expert WML volumes at CT correlated well with each other (r 2 = 0.85), but varied widely (range, 91% of mean estimate; median estimate, 11 mL; range of estimated ranges, 0.2-68 mL). Agreements (κ) between automated ratings and consensus ratings were 0.60 (Wahlund system) and 0.64 (van Swieten system) compared with agreements between individual pairs of experts of 0.51 and 0.67, respectively, for the two rating systems (P < .01 for Wahlund system comparison of agreements). Accuracy was unaffected by established infarction, acute ischemic changes, or atrophy (P > .05). Automated preprocessing failure rate was 4%; rating errors occurred in a further 4%. Total automated processing time averaged 109 seconds (range, 79-140 seconds). Conclusion An automated method for quantifying CT cerebral white matter lesions achieves a similar accuracy to experts in unselected and multicenter cohorts. © RSNA, 2018 Online supplemental material is available for this article.
GiA Roots: software for the high throughput analysis of plant root system architecture.
Galkovskyi, Taras; Mileyko, Yuriy; Bucksch, Alexander; Moore, Brad; Symonova, Olga; Price, Charles A; Topp, Christopher N; Iyer-Pascuzzi, Anjali S; Zurek, Paul R; Fang, Suqin; Harer, John; Benfey, Philip N; Weitz, Joshua S
2012-07-26
Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis.
NASA Technical Reports Server (NTRS)
Wynn, L. K.
1985-01-01
The Image-Based Information System (IBIS) was used to automate the cross country movement (CCM) mapping model developed by the Defense Mapping Agency (DMA). Existing terrain factor overlays and a CCM map, produced by DMA for the Fort Lewis, Washington area, were digitized and reformatted into geometrically registered images. Terrain factor data from Slope, Soils, and Vegetation overlays were entered into IBIS, and were then combined utilizing IBIS-programmed equations to implement the DMA CCM model. The resulting IBIS-generated CCM map was then compared with the digitized manually produced map to test similarity. The numbers of pixels comprising each CCM region were compared between the two map images, and percent agreement between each two regional counts was computed. The mean percent agreement equalled 86.21%, with an areally weighted standard deviation of 11.11%. Calculation of Pearson's correlation coefficient yielded +9.997. In some cases, the IBIS-calculated map code differed from the DMA codes: analysis revealed that IBIS had calculated the codes correctly. These highly positive results demonstrate the power and accuracy of IBIS in automating models which synthesize a variety of thematic geographic data.
Will the future of knowledge work automation transform personalized medicine?
Naik, Gauri; Bhide, Sanika S
2014-09-01
Today, we live in a world of 'information overload' which demands high level of knowledge-based work. However, advances in computer hardware and software have opened possibilities to automate 'routine cognitive tasks' for knowledge processing. Engineering intelligent software systems that can process large data sets using unstructured commands and subtle judgments and have the ability to learn 'on the fly' are a significant step towards automation of knowledge work. The applications of this technology for high throughput genomic analysis, database updating, reporting clinically significant variants, and diagnostic imaging purposes are explored using case studies.
Jurrus, Elizabeth; Paiva, Antonio R C; Watanabe, Shigeki; Anderson, James R; Jones, Bryan W; Whitaker, Ross T; Jorgensen, Erik M; Marc, Robert E; Tasdizen, Tolga
2010-12-01
Study of nervous systems via the connectome, the map of connectivities of all neurons in that system, is a challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large electron microscopy datasets. However, the shear volume of these datasets renders manual analysis infeasible. Hence, automated image analysis methods are required for reconstructing the connectome from these very large image collections. Segmentation of neurons in these images, an essential step of the reconstruction pipeline, is challenging because of noise, anisotropic shapes and brightness, and the presence of confounding structures. The method described in this paper uses a series of artificial neural networks (ANNs) in a framework combined with a feature vector that is composed of image intensities sampled over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classification context provided by the previous network to improve detection accuracy. We develop the method of serial ANNs and show that the learned context does improve detection over traditional ANNs. We also demonstrate advantages over previous membrane detection methods. The results are a significant step towards an automated system for the reconstruction of the connectome. Copyright 2010 Elsevier B.V. All rights reserved.
Classification of yeast cells from image features to evaluate pathogen conditions
NASA Astrophysics Data System (ADS)
van der Putten, Peter; Bertens, Laura; Liu, Jinshuo; Hagen, Ferry; Boekhout, Teun; Verbeek, Fons J.
