Science.gov

Sample records for automated personal dosimetry

  1. An Automated Biological Dosimetry System

    NASA Astrophysics Data System (ADS)

    Lorch, T.; Bille, J.; Frieben, M.; Stephan, G.

    1986-04-01

    The scoring of structural chromosome aberrations in peripheral human blood lymphocytes can be used in biological dosimetry to estimate the radiation dose which an individual has received. Especially the dicentric chromosome is a rather specific indicator for an exposure to ionizing radiation. For statistical reasons, in the low dose range a great number of cells must be analysed, which is a very tedious task. The resulting high cost of a biological dose estimation limits the application of this method to cases of suspected irradiation for which physical dosimetry is not possible or not sufficient. Therefore an automated system has been designed to do the major part of the routine work. It uses a standard light microscope with motorized scanning stage, a Plumbicon TV-camera, a real-time hardware preprocessor, a binary and a grey level image buffer system. All computations are performed by a very powerful multi-microprocessor-system (POLYP) based on a MIMD-architecture. The task of the automated system can be split in finding the metaphases (see Figure 1) at low microscope magnification and scoring dicentrics at high magnification. The metaphase finding part has been completed and is now in routine use giving good results. The dicentric scoring part is still under development.

  2. Solid-State Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2005-01-01

    This document is a web site page, and a data sheet about Personal protection (i.e., space suits) presented to the Radiation and Micrometeoroid Mitigation Technology Focus Group meeting. The website describes the work of the PI to improve solid state personal radiation dosimetry. The data sheet presents work on the active personal radiation detection system that is to provide real-time local radiation exposure information during EVA. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.

  3. Radiation Dosimetry via Automated Fluorescence Microscopy

    NASA Technical Reports Server (NTRS)

    Castleman, Kenneth R.; Schulze, Mark

    2005-01-01

    A developmental instrument for assessment of radiation-induced damage in human lymphocytes includes an automated fluorescence microscope equipped with a one or more chargecoupled- device (CCD) video camera(s) and circuitry to digitize the video output. The microscope is also equipped with a three-axis translation stage that includes a rotation stage, and a rotary tray that holds as many as thirty specimen slides. The figure depicts one version of the instrument. Once the slides have been prepared and loaded into the tray, the instrument can operate unattended. A computer controls the operation of the stage, tray, and microscope, and processes the digital fluorescence-image data to recognize and count chromosomes that have been broken, presumably by radiation. The design and method of operation of the instrument exploit fluorescence in situ hybridization (FISH) of metaphase chromosome spreads, which is a technique that has been found to be valuable for monitoring the radiation dose to circulating lymphocytes. In the specific FISH protocol used to prepare specimens for this instrument, metaphase lymphocyte cultures are chosen for high mitotic index and highly condensed chromosomes, then several of the largest chromosomes are labeled with three of four differently colored whole-chromosome-staining dyes. The three dyes, which are used both individually and in various combinations, are fluorescein isothiocyanate (FITC), Texas Red (or equivalent), and Cy5 (or equivalent); The fourth dye 4',6-diamidino- 2-phenylindole (DAPI) is used as a counterstain. Under control by the computer, the microscope is automatically focused on the cells and each slide is scanned while the computer analyzes the DAPI-fluorescence images to find the metaphases. Each metaphase field is recentered in the field of view and refocused. Then a four-color image (more precisely, a set of images of the same view in the fluorescent colors of the four dyes) is acquired. By use of pattern

  4. Education and training activities on personal dosimetry service in Turkey.

    PubMed

    Tugrul Zeyrek, C; Akbiyik, Hayri

    2013-10-01

    A personal dosimetry service that evaluates the occupational doses for external and internal radiation of the radiation workers is one of the main components of radiation protection programme. The education and training (E&T) activities in this field are basic aspects of the optimisation of all exposures to radiation. The E&T activities in the field of occupational radiation protection at the national and international level are of main interest and implemented by the Ankara Nuclear Research and Training Center. This study describes the Turkish experience in E&T of the staff of dosimetry services, postgraduate students and medical physics experts. In Turkey, the first individual monitoring training course was conducted in 2012. The aim of this study is to provide a structured description of postgraduate courses that are addressed to qualified experts and medical physics experts, and the modules are mainly dedicated to individual monitoring.

  5. History of personal dosimetry performance testing in the United States.

    PubMed

    Soares, C G

    2007-01-01

    The basis for personal dosimetry performance testing in the United States is ANSI/HPS N13.11 (2001). Now in its third edition, this standard has been in place since 1983. Testing under this standard is administered by the National Voluntary Accreditation Program (NVLAP), and accreditation of dosimetry processors under this program is required by US Nuclear Regulatory Commission (NRC) regulations. The US Department of Energy (DOE) also maintains a testing program for its laboratories and contractors, administered by the Department of Energy Laboratory Accreditation Program (DOELAP). A focus in recent years has been the modification of ANSI/HPS N13.11 to allow acceptance by both testing programs in order to bring harmonisation to US personal dosemeter processing testing. Since there is no type testing program in the US for personal dosemeters, the testing philosophy of ANSI N13.11 has always combined elements of type testing and routine performance testing. This philosophy is explored in detail in this presentation, along with trends in the development of the document to its present state. In addition, a look will be taken at what the future holds for the next revision of the document, scheduled to begin in 2005.

  6. Luminescence dosimetry using building materials and personal objects.

    PubMed

    Göksu, H Y; Bailiff, I K

    2006-01-01

    There is a growing public awareness of the risk of accidental radiation exposure due to ageing nuclear power installations, illegal dumping of nuclear waste and terrorist activities, and of the consequential health risks to populations in addition to social and economic disturbance extending beyond national boundaries. In the event of catastrophic incidents where no direct radiation monitoring data are available, the application of retrospective dosimetry techniques such as luminescence may be employed with materials from the immediate environment to confirm values of cumulative gamma dose to compare with or augment computational modeling calculations. Application of the method to post-Chernobyl studies has resulted in the development of new procedures using fired building materials with the capability to measure cumulative doses owing to artificial sources of gamma radiation as low as 20 mGy. Combined with Monte Carlo simulations of photon transport, values of cumulative dose in brick can be presented in a form suitable for use in dose-reconstruction efforts. Recent investigations have also shown that certain types of cementitious building material, including concrete, mortar and plaster, and personal objects in the form of telephone cards containing microchips and dental ceramics have the potential to be used for retrospective dosimetry. Examples of the most recent research concerning new materials and examples of application to sites in the Former Soviet Union are discussed.

  7. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    SciTech Connect

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu; Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J.

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  8. A method for automating calibration and records management for instrumentation and dosimetry

    SciTech Connect

    O`Brien, J.M. Jr.; Rushton, R.O.; Burns, R.E. Jr.

    1993-12-31

    Current industry requirements are becoming more stringent on quality assurance records and documentation for calibration of instruments and dosimetry. A novel method is presented here that will allow a progressive automation scheme to be used in pursuit of that goal. This concept is based on computer-controlled irradiators that can act as stand-alone devices or be interfaced to other components via a computer local area network. In this way, complete systems can be built with modules to create a records management system to meet the needs of small laboratories or large multi-building calibration groups. Different database engines or formats can be used simply by replacing a module. Modules for temperature and pressure monitoring or shipping and receiving can be added, as well as equipment modules for direct IEEE-488 interface to electrometers and other instrumentation.

  9. A THIN-LAYER LIF THERMOLUMINESCENCE DOSEMETER SYSTEM WITH FAST READOUT FOR THE USE IN PERSONAL DOSIMETRY SERVICES.

    PubMed

    Walbersloh, J; Busch, F

    2016-09-01

    A newly developed thermoluminescence dosemeter system is presented that is suitable for application in fields where personal monitoring of a large number of users is required. The system presented here is intended to be used as the upcoming main dosemeter for whole body dosimetry at the dosimetry service of the MPA NRW (Germany) with ∼110,000 evaluations per month.

  10. Pediatric personalized CT-dosimetry Monte Carlo simulations, using computational phantoms

    NASA Astrophysics Data System (ADS)

    Papadimitroulas, P.; Kagadis, G. C.; Ploussi, A.; Kordolaimi, S.; Papamichail, D.; Karavasilis, E.; Syrgiamiotis, V.; Loudos, G.

