Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
..., LLC, Subsidiary of Mag Industrial Automation Systems, Machesney Park, IL; Notice of Negative... automation equipment and machine tools did not contribute to worker separations at the subject facility and...' firm's declining customers. The survey revealed no imports of automation equipment and machine tools by...
JPRS Report, Science & Technology, Europe & Latin America.
1988-01-22
Rex Malik; ZERO UN INFORMATIQUE, 31 Aug 87) 25 FACTORY AUTOMATION, ROBOTICS West Europe Seeks To Halt Japanese Inroads in Machine Tool Sector...aircraft. 25048 CSO: 3698/A014 26 FACTORY AUTOMATION, ROBOTICS vrEST EUROpE WEST EUROPE SEEKS TO HALT JAPANESE INROADS IN MACHINE TOOL SECTOR...Trumpf, by the same journalist; first paragraph is L’USINE NOUVELLE introduction] [Excerpts] European machine - tool builders are stepping up mutual
Large robotized turning centers described
NASA Astrophysics Data System (ADS)
Kirsanov, V. V.; Tsarenko, V. I.
1985-09-01
The introduction of numerical control (NC) machine tools has made it possible to automate machining in series and small series production. The organization of automated production sections merged NC machine tools with automated transport systems. However, both the one and the other require the presence of an operative at the machine for low skilled operations. Industrial robots perform a number of auxiliary operations, such as equipment loading-unloading and control, changing cutting and auxiliary tools, controlling workpieces and parts, and cleaning of location surfaces. When used with a group of equipment they perform transfer operations between the machine tools. Industrial robots eliminate the need for workers to form auxiliary operations. This underscores the importance of developing robotized manufacturing centers providing for minimal human participation in production and creating conditions for two and three shift operation of equipment. Work carried out at several robotized manufacturing centers for series and small series production is described.
Translations from Kommunist, Number 13, September 1978
1978-10-30
programmed machine tool here is merely a component of a more complex reprogrammable technological system. This includes the robot machine tools with...sufficient possibilities for changing technological operations and processes and automated technological lines. 52 The reprogrammable automated sets will...simulate the possibilities of such sets. A new technological level will be developed in industry related to reprogrammable automated sets, their design
Chip breaking system for automated machine tool
Arehart, Theodore A.; Carey, Donald O.
1987-01-01
The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.
Cardiac imaging: working towards fully-automated machine analysis & interpretation.
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-03-01
Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.
Using microwave Doppler radar in automated manufacturing applications
NASA Astrophysics Data System (ADS)
Smith, Gregory C.
Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help stimulate future growth in industrial productivity, which also promises to fuel economic growth and promote economic stability. The study also benefits the Department of Industrial Technology at Iowa State University and the field of Industrial Technology by contributing to the ongoing "smart" machine research program within the Department of Industrial Technology and by stimulating research into new sensor technologies within the University and within the field of Industrial Technology.
Cardiac imaging: working towards fully-automated machine analysis & interpretation
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-01-01
Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804
Advanced Airframe Structural Materials: A Primer and Cost Estimating Methodology
1991-01-01
laying machines for larger, mildly con- toured parts such as wing and stabilizer skins. For such parts, automated tape laying machines can operate many...heat guns (90-130°F). However, thermoplastics require as much as 650°F for forming. Automated tape laying machines for these materials use warm...cycles to properly seat the plies onto the tool. This time-consuming process can sometimes be eliminated or reduced by the use of automated tape laying procedures
Content Classification: Leveraging New Tools and Librarians' Expertise.
ERIC Educational Resources Information Center
Starr, Jennie
1999-01-01
Presents factors for librarians to consider when decision-making about information retrieval. Discusses indexing theory; thesauri aids; controlled vocabulary or thesauri to increase access; humans versus machines; automated tools; product evaluations and evaluation criteria; automated classification tools; content server products; and document…
[Present-day metal-cutting tools and working conditions].
Kondratiuk, V P
1990-01-01
Polyfunctional machine-tools of a processing centre type are characterized by a set of hygienic advantages as compared to universal machine-tools. But low degree of mechanization and automation of some auxiliary processes, and constructional defects which decrease the ergonomic characteristics of the tools, involve labour intensity in multi-machine processing. The article specifies techniques of allowable noise level assessment, and proposes hygienic recommendations, some of which have been introduced into practice.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Robotic edge machining using elastic abrasive tool
NASA Astrophysics Data System (ADS)
Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.
2018-03-01
The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.
Automated visual imaging interface for the plant floor
NASA Astrophysics Data System (ADS)
Wutke, John R.
1991-03-01
The paper will provide an overview of the challenges facing a user of automated visual imaging (" AVI" ) machines and the philosophies that should be employed in designing them. As manufacturing tools and equipment become more sophisticated it is increasingly difficult to maintain an efficient interaction between the operator and machine. The typical user of an AVI machine in a production environment is technically unsophisticated. Also operator and machine ergonomics are often a neglected or poorly addressed part of an efficient manufacturing process. This paper presents a number of man-machine interface design techniques and philosophies that effectively solve these problems.
Improvement of Computer Software Quality through Software Automated Tools.
1986-08-30
information that are returned from the tools to the human user, and the forms in which these outputs are presented. Page 2 of 4 STAGE OF DEVELOPMENT: What... AUTOMIATED SOFTWARE TOOL MONITORING SYSTEM APPENDIX 2 2-1 INTRODUCTION This document and Automated Software Tool Monitoring Program (Appendix 1) are...t Output Output features provide links from the tool to both the human user and the target machine (where applicable). They describe the types
Machine learning for micro-tomography
NASA Astrophysics Data System (ADS)
Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James
2017-09-01
Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.
Modelling of human-machine interaction in equipment design of manufacturing cells
NASA Astrophysics Data System (ADS)
Cochran, David S.; Arinez, Jorge F.; Collins, Micah T.; Bi, Zhuming
2017-08-01
This paper proposes a systematic approach to model human-machine interactions (HMIs) in supervisory control of machining operations; it characterises the coexistence of machines and humans for an enterprise to balance the goals of automation/productivity and flexibility/agility. In the proposed HMI model, an operator is associated with a set of behavioural roles as a supervisor for multiple, semi-automated manufacturing processes. The model is innovative in the sense that (1) it represents an HMI based on its functions for process control but provides the flexibility for ongoing improvements in the execution of manufacturing processes; (2) it provides a computational tool to define functional requirements for an operator in HMIs. The proposed model can be used to design production systems at different levels of an enterprise architecture, particularly at the machine level in a production system where operators interact with semi-automation to accomplish the goal of 'autonomation' - automation that augments the capabilities of human beings.
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.
2017-01-01
Automatization of engineering processes requires developing relevant mathematical support and a computer software. Analysis of metal cutting kinematics and tool geometry is a necessary key task at the preproduction stage. This paper is focused on developing a procedure for determining the geometry of oblique peakless round-nose tool lathe machining with the use of vector/matrix transformations. Such an approach allows integration into modern mathematical software packages in distinction to the traditional analytic description. Such an advantage is very promising for developing automated control of the preproduction process. A kinematic criterion for the applicable tool geometry has been developed from the results of this study. The effect of tool blade inclination and curvature on the geometry-dependent process parameters was evaluated.
Repurposing mainstream CNC machine tools for laser-based additive manufacturing
NASA Astrophysics Data System (ADS)
Jones, Jason B.
2016-04-01
The advent of laser technology has been a key enabler for industrial 3D printing, known as Additive Manufacturing (AM). Despite its commercial success and unique technical capabilities, laser-based AM systems are not yet able to produce parts with the same accuracy and surface finish as CNC machining. To enable the geometry and material freedoms afforded by AM, yet achieve the precision and productivity of CNC machining, hybrid combinations of these two processes have started to gain traction. To achieve the benefits of combined processing, laser technology has been integrated into mainstream CNC machines - effectively repurposing them as hybrid manufacturing platforms. This paper reviews how this engineering challenge has prompted beam delivery innovations to allow automated changeover between laser processing and machining, using standard CNC tool changers. Handling laser-processing heads using the tool changer also enables automated change over between different types of laser processing heads, further expanding the breadth of laser processing flexibility in a hybrid CNC. This paper highlights the development, challenges and future impact of hybrid CNCs on laser processing.
Deriving Forest Harvesting Machine Productivity from Positional Data
T.P. McDonald; S.E. Taylor; R.B. Rummer
2000-01-01
Automated production study systems will provide researchers a valuable tool for developing cost and impact models of forest operations under a wide range of conditions, making the development of true planning tools for tailoring logging systems to a particular site a reality. An automated time study system for skidders was developed, and in this study application of...
Integrated flexible manufacturing program for manufacturing automation and rapid prototyping
NASA Technical Reports Server (NTRS)
Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.
1993-01-01
The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.
NASA Astrophysics Data System (ADS)
Daneshmend, L. K.; Pak, H. A.
1984-02-01
On-line monitoring of the cutting process in CNC lathe is desirable to ensure unattended fault-free operation in an automated environment. The state of the cutting tool is one of the most important parameters which characterises the cutting process. Direct monitoring of the cutting tool or workpiece is not feasible during machining. However several variables related to the state of the tool can be measured on-line. A novel monitoring technique is presented which uses cutting torque as the variable for on-line monitoring. A classifier is designed on the basis of the empirical relationship between cutting torque and flank wear. The empirical model required by the on-line classifier is established during an automated training cycle using machine vision for off-line direct inspection of the tool.
Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly
2013-01-01
High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652
ERIC Educational Resources Information Center
Stanton, Michael; And Others
1985-01-01
Three reports on the effects of high technology on the nature of work include (1) Stanton on applications and implications of computer-aided design for engineers, drafters, and architects; (2) Nardone on the outlook and training of numerical-control machine tool operators; and (3) Austin and Drake on the future of clerical occupations in automated…
Automated Engineering Design (AED); An approach to automated documentation
NASA Technical Reports Server (NTRS)
Mcclure, C. W.
1970-01-01
The automated engineering design (AED) is reviewed, consisting of a high level systems programming language, a series of modular precoded subroutines, and a set of powerful software machine tools that effectively automate the production and design of new languages. AED is used primarily for development of problem and user-oriented languages. Software production phases are diagramed, and factors which inhibit effective documentation are evaluated.
Computerized Manufacturing Automation. Employment, Education, and the Workplace. Summary.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Office of Technology Assessment.
The application of programmable automation (PA) offers new opportunities to enhance and streamline manufacturing processes. Five PA technologies are examined in this report: computer-aided design, robots, numerically controlled machine tools, flexible manufacturing systems, and computer-integrated manufacturing. Each technology is in a relatively…
Dixon, Steven L; Duan, Jianxin; Smith, Ethan; Von Bargen, Christopher D; Sherman, Woody; Repasky, Matthew P
2016-10-01
We introduce AutoQSAR, an automated machine-learning application to build, validate and deploy quantitative structure-activity relationship (QSAR) models. The process of descriptor generation, feature selection and the creation of a large number of QSAR models has been automated into a single workflow within AutoQSAR. The models are built using a variety of machine-learning methods, and each model is scored using a novel approach. Effectiveness of the method is demonstrated through comparison with literature QSAR models using identical datasets for six end points: protein-ligand binding affinity, solubility, blood-brain barrier permeability, carcinogenicity, mutagenicity and bioaccumulation in fish. AutoQSAR demonstrates similar or better predictive performance as compared with published results for four of the six endpoints while requiring minimal human time and expertise.
USSR Report, Kommunist, No. 13, September 1986.
1987-01-07
all-union) program for specialization of NPO and industrial enterprises and their scientific research institutes and design bureaus could play a major...machine tools with numerical programming (ChPU), processing centers, automatic machines and groups of automatic machines controlled by computers, and...automatic lines, computer- controlled groups of equipment, comprehensively automated shops and sections) is the most important feature of high technical
Implementation of the Automated Numerical Model Performance Metrics System
2011-09-26
question. As of this writing, the DSRC IBM AIX machines DaVinci and Pascal, and the Cray XT Einstein all use the PBS batch queuing system for...3.3). 12 Appendix A – General Automation System This system provides general purpose tools and a general way to automatically run
Drilling Precise Orifices and Slots
NASA Technical Reports Server (NTRS)
Richards, C. W.; Seidler, J. E.
1983-01-01
Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.
STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.
Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X
2009-08-01
This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.
Automated Verification of Specifications with Typestates and Access Permissions
NASA Technical Reports Server (NTRS)
Siminiceanu, Radu I.; Catano, Nestor
2011-01-01
We propose an approach to formally verify Plural specifications based on access permissions and typestates, by model-checking automatically generated abstract state-machines. Our exhaustive approach captures all the possible behaviors of abstract concurrent programs implementing the specification. We describe the formal methodology employed by our technique and provide an example as proof of concept for the state-machine construction rules. The implementation of a fully automated algorithm to generate and verify models, currently underway, provides model checking support for the Plural tool, which currently supports only program verification via data flow analysis (DFA).
Automated Inspection And Precise Grinding Of Gears
NASA Technical Reports Server (NTRS)
Frint, Harold; Glasow, Warren
1995-01-01
Method of precise grinding of spiral bevel gears involves automated inspection of gear-tooth surfaces followed by adjustments of machine-tool settings to minimize differences between actual and nominal surfaces. Similar to method described in "Computerized Inspection of Gear-Tooth Surfaces" (LEW-15736). Yields gears of higher quality, with significant reduction in manufacturing and inspection time.
Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments
Sachs, Christian Carsten; Grünberger, Alexander; Helfrich, Stefan; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina
2016-01-01
Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso. PMID:27661996
Next Generation Loading System for Detonators and Primers
Designed , fabricated and installed next generation tooling to provide additional manufacturing capabilities for new detonators and other small...prototype munitions on automated, semi-automated and manual machines. Lead design effort, procured and installed a primary explosive Drying Oven for a pilot...facility. Designed , fabricated and installed a Primary Explosives Waste Treatment System in a pilot environmental processing facility. Designed
Phenomenology tools on cloud infrastructures using OpenStack
NASA Astrophysics Data System (ADS)
Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.
2013-04-01
We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.
Automated discovery systems and the inductivist controversy
NASA Astrophysics Data System (ADS)
Giza, Piotr
2017-09-01
The paper explores possible influences that some developments in the field of branches of AI, called automated discovery and machine learning systems, might have upon some aspects of the old debate between Francis Bacon's inductivism and Karl Popper's falsificationism. Donald Gillies facetiously calls this controversy 'the duel of two English knights', and claims, after some analysis of historical cases of discovery, that Baconian induction had been used in science very rarely, or not at all, although he argues that the situation has changed with the advent of machine learning systems. (Some clarification of terms machine learning and automated discovery is required here. The key idea of machine learning is that, given data with associated outcomes, software can be trained to make those associations in future cases which typically amounts to inducing some rules from individual cases classified by the experts. Automated discovery (also called machine discovery) deals with uncovering new knowledge that is valuable for human beings, and its key idea is that discovery is like other intellectual tasks and that the general idea of heuristic search in problem spaces applies also to discovery tasks. However, since machine learning systems discover (very low-level) regularities in data, throughout this paper I use the generic term automated discovery for both kinds of systems. I will elaborate on this later on). Gillies's line of argument can be generalised: thanks to automated discovery systems, philosophers of science have at their disposal a new tool for empirically testing their philosophical hypotheses. Accordingly, in the paper, I will address the question, which of the two philosophical conceptions of scientific method is better vindicated in view of the successes and failures of systems developed within three major research programmes in the field: machine learning systems in the Turing tradition, normative theory of scientific discovery formulated by Herbert Simon's group and the programme called HHNT, proposed by J. Holland, K. Holyoak, R. Nisbett and P. Thagard.
HiVy automated translation of stateflow designs for model checking verification
NASA Technical Reports Server (NTRS)
Pingree, Paula
2003-01-01
tool set enables model checking of finite state machines designs. This is acheived by translating state-chart specifications into the input language of the Spin model checker. An abstract syntax of hierarchical sequential automata (HSA) is provided as an intermediate format tool set.
Human-human reliance in the context of automation.
Lyons, Joseph B; Stokes, Charlene K
2012-02-01
The current study examined human-human reliance during a computer-based scenario where participants interacted with a human aid and an automated tool simultaneously. Reliance on others is complex, and few studies have examined human-human reliance in the context of automation. Past research found that humans are biased in their perceived utility of automated tools such that they view them as more accurate than humans. Prior reviews have postulated differences in human-human versus human-machine reliance, yet few studies have examined such reliance when individuals are presented with divergent information from different sources. Participants (N = 40) engaged in the Convoy Leader experiment.They selected a convoy route based on explicit guidance from a human aid and information from an automated map. Subjective and behavioral human-human reliance indices were assessed. Perceptions of risk were manipulated by creating three scenarios (low, moderate, and high) that varied in the amount of vulnerability (i.e., potential for attack) associated with the convoy routes. Results indicated that participants reduced their behavioral reliance on the human aid when faced with higher risk decisions (suggesting increased reliance on the automation); however, there were no reported differences in intentions to rely on the human aid relative to the automation. The current study demonstrated that when individuals are provided information from both a human aid and automation,their reliance on the human aid decreased during high-risk decisions. This study adds to a growing understanding of the biases and preferences that exist during complex human-human and human-machine interactions.
THE COMPUTER CONCEPT OF SELF-INSTRUCTIONAL DEVICES.
ERIC Educational Resources Information Center
SILBERMAN, HARRY F.
THE COMPUTER SYSTEM CONCEPT WILL BE DEVELOPED IN TWO WAYS--FIRST, A DESCRIPTION WILL BE MADE OF THE SMALL COMPUTER-BASED TEACHING MACHINE WHICH IS BEING USED AS A RESEARCH TOOL, SECOND, A DESCRIPTION WILL BE MADE OF THE LARGE COMPUTER LABORATORY FOR AUTOMATED SCHOOL SYSTEMS WHICH ARE BEING DEVELOPED. THE FIRST MACHINE CONSISTS OF THREE ELEMENTS--…
ICE: An Automated Tool for Teaching Advanced C Programming
ERIC Educational Resources Information Center
Gonzalez, Ruben
2017-01-01
There are many difficulties with learning and teaching programming that can be alleviated with the use of software tools. Most of these tools have focused on the teaching of introductory programming concepts where commonly code fragments or small user programs are run in a sandbox or virtual machine, often in the cloud. These do not permit user…
NASA Technical Reports Server (NTRS)
Hribar, Michelle R.; Frumkin, Michael; Jin, Haoqiang; Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
Over the past decade, high performance computing has evolved rapidly; systems based on commodity microprocessors have been introduced in quick succession from at least seven vendors/families. Porting codes to every new architecture is a difficult problem; in particular, here at NASA, there are many large CFD applications that are very costly to port to new machines by hand. The LCM ("Legacy Code Modernization") Project is the development of an integrated parallelization environment (IPE) which performs the automated mapping of legacy CFD (Fortran) applications to state-of-the-art high performance computers. While most projects to port codes focus on the parallelization of the code, we consider porting to be an iterative process consisting of several steps: 1) code cleanup, 2) serial optimization,3) parallelization, 4) performance monitoring and visualization, 5) intelligent tools for automated tuning using performance prediction and 6) machine specific optimization. The approach for building this parallelization environment is to build the components for each of the steps simultaneously and then integrate them together. The demonstration will exhibit our latest research in building this environment: 1. Parallelizing tools and compiler evaluation. 2. Code cleanup and serial optimization using automated scripts 3. Development of a code generator for performance prediction 4. Automated partitioning 5. Automated insertion of directives. These demonstrations will exhibit the effectiveness of an automated approach for all the steps involved with porting and tuning a legacy code application for a new architecture.
PredicT-ML: a tool for automating machine learning model building with big clinical data.
Luo, Gang
2016-01-01
Predictive modeling is fundamental to transforming large clinical data sets, or "big clinical data," into actionable knowledge for various healthcare applications. Machine learning is a major predictive modeling approach, but two barriers make its use in healthcare challenging. First, a machine learning tool user must choose an algorithm and assign one or more model parameters called hyper-parameters before model training. The algorithm and hyper-parameter values used typically impact model accuracy by over 40 %, but their selection requires many labor-intensive manual iterations that can be difficult even for computer scientists. Second, many clinical attributes are repeatedly recorded over time, requiring temporal aggregation before predictive modeling can be performed. Many labor-intensive manual iterations are required to identify a good pair of aggregation period and operator for each clinical attribute. Both barriers result in time and human resource bottlenecks, and preclude healthcare administrators and researchers from asking a series of what-if questions when probing opportunities to use predictive models to improve outcomes and reduce costs. This paper describes our design of and vision for PredicT-ML (prediction tool using machine learning), a software system that aims to overcome these barriers and automate machine learning model building with big clinical data. The paper presents the detailed design of PredicT-ML. PredicT-ML will open the use of big clinical data to thousands of healthcare administrators and researchers and increase the ability to advance clinical research and improve healthcare.
National Ignition Facility Control and Information System Operational Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C D; Beeler, R G; Bowers, G A
The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint themore » size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.« less
ERIC Educational Resources Information Center
Texas State Technical Coll. System, Waco.
This package consists of course syllabi, an instructor's handbook, and a student laboratory manual for a 1-year vocational training program to prepare students for entry-level employment as automated equipment repair technicians. The program was developed through a modification of the DACUM (Developing a Curriculum) technique. The course syllabi…
1992-10-01
Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit
Automated real-time detection of defects during machining of ceramics
Ellingson, W.A.; Sun, J.
1997-11-18
Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known ``feature masks`` representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified. 14 figs.
Automated real-time detection of defects during machining of ceramics
Ellingson, William A.; Sun, Jiangang
1997-01-01
Apparatus for the automated real-time detection and classification of defects during the machining of ceramic components employs an elastic optical scattering technique using polarized laser light. A ceramic specimen is continuously moved while being machined. Polarized laser light is directed onto the ceramic specimen surface at a fixed position just aft of the machining tool for examination of the newly machined surface. Any foreign material near the location of the laser light on the ceramic specimen is cleared by an air blast. As the specimen is moved, its surface is continuously scanned by the polarized laser light beam to provide a two-dimensional image presented in real-time on a video display unit, with the motion of the ceramic specimen synchronized with the data acquisition speed. By storing known "feature masks" representing various surface and sub-surface defects and comparing measured defects with the stored feature masks, detected defects may be automatically characterized. Using multiple detectors, various types of defects may be detected and classified.
Automated CAD design for sculptured airfoil surfaces
NASA Astrophysics Data System (ADS)
Murphy, S. D.; Yeagley, S. R.
1990-11-01
The design of tightly tolerated sculptured surfaces such as those for airfoils requires a significant design effort in order to machine the tools to create these surfaces. Because of the quantity of numerical data required to describe the airfoil surfaces, a CAD approach is required. Although this approach will result in productivity gains, much larger gains can be achieved by automating the design process. This paper discusses an application which resulted in an eightfold improvement in productivity by automating the design process on the CAD system.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes.
Vogl, Gregory W; Weiss, Brian A; Donmez, M Alkan
2015-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a 'sensor box' to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality.
A Sensor-Based Method for Diagnostics of Machine Tool Linear Axes
Vogl, Gregory W.; Weiss, Brian A.; Donmez, M. Alkan
2017-01-01
A linear axis is a vital subsystem of machine tools, which are vital systems within many manufacturing operations. When installed and operating within a manufacturing facility, a machine tool needs to stay in good condition for parts production. All machine tools degrade during operations, yet knowledge of that degradation is illusive; specifically, accurately detecting degradation of linear axes is a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of their machine tool linear axes without disruptions to production. The Prognostics and Health Management for Smart Manufacturing Systems (PHM4SMS) project at the National Institute of Standards and Technology (NIST) developed a sensor-based method to quickly estimate the performance degradation of linear axes. The multi-sensor-based method uses data collected from a ‘sensor box’ to identify changes in linear and angular errors due to axis degradation; the sensor box contains inclinometers, accelerometers, and rate gyroscopes to capture this data. The sensors are expected to be cost effective with respect to savings in production losses and scrapped parts for a machine tool. Numerical simulations, based on sensor bandwidth and noise specifications, show that changes in straightness and angular errors could be known with acceptable test uncertainty ratios. If a sensor box resides on a machine tool and data is collected periodically, then the degradation of the linear axes can be determined and used for diagnostics and prognostics to help optimize maintenance, production schedules, and ultimately part quality. PMID:28691039
Designing Contestability: Interaction Design, Machine Learning, and Mental Health
Hirsch, Tad; Merced, Kritzia; Narayanan, Shrikanth; Imel, Zac E.; Atkins, David C.
2017-01-01
We describe the design of an automated assessment and training tool for psychotherapists to illustrate challenges with creating interactive machine learning (ML) systems, particularly in contexts where human life, livelihood, and wellbeing are at stake. We explore how existing theories of interaction design and machine learning apply to the psychotherapy context, and identify “contestability” as a new principle for designing systems that evaluate human behavior. Finally, we offer several strategies for making ML systems more accountable to human actors. PMID:28890949
NASA Astrophysics Data System (ADS)
Ali, Salah M.; Hui, K. H.; Hee, L. M.; Salman Leong, M.; Al-Obaidi, M. A.; Ali, Y. H.; Abdelrhman, Ahmed M.
2018-03-01
Acoustic emission (AE) analysis has become a vital tool for initiating the maintenance tasks in many industries. However, the analysis process and interpretation has been found to be highly dependent on the experts. Therefore, an automated monitoring method would be required to reduce the cost and time consumed in the interpretation of AE signal. This paper investigates the application of two of the most common machine learning approaches namely artificial neural network (ANN) and support vector machine (SVM) to automate the diagnosis of valve faults in reciprocating compressor based on AE signal parameters. Since the accuracy is an essential factor in any automated diagnostic system, this paper also provides a comparative study based on predictive performance of ANN and SVM. AE parameters data was acquired from single stage reciprocating air compressor with different operational and valve conditions. ANN and SVM diagnosis models were subsequently devised by combining AE parameters of different conditions. Results demonstrate that ANN and SVM models have the same results in term of prediction accuracy. However, SVM model is recommended to automate diagnose the valve condition in due to the ability of handling a high number of input features with low sampling data sets.
NASA Astrophysics Data System (ADS)
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
Abstracts of AF Materials Laboratory Reports
1975-09-01
NO: TITLE: AUTHOR(S): CONTRACT NO; CONTRACTOR: AFML-TR-73-307 200,397 IMPROVED AUTOMATED TAPE LAYING MACHINE M. Poullos, W. J. Murray, D.L...AUTOMATED IMPROVED AUTOMATED TAPE LAYING MACHINE AUTOMATION AUTOMATION OF COATING PROCESSES FOR GAS TURBINE DLADcS AND VANES 203222/111 203072...IMP90VE0 TAPE LAYING MACHINE IMPP)VED AUTOMATED TAPE LAYING MACHINE A STUDY O^ THE STRESS-STRAIN TEHAVIOR OF GRAPHITE
ERIC Educational Resources Information Center
Ong, S. K.; Mannan, M. A.
2004-01-01
This paper presents a web-based interactive teaching package that provides a comprehensive and conducive yet dynamic and interactive environment for a module on automated machine tools in the Manufacturing Division at the National University of Singapore. The use of Internet technologies in this teaching tool makes it possible to conjure…
Gordon, M. J. C.
2015-01-01
Robin Milner's paper, ‘The use of machines to assist in rigorous proof’, introduces methods for automating mathematical reasoning that are a milestone in the development of computer-assisted theorem proving. His ideas, particularly his theory of tactics, revolutionized the architecture of proof assistants. His methodology for automating rigorous proof soundly, particularly his theory of type polymorphism in programing, led to major contributions to the theory and design of programing languages. His citation for the 1991 ACM A.M. Turing award, the most prestigious award in computer science, credits him with, among other achievements, ‘probably the first theoretically based yet practical tool for machine assisted proof construction’. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750147
CRIE: An automated analyzer for Chinese texts.
Sung, Yao-Ting; Chang, Tao-Hsing; Lin, Wei-Chun; Hsieh, Kuan-Sheng; Chang, Kuo-En
2016-12-01
Textual analysis has been applied to various fields, such as discourse analysis, corpus studies, text leveling, and automated essay evaluation. Several tools have been developed for analyzing texts written in alphabetic languages such as English and Spanish. However, currently there is no tool available for analyzing Chinese-language texts. This article introduces a tool for the automated analysis of simplified and traditional Chinese texts, called the Chinese Readability Index Explorer (CRIE). Composed of four subsystems and incorporating 82 multilevel linguistic features, CRIE is able to conduct the major tasks of segmentation, syntactic parsing, and feature extraction. Furthermore, the integration of linguistic features with machine learning models enables CRIE to provide leveling and diagnostic information for texts in language arts, texts for learning Chinese as a foreign language, and texts with domain knowledge. The usage and validation of the functions provided by CRIE are also introduced.
Methods for Evaluating the Performance and Human Stress-Factors of Percussive Riveting
NASA Astrophysics Data System (ADS)
Ahn, Jonathan Y.
The aerospace industry automates portions of their manufacturing and assembly processes. However, mechanics still remain vital to production, especially in areas where automated machines cannot fit, or have yet to match the quality of human craftsmanship. One such task is percussive riveting. Because percussive riveting is associated with a high risk of injury, these tool must be certified prior to release. The major contribution of this thesis is to develop a test bench capable of percussive riveting for ergonomic evaluation purposes. The major issues investigated are: (i) automate the tool evaluation method to be repeatable; (ii) demonstrate use of displacement and force sensors; and (iii) correlate performance and risk exposure of percussive tools. A test bench equipped with servomotors and pneumatic cylinders to control xyz-position of a rivet gun and bucking bar simultaneously, is used to explore this evaluation approach.
Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S
2016-01-01
High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.
The Classification and Evaluation of Computer-Aided Software Engineering Tools
1990-09-01
International Business Machines Corporation Customizer is a Registered Trademark of Index Technology Corporation Data Analyst is a Registered Trademark of...years, a rapid series of new approaches have been adopted including: information engineering, entity- relationship modeling, automatic code generation...support true information sharing among tools and automated consistency checking. Moreover, the repository must record and manage the relationships and
NASA Astrophysics Data System (ADS)
Tabekina, N. A.; Chepchurov, M. S.; Evtushenko, E. I.; Dmitrievsky, B. S.
2018-05-01
The work solves the problem of automation of machining process namely turning to produce parts having the planes parallel to an axis of rotation of part without using special tools. According to the results, the availability of the equipment of a high speed electromechanical drive to control the operative movements of lathe machine will enable one to get the planes parallel to the part axis. The method of getting planes parallel to the part axis is based on the mathematical model, which is presented as functional dependency between the conveying velocity of the driven element and the time. It describes the operative movements of lathe machine all over the tool path. Using the model of movement of the tool, it has been found that the conveying velocity varies from the maximum to zero value. It will allow one to carry out the reverse of the drive. The scheme of tool placement regarding the workpiece has been proposed for unidirectional movement of the driven element at high conveying velocity. The control method of CNC machines can be used for getting geometrically complex parts on the lathe without using special milling tools.
Crowe, Simon F; Mahony, Kate; Jackson, Martin
2004-08-01
The purpose of the current study was to explore whether performance on standardised neuropsychological measures could predict functional ability with automated machines and services among people with an acquired brain injury (ABI). Participants were 45 individuals who met the criteria for mild, moderate or severe ABI and 15 control participants matched on demographic variables including age- and education. Each participant was required to complete a battery of neuropsychological tests, as well as performing three automated service delivery tasks: a transport automated ticketing machine, an automated teller machine (ATM) and an automated telephone service. The results showed consistently high relationship between the neuropsychological measures, both as single predictors and in combination, and level of competency with the automated machines. Automated machines are part of a relatively new phenomena in service delivery and offer an ecologically valid functional measure of performance that represents a true indication of functional disability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Code of Federal Regulations, 2011 CFR
2011-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Code of Federal Regulations, 2014 CFR
2014-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Code of Federal Regulations, 2012 CFR
2012-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Code of Federal Regulations, 2013 CFR
2013-10-01
... App. U.S.C. 1101 through 1294). Actual Cost of a Vessel or Shipyard Project means, as of any specified... thereafter, for the construction, reconstruction or reconditioning of such Vessel or Shipyard Project. Advanced Shipbuilding Technology means: (1) Numerically controlled machine tools, robots, automated process...
Development of a QFD-based expert system for CNC turning centre selection
NASA Astrophysics Data System (ADS)
Prasad, Kanika; Chakraborty, Shankar
2015-12-01
Computer numerical control (CNC) machine tools are automated devices capable of generating complicated and intricate product shapes in shorter time. Selection of the best CNC machine tool is a critical, complex and time-consuming task due to availability of a wide range of alternatives and conflicting nature of several evaluation criteria. Although, the past researchers had attempted to select the appropriate machining centres using different knowledge-based systems, mathematical models and multi-criteria decision-making methods, none of those approaches has given due importance to the voice of customers. The aforesaid limitation can be overcome using quality function deployment (QFD) technique, which is a systematic approach for integrating customers' needs and designing the product to meet those needs first time and every time. In this paper, the adopted QFD-based methodology helps in selecting CNC turning centres for a manufacturing organization, providing due importance to the voice of customers to meet their requirements. An expert system based on QFD technique is developed in Visual BASIC 6.0 to automate the CNC turning centre selection procedure for different production plans. Three illustrative examples are demonstrated to explain the real-time applicability of the developed expert system.
Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin
2017-01-01
Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization. PMID:28599282
Ross, Elsie Gyang; Shah, Nigam H; Dalman, Ronald L; Nead, Kevin T; Cooke, John P; Leeper, Nicholas J
2016-11-01
A key aspect of the precision medicine effort is the development of informatics tools that can analyze and interpret "big data" sets in an automated and adaptive fashion while providing accurate and actionable clinical information. The aims of this study were to develop machine learning algorithms for the identification of disease and the prognostication of mortality risk and to determine whether such models perform better than classical statistical analyses. Focusing on peripheral artery disease (PAD), patient data were derived from a prospective, observational study of 1755 patients who presented for elective coronary angiography. We employed multiple supervised machine learning algorithms and used diverse clinical, demographic, imaging, and genomic information in a hypothesis-free manner to build models that could identify patients with PAD and predict future mortality. Comparison was made to standard stepwise linear regression models. Our machine-learned models outperformed stepwise logistic regression models both for the identification of patients with PAD (area under the curve, 0.87 vs 0.76, respectively; P = .03) and for the prediction of future mortality (area under the curve, 0.76 vs 0.65, respectively; P = .10). Both machine-learned models were markedly better calibrated than the stepwise logistic regression models, thus providing more accurate disease and mortality risk estimates. Machine learning approaches can produce more accurate disease classification and prediction models. These tools may prove clinically useful for the automated identification of patients with highly morbid diseases for which aggressive risk factor management can improve outcomes. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Zhang, Xin; Yan, Lin-Feng; Hu, Yu-Chuan; Li, Gang; Yang, Yang; Han, Yu; Sun, Ying-Zhi; Liu, Zhi-Cheng; Tian, Qiang; Han, Zi-Yang; Liu, Le-De; Hu, Bin-Quan; Qiu, Zi-Yu; Wang, Wen; Cui, Guang-Bin
2017-07-18
Current machine learning techniques provide the opportunity to develop noninvasive and automated glioma grading tools, by utilizing quantitative parameters derived from multi-modal magnetic resonance imaging (MRI) data. However, the efficacies of different machine learning methods in glioma grading have not been investigated.A comprehensive comparison of varied machine learning methods in differentiating low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as well as WHO grade II, III and IV gliomas based on multi-parametric MRI images was proposed in the current study. The parametric histogram and image texture attributes of 120 glioma patients were extracted from the perfusion, diffusion and permeability parametric maps of preoperative MRI. Then, 25 commonly used machine learning classifiers combined with 8 independent attribute selection methods were applied and evaluated using leave-one-out cross validation (LOOCV) strategy. Besides, the influences of parameter selection on the classifying performances were investigated. We found that support vector machine (SVM) exhibited superior performance to other classifiers. By combining all tumor attributes with synthetic minority over-sampling technique (SMOTE), the highest classifying accuracy of 0.945 or 0.961 for LGG and HGG or grade II, III and IV gliomas was achieved. Application of Recursive Feature Elimination (RFE) attribute selection strategy further improved the classifying accuracies. Besides, the performances of LibSVM, SMO, IBk classifiers were influenced by some key parameters such as kernel type, c, gama, K, etc. SVM is a promising tool in developing automated preoperative glioma grading system, especially when being combined with RFE strategy. Model parameters should be considered in glioma grading model optimization.
Automated Tape Laying Machine for Composite Structures.
The invention comprises an automated tape laying machine, for laying tape on a composite structure. The tape laying machine has a tape laying head...neatly cut. The automated tape laying device utilizes narrow width tape to increase machine flexibility and reduce wastage.
Human performance cognitive-behavioral modeling: a benefit for occupational safety.
Gore, Brian F
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Human performance cognitive-behavioral modeling: a benefit for occupational safety
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Method for automated building of spindle thermal model with use of CAE system
NASA Astrophysics Data System (ADS)
Kamenev, S. V.
2018-03-01
The spindle is one of the most important units of the metal-cutting machine tool. Its performance is critical to minimize the machining error, especially the thermal error. Various methods are applied to improve the thermal behaviour of spindle units. One of the most important methods is mathematical modelling based on the finite element analysis. The most common approach for its realization is the use of CAE systems. This approach, however, is not capable to address the number of important effects that need to be taken into consideration for proper simulation. In the present article, the authors propose the solution to overcome these disadvantages using automated thermal model building for the spindle unit utilizing the CAE system ANSYS.
NASA Technical Reports Server (NTRS)
Shewhart, Mark
1991-01-01
Statistical Process Control (SPC) charts are one of several tools used in quality control. Other tools include flow charts, histograms, cause and effect diagrams, check sheets, Pareto diagrams, graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over time. The purpose of drawing a control chart is to detect any changes in the process signalled by abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division has developed a hybrid machine learning expert system prototype which automates the process of constructing and interpreting control charts.
Atkinson, Jonathan A; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E; Griffiths, Marcus; Wells, Darren M
2017-10-01
Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. © The Authors 2017. Published by Oxford University Press.
Atkinson, Jonathan A.; Lobet, Guillaume; Noll, Manuel; Meyer, Patrick E.; Griffiths, Marcus
2017-01-01
Abstract Genetic analyses of plant root systems require large datasets of extracted architectural traits. To quantify such traits from images of root systems, researchers often have to choose between automated tools (that are prone to error and extract only a limited number of architectural traits) or semi-automated ones (that are highly time consuming). We trained a Random Forest algorithm to infer architectural traits from automatically extracted image descriptors. The training was performed on a subset of the dataset, then applied to its entirety. This strategy allowed us to (i) decrease the image analysis time by 73% and (ii) extract meaningful architectural traits based on image descriptors. We also show that these traits are sufficient to identify the quantitative trait loci that had previously been discovered using a semi-automated method. We have shown that combining semi-automated image analysis with machine learning algorithms has the power to increase the throughput of large-scale root studies. We expect that such an approach will enable the quantification of more complex root systems for genetic studies. We also believe that our approach could be extended to other areas of plant phenotyping. PMID:29020748
Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P; Zelikowsky, Moriel; Navonne, Santiago G; Perona, Pietro; Anderson, David J
2015-09-22
A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body "pose" of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics.
Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features.
Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate
2017-08-01
Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.
Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features
NASA Astrophysics Data System (ADS)
Radüntz, Thea; Scouten, Jon; Hochmuth, Olaf; Meffert, Beate
2017-08-01
Objective. Biological and non-biological artifacts cause severe problems when dealing with electroencephalogram (EEG) recordings. Independent component analysis (ICA) is a widely used method for eliminating various artifacts from recordings. However, evaluating and classifying the calculated independent components (IC) as artifact or EEG is not fully automated at present. Approach. In this study, we propose a new approach for automated artifact elimination, which applies machine learning algorithms to ICA-based features. Main results. We compared the performance of our classifiers with the visual classification results given by experts. The best result with an accuracy rate of 95% was achieved using features obtained by range filtering of the topoplots and IC power spectra combined with an artificial neural network. Significance. Compared with the existing automated solutions, our proposed method is not limited to specific types of artifacts, electrode configurations, or number of EEG channels. The main advantages of the proposed method is that it provides an automatic, reliable, real-time capable, and practical tool, which avoids the need for the time-consuming manual selection of ICs during artifact removal.
Hong, Weizhe; Kennedy, Ann; Burgos-Artizzu, Xavier P.; Zelikowsky, Moriel; Navonne, Santiago G.; Perona, Pietro; Anderson, David J.
2015-01-01
A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body “pose” of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics. PMID:26354123
On Machine Capacitance Dimensional and Surface Profile Measurement System
NASA Technical Reports Server (NTRS)
Resnick, Ralph
1993-01-01
A program was awarded under the Air Force Machine Tool Sensor Improvements Program Research and Development Announcement to develop and demonstrate the use of a Capacitance Sensor System including Capacitive Non-Contact Analog Probe and a Capacitive Array Dimensional Measurement System to check the dimensions of complex shapes and contours on a machine tool or in an automated inspection cell. The manufacturing of complex shapes and contours and the subsequent verification of those manufactured shapes is fundamental and widespread throughout industry. The critical profile of a gear tooth; the overall shape of a graphite EDM electrode; the contour of a turbine blade in a jet engine; and countless other components in varied applications possess complex shapes that require detailed and complex inspection procedures. Current inspection methods for complex shapes and contours are expensive, time-consuming, and labor intensive.
Madec, Morgan; Pecheux, François; Gendrault, Yves; Rosati, Elise; Lallement, Christophe; Haiech, Jacques
2016-10-01
The topic of this article is the development of an open-source automated design framework for synthetic biology, specifically for the design of artificial gene regulatory networks based on a digital approach. In opposition to other tools, GeNeDA is an open-source online software based on existing tools used in microelectronics that have proven their efficiency over the last 30 years. The complete framework is composed of a computation core directly adapted from an Electronic Design Automation tool, input and output interfaces, a library of elementary parts that can be achieved with gene regulatory networks, and an interface with an electrical circuit simulator. Each of these modules is an extension of microelectronics tools and concepts: ODIN II, ABC, the Verilog language, SPICE simulator, and SystemC-AMS. GeNeDA is first validated on a benchmark of several combinatorial circuits. The results highlight the importance of the part library. Then, this framework is used for the design of a sequential circuit including a biological state machine.
Merritt, Stephanie M; Ilgen, Daniel R
2008-04-01
We provide an empirical demonstration of the importance of attending to human user individual differences in examinations of trust and automation use. Past research has generally supported the notions that machine reliability predicts trust in automation, and trust in turn predicts automation use. However, links between user personality and perceptions of the machine with trust in automation have not been empirically established. On our X-ray screening task, 255 students rated trust and made automation use decisions while visually searching for weapons in X-ray images of luggage. We demonstrate that individual differences affect perceptions of machine characteristics when actual machine characteristics are constant, that perceptions account for 52% of trust variance above the effects of actual characteristics, and that perceptions mediate the effects of actual characteristics on trust. Importantly, we also demonstrate that when administered at different times, the same six trust items reflect two types of trust (dispositional trust and history-based trust) and that these two trust constructs are differentially related to other variables. Interactions were found among user characteristics, machine characteristics, and automation use. Our results suggest that increased specificity in the conceptualization and measurement of trust is required, future researchers should assess user perceptions of machine characteristics in addition to actual machine characteristics, and incorporation of user extraversion and propensity to trust machines can increase prediction of automation use decisions. Potential applications include the design of flexible automation training programs tailored to individuals who differ in systematic ways.
Automated Tow Placement Processing and Characterization of Composites
NASA Technical Reports Server (NTRS)
Prabhakaran, R.
2004-01-01
The project had one of the initial objectives as automated tow placement (ATP), in which a robot was used to place a collimated band of pre-impregnated ribbons or a wide preconsolidated tape onto a tool surface. It was proposed to utilize the Automated Tow Placement machine that was already available and to fabricate carbon fiber reinforced PEEK (polyether-ether-ketone) matrix composites. After initial experiments with the fabrication of flat plates, composite cylinders were to be fabricated. Specimens from the fabricated parts were to be tested for mechanical characterization. A second objective was to conduct various types of tests for characterizing composite specimens cured by different fabrication processes.
A low-cost machine vision system for the recognition and sorting of small parts
NASA Astrophysics Data System (ADS)
Barea, Gustavo; Surgenor, Brian W.; Chauhan, Vedang; Joshi, Keyur D.
2018-04-01
An automated machine vision-based system for the recognition and sorting of small parts was designed, assembled and tested. The system was developed to address a need to expose engineering students to the issues of machine vision and assembly automation technology, with readily available and relatively low-cost hardware and software. This paper outlines the design of the system and presents experimental performance results. Three different styles of plastic gears, together with three different styles of defective gears, were used to test the system. A pattern matching tool was used for part classification. Nine experiments were conducted to demonstrate the effects of changing various hardware and software parameters, including: conveyor speed, gear feed rate, classification, and identification score thresholds. It was found that the system could achieve a maximum system accuracy of 95% at a feed rate of 60 parts/min, for a given set of parameter settings. Future work will be looking at the effect of lighting.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Technical Reports Server (NTRS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-01-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
The use of interactive computer vision and robot hand controllers for enhancing manufacturing safety
NASA Astrophysics Data System (ADS)
Marzwell, Neville I.; Jacobus, Charles J.; Peurach, Thomas M.; Mitchell, Brian T.
1994-02-01
Current available robotic systems provide limited support for CAD-based model-driven visualization, sensing algorithm development and integration, and automated graphical planning systems. This paper describes ongoing work which provides the functionality necessary to apply advanced robotics to automated manufacturing and assembly operations. An interface has been built which incorporates 6-DOF tactile manipulation, displays for three dimensional graphical models, and automated tracking functions which depend on automated machine vision. A set of tools for single and multiple focal plane sensor image processing and understanding has been demonstrated which utilizes object recognition models. The resulting tool will enable sensing and planning from computationally simple graphical objects. A synergistic interplay between human and operator vision is created from programmable feedback received from the controller. This approach can be used as the basis for implementing enhanced safety in automated robotics manufacturing, assembly, repair and inspection tasks in both ground and space applications. Thus, an interactive capability has been developed to match the modeled environment to the real task environment for safe and predictable task execution.
NASA Astrophysics Data System (ADS)
Shprits, Y.; Zhelavskaya, I. S.; Kellerman, A. C.; Spasojevic, M.; Kondrashov, D. A.; Ghil, M.; Aseev, N.; Castillo Tibocha, A. M.; Cervantes Villa, J. S.; Kletzing, C.; Kurth, W. S.
2017-12-01
Increasing volume of satellite measurements requires deployment of new tools that can utilize such vast amount of data. Satellite measurements are usually limited to a single location in space, which complicates the data analysis geared towards reproducing the global state of the space environment. In this study we show how measurements can be combined by means of data assimilation and how machine learning can help analyze large amounts of data and can help develop global models that are trained on single point measurement. Data Assimilation: Manual analysis of the satellite measurements is a challenging task, while automated analysis is complicated by the fact that measurements are given at various locations in space, have different instrumental errors, and often vary by orders of magnitude. We show results of the long term reanalysis of radiation belt measurements along with fully operational real-time predictions using data assimilative VERB code. Machine Learning: We present application of the machine learning tools for the analysis of NASA Van Allen Probes upper-hybrid frequency measurements. Using the obtained data set we train a new global predictive neural network. The results for the Van Allen Probes based neural network are compared with historical IMAGE satellite observations. We also show examples of predictions of geomagnetic indices using neural networks. Combination of machine learning and data assimilation: We discuss how data assimilation tools and machine learning tools can be combine so that physics-based insight into the dynamics of the particular system can be combined with empirical knowledge of it's non-linear behavior.
Personal manufacturing systems
NASA Astrophysics Data System (ADS)
Bailey, P.
1992-04-01
Personal Manufacturing Systems are the missing link in the automation of the design-to- manufacture process. A PMS will act as a CAD peripheral, closing the loop around the designer enabling him to directly produce models, short production runs or soft tooling with as little fuss as he might otherwise plot a drawing. Whereas conventional 5-axis CNC machines are based on orthogonal axes and simple incremental movements, the PMS is based on a geodetic structure and complex co-ordinated 'spline' movements. The software employs a novel 3D pixel technique for give itself 'spatial awareness' and an expert system to determine the optimum machining conditions. A completely automatic machining strategy can then be determined.
An ontology-driven, diagnostic modeling system.
Haug, Peter J; Ferraro, Jeffrey P; Holmen, John; Wu, Xinzi; Mynam, Kumar; Ebert, Matthew; Dean, Nathan; Jones, Jason
2013-06-01
To present a system that uses knowledge stored in a medical ontology to automate the development of diagnostic decision support systems. To illustrate its function through an example focused on the development of a tool for diagnosing pneumonia. We developed a system that automates the creation of diagnostic decision-support applications. It relies on a medical ontology to direct the acquisition of clinic data from a clinical data warehouse and uses an automated analytic system to apply a sequence of machine learning algorithms that create applications for diagnostic screening. We refer to this system as the ontology-driven diagnostic modeling system (ODMS). We tested this system using samples of patient data collected in Salt Lake City emergency rooms and stored in Intermountain Healthcare's enterprise data warehouse. The system was used in the preliminary development steps of a tool to identify patients with pneumonia in the emergency department. This tool was compared with a manually created diagnostic tool derived from a curated dataset. The manually created tool is currently in clinical use. The automatically created tool had an area under the receiver operating characteristic curve of 0.920 (95% CI 0.916 to 0.924), compared with 0.944 (95% CI 0.942 to 0.947) for the manually created tool. Initial testing of the ODMS demonstrates promising accuracy for the highly automated results and illustrates the route to model improvement. The use of medical knowledge, embedded in ontologies, to direct the initial development of diagnostic computing systems appears feasible.
Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter
2017-06-28
High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.
Machine learning plus optical flow: a simple and sensitive method to detect cardioactive drugs
NASA Astrophysics Data System (ADS)
Lee, Eugene K.; Kurokawa, Yosuke K.; Tu, Robin; George, Steven C.; Khine, Michelle
2015-07-01
Current preclinical screening methods do not adequately detect cardiotoxicity. Using human induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs), more physiologically relevant preclinical or patient-specific screening to detect potential cardiotoxic effects of drug candidates may be possible. However, one of the persistent challenges for developing a high-throughput drug screening platform using iPS-CMs is the need to develop a simple and reliable method to measure key electrophysiological and contractile parameters. To address this need, we have developed a platform that combines machine learning paired with brightfield optical flow as a simple and robust tool that can automate the detection of cardiomyocyte drug effects. Using three cardioactive drugs of different mechanisms, including those with primarily electrophysiological effects, we demonstrate the general applicability of this screening method to detect subtle changes in cardiomyocyte contraction. Requiring only brightfield images of cardiomyocyte contractions, we detect changes in cardiomyocyte contraction comparable to - and even superior to - fluorescence readouts. This automated method serves as a widely applicable screening tool to characterize the effects of drugs on cardiomyocyte function.
Automated structural classification of lipids by machine learning.
Taylor, Ryan; Miller, Ryan H; Miller, Ryan D; Porter, Michael; Dalgleish, James; Prince, John T
2015-03-01
Modern lipidomics is largely dependent upon structural ontologies because of the great diversity exhibited in the lipidome, but no automated lipid classification exists to facilitate this partitioning. The size of the putative lipidome far exceeds the number currently classified, despite a decade of work. Automated classification would benefit ongoing classification efforts by decreasing the time needed and increasing the accuracy of classification while providing classifications for mass spectral identification algorithms. We introduce a tool that automates classification into the LIPID MAPS ontology of known lipids with >95% accuracy and novel lipids with 63% accuracy. The classification is based upon simple chemical characteristics and modern machine learning algorithms. The decision trees produced are intelligible and can be used to clarify implicit assumptions about the current LIPID MAPS classification scheme. These characteristics and decision trees are made available to facilitate alternative implementations. We also discovered many hundreds of lipids that are currently misclassified in the LIPID MAPS database, strongly underscoring the need for automated classification. Source code and chemical characteristic lists as SMARTS search strings are available under an open-source license at https://www.github.com/princelab/lipid_classifier. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darby, John L.
LinguisticBelief is a Java computer code that evaluates combinations of linguistic variables using an approximate reasoning rule base. Each variable is comprised of fuzzy sets, and a rule base describes the reasoning on combinations of variables fuzzy sets. Uncertainty is considered and propagated through the rule base using the belief/plausibility measure. The mathematics of fuzzy sets, approximate reasoning, and belief/ plausibility are complex. Without an automated tool, this complexity precludes their application to all but the simplest of problems. LinguisticBelief automates the use of these techniques, allowing complex problems to be evaluated easily. LinguisticBelief can be used free of chargemore » on any Windows XP machine. This report documents the use and structure of the LinguisticBelief code, and the deployment package for installation client machines.« less
12 CFR 205.16 - Disclosures at automated teller machines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Disclosures at automated teller machines. 205.16 Section 205.16 Banks and Banking FEDERAL RESERVE SYSTEM BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM ELECTRONIC FUND TRANSFERS (REGULATION E) § 205.16 Disclosures at automated teller machines. (a...
The Historical Evolution of Educational Software.
ERIC Educational Resources Information Center
Troutner, Joanne
This paper establishes the roots of computers and automated teaching in the field of psychology and describes Dr. S. L. Pressey's presentation of the teaching machine; B. F. Skinner's teaching machine; Meyer's steps in composing a program for the automated teaching machine; IBM's beginning research on automated courses and the development of the…
NASA Astrophysics Data System (ADS)
Grinyok, A.; Boychuk, I.; Perelygin, D.; Dantsevich, I.
2018-03-01
A complex method of the simulation and production design of open rotor propellers was studied. An end-to-end diagram was proposed for the evaluating, designing and experimental testing the optimal geometry of the propeller surface, for the machine control path generation as well as for simulating the cutting zone force condition and its relationship with the treatment accuracy which was defined by the propeller elastic deformation. The simulation data provided the realization of the combined automated path control of the cutting tool.
NASA Technical Reports Server (NTRS)
French, Jennifer R.
1995-01-01
As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.
Performance Measurement, Visualization and Modeling of Parallel and Distributed Programs
NASA Technical Reports Server (NTRS)
Yan, Jerry C.; Sarukkai, Sekhar R.; Mehra, Pankaj; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
This paper presents a methodology for debugging the performance of message-passing programs on both tightly coupled and loosely coupled distributed-memory machines. The AIMS (Automated Instrumentation and Monitoring System) toolkit, a suite of software tools for measurement and analysis of performance, is introduced and its application illustrated using several benchmark programs drawn from the field of computational fluid dynamics. AIMS includes (i) Xinstrument, a powerful source-code instrumentor, which supports both Fortran77 and C as well as a number of different message-passing libraries including Intel's NX Thinking Machines' CMMD, and PVM; (ii) Monitor, a library of timestamping and trace -collection routines that run on supercomputers (such as Intel's iPSC/860, Delta, and Paragon and Thinking Machines' CM5) as well as on networks of workstations (including Convex Cluster and SparcStations connected by a LAN); (iii) Visualization Kernel, a trace-animation facility that supports source-code clickback, simultaneous visualization of computation and communication patterns, as well as analysis of data movements; (iv) Statistics Kernel, an advanced profiling facility, that associates a variety of performance data with various syntactic components of a parallel program; (v) Index Kernel, a diagnostic tool that helps pinpoint performance bottlenecks through the use of abstract indices; (vi) Modeling Kernel, a facility for automated modeling of message-passing programs that supports both simulation -based and analytical approaches to performance prediction and scalability analysis; (vii) Intrusion Compensator, a utility for recovering true performance from observed performance by removing the overheads of monitoring and their effects on the communication pattern of the program; and (viii) Compatibility Tools, that convert AIMS-generated traces into formats used by other performance-visualization tools, such as ParaGraph, Pablo, and certain AVS/Explorer modules.
Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian
2011-08-30
Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.
Learning to recognize rat social behavior: Novel dataset and cross-dataset application.
Lorbach, Malte; Kyriakou, Elisavet I; Poppe, Ronald; van Dam, Elsbeth A; Noldus, Lucas P J J; Veltkamp, Remco C
2018-04-15
Social behavior is an important aspect of rodent models. Automated measuring tools that make use of video analysis and machine learning are an increasingly attractive alternative to manual annotation. Because machine learning-based methods need to be trained, it is important that they are validated using data from different experiment settings. To develop and validate automated measuring tools, there is a need for annotated rodent interaction datasets. Currently, the availability of such datasets is limited to two mouse datasets. We introduce the first, publicly available rat social interaction dataset, RatSI. We demonstrate the practical value of the novel dataset by using it as the training set for a rat interaction recognition method. We show that behavior variations induced by the experiment setting can lead to reduced performance, which illustrates the importance of cross-dataset validation. Consequently, we add a simple adaptation step to our method and improve the recognition performance. Most existing methods are trained and evaluated in one experimental setting, which limits the predictive power of the evaluation to that particular setting. We demonstrate that cross-dataset experiments provide more insight in the performance of classifiers. With our novel, public dataset we encourage the development and validation of automated recognition methods. We are convinced that cross-dataset validation enhances our understanding of rodent interactions and facilitates the development of more sophisticated recognition methods. Combining them with adaptation techniques may enable us to apply automated recognition methods to a variety of animals and experiment settings. Copyright © 2017 Elsevier B.V. All rights reserved.
THE RABIT: A RAPID AUTOMATED BIODOSIMETRY TOOL FOR RADIOLOGICAL TRIAGE
Garty, Guy; Chen, Youhua; Salerno, Alessio; Turner, Helen; Zhang, Jian; Lyulko, Oleksandra; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y. Lawrence; Amundson, Sally A.; Brenner, David J.
2010-01-01
In response to the recognized need for high throughput biodosimetry methods for use after large scale radiological events, a logical approach is complete automation of standard biodosimetric assays that are currently performed manually. We describe progress to date on the RABIT (Rapid Automated BIodosimetry Tool), designed to score micronuclei or γ-H2AX fluorescence in lymphocytes derived from a single drop of blood from a fingerstick. The RABIT system is designed to be completely automated, from the input of the capillary blood sample into the machine, to the output of a dose estimate. Improvements in throughput are achieved through use of a single drop of blood, optimization of the biological protocols for in-situ analysis in multi-well plates, implementation of robotic plate and liquid handling, and new developments in high-speed imaging. Automating well-established bioassays represents a promising approach to high-throughput radiation biodosimetry, both because high throughputs can be achieved, but also because the time to deployment is potentially much shorter than for a new biological assay. Here we describe the development of each of the individual modules of the RABIT system, and show preliminary data from key modules. Ongoing is system integration, followed by calibration and validation. PMID:20065685
NASA Astrophysics Data System (ADS)
Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen
2011-03-01
RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.
A tool for developing an automatic insect identification system based on wing outlines
Yang, He-Ping; Ma, Chun-Sen; Wen, Hui; Zhan, Qing-Bin; Wang, Xin-Li
2015-01-01
For some insect groups, wing outline is an important character for species identification. We have constructed a program as the integral part of an automated system to identify insects based on wing outlines (DAIIS). This program includes two main functions: (1) outline digitization and Elliptic Fourier transformation and (2) classifier model training by pattern recognition of support vector machines and model validation. To demonstrate the utility of this program, a sample of 120 owlflies (Neuroptera: Ascalaphidae) was split into training and validation sets. After training, the sample was sorted into seven species using this tool. In five repeated experiments, the mean accuracy for identification of each species ranged from 90% to 98%. The accuracy increased to 99% when the samples were first divided into two groups based on features of their compound eyes. DAIIS can therefore be a useful tool for developing a system of automated insect identification. PMID:26251292
Automation and robotics human performance
NASA Technical Reports Server (NTRS)
Mah, Robert W.
1990-01-01
The scope of this report is limited to the following: (1) assessing the feasibility of the assumptions for crew productivity during the intra-vehicular activities and extra-vehicular activities; (2) estimating the appropriate level of automation and robotics to accomplish balanced man-machine, cost-effective operations in space; (3) identifying areas where conceptually different approaches to the use of people and machines can leverage the benefits of the scenarios; and (4) recommending modifications to scenarios or developing new scenarios that will improve the expected benefits. The FY89 special assessments are grouped into the five categories shown in the report. The high level system analyses for Automation & Robotics (A&R) and Human Performance (HP) were performed under the Case Studies Technology Assessment category, whereas the detailed analyses for the critical systems and high leverage development areas were performed under the appropriate operations categories (In-Space Vehicle Operations or Planetary Surface Operations). The analysis activities planned for the Science Operations technology areas were deferred to FY90 studies. The remaining activities such as analytic tool development, graphics/video demonstrations and intelligent communicating systems software architecture were performed under the Simulation & Validations category.
Introducing Explorer of Taxon Concepts with a case study on spider measurement matrix building.
Cui, Hong; Xu, Dongfang; Chong, Steven S; Ramirez, Martin; Rodenhausen, Thomas; Macklin, James A; Ludäscher, Bertram; Morris, Robert A; Soto, Eduardo M; Koch, Nicolás Mongiardino
2016-11-17
Taxonomic descriptions are traditionally composed in natural language and published in a format that cannot be directly used by computers. The Exploring Taxon Concepts (ETC) project has been developing a set of web-based software tools that convert morphological descriptions published in telegraphic style to character data that can be reused and repurposed. This paper introduces the first semi-automated pipeline, to our knowledge, that converts morphological descriptions into taxon-character matrices to support systematics and evolutionary biology research. We then demonstrate and evaluate the use of the ETC Input Creation - Text Capture - Matrix Generation pipeline to generate body part measurement matrices from a set of 188 spider morphological descriptions and report the findings. From the given set of spider taxonomic publications, two versions of input (original and normalized) were generated and used by the ETC Text Capture and ETC Matrix Generation tools. The tools produced two corresponding spider body part measurement matrices, and the matrix from the normalized input was found to be much more similar to a gold standard matrix hand-curated by the scientist co-authors. Special conventions utilized in the original descriptions (e.g., the omission of measurement units) were attributed to the lower performance of using the original input. The results show that simple normalization of the description text greatly increased the quality of the machine-generated matrix and reduced edit effort. The machine-generated matrix also helped identify issues in the gold standard matrix. ETC Text Capture and ETC Matrix Generation are low-barrier and effective tools for extracting measurement values from spider taxonomic descriptions and are more effective when the descriptions are self-contained. Special conventions that make the description text less self-contained challenge automated extraction of data from biodiversity descriptions and hinder the automated reuse of the published knowledge. The tools will be updated to support new requirements revealed in this case study.
High performance cutting of aircraft and turbine components
NASA Astrophysics Data System (ADS)
Krämer, A.; Lung, D.; Klocke, F.
2012-04-01
Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.
Moreno-Duarte, Ingrid; Montenegro, Julio; Balonov, Konstantin; Schumann, Roman
2017-04-15
Most modern anesthesia workstations provide automated checkout, which indicates the readiness of the anesthesia machine. In this case report, an anesthesia machine passed the automated machine checkout. Minutes after the induction of general anesthesia, we observed a mismatch between the selected and delivered tidal volumes in the volume auto flow mode with increased inspiratory resistance during manual ventilation. Endotracheal tube kinking, circuit obstruction, leaks, and patient-related factors were ruled out. Further investigation revealed a broken internal insert within the CO2 absorbent canister that allowed absorbent granules to cause a partial obstruction to inspiratory and expiratory flow triggering contradictory alarms. We concluded that even when the automated machine checkout indicates machine readiness, unforeseen equipment failure due to unexpected events can occur and require providers to remain vigilant.
Machine assisted histogram classification
NASA Astrophysics Data System (ADS)
Benyó, B.; Gaspar, C.; Somogyi, P.
2010-04-01
LHCb is one of the four major experiments under completion at the Large Hadron Collider (LHC). Monitoring the quality of the acquired data is important, because it allows the verification of the detector performance. Anomalies, such as missing values or unexpected distributions can be indicators of a malfunctioning detector, resulting in poor data quality. Spotting faulty or ageing components can be either done visually using instruments, such as the LHCb Histogram Presenter, or with the help of automated tools. In order to assist detector experts in handling the vast monitoring information resulting from the sheer size of the detector, we propose a graph based clustering tool combined with machine learning algorithm and demonstrate its use by processing histograms representing 2D hitmaps events. We prove the concept by detecting ion feedback events in the LHCb experiment's RICH subdetector.
CIM at GE's factory of the future
NASA Astrophysics Data System (ADS)
Waldman, H.
Functional features of a highly automated aircraft component batch processing factory are described. The system has processing, working, and methodology components. A rotating parts operation installed 20 yr ago features a high density of numerically controlled machines, and is connected to a hierarchical network of data communications and apparatus for moving the rotating parts and tools of engines. Designs produced at one location in the country are sent by telephone link to other sites for development of manufacturing plans, tooling, numerical control programs, and process instructions for the rotating parts. Direct numerical control is implemented at the work stations, which have instructions stored on tape for back-up in case the host computer goes down. Each machine is automatically monitored at 48 points and notice of failure can originate from any point in the system.
Design Methodology for Automated Construction Machines
1987-12-11
along with the design of a pair of machines which automate framework installation.-,, 20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY... Development Assistant Professor of Civil Engineering and Laura A . Demsetz, David H. Levy, Bruce Schena Graduate Research Assistants December 11, 1987 U.S...are discussed along with the design of a pair of machines which automate framework installation. Preliminary analysis and testing indicate that these
Performance Evaluation of the UT Automated Road Maintenance Machine
DOT National Transportation Integrated Search
1997-10-01
This final report focuses mainly on evaluating the overall performance of The University of Texas' Automated Road Maintenance Machine (ARMM). It was concluded that the introduction of automated methods to the pavement crack-sealing process will impro...
2011-01-01
Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105
Gandola, Emanuele; Antonioli, Manuela; Traficante, Alessio; Franceschini, Simone; Scardi, Michele; Congestri, Roberta
2016-05-01
Toxigenic cyanobacteria are one of the main health risks associated with water resources worldwide, as their toxins can affect humans and fauna exposed via drinking water, aquaculture and recreation. Microscopy monitoring of cyanobacteria in water bodies and massive growth systems is a routine operation for cell abundance and growth estimation. Here we present ACQUA (Automated Cyanobacterial Quantification Algorithm), a new fully automated image analysis method designed for filamentous genera in Bright field microscopy. A pre-processing algorithm has been developed to highlight filaments of interest from background signals due to other phytoplankton and dust. A spline-fitting algorithm has been designed to recombine interrupted and crossing filaments in order to perform accurate morphometric analysis and to extract the surface pattern information of highlighted objects. In addition, 17 specific pattern indicators have been developed and used as input data for a machine-learning algorithm dedicated to the recognition between five widespread toxic or potentially toxic filamentous genera in freshwater: Aphanizomenon, Cylindrospermopsis, Dolichospermum, Limnothrix and Planktothrix. The method was validated using freshwater samples from three Italian volcanic lakes comparing automated vs. manual results. ACQUA proved to be a fast and accurate tool to rapidly assess freshwater quality and to characterize cyanobacterial assemblages in aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.
Using Neural Networks to Classify Digitized Images of Galaxies
NASA Astrophysics Data System (ADS)
Goderya, S. N.; McGuire, P. C.
2000-12-01
Automated classification of Galaxies into Hubble types is of paramount importance to study the large scale structure of the Universe, particularly as survey projects like the Sloan Digital Sky Survey complete their data acquisition of one million galaxies. At present it is not possible to find robust and efficient artificial intelligence based galaxy classifiers. In this study we will summarize progress made in the development of automated galaxy classifiers using neural networks as machine learning tools. We explore the Bayesian linear algorithm, the higher order probabilistic network, the multilayer perceptron neural network and Support Vector Machine Classifier. The performance of any machine classifier is dependant on the quality of the parameters that characterize the different groups of galaxies. Our effort is to develop geometric and invariant moment based parameters as input to the machine classifiers instead of the raw pixel data. Such an approach reduces the dimensionality of the classifier considerably, and removes the effects of scaling and rotation, and makes it easier to solve for the unknown parameters in the galaxy classifier. To judge the quality of training and classification we develop the concept of Mathews coefficients for the galaxy classification community. Mathews coefficients are single numbers that quantify classifier performance even with unequal prior probabilities of the classes.
Specimen coordinate automated measuring machine/fiducial automated measuring machine
Hedglen, Robert E.; Jacket, Howard S.; Schwartz, Allan I.
1991-01-01
The Specimen coordinate Automated Measuring Machine (SCAMM) and the Fiducial Automated Measuring Machine (FAMM) is a computer controlled metrology system capable of measuring length, width, and thickness, and of locating fiducial marks. SCAMM and FAMM have many similarities in their designs, and they can be converted from one to the other without taking them out of the hot cell. Both have means for: supporting a plurality of samples and a standard; controlling the movement of the samples in the +/- X and Y directions; determining the coordinates of the sample; compensating for temperature effects; and verifying the accuracy of the measurements and repeating as necessary. SCAMM and FAMM are designed to be used in hot cells.
AUTOMATING ASSET KNOWLEDGE WITH MTCONNECT.
Venkatesh, Sid; Ly, Sidney; Manning, Martin; Michaloski, John; Proctor, Fred
2016-01-01
In order to maximize assets, manufacturers should use real-time knowledge garnered from ongoing and continuous collection and evaluation of factory-floor machine status data. In discrete parts manufacturing, factory machine monitoring has been difficult, due primarily to closed, proprietary automation equipment that make integration difficult. Recently, there has been a push in applying the data acquisition concepts of MTConnect to the real-time acquisition of machine status data. MTConnect is an open, free specification aimed at overcoming the "Islands of Automation" dilemma on the shop floor. With automated asset analysis, manufacturers can improve production to become lean, efficient, and effective. The focus of this paper will be on the deployment of MTConnect to collect real-time machine status to automate asset management. In addition, we will leverage the ISO 22400 standard, which defines an asset and quantifies asset performance metrics. In conjunction with these goals, the deployment of MTConnect in a large aerospace manufacturing facility will be studied with emphasis on asset management and understanding the impact of machine Overall Equipment Effectiveness (OEE) on manufacturing.
An intelligent CNC machine control system architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.J.; Loucks, C.S.
1996-10-01
Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less
Modeling Stochastic Kinetics of Molecular Machines at Multiple Levels: From Molecules to Modules
Chowdhury, Debashish
2013-01-01
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. PMID:23746505
ERIC Educational Resources Information Center
New Jersey State Dept. of Education, Trenton. Div. of Vocational Education.
This annotated bibliography includes about 400 books which are suitable for use in elementary industrial arts. These books, available in the state library system of New Jersey, are organized under 50 topics such as: (1) Automation, (2) Graphic Arts, (3) Machines, (4) Space Travel, and (5) Tools and Measuring. Most of the citations are children's…
USSR Report: Machine Tools and Metalworking Equipment.
1986-01-23
between satellite stop and the camshaft of the programer unit. The line has 23 positions including 12 automatic ones. Specification of line Number...technological, processes, automated research, etc.) are as follows.: a monochannel based on a shared trunk line, ring, star and tree (polychannel...line or ring networks based on decentralized control of data exchange between subscribers are very robust. A tree -form network has star structure
Software Process Automation: Interviews, Survey, and Workshop Results.
1997-10-01
International Business Machines Coproration Foundation is a pending trademark of Foundation Software , Inc. FrameMaker is a registered trademark of Adobe, Inc...amount of technology Integration of technologies, con- flicting points of view between adopting org. and consultants E CM FrameMaker Labor/resource...Weaver FrameMaker , CM System Integration of CM tool L InConcert Cadre, AutoPlan, DBStar Ineffective process integration, poor training, time
Sled Control and Safety System
NASA Technical Reports Server (NTRS)
Forrest, L. J.
1982-01-01
Computerized system for controlling motion of linear-track accelerator applied to other automated equipment, such as numerically-controlled machine tools and robot manipulators on assembly lines. System controls motions of sled with sine-wave signal created digitally by microprocessor. Dynamic parameters of sled motion are monitored so sled may be stopped safely if malfunction occurs. Sled is capable of sinusoidal accelerations up to 0.5 g with 125-kg load.
DOT National Transportation Integrated Search
1974-08-01
Volume 3 describes the methodology for man-machine task allocation. It contains a description of man and machine performance capabilities and an explanation of the methodology employed to allocate tasks to human or automated resources. It also presen...
Automated classification of cell morphology by coherence-controlled holographic microscopy
NASA Astrophysics Data System (ADS)
Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim
2017-08-01
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.
Automated classification of cell morphology by coherence-controlled holographic microscopy.
Strbkova, Lenka; Zicha, Daniel; Vesely, Pavel; Chmelik, Radim
2017-08-01
In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Quinn, Mark Kenneth; Spinosa, Emanuele; Roberts, David A
2017-07-25
Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access.
Spinosa, Emanuele; Roberts, David A.
2017-01-01
Measurements of pressure-sensitive paint (PSP) have been performed using new or non-scientific imaging technology based on machine vision tools. Machine vision camera systems are typically used for automated inspection or process monitoring. Such devices offer the benefits of lower cost and reduced size compared with typically scientific-grade cameras; however, their optical qualities and suitability have yet to be determined. This research intends to show relevant imaging characteristics and also show the applicability of such imaging technology for PSP. Details of camera performance are benchmarked and compared to standard scientific imaging equipment and subsequent PSP tests are conducted using a static calibration chamber. The findings demonstrate that machine vision technology can be used for PSP measurements, opening up the possibility of performing measurements on-board small-scale model such as those used for wind tunnel testing or measurements in confined spaces with limited optical access. PMID:28757553
Translation: Aids, Robots, and Automation.
ERIC Educational Resources Information Center
Andreyewsky, Alexander
1981-01-01
Examines electronic aids to translation both as ways to automate it and as an approach to solve problems resulting from shortage of qualified translators. Describes the limitations of robotic MT (Machine Translation) systems, viewing MAT (Machine-Aided Translation) as the only practical solution and the best vehicle for further automation. (MES)
Machine intelligence and autonomy for aerospace systems
NASA Technical Reports Server (NTRS)
Heer, Ewald (Editor); Lum, Henry (Editor)
1988-01-01
The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.
Industrial Arts Curriculum Guide for Automated Machining in Metals Technology.
ERIC Educational Resources Information Center
1985
This curriculum guide is designed to be used for creating programs in automated machining education in Connecticut. The first sections of the guide are introductory, explaining the importance of computer-numerically controlled machines, describing the industrial arts scope and sequence for kindergarten through adult levels, describing the…
AstroML: Python-powered Machine Learning for Astronomy
NASA Astrophysics Data System (ADS)
Vander Plas, Jake; Connolly, A. J.; Ivezic, Z.
2014-01-01
As astronomical data sets grow in size and complexity, automated machine learning and data mining methods are becoming an increasingly fundamental component of research in the field. The astroML project (http://astroML.org) provides a common repository for practical examples of the data mining and machine learning tools used and developed by astronomical researchers, written in Python. The astroML module contains a host of general-purpose data analysis and machine learning routines, loaders for openly-available astronomical datasets, and fast implementations of specific computational methods often used in astronomy and astrophysics. The associated website features hundreds of examples of these routines being used for analysis of real astronomical datasets, while the associated textbook provides a curriculum resource for graduate-level courses focusing on practical statistics, machine learning, and data mining approaches within Astronomical research. This poster will highlight several of the more powerful and unique examples of analysis performed with astroML, all of which can be reproduced in their entirety on any computer with the proper packages installed.
Automated analysis of high-content microscopy data with deep learning.
Kraus, Oren Z; Grys, Ben T; Ba, Jimmy; Chong, Yolanda; Frey, Brendan J; Boone, Charles; Andrews, Brenda J
2017-04-18
Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Automation and robotics technology for intelligent mining systems
NASA Technical Reports Server (NTRS)
Welsh, Jeffrey H.
1989-01-01
The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.
Compact Microscope Imaging System Developed
NASA Technical Reports Server (NTRS)
McDowell, Mark
2001-01-01
The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
Worldwide Report: Telecommunications Policy, Research and Development, No. 285.
1983-09-02
Computers and Automation Technology Earth Sciences Electronics and Electrical Engineering Engineering and Equipment Machine Tools and Metal ...the De - partment of Communications had said the project, was \\ViableL ^woüld ’ not ’require^ continuing" federal govern- ment support and would...34The second is that the satel- lite will offer genuine com- plementary services rather than seek to engage in de - structive and damaging com
USSR Report Machine Tools and Metalworking Equipment.
1986-04-22
directors decided to teach the Bulat a new trade. This generator is now used to strengthen high-speed cutting mills by hardening them in a medium of...modules (GPM) and flexible production complexes ( GPK ). The flexible automated line is usually used for mass production of components. Here the...of programmable coordinates (x^ithout grip) 5 4 Method of programming teaching Memory capacity of robot system, points 300 Positioning error, mm
NASA Astrophysics Data System (ADS)
Nieten, Joseph L.; Burke, Roger
1993-03-01
The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.
Machine-Aided Indexing of Technical Literature
ERIC Educational Resources Information Center
Klingbiel, Paul H.
1973-01-01
To index at the Defense Documentation Center (DDC), an automated system must choose single words or phrases rapidly and economically. Automation of DDC's indexing has been machine-aided from its inception. A machine-aided indexing system is described that indexes one million words of text per hour of CPU time. (22 references) (Author/SJ)
NASA Tech Briefs, December 2006
NASA Technical Reports Server (NTRS)
2006-01-01
Topic include: Inferring Gear Damage from Oil-Debris and Vibration Data; Forecasting of Storm-Surge Floods Using ADCIRC and Optimized DEMs; User Interactive Software for Analysis of Human Physiological Data; Representation of Serendipitous Scientific Data; Automatic Locking of Laser Frequency to an Absorption Peak; Self-Passivating Lithium/Solid Electrolyte/Iodine Cells; Four-Quadrant Analog Multipliers Using G4-FETs; Noise Source for Calibrating a Microwave Polarimeter; Hybrid Deployable Foam Antennas and Reflectors; Coating MCPs with AlN and GaN; Domed, 40-cm-Diameter Ion Optics for an Ion Thruster; Gesture-Controlled Interfaces for Self-Service Machines; Dynamically Alterable Arrays of Polymorphic Data Types; Identifying Trends in Deep Space Network Monitor Data; Predicting Lifetime of a Thermomechanically Loaded Component; Partial Automation of Requirements Tracing; Automated Synthesis of Architecture of Avionic Systems; SSRL Emergency Response Shore Tool; Wholly Aromatic Ether-Imides as n-Type Semiconductors; Carbon-Nanotube-Carpet Heat-Transfer Pads; Pulse-Flow Microencapsulation System; Automated Low-Gravitation Facility Would Make Optical Fibers; Alignment Cube with One Diffractive Face; Graphite Composite Booms with Integral Hinges; Tool for Sampling Permafrost on a Remote Planet; and Special Semaphore Scheme for UHF Spacecraft Communications.