2007-01-01
Morphometrics from images, image analysis, may reveal differences between classes of objects present in the images. We have performed an image-features-based classification for the pathogenic yeast Cryptococcus neoformans. Building and analyzing image collections from the yeast under different environmental or genetic conditions may help to diagnose a new "unseen" situation. Diagnosis here means that retrieval of the relevant information from the image collection is at hand each time a new "sample" is presented. The basidiomycetous yeast Cryptococcus neoformans can cause infections such as meningitis or pneumonia. The presence of an extra-cellular capsule is known to be related to virulence. This paper reports on the approach towards developing classifiers for detecting potentially more or less virulent cells in a sample, i.e. an image, by using a range of features derived from the shape or density distribution. The classifier can henceforth be used for automating screening and annotating existing image collections. In addition we will present our methods for creating samples, collecting images, image preprocessing, identifying "yeast cells" and creating feature extraction from the images. We compare various expertise based and fully automated methods of feature selection and benchmark a range of classification algorithms and illustrate successful application to this particular domain.
NASA Astrophysics Data System (ADS)
Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude
2010-02-01
Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.
Contrast improvement of terahertz images of thin histopathologic sections
Formanek, Florian; Brun, Marc-Aurèle; Yasuda, Akio
2011-01-01
We present terahertz images of 10 μm thick histopathologic sections obtained in reflection geometry with a time-domain spectrometer, and demonstrate improved contrast for sections measured in paraffin with water. Automated segmentation is applied to the complex refractive index data to generate clustered terahertz images distinguishing cancer from healthy tissues. The degree of classification of pixels is then evaluated using registered visible microscope images. Principal component analysis and propagation simulations are employed to investigate the origin and the gain of image contrast. PMID:21326635
Contrast improvement of terahertz images of thin histopathologic sections.
Formanek, Florian; Brun, Marc-Aurèle; Yasuda, Akio
2010-12-03
We present terahertz images of 10 μm thick histopathologic sections obtained in reflection geometry with a time-domain spectrometer, and demonstrate improved contrast for sections measured in paraffin with water. Automated segmentation is applied to the complex refractive index data to generate clustered terahertz images distinguishing cancer from healthy tissues. The degree of classification of pixels is then evaluated using registered visible microscope images. Principal component analysis and propagation simulations are employed to investigate the origin and the gain of image contrast.
Planning applications in image analysis
NASA Technical Reports Server (NTRS)
Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.
1994-01-01
We describe two interim results from an ongoing effort to automate the acquisition, analysis, archiving, and distribution of satellite earth science data. Both results are applications of Artificial Intelligence planning research to the automatic generation of processing steps for image analysis tasks. First, we have constructed a linear conditional planner (CPed), used to generate conditional processing plans. Second, we have extended an existing hierarchical planning system to make use of durations, resources, and deadlines, thus supporting the automatic generation of processing steps in time and resource-constrained environments.
Semi-Automated Digital Image Analysis of Pick’s Disease and TDP-43 Proteinopathy
Irwin, David J.; Byrne, Matthew D.; McMillan, Corey T.; Cooper, Felicia; Arnold, Steven E.; Lee, Edward B.; Van Deerlin, Vivianna M.; Xie, Sharon X.; Lee, Virginia M.-Y.; Grossman, Murray; Trojanowski, John Q.
2015-01-01
Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick’s disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. PMID:26538548
Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy.
Irwin, David J; Byrne, Matthew D; McMillan, Corey T; Cooper, Felicia; Arnold, Steven E; Lee, Edward B; Van Deerlin, Vivianna M; Xie, Sharon X; Lee, Virginia M-Y; Grossman, Murray; Trojanowski, John Q
2016-01-01
Digital image analysis of histology sections provides reliable, high-throughput methods for neuropathological studies but data is scant in frontotemporal lobar degeneration (FTLD), which has an added challenge of study due to morphologically diverse pathologies. Here, we describe a novel method of semi-automated digital image analysis in FTLD subtypes including: Pick's disease (PiD, n=11) with tau-positive intracellular inclusions and neuropil threads, and TDP-43 pathology type C (FTLD-TDPC, n=10), defined by TDP-43-positive aggregates predominantly in large dystrophic neurites. To do this, we examined three FTLD-associated cortical regions: mid-frontal gyrus (MFG), superior temporal gyrus (STG) and anterior cingulate gyrus (ACG) by immunohistochemistry. We used a color deconvolution process to isolate signal from the chromogen and applied both object detection and intensity thresholding algorithms to quantify pathological burden. We found object-detection algorithms had good agreement with gold-standard manual quantification of tau- and TDP-43-positive inclusions. Our sampling method was reliable across three separate investigators and we obtained similar results in a pilot analysis using open-source software. Regional comparisons using these algorithms finds differences in regional anatomic disease burden between PiD and FTLD-TDP not detected using traditional ordinal scale data, suggesting digital image analysis is a powerful tool for clinicopathological studies in morphologically diverse FTLD syndromes. © The Author(s) 2015.