    2015-09-01

    The last 40 years Monte Carlo (MC) simulations serve as a “gold standard” tool for a wide range of applications in the field of medical physics and tend to be essential in daily clinical practice. Regarding diagnostic imaging applications, such as computed tomography (CT), the assessment of deposited energy is of high interest, so as to better analyze the risks and the benefits of the procedure. The last few years a big effort is done towards personalized dosimetry, especially in pediatric applications. In the present study the GATE toolkit was used and computational pediatric phantoms have been modeled for the assessment of CT examinations dosimetry. The pediatric models used come from the XCAT and IT'IS series. The X-ray spectrum of a Brightspeed CT scanner was simulated and validated with experimental data. Specifically, a DCT-10 ionization chamber was irradiated twice using 120 kVp with 100 mAs and 200 mAs, for 1 sec in 1 central axial slice (thickness = 10mm). The absorbed dose was measured in air resulting in differences lower than 4% between the experimental and simulated data. The simulations were acquired using ∼1010 number of primaries in order to achieve low statistical uncertainties. Dose maps were also saved for quantification of the absorbed dose in several children critical organs during CT acquisition.

  11. SU-E-T-497: Semi-Automated in Vivo Radiochromic Film Dosimetry Using a Novel Image Processing Algorithm

    SciTech Connect

    Reyhan, M; Yue, N

    2014-06-01

    Purpose: To validate an automated image processing algorithm designed to detect the center of radiochromic film used for in vivo film dosimetry against the current gold standard of manual selection. Methods: An image processing algorithm was developed to automatically select the region of interest (ROI) in *.tiff images that contain multiple pieces of radiochromic film (0.5x1.3cm{sup 2}). After a user has linked a calibration file to the processing algorithm and selected a *.tiff file for processing, an ROI is automatically detected for all films by a combination of thresholding and erosion, which removes edges and any additional markings for orientation. Calibration is applied to the mean pixel values from the ROIs and a *.tiff image is output displaying the original image with an overlay of the ROIs and the measured doses. Validation of the algorithm was determined by comparing in vivo dose determined using the current gold standard (manually drawn ROIs) versus automated ROIs for n=420 scanned films. Bland-Altman analysis, paired t-test, and linear regression were performed to demonstrate agreement between the processes. Results: The measured doses ranged from 0.2-886.6cGy. Bland-Altman analysis of the two techniques (automatic minus manual) revealed a bias of -0.28cGy and a 95% confidence interval of (5.5cGy,-6.1cGy). These values demonstrate excellent agreement between the two techniques. Paired t-test results showed no statistical differences between the two techniques, p=0.98. Linear regression with a forced zero intercept demonstrated that Automatic=0.997*Manual, with a Pearson correlation coefficient of 0.999. The minimal differences between the two techniques may be explained by the fact that the hand drawn ROIs were not identical to the automatically selected ones. The average processing time was 6.7seconds in Matlab on an IntelCore2Duo processor. Conclusion: An automated image processing algorithm has been developed and validated, which will help

  12. Personalized image-based radiation dosimetry for routine clinical use in peptide receptor radionuclide therapy: pretherapy experience.

    PubMed

    Celler, Anna; Grimes, Joshua; Shcherbinin, Sergey; Piwowarska-Bilska, Hanna; Birkenfeld, Bozena

    2013-01-01

    Patient-specific dose calculations are not routinely performed for targeted radionuclide therapy procedures, partly because they are time consuming and challenging to perform. However, it is becoming widely recognized that a personalized dosimetry approach can help plan treatment and improve understanding of the dose-response relationship. In this chapter, we review the procedures and essential elements of an accurate internal dose calculation and propose a simplified approach that is aimed to be practical for use in a busy nuclear medicine department.

  13. Dosimetry in 131I-mIBG therapy: moving toward personalized medicine.

    PubMed

    Chiesa, C; Castellani, R; Mira, M; Lorenzoni, A; Flux, G D

    2013-06-01

    Internal dosimetry was developed as a basis for 131I-mIBG treatment at an early stage and has continued to develop for over the last 20 years. Whole-body dosimetry was introduced to prevent hematological toxicity. It will be the basis for a forthcoming European multicentre trial, in which the activity of a second administration is determined according to the results calculated from the first. Lesion dosimetry has also been performed in a small number of centres. The major goal of dosimetry now is to establish dose-effect correlation studies, which will be the basis for individualized treatment planning. The aim of this paper is to analyse previously published studies and to consider the potential for improvement in order to obtain a stronger predictive power of dosimetry. The intrinsic radiobiological limits of dosimetry are also illustrated. Due to the development and dissemination of methods of internal dosimetry and radiobiology over the last two decades, and to the increasing availability of quantitative 124I PET imaging, dosimetry could provide in the near future a more systematic basis for standardization and individualization of mIBG therapy. This will however require a number of multicentre trials which are performed under good instrumental and scientific methodology.

  14. Automated DICOM metadata and volumetric anatomical information extraction for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Papamichail, D.; Ploussi, A.; Kordolaimi, S.; Karavasilis, E.; Papadimitroulas, P.; Syrgiamiotis, V.; Efstathopoulos, E.

    2015-09-01

    Patient-specific dosimetry calculations based on simulation techniques have as a prerequisite the modeling of the modality system and the creation of voxelized phantoms. This procedure requires the knowledge of scanning parameters and patients’ information included in a DICOM file as well as image segmentation. However, the extraction of this information is complicated and time-consuming. The objective of this study was to develop a simple graphical user interface (GUI) to (i) automatically extract metadata from every slice image of a DICOM file in a single query and (ii) interactively specify the regions of interest (ROI) without explicit access to the radiology information system. The user-friendly application developed in Matlab environment. The user can select a series of DICOM files and manage their text and graphical data. The metadata are automatically formatted and presented to the user as a Microsoft Excel file. The volumetric maps are formed by interactively specifying the ROIs and by assigning a specific value in every ROI. The result is stored in DICOM format, for data and trend analysis. The developed GUI is easy, fast and and constitutes a very useful tool for individualized dosimetry. One of the future goals is to incorporate a remote access to a PACS server functionality.

  15. Implementation of talairach atlas based automated brain segmentation for radiation therapy dosimetry.

    PubMed

    Popple, R A; Griffith, H R; Sawrie, S M; Fiveash, J B; Brezovich, I A

    2006-02-01

    Radiotherapy for brain cancer inevitably results in irradiation of uninvolved brain. While it has been demonstrated that irradiation of the brain can result in cognitive deficits, dose-volume relationships are not well established. There is little work correlating a particular cognitive deficit with dose received by the region of the brain responsible for the specific cognitive function. One obstacle to such studies is that identification of brain anatomy is both labor intensive and dependent on the individual performing the segmentation. Automatic segmentation has the potential to be both efficient and consistent. Brains2 is a software package developed by the University of Iowa for MRI volumetric studies. It utilizes MR images, the Talairach atlas, and an artificial neural network (ANN) to segment brain images into substructures in a standardized manner. We have developed a software package, Brains2DICOM, that converts the regions of interest identified by Brains2 into a DICOM radiotherapy structure set. The structure set can be imported into a treatment planning system for dosimetry. We demonstrated the utility of Brains2DICOM using a test case, a 34-year-old man with diffuse astrocytoma treated with three-dimensional conformal radiotherapy. Brains2 successfully applied the Talairach atlas to identify the right and left frontal, parietal, temporal, occipital, subcortical, and cerebellum regions. Brains2 was not successful in applying the ANN to identify small structures, such as the hippocampus and caudate. Further work is necessary to revise the ANN or to develop new methods for identification of small structures in the presence of disease and radiation induced changes. The segmented regions-of-interest were transferred to our commercial treatment planning system using DICOM and dose-volume histograms were constructed. This method will facilitate the acquisition of data necessary for the development of normal tissue complication probability (NTCP) models that

  16. Micro-Fabricated Solid-State Radiation Detectors for Active Personal Dosimetry

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.; Chen, Liang-Yu

    2007-01-01

    Active radiation dosimetry is important to human health and equipment functionality for space applications outside the protective environment of a space station or vehicle. This is especially true for long duration missions to the moon, where the lack of a magnetic field offers no protection from space radiation to those on extravehicular activities. In order to improve functionality, durability and reliability of radiation dosimeters for future NASA lunar missions, single crystal silicon carbide devices and scintillating fiber detectors are currently being investigated for applications in advanced extravehicular systems. For many years, NASA Glenn Research Center has led significant efforts in silicon carbide semiconductor technology research and instrumentation research for sensor applications under extreme conditions. This report summarizes the technical progress and accomplishments toward characterization of radiation-sensing components for the recommendation of their fitness for advanced dosimetry development.