Beller, Elaine; Clark, Justin; Tsafnat, Guy; Adams, Clive; Diehl, Heinz; Lund, Hans; Ouzzani, Mourad; Thayer, Kristina; Thomas, James; Turner, Tari; Xia, Jun; Robinson, Karen; Glasziou, Paul
2018-05-19
Systematic reviews (SR) are vital to health care, but have become complicated and time-consuming, due to the rapid expansion of evidence to be synthesised. Fortunately, many tasks of systematic reviews have the potential to be automated or may be assisted by automation. Recent advances in natural language processing, text mining and machine learning have produced new algorithms that can accurately mimic human endeavour in systematic review activity, faster and more cheaply. Automation tools need to be able to work together, to exchange data and results. Therefore, we initiated the International Collaboration for the Automation of Systematic Reviews (ICASR), to successfully put all the parts of automation of systematic review production together. The first meeting was held in Vienna in October 2015. We established a set of principles to enable tools to be developed and integrated into toolkits.This paper sets out the principles devised at that meeting, which cover the need for improvement in efficiency of SR tasks, automation across the spectrum of SR tasks, continuous improvement, adherence to high quality standards, flexibility of use and combining components, the need for a collaboration and varied skills, the desire for open source, shared code and evaluation, and a requirement for replicability through rigorous and open evaluation.Automation has a great potential to improve the speed of systematic reviews. Considerable work is already being done on many of the steps involved in a review. The 'Vienna Principles' set out in this paper aim to guide a more coordinated effort which will allow the integration of work by separate teams and build on the experience, code and evaluations done by the many teams working across the globe.
Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules.
Chowdhury, Debashish
2013-06-04
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Yang, Kamie K; Lewis, Ian H
2014-06-15
Various equipment malfunctions of anesthesia gas delivery systems have been previously reported. Our profession increasingly uses technology as a means to prevent these errors. We report a case of a near-total anesthesia circuit obstruction that went undetected before the induction of anesthesia despite the use of automated machine check technology. This case highlights that automated machine check modules can fail to detect severe equipment failure and demonstrates how, even in this era of expanding technology, manual checks still remain essential components of safe care.
Using machine learning for sequence-level automated MRI protocol selection in neuroradiology.
Brown, Andrew D; Marotta, Thomas R
2018-05-01
Incorrect imaging protocol selection can lead to important clinical findings being missed, contributing to both wasted health care resources and patient harm. We present a machine learning method for analyzing the unstructured text of clinical indications and patient demographics from magnetic resonance imaging (MRI) orders to automatically protocol MRI procedures at the sequence level. We compared 3 machine learning models - support vector machine, gradient boosting machine, and random forest - to a baseline model that predicted the most common protocol for all observations in our test set. The gradient boosting machine model significantly outperformed the baseline and demonstrated the best performance of the 3 models in terms of accuracy (95%), precision (86%), recall (80%), and Hamming loss (0.0487). This demonstrates the feasibility of automating sequence selection by applying machine learning to MRI orders. Automated sequence selection has important safety, quality, and financial implications and may facilitate improvements in the quality and safety of medical imaging service delivery.
GeneMachine: gene prediction and sequence annotation.
Makalowska, I; Ryan, J F; Baxevanis, A D
2001-09-01
A number of free-standing programs have been developed in order to help researchers find potential coding regions and deduce gene structure for long stretches of what is essentially 'anonymous DNA'. As these programs apply inherently different criteria to the question of what is and is not a coding region, multiple algorithms should be used in the course of positional cloning and positional candidate projects to assure that all potential coding regions within a previously-identified critical region are identified. We have developed a gene identification tool called GeneMachine which allows users to query multiple exon and gene prediction programs in an automated fashion. BLAST searches are also performed in order to see whether a previously-characterized coding region corresponds to a region in the query sequence. A suite of Perl programs and modules are used to run MZEF, GENSCAN, GRAIL 2, FGENES, RepeatMasker, Sputnik, and BLAST. The results of these runs are then parsed and written into ASN.1 format. Output files can be opened using NCBI Sequin, in essence using Sequin as both a workbench and as a graphical viewer. The main feature of GeneMachine is that the process is fully automated; the user is only required to launch GeneMachine and then open the resulting file with Sequin. Annotations can then be made to these results prior to submission to GenBank, thereby increasing the intrinsic value of these data. GeneMachine is freely-available for download at http://genome.nhgri.nih.gov/genemachine. A public Web interface to the GeneMachine server for academic and not-for-profit users is available at http://genemachine.nhgri.nih.gov. The Web supplement to this paper may be found at http://genome.nhgri.nih.gov/genemachine/supplement/.
Formal verification of human-automation interaction
NASA Technical Reports Server (NTRS)
Degani, Asaf; Heymann, Michael
2002-01-01
This paper discusses a formal and rigorous approach to the analysis of operator interaction with machines. It addresses the acute problem of detecting design errors in human-machine interaction and focuses on verifying the correctness of the interaction in complex and automated control systems. The paper describes a systematic methodology for evaluating whether the interface provides the necessary information about the machine to enable the operator to perform a specified task successfully and unambiguously. It also addresses the adequacy of information provided to the user via training material (e.g., user manual) about the machine's behavior. The essentials of the methodology, which can be automated and applied to the verification of large systems, are illustrated by several examples and through a case study of pilot interaction with an autopilot aboard a modern commercial aircraft. The expected application of this methodology is an augmentation and enhancement, by formal verification, of human-automation interfaces.
Software component quality evaluation
NASA Technical Reports Server (NTRS)
Clough, A. J.
1991-01-01
The paper describes a software inspection process that can be used to evaluate the quality of software components. Quality criteria, process application, independent testing of the process and proposed associated tool support are covered. Early results indicate that this technique is well suited for assessing software component quality in a standardized fashion. With automated machine assistance to facilitate both the evaluation and selection of software components, such a technique should promote effective reuse of software components.
Advanced tow placement of composite fuselage structure
NASA Technical Reports Server (NTRS)
Anderson, Robert L.; Grant, Carroll G.
1992-01-01
The Hercules NASA ACT program was established to demonstrate and validate the low cost potential of the automated tow placement process for fabrication of aircraft primary structures. The program is currently being conducted as a cooperative program in collaboration with the Boeing ATCAS Program. The Hercules advanced tow placement process has been in development since 1982 and was developed specifically for composite aircraft structures. The second generation machine, now in operation at Hercules, is a production-ready machine that uses a low cost prepreg tow material form to produce structures with laminate properties equivalent to prepreg tape layup. Current program activities are focused on demonstration of the automated tow placement process for fabrication of subsonic transport aircraft fuselage crown quadrants. We are working with Boeing Commercial Aircraft and Douglas Aircraft during this phase of the program. The Douglas demonstration panels has co-cured skin/stringers, and the Boeing demonstration panel is an intricately bonded part with co-cured skin/stringers and co-bonded frames. Other aircraft structures that were evaluated for the automated tow placement process include engine nacelle components, fuselage pressure bulkheads, and fuselage tail cones. Because of the cylindrical shape of these structures, multiple parts can be fabricated on one two placement tool, thus reducing the cost per pound of the finished part.
Using machine learning techniques to automate sky survey catalog generation
NASA Technical Reports Server (NTRS)
Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.
1993-01-01
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.
Mazzaferri, Javier; Larrivée, Bruno; Cakir, Bertan; Sapieha, Przemyslaw; Costantino, Santiago
2018-03-02
Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License ( https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva ).
Detecting Mode Confusion Through Formal Modeling and Analysis
NASA Technical Reports Server (NTRS)
Miller, Steven P.; Potts, James N.
1999-01-01
Aircraft safety has improved steadily over the last few decades. While much of this improvement can be attributed to the introduction of advanced automation in the cockpit, the growing complexity of these systems also increases the potential for the pilots to become confused about what the automation is doing. This phenomenon, often referred to as mode confusion, has been involved in several accidents involving modern aircraft. This report describes an effort by Rockwell Collins and NASA Langley to identify potential sources of mode confusion through two complementary strategies. The first is to create a clear, executable model of the automation, connect it to a simulation of the flight deck, and use this combination to review of the behavior of the automation and the man-machine interface with the designers, pilots, and experts in human factors. The second strategy is to conduct mathematical analyses of the model by translating it into a formal specification suitable for analysis with automated tools. The approach is illustrated by applying it to a hypothetical, but still realistic, example of the mode logic of a Flight Guidance System.
Cognitive consequences of clumsy automation on high workload, high consequence human performance
NASA Technical Reports Server (NTRS)
Cook, Richard I.; Woods, David D.; Mccolligan, Elizabeth; Howie, Michael B.
1991-01-01
The growth of computational power has fueled attempts to automate more of the human role in complex problem solving domains, especially those where system faults have high consequences and where periods of high workload may saturate the performance capacity of human operators. Examples of these domains include flightdecks, space stations, air traffic control, nuclear power operation, ground satellite control rooms, and surgical operating rooms. Automation efforts may have unanticipated effects on human performance, particularly if they increase the workload at peak workload times or change the practitioners' strategies for coping with workload. Smooth and effective changes in automation requires detailed understanding of the congnitive tasks confronting the user: it has been called user centered automation. The introduction of a new computerized technology in a group of hospital operating rooms used for heart surgery was observed. The study revealed how automation, especially 'clumsy automation', effects practitioner work patterns and suggest that clumsy automation constrains users in specific and significant ways. Users tailor both the new system and their tasks in order to accommodate the needs of process and production. The study of this tailoring may prove a powerful tool for exposing previously hidden patterns of user data processing, integration, and decision making which may, in turn, be useful in the design of more effective human-machine systems.
AUTOMATING ASSET KNOWLEDGE WITH MTCONNECT
Venkatesh, Sid; Ly, Sidney; Manning, Martin; Michaloski, John; Proctor, Fred
2017-01-01
In order to maximize assets, manufacturers should use real-time knowledge garnered from ongoing and continuous collection and evaluation of factory-floor machine status data. In discrete parts manufacturing, factory machine monitoring has been difficult, due primarily to closed, proprietary automation equipment that make integration difficult. Recently, there has been a push in applying the data acquisition concepts of MTConnect to the real-time acquisition of machine status data. MTConnect is an open, free specification aimed at overcoming the “Islands of Automation” dilemma on the shop floor. With automated asset analysis, manufacturers can improve production to become lean, efficient, and effective. The focus of this paper will be on the deployment of MTConnect to collect real-time machine status to automate asset management. In addition, we will leverage the ISO 22400 standard, which defines an asset and quantifies asset performance metrics. In conjunction with these goals, the deployment of MTConnect in a large aerospace manufacturing facility will be studied with emphasis on asset management and understanding the impact of machine Overall Equipment Effectiveness (OEE) on manufacturing. PMID:28691121
A Framework for Modeling Human-Machine Interactions
NASA Technical Reports Server (NTRS)
Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)
1996-01-01
Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.
Nakanishi, Rine; Sankaran, Sethuraman; Grady, Leo; Malpeso, Jenifer; Yousfi, Razik; Osawa, Kazuhiro; Ceponiene, Indre; Nazarat, Negin; Rahmani, Sina; Kissel, Kendall; Jayawardena, Eranthi; Dailing, Christopher; Zarins, Christopher; Koo, Bon-Kwon; Min, James K; Taylor, Charles A; Budoff, Matthew J
2018-03-23
Our goal was to evaluate the efficacy of a fully automated method for assessing the image quality (IQ) of coronary computed tomography angiography (CCTA). The machine learning method was trained using 75 CCTA studies by mapping features (noise, contrast, misregistration scores, and un-interpretability index) to an IQ score based on manual ground truth data. The automated method was validated on a set of 50 CCTA studies and subsequently tested on a new set of 172 CCTA studies against visual IQ scores on a 5-point Likert scale. The area under the curve in the validation set was 0.96. In the 172 CCTA studies, our method yielded a Cohen's kappa statistic for the agreement between automated and visual IQ assessment of 0.67 (p < 0.01). In the group where good to excellent (n = 163), fair (n = 6), and poor visual IQ scores (n = 3) were graded, 155, 5, and 2 of the patients received an automated IQ score > 50 %, respectively. Fully automated assessment of the IQ of CCTA data sets by machine learning was reproducible and provided similar results compared with visual analysis within the limits of inter-operator variability. • The proposed method enables automated and reproducible image quality assessment. • Machine learning and visual assessments yielded comparable estimates of image quality. • Automated assessment potentially allows for more standardised image quality. • Image quality assessment enables standardization of clinical trial results across different datasets.
Task-focused modeling in automated agriculture
NASA Astrophysics Data System (ADS)
Vriesenga, Mark R.; Peleg, K.; Sklansky, Jack
1993-01-01
Machine vision systems analyze image data to carry out automation tasks. Our interest is in machine vision systems that rely on models to achieve their designed task. When the model is interrogated from an a priori menu of questions, the model need not be complete. Instead, the machine vision system can use a partial model that contains a large amount of information in regions of interest and less information elsewhere. We propose an adaptive modeling scheme for machine vision, called task-focused modeling, which constructs a model having just sufficient detail to carry out the specified task. The model is detailed in regions of interest to the task and is less detailed elsewhere. This focusing effect saves time and reduces the computational effort expended by the machine vision system. We illustrate task-focused modeling by an example involving real-time micropropagation of plants in automated agriculture.
Reliability Centred Maintenance (RCM) Analysis of Laser Machine in Filling Lithos at PT X
NASA Astrophysics Data System (ADS)
Suryono, M. A. E.; Rosyidi, C. N.
2018-03-01
PT. X used automated machines which work for sixteen hours per day. Therefore, the machines should be maintained to keep the availability of the machines. The aim of this research is to determine maintenance tasks according to the cause of component’s failure using Reliability Centred Maintenance (RCM) and determine the amount of optimal inspection frequency which must be performed to the machine at filling lithos process. In this research, RCM is used as an analysis tool to determine the critical component and find optimal inspection frequencies to maximize machine’s reliability. From the analysis, we found that the critical machine in filling lithos process is laser machine in Line 2. Then we proceed to determine the cause of machine’s failure. Lastube component has the highest Risk Priority Number (RPN) among other components such as power supply, lens, chiller, laser siren, encoder, conveyor, and mirror galvo. Most of the components have operational consequences and the others have hidden failure consequences and safety consequences. Time-directed life-renewal task, failure finding task, and servicing task can be used to overcome these consequences. The results of data analysis show that the inspection must be performed once a month for laser machine in the form of preventive maintenance to lowering the downtime.
1987-06-15
GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY00 N MODERNIZATION PROGRAM Phase 2 Final Project Report DT C JUNO 7 1989J1K PROJECT 20...CLASSIFICATION O THIS PAGE All other editions are obsolete. unclassified Honeywell JUNE 15, 1987 GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL ...SYSTEMIEQUIPMENT/MACHINING SPECIFICATIONS 33 9 VENDOR/ INDUSTRY ANALYSIS FINDING 39 10 MIS REQUIREMENTS/IMPROVEMENTS 45 11 COST BENEFIT ANALYSIS 48 12 IMPLEMENTATION
Griffin, Kingsley J; Hedge, Luke H; González-Rivero, Manuel; Hoegh-Guldberg, Ove I; Johnston, Emma L
2017-07-01
Historically, marine ecologists have lacked efficient tools that are capable of capturing detailed species distribution data over large areas. Emerging technologies such as high-resolution imaging and associated machine-learning image-scoring software are providing new tools to map species over large areas in the ocean. Here, we combine a novel diver propulsion vehicle (DPV) imaging system with free-to-use machine-learning software to semi-automatically generate dense and widespread abundance records of a habitat-forming algae over ~5,000 m 2 of temperate reef. We employ replicable spatial techniques to test the effectiveness of traditional diver-based sampling, and better understand the distribution and spatial arrangement of one key algal species. We found that the effectiveness of a traditional survey depended on the level of spatial structuring, and generally 10-20 transects (50 × 1 m) were required to obtain reliable results. This represents 2-20 times greater replication than have been collected in previous studies. Furthermore, we demonstrate the usefulness of fine-resolution distribution modeling for understanding patterns in canopy algae cover at multiple spatial scales, and discuss applications to other marine habitats. Our analyses demonstrate that semi-automated methods of data gathering and processing provide more accurate results than traditional methods for describing habitat structure at seascape scales, and therefore represent vastly improved techniques for understanding and managing marine seascapes.
Parametric analysis of plastic strain and force distribution in single pass metal spinning
NASA Astrophysics Data System (ADS)
Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra
2013-12-01
Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.
Nelwan, Erni J; Indrasanti, Evi; Sinto, Robert; Nurchaida, Farida; Sosrosumihardjo, Rustadi
2016-01-01
to evaluate the performance of Vitek2 compact machine (Biomerieux Inc. ver 04.02, France) in reference to manual methods for susceptibility test for Candida resistance among HIV/AIDS patients. a comparison study to evaluate Vitek2 compact machine (Biomerieux Inc. ver 04.02, France) in reference to manual methods for susceptibility test for Candida resistance among HIV/AIDS patient was done. Categorical agreement between manual disc diffusion and Vitek2 machine was calculated using predefined criteria. Time to susceptibility result for automated and manual methods were measured. there were 137 Candida isolates comprising eight Candida species with C.albicans and C. glabrata as the first (56.2%) and second (15.3%) most common species, respectively. For fluconazole drug, among the C. albicans, 2.6% was found resistant on manual disc diffusion methods and no resistant was determined by Vitek2 machine; whereas 100% C. krusei was identified as resistant on both methods. Resistant patterns for C. glabrata to fluconazole, voriconazole and amphotericin B were 52.4%, 23.8%, 23.8% vs. 9.5%, 9.5%, 4.8% respectively between manual diffusion disc methods and Vitek2 machine. Time to susceptibility result for automated methods compared to Vitex2 machine was shorter for all Candida species. there is a good categorical agreement between manual disc diffusion and Vitek2 machine, except for C. glabrata for measuring the antifungal resistant. Time to susceptibility result for automated methods is shorter for all Candida species.
Mars Reconnaissance Orbiter Uplink Analysis Tool
NASA Technical Reports Server (NTRS)
Khanampompan, Teerapat; Gladden, Roy; Fisher, Forest; Hwang, Pauline
2008-01-01
This software analyzes Mars Reconnaissance Orbiter (MRO) orbital geometry with respect to Mars Exploration Rover (MER) contact windows, and is the first tool of its kind designed specifically to support MRO-MER interface coordination. Prior to this automated tool, this analysis was done manually with Excel and the UNIX command line. In total, the process would take approximately 30 minutes for each analysis. The current automated analysis takes less than 30 seconds. This tool resides on the flight machine and uses a PHP interface that does the entire analysis of the input files and takes into account one-way light time from another input file. Input flies are copied over to the proper directories and are dynamically read into the tool s interface. The user can then choose the corresponding input files based on the time frame desired for analysis. After submission of the Web form, the tool merges the two files into a single, time-ordered listing of events for both spacecraft. The times are converted to the same reference time (Earth Transmit Time) by reading in a light time file and performing the calculations necessary to shift the time formats. The program also has the ability to vary the size of the keep-out window on the main page of the analysis tool by inputting a custom time for padding each MRO event time. The parameters on the form are read in and passed to the second page for analysis. Everything is fully coded in PHP and can be accessed by anyone with access to the machine via Web page. This uplink tool will continue to be used for the duration of the MER mission's needs for X-band uplinks. Future missions also can use the tools to check overflight times as well as potential site observation times. Adaptation of the input files to the proper format, and the window keep-out times, would allow for other analyses. Any operations task that uses the idea of keep-out windows will have a use for this program.
Narula, Sukrit; Shameer, Khader; Salem Omar, Alaa Mabrouk; Dudley, Joel T; Sengupta, Partho P
2016-11-29
Machine-learning models may aid cardiac phenotypic recognition by using features of cardiac tissue deformation. This study investigated the diagnostic value of a machine-learning framework that incorporates speckle-tracking echocardiographic data for automated discrimination of hypertrophic cardiomyopathy (HCM) from physiological hypertrophy seen in athletes (ATH). Expert-annotated speckle-tracking echocardiographic datasets obtained from 77 ATH and 62 HCM patients were used for developing an automated system. An ensemble machine-learning model with 3 different machine-learning algorithms (support vector machines, random forests, and artificial neural networks) was developed and a majority voting method was used for conclusive predictions with further K-fold cross-validation. Feature selection using an information gain (IG) algorithm revealed that volume was the best predictor for differentiating between HCM ands. ATH (IG = 0.24) followed by mid-left ventricular segmental (IG = 0.134) and average longitudinal strain (IG = 0.131). The ensemble machine-learning model showed increased sensitivity and specificity compared with early-to-late diastolic transmitral velocity ratio (p < 0.01), average early diastolic tissue velocity (e') (p < 0.01), and strain (p = 0.04). Because ATH were younger, adjusted analysis was undertaken in younger HCM patients and compared with ATH with left ventricular wall thickness >13 mm. In this subgroup analysis, the automated model continued to show equal sensitivity, but increased specificity relative to early-to-late diastolic transmitral velocity ratio, e', and strain. Our results suggested that machine-learning algorithms can assist in the discrimination of physiological versus pathological patterns of hypertrophic remodeling. This effort represents a step toward the development of a real-time, machine-learning-based system for automated interpretation of echocardiographic images, which may help novice readers with limited experience. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
One of My Favorite Assignments: Automated Teller Machine Simulation.
ERIC Educational Resources Information Center
Oberman, Paul S.
2001-01-01
Describes an assignment for an introductory computer science class that requires the student to write a software program that simulates an automated teller machine. Highlights include an algorithm for the assignment; sample file contents; language features used; assignment variations; and discussion points. (LRW)
Flexible software architecture for user-interface and machine control in laboratory automation.
Arutunian, E B; Meldrum, D R; Friedman, N A; Moody, S E
1998-10-01
We describe a modular, layered software architecture for automated laboratory instruments. The design consists of a sophisticated user interface, a machine controller and multiple individual hardware subsystems, each interacting through a client-server architecture built entirely on top of open Internet standards. In our implementation, the user-interface components are built as Java applets that are downloaded from a server integrated into the machine controller. The user-interface client can thereby provide laboratory personnel with a familiar environment for experiment design through a standard World Wide Web browser. Data management and security are seamlessly integrated at the machine-controller layer using QNX, a real-time operating system. This layer also controls hardware subsystems through a second client-server interface. This architecture has proven flexible and relatively easy to implement and allows users to operate laboratory automation instruments remotely through an Internet connection. The software architecture was implemented and demonstrated on the Acapella, an automated fluid-sample-processing system that is under development at the University of Washington.
The Careful Puppet Master: Reducing risk and fortifying acceptance testing with Jenkins CI
NASA Astrophysics Data System (ADS)
Smith, Jason A.; Richman, Gabriel; DeStefano, John; Pryor, James; Rao, Tejas; Strecker-Kellogg, William; Wong, Tony
2015-12-01
Centralized configuration management, including the use of automation tools such as Puppet, can greatly increase provisioning speed and efficiency when configuring new systems or making changes to existing systems, reduce duplication of work, and improve automated processes. However, centralized management also brings with it a level of inherent risk: a single change in just one file can quickly be pushed out to thousands of computers and, if that change is not properly and thoroughly tested and contains an error, could result in catastrophic damage to many services, potentially bringing an entire computer facility offline. Change management procedures can—and should—be formalized in order to prevent such accidents. However, like the configuration management process itself, if such procedures are not automated, they can be difficult to enforce strictly. Therefore, to reduce the risk of merging potentially harmful changes into our production Puppet environment, we have created an automated testing system, which includes the Jenkins CI tool, to manage our Puppet testing process. This system includes the proposed changes and runs Puppet on a pool of dozens of RedHat Enterprise Virtualization (RHEV) virtual machines (VMs) that replicate most of our important production services for the purpose of testing. This paper describes our automated test system and how it hooks into our production approval process for automatic acceptance testing. All pending changes that have been pushed to production must pass this validation process before they can be approved and merged into production.
Srinivasan, Pratul P.; Kim, Leo A.; Mettu, Priyatham S.; Cousins, Scott W.; Comer, Grant M.; Izatt, Joseph A.; Farsiu, Sina
2014-01-01
We present a novel fully automated algorithm for the detection of retinal diseases via optical coherence tomography (OCT) imaging. Our algorithm utilizes multiscale histograms of oriented gradient descriptors as feature vectors of a support vector machine based classifier. The spectral domain OCT data sets used for cross-validation consisted of volumetric scans acquired from 45 subjects: 15 normal subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Our classifier correctly identified 100% of cases with AMD, 100% cases with DME, and 86.67% cases of normal subjects. This algorithm is a potentially impactful tool for the remote diagnosis of ophthalmic diseases. PMID:25360373
Gearing up to the factory of the future
NASA Astrophysics Data System (ADS)
Godfrey, D. E.
1985-01-01
The features of factories and manufacturing techniques and tools of the near future are discussed. The spur to incorporate new technologies on the factory floor will originate in management, who must guide the interfacing of computer-enhanced equipment with traditional manpower, materials and machines. Electronic control with responsiveness and flexibility will be the key concept in an integrated approach to processing materials. Microprocessor controlled laser and fluid cutters add accuracy to cutting operations. Unattended operation will become feasible when automated inspection is added to a work station through developments in robot vision. Optimum shop management will be achieved through AI programming of parts manufacturing, optimized work flows, and cost accounting. The automation enhancements will allow designers to affect directly parts being produced on the factory floor.
NASA Technical Reports Server (NTRS)
Rede, Leonard J.; Booth, Andrew; Hsieh, Jonathon; Summer, Kellee
2004-01-01
This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate several lower-level hardware and software hard real time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.
NASA Astrophysics Data System (ADS)
Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.
2004-09-01
This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.
Classification of ROTSE Variable Stars using Machine Learning
NASA Astrophysics Data System (ADS)
Wozniak, P. R.; Akerlof, C.; Amrose, S.; Brumby, S.; Casperson, D.; Gisler, G.; Kehoe, R.; Lee, B.; Marshall, S.; McGowan, K. E.; McKay, T.; Perkins, S.; Priedhorsky, W.; Rykoff, E.; Smith, D. A.; Theiler, J.; Vestrand, W. T.; Wren, J.; ROTSE Collaboration
2001-12-01
We evaluate several Machine Learning algorithms as potential tools for automated classification of variable stars. Using the ROTSE sample of ~1800 variables from a pilot study of 5% of the whole sky, we compare the effectiveness of a supervised technique (Support Vector Machines, SVM) versus unsupervised methods (K-means and Autoclass). There are 8 types of variables in the sample: RR Lyr AB, RR Lyr C, Delta Scuti, Cepheids, detached eclipsing binaries, contact binaries, Miras and LPVs. Preliminary results suggest a very high ( ~95%) efficiency of SVM in isolating a few best defined classes against the rest of the sample, and good accuracy ( ~70-75%) for all classes considered simultaneously. This includes some degeneracies, irreducible with the information at hand. Supervised methods naturally outperform unsupervised methods, in terms of final error rate, but unsupervised methods offer many advantages for large sets of unlabeled data. Therefore, both types of methods should be considered as promising tools for mining vast variability surveys. We project that there are more than 30,000 periodic variables in the ROTSE-I data base covering the entire local sky between V=10 and 15.5 mag. This sample size is already stretching the time capabilities of human analysts.
Traverse Planning with Temporal-Spatial Constraints
NASA Technical Reports Server (NTRS)
Bresina, John L.; Morris, Paul H.; Deans, Mathew C.; Cohen, Tamar E.; Lees, David S.
2017-01-01
We present an approach to planning rover traverses in a domain that includes temporal-spatial constraints. We are using the NASA Resource Prospector mission as a reference mission in our research. The objective of this mission is to explore permanently shadowed regions at a Lunar pole. Most of the time the rover is required to avoid being in shadow. This requirement depends on where the rover is located and when it is at that location. Such a temporal-spatial constraint makes traverse planning more challenging for both humans and machines. We present a mixed-initiative traverse planner which addresses this challenge. This traverse planner is part of the Exploration Ground Data Systems (xGDS), which we have enhanced with new visualization features, new analysis tools, and new automation for path planning, in order to be applicable to the Re-source Prospector mission. The key concept that is the basis of the analysis tools and that supports the automated path planning is reachability in this dynamic environment due to the temporal-spatial constraints.
Space Station man-machine automation trade-off analysis
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Bard, J.; Feinberg, A.
1985-01-01
The man machine automation tradeoff methodology presented is of four research tasks comprising the autonomous spacecraft system technology (ASST) project. ASST was established to identify and study system level design problems for autonomous spacecraft. Using the Space Station as an example spacecraft system requiring a certain level of autonomous control, a system level, man machine automation tradeoff methodology is presented that: (1) optimizes man machine mixes for different ground and on orbit crew functions subject to cost, safety, weight, power, and reliability constraints, and (2) plots the best incorporation plan for new, emerging technologies by weighing cost, relative availability, reliability, safety, importance to out year missions, and ease of retrofit. A fairly straightforward approach is taken by the methodology to valuing human productivity, it is still sensitive to the important subtleties associated with designing a well integrated, man machine system. These subtleties include considerations such as crew preference to retain certain spacecraft control functions; or valuing human integration/decision capabilities over equivalent hardware/software where appropriate.
Automated Atmospheric Composition Dataset Level Metadata Discovery. Difficulties and Surprises
NASA Astrophysics Data System (ADS)
Strub, R. F.; Falke, S. R.; Kempler, S.; Fialkowski, E.; Goussev, O.; Lynnes, C.
2015-12-01
The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System - CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all) Earth science atmospheric composition data providers store a reference to their data at GCMD.
Human-machine analytics for closed-loop sense-making in time-dominant cyber defense problems
NASA Astrophysics Data System (ADS)
Henry, Matthew H.
2017-05-01
Many defense problems are time-dominant: attacks progress at speeds that outpace human-centric systems designed for monitoring and response. Despite this shortcoming, these well-honed and ostensibly reliable systems pervade most domains, including cyberspace. The argument that often prevails when considering the automation of defense is that while technological systems are suitable for simple, well-defined tasks, only humans possess sufficiently nuanced understanding of problems to act appropriately under complicated circumstances. While this perspective is founded in verifiable truths, it does not account for a middle ground in which human-managed technological capabilities extend well into the territory of complex reasoning, thereby automating more nuanced sense-making and dramatically increasing the speed at which it can be applied. Snort1 and platforms like it enable humans to build, refine, and deploy sense-making tools for network defense. Shortcomings of these platforms include a reliance on rule-based logic, which confounds analyst knowledge of how bad actors behave with the means by which bad behaviors can be detected, and a lack of feedback-informed automation of sensor deployment. We propose an approach in which human-specified computational models hypothesize bad behaviors independent of indicators and then allocate sensors to estimate and forecast the state of an intrusion. State estimates and forecasts inform the proactive deployment of additional sensors and detection logic, thereby closing the sense-making loop. All the while, humans are on the loop, rather than in it, permitting nuanced management of fast-acting automated measurement, detection, and inference engines. This paper motivates and conceptualizes analytics to facilitate this human-machine partnership.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franklin, Lyndsey; Pirrung, Megan A.; Blaha, Leslie M.
Cyber network analysts follow complex processes in their investigations of potential threats to their network. Much research is dedicated to providing automated tool support in the effort to make their tasks more efficient, accurate, and timely. This tool support comes in a variety of implementations from machine learning algorithms that monitor streams of data to visual analytic environments for exploring rich and noisy data sets. Cyber analysts, however, often speak of a need for tools which help them merge the data they already have and help them establish appropriate baselines against which to compare potential anomalies. Furthermore, existing threat modelsmore » that cyber analysts regularly use to structure their investigation are not often leveraged in support tools. We report on our work with cyber analysts to understand they analytic process and how one such model, the MITRE ATT&CK Matrix [32], is used to structure their analytic thinking. We present our efforts to map specific data needed by analysts into the threat model to inform our eventual visualization designs. We examine data mapping for gaps where the threat model is under-supported by either data or tools. We discuss these gaps as potential design spaces for future research efforts. We also discuss the design of a prototype tool that combines machine-learning and visualization components to support cyber analysts working with this threat model.« less
Sweeney, Elizabeth M.; Vogelstein, Joshua T.; Cuzzocreo, Jennifer L.; Calabresi, Peter A.; Reich, Daniel S.; Crainiceanu, Ciprian M.; Shinohara, Russell T.
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance. PMID:24781953
Sweeney, Elizabeth M; Vogelstein, Joshua T; Cuzzocreo, Jennifer L; Calabresi, Peter A; Reich, Daniel S; Crainiceanu, Ciprian M; Shinohara, Russell T
2014-01-01
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.
Machine Vision Systems for Processing Hardwood Lumber and Logs
Philip A. Araman; Daniel L. Schmoldt; Tai-Hoon Cho; Dongping Zhu; Richard W. Conners; D. Earl Kline
1992-01-01
Machine vision and automated processing systems are under development at Virginia Tech University with support and cooperation from the USDA Forest Service. Our goals are to help U.S. hardwood producers automate, reduce costs, increase product volume and value recovery, and market higher value, more accurately graded and described products. Any vision system is...
Yadav, Kabir; Sarioglu, Efsun; Choi, Hyeong Ah; Cartwright, Walter B; Hinds, Pamela S; Chamberlain, James M
2016-02-01
The authors have previously demonstrated highly reliable automated classification of free-text computed tomography (CT) imaging reports using a hybrid system that pairs linguistic (natural language processing) and statistical (machine learning) techniques. Previously performed for identifying the outcome of orbital fracture in unprocessed radiology reports from a clinical data repository, the performance has not been replicated for more complex outcomes. To validate automated outcome classification performance of a hybrid natural language processing (NLP) and machine learning system for brain CT imaging reports. The hypothesis was that our system has performance characteristics for identifying pediatric traumatic brain injury (TBI). This was a secondary analysis of a subset of 2,121 CT reports from the Pediatric Emergency Care Applied Research Network (PECARN) TBI study. For that project, radiologists dictated CT reports as free text, which were then deidentified and scanned as PDF documents. Trained data abstractors manually coded each report for TBI outcome. Text was extracted from the PDF files using optical character recognition. The data set was randomly split evenly for training and testing. Training patient reports were used as input to the Medical Language Extraction and Encoding (MedLEE) NLP tool to create structured output containing standardized medical terms and modifiers for negation, certainty, and temporal status. A random subset stratified by site was analyzed using descriptive quantitative content analysis to confirm identification of TBI findings based on the National Institute of Neurological Disorders and Stroke (NINDS) Common Data Elements project. Findings were coded for presence or absence, weighted by frequency of mentions, and past/future/indication modifiers were filtered. After combining with the manual reference standard, a decision tree classifier was created using data mining tools WEKA 3.7.5 and Salford Predictive Miner 7.0. Performance of the decision tree classifier was evaluated on the test patient reports. The prevalence of TBI in the sampled population was 159 of 2,217 (7.2%). The automated classification for pediatric TBI is comparable to our prior results, with the notable exception of lower positive predictive value. Manual review of misclassified reports, 95.5% of which were false-positives, revealed that a sizable number of false-positive errors were due to differing outcome definitions between NINDS TBI findings and PECARN clinical important TBI findings and report ambiguity not meeting definition criteria. A hybrid NLP and machine learning automated classification system continues to show promise in coding free-text electronic clinical data. For complex outcomes, it can reliably identify negative reports, but manual review of positive reports may be required. As such, it can still streamline data collection for clinical research and performance improvement. © 2016 by the Society for Academic Emergency Medicine.
Yadav, Kabir; Sarioglu, Efsun; Choi, Hyeong-Ah; Cartwright, Walter B.; Hinds, Pamela S.; Chamberlain, James M.
2016-01-01
Background The authors have previously demonstrated highly reliable automated classification of free text computed tomography (CT) imaging reports using a hybrid system that pairs linguistic (natural language processing) and statistical (machine learning) techniques. Previously performed for identifying the outcome of orbital fracture in unprocessed radiology reports from a clinical data repository, the performance has not been replicated for more complex outcomes. Objectives To validate automated outcome classification performance of a hybrid natural language processing (NLP) and machine learning system for brain CT imaging reports. The hypothesis was that our system has performance characteristics for identifying pediatric traumatic brain injury (TBI). Methods This was a secondary analysis of a subset of 2,121 CT reports from the Pediatric Emergency Care Applied Research Network (PECARN) TBI study. For that project, radiologists dictated CT reports as free text, which were then de-identified and scanned as PDF documents. Trained data abstractors manually coded each report for TBI outcome. Text was extracted from the PDF files using optical character recognition. The dataset was randomly split evenly for training and testing. Training patient reports were used as input to the Medical Language Extraction and Encoding (MedLEE) NLP tool to create structured output containing standardized medical terms and modifiers for negation, certainty, and temporal status. A random subset stratified by site was analyzed using descriptive quantitative content analysis to confirm identification of TBI findings based upon the National Institute of Neurological Disorders and Stroke Common Data Elements project. Findings were coded for presence or absence, weighted by frequency of mentions, and past/future/indication modifiers were filtered. After combining with the manual reference standard, a decision tree classifier was created using data mining tools WEKA 3.7.5 and Salford Predictive Miner 7.0. Performance of the decision tree classifier was evaluated on the test patient reports. Results The prevalence of TBI in the sampled population was 159 out of 2,217 (7.2%). The automated classification for pediatric TBI is comparable to our prior results, with the notable exception of lower positive predictive value (PPV). Manual review of misclassified reports, 95.5% of which were false positives, revealed that a sizable number of false-positive errors were due to differing outcome definitions between NINDS TBI findings and PECARN clinical important TBI findings, and report ambiguity not meeting definition criteria. Conclusions A hybrid NLP and machine learning automated classification system continues to show promise in coding free-text electronic clinical data. For complex outcomes, it can reliably identify negative reports, but manual review of positive reports may be required. As such, it can still streamline data collection for clinical research and performance improvement. PMID:26766600
NASA Astrophysics Data System (ADS)
Li, Lu; Narayanan, Ramakrishnan; Miller, Steve; Shen, Feimo; Barqawi, Al B.; Crawford, E. David; Suri, Jasjit S.