Fast and accurate automated cell boundary determination for fluorescence microscopy
NASA Astrophysics Data System (ADS)
Arce, Stephen Hugo; Wu, Pei-Hsun; Tseng, Yiider
2013-07-01
Detailed measurement of cell phenotype information from digital fluorescence images has the potential to greatly advance biomedicine in various disciplines such as patient diagnostics or drug screening. Yet, the complexity of cell conformations presents a major barrier preventing effective determination of cell boundaries, and introduces measurement error that propagates throughout subsequent assessment of cellular parameters and statistical analysis. State-of-the-art image segmentation techniques that require user-interaction, prolonged computation time and specialized training cannot adequately provide the support for high content platforms, which often sacrifice resolution to foster the speedy collection of massive amounts of cellular data. This work introduces a strategy that allows us to rapidly obtain accurate cell boundaries from digital fluorescent images in an automated format. Hence, this new method has broad applicability to promote biotechnology.
An automated assay for the assessment of cardiac arrest in fish embryo.
Puybareau, Elodie; Genest, Diane; Barbeau, Emilie; Léonard, Marc; Talbot, Hugues
2017-02-01
Studies on fish embryo models are widely developed in research. They are used in several research fields including drug discovery or environmental toxicology. In this article, we propose an entirely automated assay to detect cardiac arrest in Medaka (Oryzias latipes) based on image analysis. We propose a multi-scale pipeline based on mathematical morphology. Starting from video sequences of entire wells in 24-well plates, we focus on the embryo, detect its heart, and ascertain whether or not the heart is beating based on intensity variation analysis. Our image analysis pipeline only uses commonly available operators. It has a low computational cost, allowing analysis at the same rate as acquisition. From an initial dataset of 3192 videos, 660 were discarded as unusable (20.7%), 655 of them correctly so (99.25%) and only 5 incorrectly so (0.75%). The 2532 remaining videos were used for our test. On these, 45 errors were made, leading to a success rate of 98.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Twelve automated thresholding methods for segmentation of PET images: a phantom study.
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M
2012-06-21
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Twelve automated thresholding methods for segmentation of PET images: a phantom study
NASA Astrophysics Data System (ADS)
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.
2012-06-01
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Beijbom, Oscar; Edmunds, Peter J.; Roelfsema, Chris; Smith, Jennifer; Kline, David I.; Neal, Benjamin P.; Dunlap, Matthew J.; Moriarty, Vincent; Fan, Tung-Yung; Tan, Chih-Jui; Chan, Stephen; Treibitz, Tali; Gamst, Anthony; Mitchell, B. Greg; Kriegman, David
2015-01-01
Global climate change and other anthropogenic stressors have heightened the need to rapidly characterize ecological changes in marine benthic communities across large scales. Digital photography enables rapid collection of survey images to meet this need, but the subsequent image annotation is typically a time consuming, manual task. We investigated the feasibility of using automated point-annotation to expedite cover estimation of the 17 dominant benthic categories from survey-images captured at four Pacific coral reefs. Inter- and intra- annotator variability among six human experts was quantified and compared to semi- and fully- automated annotation methods, which are made available at coralnet.ucsd.edu. Our results indicate high expert agreement for identification of coral genera, but lower agreement for algal functional groups, in particular between turf algae and crustose coralline algae. This indicates the need for unequivocal definitions of algal groups, careful training of multiple annotators, and enhanced imaging technology. Semi-automated annotation, where 50% of the annotation decisions were performed automatically, yielded cover estimate errors comparable to those of the human experts. Furthermore, fully-automated annotation yielded rapid, unbiased cover estimates but with increased variance. These results show that automated annotation can increase spatial coverage and decrease time and financial outlay for image-based reef surveys. PMID:26154157
den Hertog, Alice L.; Visser, Dennis W.; Ingham, Colin J.; Fey, Frank H. A. G.; Klatser, Paul R.; Anthony, Richard M.