  17. Individual Differences in Response to Automation: The Five Factor Model of Personality

    ERIC Educational Resources Information Center

    Szalma, James L.; Taylor, Grant S.

    2011-01-01

    This study examined the relationship of operator personality (Five Factor Model) and characteristics of the task and of adaptive automation (reliability and adaptiveness--whether the automation was well-matched to changes in task demand) to operator performance, workload, stress, and coping. This represents the first investigation of how the Five…

  18. A new paradigm in personal dosimetry using LiF:Mg,Cu,P.

    PubMed

    Cassata, J R; Moscovitch, M; Rotunda, J E; Velbeck, K J

    2002-01-01

    The United States Navy has been monitoring personnel for occupational exposure to ionising radiation since 1947. Film was exclusively used until 1973 when thermoluminescence dosemeters were introduced and used to the present time. In 1994, a joint research project between the Naval Dosimetry Center, Georgetown University, and Saint Gobain Crystals and Detectors (formerly Bicron RMP formerly Harshaw TLD) began to develop a state of the art thermoluminescent dosimetry system. The study was conducted from a large-scale dosimetry processor point of view with emphasis on a systems approach. Significant improvements were achieved by replacing the LiF:Mg,Ti with LiF:Mg,Cu,P TL elements due to the significant sensitivity increase, linearity, and negligible hiding. Dosemeter filters were optimised for gamma and X ray energy discrimination using Monte Carlo modelling (MCNP) resulting in significant improvement in accuracy and precision. Further improvements were achieved through the use of neural-network based dose calculation algorithms. Both back propagation and functional link methods were implemented and the data compared with essentially the same results. Several operational aspects of the system are discussed, including (1) background subtraction using control dosemeters, (2) selection criteria for control dosemeters, (3) optimisation of the TLD readers, (4) calibration methodology, and (5) the optimisation of the heating profile.

  19. Forty Years of Library Automation: A Personal Reflection

    ERIC Educational Resources Information Center

    Line, Maurice B.

    2006-01-01

    Purpose: To provide an overview of one person's involvement with computer systems in libraries over the last 40 years. Design/methodology/approach: Personal memories corroborated with published articles. Findings: There have been very many developments in libraries in a comparatively short period of time as a result of using computer systems, and…

  20. Computers, Automation, and the Employment of Persons Who Are Blind or Visually Impaired.

    ERIC Educational Resources Information Center

    Mather, J.

    1994-01-01

    This article discusses the impact of technology on the formation of skills and the career advancement of persons who are blind or visually impaired. It concludes that dependence on technology (computerization and automation) and the mechanistic aspects of jobs may trap blind and visually impaired workers in occupations with narrow career paths…

  1. Individual differences in response to automation: the five factor model of personality.

    PubMed

    Szalma, James L; Taylor, Grant S

    2011-06-01

    This study examined the relationship of operator personality (Five Factor Model) and characteristics of the task and of adaptive automation (reliability and adaptiveness-whether the automation was well-matched to changes in task demand) to operator performance, workload, stress, and coping. This represents the first investigation of how the Five Factors relate to human response to automation. One-hundred-sixty-one college students experienced either 75% or 95% reliable automation provided with task loads of either two or four displays to be monitored. The task required threat detection in a simulated uninhabited ground vehicle (UGV) task. Task demand exerted the strongest influence on outcome variables. Automation characteristics did not directly impact workload or stress, but effects did emerge in the context of trait-task interactions that varied as a function of the dimension of workload and stress. The pattern of relationships of traits to dependent variables was generally moderated by at least one task factor. Neuroticism was related to poorer performance in some conditions, and all five traits were associated with at least one measure of workload and stress. Neuroticism generally predicted increased workload and stress and the other traits predicted decreased levels of these states. However, in the case of the relation of Extraversion and Agreeableness to Worry, Frustration, and avoidant coping, the direction of effects varied across task conditions. The results support incorporation of individual differences into automation design by identifying the relevant person characteristics and using the information to determine what functions to automate and the form and level of automation.

  2. Comparison groups on bills: Automated, personalized energy information

    SciTech Connect

    Iyer, Maithili; Kempton, Willett; Payne, Christopher

    2006-07-01

    A program called ``Innovative Billing?? has been developed to provide individualized energy information for a mass audience?the entireresidential customer base of an electric or gas utility. Customers receive a graph on the bill that compares that customer?s consumption with othersimilar customers for the same month. The program aims to stimulate customers to make ef?ciency improvements. To group as many as severalmillion customers into small ``comparison groups??, an automated method must be developed drawing solely from the data available to the utility.This paper develops and applies methods to compare the quality of resulting comparison groups.A data base of 114,000 customers from a utility billing system was used to evaluate Innovative Billing comparison groups, comparing fouralternative criteria: house characteristics (?oor area, housing type, and heating fuel); street; meter read route; billing cycle. Also, customers wereinterviewed to see what forms of comparison graphs made most sense and led to fewest errors of interpretation. We ?nd that good qualitycomparison groups result from using street name, meter book, or multiple house characteristics. Other criteria we tested, such as entire cycle, entiremeter book, or single house characteristics such as ?oor area, resulted in poor quality comparison groups. This analysis provides a basis forchoosing comparison groups based on extensive user testing and statistical analysis. The result is a practical set of guidelines that can be used toimplement realistic, inexpensive innovative billing for the entire customer base of an electric or gas utility.

  3. Improving the Success Rate of Delivering Annual Occupational Dosimetry Reports to Persons Issued Temporary External Dosimeters

    SciTech Connect

    Mallett, Michael Wesley

    2014-09-09

    Workers who are not routinely monitored for occupational radiation exposure at LANL may be issued temporary dosimeters in the field. Per 10CFR835 and DOE O 231.1A, the Laboratory's radiation protection program is responsible for reporting these results to the worker at the end of the year. To do so, the identity of the worker and their mailing address must be recorded by the delegated person at the time the dosimeter is issued. Historically, this data has not been consistently captured. A new online application was developed to record the issue of temporary dosimeters. The process flow of the application was structured such that: 1) the worker must be uniquely identified in the Lab's HR database, and 2) the mailing address of record is verified live time via a commercial web service, for the transaction to be completed. A COPQ savings (Type B1) of $96K/year is demonstrated for the new application.

  4. EVALUATION OF AN ACTIVE PERSONAL DOSIMETRY SYSTEM IN INTERVENTIONAL RADIOLOGY AND NEURORADIOLOGY: PRELIMINARY RESULTS.

    PubMed

    Mangiarotti, M; D'Ercole, L; Quaretti, P; Moramarco, L; Lafe, E; Zappoli Thyrion, F

    2016-12-01

    Active personal dosimeters (APD) supply real-time data on radiation dose rates and equivalent doses, enabling reduction of operator exposure to radiation in diagnostic and surgical procedures. Data from the use of the Raysafe i2 APD system in an angiography room are reported. Preliminary characterisation of the APD system was first carried out in terms of angular dependence and of Hp(10) response during the simulation of five typical surgical protocols. Reference measurements, simultaneously obtained from TLDs, were used to obtain a correction factor. APD data for patients and for primary and secondary operators were then recorded over 52 surgical procedures. The correlation between kerma air product (KAP) and reference point air kerma (Kar) and operator dose as a function of position with respect to the source of radiation is reported. The data indicate that the APD system could help operators to optimise behaviours and use of room protection to effectively minimise radiation dose.

  5. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  6. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  7. The impact of exposure to radio frequency electromagnetic fields on chronic well-being in young people--a cross-sectional study based on personal dosimetry.