2008-02-01
Real-time knowledge of capsule volume of an organ provides a valuable clinical tool for 3D biopsy applications. It is challenging to estimate this capsule volume in real-time due to the presence of speckles, shadow artifacts, partial volume effect and patient motion during image scans, which are all inherent in medical ultrasound imaging. The volumetric ultrasound prostate images are sliced in a rotational manner every three degrees. The automated segmentation method employs a shape model, which is obtained from training data, to delineate the middle slices of volumetric prostate images. Then a "DDC" algorithm is applied to the rest of the images with the initial contour obtained. The volume of prostate is estimated with the segmentation results. Our database consists of 36 prostate volumes which are acquired using a Philips ultrasound machine using a Side-fire transrectal ultrasound (TRUS) probe. We compare our automated method with the semi-automated approach. The mean volumes using the semi-automated and complete automated techniques were 35.16 cc and 34.86 cc, with the error of 7.3% and 7.6% compared to the volume obtained by the human estimated boundary (ideal boundary), respectively. The overall system, which was developed using Microsoft Visual C++, is real-time and accurate.
Machine learning of network metrics in ATLAS Distributed Data Management
NASA Astrophysics Data System (ADS)
Lassnig, Mario; Toler, Wesley; Vamosi, Ralf; Bogado, Joaquin; ATLAS Collaboration
2017-10-01
The increasing volume of physics data poses a critical challenge to the ATLAS experiment. In anticipation of high luminosity physics, automation of everyday data management tasks has become necessary. Previously many of these tasks required human decision-making and operation. Recent advances in hardware and software have made it possible to entrust more complicated duties to automated systems using models trained by machine learning algorithms. In this contribution we show results from one of our ongoing automation efforts that focuses on network metrics. First, we describe our machine learning framework built atop the ATLAS Analytics Platform. This framework can automatically extract and aggregate data, train models with various machine learning algorithms, and eventually score the resulting models and parameters. Second, we use these models to forecast metrics relevant for networkaware job scheduling and data brokering. We show the characteristics of the data and evaluate the forecasting accuracy of our models.
On the virtues of automated quantitative structure-activity relationship: the new kid on the block.
de Oliveira, Marcelo T; Katekawa, Edson
2018-02-01
Quantitative structure-activity relationship (QSAR) has proved to be an invaluable tool in medicinal chemistry. Data availability at unprecedented levels through various databases have collaborated to a resurgence in the interest for QSAR. In this context, rapid generation of quality predictive models is highly desirable for hit identification and lead optimization. We showcase the application of an automated QSAR approach, which randomly selects multiple training/test sets and utilizes machine-learning algorithms to generate predictive models. Results demonstrate that AutoQSAR produces models of improved or similar quality to those generated by practitioners in the field but in just a fraction of the time. Despite the potential of the concept to the benefit of the community, the AutoQSAR opportunity has been largely undervalued.
Automated fiber pigtailing machine
Strand, Oliver T.; Lowry, Mark E.
1999-01-01
The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.
NASA Technical Reports Server (NTRS)
1984-01-01
A complicated design project, successfully carried out by New York manufacturing consultant with help from NERAC, Inc., resulted in new type robotic system being marketed for industrial use. Consultant Robert Price, operating at E.S.I, Inc. in Albany, NY, sought help from NERAC to develop an automated tool for deburring the inside of 8 inch breech ring assemblies for howitzers produced by Watervliet Arsenal. NERAC conducted a search of the NASA data base and six others. From information supplied, Price designed a system consisting of a standard industrial robot arm, with a specially engineered six-axis deburring tool fitted to it. A microcomputer and computer program direct the tool on its path through the breech ring. E.S.I. markets the system to aerospace and metal cutting industries for deburring, drilling, routing and refining machined parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covington, E; Younge, K; Chen, X
Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One examplemore » is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827.« less
Automated delineation of radiotherapy volumes: are we going in the right direction?
Whitfield, G A; Price, P; Price, G J; Moore, C J
2013-01-01
ABSTRACT. Rapid and accurate delineation of target volumes and multiple organs at risk, within the enduring International Commission on Radiation Units and Measurement framework, is now hugely important in radiotherapy, owing to the rapid proliferation of intensity-modulated radiotherapy and the advent of four-dimensional image-guided adaption. Nevertheless, delineation is still generally clinically performed with little if any machine assistance, even though it is both time-consuming and prone to interobserver variation. Currently available segmentation tools include those based on image greyscale interrogation, statistical shape modelling and body atlas-based methods. However, all too often these are not able to match the accuracy of the expert clinician, which remains the universally acknowledged gold standard. In this article we suggest that current methods are fundamentally limited by their lack of ability to incorporate essential human clinical decision-making into the underlying models. Hybrid techniques that utilise prior knowledge, make sophisticated use of greyscale information and allow clinical expertise to be integrated are needed. This may require a change in focus from automated segmentation to machine-assisted delineation. Similarly, new metrics of image quality reflecting fitness for purpose would be extremely valuable. We conclude that methods need to be developed to take account of the clinician's expertise and honed visual processing capabilities as much as the underlying, clinically meaningful information content of the image data being interrogated. We illustrate our observations and suggestions through our own experiences with two software tools developed as part of research council-funded projects. PMID:23239689
Data-Driven Learning of Total and Local Energies in Elemental Boron
NASA Astrophysics Data System (ADS)
Deringer, Volker L.; Pickard, Chris J.; Csányi, Gábor
2018-04-01
The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β -rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.
Data-Driven Learning of Total and Local Energies in Elemental Boron.
Deringer, Volker L; Pickard, Chris J; Csányi, Gábor
2018-04-13
The allotropes of boron continue to challenge structural elucidation and solid-state theory. Here we use machine learning combined with random structure searching (RSS) algorithms to systematically construct an interatomic potential for boron. Starting from ensembles of randomized atomic configurations, we use alternating single-point quantum-mechanical energy and force computations, Gaussian approximation potential (GAP) fitting, and GAP-driven RSS to iteratively generate a representation of the element's potential-energy surface. Beyond the total energies of the very different boron allotropes, our model readily provides atom-resolved, local energies and thus deepened insight into the frustrated β-rhombohedral boron structure. Our results open the door for the efficient and automated generation of GAPs, and other machine-learning-based interatomic potentials, and suggest their usefulness as a tool for materials discovery.
NASA Astrophysics Data System (ADS)
Fern, Lisa Carolynn
This dissertation examines the challenges inherent in designing and regulating to support human-automation interaction for new technologies that will be deployed into complex systems. A key question for new technologies with increasingly capable automation, is how work will be accomplished by human and machine agents. This question has traditionally been framed as how functions should be allocated between humans and machines. Such framing misses the coordination and synchronization that is needed for the different human and machine roles in the system to accomplish their goals. Coordination and synchronization demands are driven by the underlying human-automation architecture of the new technology, which are typically not specified explicitly by designers. The human machine interface (HMI), which is intended to facilitate human-machine interaction and cooperation, typically is defined explicitly and therefore serves as a proxy for human-automation cooperation requirements with respect to technical standards for technologies. Unfortunately, mismatches between the HMI and the coordination and synchronization demands of the underlying human-automation architecture can lead to system breakdowns. A methodology is needed that both designers and regulators can utilize to evaluate the predicted performance of a new technology given potential human-automation architectures. Three experiments were conducted to inform the minimum HMI requirements for a detect and avoid (DAA) system for unmanned aircraft systems (UAS). The results of the experiments provided empirical input to specific minimum operational performance standards that UAS manufacturers will have to meet in order to operate UAS in the National Airspace System (NAS). These studies represent a success story for how to objectively and systematically evaluate prototype technologies as part of the process for developing regulatory requirements. They also provide an opportunity to reflect on the lessons learned in order to improve the methodology for defining technology requirements for regulators in the future. The biggest shortcoming of the presented research program was the absence of the explicit definition, generation and analysis of potential human-automation architectures. Failure to execute this step in the research process resulted in less efficient evaluation of the candidate prototypes technologies in addition to a lack of exploration of different approaches to human-automation cooperation. Defining potential human-automation architectures a priori also allows regulators to develop scenarios that will stress the performance boundaries of the technology during the evaluation phase. The importance of adding this step of generating and evaluating candidate human-automation architectures prior to formal empirical evaluation is discussed. This document concludes with a look at both the importance of, and the challenges facing, the inclusion of examining human-automation coordination issues as part of the safety assurance activities of new technologies.
Classification of Variable Objects in Massive Sky Monitoring Surveys
NASA Astrophysics Data System (ADS)
Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily
2012-03-01
The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of machine learning in astronomy. The goal of this chapter is to show a number of successful applications of state-of-the-art machine learning methodology to time-resolved astronomical data, illustrate what is possible today, and help identify areas for further research and development. After a brief comparison of the utility of various machine learning classifiers, the discussion focuses on support vector machines (SVM), neural nets, and self-organizing maps. Traditionally, to detect and classify transient variability astronomers used ad hoc scan statistics. These methods will remain important as feature extractors for input into generic machine learning algorithms. Experience shows that the performance of machine learning tools on astronomical data critically depends on the definition and quality of the input features, and that a considerable amount of preprocessing is required before standard algorithms can be applied. However, with continued investments of effort by a growing number of astro-informatics savvy computer scientists and astronomers the much-needed expertise and infrastructure are growing faster than ever.
Bidding-based autonomous process planning and scheduling
NASA Astrophysics Data System (ADS)
Gu, Peihua; Balasubramanian, Sivaram; Norrie, Douglas H.
1995-08-01
Improving productivity through computer integrated manufacturing systems (CIMS) and concurrent engineering requires that the islands of automation in an enterprise be completely integrated. The first step in this direction is to integrate design, process planning, and scheduling. This can be achieved through a bidding-based process planning approach. The product is represented in a STEP model with detailed design and administrative information including design specifications, batch size, and due dates. Upon arrival at the manufacturing facility, the product registered in the shop floor manager which is essentially a coordinating agent. The shop floor manager broadcasts the product's requirements to the machines. The shop contains autonomous machines that have knowledge about their functionality, capabilities, tooling, and schedule. Each machine has its own process planner and responds to the product's request in a different way that is consistent with its capabilities and capacities. When more than one machine offers certain process(es) for the same requirements, they enter into negotiation. Based on processing time, due date, and cost, one of the machines wins the contract. The successful machine updates its schedule and advises the product to request raw material for processing. The concept was implemented using a multi-agent system with the task decomposition and planning achieved through contract nets. The examples are included to illustrate the approach.
Machine vision for various manipulation tasks
NASA Astrophysics Data System (ADS)
Domae, Yukiyasu
2017-03-01
Bin-picking, re-grasping, pick-and-place, kitting, etc. There are many manipulation tasks in the fields of automation of factory, warehouse and so on. The main problem of the automation is that the target objects (items/parts) have various shapes, weights and surface materials. In my talk, I will show latest machine vision systems and algorithms against the problem.
Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.
Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual
2015-11-24
Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results.
Young, Sean D; Yu, Wenchao; Wang, Wei
2017-02-01
"Social big data" from technologies such as social media, wearable devices, and online searches continue to grow and can be used as tools for HIV research. Although researchers can uncover patterns and insights associated with HIV trends and transmission, the review process is time consuming and resource intensive. Machine learning methods derived from computer science might be used to assist HIV domain experts by learning how to rapidly and accurately identify patterns associated with HIV from a large set of social data. Using an existing social media data set that was associated with HIV and coded by an HIV domain expert, we tested whether 4 commonly used machine learning methods could learn the patterns associated with HIV risk behavior. We used the 10-fold cross-validation method to examine the speed and accuracy of these models in applying that knowledge to detect HIV content in social media data. Logistic regression and random forest resulted in the highest accuracy in detecting HIV-related social data (85.3%), whereas the Ridge Regression Classifier resulted in the lowest accuracy. Logistic regression yielded the fastest processing time (16.98 seconds). Machine learning can enable social big data to become a new and important tool in HIV research, helping to create a new field of "digital HIV epidemiology." If a domain expert can identify patterns in social data associated with HIV risk or HIV transmission, machine learning models could quickly and accurately learn those associations and identify potential HIV patterns in large social data sets.
NASA Astrophysics Data System (ADS)
Pezzi, M.; Favaro, M.; Gregori, D.; Ricci, P. P.; Sapunenko, V.
2014-06-01
In large computing centers, such as the INFN CNAF Tier1 [1], is essential to be able to configure all the machines, depending on use, in an automated way. For several years at the Tier1 has been used Quattor[2], a server provisioning tool, which is currently used in production. Nevertheless we have recently started a comparison study involving other tools able to provide specific server installation and configuration features and also offer a proper full customizable solution as an alternative to Quattor. Our choice at the moment fell on integration between two tools: Cobbler [3] for the installation phase and Puppet [4] for the server provisioning and management operation. The tool should provide the following properties in order to replicate and gradually improve the current system features: implement a system check for storage specific constraints such as kernel modules black list at boot time to avoid undesired SAN (Storage Area Network) access during disk partitioning; a simple and effective mechanism for kernel upgrade and downgrade; the ability of setting package provider using yum, rpm or apt; easy to use Virtual Machine installation support including bonding and specific Ethernet configuration; scalability for managing thousands of nodes and parallel installations. This paper describes the results of the comparison and the tests carried out to verify the requirements and the new system suitability in the INFN-T1 environment.
Nyholm, Sven
2017-07-18
Many ethicists writing about automated systems (e.g. self-driving cars and autonomous weapons systems) attribute agency to these systems. Not only that; they seemingly attribute an autonomous or independent form of agency to these machines. This leads some ethicists to worry about responsibility-gaps and retribution-gaps in cases where automated systems harm or kill human beings. In this paper, I consider what sorts of agency it makes sense to attribute to most current forms of automated systems, in particular automated cars and military robots. I argue that whereas it indeed makes sense to attribute different forms of fairly sophisticated agency to these machines, we ought not to regard them as acting on their own, independently of any human beings. Rather, the right way to understand the agency exercised by these machines is in terms of human-robot collaborations, where the humans involved initiate, supervise, and manage the agency of their robotic collaborators. This means, I argue, that there is much less room for justified worries about responsibility-gaps and retribution-gaps than many ethicists think.
First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)
NASA Technical Reports Server (NTRS)
Griffin, Sandy (Editor)
1987-01-01
Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.
2011-01-01
Background Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. Results This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. Conclusions AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements. PMID:21798025
Stålring, Jonna C; Carlsson, Lars A; Almeida, Pedro; Boyer, Scott
2011-07-28
Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements.
ERIC Educational Resources Information Center
Zhang, Mo; Chen, Jing; Ruan, Chunyi
2016-01-01
Successful detection of unusual responses is critical for using machine scoring in the assessment context. This study evaluated the utility of approaches to detecting unusual responses in automated essay scoring. Two research questions were pursued. One question concerned the performance of various prescreening advisory flags, and the other…
ERIC Educational Resources Information Center
Sedaghat, Ahmad; AlJundub, Mohammad; Eilaghi, Armin; Bani-Hani, Ehab; Sabri, Farhad; Mbarki, Raouf; Assad, M. El Haj
2017-01-01
The PBL unit of fluid and electrical drive systems is taught in final semester of undergraduates in mechanical engineering department of the Australian College of Kuwait (ACK). The recent project on an automated punching machine is discovered more appealing to both students and instructors in triggering new ideas and satisfaction end results. In…
Investigating the Human Computer Interaction Problems with Automated Teller Machine Navigation Menus
ERIC Educational Resources Information Center
Curran, Kevin; King, David
2008-01-01
Purpose: The automated teller machine (ATM) has become an integral part of our society. However, using the ATM can often be a frustrating experience as people frequently reinsert cards to conduct multiple transactions. This has led to the research question of whether ATM menus are designed in an optimal manner. This paper aims to address the…
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, Renate J.
1990-01-01
The man-machine interface and its influence on the characteristics of computer displays in automated air traffic is discussed. The graphical presentation of spatial relationships and the problems it poses for air traffic control, and the solution of such problems are addressed. Psychological factors involved in the man-machine interface are stressed.
Living systematic reviews: 2. Combining human and machine effort.
Thomas, James; Noel-Storr, Anna; Marshall, Iain; Wallace, Byron; McDonald, Steven; Mavergames, Chris; Glasziou, Paul; Shemilt, Ian; Synnot, Anneliese; Turner, Tari; Elliott, Julian
2017-11-01
New approaches to evidence synthesis, which use human effort and machine automation in mutually reinforcing ways, can enhance the feasibility and sustainability of living systematic reviews. Human effort is a scarce and valuable resource, required when automation is impossible or undesirable, and includes contributions from online communities ("crowds") as well as more conventional contributions from review authors and information specialists. Automation can assist with some systematic review tasks, including searching, eligibility assessment, identification and retrieval of full-text reports, extraction of data, and risk of bias assessment. Workflows can be developed in which human effort and machine automation can each enable the other to operate in more effective and efficient ways, offering substantial enhancement to the productivity of systematic reviews. This paper describes and discusses the potential-and limitations-of new ways of undertaking specific tasks in living systematic reviews, identifying areas where these human/machine "technologies" are already in use, and where further research and development is needed. While the context is living systematic reviews, many of these enabling technologies apply equally to standard approaches to systematic reviewing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Luke, Edward Allen
1993-01-01
Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.
Welding technology transfer task/laser based weld joint tracking system for compressor girth welds
NASA Technical Reports Server (NTRS)
Looney, Alan
1991-01-01
Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.
NASA Technical Reports Server (NTRS)
Gangal, M. D.; Isenberg, L.; Lewis, E. V.
1985-01-01
Proposed system offers safety and large return on investment. System, operating by year 2000, employs machines and processes based on proven principles. According to concept, line of parallel machines, connected in groups of four to service modules, attacks face of coal seam. High-pressure water jets and central auger on each machine break face. Jaws scoop up coal chunks, and auger grinds them and forces fragments into slurry-transport system. Slurry pumped through pipeline to point of use. Concept for highly automated coal-mining system increases productivity, makes mining safer, and protects health of mine workers.
Automated solar panel assembly line
NASA Technical Reports Server (NTRS)
Somberg, H.
1981-01-01
The initial stage of the automated solar panel assembly line program was devoted to concept development and proof of approach through simple experimental verification. In this phase, laboratory bench models were built to demonstrate and verify concepts. Following this phase was machine design and integration of the various machine elements. The third phase was machine assembly and debugging. In this phase, the various elements were operated as a unit and modifications were made as required. The final stage of development was the demonstration of the equipment in a pilot production operation.
Automated fiber pigtailing machine
Strand, O.T.; Lowry, M.E.
1999-01-05
The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.
Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas
2017-07-01
Next-generation sequencing (NGS) has become a powerful and efficient tool for routine mutation screening in clinical research. As each NGS test yields hundreds of variants, the current challenge is to meaningfully interpret the data and select potential candidates. Analyzing each variant while manually investigating several relevant databases to collect specific information is a cumbersome and time-consuming process, and it requires expertise and familiarity with these databases. Thus, a tool that can seamlessly annotate variants with clinically relevant databases under one common interface would be of great help for variant annotation, cross-referencing, and visualization. This tool would allow variants to be processed in an automated and high-throughput manner and facilitate the investigation of variants in several genome browsers. Several analysis tools are available for raw sequencing-read processing and variant identification, but an automated variant filtering, annotation, cross-referencing, and visualization tool is still lacking. To fulfill these requirements, we developed DaMold, a Web-based, user-friendly tool that can filter and annotate variants and can access and compile information from 37 resources. It is easy to use, provides flexible input options, and accepts variants from NGS and Sanger sequencing as well as hotspots in VCF and BED formats. DaMold is available as an online application at http://damold.platomics.com/index.html, and as a Docker container and virtual machine at https://sourceforge.net/projects/damold/. © 2017 Wiley Periodicals, Inc.
Hättenschwiler, Nicole; Sterchi, Yanik; Mendes, Marcia; Schwaninger, Adrian
2018-10-01
Bomb attacks on civil aviation make detecting improvised explosive devices and explosive material in passenger baggage a major concern. In the last few years, explosive detection systems for cabin baggage screening (EDSCB) have become available. Although used by a number of airports, most countries have not yet implemented these systems on a wide scale. We investigated the benefits of EDSCB with two different levels of automation currently being discussed by regulators and airport operators: automation as a diagnostic aid with an on-screen alarm resolution by the airport security officer (screener) or EDSCB with an automated decision by the machine. The two experiments reported here tested and compared both scenarios and a condition without automation as baseline. Participants were screeners at two international airports who differed in both years of work experience and familiarity with automation aids. Results showed that experienced screeners were good at detecting improvised explosive devices even without EDSCB. EDSCB increased only their detection of bare explosives. In contrast, screeners with less experience (tenure < 1 year) benefitted substantially from EDSCB in detecting both improvised explosive devices and bare explosives. A comparison of all three conditions showed that automated decision provided better human-machine detection performance than on-screen alarm resolution and no automation. This came at the cost of slightly higher false alarm rates on the human-machine system level, which would still be acceptable from an operational point of view. Results indicate that a wide-scale implementation of EDSCB would increase the detection of explosives in passenger bags and automated decision instead of automation as diagnostic aid with on screen alarm resolution should be considered. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Science Goal Monitor: Science Goal Driven Automation for NASA Missions
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Pell, Melissa; Matusow, David; Bailyn, Charles
2004-01-01
Infusion of automation technologies into NASA s future missions will be essential because of the need to: (1) effectively handle an exponentially increasing volume of scientific data, (2) successfully meet dynamic, opportunistic scientific goals and objectives, and (3) substantially reduce mission operations staff and costs. While much effort has gone into automating routine spacecraft operations to reduce human workload and hence costs, applying intelligent automation to the science side, i.e., science data acquisition, data analysis and reactions to that data analysis in a timely and still scientifically valid manner, has been relatively under-emphasized. In order to introduce science driven automation in missions, we must be able to: capture and interpret the science goals of observing programs, represent those goals in machine interpretable language; and allow spacecrafts onboard systems to autonomously react to the scientist's goals. In short, we must teach our platforms to dynamically understand, recognize, and react to the scientists goals. The Science Goal Monitor (SGM) project at NASA Goddard Space Flight Center is a prototype software tool being developed to determine the best strategies for implementing science goal driven automation in missions. The tools being developed in SGM improve the ability to monitor and react to the changing status of scientific events. The SGM system enables scientists to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of science data to identify occurrences of key events previously specified by the scientist. When an event occurs, the system autonomously coordinates the execution of the scientist s desired reactions. Through SGM, we will improve om understanding about the capabilities needed onboard for success, develop metrics to understand the potential increase in science returns, and develop an operational prototype so that the perceived risks associated with increased use of automation can be reduced.
Distributed state machine supervision for long-baseline gravitational-wave detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org
The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less
Unmanned Mine of the 21st Centuries
NASA Astrophysics Data System (ADS)
Semykina, Irina; Grigoryev, Aleksandr; Gargayev, Andrey; Zavyalov, Valeriy
2017-11-01
The article is analytical. It considers the construction principles of the automation system structure which realize the concept of «unmanned mine». All of these principles intend to deal with problems caused by a continuous complication of mining-and-geological conditions at coalmine such as the labor safety and health protection, the weak integration of different mining automation subsystems and the deficiency of optimal balance between a quantity of resource and energy consumed by mining machines and their throughput. The authors describe the main problems and neck stage of mining machines autonomation and automation subsystem. The article makes a general survey of the applied «unmanned technology» in the field of mining such as the remotely operated autonomous complexes, the underground positioning systems of mining machines using infrared radiation in mine workings etc. The concept of «unmanned mine» is considered with an example of the robotic road heading machine. In the final, the authors analyze the techniques and methods that could solve the task of underground mining without human labor.
NASA Technical Reports Server (NTRS)
Keller, Richard M.
1991-01-01
The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.
Records Management Handbook; Source Data Automation Equipment Guide.
ERIC Educational Resources Information Center
National Archives and Records Service (GSA), Washington, DC. Office of Records Management.
A detailed guide to selecting appropriate source data automation equipment is presented. Source data automation equipment is used to prepare data for electronic data processing or computerized recordkeeping. The guide contains specifications, performance data cost, and pictures of the major types of machines used in source data automation.…
Specification, Design, and Analysis of Advanced HUMS Architectures
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
2004-01-01
During the two-year project period, we have worked on several aspects of domain-specific architectures for HUMS. In particular, we looked at using scenario-based approach for the design and designed a language for describing such architectures. The language is now being used in all aspects of our HUMS design. In particular, we have made contributions in the following areas. 1) We have employed scenarios in the development of HUMS in three main areas. They are: (a) To improve reusability by using scenarios as a library indexing tool and as a domain analysis tool; (b) To improve maintainability by recording design rationales from two perspectives - problem domain and solution domain; (c) To evaluate the software architecture. 2) We have defined a new architectural language called HADL or HUMS Architectural Definition Language. It is a customized version of xArch/xADL. It is based on XML and, hence, is easily portable from domain to domain, application to application, and machine to machine. Specifications written in HADL can be easily read and parsed using the currently available XML parsers. Thus, there is no need to develop a plethora of software to support HADL. 3) We have developed an automated design process that involves two main techniques: (a) Selection of solutions from a large space of designs; (b) Synthesis of designs. However, the automation process is not an absolute Artificial Intelligence (AI) approach though it uses a knowledge-based system that epitomizes a specific HUMS domain. The process uses a database of solutions as an aid to solve the problems rather than creating a new design in the literal sense. Since searching is adopted as the main technique, the challenges involved are: (a) To minimize the effort in searching the database where a very large number of possibilities exist; (b) To develop representations that could conveniently allow us to depict design knowledge evolved over many years; (c) To capture the required information that aid the automation process.
Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne
2002-01-01
Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.
High Power Laser Processing Of Materials
NASA Astrophysics Data System (ADS)
Martyr, D. R.; Holt, T.
1987-09-01
The first practical demonstration of a laser device was in 1960 and in the following years, the high power carbon dioxide laser has matured as an industrial machine tool. Modern carbon dioxide gas lasers can be used for cutting, welding, heat treatment, drilling, scribing and marking. Since their invention over 25 years ago they are now becoming recognised as highly reliable devices capable of achieving huge savings in production costs in many situations. This paper introduces the basic laser processing techniques of cutting, welding and heat treatment as they apply to the most common engineering materials. Typical processing speeds achieved with a wide range of laser powers are reported. Accuracies achievable and fit-up tolerances required are presented. Methods of integrating lasers with machine tools are described and their suitability in a wide range of manufacturing industries is described by reference to recent installations. Examples from small batch manufacturing, high volume production using dedicated laser welding equipment, and high volume manufacturing using 'flexible' automated laser welding equipment are described Future applications of laser processing are suggested by reference to current process developments.
Open-source software for collision detection in external beam radiation therapy
NASA Astrophysics Data System (ADS)
Suriyakumar, Vinith M.; Xu, Renee; Pinter, Csaba; Fichtinger, Gabor
2017-03-01
PURPOSE: Collision detection for external beam radiation therapy (RT) is important for eliminating the need for dryruns that aim to ensure patient safety. Commercial treatment planning systems (TPS) offer this feature but they are expensive and proprietary. Cobalt-60 RT machines are a viable solution to RT practice in low-budget scenarios. However, such clinics are hesitant to invest in these machines due to a lack of affordable treatment planning software. We propose the creation of an open-source room's eye view visualization module with automated collision detection as part of the development of an open-source TPS. METHODS: An openly accessible linac 3D geometry model is sliced into the different components of the treatment machine. The model's movements are based on the International Electrotechnical Commission standard. Automated collision detection is implemented between the treatment machine's components. RESULTS: The room's eye view module was built in C++ as part of SlicerRT, an RT research toolkit built on 3D Slicer. The module was tested using head and neck and prostate RT plans. These tests verified that the module accurately modeled the movements of the treatment machine and radiation beam. Automated collision detection was verified using tests where geometric parameters of the machine's components were changed, demonstrating accurate collision detection. CONCLUSION: Room's eye view visualization and automated collision detection are essential in a Cobalt-60 treatment planning system. Development of these features will advance the creation of an open-source TPS that will potentially help increase the feasibility of adopting Cobalt-60 RT.
Applying machine learning classification techniques to automate sky object cataloguing
NASA Astrophysics Data System (ADS)
Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav
1993-08-01
We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is consistency of classification. The classification rules which are the product of the inductive learning techniques will form an objective, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically catalogued data.
2008-09-01
Abbreviations ATM automated teller machine BEA business enterprise architecture DOD...Limitations Automated Teller Machines (ATMs)-At-Sea 1988 Localized, shipboard ATMs that received and accounted for a portion of sailors’ and...use smart card technology for electronic retail ransactions and (2) economically justified on the basis of reliable analyses of stimated costs and
Performance of Color Camera Machine Vision in Automated Furniture Rough Mill Systems
D. Earl Kline; Agus Widoyoko; Janice K. Wiedenbeck; Philip A. Araman
1998-01-01
The objective of this study was to evaluate the performance of color camera machine vision for lumber processing in a furniture rough mill. The study used 134 red oak boards to compare the performance of automated gang-rip-first rough mill yield based on a prototype color camera lumber inspection system developed at Virginia Tech with both estimated optimum rough mill...
Production planning, production systems for flexible automation
NASA Astrophysics Data System (ADS)
Spur, G.; Mertins, K.
1982-09-01
Trends in flexible manufacturing system (FMS) applications are reviewed. Machining systems contain machines which complement each other and can replace each other. Computer controlled storage systems are widespread, with central storage capacity ranging from 20 pallet spaces to 200 magazine spaces. Handling function is fulfilled by pallet chargers in over 75% of FMS's. Data system degree of automation varies considerably. No trends are noted for transport systems.
Managing Multi-center Flow Cytometry Data for Immune Monitoring
White, Scott; Laske, Karoline; Welters, Marij JP; Bidmon, Nicole; van der Burg, Sjoerd H; Britten, Cedrik M; Enzor, Jennifer; Staats, Janet; Weinhold, Kent J; Gouttefangeas, Cécile; Chan, Cliburn
2014-01-01
With the recent results of promising cancer vaccines and immunotherapy1–5, immune monitoring has become increasingly relevant for measuring treatment-induced effects on T cells, and an essential tool for shedding light on the mechanisms responsible for a successful treatment. Flow cytometry is the canonical multi-parameter assay for the fine characterization of single cells in solution, and is ubiquitously used in pre-clinical tumor immunology and in cancer immunotherapy trials. Current state-of-the-art polychromatic flow cytometry involves multi-step, multi-reagent assays followed by sample acquisition on sophisticated instruments capable of capturing up to 20 parameters per cell at a rate of tens of thousands of cells per second. Given the complexity of flow cytometry assays, reproducibility is a major concern, especially for multi-center studies. A promising approach for improving reproducibility is the use of automated analysis borrowing from statistics, machine learning and information visualization21–23, as these methods directly address the subjectivity, operator-dependence, labor-intensive and low fidelity of manual analysis. However, it is quite time-consuming to investigate and test new automated analysis techniques on large data sets without some centralized information management system. For large-scale automated analysis to be practical, the presence of consistent and high-quality data linked to the raw FCS files is indispensable. In particular, the use of machine-readable standard vocabularies to characterize channel metadata is essential when constructing analytic pipelines to avoid errors in processing, analysis and interpretation of results. For automation, this high-quality metadata needs to be programmatically accessible, implying the need for a consistent Application Programming Interface (API). In this manuscript, we propose that upfront time spent normalizing flow cytometry data to conform to carefully designed data models enables automated analysis, potentially saving time in the long run. The ReFlow informatics framework was developed to address these data management challenges. PMID:26085786
Toward Intelligent Software Defect Detection
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2011-01-01
Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.
Automation's Effect on Library Personnel.
ERIC Educational Resources Information Center
Dakshinamurti, Ganga
1985-01-01
Reports on survey studying the human-machine interface in Canadian university, public, and special libraries. Highlights include position category and educational background of 118 participants, participants' feelings toward automation, physical effects of automation, diffusion in decision making, interpersonal communication, future trends,…
Accelerating the discovery of materials for clean energy in the era of smart automation
NASA Astrophysics Data System (ADS)
Tabor, Daniel P.; Roch, Loïc M.; Saikin, Semion K.; Kreisbeck, Christoph; Sheberla, Dennis; Montoya, Joseph H.; Dwaraknath, Shyam; Aykol, Muratahan; Ortiz, Carlos; Tribukait, Hermann; Amador-Bedolla, Carlos; Brabec, Christoph J.; Maruyama, Benji; Persson, Kristin A.; Aspuru-Guzik, Alán
2018-05-01
The discovery and development of novel materials in the field of energy are essential to accelerate the transition to a low-carbon economy. Bringing recent technological innovations in automation, robotics and computer science together with current approaches in chemistry, materials synthesis and characterization will act as a catalyst for revolutionizing traditional research and development in both industry and academia. This Perspective provides a vision for an integrated artificial intelligence approach towards autonomous materials discovery, which, in our opinion, will emerge within the next 5 to 10 years. The approach we discuss requires the integration of the following tools, which have already seen substantial development to date: high-throughput virtual screening, automated synthesis planning, automated laboratories and machine learning algorithms. In addition to reducing the time to deployment of new materials by an order of magnitude, this integrated approach is expected to lower the cost associated with the initial discovery. Thus, the price of the final products (for example, solar panels, batteries and electric vehicles) will also decrease. This in turn will enable industries and governments to meet more ambitious targets in terms of reducing greenhouse gas emissions at a faster pace.
Method and apparatus for characterizing and enhancing the dynamic performance of machine tools
Barkman, William E; Babelay, Jr., Edwin F
2013-12-17
Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.
Development of Semi-Automatic Lathe by using Intelligent Soft Computing Technique
NASA Astrophysics Data System (ADS)
Sakthi, S.; Niresh, J.; Vignesh, K.; Anand Raj, G.
2018-03-01
This paper discusses the enhancement of conventional lathe machine to semi-automated lathe machine by implementing a soft computing method. In the present scenario, lathe machine plays a vital role in the engineering division of manufacturing industry. While the manual lathe machines are economical, the accuracy and efficiency are not up to the mark. On the other hand, CNC machine provide the desired accuracy and efficiency, but requires a huge capital. In order to over come this situation, a semi-automated approach towards the conventional lathe machine is developed by employing stepper motors to the horizontal and vertical drive, that can be controlled by Arduino UNO -microcontroller. Based on the input parameters of the lathe operation the arduino coding is been generated and transferred to the UNO board. Thus upgrading from manual to semi-automatic lathe machines can significantly increase the accuracy and efficiency while, at the same time, keeping a check on investment cost and consequently provide a much needed escalation to the manufacturing industry.
NASA Astrophysics Data System (ADS)
Rückwardt, M.; Göpfert, A.; Correns, M.; Schellhorn, M.; Linß, G.
2010-07-01
Coordinate measuring machines are high precession all-rounder in three dimensional measuring. Therefore the versatility of parameters and expandability of additionally hardware is very comprehensive. Consequently you need much expert knowledge of the user and mostly a lot of advanced information about the measuring object. In this paper a coordinate measuring machine and a specialized measuring machine are compared at the example of the measuring of eyeglass frames. For this case of three dimensional measuring challenges the main focus is divided into metrological and economical aspects. At first there is shown a fully automated method for tactile measuring of this abstract form. At second there is shown a comparison of the metrological characteristics of a coordinate measuring machine and a tracer for eyeglass frames. The result is in favour to the coordinate measuring machine. It was not surprising in these aspects. At last there is shown a comparison of the machine in front of the economical aspects.
Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta
2008-04-22
Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.
Affective processes in human-automation interactions.
Merritt, Stephanie M
2011-08-01
This study contributes to the literature on automation reliance by illuminating the influences of user moods and emotions on reliance on automated systems. Past work has focused predominantly on cognitive and attitudinal variables, such as perceived machine reliability and trust. However, recent work on human decision making suggests that affective variables (i.e., moods and emotions) are also important. Drawing from the affect infusion model, significant effects of affect are hypothesized. Furthermore, a new affectively laden attitude termed liking is introduced. Participants watched video clips selected to induce positive or negative moods, then interacted with a fictitious automated system on an X-ray screening task At five time points, important variables were assessed including trust, liking, perceived machine accuracy, user self-perceived accuracy, and reliance.These variables, along with propensity to trust machines and state affect, were integrated in a structural equation model. Happiness significantly increased trust and liking for the system throughout the task. Liking was the only variable that significantly predicted reliance early in the task. Trust predicted reliance later in the task, whereas perceived machine accuracy and user self-perceived accuracy had no significant direct effects on reliance at any time. Affective influences on automation reliance are demonstrated, suggesting that this decision-making process may be less rational and more emotional than previously acknowledged. Liking for a new system may be key to appropriate reliance, particularly early in the task. Positive affect can be easily induced and may be a lever for increasing liking.
Topics in programmable automation. [for materials handling, inspection, and assembly
NASA Technical Reports Server (NTRS)
Rosen, C. A.
1975-01-01
Topics explored in the development of integrated programmable automation systems include: numerically controlled and computer controlled machining; machine intelligence and the emulation of human-like capabilities; large scale semiconductor integration technology applications; and sensor technology for asynchronous local computation without burdening the executive minicomputer which controls the whole system. The role and development of training aids, and the potential application of these aids to augmented teleoperator systems are discussed.
A Cognitive Systems Engineering Approach to Developing HMI Requirements for New Technologies
NASA Technical Reports Server (NTRS)
Fern, Lisa Carolynn
2016-01-01
This document examines the challenges inherent in designing and regulating to support human-automation interaction for new technologies that will deployed into complex systems. A key question for new technologies, is how work will be accomplished by the human and machine agents. This question has traditionally been framed as how functions should be allocated between humans and machines. Such framing misses the coordination and synchronization that is needed for the different human and machine roles in the system to accomplish their goals. Coordination and synchronization demands are driven by the underlying human-automation architecture of the new technology, which are typically not specified explicitly by the designers. The human machine interface (HMI) which is intended to facilitate human-machine interaction and cooperation, however, typically is defined explicitly and therefore serves as a proxy for human-automation cooperation requirements with respect to technical standards for technologies. Unfortunately, mismatches between the HMI and the coordination and synchronization demands of the underlying human-automation architecture, can lead to system breakdowns. A methodology is needed that both designers and regulators can utilize to evaluate the expected performance of a new technology given potential human-automation architectures. Three experiments were conducted to inform the minimum HMI requirements a detect and avoid system for unmanned aircraft systems (UAS). The results of the experiments provided empirical input to specific minimum operational performance standards that UAS manufacturers will have to meet in order to operate UAS in the National Airspace System (NAS). These studies represent a success story for how to objectively and systematically evaluate prototype technologies as part of the process for developing regulatory requirements. They also provide an opportunity to reflect on the lessons learned from a recent research effort in order to improve the methodology for defining technology requirements for regulators in the future. The biggest shortcoming of the presented research program was the absence of the explicit definition, generation and analysis of potential human-automation architectures. Failure to execute this step in the research process resulted in less efficient evaluation of the candidate prototypes technologies in addition to the complete absence of different approaches to human-automation cooperation. For example, all of the prototype technologies that were evaluated in the research program assumed a human-automation architecture that relied on serial processing from the automation to the human. While this type of human-automation architecture is typical across many different technologies and in many different domains, it ignores different architectures where humans and automation work in parallel. Defining potential human-automation architectures a priori also allows regulators to develop scenarios that will stress the performance boundaries of the technology during the evaluation phase. The importance of adding this step of generating and evaluating candidate human-automation architectures prior to formal empirical evaluation is discussed.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities and their related ground support functions are studied, so that informed decisions can be made on which aspects of ARAMIS to develop. The specific tasks which will be required by future space project tasks are identified and the relative merits of these options are evaluated. The ARAMIS options defined and researched span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.