2010-01-01
Background Even with the advent of nucleic acid (NA) amplification technologies the culture of mycobacteria for diagnostic and other applications remains of critical importance. Notably microscopic observed drug susceptibility testing (MODS), as opposed to traditional culture on solid media or automated liquid culture, has shown potential to both speed up and increase the provision of mycobacterial culture in high burden settings. Methods Here we explore the growth of Mycobacterial tuberculosis microcolonies, imaged by automated digital microscopy, cultured on a porous aluminium oxide (PAO) supports. Repeated imaging during colony growth greatly simplifies “computer vision” and presumptive identification of microcolonies was achieved here using existing publically available algorithms. Our system thus allows the growth of individual microcolonies to be monitored and critically, also to change the media during the growth phase without disrupting the microcolonies. Transfer of identified microcolonies onto selective media allowed us, within 1-2 bacterial generations, to rapidly detect the drug susceptibility of individual microcolonies, eliminating the need for time consuming subculturing or the inoculation of multiple parallel cultures. Significance Monitoring the phenotype of individual microcolonies as they grow has immense potential for research, screening, and ultimately M. tuberculosis diagnostic applications. The method described is particularly appealing with respect to speed and automation. PMID:20544033
Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα Images
NASA Astrophysics Data System (ADS)
Yang, Meng; Tian, Yu; Liu, Yangyi; Rao, Changhui
2018-05-01
In this article, an automated solar flare detection method applied to both full-disk and local high-resolution Hα images is proposed. An adaptive gray threshold and an area threshold are used to segment the flare region. Features of each detected flare event are extracted, e.g. the start, peak, and end time, the importance class, and the brightness class. Experimental results have verified that the proposed method can obtain more stable and accurate segmentation results than previous works on full-disk images from Big Bear Solar Observatory (BBSO) and Kanzelhöhe Observatory for Solar and Environmental Research (KSO), and satisfying segmentation results on high-resolution images from the Goode Solar Telescope (GST). Moreover, the extracted flare features correlate well with the data given by KSO. The method may be able to implement a more complicated statistical analysis of Hα solar flares.
Automated classification of multiphoton microscopy images of ovarian tissue using deep learning.
Huttunen, Mikko J; Hassan, Abdurahman; McCloskey, Curtis W; Fasih, Sijyl; Upham, Jeremy; Vanderhyden, Barbara C; Boyd, Robert W; Murugkar, Sangeeta
2018-06-01
Histopathological image analysis of stained tissue slides is routinely used in tumor detection and classification. However, diagnosis requires a highly trained pathologist and can thus be time-consuming, labor-intensive, and potentially risk bias. Here, we demonstrate a potential complementary approach for diagnosis. We show that multiphoton microscopy images from unstained, reproductive tissues can be robustly classified using deep learning techniques. We fine-train four pretrained convolutional neural networks using over 200 murine tissue images based on combined second-harmonic generation and two-photon excitation fluorescence contrast, to classify the tissues either as healthy or associated with high-grade serous carcinoma with over 95% sensitivity and 97% specificity. Our approach shows promise for applications involving automated disease diagnosis. It could also be readily applied to other tissues, diseases, and related classification problems. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Tools for automating the imaging of zebrafish larvae.
Pulak, Rock
2016-03-01
The VAST BioImager system is a set of tools developed for zebrafish researchers who require the collection of images from a large number of 2-7 dpf zebrafish larvae. The VAST BioImager automates larval handling, positioning and orientation tasks. Color images at about 10 μm resolution are collected from the on-board camera of the system. If images of greater resolution and detail are required, this system is mounted on an upright microscope, such as a confocal or fluorescence microscope, to utilize their capabilities. The system loads a larvae, positions it in view of the camera, determines orientation using pattern recognition analysis, and then more precisely positions to user-defined orientation for optimal imaging of any desired tissue or organ system. Multiple images of the same larva can be collected. The specific part of each larva and the desired orientation and position is identified by the researcher and an experiment defining the settings and a series of steps can be saved and repeated for imaging of subsequent larvae. The system captures images, then ejects and loads another larva from either a bulk reservoir, a well of a 96 well plate using the LP Sampler, or individually targeted larvae from a Petri dish or other container using the VAST Pipettor. Alternative manual protocols for handling larvae for image collection are tedious and time consuming. The VAST BioImager automates these steps to allow for greater throughput of assays and screens requiring high-content image collection of zebrafish larvae such as might be used in drug discovery and toxicology studies. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.
2015-03-01
Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.