    PubMed

    Heinrich, Sabine; Thomas, Silke; Heumann, Christian; von Kries, Rüdiger; Radon, Katja

    2011-01-01

    A possible influence of radio frequency electromagnetic field (RF EMF) exposure on health outcomes was investigated in various studies. The main problem of previous studies was exposure assessment. The aim of our study was the investigation of a possible association between RF EMF and chronic well-being in young persons using personal dosimetry. 3022 children and adolescents were randomly selected from the population registries of four Bavarian cities in Germany (participation 52%). Personal interview data on chronic symptoms, socio-demographic characteristics and potential confounders were collected. A 24-h radio frequency exposure profile was generated using a personal dosimeter. Exposure levels over waking hours were expressed as mean percentage of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference level. Half of the children and nearly every adolescent owned a mobile phone which was used only for short durations per day. Measured exposure was far below the current ICNIRP reference levels. The most reported chronic symptom in children and adolescents was fatigue. No statistically significant association between measured exposure and chronic symptoms was observed. Our results do not indicate an association between measured exposure to RF EMF and chronic well-being in children and adolescents. Prospective studies investigating potential long-term effects of RF EMF are necessary to confirm our results.

  8. Automated synthesis and dosimetry of 6-deoxy-6-[18F]fluoro-D-fructose (6-[18F]FDF): a radiotracer for imaging of GLUT5 in breast cancer

    PubMed Central

    Bouvet, Vincent; Jans, Hans S; Wuest, Melinda; Soueidan, Olivier-Mohamad; Mercer, John; McEwan, Alexander JB; West, Frederick G; Cheeseman, Chris I; Wuest, Frank

    2014-01-01

    6-Deoxy-6-[18F]fluoro-D-fructose (6-[18F]FDF) is a promising PET radiotracer for imaging GLUT5 in breast cancer. The present work describes GMP synthesis of 6-[18F]FDF in an automated synthesis unit (ASU) and dosimetry calculations to determine radiation doses in humans. GMP synthesis and dosimetry calculations are important prerequisites for first-in-human clinical studies of 6-[18F]FDF. The radiochemical synthesis of 6-[18F]FDF was optimized and adapted to an automated synthesis process using a Tracerlab FXFN ASU (GE Healthcare). Starting from 30 GBq of cyclotron-produced n.c.a. [18F]fluoride, 2.9 ± 0.1 GBq of 6-[18F]FDF could be prepared within 50 min including HPLC purification resulting in an overall decay-corrected radiochemical yield of 14 ± 3% (n = 11). Radiochemical purity exceeded 95%, and the specific activity was greater than 5.1 GBq/μmol. Sprague-Dawley rats were used for biodistribution experiments, and dynamic and static small animal PET experiments. Biodistribution studies served as basis for allometric extrapolation to the standard man anatomic model and normal organ-absorbed dose calculations using OLINDA/EXM software. The calculated human effective dose for 6-[18F]FDF was 0.0089 mSv/MBq. Highest organ doses with a dose equivalent of 0.0315 mSv/MBq in a humans were found in bone. Injection of 370 MBq (10 mCi) of 6-[18F]FDF results in an effective whole body radiation dose of 3.3 mSv in humans, a value comparable to that of other 18F-labeled PET radiopharmaceuticals. The optimized automated synthesis under GMP conditions, the good radiochemical yield and the favorable human radiation dosimetry estimates support application of 6-[18F]FDF in clinical trials for molecular imaging of GLUT5 in breast cancer patients. PMID:24795839

  9. (Biological dosimetry)

    SciTech Connect

    Sega, G.A.

    1990-11-06

    The traveler participated in an International Symposium on Trends in Biological Dosimetry and presented an invited paper entitled, Adducts in sperm protamine and DNA vs mutation frequency.'' The purpose of the Symposium was to examine the applicability of new methods to study quantitatively the effects of xenobiotic agents (radiation and chemicals) on molecular, cellular and organ systems, with special emphasis on human biological dosimetry. The general areas covered at the meeting included studies on parent compounds and metabolites; protein adducts; DNA adducts; gene mutations; cytogenetic end-points and reproductive methods.

  10. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  11. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  12. [Instrumental radiofrequency electromagnetic radiation dosimetry: general principals and modern methodology].

    PubMed

    Perov, S Iu; Kudriashov, Iu B; Rubtsova, N B

    2012-01-01

    The modern experimental radiofrequency electromagnetic field dosimetry approach has been considered. The main principles of specific absorbed rate measurement are analyzed for electromagnetic field biological effect assessment. The general methodology of specific absorbed rate automated dosimetry system applied to establish the compliance of radiation sources with the safety standard requirements (maximum permissible levels and base restrictions) is described.

  13. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  14. Instrumental carbon monoxide dosimetry.

    PubMed

    Stetter, J R; Rutt, D R

    1980-10-01

    Modern technology for the ambient monitoring of carbon monoxide has been developed to produce a portable electrochemical instrument capable of the personal exposure to carbon monoxide. The performance characteristics of this device have been studied so that the unambiguous interpretation of field data could be performed. A study of the carbon monoxide exposure in a light manufacturing facility illustrate that effective dosimetry can be performed with expectations of accuracy typically better than +/- 15%, and that voluntary carbon monoxide exposures such as smoking were a significant contribution to the individual's exposure. Significant definition of the carbon monoxide exposure profile can be achieved with an instrument approach to the collection of the dosimetric data.

  15. European Crew Personal Active Dosimeter (EuCPAD), a novel dosimetry system utilizing operational and scientific synergies for the benefit of humans in space

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas

    A significant expansion of Human presence in space can be recognized over the last decade. Not only the frequency of human space mission did rise, but also time in space, mission duration with extended flights lasting half a year or more are becoming "standard". Despite the challenges to human health and well-being are still significant, or may even increase with mission length and work density. Also radiation exposure in space remains one of the inevitable and dominating factors relevant to crew- health, -safety and therefore mission success. The radiation environment that the space crews are exposed to differs significantly as compared to earth. Exposure in flight exceed doses that are usually received by terrestrial radiation workers on ground. Expanding "medical" demands are not a solely characteristics of current and current and upcoming mission scenarios. Likewise the margins for what is understood as "efficient utilization" for the fully operational science platform ISS, are immense. Understanding, accepting and approaching these challenges ESA-HSO did choose a particular pass of implementation for one of their current developments. Exploiting synergies of research, science and medical operational aspects, the "European Crew Personal Active Dosimeter for Astronauts (EuCPAD)" development exactly addresses these circumstances. It becomes novel part of ESA Radiation Protection Initiative for astronauts. The EuCPAD project aims at the development and manufacturing of an active (powered) dosimeter system to measure astronaut's exposures, support risk assessment dose management by providing a differentiated data set. Final goal is the verification of the system capabilities for medical monitoring at highest standards. The EuCPAD consists of several small portable Personal Active Dosimeters (MU = Mobile Unitas) and a rack mounted docking station “Personal Storage Device (PSD)” for MU storage, data read out and telemetry. The PSD furthermore contains a Tissue

  16. Monte Carlo simulations of the electric field close to the body in realistic environments for application in personal radiofrequency dosimetry.

    PubMed

    Iskra, S; McKenzie, R; Cosic, I

    2011-11-01

    Personal dosemeters can play an important role in epidemiological studies and in radiofrequency safety programmes. In this study, a Monte Carlo approach is used in conjunction with the finite difference time domain method to obtain distributions of the electric field strength close to a human body model in simulated realistic environments. The field is a proxy for the response of an ideal body-worn electric field dosemeter. A set of eight environments were modelled based on the statistics of Rayleigh, Rice and log-normal fading to simulate outdoor and indoor multipath exposures at 450, 900 and 2100 MHz. Results indicate that a dosemeter mounted randomly within 10-50 mm of the adult or child body model (torso region) will on average underestimate the spatially averaged value of the incident electric field strength by a factor of 0.52 to 0.74 over the frequencies of 450, 900 and 2100 MHz. The uncertainty in results, assessed at the 95 % confidence level (between the 2.5th and 97.5th percentiles) was largest at 2100 MHz and smallest at 450 MHz.

  17. Sun exposure behaviour among subgroups of the Danish population. Based on personal electronic UVR dosimetry and corresponding exposure diaries.