Jin, Bo; Krishnan, Balu; Adler, Sophie; Wagstyl, Konrad; Hu, Wenhan; Jones, Stephen; Najm, Imad; Alexopoulos, Andreas; Zhang, Kai; Zhang, Jianguo; Ding, Meiping; Wang, Shuang; Wang, Zhong Irene
2018-05-01
Focal cortical dysplasia (FCD) is a major pathology in patients undergoing surgical resection to treat pharmacoresistant epilepsy. Magnetic resonance imaging (MRI) postprocessing methods may provide essential help for detection of FCD. In this study, we utilized surface-based MRI morphometry and machine learning for automated lesion detection in a mixed cohort of patients with FCD type II from 3 different epilepsy centers. Sixty-one patients with pharmacoresistant epilepsy and histologically proven FCD type II were included in the study. The patients had been evaluated at 3 different epilepsy centers using 3 different MRI scanners. T1-volumetric sequence was used for postprocessing. A normal database was constructed with 120 healthy controls. We also included 35 healthy test controls and 15 disease test controls with histologically confirmed hippocampal sclerosis to assess specificity. Features were calculated and incorporated into a nonlinear neural network classifier, which was trained to identify lesional cluster. We optimized the threshold of the output probability map from the classifier by performing receiver operating characteristic (ROC) analyses. Success of detection was defined by overlap between the final cluster and the manual labeling. Performance was evaluated using k-fold cross-validation. The threshold of 0.9 showed optimal sensitivity of 73.7% and specificity of 90.0%. The area under the curve for the ROC analysis was 0.75, which suggests a discriminative classifier. Sensitivity and specificity were not significantly different for patients from different centers, suggesting robustness of performance. Correct detection rate was significantly lower in patients with initially normal MRI than patients with unequivocally positive MRI. Subgroup analysis showed the size of the training group and normal control database impacted classifier performance. Automated surface-based MRI morphometry equipped with machine learning showed robust performance across cohorts from different centers and scanners. The proposed method may be a valuable tool to improve FCD detection in presurgical evaluation for patients with pharmacoresistant epilepsy. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.
Burlina, Philippe; Billings, Seth; Joshi, Neil
2017-01-01
Objective To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Methods Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and “engineered” features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. Results The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). Conclusions This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification. PMID:28854220
Burlina, Philippe; Billings, Seth; Joshi, Neil; Albayda, Jemima
2017-01-01
To evaluate the use of ultrasound coupled with machine learning (ML) and deep learning (DL) techniques for automated or semi-automated classification of myositis. Eighty subjects comprised of 19 with inclusion body myositis (IBM), 14 with polymyositis (PM), 14 with dermatomyositis (DM), and 33 normal (N) subjects were included in this study, where 3214 muscle ultrasound images of 7 muscles (observed bilaterally) were acquired. We considered three problems of classification including (A) normal vs. affected (DM, PM, IBM); (B) normal vs. IBM patients; and (C) IBM vs. other types of myositis (DM or PM). We studied the use of an automated DL method using deep convolutional neural networks (DL-DCNNs) for diagnostic classification and compared it with a semi-automated conventional ML method based on random forests (ML-RF) and "engineered" features. We used the known clinical diagnosis as the gold standard for evaluating performance of muscle classification. The performance of the DL-DCNN method resulted in accuracies ± standard deviation of 76.2% ± 3.1% for problem (A), 86.6% ± 2.4% for (B) and 74.8% ± 3.9% for (C), while the ML-RF method led to accuracies of 72.3% ± 3.3% for problem (A), 84.3% ± 2.3% for (B) and 68.9% ± 2.5% for (C). This study demonstrates the application of machine learning methods for automatically or semi-automatically classifying inflammatory muscle disease using muscle ultrasound. Compared to the conventional random forest machine learning method used here, which has the drawback of requiring manual delineation of muscle/fat boundaries, DCNN-based classification by and large improved the accuracies in all classification problems while providing a fully automated approach to classification.
Applications of Machine Learning and Rule Induction,
1995-02-15
An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic
Large-scale deep learning for robotically gathered imagery for science
NASA Astrophysics Data System (ADS)
Skinner, K.; Johnson-Roberson, M.; Li, J.; Iscar, E.
2016-12-01
With the explosion of computing power, the intelligence and capability of mobile robotics has dramatically increased over the last two decades. Today, we can deploy autonomous robots to achieve observations in a variety of environments ripe for scientific exploration. These platforms are capable of gathering a volume of data previously unimaginable. Additionally, optical cameras, driven by mobile phones and consumer photography, have rapidly improved in size, power consumption, and quality making their deployment cheaper and easier. Finally, in parallel we have seen the rise of large-scale machine learning approaches, particularly deep neural networks (DNNs), increasing the quality of the semantic understanding that can be automatically extracted from optical imagery. In concert this enables new science using a combination of machine learning and robotics. This work will discuss the application of new low-cost high-performance computing approaches and the associated software frameworks to enable scientists to rapidly extract useful science data from millions of robotically gathered images. The automated analysis of imagery on this scale opens up new avenues of inquiry unavailable using more traditional manual or semi-automated approaches. We will use a large archive of millions of benthic images gathered with an autonomous underwater vehicle to demonstrate how these tools enable new scientific questions to be posed.
NASA Astrophysics Data System (ADS)
Herbuś, K.; Ociepka, P.
2017-08-01
In the work is analysed a sequential control system of a machine for separating and grouping work pieces for processing. Whereas, the area of the considered problem is related with verification of operation of an actuator system of an electro-pneumatic control system equipped with a PLC controller. Wherein to verification is subjected the way of operation of actuators in view of logic relationships assumed in the control system. The actuators of the considered control system were three drives of linear motion (pneumatic cylinders). And the logical structure of the system of operation of the control system is based on the signals flow graph. The tested logical structure of operation of the electro-pneumatic control system was implemented in the Automation Studio software of B&R company. This software is used to create programs for the PLC controllers. Next, in the FluidSIM software was created the model of the actuator system of the control system of a machine. To verify the created program for the PLC controller, simulating the operation of the created model, it was utilized the approach of integration these two programs using the tool for data exchange in the form of the OPC server.
Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application.
Hanwell, Marcus D; de Jong, Wibe A; Harris, Christopher J
2017-10-30
An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction-connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platform with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web-going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.
Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application
Hanwell, Marcus D.; de Jong, Wibe A.; Harris, Christopher J.
2017-10-30
An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction - connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platformmore » with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web - going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.« less
Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanwell, Marcus D.; de Jong, Wibe A.; Harris, Christopher J.
An end-to-end platform for chemical science research has been developed that integrates data from computational and experimental approaches through a modern web-based interface. The platform offers an interactive visualization and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were extended to integrate with high-performance computing resources, and offer command-line tools to automate interaction - connecting distributed teams to this software platform on their own terms. The platform was developed openly, and all source code hosted on the GitHub platformmore » with automated deployment possible using Ansible coupled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable teams to reap the benefits of the connected web - going beyond what conventional search and analytics platforms offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research performed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that support computational chemistry calculations. These structures were developed to make it easy to process data across different languages, and send data to a JavaScript-based web client.« less
Employment Opportunities for the Handicapped in Programmable Automation.
ERIC Educational Resources Information Center
Swift, Richard; Leneway, Robert
A Computer Integrated Manufacturing System may make it possible for severely disabled people to custom design, machine, and manufacture either wood or metal parts. Programmable automation merges computer aided design, computer aided manufacturing, computer aided engineering, and computer integrated manufacturing systems with automated production…
Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection
Carrio, Adrian; Sampedro, Carlos; Sanchez-Lopez, Jose Luis; Pimienta, Miguel; Campoy, Pascual
2015-01-01
Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results. PMID:26610513
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.
Automated Laser Cutting In Three Dimensions
NASA Technical Reports Server (NTRS)
Bird, Lisa T.; Yvanovich, Mark A.; Angell, Terry R.; Bishop, Patricia J.; Dai, Weimin; Dobbs, Robert D.; He, Mingli; Minardi, Antonio; Shelton, Bret A.
1995-01-01
Computer-controlled machine-tool system uses laser beam assisted by directed flow of air to cut refractory materials into complex three-dimensional shapes. Velocity, position, and angle of cut varied. In original application, materials in question were thermally insulating thick blankets and tiles used on space shuttle. System shapes tile to concave or convex contours and cuts beveled edges on blanket, without cutting through outer layer of quartz fabric part of blanket. For safety, system entirely enclosed to prevent escape of laser energy. No dust generated during cutting operation - all material vaporized; larger solid chips dislodged from workpiece easily removed later.
An investigation of chatter and tool wear when machining titanium
NASA Technical Reports Server (NTRS)
Sutherland, I. A.
1974-01-01
The low thermal conductivity of titanium, together with the low contact area between chip and tool and the unusually high chip velocities, gives rise to high tool tip temperatures and accelerated tool wear. Machining speeds have to be considerably reduced to avoid these high temperatures with a consequential loss of productivity. Restoring this lost productivity involves increasing other machining variables, such as feed and depth-of-cut, and can lead to another machining problem commonly known as chatter. This work is to acquaint users with these problems, to examine the variables that may be encountered when machining a material like titanium, and to advise the machine tool user on how to maximize the output from the machines and tooling available to him. Recommendations are made on ways of improving tolerances, reducing machine tool instability or chatter, and improving productivity. New tool materials, tool coatings, and coolants are reviewed and their relevance examined when machining titanium.
Tackling the x-ray cargo inspection challenge using machine learning
NASA Astrophysics Data System (ADS)
Jaccard, Nicolas; Rogers, Thomas W.; Morton, Edward J.; Griffin, Lewis D.
2016-05-01
The current infrastructure for non-intrusive inspection of cargo containers cannot accommodate exploding com-merce volumes and increasingly stringent regulations. There is a pressing need to develop methods to automate parts of the inspection workflow, enabling expert operators to focus on a manageable number of high-risk images. To tackle this challenge, we developed a modular framework for automated X-ray cargo image inspection. Employing state-of-the-art machine learning approaches, including deep learning, we demonstrate high performance for empty container verification and specific threat detection. This work constitutes a significant step towards the partial automation of X-ray cargo image inspection.
Machine vision system: a tool for quality inspection of food and agricultural products.
Patel, Krishna Kumar; Kar, A; Jha, S N; Khan, M A
2012-04-01
Quality inspection of food and agricultural produce are difficult and labor intensive. Simultaneously, with increased expectations for food products of high quality and safety standards, the need for accurate, fast and objective quality determination of these characteristics in food products continues to grow. However, these operations generally in India are manual which is costly as well as unreliable because human decision in identifying quality factors such as appearance, flavor, nutrient, texture, etc., is inconsistent, subjective and slow. Machine vision provides one alternative for an automated, non-destructive and cost-effective technique to accomplish these requirements. This inspection approach based on image analysis and processing has found a variety of different applications in the food industry. Considerable research has highlighted its potential for the inspection and grading of fruits and vegetables, grain quality and characteristic examination and quality evaluation of other food products like bakery products, pizza, cheese, and noodles etc. The objective of this paper is to provide in depth introduction of machine vision system, its components and recent work reported on food and agricultural produce.
Kuhn, Stefan; Egert, Björn; Neumann, Steffen; Steinbeck, Christoph
2008-09-25
Current efforts in Metabolomics, such as the Human Metabolome Project, collect structures of biological metabolites as well as data for their characterisation, such as spectra for identification of substances and measurements of their concentration. Still, only a fraction of existing metabolites and their spectral fingerprints are known. Computer-Assisted Structure Elucidation (CASE) of biological metabolites will be an important tool to leverage this lack of knowledge. Indispensable for CASE are modules to predict spectra for hypothetical structures. This paper evaluates different statistical and machine learning methods to perform predictions of proton NMR spectra based on data from our open database NMRShiftDB. A mean absolute error of 0.18 ppm was achieved for the prediction of proton NMR shifts ranging from 0 to 11 ppm. Random forest, J48 decision tree and support vector machines achieved similar overall errors. HOSE codes being a notably simple method achieved a comparatively good result of 0.17 ppm mean absolute error. NMR prediction methods applied in the course of this work delivered precise predictions which can serve as a building block for Computer-Assisted Structure Elucidation for biological metabolites.
Pain Intensity Recognition Rates via Biopotential Feature Patterns with Support Vector Machines
Gruss, Sascha; Treister, Roi; Werner, Philipp; Traue, Harald C.; Crawcour, Stephen; Andrade, Adriano; Walter, Steffen
2015-01-01
Background The clinically used methods of pain diagnosis do not allow for objective and robust measurement, and physicians must rely on the patient’s report on the pain sensation. Verbal scales, visual analog scales (VAS) or numeric rating scales (NRS) count among the most common tools, which are restricted to patients with normal mental abilities. There also exist instruments for pain assessment in people with verbal and / or cognitive impairments and instruments for pain assessment in people who are sedated and automated ventilated. However, all these diagnostic methods either have limited reliability and validity or are very time-consuming. In contrast, biopotentials can be automatically analyzed with machine learning algorithms to provide a surrogate measure of pain intensity. Methods In this context, we created a database of biopotentials to advance an automated pain recognition system, determine its theoretical testing quality, and optimize its performance. Eighty-five participants were subjected to painful heat stimuli (baseline, pain threshold, two intermediate thresholds, and pain tolerance threshold) under controlled conditions and the signals of electromyography, skin conductance level, and electrocardiography were collected. A total of 159 features were extracted from the mathematical groupings of amplitude, frequency, stationarity, entropy, linearity, variability, and similarity. Results We achieved classification rates of 90.94% for baseline vs. pain tolerance threshold and 79.29% for baseline vs. pain threshold. The most selected pain features stemmed from the amplitude and similarity group and were derived from facial electromyography. Conclusion The machine learning measurement of pain in patients could provide valuable information for a clinical team and thus support the treatment assessment. PMID:26474183
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.
NASA Astrophysics Data System (ADS)
Sivarami Reddy, N.; Ramamurthy, D. V., Dr.; Prahlada Rao, K., Dr.
2017-08-01
This article addresses simultaneous scheduling of machines, AGVs and tools where machines are allowed to share the tools considering transfer times of jobs and tools between machines, to generate best optimal sequences that minimize makespan in a multi-machine Flexible Manufacturing System (FMS). Performance of FMS is expected to improve by effective utilization of its resources, by proper integration and synchronization of their scheduling. Symbiotic Organisms Search (SOS) algorithm is a potent tool which is a better alternative for solving optimization problems like scheduling and proven itself. The proposed SOS algorithm is tested on 22 job sets with makespan as objective for scheduling of machines and tools where machines are allowed to share tools without considering transfer times of jobs and tools and the results are compared with the results of existing methods. The results show that the SOS has outperformed. The same SOS algorithm is used for simultaneous scheduling of machines, AGVs and tools where machines are allowed to share tools considering transfer times of jobs and tools to determine the best optimal sequences that minimize makespan.
How Not To Drown in Data: A Guide for Biomaterial Engineers.
Vasilevich, Aliaksei S; Carlier, Aurélie; de Boer, Jan; Singh, Shantanu
2017-08-01
High-throughput assays that produce hundreds of measurements per sample are powerful tools for quantifying cell-material interactions. With advances in automation and miniaturization in material fabrication, hundreds of biomaterial samples can be rapidly produced, which can then be characterized using these assays. However, the resulting deluge of data can be overwhelming. To the rescue are computational methods that are well suited to these problems. Machine learning techniques provide a vast array of tools to make predictions about cell-material interactions and to find patterns in cellular responses. Computational simulations allow researchers to pose and test hypotheses and perform experiments in silico. This review describes approaches from these two domains that can be brought to bear on the problem of analyzing biomaterial screening data. Copyright © 2017 Elsevier Ltd. All rights reserved.
The dynamic analysis of drum roll lathe for machining of rollers
NASA Astrophysics Data System (ADS)
Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei
2014-08-01
An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.
NMRNet: A deep learning approach to automated peak picking of protein NMR spectra.
Klukowski, Piotr; Augoff, Michal; Zieba, Maciej; Drwal, Maciej; Gonczarek, Adam; Walczak, Michal J
2018-03-14
Automated selection of signals in protein NMR spectra, known as peak picking, has been studied for over 20 years, nevertheless existing peak picking methods are still largely deficient. Accurate and precise automated peak picking would accelerate the structure calculation, and analysis of dynamics and interactions of macromolecules. Recent advancement in handling big data, together with an outburst of machine learning techniques, offer an opportunity to tackle the peak picking problem substantially faster than manual picking and on par with human accuracy. In particular, deep learning has proven to systematically achieve human-level performance in various recognition tasks, and thus emerges as an ideal tool to address automated identification of NMR signals. We have applied a convolutional neural network for visual analysis of multidimensional NMR spectra. A comprehensive test on 31 manually-annotated spectra has demonstrated top-tier average precision (AP) of 0.9596, 0.9058 and 0.8271 for backbone, side-chain and NOESY spectra, respectively. Furthermore, a combination of extracted peak lists with automated assignment routine, FLYA, outperformed other methods, including the manual one, and led to correct resonance assignment at the levels of 90.40%, 89.90% and 90.20% for three benchmark proteins. The proposed model is a part of a Dumpling software (platform for protein NMR data analysis), and is available at https://dumpling.bio/. michaljerzywalczak@gmail.compiotr.klukowski@pwr.edu.pl. Supplementary data are available at Bioinformatics online.
Code of Federal Regulations, 2012 CFR
2012-01-01
... device means a card, code, or other means of access to a consumer's account, or any combination thereof..., automated teller machines, and cash dispensing machines. (i) Financial institution means a bank, savings...
Code of Federal Regulations, 2014 CFR
2014-01-01
... device means a card, code, or other means of access to a consumer's account, or any combination thereof..., automated teller machines, and cash dispensing machines. (i) Financial institution means a bank, savings...
Code of Federal Regulations, 2011 CFR
2011-01-01
... device means a card, code, or other means of access to a consumer's account, or any combination thereof..., automated teller machines, and cash dispensing machines. (i) Financial institution means a bank, savings...
Code of Federal Regulations, 2013 CFR
2013-01-01
... device means a card, code, or other means of access to a consumer's account, or any combination thereof..., automated teller machines, and cash dispensing machines. (i) Financial institution means a bank, savings...
Planning for the Automation of School Library Media Centers.
ERIC Educational Resources Information Center
Caffarella, Edward P.
1996-01-01
Geared for school library media specialists whose centers are in the early stages of automation or conversion to a new system, this article focuses on major components of media center automation: circulation control; online public access catalogs; machine readable cataloging; retrospective conversion of print catalog cards; and computer networks…
A hybrid human and machine resource curation pipeline for the Neuroscience Information Framework.
Bandrowski, A E; Cachat, J; Li, Y; Müller, H M; Sternberg, P W; Ciccarese, P; Clark, T; Marenco, L; Wang, R; Astakhov, V; Grethe, J S; Martone, M E
2012-01-01
The breadth of information resources available to researchers on the Internet continues to expand, particularly in light of recently implemented data-sharing policies required by funding agencies. However, the nature of dense, multifaceted neuroscience data and the design of contemporary search engine systems makes efficient, reliable and relevant discovery of such information a significant challenge. This challenge is specifically pertinent for online databases, whose dynamic content is 'hidden' from search engines. The Neuroscience Information Framework (NIF; http://www.neuinfo.org) was funded by the NIH Blueprint for Neuroscience Research to address the problem of finding and utilizing neuroscience-relevant resources such as software tools, data sets, experimental animals and antibodies across the Internet. From the outset, NIF sought to provide an accounting of available resources, whereas developing technical solutions to finding, accessing and utilizing them. The curators therefore, are tasked with identifying and registering resources, examining data, writing configuration files to index and display data and keeping the contents current. In the initial phases of the project, all aspects of the registration and curation processes were manual. However, as the number of resources grew, manual curation became impractical. This report describes our experiences and successes with developing automated resource discovery and semiautomated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. We also describe the DISCO framework, a suite of automated web services that significantly reduce manual curation efforts to periodically check for resource updates. Lastly, we discuss DOMEO, a semi-automated annotation tool that improves the discovery and curation of resources that are not necessarily website-based (i.e. reagents, software tools). Although the ultimate goal of automation was to reduce the workload of the curators, it has resulted in valuable analytic by-products that address accessibility, use and citation of resources that can now be shared with resource owners and the larger scientific community. DATABASE URL: http://neuinfo.org.
A hybrid human and machine resource curation pipeline for the Neuroscience Information Framework
Bandrowski, A. E.; Cachat, J.; Li, Y.; Müller, H. M.; Sternberg, P. W.; Ciccarese, P.; Clark, T.; Marenco, L.; Wang, R.; Astakhov, V.; Grethe, J. S.; Martone, M. E.
2012-01-01
The breadth of information resources available to researchers on the Internet continues to expand, particularly in light of recently implemented data-sharing policies required by funding agencies. However, the nature of dense, multifaceted neuroscience data and the design of contemporary search engine systems makes efficient, reliable and relevant discovery of such information a significant challenge. This challenge is specifically pertinent for online databases, whose dynamic content is ‘hidden’ from search engines. The Neuroscience Information Framework (NIF; http://www.neuinfo.org) was funded by the NIH Blueprint for Neuroscience Research to address the problem of finding and utilizing neuroscience-relevant resources such as software tools, data sets, experimental animals and antibodies across the Internet. From the outset, NIF sought to provide an accounting of available resources, whereas developing technical solutions to finding, accessing and utilizing them. The curators therefore, are tasked with identifying and registering resources, examining data, writing configuration files to index and display data and keeping the contents current. In the initial phases of the project, all aspects of the registration and curation processes were manual. However, as the number of resources grew, manual curation became impractical. This report describes our experiences and successes with developing automated resource discovery and semiautomated type characterization with text-mining scripts that facilitate curation team efforts to discover, integrate and display new content. We also describe the DISCO framework, a suite of automated web services that significantly reduce manual curation efforts to periodically check for resource updates. Lastly, we discuss DOMEO, a semi-automated annotation tool that improves the discovery and curation of resources that are not necessarily website-based (i.e. reagents, software tools). Although the ultimate goal of automation was to reduce the workload of the curators, it has resulted in valuable analytic by-products that address accessibility, use and citation of resources that can now be shared with resource owners and the larger scientific community. Database URL: http://neuinfo.org PMID:22434839
Manufacturing Laboratory for Next Generation Engineers
2013-12-16
automated CNC machines, rapid prototype systems, robotic assembly systems, metrology , and non-traditional systems such as a waterjet cutter, EDM machine...CNC machines, rapid prototype systems, robotic assembly systems, metrology , and non-traditional systems such as a waterjet cutter, EDM machine, plasma...System Metrology and Quality Control Equipment - This area already had a CMM and other well known quality control instrumentation. It has been enhanced
Automated Design Space Exploration with Aspen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spafford, Kyle L.; Vetter, Jeffrey S.
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
Automated Design Space Exploration with Aspen
Spafford, Kyle L.; Vetter, Jeffrey S.
2015-01-01
Architects and applications scientists often use performance models to explore a multidimensional design space of architectural characteristics, algorithm designs, and application parameters. With traditional performance modeling tools, these explorations forced users to first develop a performance model and then repeatedly evaluate and analyze the model manually. These manual investigations proved laborious and error prone. More importantly, the complexity of this traditional process often forced users to simplify their investigations. To address this challenge of design space exploration, we extend our Aspen (Abstract Scalable Performance Engineering Notation) language with three new language constructs: user-defined resources, parameter ranges, and a collection ofmore » costs in the abstract machine model. Then, we use these constructs to enable automated design space exploration via a nonlinear optimization solver. We show how four interesting classes of design space exploration scenarios can be derived from Aspen models and formulated as pure nonlinear programs. The analysis tools are demonstrated using examples based on Aspen models for a three-dimensional Fast Fourier Transform, the CoMD molecular dynamics proxy application, and the DARPA Streaming Sensor Challenge Problem. Our results show that this approach can compose and solve arbitrary performance modeling questions quickly and rigorously when compared to the traditional manual approach.« less
Neuromorphic Optical Signal Processing and Image Understanding for Automated Target Recognition
1989-12-01
34 Stochastic Learning Machine " Neuromorphic Target Identification * Cognitive Networks 3. Conclusions ..... ................ .. 12 4. Publications...16 5. References ...... ................... . 17 6. Appendices ....... .................. 18 I. Optoelectronic Neural Networks and...Learning Machines. II. Stochastic Optical Learning Machine. III. Learning Network for Extrapolation AccesFon For and Radar Target Identification
14 CFR 382.3 - What do the terms in this rule mean?
Code of Federal Regulations, 2014 CFR
2014-01-01
... devices and medications. Automated airport kiosk means a self-service transaction machine that a carrier... machine means a continuous positive airway pressure machine. Department or DOT means the United States..., emotional or mental illness, and specific learning disabilities. The term physical or mental impairment...
Automated Composites Processing Technology: Film Module
NASA Technical Reports Server (NTRS)
Hulcher, A. Bruce
2004-01-01
NASA's Marshall Space Flight Center (MSFC) has developed a technology that combines a film/adhesive laydown module with fiber placement technology to enable the processing of composite prepreg tow/tape and films, foils or adhesives on the same placement machine. The development of this technology grew out of NASA's need for lightweight, permeation-resistant cryogenic propellant tanks. Autoclave processing of high performance composites results in thermally-induced stresses due to differences in the coefficients of thermal expansion of the fiber and matrix resin components. These stresses, together with the reduction in temperature due to cryogen storage, tend to initiate microcracking within the composite tank wall. One way in which to mitigate this problem is to introduce a thin, crack-resistant polymer film or foil into the tank wall. Investigation into methods to automate the processing of thin film or foil materials into composites led to the development of this technology. The concept employs an automated film supply and feed module that may be designed to fit existing fiber placement machines, or may be designed as integral equipment to new machines. This patent-pending technology can be designed such that both film and foil materials may be processed simultaneously, leading to a decrease in part build cycle time. The module may be designed having a compaction device independent of the host machine, or may utilize the host machine's compactor. The film module functions are controlled by a dedicated system independent of the fiber placement machine controls. The film, foil, or adhesive is processed via pre-existing placement machine run programs, further reducing operational expense.
Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya
2017-09-01
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
Manifold learning in machine vision and robotics
NASA Astrophysics Data System (ADS)
Bernstein, Alexander
2017-02-01
Smart algorithms are used in Machine vision and Robotics to organize or extract high-level information from the available data. Nowadays, Machine learning is an essential and ubiquitous tool to automate extraction patterns or regularities from data (images in Machine vision; camera, laser, and sonar sensors data in Robotics) in order to solve various subject-oriented tasks such as understanding and classification of images content, navigation of mobile autonomous robot in uncertain environments, robot manipulation in medical robotics and computer-assisted surgery, and other. Usually such data have high dimensionality, however, due to various dependencies between their components and constraints caused by physical reasons, all "feasible and usable data" occupy only a very small part in high dimensional "observation space" with smaller intrinsic dimensionality. Generally accepted model of such data is manifold model in accordance with which the data lie on or near an unknown manifold (surface) of lower dimensionality embedded in an ambient high dimensional observation space; real-world high-dimensional data obtained from "natural" sources meet, as a rule, this model. The use of Manifold learning technique in Machine vision and Robotics, which discovers a low-dimensional structure of high dimensional data and results in effective algorithms for solving of a large number of various subject-oriented tasks, is the content of the conference plenary speech some topics of which are in the paper.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., code, or other means of access to a consumer's account, or any combination thereof, that may be used by..., automated teller machines (ATMs), and cash dispensing machines. (i) “Financial institution” means a bank...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., code, or other means of access to a consumer's account, or any combination thereof, that may be used by..., automated teller machines (ATMs), and cash dispensing machines. (i) “Financial institution” means a bank...
Chakravorty, Rajib; Rawlinson, David; Zhang, Alan; Markham, John; Dowling, Mark R; Wellard, Cameron; Zhou, Jie H S; Hodgkin, Philip D
2014-01-01
Interest in cell heterogeneity and differentiation has recently led to increased use of time-lapse microscopy. Previous studies have shown that cell fate may be determined well in advance of the event. We used a mixture of automation and manual review of time-lapse live cell imaging to track the positions, contours, divisions, deaths and lineage of 44 B-lymphocyte founders and their 631 progeny in vitro over a period of 108 hours. Using this data to train a Support Vector Machine classifier, we were retrospectively able to predict the fates of individual lymphocytes with more than 90% accuracy, using only time-lapse imaging captured prior to mitosis or death of 90% of all cells. The motivation for this paper is to explore the impact of labour-efficient assistive software tools that allow larger and more ambitious live-cell time-lapse microscopy studies. After training on this data, we show that machine learning methods can be used for realtime prediction of individual cell fates. These techniques could lead to realtime cell culture segregation for purposes such as phenotype screening. We were able to produce a large volume of data with less effort than previously reported, due to the image processing, computer vision, tracking and human-computer interaction tools used. We describe the workflow of the software-assisted experiments and the graphical interfaces that were needed. To validate our results we used our methods to reproduce a variety of published data about lymphocyte populations and behaviour. We also make all our data publicly available, including a large quantity of lymphocyte spatio-temporal dynamics and related lineage information.
A Security Monitoring Framework For Virtualization Based HEP Infrastructures
NASA Astrophysics Data System (ADS)
Gomez Ramirez, A.; Martinez Pedreira, M.; Grigoras, C.; Betev, L.; Lara, C.; Kebschull, U.;
2017-10-01
High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data collected from production Jobs running in an ALICE Grid test site and a big set of malware samples. This malware set was collected from security research sites. Based on this dataset, we will proceed to develop Machine Learning algorithms able to detect malicious Jobs.
[Research on infrared safety protection system for machine tool].
Zhang, Shuan-Ji; Zhang, Zhi-Ling; Yan, Hui-Ying; Wang, Song-De
2008-04-01
In order to ensure personal safety and prevent injury accident in machine tool operation, an infrared machine tool safety system was designed with infrared transmitting-receiving module, memory self-locked relay and voice recording-playing module. When the operator does not enter the danger area, the system has no response. Once the operator's whole or part of body enters the danger area and shades the infrared beam, the system will alarm and output an control signal to the machine tool executive element, and at the same time, the system makes the machine tool emergency stop to prevent equipment damaged and person injured. The system has a module framework, and has many advantages including safety, reliability, common use, circuit simplicity, maintenance convenience, low power consumption, low costs, working stability, easy debugging, vibration resistance and interference resistance. It is suitable for being installed and used in different machine tools such as punch machine, pour plastic machine, digital control machine, armor plate cutting machine, pipe bending machine, oil pressure machine etc.
Effects of Selected Task Performance Criteria at Initiating Adaptive Task Real locations
NASA Technical Reports Server (NTRS)
Montgomery, Demaris A.
2001-01-01
In the current report various performance assessment methods used to initiate mode transfers between manual control and automation for adaptive task reallocation were tested. Participants monitored two secondary tasks for critical events while actively controlling a process in a fictional system. One of the secondary monitoring tasks could be automated whenever operators' performance was below acceptable levels. Automation of the secondary task and transfer of the secondary task back to manual control were either human- or machine-initiated. Human-initiated transfers were based on the operator's assessment of the current task demands while machine-initiated transfers were based on the operators' performance. Different performance assessment methods were tested in two separate experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1980-10-22
The Machine Tool Task Force (MTTF) is a multidisciplined team of international experts, whose mission was to investigate the state of the art of machine tool technology, to identify promising future directions of that technology for both the US government and private industry, and to disseminate the findings of its research in a conference and through the publication of a final report. MTTF was a two and one-half year effort that involved the participation of 122 experts in the specialized technologies of machine tools and in the management of machine tool operations. The scope of the MTTF was limited tomore » cutting-type or material-removal-type machine tools, because they represent the major share and value of all machine tools now installed or being built. The activities of the MTTF and the technical, commercial and economic signifiance of recommended activities for improving machine tool technology are discussed. (LCL)« less
Drill user's manual. [drilling machine automation
NASA Technical Reports Server (NTRS)
Pitts, E. A.
1976-01-01
Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.
Neural network expert system for X-ray analysis of welded joints
NASA Astrophysics Data System (ADS)
Kozlov, V. V.; Lapik, N. V.; Popova, N. V.
2018-03-01
The use of intelligent technologies for the automated analysis of product quality is one of the main trends in modern machine building. At the same time, rapid development in various spheres of human activity is experienced by methods associated with the use of artificial neural networks, as the basis for building automated intelligent diagnostic systems. Technologies of machine vision allow one to effectively detect the presence of certain regularities in the analyzed designation, including defects of welded joints according to radiography data.
Towards a generalized energy prediction model for machine tools
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H.; Dornfeld, David A.; Helu, Moneer; Rachuri, Sudarsan
2017-01-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process. PMID:28652687
Towards a generalized energy prediction model for machine tools.
Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan
2017-04-01
Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the machine tool operation/machine tool and tool and die making technology programs cluster. Presented in the introductory section are a framework of courses and programs, description of the…
NASA Astrophysics Data System (ADS)
Budi Harja, Herman; Prakosa, Tri; Raharno, Sri; Yuwana Martawirya, Yatna; Nurhadi, Indra; Setyo Nogroho, Alamsyah
2018-03-01
The production characteristic of job-shop industry at which products have wide variety but small amounts causes every machine tool will be shared to conduct production process with dynamic load. Its dynamic condition operation directly affects machine tools component reliability. Hence, determination of maintenance schedule for every component should be calculated based on actual usage of machine tools component. This paper describes study on development of monitoring system to obtaining information about each CNC machine tool component usage in real time approached by component grouping based on its operation phase. A special device has been developed for monitoring machine tool component usage by utilizing usage phase activity data taken from certain electronics components within CNC machine. The components are adaptor, servo driver and spindle driver, as well as some additional components such as microcontroller and relays. The obtained data are utilized for detecting machine utilization phases such as power on state, machine ready state or spindle running state. Experimental result have shown that the developed CNC machine tool monitoring system is capable of obtaining phase information of machine tool usage as well as its duration and displays the information at the user interface application.
Open multi-agent control architecture to support virtual-reality-based man-machine interfaces
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Brasch, Marcel
2001-10-01
Projective Virtual Reality is a new and promising approach to intuitively operable man machine interfaces for the commanding and supervision of complex automation systems. The user interface part of Projective Virtual Reality heavily builds on latest Virtual Reality techniques, a task deduction component and automatic action planning capabilities. In order to realize man machine interfaces for complex applications, not only the Virtual Reality part has to be considered but also the capabilities of the underlying robot and automation controller are of great importance. This paper presents a control architecture that has proved to be an ideal basis for the realization of complex robotic and automation systems that are controlled by Virtual Reality based man machine interfaces. The architecture does not just provide a well suited framework for the real-time control of a multi robot system but also supports Virtual Reality metaphors and augmentations which facilitate the user's job to command and supervise a complex system. The developed control architecture has already been used for a number of applications. Its capability to integrate sensor information from sensors of different levels of abstraction in real-time helps to make the realized automation system very responsive to real world changes. In this paper, the architecture will be described comprehensively, its main building blocks will be discussed and one realization that is built based on an open source real-time operating system will be presented. The software design and the features of the architecture which make it generally applicable to the distributed control of automation agents in real world applications will be explained. Furthermore its application to the commanding and control of experiments in the Columbus space laboratory, the European contribution to the International Space Station (ISS), is only one example which will be described.
30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraphs (b) and (c) of this section, an ATRS system shall be used with roof bolting machines and continuous-mining machines with integral roof bolters operated in a working section. The requirements of this paragraph shall be met according to the following schedule: (1) All new machines ordered after March 28...
30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paragraphs (b) and (c) of this section, an ATRS system shall be used with roof bolting machines and continuous-mining machines with integral roof bolters operated in a working section. The requirements of this paragraph shall be met according to the following schedule: (1) All new machines ordered after March 28...
30 CFR 75.209 - Automated Temporary Roof Support (ATRS) systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paragraphs (b) and (c) of this section, an ATRS system shall be used with roof bolting machines and continuous-mining machines with integral roof bolters operated in a working section. The requirements of this paragraph shall be met according to the following schedule: (1) All new machines ordered after March 28...
Training on automated machine guidance.
DOT National Transportation Integrated Search
2009-05-01
"Beginning in 2006, WisDOT and the Construction Materials Support Center (CMSC) at UW-Madison worked together : to develop the specifications and the QA/QC procedures for GPS machine guidance on highway grading projects. These : specifications and pr...
Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi
2009-01-01
This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.
Application of Elements of TPM Strategy for Operation Analysis of Mining Machine
NASA Astrophysics Data System (ADS)
Brodny, Jaroslaw; Tutak, Magdalena
2017-12-01
Total Productive Maintenance (TPM) strategy includes group of activities and actions in order to maintenance machines in failure-free state and without breakdowns thanks to tending limitation of failures, non-planned shutdowns, lacks and non-planned service of machines. These actions are ordered to increase effectiveness of utilization of possessed devices and machines in company. Very significant element of this strategy is connection of technical actions with changes in their perception by employees. Whereas fundamental aim of introduction this strategy is improvement of economic efficiency of enterprise. Increasing competition and necessity of reduction of production costs causes that also mining enterprises are forced to introduce this strategy. In the paper examples of use of OEE model for quantitative evaluation of selected mining devices were presented. OEE model is quantitative tool of TPM strategy and can be the base for further works connected with its introduction. OEE indicator is the product of three components which include availability and performance of the studied machine and the quality of the obtained product. The paper presents the results of the effectiveness analysis of the use of a set of mining machines included in the longwall system, which is the first and most important link in the technological line of coal production. The set of analyzed machines included the longwall shearer, armored face conveyor and cruscher. From a reliability point of view, the analyzed set of machines is a system that is characterized by the serial structure. The analysis was based on data recorded by the industrial automation system used in the mines. This method of data acquisition ensured their high credibility and a full time synchronization. Conclusions from the research and analyses should be used to reduce breakdowns, failures and unplanned downtime, increase performance and improve production quality.
Machine learning molecular dynamics for the simulation of infrared spectra.
Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
2017-10-01
Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.
Automation of energy demand forecasting
NASA Astrophysics Data System (ADS)
Siddique, Sanzad
Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.
Research on the tool holder mode in high speed machining
NASA Astrophysics Data System (ADS)
Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao
2018-03-01
High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.
Hanlon, John A.; Gill, Timothy J.
2001-01-01
Machine tools can be accurately measured and positioned on manufacturing machines within very small tolerances by use of an autocollimator on a 3-axis mount on a manufacturing machine and positioned so as to focus on a reference tooling ball or a machine tool, a digital camera connected to the viewing end of the autocollimator, and a marker and measure generator for receiving digital images from the camera, then displaying or measuring distances between the projection reticle and the reference reticle on the monitoring screen, and relating the distances to the actual position of the autocollimator relative to the reference tooling ball. The images and measurements are used to set the position of the machine tool and to measure the size and shape of the machine tool tip, and examine cutting edge wear. patent
Micro electrical discharge milling using deionized water as a dielectric fluid
NASA Astrophysics Data System (ADS)
Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam
2007-05-01
In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.