Astronomical algorithms for automated analysis of tissue protein expression in breast cancer
Ali, H R; Irwin, M; Morris, L; Dawson, S-J; Blows, F M; Provenzano, E; Mahler-Araujo, B; Pharoah, P D; Walton, N A; Brenton, J D; Caldas, C
2013-01-01
Background: High-throughput evaluation of tissue biomarkers in oncology has been greatly accelerated by the widespread use of tissue microarrays (TMAs) and immunohistochemistry. Although TMAs have the potential to facilitate protein expression profiling on a scale to rival experiments of tumour transcriptomes, the bottleneck and imprecision of manually scoring TMAs has impeded progress. Methods: We report image analysis algorithms adapted from astronomy for the precise automated analysis of IHC in all subcellular compartments. The power of this technique is demonstrated using over 2000 breast tumours and comparing quantitative automated scores against manual assessment by pathologists. Results: All continuous automated scores showed good correlation with their corresponding ordinal manual scores. For oestrogen receptor (ER), the correlation was 0.82, P<0.0001, for BCL2 0.72, P<0.0001 and for HER2 0.62, P<0.0001. Automated scores showed excellent concordance with manual scores for the unsupervised assignment of cases to ‘positive' or ‘negative' categories with agreement rates of up to 96%. Conclusion: The adaptation of astronomical algorithms coupled with their application to large annotated study cohorts, constitutes a powerful tool for the realisation of the enormous potential of digital pathology. PMID:23329232
Deep Interactive Learning with Sharkzor
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Sharkzor is a web application for machine-learning assisted image sort and summary. Deep learning algorithms are leveraged to infer, augment, and automate the user’s mental model. Initially, images uploaded by the user are spread out on a canvas. The user then interacts with the images to impute their mental model into the applications algorithmic underpinnings. Methods of interaction within Sharkzor’s user interface and user experience support three primary user tasks: triage, organize and automate. The user triages the large pile of overlapping images by moving images of interest into proximity. The user then organizes said images into meaningful groups. Aftermore » interacting with the images and groups, deep learning helps to automate the user’s interactions. The loop of interaction, automation, and response by the user allows the system to quickly make sense of large amounts of data.« less
Packard, René R Sevag; Baek, Kyung In; Beebe, Tyler; Jen, Nelson; Ding, Yichen; Shi, Feng; Fei, Peng; Kang, Bong Jin; Chen, Po-Heng; Gau, Jonathan; Chen, Michael; Tang, Jonathan Y; Shih, Yu-Huan; Ding, Yonghe; Li, Debiao; Xu, Xiaolei; Hsiai, Tzung K
2017-08-17
This study sought to develop an automated segmentation approach based on histogram analysis of raw axial images acquired by light-sheet fluorescent imaging (LSFI) to establish rapid reconstruction of the 3-D zebrafish cardiac architecture in response to doxorubicin-induced injury and repair. Input images underwent a 4-step automated image segmentation process consisting of stationary noise removal, histogram equalization, adaptive thresholding, and image fusion followed by 3-D reconstruction. We applied this method to 3-month old zebrafish injected intraperitoneally with doxorubicin followed by LSFI at 3, 30, and 60 days post-injection. We observed an initial decrease in myocardial and endocardial cavity volumes at day 3, followed by ventricular remodeling at day 30, and recovery at day 60 (P < 0.05, n = 7-19). Doxorubicin-injected fish developed ventricular diastolic dysfunction and worsening global cardiac function evidenced by elevated E/A ratios and myocardial performance indexes quantified by pulsed-wave Doppler ultrasound at day 30, followed by normalization at day 60 (P < 0.05, n = 9-20). Treatment with the γ-secretase inhibitor, DAPT, to inhibit cleavage and release of Notch Intracellular Domain (NICD) blocked cardiac architectural regeneration and restoration of ventricular function at day 60 (P < 0.05, n = 6-14). Our approach provides a high-throughput model with translational implications for drug discovery and genetic modifiers of chemotherapy-induced cardiomyopathy.
Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin
2013-01-01
Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMA) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm which can reliably separate touching cells in hematoxylin stained breast TMA specimens which have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach which utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and tissue microarrays containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) which resulted in significant speed-up over the C/C++ implementation. PMID:22167559
Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.
Pound, Michael P; Atkinson, Jonathan A; Townsend, Alexandra J; Wilson, Michael H; Griffiths, Marcus; Jackson, Aaron S; Bulat, Adrian; Tzimiropoulos, Georgios; Wells, Darren M; Murchie, Erik H; Pridmore, Tony P; French, Andrew P
2017-10-01
In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets. © The Authors 2017. Published by Oxford University Press.