    PubMed

    Thieden, Elisabeth

    2008-02-01

    Solar ultraviolet radiation (UVR) is known to be the most important etiological factor in skin cancer development. The main objective of this thesis was to achieve an objective, basic knowledge of the individual UVR exposure dose pattern and to reveal the factors and with which power they influence on the UVR dose among the Danes. Eight open prospective, observational studies and one study analyzing the compliance and reliability of data were performed in healthy Danish volunteers with an age range of 4-68 years. The subjects were chosen to cover an age span group of children, adolescents, and indoor workers and in addition, groups with expected high UVR exposure, sun worshippers, golfers, and gardeners. We developed a personal, electronic UVR dosimeter in a wristwatch (SunSaver). The subjects wore the UVR dosimeter that measured time-stamped UVR doses in standard erythema doses (SED) and completed diaries with data on their sun exposure behaviour. This resulted in corresponding UVR dosimeter and diary data from 346 sun-years where one sun-year is one person participating in one summer half-year (median 119 days). The annual UVR doses were calculated based on the personal and ambient measured UVR doses. We found a huge variation in annual UVR exposure dose within the total population sample, median 173 SED (range, 17-980 SED). The inter-group variation in annual UVR dose was from median 132 SED among indoor workers to median 224 SED among gardeners. No significant correlation was found between annual UVR dose and age either within the total population or among the adults. But the subjects below 20 years of age had an increase in annual UVR dose of 5 SED per year. Young people before the age of 20 years did not get a higher proportion of the lifetime UVR dose than expected (25%) when assuming a life expectancy of 80 years. There was no significant difference in annual UVR dose between males and females in the total population sample. But, among children, girls

  18. Personalized radiosynoviorthese: dosimetry treatment planning

    NASA Astrophysics Data System (ADS)

    Trukhin, A. A.; Nikitaev, V. G.; Dubov, L. Yu; Shtotsky, Yu V.

    2017-01-01

    This work is devoted to the quantitative dosimetric support method for endoradyotherapy of inflammatory joints diseases. To reduce inflammation in synovium radiopharmaceutical is injected intraarticularly and provides local ablation of excessive synovial tissue. Present-day guidelines give empirical approaches to therapeutic activity selection. Such approaches lead to 20% untreated patients. Article shows way to improvement of cure level by introduction of dosimetric support.

  19. Person-like intelligent systems architectures for robotic shared control and automated operations

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.; Aucoin, Paschal J., Jr.; Ossorio, Peter G.

    1992-01-01

    An approach to rendering robotic systems as 'personlike' as possible to achieve needed capabilities is outlined. Human characteristics such as knowledge, motivation, know-how, performance, achievement and individual differences corresponding to propensities and abilities can be supplied, within limits, with computing software and hardware to robotic systems provided with sufficiently rich sensory configurations. Pushing these limits is the developmental path for more and more personlike robotic systems. The portions of the Person Concept that appear to be most directly relevant to this effort are described in the following topics: reality concepts (the state-of-affairs system and descriptive formats, behavior as intentional action, individual persons (person characteristics), social patterns of behavior (social practices), and boundary conditions (status maxims). Personlike robotic themes and considerations for a technical development plan are also discussed.

  20. Albedo neutron dosimetry in Germany: regulations and performance.

    PubMed

    Luszik-Bhadra, M; Zimbal, A; Busch, F; Eichelberger, A; Engelhardt, J; Figel, M; Frasch, G; Günther, K; Jordan, M; Martini, E; Haninger, T; Rimpler, A; Seifert, R

    2014-12-01

    Personal neutron dosimetry has been performed in Germany using albedo dosemeters for >20 y. This paper describes the main principles, the national standards, regulations and recommendations, the quality management and the overall performance, giving some examples.

  1. Automated Meteorological Data Reception, Analysis and Prediction Suitable for Personal Computers

    NASA Astrophysics Data System (ADS)

    Teixeira, Luiz

    The advent of personal computers in the early eighties opened an incredible market for software development. Unfortunately, not much was done in meteorology to harvest the increasing power from these inexpensive machines. Developing countries, where computer capabilities are limited, can benefit tremendously from the personal computer technology. Developed countries can also profit from customized meteorological applications, running locally and generating products unavailable from centralized weather services. The general structure, installation requirements, products and users' response related to two portable meteorological applications specifically designed with the above scenarios in mind are the main subjects of this dissertation work. The basic meteorological application was designed to attend to the daily activities of data reception, decoding, analysis and weather chart preparation. The geographic and meteorological application implementation added prognostic capabilities, "lights-out" operation, geography and a sophisticated graphical user interface (GUI) running under the Windows ^{TM} environment and specifically designed to attend the requirements of a states' Department of Transportation.

  2. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  3. REVIEW OF DOSIMETRY FIELD

    DTIC Science & Technology

    three, oxalic acid , polyisobutylene, and Mylar film, seem sufficiently promising to warrant further development. Their current states of development...ceric sulfate dosimeters be included in the dosimetry handbook, but that additional work should be done on oxalic acid , polyisobutylene, and Mylar as dosimetry materials. (Author)

  4. Czech results at criticality dosimetry intercomparison 2002.

    PubMed

    Frantisek, Spurný; Jaroslav, Trousil

    2004-01-01

    Two criticality dosimetry systems were tested by Czech participants during the intercomparison held in Valduc, France, June 2002. The first consisted of the thermoluminescent detectors (TLDs) (Al-P glasses) and Si-diodes as passive neutron dosemeters. Second, it was studied to what extent the individual dosemeters used in the Czech routine personal dosimetry service can give a reliable estimation of criticality accident exposure. It was found that the first system furnishes quite reliable estimation of accidental doses. For routine individual dosimetry system, no important problems were encountered in the case of photon dosemeters (TLDs, film badge). For etched track detectors in contact with the 232Th or 235U-Al alloy, the track density saturation for the spark counting method limits the upper dose at approximately 1 Gy for neutrons with the energy >1 MeV.

  5. Internal dosimetry - a review.

    SciTech Connect

    Potter, Charles Augustus

    2004-06-01

    The field history and current status of internal dosimetry is reviewed in this article. Elements of the field that are reviewed include standards and models, derivation of dose coefficients and intake retention fractions, bioassay measurements, and intake and dose calculations. In addition, guidance is developed and provided as to the necessity of internal dosimetry for a particular facility or operation and methodology for implementing a program. A discussion of the purposes of internal dosimetry is included as well as recommendations for future development and direction.

  6. Office automation.

    PubMed

    Arenson, R L

    1986-03-01

    By now, the term "office automation" should have more meaning for those readers who are not intimately familiar with the subject. Not all of the preceding material pertains to every department or practice, but certainly, word processing and simple telephone management are key items. The size and complexity of the organization will dictate the usefulness of electronic mail and calendar management, and the individual radiologist's personal needs and habits will determine the usefulness of the home computer. Perhaps the most important ingredient for success in the office automation arena relates to the ability to integrate information from various systems in a simple and flexible manner. Unfortunately, this is perhaps the one area that most office automation systems have ignored or handled poorly. In the personal computer world, there has been much emphasis recently on integration of packages such as spreadsheet, database management, word processing, graphics, time management, and communications. This same philosophy of integration has been applied to a few office automation systems, but these are generally vendor-specific and do not allow for a mixture of foreign subsystems. During the next few years, it is likely that a few vendors will emerge as dominant in this integrated office automation field and will stress simplicity and flexibility as major components.

  7. Reconstructive dosimetry for cutaneous radiation syndrome

    PubMed Central

    Lima, C.M.A.; Lima, A.R.; Degenhardt, Ä.L.; Valverde, N.J.; Da Silva, F.C.A.

    2015-01-01

    According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry. PMID:26445332

  8. Personalization.

    ERIC Educational Resources Information Center

    Shore, Rebecca Martin

    1996-01-01

    Describes how a typical high school in Huntington Beach, California, curbed disruptive student behavior by personalizing the school experience for "problem" students. Through mostly volunteer efforts, an adopt-a-kid program was initiated that matched kids' learning styles to adults' personality styles and resulted in fewer suspensions…

  9. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  10. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  11. Advanced dosimetry systems for the space transport and space station

    NASA Technical Reports Server (NTRS)

    Wailly, L. F.; Schneider, M. F.; Clark, B. C.

    1972-01-01

    Advanced dosimetry system concepts are described that will provide automated and instantaneous measurement of dose and particle spectra. Systems are proposed for measuring dose rate from cosmic radiation background to greater than 3600 rads/hr. Charged particle spectrometers, both internal and external to the spacecraft, are described for determining mixed field energy spectra and particle fluxes for both real time onboard and ground-based computer evaluation of the radiation hazard. Automated passive dosimetry systems consisting of thermoluminescent dosimeters and activation techniques are proposed for recording the dose levels for twelve or more crew members. This system will allow automatic onboard readout and data storage of the accumulated dose and can be transmitted to ground after readout or data records recovered with each crew rotation.

  12. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    PubMed

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory.