Gray, John
2017-01-01
Machine-to-machine (M2M) communication is a key enabling technology for industrial internet of things (IIoT)-empowered industrial networks, where machines communicate with one another for collaborative automation and intelligent optimisation. This new industrial computing paradigm features high-quality connectivity, ubiquitous messaging, and interoperable interactions between machines. However, manufacturing IIoT applications have specificities that distinguish them from many other internet of things (IoT) scenarios in machine communications. By highlighting the key requirements and the major technical gaps of M2M in industrial applications, this article describes a collaboration-oriented M2M (CoM2M) messaging mechanism focusing on flexible connectivity and discovery, ubiquitous messaging, and semantic interoperability that are well suited for the production line-scale interoperability of manufacturing applications. The designs toward machine collaboration and data interoperability at both the communication and semantic level are presented. Then, the application scenarios of the presented methods are illustrated with a proof-of-concept implementation in the PicknPack food packaging line. Eventually, the advantages and some potential issues are discussed based on the PicknPack practice. PMID:29165347
Management by consent in human-machine systems: when and why it breaks down.
Olson, W A; Sarter, N B
2001-01-01
This study examined the effects of conflict type, time pressure, and display design on operators' ability to make informed decisions about proposed machine goals and actions in a management-by-consent context. A group of 30 B757 pilots were asked to fly eight descent scenarios while responding to a series of air traffic control clearances. Each scenario presented pilots with a different conflict that arose from either incompatible goals contained in the clearance or inappropriate implementation of the clearance by automated flight deck systems. Pilots were often unable to detect these conflicts, especially under time pressure, and thus failed to disallow or intervene with proposed machine actions. Detection performance was particularly poor for conflicts related to clearance implementation. These conflicts were most likely to be missed when automated systems did more than the pilot expected of them. Performance and verbal protocol data indicate that the observed difficulties can be explained by a combination of poor system feedback and pilots' difficulties with generating expectations of future system behavior. Our results are discussed in terms of their implications for the choice and implementation of automation management strategies in general and, more specifically, with respect to risks involved in envisioned forms of digital air-ground communication in the future aviation system. Actual or potential applications of this research include the design of future data link systems and procedures, as well as the design of future automated systems in any domain that rely on operator consent as a mechanism for human-machine coordination.
NASA Technical Reports Server (NTRS)
Nieten, Joseph; Burke, Roger
1993-01-01
Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.
Building cell models and simulations from microscope images.
Murphy, Robert F
2016-03-01
The use of fluorescence microscopy has undergone a major revolution over the past twenty years, both with the development of dramatic new technologies and with the widespread adoption of image analysis and machine learning methods. Many open source software tools provide the ability to use these methods in a wide range of studies, and many molecular and cellular phenotypes can now be automatically distinguished. This article presents the next major challenge in microscopy automation, the creation of accurate models of cell organization directly from images, and reviews the progress that has been made towards this challenge. Copyright © 2015 Elsevier Inc. All rights reserved.
Advances in natural language processing.
Hirschberg, Julia; Manning, Christopher D
2015-07-17
Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area. Copyright © 2015, American Association for the Advancement of Science.
The need for artificial intelligence as an aid in controlling a manufacturing operation
NASA Astrophysics Data System (ADS)
Weyand, J.
AI applications to industrial production and planning are discussed and illustrated with diagrams and drawings. Applications examined include flexible automation of manufacturing processes (robots with open manual control, robots programmable to meet product specifications, self-regulated robots, and robots capable of learning), flexible fault detection and diagnostics, production control, and overall planning and management (product strategies, marketing, determination of development capacity, site selection, project organization, and technology investment strategies). For the case of robots, problems in the design and operation of a state-of-the-art machine-tool cell (for hole boring, milling, and joining) are analyzed in detail.
Stereo imaging with spaceborne radars
NASA Technical Reports Server (NTRS)
Leberl, F.; Kobrick, M.
1983-01-01
Stereo viewing is a valuable tool in photointerpretation and is used for the quantitative reconstruction of the three dimensional shape of a topographical surface. Stereo viewing refers to a visual perception of space by presenting an overlapping image pair to an observer so that a three dimensional model is formed in the brain. Some of the observer's function is performed by machine correlation of the overlapping images - so called automated stereo correlation. The direct perception of space with two eyes is often called natural binocular vision; techniques of generating three dimensional models of the surface from two sets of monocular image measurements is the topic of stereology.
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2011-01-01
As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.
NASA Astrophysics Data System (ADS)
Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.
2010-02-01
A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.
Machine learning for fab automated diagnostics
NASA Astrophysics Data System (ADS)
Giollo, Manuel; Lam, Auguste; Gkorou, Dimitra; Liu, Xing Lan; van Haren, Richard
2017-06-01
Process optimization depends largely on field engineer's knowledge and expertise. However, this practice turns out to be less sustainable due to the fab complexity which is continuously increasing in order to support the extreme miniaturization of Integrated Circuits. On the one hand, process optimization and root cause analysis of tools is necessary for a smooth fab operation. On the other hand, the growth in number of wafer processing steps is adding a considerable new source of noise which may have a significant impact at the nanometer scale. This paper explores the ability of historical process data and Machine Learning to support field engineers in production analysis and monitoring. We implement an automated workflow in order to analyze a large volume of information, and build a predictive model of overlay variation. The proposed workflow addresses significant problems that are typical in fab production, like missing measurements, small number of samples, confounding effects due to heterogeneity of data, and subpopulation effects. We evaluate the proposed workflow on a real usecase and we show that it is able to predict overlay excursions observed in Integrated Circuits manufacturing. The chosen design focuses on linear and interpretable models of the wafer history, which highlight the process steps that are causing defective products. This is a fundamental feature for diagnostics, as it supports process engineers in the continuous improvement of the production line.
Method and apparatus for characterizing and enhancing the functional performance of machine tools
Barkman, William E; Babelay, Jr., Edwin F; Smith, Kevin Scott; Assaid, Thomas S; McFarland, Justin T; Tursky, David A; Woody, Bethany; Adams, David
2013-04-30
Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include workpiece surface finish, and the ability to generate chips of the desired length.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-22
...''); Amistar Automation, Inc. (``Amistar'') of San Marcos, California; Techno Soft Systemnics, Inc. (``Techno..., the ALJ's construction of the claim terms ``test,'' ``match score surface,'' and ``gradient direction...
NASA Technical Reports Server (NTRS)
Miller, R. H.; Minsky, M. L.; Smith, D. B. S.
1982-01-01
Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.
Fuller, John A; Berlinicke, Cynthia A; Inglese, James; Zack, Donald J
2016-01-01
High content analysis (HCA) has become a leading methodology in phenotypic drug discovery efforts. Typical HCA workflows include imaging cells using an automated microscope and analyzing the data using algorithms designed to quantify one or more specific phenotypes of interest. Due to the richness of high content data, unappreciated phenotypic changes may be discovered in existing image sets using interactive machine-learning based software systems. Primary postnatal day four retinal cells from the photoreceptor (PR) labeled QRX-EGFP reporter mice were isolated, seeded, treated with a set of 234 profiled kinase inhibitors and then cultured for 1 week. The cells were imaged with an Acumen plate-based laser cytometer to determine the number and intensity of GFP-expressing, i.e. PR, cells. Wells displaying intensities and counts above threshold values of interest were re-imaged at a higher resolution with an INCell2000 automated microscope. The images were analyzed with an open source HCA analysis tool, PhenoRipper (Rajaram et al., Nat Methods 9:635-637, 2012), to identify the high GFP-inducing treatments that additionally resulted in diverse phenotypes compared to the vehicle control samples. The pyrimidinopyrimidone kinase inhibitor CHEMBL-1766490, a pan kinase inhibitor whose major known targets are p38α and the Src family member lck, was identified as an inducer of photoreceptor neuritogenesis by using the open-source HCA program PhenoRipper. This finding was corroborated using a cell-based method of image analysis that measures quantitative differences in the mean neurite length in GFP expressing cells. Interacting with data using machine learning algorithms may complement traditional HCA approaches by leading to the discovery of small molecule-induced cellular phenotypes in addition to those upon which the investigator is initially focusing.
Nanocomposites for Machining Tools
Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny
2017-01-01
Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance. PMID:29027926
NASA Technical Reports Server (NTRS)
Shearrow, Charles A.
1999-01-01
One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.
Automation of Endmember Pixel Selection in SEBAL/METRIC Model
NASA Astrophysics Data System (ADS)
Bhattarai, N.; Quackenbush, L. J.; Im, J.; Shaw, S. B.
2015-12-01
The commonly applied surface energy balance for land (SEBAL) and its variant, mapping evapotranspiration (ET) at high resolution with internalized calibration (METRIC) models require manual selection of endmember (i.e. hot and cold) pixels to calibrate sensible heat flux. Current approaches for automating this process are based on statistical methods and do not appear to be robust under varying climate conditions and seasons. In this paper, we introduce a new approach based on simple machine learning tools and search algorithms that provides an automatic and time efficient way of identifying endmember pixels for use in these models. The fully automated models were applied on over 100 cloud-free Landsat images with each image covering several eddy covariance flux sites in Florida and Oklahoma. Observed land surface temperatures at automatically identified hot and cold pixels were within 0.5% of those from pixels manually identified by an experienced operator (coefficient of determination, R2, ≥ 0.92, Nash-Sutcliffe efficiency, NSE, ≥ 0.92, and root mean squared error, RMSE, ≤ 1.67 K). Daily ET estimates derived from the automated SEBAL and METRIC models were in good agreement with their manual counterparts (e.g., NSE ≥ 0.91 and RMSE ≤ 0.35 mm day-1). Automated and manual pixel selection resulted in similar estimates of observed ET across all sites. The proposed approach should reduce time demands for applying SEBAL/METRIC models and allow for their more widespread and frequent use. This automation can also reduce potential bias that could be introduced by an inexperienced operator and extend the domain of the models to new users.
Tools for automating spacecraft ground systems: The Intelligent Command and Control (ICC) approach
NASA Technical Reports Server (NTRS)
Stoffel, A. William; Mclean, David
1996-01-01
The practical application of scripting languages and World Wide Web tools to the support of spacecraft ground system automation, is reported on. The mission activities and the automation tools used at the Goddard Space Flight Center (MD) are reviewed. The use of the Tool Command Language (TCL) and the Practical Extraction and Report Language (PERL) scripting tools for automating mission operations is discussed together with the application of different tools for the Compton Gamma Ray Observatory ground system.
Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets
Bhikha, Charita; Andreasen, Arne; Christensen, Erik I.; Letts, Robyn F. R.; Pantanowitz, Adam; Rubin, David M.; Thomsen, Jesper S.; Zhai, Xiao-Yue
2015-01-01
An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron. PMID:26170896
Framework for Automated GD&T Inspection Using 3D Scanner
NASA Astrophysics Data System (ADS)
Pathak, Vimal Kumar; Singh, Amit Kumar; Sivadasan, M.; Singh, N. K.
2018-04-01
Geometric Dimensioning and Tolerancing (GD&T) is a typical dialect that helps designers, production faculty and quality monitors to convey design specifications in an effective and efficient manner. GD&T has been practiced since the start of machine component assembly but without overly naming it. However, in recent times industries have started increasingly emphasizing on it. One prominent area where most of the industries struggle with is quality inspection. Complete inspection process is mostly human intensive. Also, the use of conventional gauges and templates for inspection purpose highly depends on skill of workers and quality inspectors. In industries, the concept of 3D scanning is not new but is used only for creating 3D drawings or modelling of physical parts. However, the potential of 3D scanning as a powerful inspection tool is hardly explored. This study is centred on designing a procedure for automated inspection using 3D scanner. Linear, geometric and dimensional inspection of the most popular test bar-stepped bar, as a simple example was also carried out as per the new framework. The new generation engineering industries would definitely welcome this automated inspection procedure being quick and reliable with reduced human intervention.
Towards Automated Three-Dimensional Tracking of Nephrons through Stacked Histological Image Sets.
Bhikha, Charita; Andreasen, Arne; Christensen, Erik I; Letts, Robyn F R; Pantanowitz, Adam; Rubin, David M; Thomsen, Jesper S; Zhai, Xiao-Yue
2015-01-01
An automated approach for tracking individual nephrons through three-dimensional histological image sets of mouse and rat kidneys is presented. In a previous study, the available images were tracked manually through the image sets in order to explore renal microarchitecture. The purpose of the current research is to reduce the time and effort required to manually trace nephrons by creating an automated, intelligent system as a standard tool for such datasets. The algorithm is robust enough to isolate closely packed nephrons and track their convoluted paths despite a number of nonideal, interfering conditions such as local image distortions, artefacts, and interstitial tissue interference. The system comprises image preprocessing, feature extraction, and a custom graph-based tracking algorithm, which is validated by a rule base and a machine learning algorithm. A study of a selection of automatically tracked nephrons, when compared with manual tracking, yields a 95% tracking accuracy for structures in the cortex, while those in the medulla have lower accuracy due to narrower diameter and higher density. Limited manual intervention is introduced to improve tracking, enabling full nephron paths to be obtained with an average of 17 manual corrections per mouse nephron and 58 manual corrections per rat nephron.
SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.
Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A
2016-11-01
Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Hockaday, Stephen; Kuhlenschmidt, Sharon (Editor)
1991-01-01
The objective of the workshop was to explore the role of human factors in facilitating the introduction of artificial intelligence (AI) to advanced air traffic control (ATC) automation concepts. AI is an umbrella term which is continually expanding to cover a variety of techniques where machines are performing actions taken based upon dynamic, external stimuli. AI methods can be implemented using more traditional programming languages such as LISP or PROLOG, or they can be implemented using state-of-the-art techniques such as object-oriented programming, neural nets (hardware or software), and knowledge based expert systems. As this technology advances and as increasingly powerful computing platforms become available, the use of AI to enhance ATC systems can be realized. Substantial efforts along these lines are already being undertaken at the FAA Technical Center, NASA Ames Research Center, academic institutions, industry, and elsewhere. Although it is clear that the technology is ripe for bringing computer automation to ATC systems, the proper scope and role of automation are not at all apparent. The major concern is how to combine human controllers with computer technology. A wide spectrum of options exists, ranging from using automation only to provide extra tools to augment decision making by human controllers to turning over moment-by-moment control to automated systems and using humans as supervisors and system managers. Across this spectrum, it is now obvious that the difficulties that occur when tying human and automated systems together must be resolved so that automation can be introduced safely and effectively. The focus of the workshop was to further explore the role of injecting AI into ATC systems and to identify the human factors that need to be considered for successful application of the technology to present and future ATC systems.
Report of Survey Conducted at Bell Helicopter Textron, Inc., Fort Worth, Texas
1988-10-01
19 Automated Tape Laying ......................................................................... 20 Filam... automated tape laying for the lower wing skin of the V-22 aircraft. BHTI uses a 10-axis higersoll tape laying machine (TLM) which has up to a +30
Safety in the Automated Office.
ERIC Educational Resources Information Center
Graves, Pat R.; Greathouse, Lillian R.
1990-01-01
Office automation has introduced new hazards to the workplace: electrical hazards related to computer wiring, musculoskeletal problems resulting from use of computer terminals and design of work stations, and environmental concerns related to ventilation, noise levels, and office machine chemicals. (SK)
Film Processing Module for Automated Fiber Placement
NASA Technical Reports Server (NTRS)
Hulcher, A. Bruce
2004-01-01
This viewgraph presentation describes fiber placement technology which was originally developed by Marshall Space Flight Center (MSFC) for the fabrication of fiber composite propellant tanks. The presentation includes an image of the MSFC Fiber Placement Machine, which is a prototype test bed, and images of some of the machine's parts. Some possible applications for the machines are listed.
Machine tools and fixtures: A compilation
NASA Technical Reports Server (NTRS)
1971-01-01
As part of NASA's Technology Utilizations Program, a compilation was made of technological developments regarding machine tools, jigs, and fixtures that have been produced, modified, or adapted to meet requirements of the aerospace program. The compilation is divided into three sections that include: (1) a variety of machine tool applications that offer easier and more efficient production techniques; (2) methods, techniques, and hardware that aid in the setup, alignment, and control of machines and machine tools to further quality assurance in finished products: and (3) jigs, fixtures, and adapters that are ancillary to basic machine tools and aid in realizing their greatest potential.
GeoDeepDive: Towards a Machine Reading-Ready Digital Library and Information Integration Resource
NASA Astrophysics Data System (ADS)
Husson, J. M.; Peters, S. E.; Livny, M.; Ross, I.
2015-12-01
Recent developments in machine reading and learning approaches to text and data mining hold considerable promise for accelerating the pace and quality of literature-based data synthesis, but these advances have outpaced even basic levels of access to the published literature. For many geoscience domains, particularly those based on physical samples and field-based descriptions, this limitation is significant. Here we describe a general infrastructure to support published literature-based machine reading and learning approaches to information integration and knowledge base creation. This infrastructure supports rate-controlled automated fetching of original documents, along with full bibliographic citation metadata, from remote servers, the secure storage of original documents, and the utilization of considerable high-throughput computing resources for the pre-processing of these documents by optical character recognition, natural language parsing, and other document annotation and parsing software tools. New tools and versions of existing tools can be automatically deployed against original documents when they are made available. The products of these tools (text/XML files) are managed by MongoDB and are available for use in data extraction applications. Basic search and discovery functionality is provided by ElasticSearch, which is used to identify documents of potential relevance to a given data extraction task. Relevant files derived from the original documents are then combined into basic starting points for application building; these starting points are kept up-to-date as new relevant documents are incorporated into the digital library. Currently, our digital library stores contains more than 360K documents supplied by Elsevier and the USGS and we are actively seeking additional content providers. By focusing on building a dependable infrastructure to support the retrieval, storage, and pre-processing of published content, we are establishing a foundation for complex, and continually improving, information integration and data extraction applications. We have developed one such application, which we present as an example, and invite new collaborations to develop other such applications.
Yu, Wei; Clyne, Melinda; Dolan, Siobhan M; Yesupriya, Ajay; Wulf, Anja; Liu, Tiebin; Khoury, Muin J; Gwinn, Marta
2008-01-01
Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM), a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge. PMID:18430222
Overview of the Machine-Tool Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1981-06-08
The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.
NASA Technical Reports Server (NTRS)
Smith, D. B. S.
1982-01-01
The potential applications of Automation, Robotics, and Machine Intelligence Systems (ARAMIS) to space projects are investigated, through a systematic method. In this method selected space projects are broken down into space project tasks, and 69 of these tasks are selected for study. Candidate ARAMIS options are defined for each task. The relative merits of these options are evaluated according to seven indices of performance. Logical sequences of ARAMIS development are also defined. Based on this data, promising applications of ARAMIS are
Color image processing and vision system for an automated laser paint-stripping system
NASA Astrophysics Data System (ADS)
Hickey, John M., III; Hise, Lawson
1994-10-01
Color image processing in machine vision systems has not gained general acceptance. Most machine vision systems use images that are shades of gray. The Laser Automated Decoating System (LADS) required a vision system which could discriminate between substrates of various colors and textures and paints ranging from semi-gloss grays to high gloss red, white and blue (Air Force Thunderbirds). The changing lighting levels produced by the pulsed CO2 laser mandated a vision system that did not require a constant color temperature lighting for reliable image analysis.
2008-03-31
on automation; the ‘response bias’ approach. This new approach is based on Signal Detection Theory (SDT) (Macmillan & Creelman , 1991; Wickens...SDT), response bias will vary with the expectation of the target probability, whereas their sensitivity will stay constant (Macmillan & Creelman ...measures, C has the simplest statistical properties (Macmillan & Creelman , 1991, p273), and it was also the measure used in Dzindolet et al.’s study
Formal verification of automated teller machine systems using SPIN
NASA Astrophysics Data System (ADS)
Iqbal, Ikhwan Mohammad; Adzkiya, Dieky; Mukhlash, Imam
2017-08-01
Formal verification is a technique for ensuring the correctness of systems. This work focuses on verifying a model of the Automated Teller Machine (ATM) system against some specifications. We construct the model as a state transition diagram that is suitable for verification. The specifications are expressed as Linear Temporal Logic (LTL) formulas. We use Simple Promela Interpreter (SPIN) model checker to check whether the model satisfies the formula. This model checker accepts models written in Process Meta Language (PROMELA), and its specifications are specified in LTL formulas.
Multimedia systems in ultrasound image boundary detection and measurements
NASA Astrophysics Data System (ADS)
Pathak, Sayan D.; Chalana, Vikram; Kim, Yongmin
1997-05-01
Ultrasound as a medical imaging modality offers the clinician a real-time of the anatomy of the internal organs/tissues, their movement, and flow noninvasively. One of the applications of ultrasound is to monitor fetal growth by measuring biparietal diameter (BPD) and head circumference (HC). We have been working on automatic detection of fetal head boundaries in ultrasound images. These detected boundaries are used to measure BPD and HC. The boundary detection algorithm is based on active contour models and takes 32 seconds on an external high-end workstation, SUN SparcStation 20/71. Our goal has been to make this tool available within an ultrasound machine and at the same time significantly improve its performance utilizing multimedia technology. With the advent of high- performance programmable digital signal processors (DSP), the software solution within an ultrasound machine instead of the traditional hardwired approach or requiring an external computer is now possible. We have integrated our boundary detection algorithm into a programmable ultrasound image processor (PUIP) that fits into a commercial ultrasound machine. The PUIP provides both the high computing power and flexibility needed to support computationally-intensive image processing algorithms within an ultrasound machine. According to our data analysis, BPD/HC measurements made on PUIP lie within the interobserver variability. Hence, the errors in the automated BPD/HC measurements using the algorithm are on the same order as the average interobserver differences. On PUIP, it takes 360 ms to measure the values of BPD/HC on one head image. When processing multiple head images in sequence, it takes 185 ms per image, thus enabling 5.4 BPD/HC measurements per second. Reduction in the overall execution time from 32 seconds to a fraction of a second and making this multimedia system available within an ultrasound machine will help this image processing algorithm and other computer-intensive imaging applications become a practical tool for the sonographers in the feature.
Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam
2016-01-01
The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and incomplete genome assembly confounded the rules-based algorithm, resulting in predictions based on gene family, rather than on knowledge of the specific variant found. Low-frequency resistance caused errors in the machine-learning algorithm because those genes were not seen or seen infrequently in the test set. We also identified an example of variability in the phenotype-based results that led to disagreement with both genotype-based methods. Genotype-based antimicrobial susceptibility testing shows great promise as a diagnostic tool, and we outline specific research goals to further refine this methodology.
A method to identify the main mode of machine tool under operating conditions
NASA Astrophysics Data System (ADS)
Wang, Daming; Pan, Yabing
2017-04-01
The identification of the modal parameters under experimental conditions is the most common procedure when solving the problem of machine tool structure vibration. However, the influence of each mode on the machine tool vibration in real working conditions remains unknown. In fact, the contributions each mode makes to the machine tool vibration during machining process are different. In this article, an active excitation modal analysis is applied to identify the modal parameters in operational condition, and the Operating Deflection Shapes (ODS) in frequencies of high level vibration that affect the quality of machining in real working conditions are obtained. Then, the ODS is decomposed by the mode shapes which are identified in operational conditions. So, the contributions each mode makes to machine tool vibration during machining process are got by decomposition coefficients. From the previous steps, we can find out the main modes which effect the machine tool more significantly in working conditions. This method was also verified to be effective by experiments.
Linear positioning laser calibration setup of CNC machine tools
NASA Astrophysics Data System (ADS)
Sui, Xiulin; Yang, Congjing
2002-10-01
The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.
Toward designing for trust in database automation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duez, P. P.; Jamieson, G. A.
Appropriate reliance on system automation is imperative for safe and productive work, especially in safety-critical systems. It is unsafe to rely on automation beyond its designed use; conversely, it can be both unproductive and unsafe to manually perform tasks that are better relegated to automated tools. Operator trust in automated tools mediates reliance, and trust appears to affect how operators use technology. As automated agents become more complex, the question of trust in automation is increasingly important. In order to achieve proper use of automation, we must engender an appropriate degree of trust that is sensitive to changes in operatingmore » functions and context. In this paper, we present research concerning trust in automation in the domain of automated tools for relational databases. Lee and See have provided models of trust in automation. One model developed by Lee and See identifies three key categories of information about the automation that lie along a continuum of attributional abstraction. Purpose-, process-and performance-related information serve, both individually and through inferences between them, to describe automation in such a way as to engender r properly-calibrated trust. Thus, one can look at information from different levels of attributional abstraction as a general requirements analysis for information key to appropriate trust in automation. The model of information necessary to engender appropriate trust in automation [1] is a general one. Although it describes categories of information, it does not provide insight on how to determine the specific information elements required for a given automated tool. We have applied the Abstraction Hierarchy (AH) to this problem in the domain of relational databases. The AH serves as a formal description of the automation at several levels of abstraction, ranging from a very abstract purpose-oriented description to a more concrete description of the resources involved in the automated process. The connection between an AH for an automated tool and a list of information elements at the three levels of attributional abstraction is then direct, providing a method for satisfying information requirements for appropriate trust in automation. In this paper, we will present our method for developing specific information requirements for an automated tool, based on a formal analysis of that tool and the models presented by Lee and See. We will show an example of the application of the AH to automation, in the domain of relational database automation, and the resulting set of specific information elements for appropriate trust in the automated tool. Finally, we will comment on the applicability of this approach to the domain of nuclear plant instrumentation. (authors)« less
Standardized Curriculum for Machine Tool Operation/Machine Shop.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.
Standardized vocational education course titles and core contents for two courses in Mississippi are provided: machine tool operation/machine shop I and II. The first course contains the following units: (1) orientation; (2) shop safety; (3) shop math; (4) measuring tools and instruments; (5) hand and bench tools; (6) blueprint reading; (7)…
An evolutionary sensor approach for self-organizing production chains
NASA Astrophysics Data System (ADS)
Mocan, M.; Gillich, E. V.; Mituletu, I. C.; Korka, Z. I.
2018-01-01
Industry 4.0 is the actual great step in industrial progress. Convergence of industrial equipment with the power of advanced computing and analysis, low-cost sensing, and new connecting technologies are presumed to bring unexpected advancements in automation, flexibility, and efficiency. In this context, sensors ensure information regarding three essential areas: the number of processed elements, the quality of production and the condition of tools and equipment. To obtain this valuable information, the data resulted from a sensor has to be firstly processed and afterward used by the different stakeholders. If machines are linked together, this information can be employed to organize the production chain with few or without human intervention. We describe here the implementation of a sensor in a milling machine that is part of a simple production chain, capable of providing information regarding the number of manufactured pieces. It is used by the other machines in the production chain, in order to define the type and number of pieces to be manufactured by them and/or to set optimal parameters for their working regime. Secondly, the information achieved by monitoring the machine and manufactured piece dynamic behavior is used to evaluate the product quality. This information is used to warn about the need of maintenance, being transmitted to the specialized department. It is also transmitted to the central unit, in order to reorganize the production by involving other machines or by reconsidering the manufacturing regime of the existing machines. A special attention is drawn on analyzing and classifying the signals acquired via optical sensor from simulated processes.
Automated Proton Track Identification in MicroBooNE Using Gradient Boosted Decision Trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, Katherine
MicroBooNE is a liquid argon time projection chamber (LArTPC) neutrino experiment that is currently running in the Booster Neutrino Beam at Fermilab. LArTPC technology allows for high-resolution, three-dimensional representations of neutrino interactions. A wide variety of software tools for automated reconstruction and selection of particle tracks in LArTPCs are actively being developed. Short, isolated proton tracks, the signal for low- momentum-transfer neutral current (NC) elastic events, are easily hidden in a large cosmic background. Detecting these low-energy tracks will allow us to probe interesting regions of the proton's spin structure. An effective method for selecting NC elastic events is tomore » combine a highly efficient track reconstruction algorithm to find all candidate tracks with highly accurate particle identification using a machine learning algorithm. We present our work on particle track classification using gradient tree boosting software (XGBoost) and the performance on simulated neutrino data.« less
Automated Performance Prediction of Message-Passing Parallel Programs
NASA Technical Reports Server (NTRS)
Block, Robert J.; Sarukkai, Sekhar; Mehra, Pankaj; Woodrow, Thomas S. (Technical Monitor)
1995-01-01
The increasing use of massively parallel supercomputers to solve large-scale scientific problems has generated a need for tools that can predict scalability trends of applications written for these machines. Much work has been done to create simple models that represent important characteristics of parallel programs, such as latency, network contention, and communication volume. But many of these methods still require substantial manual effort to represent an application in the model's format. The NIK toolkit described in this paper is the result of an on-going effort to automate the formation of analytic expressions of program execution time, with a minimum of programmer assistance. In this paper we demonstrate the feasibility of our approach, by extending previous work to detect and model communication patterns automatically, with and without overlapped computations. The predictions derived from these models agree, within reasonable limits, with execution times of programs measured on the Intel iPSC/860 and Paragon. Further, we demonstrate the use of MK in selecting optimal computational grain size and studying various scalability metrics.
Lean coding machine. Facilities target productivity and job satisfaction with coding automation.
Rollins, Genna
2010-07-01
Facilities are turning to coding automation to help manage the volume of electronic documentation, streamlining workflow, boosting productivity, and increasing job satisfaction. As EHR adoption increases, computer-assisted coding may become a necessity, not an option.
Automated drafting system uses computer techniques
NASA Technical Reports Server (NTRS)
Millenson, D. H.
1966-01-01
Automated drafting system produces schematic and block diagrams from the design engineers freehand sketches. This system codes conventional drafting symbols and their coordinate locations on standard size drawings for entry on tapes that are used to drive a high speed photocomposition machine.
Automated Blazar Light Curves Using Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Spencer James
2017-07-27
This presentation describes a problem and methodology pertaining to automated blazar light curves. Namely, optical variability patterns for blazars require the construction of light curves and in order to generate the light curves, data must be filtered before processing to ensure quality.
12 CFR 1806.103 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... deposits held by individuals in transaction accounts (i.e., demand deposits, NOW accounts, automated..., automated teller machines, safe deposit boxes, new branches, and other comparable services as may be... deposit, mutual funds, life insurance and other similar savings or investment vehicles targeted to Low...
NASA Astrophysics Data System (ADS)
Sadhasivam, Jayakumar; Alamelu, M.; Radhika, R.; Ramya, S.; Dharani, K.; Jayavel, Senthil
2017-11-01
Now a days the people's attraction towards Automated Teller Machine(ATM) has been increasing even in rural areas. As of now the security provided by all the bank is ATM pin number. Hackers know the way to easily identify the pin number and withdraw money if they haven stolen the ATM card. Also, the Automated Teller Machine is broken and the money is stolen. To overcome these disadvantages, we propose an approach “Automated Secure Tracking System” to secure and tracking the changes in ATM. In this approach, while creating the bank account, the bank should scan the iris known (a part or movement of our eye) and fingerprint of the customer. The scanning can be done with the position of the eye movements and fingerprints identified with the shortest measurements. When the card is swiped then ATM should request the pin, scan the iris and recognize the fingerprint and then allow the customer to withdraw money. If somebody tries to break the ATM an alert message is given to the nearby police station and the ATM shutter is automatically closed. This helps in avoiding the hackers who withdraw money by stealing the ATM card and also helps the government in identifying the criminals easily.
Massachusetts Institute of Technology Consortium Agreement
1999-03-01
This is the third progress report of the M.I.T. Home Automation and Healthcare Consortium-Phase Two. It covers majority of the new findings, concepts...research projects of home automation and healthcare, ranging from human modeling, patient monitoring, and diagnosis to new sensors and actuators, physical...aids, human-machine interface and home automation infrastructure. This report contains several patentable concepts, algorithms, and designs.
Code of Federal Regulations, 2012 CFR
2012-04-01
... funds at an automated teller machine, or to obtain a cash advance or loan against the cardholder's... transactions with B exceeds 200 (as provided in paragraph (c)(4) of this section). Example 3. Automated clearinghouse network. A operates an automated clearinghouse (“ACH”) network that merely processes electronic...
Code of Federal Regulations, 2013 CFR
2013-04-01
... funds at an automated teller machine, or to obtain a cash advance or loan against the cardholder's... transactions with B exceeds 200 (as provided in paragraph (c)(4) of this section). Example 3. Automated clearinghouse network. A operates an automated clearinghouse (“ACH”) network that merely processes electronic...
(Machine-)Learning to analyze in vivo microscopy: Support vector machines.
Wang, Michael F Z; Fernandez-Gonzalez, Rodrigo
2017-11-01
The development of new microscopy techniques for super-resolved, long-term monitoring of cellular and subcellular dynamics in living organisms is revealing new fundamental aspects of tissue development and repair. However, new microscopy approaches present several challenges. In addition to unprecedented requirements for data storage, the analysis of high resolution, time-lapse images is too complex to be done manually. Machine learning techniques are ideally suited for the (semi-)automated analysis of multidimensional image data. In particular, support vector machines (SVMs), have emerged as an efficient method to analyze microscopy images obtained from animals. Here, we discuss the use of SVMs to analyze in vivo microscopy data. We introduce the mathematical framework behind SVMs, and we describe the metrics used by SVMs and other machine learning approaches to classify image data. We discuss the influence of different SVM parameters in the context of an algorithm for cell segmentation and tracking. Finally, we describe how the application of SVMs has been critical to study protein localization in yeast screens, for lineage tracing in C. elegans, or to determine the developmental stage of Drosophila embryos to investigate gene expression dynamics. We propose that SVMs will become central tools in the analysis of the complex image data that novel microscopy modalities have made possible. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Dehmel, Carola; Braune, Stephan A; Kreymann, Georg; Baehr, Michael; Langebrake, Claudia; Hilgarth, Heike; Nierhaus, Axel; Dartsch, Dorothee C; Kluge, Stefan
2011-08-01
To compare the concentration conformity of infusion solutions manually prepared on intensive care units (ICU) with solutions from pharmacy-based, automated production. A prospective observational study conducted in a university hospital in Germany. Drug concentrations of 100 standardised infusion solutions manually prepared in the ICU and 100 matching solutions from automated production containing amiodarone, noradrenaline or hydrocortisone were measured by high-performance liquid chromatography analysis. Deviations from stated concentrations were calculated, and the quality of achieved concentration conformity of the two production methods was compared. Actual concentrations of 53% of the manually prepared and 16% of the machine-made solutions deviated by >5% above or below the stated concentration. A deviation of >10% was measured in 22% of the manually prepared samples and in 5% of samples from automated production. Of the manually prepared solutions, 15% deviated by >15% above or below the intended concentration. The mean concentration of the manually prepared solutions was 97.2% (SD 12.7%, range 45-129%) and of the machine-made solutions was 101.1% (SD 4.3%, range 90-114%) of the target concentration (p < 0.01). In this preliminary study, ward-based, manually prepared infusion solutions showed clinically relevant deviations in concentration conformity significantly more often than pharmacy-prepared, machine-made solutions. Centralised, automated preparation of standardised infusion solutions may be an effective means to reduce this type of medication error. Further confirmatory studies in larger settings and under conditions of routine automated production are required.
Function allocation for humans and automation in the context of team dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; John O'Hara; Jacques Hugo
Within Human Factors Engineering, a decision-making process called function allocation (FA) is used during the design life cycle of complex systems to distribute the system functions, often identified through a functional requirements analysis, to all human and automated machine agents (or teammates) involved in controlling the system. Most FA methods make allocation decisions primarily by comparing the capabilities of humans and automation, but then also by considering secondary factors such as cost, regulations, and the health and safety of workers. The primary analysis of the strengths and weaknesses of humans and machines, however, is almost always considered in terms ofmore » individual human or machine capabilities. Yet, FA is fundamentally about teamwork in that the goal of the FA decision-making process is to determine what are the optimal allocations of functions among agents. Given this framing of FA, and the increasing use of and sophistication of automation, there are two related social psychological issues that current FA methods need to address more thoroughly. First, many principles for effective human teamwork are not considered as central decision points or in the iterative hypothesis and testing phase in most FA methods, when it is clear that social factors have numerous positive and negative effects on individual and team capabilities. Second, social psychological factors affecting team performance and can be difficult to translate to automated agents, and most FA methods currently do not account for this effect. The implications for these issues are discussed.« less
Automation: how much is too much?
Hancock, P A
2014-01-01
The headlong rush to automate continues apace. The dominant question still remains whether we can automate, not whether we should automate. However, it is this latter question that is featured and considered explicitly here. The suggestion offered is that unlimited automation of all technical functions will eventually prove anathema to the fundamental quality of human life. Examples of tasks, pursuits and past-times that should potentially be excused from the automation imperative are discussed. This deliberation leads us back to the question of balance in the cooperation, coordination and potential conflict between humans and the machines they create.
Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr 0.2Ti 0.8O 3 Thin Films
Agar, Joshua C.; Cao, Ye; Naul, Brett; ...
2018-05-28
Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures ofmore » ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Lastly, among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion.« less
An automated diagnosis system of liver disease using artificial immune and genetic algorithms.
Liang, Chunlin; Peng, Lingxi
2013-04-01
The rise of health care cost is one of the world's most important problems. Disease prediction is also a vibrant research area. Researchers have approached this problem using various techniques such as support vector machine, artificial neural network, etc. This study typically exploits the immune system's characteristics of learning and memory to solve the problem of liver disease diagnosis. The proposed system applies a combination of two methods of artificial immune and genetic algorithm to diagnose the liver disease. The system architecture is based on artificial immune system. The learning procedure of system adopts genetic algorithm to interfere the evolution of antibody population. The experiments use two benchmark datasets in our study, which are acquired from the famous UCI machine learning repository. The obtained diagnosis accuracies are very promising with regard to the other diagnosis system in the literatures. These results suggest that this system may be a useful automatic diagnosis tool for liver disease.
Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr 0.2Ti 0.8O 3 Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agar, Joshua C.; Cao, Ye; Naul, Brett
Many energy conversion, sensing, and microelectronic applications based on ferroic materials are determined by the domain structure evolution under applied stimuli. New hyperspectral, multidimensional spectroscopic techniques now probe dynamic responses at relevant length and time scales to provide an understanding of how these nanoscale domain structures impact macroscopic properties. Such approaches, however, remain limited in use because of the difficulties that exist in extracting and visualizing scientific insights from these complex datasets. Using multidimensional band-excitation scanning probe spectroscopy and adapting tools from both computer vision and machine learning, an automated workflow is developed to featurize, detect, and classify signatures ofmore » ferroelectric/ferroelastic switching processes in complex ferroelectric domain structures. This approach enables the identification and nanoscale visualization of varied modes of response and a pathway to statistically meaningful quantification of the differences between those modes. Lastly, among other things, the importance of domain geometry is spatially visualized for enhancing nanoscale electromechanical energy conversion.« less
NASA Astrophysics Data System (ADS)
Endah, S. N.; Nugraheni, D. M. K.; Adhy, S.; Sutikno
2017-04-01
According to Law No. 32 of 2002 and the Indonesian Broadcasting Commission Regulation No. 02/P/KPI/12/2009 & No. 03/P/KPI/12/2009, stated that broadcast programs should not scold with harsh words, not harass, insult or demean minorities and marginalized groups. However, there are no suitable tools to censor those words automatically. Therefore, researches to develop a system of intelligent software to censor the words automatically are needed. To conduct censor, the system must be able to recognize the words in question. This research proposes the classification of speech divide into two classes using Support Vector Machine (SVM), first class is set of rude words and the second class is set of properly words. The speech pitch values as an input in SVM, it used for the development of the system for the Indonesian rude swear word. The results of the experiment show that SVM is good for this system.