Practical considerations of image analysis and quantification of signal transduction IHC staining.
Grunkin, Michael; Raundahl, Jakob; Foged, Niels T
2011-01-01
The dramatic increase in computer processing power in combination with the availability of high-quality digital cameras during the last 10 years has fertilized the grounds for quantitative microscopy based on digital image analysis. With the present introduction of robust scanners for whole slide imaging in both research and routine, the benefits of automation and objectivity in the analysis of tissue sections will be even more obvious. For in situ studies of signal transduction, the combination of tissue microarrays, immunohistochemistry, digital imaging, and quantitative image analysis will be central operations. However, immunohistochemistry is a multistep procedure including a lot of technical pitfalls leading to intra- and interlaboratory variability of its outcome. The resulting variations in staining intensity and disruption of original morphology are an extra challenge for the image analysis software, which therefore preferably should be dedicated to the detection and quantification of histomorphometrical end points.
Cancer Detection Using Neural Computing Methodology
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Kohen, Hamid S.; Bearman, Gregory H.; Seligson, David B.
2001-01-01
This paper describes a novel learning methodology used to analyze bio-materials. The premise of this research is to help pathologists quickly identify anomalous cells in a cost efficient method. Skilled pathologists must methodically, efficiently and carefully analyze manually histopathologic materials for the presence, amount and degree of malignancy and/or other disease states. The prolonged attention required to accomplish this task induces fatigue that may result in a higher rate of diagnostic errors. In addition, automated image analysis systems to date lack a sufficiently intelligent means of identifying even the most general regions of interest in tissue based studies and this shortfall greatly limits their utility. An intelligent data understanding system that could quickly and accurately identify diseased tissues and/or could choose regions of interest would be expected to increase the accuracy of diagnosis and usher in truly automated tissue based image analysis.
Automated Track Recognition and Event Reconstruction in Nuclear Emulsion
NASA Technical Reports Server (NTRS)
Deines-Jones, P.; Cherry, M. L.; Dabrowska, A.; Holynski, R.; Jones, W. V.; Kolganova, E. D.; Kudzia, D.; Nilsen, B. S.; Olszewski, A.; Pozharova, E. A.;
1998-01-01
The major advantages of nuclear emulsion for detecting charged particles are its submicron position resolution and sensitivity to minimum ionizing particles. These must be balanced, however, against the difficult manual microscope measurement by skilled observers required for the analysis. We have developed an automated system to acquire and analyze the microscope images from emulsion chambers. Each emulsion plate is analyzed independently, allowing coincidence techniques to be used in order to reject back- ground and estimate error rates. The system has been used to analyze a sample of high-multiplicity Pb-Pb interactions (charged particle multiplicities approx. 1100) produced by the 158 GeV/c per nucleon Pb-208 beam at CERN. Automatically reconstructed track lists agree with our best manual measurements to 3%. We describe the image analysis and track reconstruction techniques, and discuss the measurement and reconstruction uncertainties.
Fast automated analysis of strong gravitational lenses with convolutional neural networks.
Hezaveh, Yashar D; Levasseur, Laurence Perreault; Marshall, Philip J
2017-08-30
Quantifying image distortions caused by strong gravitational lensing-the formation of multiple images of distant sources due to the deflection of their light by the gravity of intervening structures-and estimating the corresponding matter distribution of these structures (the 'gravitational lens') has primarily been performed using maximum likelihood modelling of observations. This procedure is typically time- and resource-consuming, requiring sophisticated lensing codes, several data preparation steps, and finding the maximum likelihood model parameters in a computationally expensive process with downhill optimizers. Accurate analysis of a single gravitational lens can take up to a few weeks and requires expert knowledge of the physical processes and methods involved. Tens of thousands of new lenses are expected to be discovered with the upcoming generation of ground and space surveys. Here we report the use of deep convolutional neural networks to estimate lensing parameters in an extremely fast and automated way, circumventing the difficulties that are faced by maximum likelihood methods. We also show that the removal of lens light can be made fast and automated using independent component analysis of multi-filter imaging data. Our networks can recover the parameters of the 'singular isothermal ellipsoid' density profile, which is commonly used to model strong lensing systems, with an accuracy comparable to the uncertainties of sophisticated models but about ten million times faster: 100 systems in approximately one second on a single graphics processing unit. These networks can provide a way for non-experts to obtain estimates of lensing parameters for large samples of data.
Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.
2016-01-01
In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528