  13. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  14. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  15. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  16. A semi-automated FISH-based micronucleus-centromere assay for biomonitoring of hospital workers exposed to low doses of ionizing radiation

    PubMed Central

    VRAL, ANNE; DECORTE, VEERLE; DEPUYDT, JULIE; WAMBERSIE, ANDRÉ; THIERENS, HUBERT

    2016-01-01

    The aim of the present study was to perform cytogenetic analysis by means of a semi-automated micro-nucleus-centromere assay in lymphocytes from medical radiation workers. Two groups of workers receiving the highest occupational doses were selected: 10 nuclear medicine technicians and 10 interventional radiologists/cardiologists. Centromere-negative micronucleus (MNCM−) data, obtained from these two groups of medical radiation workers were compared with those obtained in matched controls. The blood samples of the matched controls were additionally used to construct a 'low-dose' (0–100 mGy) MNCM− dose-response curve to evaluate the sensitivity and suitability of the micronucleus-centromere assay as an 'effect' biomarker in medical surveillance programs. The physical dosimetry data of the 3 years preceding the blood sampling, based on single or double dosimetry practices, were collected for the interpretation of the micronucleus data. The in vitro radiation results showed that for small sized groups, semi-automated scoring of MNCM− enables the detection of a dose of 50 mGy. The comparison of MNCM− yields in medical radiation workers and control individuals showed enhanced MNCM− scores in the medical radiation workers group (P=0.15). The highest MNCM− scores were obtained in the interventional radiologists/cardiologists group, and these scores were significantly higher compared with those obtained from the matched control group (P=0.05). The higher MNCM− scores observed in interventional radiologists/cardiologists compared with nuclear medicine technicians were not in agreement with the personal dosimetry records in both groups, which may point to the limitation of 'double dosimetry' procedures used in interventional radiology/cardiology. In conclusion, the data obtained in the present study supports the importance of cytogenetic analysis, in addition to physical dosimetry, as a routine biomonitoring method in medical radiation workers receiving the

  17. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  18. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  19. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  20. Review of gel dosimetry: a personal reflection

    NASA Astrophysics Data System (ADS)

    Baldock, C.

    2017-01-01

    Gel dosimeters are manufactured from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters have the capacity to record radiation dose distribution in three-dimensions (3D) compared to one and two-dimensional dosimeters. 3D dosimeters are radiologically soft-tissue equivalent and may be evaluated using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT, ultrasound or vibrational spectroscopy.

  1. Photostimulable Storage Phosphor Dosimetry

    NASA Astrophysics Data System (ADS)

    Frye, Douglas Mahaffey Danks

    The feasibility of employing alkaline earth sulfide based photostimulable storage phosphors for relative dosimetry in radiation oncology has been investigated. The dosimetric characteristics, radiologic characteristics, and spacial sensitivity of calcium sulfide and strontium sulfide based phosphors were determined. Dosimetric characteristics were explored by cavity theory calculation, Monte Carlo simulation, and physical measurement. Dosimetric characteristics obtained with cavity theory and Monte Carlo simulations agree well. The dose perturbation of the phosphor base materials were comparable to those produced by clinical dosimeter materials over the energy region employed in radiation oncology. Dose perturbation in regions downstream of the phosphor were measured with a variety of clinical dosimeters and compared with simulation results. The results of the measurements and simulations agreed within the uncertainty levels of the simulations and the measurements. Radiological characteristics of sensitivity, fading, dose response, dose rate response, and energy dependence of response were studied with an experimental phosphor output reader. Relative sensitivity was found to be dependent upon the mass thickness of phosphor layer. Fading was quantified for the calcium sulfide phosphor, with a half time of 2300 minutes. The strontium sulfide sample exhibited some fading, however, the regression lines yielded low correlation coefficients. A linear dose response over the range of doses employed in radiation oncology was obtained for both phosphors. No significant dose rate dependence of response was measured for the phosphors. The phosphor's energy dependence of response paralleled the dose perturbation relative to water predicted by cavity theory and simulations. Spatial sensitivity was demonstrated with an experimental phosphor scanner. The phosphors exhibited spatial sensitivity, however, infrared scattering/piping in the transparent substrate appeared to cause

  2. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  3. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  4. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  5. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  6. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  7. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  8. Radioembolization dosimetry: the road ahead.

    PubMed

    Smits, Maarten L J; Elschot, Mattijs; Sze, Daniel Y; Kao, Yung H; Nijsen, Johannes F W; Iagaru, Andre H; de Jong, Hugo W A M; van den Bosch, Maurice A A J; Lam, Marnix G E H

    2015-04-01

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  9. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  10. The International Reactor Dosimetry File.

    SciTech Connect

    DUNFORD, CHARLIE

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  11. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  12. Dosimetry of iodoantipyrine.

    PubMed

    Chu, R Y; Ekeh, S; Basmadjian, G

    1989-01-01

    Dosimetry of iodoantipyrine labeled with radioactive iodine was determined by measuring the biodistribution of 131I-iodoantipyrine in 41 female rabbits. Following administration of the radiopharmaceutical, subjects were killed at 0.5, 6, 12, 17, 24, 36, and 48 h. Organs and samples of tissues and body fluids were assayed. Results were corrected for physical decay. Exponential functions were employed to describe the time-concentration curves; representative value would be the biological half life of 9.96 +/- 0.55 h for blood. Cumulated activity estimates for 123I, 125I and 131I were then computed. Extrapolation to absorbed dose in humans followed the formulation of the Medical International Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The whole body absorbed doses are 7 mu Gray, 5 mu Gray and 29 mu Gray per MBq of 123I, 125I, and 131I administered respectively.

  13. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  14. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  15. Dosimetry considerations in phototherapy

    SciTech Connect

    Profio, A.E.; Doiron, D.R.

    1981-03-01

    Dosimetry in phototherapy involves a determination of the energy absorbed per unit mass of tissue, corrected for the quantum yield in a photochemical reaction. The dose rate in photochemotherapy of cancer with hematoporphyrin derivative and visible light is related to the extinction coefficient, quantum yield for singlet oxygen production, concentration of sensitizer and energy flux density at depth. Data or methods of determining these quantities are presented. Calculations have been performed for the energy flux density at depth, as a function of the total attenuation coefficient and ratio of scattering coefficient to total attenuation coefficient, for isotropic scattering in slab geometry. For small absorption, these depth dose curves exhibit a maximum within the tissue followed by an exponential decrease.

  16. Remote optical fiber dosimetry

    NASA Astrophysics Data System (ADS)

    Huston, A. L.; Justus, B. L.; Falkenstein, P. L.; Miller, R. W.; Ning, H.; Altemus, R.

    2001-09-01

    Optical fibers offer a unique capability for remote monitoring of radiation in difficult-to-access and/or hazardous locations. Optical fiber sensors can be located in radiation hazardous areas and optically interrogated from a safe distance. A variety of remote optical fiber radiation dosimetry methods have been developed. All of the methods take advantage of some form of radiation-induced change in the optical properties of materials such as: radiation-induced darkening due to defect formation in glasses, luminescence from native defects or radiation-induced defects, or population of metastable charge trapping centers. Optical attenuation techniques are used to measure radiation-induced darkening in fibers. Luminescence techniques include the direct measurement of scintillation or optical excitation of radiation-induced luminescent defects. Optical fiber radiation dosimeters have also been constructed using charge trapping materials that exhibit thermoluminescence or optically stimulated luminescence (OSL).

  17. Initial radiation dosimetry at Hiroshima and Nagasaki

    SciTech Connect

    Loewe, W.E.