Advanced automation for space missions: Technical summary
NASA Technical Reports Server (NTRS)
1980-01-01
Several representative missions which would require extensive applications of machine intelligence were identified and analyzed. The technologies which must be developed to accomplish these types of missions are discussed. These technologies include man-machine communication, space manufacturing, teleoperators, and robot systems.
Automated negotiation in environmental resource management: Review and assessment.
Eshragh, Faezeh; Pooyandeh, Majeed; Marceau, Danielle J
2015-10-01
Negotiation is an integral part of our daily life and plays an important role in resolving conflicts and facilitating human interactions. Automated negotiation, which aims at capturing the human negotiation process using artificial intelligence and machine learning techniques, is well-established in e-commerce, but its application in environmental resource management remains limited. This is due to the inherent uncertainties and complexity of environmental issues, along with the diversity of stakeholders' perspectives when dealing with these issues. The objective of this paper is to describe the main components of automated negotiation, review and compare machine learning techniques in automated negotiation, and provide a guideline for the selection of suitable methods in the particular context of stakeholders' negotiation over environmental resource issues. We advocate that automated negotiation can facilitate the involvement of stakeholders in the exploration of a plurality of solutions in order to reach a mutually satisfying agreement and contribute to informed decisions in environmental management along with the need for further studies to consolidate the potential of this modeling approach. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technology of machine tools. Volume 4. Machine tool controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 3. Machine tool mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tlusty, J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Technology of machine tools. Volume 5. Machine tool accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hocken, R.J.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-12
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,971] ASC Machine Tools, Inc... workers and former workers of ASC Machine Tools, Inc., Spokane Valley, Washington (the subject firm). The... workers of ASC Machine Tools, Inc., Spokane Valley, Washington. Signed in Washington, DC, on this 2nd day...
EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats
Ison, Jon; Kalaš, Matúš; Jonassen, Inge; Bolser, Dan; Uludag, Mahmut; McWilliam, Hamish; Malone, James; Lopez, Rodrigo; Pettifer, Steve; Rice, Peter
2013-01-01
Motivation: Advancing the search, publication and integration of bioinformatics tools and resources demands consistent machine-understandable descriptions. A comprehensive ontology allowing such descriptions is therefore required. Results: EDAM is an ontology of bioinformatics operations (tool or workflow functions), types of data and identifiers, application domains and data formats. EDAM supports semantic annotation of diverse entities such as Web services, databases, programmatic libraries, standalone tools, interactive applications, data schemas, datasets and publications within bioinformatics. EDAM applies to organizing and finding suitable tools and data and to automating their integration into complex applications or workflows. It includes over 2200 defined concepts and has successfully been used for annotations and implementations. Availability: The latest stable version of EDAM is available in OWL format from http://edamontology.org/EDAM.owl and in OBO format from http://edamontology.org/EDAM.obo. It can be viewed online at the NCBO BioPortal and the EBI Ontology Lookup Service. For documentation and license please refer to http://edamontology.org. This article describes version 1.2 available at http://edamontology.org/EDAM_1.2.owl. Contact: jison@ebi.ac.uk PMID:23479348
Brown, Raymond J.
1977-01-01
The present invention relates to a tool setting device for use with numerically controlled machine tools, such as lathes and milling machines. A reference position of the machine tool relative to the workpiece along both the X and Y axes is utilized by the control circuit for driving the tool through its program. This reference position is determined for both axes by displacing a single linear variable displacement transducer (LVDT) with the machine tool through a T-shaped pivotal bar. The use of the T-shaped bar allows the cutting tool to be moved sequentially in the X or Y direction for indicating the actual position of the machine tool relative to the predetermined desired position in the numerical control circuit by using a single LVDT.
EEG amplitude modulation analysis for semi-automated diagnosis of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Falk, Tiago H.; Fraga, Francisco J.; Trambaiolli, Lucas; Anghinah, Renato
2012-12-01
Recent experimental evidence has suggested a neuromodulatory deficit in Alzheimer's disease (AD). In this paper, we present a new electroencephalogram (EEG) based metric to quantitatively characterize neuromodulatory activity. More specifically, the short-term EEG amplitude modulation rate-of-change (i.e., modulation frequency) is computed for five EEG subband signals. To test the performance of the proposed metric, a classification task was performed on a database of 32 participants partitioned into three groups of approximately equal size: healthy controls, patients diagnosed with mild AD, and those with moderate-to-severe AD. To gauge the benefits of the proposed metric, performance results were compared with those obtained using EEG spectral peak parameters which were recently shown to outperform other conventional EEG measures. Using a simple feature selection algorithm based on area-under-the-curve maximization and a support vector machine classifier, the proposed parameters resulted in accuracy gains, relative to spectral peak parameters, of 21.3% when discriminating between the three groups and by 50% when mild and moderate-to-severe groups were merged into one. The preliminary findings reported herein provide promising insights that automated tools may be developed to assist physicians in very early diagnosis of AD as well as provide researchers with a tool to automatically characterize cross-frequency interactions and their changes with disease.
NASA Astrophysics Data System (ADS)
Robert-Perron, Etienne; Blais, Carl; Pelletier, Sylvain; Thomas, Yannig
2007-06-01
The green machining process is an interesting approach for solving the mediocre machining behavior of high-performance powder metallurgy (PM) steels. This process appears as a promising method for extending tool life and reducing machining costs. Recent improvements in binder/lubricant technologies have led to high green strength systems that enable green machining. So far, tool wear has been considered negligible when characterizing the machinability of green PM specimens. This inaccurate assumption may lead to the selection of suboptimum cutting conditions. The first part of this study involves the optimization of the machining parameters to minimize the effects of tool wear on the machinability in turning of green PM components. The second part of our work compares the sintered mechanical properties of components machined in green state with other machined after sintering.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles.
Eom, Hwisoo; Lee, Sang Hun
2015-06-12
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model.
Human-Automation Interaction Design for Adaptive Cruise Control Systems of Ground Vehicles
Eom, Hwisoo; Lee, Sang Hun
2015-01-01
A majority of recently developed advanced vehicles have been equipped with various automated driver assistance systems, such as adaptive cruise control (ACC) and lane keeping assistance systems. ACC systems have several operational modes, and drivers can be unaware of the mode in which they are operating. Because mode confusion is a significant human error factor that contributes to traffic accidents, it is necessary to develop user interfaces for ACC systems that can reduce mode confusion. To meet this requirement, this paper presents a new human-automation interaction design methodology in which the compatibility of the machine and interface models is determined using the proposed criteria, and if the models are incompatible, one or both of the models is/are modified to make them compatible. To investigate the effectiveness of our methodology, we designed two new interfaces by separately modifying the machine model and the interface model and then performed driver-in-the-loop experiments. The results showed that modifying the machine model provides a more compact, acceptable, effective, and safe interface than modifying the interface model. PMID:26076406
EQUIPMENT FOR SPARK-ASSISTED MACHINING (OBORUDOVANIE DLYA ELEKTROISKROVOI OBRABOTKI),
MACHINE TOOLS, * ELECTROEROSIVE MACHINING), MACHINE TOOL INDUSTRY, ELECTROFORMING, ELECTRODES, ELECTROLYTIC CAPACITORS, ELECTRIC DISCHARGES, TOLERANCES(MECHANICS), SURFACE ROUGHNESS, DIES, MOLDINGS, SYNTHETIC FIBERS, USSR
ODISEES: A New Paradigm in Data Access
NASA Astrophysics Data System (ADS)
Huffer, E.; Little, M. M.; Kusterer, J.
2013-12-01
As part of its ongoing efforts to improve access to data, the Atmospheric Science Data Center has developed a high-precision Earth Science domain ontology (the 'ES Ontology') implemented in a graph database ('the Semantic Metadata Repository') that is used to store detailed, semantically-enhanced, parameter-level metadata for ASDC data products. The ES Ontology provides the semantic infrastructure needed to drive the ASDC's Ontology-Driven Interactive Search Environment for Earth Science ('ODISEES'), a data discovery and access tool, and will support additional data services such as analytics and visualization. The ES ontology is designed on the premise that naming conventions alone are not adequate to provide the information needed by prospective data consumers to assess the suitability of a given dataset for their research requirements; nor are current metadata conventions adequate to support seamless machine-to-machine interactions between file servers and end-user applications. Data consumers need information not only about what two data elements have in common, but also about how they are different. End-user applications need consistent, detailed metadata to support real-time data interoperability. The ES ontology is a highly precise, bottom-up, queriable model of the Earth Science domain that focuses on critical details about the measurable phenomena, instrument techniques, data processing methods, and data file structures. Earth Science parameters are described in detail in the ES Ontology and mapped to the corresponding variables that occur in ASDC datasets. Variables are in turn mapped to well-annotated representations of the datasets that they occur in, the instrument(s) used to create them, the instrument platforms, the processing methods, etc., creating a linked-data structure that allows both human and machine users to access a wealth of information critical to understanding and manipulating the data. The mappings are recorded in the Semantic Metadata Repository as RDF-triples. An off-the-shelf Ontology Development Environment and a custom Metadata Conversion Tool comprise a human-machine/machine-machine hybrid tool that partially automates the creation of metadata as RDF-triples by interfacing with existing metadata repositories and providing a user interface that solicits input from a human user, when needed. RDF-triples are pushed to the Ontology Development Environment, where a reasoning engine executes a series of inference rules whose antecedent conditions can be satisfied by the initial set of RDF-triples, thereby generating the additional detailed metadata that is missing in existing repositories. A SPARQL Endpoint, a web-based query service and a Graphical User Interface allow prospective data consumers - even those with no familiarity with NASA data products - to search the metadata repository to find and order data products that meet their exact specifications. A web-based API will provide an interface for machine-to-machine transactions.
The Molecular Industrial Revolution: Automated Synthesis of Small Molecules
Trobe, Melanie; Burke, Martin D.
2018-01-01
The eighteenth and nineteenth centuries marked a sweeping transition from manual to automated manufacturing on the macroscopic scale. This enabled an unmatched period of human innovation that helped drive the Industrial Revolution. The impact on society was transformative, ultimately yielding substantial improvements in living conditions and lifespan in many parts of the world. During the same time period, the first manual syntheses of organic molecules was achieved. Now, two centuries later, we are poised for an analogous transition from highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of many different types of molecules with the push of a button. Automation of customized small molecule synthesis pathways is already enabling safer, more reproducible, and readily scalable production of specific targets, and general machines now exist for the synthesis of a wide range of different peptides, oligonucleotides, and oligosaccharides. Creating general machines that are similarly capable of making many different types of small molecules on-demand, akin to that which has been achieved on the macroscopic scale with 3D printers, has proven to be substantially more challenging. Yet important progress is being made toward this potentially transformative objective with two complementary approaches: (1) automation of customized synthesis routes to different targets via machines that enable use of many different reactions and starting materials, and (2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these exciting directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale. PMID:29513400
Machine vision system for online inspection of freshly slaughtered chickens
USDA-ARS?s Scientific Manuscript database
A machine vision system was developed and evaluated for the automation of online inspection to differentiate freshly slaughtered wholesome chickens from systemically diseased chickens. The system consisted of an electron-multiplying charge-coupled-device camera used with an imaging spectrograph and ...
Technology of machine tools. Volume 2. Machine tool systems management and utilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, A.R.
1980-10-01
The Machine Tool Task Force (MTTF) was formed to characterize the state of the art of machine tool technology and to identify promising future directions of this technology. This volume is one of a five-volume series that presents the MTTF findings; reports on various areas of the technology were contributed by experts in those areas.
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.
Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W
2010-09-01
Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.
Intelligent platforms for disease assessment: novel approaches in functional echocardiography.
Sengupta, Partho P
2013-11-01
Accelerating trends in the dynamic digital era (from 2004 onward) has resulted in the emergence of novel parametric imaging tools that allow easy and accurate extraction of quantitative information from cardiac images. This review principally attempts to heighten the awareness of newer emerging paradigms that may advance acquisition, visualization and interpretation of the large functional data sets obtained during cardiac ultrasound imaging. Incorporation of innovative cognitive software that allow advanced pattern recognition and disease forecasting will likely transform the human-machine interface and interpretation process to achieve a more efficient and effective work environment. Novel technologies for automation and big data analytics that are already active in other fields need to be rapidly adapted to the health care environment with new academic-industry collaborations to enrich and accelerate the delivery of newer decision making tools for enhancing patient care. Copyright © 2013. Published by Elsevier Inc.
MetaDP: a comprehensive web server for disease prediction of 16S rRNA metagenomic datasets.
Xu, Xilin; Wu, Aiping; Zhang, Xinlei; Su, Mingming; Jiang, Taijiao; Yuan, Zhe-Ming
2016-01-01
High-throughput sequencing-based metagenomics has garnered considerable interest in recent years. Numerous methods and tools have been developed for the analysis of metagenomic data. However, it is still a daunting task to install a large number of tools and complete a complicated analysis, especially for researchers with minimal bioinformatics backgrounds. To address this problem, we constructed an automated software named MetaDP for 16S rRNA sequencing data analysis, including data quality control, operational taxonomic unit clustering, diversity analysis, and disease risk prediction modeling. Furthermore, a support vector machine-based prediction model for intestinal bowel syndrome (IBS) was built by applying MetaDP to microbial 16S sequencing data from 108 children. The success of the IBS prediction model suggests that the platform may also be applied to other diseases related to gut microbes, such as obesity, metabolic syndrome, or intestinal cancer, among others (http://metadp.cn:7001/).
NASA Astrophysics Data System (ADS)
Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard
2017-09-01
Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.
NASA Astrophysics Data System (ADS)
Zhang, P. P.; Guo, Y.; Wang, B.
2017-05-01
The main problems in milling difficult-to-machine materials are the high cutting temperature and rapid tool wear. However it is impossible to investigate tool wear in machining. Tool wear and cutting chip formation are two of the most important representations for machining efficiency and quality. The purpose of this paper is to develop the model of tool wear with cutting chip formation (width of chip and radian of chip) on difficult-to-machine materials. Thereby tool wear is monitored by cutting chip formation. A milling experiment on the machining centre with three sets cutting parameters was performed to obtain chip formation and tool wear. The experimental results show that tool wear increases gradually along with cutting process. In contrast, width of chip and radian of chip decrease. The model is developed by fitting the experimental data and formula transformations. The most of monitored errors of tool wear by the chip formation are less than 10%. The smallest error is 0.2%. Overall errors by the radian of chip are less than the ones by the width of chip. It is new way to monitor and detect tool wear by cutting chip formation in milling difficult-to-machine materials.
NASA Technical Reports Server (NTRS)
Abbott, Kathy H.; Schutte, Paul C.
1989-01-01
A development status evaluation is presented for the NASA-Langley Intelligent Cockpit Aids research program, which encompasses AI, human/machine interfaces, and conventional automation. Attention is being given to decision-aiding concepts for human-centered automation, with emphasis on inflight subsystem fault management, inflight mission replanning, and communications management. The cockpit envisioned is for advanced commercial transport aircraft.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Implications of Automation for Operating and Staffing an Advanced Air Traffic Management System
DOT National Transportation Integrated Search
1974-08-01
The role of the air traffic controller in future system operations is expected to be substantially affected by the introduction of new automated features. The number of human operators needed to man the system will almost certainly decrease as machin...
DOT National Transportation Integrated Search
2016-01-01
State highway agencies (SHAs) routinely employ semi-automated and automated image-based methods for network-level : pavement-cracking data collection, and there are different types of pavement-cracking data collected by SHAs for reporting and : manag...
More steps towards process automation for optical fabrication
NASA Astrophysics Data System (ADS)
Walker, David; Yu, Guoyu; Beaucamp, Anthony; Bibby, Matt; Li, Hongyu; McCluskey, Lee; Petrovic, Sanja; Reynolds, Christina
2017-06-01
In the context of Industrie 4.0, we have previously described the roles of robots in optical processing, and their complementarity with classical CNC machines, providing both processing and automation functions. After having demonstrated robotic moving of parts between a CNC polisher and metrology station, and auto-fringe-acquisition, we have moved on to automate the wash-down operation. This is part of a wider strategy we describe in this paper, leading towards automating the decision-making operations required before and throughout an optical manufacturing cycle.
Summaries of press automation conference presented
NASA Astrophysics Data System (ADS)
Makhlin, A. Y.; Pokrovskaya, G. M.
1985-01-01
The automation and mechanization of cold and hot stamping were discussed. Problems in the comprehensive mechanization and automatio of stamping in machine building development were examined. Automation becomes effective when it is implemented in progressive manufacturing processes and a comprehensive approach to the solution of all problems, beginning with the delivery of initial materials and ending with the transportation of finished products to the warehouse. Production intensification and improvments of effectiveness of produced output through the comprehensive mechanization and automation of stamping operations are reported.
The Molecular Industrial Revolution: Automated Synthesis of Small Molecules.
Trobe, Melanie; Burke, Martin D
2018-04-09
Today we are poised for a transition from the highly customized crafting of specific molecular targets by hand to the increasingly general and automated assembly of different types of molecules with the push of a button. Creating machines that are capable of making many different types of small molecules on demand, akin to that which has been achieved on the macroscale with 3D printers, is challenging. Yet important progress is being made toward this objective with two complementary approaches: 1) Automation of customized synthesis routes to different targets by machines that enable the use of many reactions and starting materials, and 2) automation of generalized platforms that make many different targets using common coupling chemistry and building blocks. Continued progress in these directions has the potential to shift the bottleneck in molecular innovation from synthesis to imagination, and thereby help drive a new industrial revolution on the molecular scale. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NIST Automated Manufacturing Research Facility (AMRF): March 1987
NASA Technical Reports Server (NTRS)
Herbert, Judith E. (Editor); Kane, Richard (Editor)
1987-01-01
The completion and advances to the NIST Automated Manufacturing Research Facility (AMRF) is described in this video. The six work stations: (1) horizontal machining; (2) vertical machining; (3) turning machinery; (4) cleaning and deburring; (5) materials handling; and (6) inspection are shown and uses for each workstation are cited. Visiting researchers and scientists within NIST describe the advantages of each of the workstations, what the facility is used for, future applications for the technological advancements from the AMRF, including examples of how AMRF technology is being transferred to the U.S. Navy industry and discuss future technological goals for the facility.
Large-scale automated histology in the pursuit of connectomes.
Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert
2011-11-09
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.
Large-Scale Automated Histology in the Pursuit of Connectomes
Bharioke, Arjun; Blinder, Pablo; Bock, Davi D.; Briggman, Kevin L.; Chklovskii, Dmitri B.; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P.; Lee, Wei-Chung Allen; Meyer, Hanno S.; Micheva, Kristina D.; Oberlaender, Marcel; Prohaska, Steffen; Reid, R. Clay; Smith, Stephen J.; Takemura, Shinya; Tsai, Philbert S.; Sakmann, Bert
2011-01-01
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity. PMID:22072665
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A
Interactive data visualization leverages human visual perception and cognition to improve the accuracy and effectiveness of data analysis. When combined with automated data analytics, data visualization systems orchestrate the strengths of humans with the computational power of machines to solve problems neither approach can manage in isolation. In the intelligent transportation system domain, such systems are necessary to support decision making in large and complex data streams. In this chapter, we provide an introduction to several key topics related to the design of data visualization systems. In addition to an overview of key techniques and strategies, we will describe practicalmore » design principles. The chapter is concluded with a detailed case study involving the design of a multivariate visualization tool.« less
DORCA computer program. Volume 1: User's guide
NASA Technical Reports Server (NTRS)
Wray, S. T., Jr.
1971-01-01
The Dynamic Operational Requirements and Cost Analysis Program (DORCA) was written to provide a top level analysis tool for NASA. DORCA relies on a man-machine interaction to optimize results based on external criteria. DORCA relies heavily on outside sources to provide cost information and vehicle performance parameters as the program does not determine these quantities but rather uses them. Given data describing missions, vehicles, payloads, containers, space facilities, schedules, cost values and costing procedures, the program computes flight schedules, cargo manifests, vehicle fleet requirements, acquisition schedules and cost summaries. The program is designed to consider the Earth Orbit, Lunar, Interplanetary and Automated Satellite Programs. A general outline of the capabilities of the program are provided.
Way to nanogrinding technology
NASA Astrophysics Data System (ADS)
Miyashita, Masakazu
1990-11-01
Precision finishing process of hard and brittle material components such as single crystal silicon wafer and magnetic head consists of lapping and polishing which depend too much on skilled labor. This process is based on the traditional optical production technology and entirely different from the automated mass production technique in automobile production. Instead of traditional lapping and polishing, the nanogrinding is proposed as a new stock removal machining to generate optical surface on brittle materials. By this new technology, the damage free surface which is the same one produced by lapping and polishing can be obtained on brittle materials, and the free carvature can also be generated on brittle materials. This technology is based on the motion copying principle which is the same as in case of metal parts machining. The new nanogrinding technology is anticipated to be adapted as the machining technique suitable for automated mass production, because the stable machining on the level of optical production technique is expected to be obtained by the traditional lapping and polishing.
Designing Anticancer Peptides by Constructive Machine Learning.
Grisoni, Francesca; Neuhaus, Claudia S; Gabernet, Gisela; Müller, Alex T; Hiss, Jan A; Schneider, Gisbert
2018-04-21
Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Novel Artificial Intelligence System for Endotracheal Intubation.
Carlson, Jestin N; Das, Samarjit; De la Torre, Fernando; Frisch, Adam; Guyette, Francis X; Hodgins, Jessica K; Yealy, Donald M
2016-01-01
Adequate visualization of the glottic opening is a key factor to successful endotracheal intubation (ETI); however, few objective tools exist to help guide providers' ETI attempts toward the glottic opening in real-time. Machine learning/artificial intelligence has helped to automate the detection of other visual structures but its utility with ETI is unknown. We sought to test the accuracy of various computer algorithms in identifying the glottic opening, creating a tool that could aid successful intubation. We collected a convenience sample of providers who each performed ETI 10 times on a mannequin using a video laryngoscope (C-MAC, Karl Storz Corp, Tuttlingen, Germany). We recorded each attempt and reviewed one-second time intervals for the presence or absence of the glottic opening. Four different machine learning/artificial intelligence algorithms analyzed each attempt and time point: k-nearest neighbor (KNN), support vector machine (SVM), decision trees, and neural networks (NN). We used half of the videos to train the algorithms and the second half to test the accuracy, sensitivity, and specificity of each algorithm. We enrolled seven providers, three Emergency Medicine attendings, and four paramedic students. From the 70 total recorded laryngoscopic video attempts, we created 2,465 time intervals. The algorithms had the following sensitivity and specificity for detecting the glottic opening: KNN (70%, 90%), SVM (70%, 90%), decision trees (68%, 80%), and NN (72%, 78%). Initial efforts at computer algorithms using artificial intelligence are able to identify the glottic opening with over 80% accuracy. With further refinements, video laryngoscopy has the potential to provide real-time, direction feedback to the provider to help guide successful ETI.
Plan for conducting an international machine tool task force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.; McClure, E.R.; Schuman, J.F.
1978-08-28
The basic objectives of the Machine Tool Task Force (MTTF) are to characterize and summarize the state of the art of cutting machine tool technology and to identify promising areas of future R and D. These goals will be accomplished with a series of multidisciplinary teams of prominent experts and individuals experienced in the specialized technologies of machine tools or in the management of machine tool operations. Experts will be drawn from all areas of the machine tool community: machine tool users or buyer organizations, builders, and R and D establishments including universities and government laboratories, both domestic and foreign.more » A plan for accomplishing this task is presented. The area of machine tool technology has been divided into about two dozen technology subjects on which teams of one or more experts will work. These teams are, in turn, organized into four principal working groups dealing, respectively, with machine tool accuracy, mechanics, control, and management systems/utilization. Details are presented on specific subjects to be covered, the organization of the Task Force and its four working groups, and the basic approach to determining the state of the art of technology and the future directions of this technology. The planned review procedure, the potential benefits, our management approach, and the schedule, as well as the key participating personnel and their background are discussed. The initial meeting of MTTF members will be held at a plenary session on October 16 and 17, 1978, in Scottsdale, AZ. The MTTF study will culminate in a conference on September 1, 1980, in Chicago, IL, immediately preceeding the 1980 International Machine Tool Show. At this time, our results will be released to the public; a series of reports will be published in late 1980.« less
Prototype Automated Equipment to Perform Poising and Beat Rate Operations on the M577 MTSQ Fuze.
1978-09-30
Regulation Machine which sets the M577 Fuze Timer beat rate and the Automatic Poising Machine which J dynamically balances the Timer balance wheel...in trouble shooting., The Automatic Poising Machine Figure 3 which inspects and corrects the dynamic I balance of the Balance Wheel Assembly was...machine is intimately related to the fastening method of the wire to the Timer at one end and the Balance Wheel at the other, a review of the history
Public Data Set: Control and Automation of the Pegasus Multi-point Thomson Scattering System
Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)
2016-08-12
This public data set contains openly-documented, machine readable digital research data corresponding to figures published in G.M. Bodner et al., 'Control and Automation of the Pegasus Multi-point Thomson Scattering System,' Rev. Sci. Instrum. 87, 11E523 (2016).
Automated inspection of bread and loaves
NASA Astrophysics Data System (ADS)
Batchelor, Bruce G.
1993-08-01
The prospects for building practical automated inspection machines, capable of detecting the following faults in ordinary, everyday loaves are reviewed: (1) foreign bodies, using X-rays, (2) texture changes, using glancing illumination, mathematical morphology and Neural Net learning techniques, and (3) shape deformations, using structured lighting and simple geometry.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Assessment area means a geographic area delineated in accordance with § 228.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned or operated by, or operated exclusively for... categories of loans: (1) Motor vehicle loan, which is a consumer loan extended for the purchase of and...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Assessment area means a geographic area delineated in accordance with § 25.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned or operated by, or operated exclusively for... farm loan. Consumer loans include the following categories of loans: (1) Motor vehicle loan, which is a...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Assessment area means a geographic area delineated in accordance with § 25.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned or operated by, or operated exclusively for... farm loan. Consumer loans include the following categories of loans: (1) Motor vehicle loan, which is a...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Assessment area means a geographic area delineated in accordance with § 228.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned or operated by, or operated exclusively for... categories of loans: (1) Motor vehicle loan, which is a consumer loan extended for the purchase of and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... means a geographic area delineated in accordance with § 228.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned or operated by, or operated exclusively for, the bank... categories of loans: (1) Motor vehicle loan, which is a consumer loan extended for the purchase of and...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Assessment area means a geographic area delineated in accordance with § 25.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned or operated by, or operated exclusively for... farm loan. Consumer loans include the following categories of loans: (1) Motor vehicle loan, which is a...
NASA Astrophysics Data System (ADS)
Sigurdson, J.; Tagerud, J.
1986-05-01
A UNIDO publication about machine tools with automatic control discusses the following: (1) numerical control (NC) machine tool perspectives, definition of NC, flexible manufacturing systems, robots and their industrial application, research and development, and sensors; (2) experience in developing a capability in NC machine tools; (3) policy issues; (4) procedures for retrieval of relevant documentation from data bases. Diagrams, statistics, bibliography are included.
NASA Astrophysics Data System (ADS)
Dasgupta, S.; Mukherjee, S.
2016-09-01
One of the most significant factors in metal cutting is tool life. In this research work, the effects of machining parameters on tool under wet machining environment were studied. Tool life characteristics of brazed carbide cutting tool machined against mild steel and optimization of machining parameters based on Taguchi design of experiments were examined. The experiments were conducted using three factors, spindle speed, feed rate and depth of cut each having three levels. Nine experiments were performed on a high speed semi-automatic precision central lathe. ANOVA was used to determine the level of importance of the machining parameters on tool life. The optimum machining parameter combination was obtained by the analysis of S/N ratio. A mathematical model based on multiple regression analysis was developed to predict the tool life. Taguchi's orthogonal array analysis revealed the optimal combination of parameters at lower levels of spindle speed, feed rate and depth of cut which are 550 rpm, 0.2 mm/rev and 0.5mm respectively. The Main Effects plot reiterated the same. The variation of tool life with different process parameters has been plotted. Feed rate has the most significant effect on tool life followed by spindle speed and depth of cut.
Highly Productive Tools For Turning And Milling
NASA Astrophysics Data System (ADS)
Vasilko, Karol
2015-12-01
Beside cutting speed, shift is another important parameter of machining. Its considerable influence is shown mainly in the workpiece machined surface microgeometry. In practice, mainly its combination with the radius of cutting tool tip rounding is used. Options to further increase machining productivity and machined surface quality are hidden in this approach. The paper presents variations of the design of productive cutting tools for lathe work and milling on the base of the use of the laws of the relationship among the highest reached uneveness of machined surface, tool tip radius and shift.
Trends and developments in industrial machine vision: 2013
NASA Astrophysics Data System (ADS)
Niel, Kurt; Heinzl, Christoph
2014-03-01
When following current advancements and implementations in the field of machine vision there seems to be no borders for future developments: Calculating power constantly increases, and new ideas are spreading and previously challenging approaches are introduced in to mass market. Within the past decades these advances have had dramatic impacts on our lives. Consumer electronics, e.g. computers or telephones, which once occupied large volumes, now fit in the palm of a hand. To note just a few examples e.g. face recognition was adopted by the consumer market, 3D capturing became cheap, due to the huge community SW-coding got easier using sophisticated development platforms. However, still there is a remaining gap between consumer and industrial applications. While the first ones have to be entertaining, the second have to be reliable. Recent studies (e.g. VDMA [1], Germany) show a moderately increasing market for machine vision in industry. Asking industry regarding their needs the main challenges for industrial machine vision are simple usage and reliability for the process, quick support, full automation, self/easy adjustment at changing process parameters, "forget it in the line". Furthermore a big challenge is to support quality control: Nowadays the operator has to accurately define the tested features for checking the probes. There is an upcoming development also to let automated machine vision applications find out essential parameters in a more abstract level (top down). In this work we focus on three current and future topics for industrial machine vision: Metrology supporting automation, quality control (inline/atline/offline) as well as visualization and analysis of datasets with steadily growing sizes. Finally the general trend of the pixel orientated towards object orientated evaluation is addressed. We do not directly address the field of robotics taking advances from machine vision. This is actually a fast changing area which is worth an own contribution.
1987-06-15
001 GENERAL DYNAMICS 00 FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Repc t JUNG 0 ?7 PROJECT 28 AUTOMATION...DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Report PROJECT 28 AUTOMATION OF RECEIVING, RECEIVING...13 6 PROJECT ASSUMPTIONS 20 7 PRELIMINARY/FINAL DESIGN AND FINDINGS 21 8 SYSTEM/EQUIPMENT/MACHINING SPECIFICATIONS 37 9 VENDOR/ INDUSTRY ANALYSIS
Radio Frequency Interference Detection using Machine Learning.
NASA Astrophysics Data System (ADS)
Mosiane, Olorato; Oozeer, Nadeem; Aniyan, Arun; Bassett, Bruce A.
2017-05-01
Radio frequency interference (RFI) has plagued radio astronomy which potentially might be as bad or worse by the time the Square Kilometre Array (SKA) comes up. RFI can be either internal (generated by instruments) or external that originates from intentional or unintentional radio emission generated by man. With the huge amount of data that will be available with up coming radio telescopes, an automated aproach will be required to detect RFI. In this paper to try automate this process we present the result of applying machine learning techniques to cross match RFI from the Karoo Array Telescope (KAT-7) data. We found that not all the features selected to characterise RFI are always important. We further investigated 3 machine learning techniques and conclude that the Random forest classifier performs with a 98% Area Under Curve and 91% recall in detecting RFI.
The in-situ 3D measurement system combined with CNC machine tools
NASA Astrophysics Data System (ADS)
Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang
2013-06-01
With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.
Libraries Can Learn from Banks.
ERIC Educational Resources Information Center
Lawrence, Gail H.
1983-01-01
The experiences of banks introducing computerized services to the public are described to provide some idea of what libraries can expect when they introduce online systems. Volume of use of Automated Teller Machines, types of users, introduction of machines, and user acceptance are highlighted. Thirty-two references are cited. (EJS)
Identification of Tool Wear when Machining of Austenitic Steels and Titatium by Miniature Machining
NASA Astrophysics Data System (ADS)
Pilc, Jozef; Kameník, Roman; Varga, Daniel; Martinček, Juraj; Sadilek, Marek
2016-12-01
Application of miniature machining is currently rapidly increasing mainly in biomedical industry and machining of hard-to-machine materials. Machinability of materials with increased level of toughness depends on factors that are important in the final state of surface integrity. Because of this, it is necessary to achieve high precision (varying in microns) in miniature machining. If we want to guarantee machining high precision, it is necessary to analyse tool wear intensity in direct interaction with given machined materials. During long-term cutting process, different cutting wedge deformations occur, leading in most cases to a rapid wear and destruction of the cutting wedge. This article deal with experimental monitoring of tool wear intensity during miniature machining.
Niemeijer, Meindert; van Ginneken, Bram; Russell, Stephen R; Suttorp-Schulten, Maria S A; Abràmoff, Michael D
2007-05-01
To describe and evaluate a machine learning-based, automated system to detect exudates and cotton-wool spots in digital color fundus photographs and differentiate them from drusen, for early diagnosis of diabetic retinopathy. Three hundred retinal images from one eye of 300 patients with diabetes were selected from a diabetic retinopathy telediagnosis database (nonmydriatic camera, two-field photography): 100 with previously diagnosed bright lesions and 200 without. A machine learning computer program was developed that can identify and differentiate among drusen, (hard) exudates, and cotton-wool spots. A human expert standard for the 300 images was obtained by consensus annotation by two retinal specialists. Sensitivities and specificities of the annotations on the 300 images by the automated system and a third retinal specialist were determined. The system achieved an area under the receiver operating characteristic (ROC) curve of 0.95 and sensitivity/specificity pairs of 0.95/0.88 for the detection of bright lesions of any type, and 0.95/0.86, 0.70/0.93, and 0.77/0.88 for the detection of exudates, cotton-wool spots, and drusen, respectively. The third retinal specialist achieved pairs of 0.95/0.74 for bright lesions and 0.90/0.98, 0.87/0.98, and 0.92/0.79 per lesion type. A machine learning-based, automated system capable of detecting exudates and cotton-wool spots and differentiating them from drusen in color images obtained in community based diabetic patients has been developed and approaches the performance level of retinal experts. If the machine learning can be improved with additional training data sets, it may be useful for detecting clinically important bright lesions, enhancing early diagnosis, and reducing visual loss in patients with diabetes.
Silva, Fabrício R; Vidotti, Vanessa G; Cremasco, Fernanda; Dias, Marcelo; Gomi, Edson S; Costa, Vital P
2013-01-01
To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.
Construction of an automated fiber pigtailing machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strand, O.T.
1996-01-01
At present, the high cost of optoelectronic (OE) devices is caused in part by the labor-intensive processes involved with packaging. Automating the packaging processes should result in a significant cost reduction. One of the most labor-intensive steps is aligning and attaching the fiber to the OE device, the so-called pigtailing process. Therefore, the goal of this 2-year ARPA-funded project is to design and build 3 low-cost machines to perform sub-micron alignments and attachments of single-mode fibers to different OE devices. These Automated Fiber Pigtailing Machines (AFPMS) are intended to be compatible with a manufacturing environment and have a modular designmore » for standardization of parts and machine vision for maximum flexibility. This work is a collaboration among Uniphase Telecommunications Products (formerly United Technologies Photonics, UTP), Ortel, Newport/Klinger, the Massachusetts Institute of Technology Manufacturing Institute (MIT), and Lawrence Livermore National Laboratory (LLNL). UTP and Ortel are the industrial partners for whom two of the AFPMs are being built. MIT and LLNL make up the design and assembly team of the project, while Newport/Klinger is a potential manufacturer of the AFPM and provides guidance to ensure that the design of the AFPM is marketable and compatible with a manufacturing environment. The AFPM for UTP will pigtail LiNbO{sub 3} waveguide devices and the AFPM for Ortel will pigtail photodiodes. Both of these machines will contain proprietary information, so the third AFPM, to reside at LLNL, will pigtail a non-proprietary waveguide device for demonstrations to US industry.« less
Combining human and machine processes (CHAMP)
NASA Astrophysics Data System (ADS)
Sudit, Moises; Sudit, David; Hirsch, Michael
2015-05-01
Machine Reasoning and Intelligence is usually done in a vacuum, without consultation of the ultimate decision-maker. The late consideration of the human cognitive process causes some major problems in the use of automated systems to provide reliable and actionable information that users can trust and depend to make the best Course-of-Action (COA). On the other hand, if automated systems are created exclusively based on human cognition, then there is a danger of developing systems that don't push the barrier of technology and are mainly done for the comfort level of selected subject matter experts (SMEs). Our approach to combining human and machine processes (CHAMP) is based on the notion of developing optimal strategies for where, when, how, and which human intelligence should be injected within a machine reasoning and intelligence process. This combination is based on the criteria of improving the quality of the output of the automated process while maintaining the required computational efficiency for a COA to be actuated in timely fashion. This research addresses the following problem areas: • Providing consistency within a mission: Injection of human reasoning and intelligence within the reliability and temporal needs of a mission to attain situational awareness, impact assessment, and COA development. • Supporting the incorporation of data that is uncertain, incomplete, imprecise and contradictory (UIIC): Development of mathematical models to suggest the insertion of a cognitive process within a machine reasoning and intelligent system so as to minimize UIIC concerns. • Developing systems that include humans in the loop whose performance can be analyzed and understood to provide feedback to the sensors.