    1983-09-01

    The dosimetry of A-bomb survivors at Hiroshima and Nagasaki is discussed in light of the new dosimetry developed in 1980 by the author. The important changes resulting from the new dosimetry are the ratios of neutron to gamma doses, particularly at Hiroshima. The implications of these changes in terms of epidemiology and radiation protection standards are discussed. (ACR)

  18. 4.2 Methods for Internal Dosimetry

    NASA Astrophysics Data System (ADS)

    Noßke, D.; Mattsson, S.; Johansson, L.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '4.2 Methods for Internal Dosimetry' of the Chapter '4 Dosimetry in Nuclear Medicine Diagnosis and Therapy' with the contents:

  19. Nuclear accident dosimetry intercomparison studies.

    PubMed

    Sims, C S

    1989-09-01

    Twenty-two nuclear accident dosimetry intercomparison studies utilizing the fast-pulse Health Physics Research Reactor at the Oak Ridge National Laboratory have been conducted since 1965. These studies have provided a total of 62 different organizations a forum for discussion of criticality accident dosimetry, an opportunity to test their neutron and gamma-ray dosimetry systems under a variety of simulated criticality accident conditions, and the experience of comparing results with reference dose values as well as with the measured results obtained by others making measurements under identical conditions. Sixty-nine nuclear accidents (27 with unmoderated neutron energy spectra and 42 with eight different shielded spectra) have been simulated in the studies. Neutron doses were in the 0.2-8.5 Gy range and gamma doses in the 0.1-2.0 Gy range. A total of 2,289 dose measurements (1,311 neutron, 978 gamma) were made during the intercomparisons. The primary methods of neutron dosimetry were activation foils, thermoluminescent dosimeters, and blood sodium activation. The main methods of gamma dose measurement were thermoluminescent dosimeters, radiophotoluminescent glass, and film. About 68% of the neutron measurements met the accuracy guidelines (+/- 25%) and about 52% of the gamma measurements met the accuracy criterion (+/- 20%) for accident dosimetry.

  20. Studies in Ultrasonic Dosimetry.

    NASA Astrophysics Data System (ADS)

    Zitouni, Abderrachid

    The widespread use of ultrasonic devices in both industry and medicine confirms the great importance of ultrasound as a source of nonionizing radiation. The biological effects of this type of radiation are not completely known up to today, and the need for proper dosimetry is evident. Previous work in the field has been limited to the determination of ultrasonic energy deposition by attenuation measurements of traveling sound waves in homogenized specimens. Alternatively, observed effects were correlated to the output of the source. The objective of this work was to correlate the absorption properties of sound absorbing media to their elastic properties and deduce a correlation between the sonic absorption coefficient and the corresponding Young's modulus. Energy deposition measurements were performed in isotropic rubber samples and in anisotropic meat specimens by the use of the thermocouple probe method which measures the absorbed energy directly. Elasticity measurements were performed for the different types of materials used. The Young's modulus for each type was deduced from defletion measurements on rectangular strips when subjected to successive forces of varying magnitude. The final experimental results showed the existence of a linear relationship between the absorption coefficient of a given elastic material and the inverse square root of its Young's modulus.

  1. Dose estimation using dicentric chromosome assay and cytokinesis block micronucleus assay: comparison between manual and automated scoring in triage mode.

    PubMed

    De Amicis, Andrea; De Sanctis, Stefania; Di Cristofaro, Sara; Franchini, Valeria; Regalbuto, Elisa; Mammana, Giacomo; Lista, Florigio

    2014-06-01

    In cases of an accidental overexposure to ionizing radiation, it is essential to estimate the individual absorbed dose of a potentially radiation-exposed person. For this purpose, biological dosimetry can be performed to confirm, complement or even replace physical dosimetry when this proves to be unavailable. The most validated biodosimetry techniques for dose estimation are the dicentric chromosome assay, the "gold standard" for individual dose assessment, and cytokinesis-block micronucleus assay. However, both assays are time consuming and require skilled scorers. In case of large-scale accidents, different strategies have been developed to increase the throughput of cytogenetic service laboratories. These are the decrease of cell numbers to be scored for triage dosimetry; the automation of procedures including the scoring of, for example, aberrant chromosomes and micronuclei; and the establishment of laboratory networks in order to enable mutual assistance if necessary. In this study, the authors compared the accuracy of triage mode biodosimetry by dicentric chromosome analysis and the cytokinesis block micronucleus assay performing both the manual and the automated scoring mode. For dose estimation using dicentric chromosome assay of 10 blind samples irradiated up to 6.4 Gy of x-rays, a number of metaphase spreads were analyzed ranging from 20 up to 50 cells for the manual and from 20 up to 500 cells for the automatic scoring mode. For dose estimation based on the cytokinesis block micronucleus assay, the micronucleus frequency in both 100 and 200 binucleated cells was determined by manual and automatic scoring. The results of both assays and scoring modes were compared and analyzed considering the sensitivity, specificity, and accuracy of dose estimation with regard to the discrimination power of clinically relevant binary categories of exposure doses.

  2. Radiation accident dosimetry on plastics by EPR spectrometry.

    PubMed

    Trompier, F; Bassinet, C; Clairand, I

    2010-02-01

    In case of acute exposure to ionizing radiation, the dose absorbed by the victims has to be rapidly and accurately assessed in order to choose an appropriate medical treatment. Tooth enamel and bone biopsies measured by EPR spectrometry are often used as dose indicators, due to the good radiation sensitivity and the stability of EPR radiation-sensitive signals. Nevertheless, the invasive sampling of teeth and bones limits the application of this technique to retrospective dosimetry. Therefore, we have investigated an alternative non-invasive methodology. We have surveyed with EPR spectrometry the dosimetric properties of the plastics that can be found in personal effects such as glasses (CR-39, polycarbonate), mobile phones (PMMA, polycarbonate), watches and buttons. Dose response, signal stability and effects of storage conditions were investigated. Significant signal fading limits the use for radiation accident dosimetry. Few plastics present the required characteristics to be used in case of a radiation accident.

  3. Validating Automated Speaking Tests

    ERIC Educational Resources Information Center

    Bernstein, Jared; Van Moere, Alistair; Cheng, Jian

    2010-01-01

    This paper presents evidence that supports the valid use of scores from fully automatic tests of spoken language ability to indicate a person's effectiveness in spoken communication. The paper reviews the constructs, scoring, and the concurrent validity evidence of "facility-in-L2" tests, a family of automated spoken language tests in Spanish,…

  4. The application of thermoluminescence dosimetry in X-ray energy discrimination.

    PubMed

    Nelson, V K; Holloway, L; McLean, I D

    2015-12-01

    Clinical dosimetry requires an understanding of radiation energy to accurately determine the delivered dose. For many situations this is known, however there are also many situations where the radiation energy is not well known, thus limiting dosimetric accuracy. This is the case in personnel dosimetry where thermo luminescent (TL) dosimetry is the method of choice. Traditionally beam energy characteristics in personnel dosimetry are determined through discrimination with the use of various filters fitted within a radiation monitor. The presence of scattered and characteristic radiation produced by these metallic filters, however, can compromise the results. In this study the TL response of five materials TLD100, TLD100H, TLD200, TLD400 and TLD500, was measured at various X-ray energies. The TL sensitivity ratio for various combinations of materials as a function of X-ray energy was calculated. The results indicate that in personal dosimetry a combination of three or more TL detector system has a better accuracy of estimation of effective radiation energy of an X-ray beam than some of the current method of employed for energy estimation and has the potential to improve the accuracy in dose determination in a variety of practical situations. The development of this method also has application in other fields including quality assurance of the orthovoltage therapy machines, dosimetry intercomparisons of kilovoltage X-ray beams, and measurement of the dose to critical organs outside a treatment field of a megavoltage therapy beam.

  5. Plutonium worker dosimetry.

    PubMed

    Birchall, Alan; Puncher, M; Harrison, J; Riddell, A; Bailey, M R; Khokryakov, V; Romanov, S

    2010-05-01

    Epidemiological studies of the relationship between risk and internal exposure to plutonium are clearly reliant on the dose estimates used. The International Commission on Radiological Protection (ICRP) is currently reviewing the latest scientific information available on biokinetic models and dosimetry, and it is likely that a number of changes to the existing models will be recommended. The effect of certain changes, particularly to the ICRP model of the respiratory tract, has been investigated for inhaled forms of (239)Pu and uncertainties have also been assessed. Notable effects of possible changes to respiratory tract model assumptions are (1) a reduction in the absorbed dose to target cells in the airways, if changes under consideration are made to the slow clearing fraction and (2) a doubling of absorbed dose to the alveolar region for insoluble forms, if evidence of longer retention times is taken into account. An important factor influencing doses for moderately soluble forms of (239)Pu is the extent of binding of dissolved plutonium to lung tissues and assumptions regarding the extent of binding in the airways. Uncertainty analyses have been performed with prior distributions chosen for application in epidemiological studies. The resulting distributions for dose per unit intake were lognormal with geometric standard deviations of 2.3 and 2.6 for nitrates and oxides, respectively. The wide ranges were due largely to consideration of results for a range of experimental data for the solubility of different forms of nitrate and oxides. The medians of these distributions were a factor of three times higher than calculated using current default ICRP parameter values. For nitrates, this was due to the assumption of a bound fraction, and for oxides due mainly to the assumption of slower alveolar clearance. This study highlights areas where more research is needed to reduce biokinetic uncertainties, including more accurate determination of particle transport rates