MO-PIS-Exhibit Hall-01: Tools for TG-142 Linac Imaging QA I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clements, M; Wiesmeyer, M
2014-06-15
Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The therapy topic this year is solutions for TG-142 recommendations for linear accelerator imaging QA. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Automated Imaging QA for TG-142 with RIT Presentation Time: 2:45 – 3:15 PM This presentation will discuss software tools for automated imaging QA and phantom analysis for TG-142.more » All modalities used in radiation oncology will be discussed, including CBCT, planar kV imaging, planar MV imaging, and imaging and treatment coordinate coincidence. Vendor supplied phantoms as well as a variety of third-party phantoms will be shown, along with appropriate analyses, proper phantom setup procedures and scanning settings, and a discussion of image quality metrics. Tools for process automation will be discussed which include: RIT Cognition (machine learning for phantom image identification), RIT Cerberus (automated file system monitoring and searching), and RunQueueC (batch processing of multiple images). In addition to phantom analysis, tools for statistical tracking, trending, and reporting will be discussed. This discussion will include an introduction to statistical process control, a valuable tool in analyzing data and determining appropriate tolerances. An Introduction to TG-142 Imaging QA Using Standard Imaging Products Presentation Time: 3:15 – 3:45 PM Medical Physicists want to understand the logic behind TG-142 Imaging QA. What is often missing is a firm understanding of the connections between the EPID and OBI phantom imaging, the software “algorithms” that calculate the QA metrics, the establishment of baselines, and the analysis and interpretation of the results. The goal of our brief presentation will be to establish and solidify these connections. Our talk will be motivated by the Standard Imaging, Inc. phantom and software solutions. We will present and explain each of the image quality metrics in TG-142 in terms of the theory, mathematics, and algorithms used to implement them in the Standard Imaging PIPSpro software. In the process, we will identify the regions of phantom images that are analyzed by each algorithm. We then will discuss the process of the creation of baselines and typical ranges of acceptable values for each imaging quality metric.« less
Miller, Christopher A; Parasuraman, Raja
2007-02-01
To develop a method enabling human-like, flexible supervisory control via delegation to automation. Real-time supervisory relationships with automation are rarely as flexible as human task delegation to other humans. Flexibility in human-adaptable automation can provide important benefits, including improved situation awareness, more accurate automation usage, more balanced mental workload, increased user acceptance, and improved overall performance. We review problems with static and adaptive (as opposed to "adaptable") automation; contrast these approaches with human-human task delegation, which can mitigate many of the problems; and revise the concept of a "level of automation" as a pattern of task-based roles and authorizations. We argue that delegation requires a shared hierarchical task model between supervisor and subordinates, used to delegate tasks at various levels, and offer instruction on performing them. A prototype implementation called Playbook is described. On the basis of these analyses, we propose methods for supporting human-machine delegation interactions that parallel human-human delegation in important respects. We develop an architecture for machine-based delegation systems based on the metaphor of a sports team's "playbook." Finally, we describe a prototype implementation of this architecture, with an accompanying user interface and usage scenario, for mission planning for uninhabited air vehicles. Delegation offers a viable method for flexible, multilevel human-automation interaction to enhance system performance while maintaining user workload at a manageable level. Most applications of adaptive automation (aviation, air traffic control, robotics, process control, etc.) are potential avenues for the adaptable, delegation approach we advocate. We present an extended example for uninhabited air vehicle mission planning.
[Features of the maintenance of automated developing machines].
Koveshnikov, A I
1999-01-01
Based on his long-term own experience the author gives recommendations on the assembly, adjustment, operation, and preventive maintenance of automatic developing machines. Procedures are presented for evaluating the quality of X-ray films and controlling the activity of operating qualities of a developer while machining photographic materials. Troubles and malfunction of equipment and procedures for their elimination are shown to affect the quality of development of films.
Speech and Language Therapy Under an Automated Stimulus Control System.
ERIC Educational Resources Information Center
Garrett, Edgar Ray
Programed instruction for speech and language therapy, based upon stimulus control programing and presented by a completely automated teaching machine, was evaluated with 32 mentally retarded children, 20 children with language disorders (childhood aphasia), six adult aphasics, and 60 normal elementary school children. Posttesting with the…
Automation; The New Industrial Revolution.
ERIC Educational Resources Information Center
Arnstein, George E.
Automation is a word that describes the workings of computers and the innovations of automatic transfer machines in the factory. As the hallmark of the new industrial revolution, computers displace workers and create a need for new skills and retraining programs. With improved communication between industry and the educational community to…
Space exploration: The interstellar goal and Titan demonstration
NASA Technical Reports Server (NTRS)
1982-01-01
Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... with § 195.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned...) Motor vehicle loan, which is a consumer loan extended for the purchase of and secured by a motor vehicle... means a savings association that offers only a narrow product line (such as credit card or motor vehicle...
Code of Federal Regulations, 2014 CFR
2014-01-01
... with § 195.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned...) Motor vehicle loan, which is a consumer loan extended for the purchase of and secured by a motor vehicle... means a savings association that offers only a narrow product line (such as credit card or motor vehicle...
Code of Federal Regulations, 2013 CFR
2013-01-01
... with § 195.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned...) Motor vehicle loan, which is a consumer loan extended for the purchase of and secured by a motor vehicle... means a savings association that offers only a narrow product line (such as credit card or motor vehicle...
Adaptive Automation Design and Implementation
2015-09-17
Study : Space Navigator This section demonstrates the player modeling paradigm, focusing specifically on the response generation section of the player ...human-machine system, a real-time player modeling framework for imitating a specific person’s task performance, and the Adaptive Automation System...Model . . . . . . . . . . . . . . . . . . . . . . . 13 Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . . 15 An
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye
2016-01-01
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively. PMID:27271840
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S; Phoon, Sin Ye
2016-06-07
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
NASA Astrophysics Data System (ADS)
Pai, Yun Suen; Yap, Hwa Jen; Md Dawal, Siti Zawiah; Ramesh, S.; Phoon, Sin Ye
2016-06-01
This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
Three-dimensional tool radius compensation for multi-axis peripheral milling
NASA Astrophysics Data System (ADS)
Chen, Youdong; Wang, Tianmiao
2013-05-01
Few function about 3D tool radius compensation is applied to generating executable motion control commands in the existing computer numerical control (CNC) systems. Once the tool radius is changed, especially in the case of tool size changing with tool wear in machining, a new NC program has to be recreated. A generic 3D tool radius compensation method for multi-axis peripheral milling in CNC systems is presented. The offset path is calculated by offsetting the tool path along the direction of the offset vector with a given distance. The offset vector is perpendicular to both the tangent vector of the tool path and the orientation vector of the tool axis relative to the workpiece. The orientation vector equations of the tool axis relative to the workpiece are obtained through homogeneous coordinate transformation matrix and forward kinematics of generalized kinematics model of multi-axis machine tools. To avoid cutting into the corner formed by the two adjacent tool paths, the coordinates of offset path at the intersection point have been calculated according to the transition type that is determined by the angle between the two tool path tangent vectors at the corner. Through the verification by the solid cutting simulation software VERICUT® with different tool radiuses on a table-tilting type five-axis machine tool, and by the real machining experiment of machining a soup spoon on a five-axis machine tool with the developed CNC system, the effectiveness of the proposed 3D tool radius compensation method is confirmed. The proposed compensation method can be suitable for all kinds of three- to five-axis machine tools as a general form.
NASA Astrophysics Data System (ADS)
Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.
2017-12-01
Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.
Surface dimpling on rotating work piece using rotation cutting tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhapkar, Rohit Arun; Larsen, Eric Richard
A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupledmore » to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.« less
Automated Instrumentation, Monitoring and Visualization of PVM Programs Using AIMS
NASA Technical Reports Server (NTRS)
Mehra, Pankaj; VanVoorst, Brian; Yan, Jerry; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
We present views and analysis of the execution of several PVM (Parallel Virtual Machine) codes for Computational Fluid Dynamics on a networks of Sparcstations, including: (1) NAS Parallel Benchmarks CG and MG; (2) a multi-partitioning algorithm for NAS Parallel Benchmark SP; and (3) an overset grid flowsolver. These views and analysis were obtained using our Automated Instrumentation and Monitoring System (AIMS) version 3.0, a toolkit for debugging the performance of PVM programs. We will describe the architecture, operation and application of AIMS. The AIMS toolkit contains: (1) Xinstrument, which can automatically instrument various computational and communication constructs in message-passing parallel programs; (2) Monitor, a library of runtime trace-collection routines; (3) VK (Visual Kernel), an execution-animation tool with source-code clickback; and (4) Tally, a tool for statistical analysis of execution profiles. Currently, Xinstrument can handle C and Fortran 77 programs using PVM 3.2.x; Monitor has been implemented and tested on Sun 4 systems running SunOS 4.1.2; and VK uses XIIR5 and Motif 1.2. Data and views obtained using AIMS clearly illustrate several characteristic features of executing parallel programs on networked workstations: (1) the impact of long message latencies; (2) the impact of multiprogramming overheads and associated load imbalance; (3) cache and virtual-memory effects; and (4) significant skews between workstation clocks. Interestingly, AIMS can compensate for constant skew (zero drift) by calibrating the skew between a parent and its spawned children. In addition, AIMS' skew-compensation algorithm can adjust timestamps in a way that eliminates physically impossible communications (e.g., messages going backwards in time). Our current efforts are directed toward creating new views to explain the observed performance of PVM programs. Some of the features planned for the near future include: (1) ConfigView, showing the physical topology of the virtual machine, inferred using specially formatted IP (Internet Protocol) packets: and (2) LoadView, synchronous animation of PVM-program execution and resource-utilization patterns.
Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K
2018-01-01
With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified the suggested association. Increased homocysteine is thought to be associated with vitamin B12 deficiency - evaluation for potential clinical relevance is suggested. While considerations for clinical metabolic profiling are recommended, including adjustment approaches for clinical confounders, AutoML presents an exciting tool to enhance clinical metabolic profiling and advance translational research endeavors.
NASA Astrophysics Data System (ADS)
Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.
2017-05-01
We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.
Automated Scoring of Chinese Engineering Students' English Essays
ERIC Educational Resources Information Center
Liu, Ming; Wang, Yuqi; Xu, Weiwei; Liu, Li
2017-01-01
The number of Chinese engineering students has increased greatly since 1999. Rating the quality of these students' English essays has thus become time-consuming and challenging. This paper presents a novel automatic essay scoring algorithm called PSOSVR, based on a machine learning algorithm, Support Vector Machine for Regression (SVR), and a…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... Automation, Inc. (``Amistar'') of San Marcos, California; Techno Soft Systemnics, Inc. (``Techno Soft'') of... the claim terms ``test,'' ``match score surface,'' and ``gradient direction,'' all of his infringement... complainants' proposed construction for the claim terms ``test,'' ``match score surface,'' and ``gradient...
How to Clear a Block: A Theory of Plans
1986-12-01
International Business Machines Corporation. Pre1h:o.inary versions of parts of this paper were presented at the Eighth lnterna~ tiona/ Conference on Automated...84-C-0706, by United States Army Research under Contract DAJA-45-84-C-0040, and by a contract from the International Business Machines Corporation
ERIC Educational Resources Information Center
Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah
2012-01-01
This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
Graphite fiber reinforced structure for supporting machine tools
Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.
1978-01-01
Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.
Monitoring Hitting Load in Tennis Using Inertial Sensors and Machine Learning.
Whiteside, David; Cant, Olivia; Connolly, Molly; Reid, Machar
2017-10-01
Quantifying external workload is fundamental to training prescription in sport. In tennis, global positioning data are imprecise and fail to capture hitting loads. The current gold standard (manual notation) is time intensive and often not possible given players' heavy travel schedules. To develop an automated stroke-classification system to help quantify hitting load in tennis. Nineteen athletes wore an inertial measurement unit (IMU) on their wrist during 66 video-recorded training sessions. Video footage was manually notated such that known shot type (serve, rally forehand, slice forehand, forehand volley, rally backhand, slice backhand, backhand volley, smash, or false positive) was associated with the corresponding IMU data for 28,582 shots. Six types of machine-learning models were then constructed to classify true shot type from the IMU signals. Across 10-fold cross-validation, a cubic-kernel support vector machine classified binned shots (overhead, forehand, or backhand) with an accuracy of 97.4%. A second cubic-kernel support vector machine achieved 93.2% accuracy when classifying all 9 shot types. With a view to monitoring external load, the combination of miniature inertial sensors and machine learning offers a practical and automated method of quantifying shot counts and discriminating shot types in elite tennis players.
pySPACE—a signal processing and classification environment in Python
Krell, Mario M.; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H.; Kirchner, Elsa A.; Kirchner, Frank
2013-01-01
In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries. PMID:24399965
pySPACE-a signal processing and classification environment in Python.
Krell, Mario M; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Teiwes, Johannes; Metzen, Jan H; Kirchner, Elsa A; Kirchner, Frank
2013-01-01
In neuroscience large amounts of data are recorded to provide insights into cerebral information processing and function. The successful extraction of the relevant signals becomes more and more challenging due to increasing complexities in acquisition techniques and questions addressed. Here, automated signal processing and machine learning tools can help to process the data, e.g., to separate signal and noise. With the presented software pySPACE (http://pyspace.github.io/pyspace), signal processing algorithms can be compared and applied automatically on time series data, either with the aim of finding a suitable preprocessing, or of training supervised algorithms to classify the data. pySPACE originally has been built to process multi-sensor windowed time series data, like event-related potentials from the electroencephalogram (EEG). The software provides automated data handling, distributed processing, modular build-up of signal processing chains and tools for visualization and performance evaluation. Included in the software are various algorithms like temporal and spatial filters, feature generation and selection, classification algorithms, and evaluation schemes. Further, interfaces to other signal processing tools are provided and, since pySPACE is a modular framework, it can be extended with new algorithms according to individual needs. In the presented work, the structural hierarchies are described. It is illustrated how users and developers can interface the software and execute offline and online modes. Configuration of pySPACE is realized with the YAML format, so that programming skills are not mandatory for usage. The concept of pySPACE is to have one comprehensive tool that can be used to perform complete signal processing and classification tasks. It further allows to define own algorithms, or to integrate and use already existing libraries.
Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang
2015-04-01
Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision the broad utility of the framework for diverse problems across different length scales and imaging methods.
Morota, Gota; Ventura, Ricardo V; Silva, Fabyano F; Koyama, Masanori; Fernando, Samodha C
2018-04-14
Precision animal agriculture is poised to rise to prominence in the livestock enterprise in the domains of management, production, welfare, sustainability, health surveillance, and environmental footprint. Considerable progress has been made in the use of tools to routinely monitor and collect information from animals and farms in a less laborious manner than before. These efforts have enabled the animal sciences to embark on information technology-driven discoveries to improve animal agriculture. However, the growing amount and complexity of data generated by fully automated, high-throughput data recording or phenotyping platforms, including digital images, sensor and sound data, unmanned systems, and information obtained from real-time noninvasive computer vision, pose challenges to the successful implementation of precision animal agriculture. The emerging fields of machine learning and data mining are expected to be instrumental in helping meet the daunting challenges facing global agriculture. Yet, their impact and potential in "big data" analysis have not been adequately appreciated in the animal science community, where this recognition has remained only fragmentary. To address such knowledge gaps, this article outlines a framework for machine learning and data mining and offers a glimpse into how they can be applied to solve pressing problems in animal sciences.
Huff, Trevor J; Ludwig, Parker E; Zuniga, Jorge M
2018-05-01
3D-printed anatomical models play an important role in medical and research settings. The recent successes of 3D anatomical models in healthcare have led many institutions to adopt the technology. However, there remain several issues that must be addressed before it can become more wide-spread. Of importance are the problems of cost and time of manufacturing. Machine learning (ML) could be utilized to solve these issues by streamlining the 3D modeling process through rapid medical image segmentation and improved patient selection and image acquisition. The current challenges, potential solutions, and future directions for ML and 3D anatomical modeling in healthcare are discussed. Areas covered: This review covers research articles in the field of machine learning as related to 3D anatomical modeling. Topics discussed include automated image segmentation, cost reduction, and related time constraints. Expert commentary: ML-based segmentation of medical images could potentially improve the process of 3D anatomical modeling. However, until more research is done to validate these technologies in clinical practice, their impact on patient outcomes will remain unknown. We have the necessary computational tools to tackle the problems discussed. The difficulty now lies in our ability to collect sufficient data.
Traceability of On-Machine Tool Measurement: A Review.
Mutilba, Unai; Gomez-Acedo, Eneko; Kortaberria, Gorka; Olarra, Aitor; Yagüe-Fabra, Jose A
2017-07-11
Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand.
"First generation" automated DNA sequencing technology.
Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M
2011-10-01
Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej
2017-12-01
The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.
NASA Astrophysics Data System (ADS)
Yusof, M. Q. M.; Harun, H. N. S. B.; Bahar, R.
2018-01-01
Minimum quantity lubrication (MQL) is a method that uses a very small amount of liquid to reduce friction between cutting tool and work piece during machining. The implementation of MQL machining has become a viable alternative to flood cooling machining and dry machining. The overall performance has been evaluated during meso-scale milling of mild steel using different diameter milling cutters. Experiments have been conducted under two different lubrication condition: dry and MQL with variable cutting parameters. The tool wear and its surface roughness, machined surfaces microstructure and surface roughness were observed for both conditions. It was found from the results that MQL produced better results compared to dry machining. The 0.5 mm tool has been selected as the most optimum tool diameter to be used with the lowest surface roughness as well as the least flank wear generation. For the workpiece, it was observed that the cutting temperature possesses crucial effect on the microstructure and the surface roughness of the machined surface and bigger diameter tool actually resulted in higher surface roughness. The poor conductivity of the cutting tool may be one of reasons behind.
Automatic feed system for ultrasonic machining
Calkins, Noel C.
1994-01-01
Method and apparatus for ultrasonic machining in which feeding of a tool assembly holding a machining tool toward a workpiece is accomplished automatically. In ultrasonic machining, a tool located just above a workpiece and vibrating in a vertical direction imparts vertical movement to particles of abrasive material which then remove material from the workpiece. The tool does not contact the workpiece. Apparatus for moving the tool assembly vertically is provided such that it operates with a relatively small amount of friction. Adjustable counterbalance means is provided which allows the tool to be immobilized in its vertical travel. A downward force, termed overbalance force, is applied to the tool assembly. The overbalance force causes the tool to move toward the workpiece as material is removed from the workpiece.
Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks
Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen
2014-01-01
One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine learning-based method for assessing activity quality in smart homes. To validate our approach we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We observed a statistically significant correlation (r=0.79) between automated assessment of task quality and direct observation scores. Using machine learning techniques to predict the cognitive health of the participants based on task quality is accomplished with an AUC value of 0.64. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments. PMID:25530925
Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks.
Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen
2013-11-01
One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine learning-based method for assessing activity quality in smart homes. To validate our approach we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We observed a statistically significant correlation (r=0.79) between automated assessment of task quality and direct observation scores. Using machine learning techniques to predict the cognitive health of the participants based on task quality is accomplished with an AUC value of 0.64. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments.
Computational Analysis of Behavior.
Egnor, S E Roian; Branson, Kristin
2016-07-08
In this review, we discuss the emerging field of computational behavioral analysis-the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with.
NASA Astrophysics Data System (ADS)
Kant Garg, Girish; Garg, Suman; Sangwan, K. S.
2018-04-01
The manufacturing sector consumes huge energy demand and the machine tools used in this sector have very less energy efficiency. Selection of the optimum machining parameters for machine tools is significant for energy saving and for reduction of environmental emission. In this work an empirical model is developed to minimize the power consumption using response surface methodology. The experiments are performed on a lathe machine tool during the turning of AISI 6061 Aluminum with coated tungsten inserts. The relationship between the power consumption and machining parameters is adequately modeled. This model is used for formulation of minimum power consumption criterion as a function of optimal machining parameters using desirability function approach. The influence of machining parameters on the energy consumption has been found using the analysis of variance. The validation of the developed empirical model is proved using the confirmation experiments. The results indicate that the developed model is effective and has potential to be adopted by the industry for minimum power consumption of machine tools.
Chatter active control in a lathe machine using magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Nosouhi, R.; Behbahani, S.
2011-01-01
This paper analyzes the chatter phenomena in lathe machines. Chatter is one of the main causes of inaccuracy, reduction of life cycle of the machine and tool wear in machine tools. This phenomenon limits the depth of cut as a function of the cutting speed, which consequently reduces the material removal rate and machining efficiency. Chatter control is therefore important since it increases the stability region in machining and increases the critical depth of cut in machining case. To control the chatter in lathe machines, a magnetostrictive actuator is used. The materials with magnetostriction properties are kind of smart materials of which their length changes as a result of applying an exterior magnetic field, which make them suitable for control applications. It is assumed that the actuator applies the proper force exactly at the point where the machining force is applied on the tool. In this paper the chatter stability lobes is excelled as a result of applying a PID controller on the magnetostrictive actuator equipped-tool in turning.
NASA Astrophysics Data System (ADS)
Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.
2017-12-01
In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.
Nanometric edge profile measurement of cutting tools on a diamond turning machine
NASA Astrophysics Data System (ADS)
Asai, Takemi; Arai, Yoshikazu; Cui, Yuguo; Gao, Wei
2008-10-01
Single crystal diamond tools are used for fabrication of precision parts [1-5]. Although there are many types of tools that are supplied, the tools with round nose are popular for machining very smooth surfaces. Tools with small nose radii, small wedge angles and included angles are also being utilized for fabrication of micro structured surfaces such as microlens arrays [6], diffractive optical elements and so on. In ultra precision machining, tools are very important as a part of the machining equipment. The roughness or profile of machined surface may become out of desired tolerance. It is thus necessary to know the state of the tool edge accurately. To meet these requirements, an atomic force microscope (AFM) for measuring the 3D edge profiles of tools having nanometer-scale cutting edge radii with high resolution has been developed [7-8]. Although the AFM probe unit is combined with an optical sensor for aligning the measurement probe with the tools edge top to be measured in short time in this system, this time only the AFM probe unit was used. During the measurement time, that was attached onto the ultra precision turning machine to confirm the possibility of profile measurement system.
A Qualitative Security Analysis of a New Class of 3-D Integrated Crypto Co-processors
2012-01-01
and mobile phones, lottery ticket vending machines , and various electronic payment systems. The main reason for their use in such applications is that...military applications such as secure communication links. However, the proliferation of Automated Teller Machines (ATMs) in the ’80s introduced them to...commercial applications. Today many popular consumer devices have cryptographic processors in them, for example, smart- cards for pay-TV access machines
NASA Astrophysics Data System (ADS)
Ma, Zhichao; Hu, Leilei; Zhao, Hongwei; Wu, Boda; Peng, Zhenxing; Zhou, Xiaoqin; Zhang, Hongguo; Zhu, Shuai; Xing, Lifeng; Hu, Huang
2010-08-01
The theories and techniques for improving machining accuracy via position control of diamond tool's tip and raising resolution of cutting depth on precise CNC lathes have been extremely focused on. A new piezo-driven ultra-precision machine tool servo system is designed and tested to improve manufacturing accuracy of workpiece. The mathematical model of machine tool servo system is established and the finite element analysis is carried out on parallel plate flexure hinges. The output position of diamond tool's tip driven by the machine tool servo system is tested via a contact capacitive displacement sensor. Proportional, integral, derivative (PID) feedback is also implemented to accommodate and compensate dynamical change owing cutting forces as well as the inherent non-linearity factors of the piezoelectric stack during cutting process. By closed loop feedback controlling strategy, the tracking error is limited to 0.8 μm. Experimental results have shown the proposed machine tool servo system could provide a tool positioning resolution of 12 nm, which is much accurate than the inherent CNC resolution magnitude. The stepped shaft of aluminum specimen with a step increment of cutting depth of 1 μm is tested, and the obtained contour illustrates the displacement command output from controller is accurately and real-time reflected on the machined part.
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational specialty areas within the U.S. machine tool and metals-related…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
The Machine Tool Advanced Skills Technology (MAST) consortium was formed to address the shortage of skilled workers for the machine tools and metals-related industries. Featuring six of the nation's leading advanced technology centers, the MAST consortium developed, tested, and disseminated industry-specific skill standards and model curricula for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This volume developed by the Machine Tool Advanced Skill Technology (MAST) program contains key administrative documents and provides additional sources for machine tool and precision manufacturing information and important points of contact in the industry. The document contains the following sections: a foreword; grant award letter; timeline for…
ERIC Educational Resources Information Center
Texas State Technical Coll., Waco.
This document is intended to help education and training institutions deliver the Machine Tool Advanced Skills Technology (MAST) curriculum to a variety of individuals and organizations. MAST consists of industry-specific skill standards and model curricula for 15 occupational speciality areas within the U.S. machine tool and metals-related…
A Multi-Component Automated Laser-Origami System for Cyber-Manufacturing
NASA Astrophysics Data System (ADS)
Ko, Woo-Hyun; Srinivasa, Arun; Kumar, P. R.
2017-12-01
Cyber-manufacturing systems can be enhanced by an integrated network architecture that is easily configurable, reliable, and scalable. We consider a cyber-physical system for use in an origami-type laser-based custom manufacturing machine employing folding and cutting of sheet material to manufacture 3D objects. We have developed such a system for use in a laser-based autonomous custom manufacturing machine equipped with real-time sensing and control. The basic elements in the architecture are built around the laser processing machine. They include a sensing system to estimate the state of the workpiece, a control system determining control inputs for a laser system based on the estimated data and user’s job requests, a robotic arm manipulating the workpiece in the work space, and middleware, named Etherware, supporting the communication among the systems. We demonstrate automated 3D laser cutting and bending to fabricate a 3D product as an experimental result.
What makes an automated teller machine usable by blind users?
Manzke, J M; Egan, D H; Felix, D; Krueger, H
1998-07-01
Fifteen blind and sighted subjects, who featured as a control group for acceptance, were asked for their requirements for automated teller machines (ATMs). Both groups also tested the usability of a partially operational ATM mock-up. This machine was based on an existing cash dispenser, providing natural speech output, different function menus and different key arrangements. Performance and subjective evaluation data of blind and sighted subjects were collected. All blind subjects were able to operate the ATM successfully. The implemented speech output was the main usability factor for them. The different interface designs did not significantly affect performance and subjective evaluation. Nevertheless, design recommendations can be derived from the requirement assessment. The sighted subjects were rather open for design modifications, especially the implementation of speech output. However, there was also a mismatch of the requirements of the two subject groups, mainly concerning the key arrangement.
Sebok, Angelia; Wickens, Christopher D
2017-03-01
The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.
Automation of a DXA-based finite element tool for clinical assessment of hip fracture risk.
Luo, Yunhua; Ahmed, Sharif; Leslie, William D
2018-03-01
Finite element analysis of medical images is a promising tool for assessing hip fracture risk. Although a number of finite element models have been developed for this purpose, none of them have been routinely used in clinic. The main reason is that the computer programs that implement the finite element models have not been completely automated, and heavy training is required before clinicians can effectively use them. By using information embedded in clinical dual energy X-ray absorptiometry (DXA), we completely automated a DXA-based finite element (FE) model that we previously developed for predicting hip fracture risk. The automated FE tool can be run as a standalone computer program with the subject's raw hip DXA image as input. The automated FE tool had greatly improved short-term precision compared with the semi-automated version. To validate the automated FE tool, a clinical cohort consisting of 100 prior hip fracture cases and 300 matched controls was obtained from a local community clinical center. Both the automated FE tool and femoral bone mineral density (BMD) were applied to discriminate the fracture cases from the controls. Femoral BMD is the gold standard reference recommended by the World Health Organization for screening osteoporosis and for assessing hip fracture risk. The accuracy was measured by the area under ROC curve (AUC) and odds ratio (OR). Compared with femoral BMD (AUC = 0.71, OR = 2.07), the automated FE tool had a considerably improved accuracy (AUC = 0.78, OR = 2.61 at the trochanter). This work made a large step toward applying our DXA-based FE model as a routine clinical tool for the assessment of hip fracture risk. Furthermore, the automated computer program can be embedded into a web-site as an internet application. Copyright © 2017 Elsevier B.V. All rights reserved.
Analyzing the Cohesion of English Text and Discourse with Automated Computer Tools
ERIC Educational Resources Information Center
Jeon, Moongee
2014-01-01
This article investigates the lexical and discourse features of English text and discourse with automated computer technologies. Specifically, this article examines the cohesion of English text and discourse with automated computer tools, Coh-Metrix and TEES. Coh-Metrix is a text analysis computer tool that can analyze English text and discourse…
Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy
NASA Astrophysics Data System (ADS)
Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel
2018-04-01
Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.
Distributed collaborative environments for predictive battlespace awareness
NASA Astrophysics Data System (ADS)
McQuay, William K.
2003-09-01
The past decade has produced significant changes in the conduct of military operations: asymmetric warfare, the reliance on dynamic coalitions, stringent rules of engagement, increased concern about collateral damage, and the need for sustained air operations. Mission commanders need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Situational assessment is crucial in understanding the battlespace. Decision support tools in a distributed collaborative environment offer the capability of decomposing complex multitask processes and distributing them over a dynamic set of execution assets that include modeling, simulations, and analysis tools. Decision support technologies can semi-automate activities, such as analysis and planning, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that the commander must fused. Collaborative environments provide the framework and integrate models, simulations, and domain specific decision support tools for the sharing and exchanging of data, information, knowledge, and actions. This paper describes ongoing AFRL research efforts in applying distributed collaborative environments to predictive battlespace awareness.
Kevlar: Transitioning Helix for Research to Practice
2016-03-01
entropy randomization techniques, automated program repairs leveraging highly-optimized virtual machine technology, and developing a novel framework...attacker from exploiting residual vulnerabilities in a wide variety of classes. Helix/Kevlar uses novel, fine-grained, high- entropy diversification...the Air Force, and IARPA). Salient features of Helix/Kevlar include developing high- entropy randomization techniques, automated program repairs
ERIC Educational Resources Information Center
Nakamura, Christopher M.; Murphy, Sytil K.; Christel, Michael G.; Stevens, Scott M.; Zollman, Dean A.
2016-01-01
Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part…
Code of Federal Regulations, 2014 CFR
2014-01-01
... with § 563e.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned... include the following categories of loans: (1) Motor vehicle loan, which is a consumer loan extended for the purchase of and secured by a motor vehicle; (2) Credit card loan, which is a line of credit for...
Code of Federal Regulations, 2013 CFR
2013-01-01
... with § 563e.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned... include the following categories of loans: (1) Motor vehicle loan, which is a consumer loan extended for the purchase of and secured by a motor vehicle; (2) Credit card loan, which is a line of credit for...
Code of Federal Regulations, 2012 CFR
2012-01-01
... with § 563e.41. (d) Automated teller machine (ATM) means an automated, unstaffed banking facility owned... include the following categories of loans: (1) Motor vehicle loan, which is a consumer loan extended for the purchase of and secured by a motor vehicle; (2) Credit card loan, which is a line of credit for...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... type of assembly operation (i.e., manual or semi-automated) are low. Petitioner asserts that in the... low if Reztec relies on a semi-automated assembly operation where a machine is used to assemble the... States.\\29\\ Petitioner believes Reztec's assembly operations likely rely on relatively unskilled, low...
Slide system for machine tools
Douglass, S.S.; Green, W.L.
1980-06-12
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Slide system for machine tools
Douglass, Spivey S.; Green, Walter L.
1982-01-01
The present invention relates to a machine tool which permits the machining of nonaxisymmetric surfaces on a workpiece while rotating the workpiece about a central axis of rotation. The machine tool comprises a conventional two-slide system (X-Y) with one of these slides being provided with a relatively short travel high-speed auxiliary slide which carries the material-removing tool. The auxiliary slide is synchronized with the spindle speed and the position of the other two slides and provides a high-speed reciprocating motion required for the displacement of the cutting tool for generating a nonaxisymmetric surface at a selected location on the workpiece.
Configuring the Orion Guidance, Navigation, and Control Flight Software for Automated Sequencing
NASA Technical Reports Server (NTRS)
Odegard, Ryan G.; Siliwinski, Tomasz K.; King, Ellis T.; Hart, Jeremy J.
2010-01-01
The Orion Crew Exploration Vehicle is being designed with greater automation capabilities than any other crewed spacecraft in NASA s history. The Guidance, Navigation, and Control (GN&C) flight software architecture is designed to provide a flexible and evolvable framework that accommodates increasing levels of automation over time. Within the GN&C flight software, a data-driven approach is used to configure software. This approach allows data reconfiguration and updates to automated sequences without requiring recompilation of the software. Because of the great dependency of the automation and the flight software on the configuration data, the data management is a vital component of the processes for software certification, mission design, and flight operations. To enable the automated sequencing and data configuration of the GN&C subsystem on Orion, a desktop database configuration tool has been developed. The database tool allows the specification of the GN&C activity sequences, the automated transitions in the software, and the corresponding parameter reconfigurations. These aspects of the GN&C automation on Orion are all coordinated via data management, and the database tool provides the ability to test the automation capabilities during the development of the GN&C software. In addition to providing the infrastructure to manage the GN&C automation, the database tool has been designed with capabilities to import and export artifacts for simulation analysis and documentation purposes. Furthermore, the database configuration tool, currently used to manage simulation data, is envisioned to evolve into a mission planning tool for generating and testing GN&C software sequences and configurations. A key enabler of the GN&C automation design, the database tool allows both the creation and maintenance of the data artifacts, as well as serving the critical role of helping to manage, visualize, and understand the data-driven parameters both during software development and throughout the life of the Orion project.
Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker
Aguilar, Juan José
2014-01-01
This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744
Measurement of W + bb and a search for MSSM Higgs bosons with the CMS detector at the LHC
NASA Astrophysics Data System (ADS)
O'Connor, Alexander Pinpin
Tooling used to cure composite laminates in the aerospace and automotive industries must provide a dimensionally stable geometry throughout the thermal cycle applied during the part curing process. This requires that the Coefficient of Thermal Expansion (CTE) of the tooling materials match that of the composite being cured. The traditional tooling material for production applications is a nickel alloy. Poor machinability and high material costs increase the expense of metallic tooling made from nickel alloys such as 'Invar 36' or 'Invar 42'. Currently, metallic tooling is unable to meet the needs of applications requiring rapid affordable tooling solutions. In applications where the tooling is not required to have the durability provided by metals, such as for small area repair, an opportunity exists for non-metallic tooling materials like graphite, carbon foams, composites, or ceramics and machinable glasses. Nevertheless, efficient machining of brittle, non-metallic materials is challenging due to low ductility, porosity, and high hardness. The machining of a layup tool comprises a large portion of the final cost. Achieving maximum process economy requires optimization of the machining process in the given tooling material. Therefore, machinability of the tooling material is a critical aspect of the overall cost of the tool. In this work, three commercially available, brittle/porous, non-metallic candidate tooling materials were selected, namely: (AAC) Autoclaved Aerated Concrete, CB1100 ceramic block and Cfoam carbon foam. Machining tests were conducted in order to evaluate the machinability of these materials using end milling. Chip formation, cutting forces, cutting tool wear, machining induced damage, surface quality and surface integrity were investigated using High Speed Steel (HSS), carbide, diamond abrasive and Polycrystalline Diamond (PCD) cutting tools. Cutting forces were found to be random in magnitude, which was a result of material porosity. The abrasive nature of Cfoam produced rapid tool wear when using HSS and PCD type cutting tools. However, tool wear was not significant in AAC or CB1100 regardless of the type of cutting edge. Machining induced damage was observed in the form of macro-scale chipping and fracture in combination with micro-scale cracking. Transverse rupture test results revealed significant reductions in residual strength and damage tolerance in CB1100. In contrast, AAC and Cfoam showed no correlation between machining induced damage and a reduction in surface integrity. Cutting forces in machining were modeled for all materials. Cutting force regression models were developed based on Design of Experiment and Analysis of Variance. A mechanistic cutting force model was proposed based upon conventional end milling force models and statistical distributions of material porosity. In order to validate the model, predicted cutting forces were compared to experimental results. Predicted cutting forces agreed well with experimental measurements. Furthermore, over the range of cutting conditions tested, the proposed model was shown to have comparable predictive accuracy to empirically produced regression models; greatly reducing the number of cutting tests required to simulate cutting forces. Further, this work demonstrates a key adaptation of metallic cutting force models to brittle porous material; a vital step in the research into the machining of these materials using end milling.
Modeling and simulation of five-axis virtual machine based on NX
NASA Astrophysics Data System (ADS)
Li, Xiaoda; Zhan, Xianghui
2018-04-01
Virtual technology in the machinery manufacturing industry has shown the role of growing. In this paper, the Siemens NX software is used to model the virtual CNC machine tool, and the parameters of the virtual machine are defined according to the actual parameters of the machine tool so that the virtual simulation can be carried out without loss of the accuracy of the simulation. How to use the machine builder of the CAM module to define the kinematic chain and machine components of the machine is described. The simulation of virtual machine can provide alarm information of tool collision and over cutting during the process to users, and can evaluate and forecast the rationality of the technological process.
Design of microcontroller based system for automation of streak camera.
Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P
2010-08-01
A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.
Design of microcontroller based system for automation of streak camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.
2010-08-15
A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor.more » A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.« less
Generation and Performance of Automated Jarosite Mineral Detectors for Vis/NIR Spectrometers at Mars
NASA Technical Reports Server (NTRS)
Gilmore, M. S.; Bornstein, B.; Merrill, M. D.; Castano, R.; Greenwood, J. P.
2005-01-01
Sulfate salt discoveries at the Eagle and Endurance craters in Meridiani Planum by the Mars Exploration Rover Opportunity have proven mineralogically the existence and involvement of water in Mars past. Visible and near infrared spectrometers like the Mars Express OMEGA, the Mars Reconnaissance Orbiter CRISM and the 2009 Mars Science Laboratory Rover cameras are powerful tools for the identification of water-bearing salts and other high priority minerals at Mars. The increasing spectral resolution and rover mission lifetimes represented by these missions currently necessitate data compression in order to ease downlink restrictions. On board data processing techniques can be used to guide the selection, measurement and return of scientifically important data from relevant targets, thus easing bandwidth stress and increasing scientific return. We have developed an automated support vector machine (SVM) detector operating in the visible/near-infrared (VisNIR, 300-2500 nm) spectral range trained to recognize the mineral jarosite (typically KFe3(SO4)2(OH)6), positively identified by the Mossbauer spectrometer at Meridiani Planum. Additional information is included in the original extended abstract.
Framework for architecture-independent run-time reconfigurable applications
NASA Astrophysics Data System (ADS)
Lehn, David I.; Hudson, Rhett D.; Athanas, Peter M.
2000-10-01
Configurable Computing Machines (CCMs) have emerged as a technology with the computational benefits of custom ASICs as well as the flexibility and reconfigurability of general-purpose microprocessors. Significant effort from the research community has focused on techniques to move this reconfigurability from a rapid application development tool to a run-time tool. This requires the ability to change the hardware design while the application is executing and is known as Run-Time Reconfiguration (RTR). Widespread acceptance of run-time reconfigurable custom computing depends upon the existence of high-level automated design tools. Such tools must reduce the designers effort to port applications between different platforms as the architecture, hardware, and software evolves. A Java implementation of a high-level application framework, called Janus, is presented here. In this environment, developers create Java classes that describe the structural behavior of an application. The framework allows hardware and software modules to be freely mixed and interchanged. A compilation phase of the development process analyzes the structure of the application and adapts it to the target platform. Janus is capable of structuring the run-time behavior of an application to take advantage of the memory and computational resources available.
2009-06-01
AUTOMATED GEOSPATIAL TOOLS : AGILITY IN COMPLEX PLANNING Primary Topic: Track 5 – Experimentation and Analysis Walter A. Powell [STUDENT] - GMU...TITLE AND SUBTITLE Results of an Experimental Exploration of Advanced Automated Geospatial Tools : Agility in Complex Planning 5a. CONTRACT NUMBER...Std Z39-18 Abstract Typically, the development of tools and systems for the military is requirement driven; systems are developed to meet
Cyber-Attack Methods, Why They Work on Us, and What to Do
NASA Technical Reports Server (NTRS)
Byrne, DJ
2015-01-01
Basic cyber-attack methods are well documented, and even automated with user-friendly GUIs (Graphical User Interfaces). Entire suites of attack tools are legal, conveniently packaged, and freely downloadable to anyone; more polished versions are sold with vendor support. Our team ran some of these against a selected set of projects within our organization to understand what the attacks do so that we can design and validate defenses against them. Some existing defenses were effective against the attacks, some less so. On average, every machine had twelve easily identifiable vulnerabilities, two of them "critical". Roughly 5% of passwords in use were easily crack-able. We identified a clear set of recommendations for each project, and some common patterns that emerged among them all.