  6. Unexplained overexposures on physical dosimetry reported by biological dosimetry.

    PubMed

    Montoro, A; Almonacid, M; Villaescusa, J I; Verdu, G

    2009-01-01

    The Medical Service of the Radiation Protection Service from the University Hospital La Fe (Valencia, Spain), carries out medical examinations of the workers occupationally exposed to ionising radiation. The Biological Dosimetry Laboratory is developing its activity since 2001. Up to now, the activities have been focused in performing biological dosimetry studies of Interventionists workers from La Fe Hospital. Recently, the Laboratory has been authorized by the Health Authority in the Valencian Community. Unexplained overexposures of workers and patients are also studied. Workers suspected of being overexposed to ionising radiation were referred for investigation by cytogenetic analysis. Two of these were from Hospitals of the Valencian Community and one belonged to an uranium mine from Portugal. Hospital workers had a physical dose by thermoluminiscence dosimeters (TLD) that exceeded the established limit. The worker of the uranium mine received a dose from a lost source of Cesium 137 with an activity of 170 mCi. All three cases showed normal values after the hematological analysis. Finally, the aim of this study consist to determine whether the dose showed by the dosimeter is reliable or not. In the case of workers that wore dosimeter, it is concluded that the doses measured by dosimeter are not corresponding to real doses. Hospital worker with a physical dose of 2.6 Sv and 0.269 Sv had an estimated absorbed dose by biological dosimetry of 0.076 Gy (0-0.165 Gy) and 0 Gy (0-0.089 Gy), respectively. In case of the mine worker an estimated absorbed dose of 0.073 Gy (0-0.159 Gy) was obtained by biological dosimetry. In all cases we used the odds ratio to present the results due to a very low frequency of observed aberrations [1].

  7. Results from 2010 Caliban Criticality Dosimetry Intercomparison

    SciTech Connect

    Veinot, K. G.

    2011-10-12

    The external dosimetry program participated in a criticality dosimetry intercomparison conducted at the Caliban facility in Valduc, France in 2010. Representatives from the dosimetry and instrumentation groups were present during testing which included irradiations of whole-body beta/gamma (HBGT) and neutron thermoluminescent dosimeters (TLDs), a fixed nuclear accident dosimeter (FNAD), electronic alarming dosimeters, and a humanoid phantom filled with reference man concentrations of sodium. This report reviews the testing procedures, preparations, irradiations, and presents results of the tests.

  8. 12 CFR 1005.16 - Disclosures at automated teller machines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Disclosures at automated teller machines. 1005... TRANSFERS (REGULATION E) § 1005.16 Disclosures at automated teller machines. (a) Definition. “Automated teller machine operator” means any person that operates an automated teller machine at which a...

  9. 12 CFR 1005.16 - Disclosures at automated teller machines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Disclosures at automated teller machines. 1005... TRANSFERS (REGULATION E) General § 1005.16 Disclosures at automated teller machines. (a) Definition. “Automated teller machine operator” means any person that operates an automated teller machine at which...

  10. 12 CFR 1005.16 - Disclosures at automated teller machines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Disclosures at automated teller machines. 1005... TRANSFERS (REGULATION E) General § 1005.16 Disclosures at automated teller machines. (a) Definition. “Automated teller machine operator” means any person that operates an automated teller machine at which...

  11. The Chernobyl experience in the area of retrospective dosimetry.

    PubMed

    Chumak, Vadim V

    2012-03-01

    The Chernobyl accident, which occurred on 26 April 1986 at a nuclear power plant located less than 150 km north of Kiev, was the largest nuclear accident to date. The unprecedented scale of the accident was determined not only by the amount of released activity, but also by the number of workers and of the general public involved, and therefore exposed to increased doses of ionising radiation. Due to the unexpected and large scale of the accident, dosimetry techniques and practices were far from the optimum; personal dosimetry of cleanup workers (liquidators) was not complete, and there were no direct measurements of the exposures of members of the public. As a result, an acute need for retrospective dose assessment was dictated by radiation protection and research considerations. In response, substantial efforts have been made to reconstruct doses for the main exposed cohorts, using a broad variety of newly developed methods: analytical, biological and physical (electron paramagnetic resonance spectroscopy of teeth, thermoluminescence of quartz) and modelling. This paper reviews the extensive experience gained by the National Research Center for Radiation Medicine, Academy of Medical Sciences, Ukraine in the field of retrospective dosimetry of large cohorts of exposed population and professionals. These dose reconstruction projects were implemented, in particular, in the framework of epidemiological studies, designed to follow-up the medical consequences of the Chernobyl accident and study health effects of ionizing radiation, particularly Ukrainian-American studies of cataracts and leukaemia among liquidators.

  12. Advances in biological dosimetry

    NASA Astrophysics Data System (ADS)

    Ivashkevich, A.; Ohnesorg, T.; Sparbier, C. E.; Elsaleh, H.

    2017-01-01

    Rapid retrospective biodosimetry methods are essential for the fast triage of persons occupationally or accidentally exposed to ionizing radiation. Identification and detection of a radiation specific molecular ‘footprint’ should provide a sensitive and reliable measurement of radiation exposure. Here we discuss conventional (cytogenetic) methods of detection and assessment of radiation exposure in comparison to emerging approaches such as gene expression signatures and DNA damage markers. Furthermore, we provide an overview of technical and logistic details such as type of sample required, time for sample preparation and analysis, ease of use and potential for a high throughput analysis.

  13. Dosimetry studies in Zaborie village.

    PubMed

    Takada, J; Hoshi, M; Endo, S; Stepanenko, V F; Kondrashov, A E; Petin, D; Skvortsov, V; Ivannikov, A; Tikounov, D; Gavrilin, Y; Snykov, V P

    2000-05-01

    Dosimetry studies in Zaborie, a territory in Russia highly contaminated by the Chernobyl accident, were carried out in July, 1997. Studies on dosimetry for people are important not only for epidemiology but also for recovery of local social activity. The local contamination of the soil was measured to be 1.5-6.3 MBq/m2 of Cs-137 with 0.7-4 microSv/h of dose rate. A case study for a villager presently 40 years old indicates estimations of 72 and 269 mSv as the expected internal and external doses during 50 years starting in 1997 based on data of a whole-body measurement of Cs-137 and environmental dose rates. Mean values of accumulated external and internal doses for the period from the year 1986 till 1996 are also estimated to be 130 mSv and 16 mSv for Zaborie. The estimation of the 1986-1996 accumulated dose on the basis of large scale ESR teeth enamel dosimetry provides for this village, the value of 180 mSv. For a short term visitor from Japan to this area, external and internal dose are estimated to be 0.13 mSv/9d (during visit in 1997) and 0.024 mSv/50y (during 50 years starting from 1997), respectively.

  14. I-124 Imaging and Dosimetry.

    PubMed

    Kuker, Russ; Sztejnberg, Manuel; Gulec, Seza

    2016-01-05

    Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET) radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT) compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed.

  15. I-124 Imaging and Dosimetry

    PubMed Central

    Kuker, Russ; Sztejnberg, Manuel; Gulec, Seza

    2017-01-01

    Although radioactive iodine imaging and therapy are one of the earliest applications of theranostics, there still remain a number of unresolved clinical questions as to the optimization of diagnostic techniques and dosimetry protocols. I-124 as a positron emission tomography (PET) radiotracer has the potential to improve the current clinical practice in the diagnosis and treatment of differentiated thyroid cancer. The higher sensitivity and spatial resolution of PET/computed tomography (CT) compared to standard gamma scintigraphy can aid in the detection of recurrent or metastatic disease and provide more accurate measurements of metabolic tumor volumes. However the complex decay schema of I-124 poses challenges to quantitative PET imaging. More prospective studies are needed to define optimal dosimetry protocols and to improve patient-specific treatment planning strategies, taking into account not only the absorbed dose to tumors but also methods to avoid toxicity to normal organs. A historical perspective of I-124 imaging and dosimetry as well as future concepts are discussed. PMID:28117290

  16. Small fields: Nonequilibrium radiation dosimetry

    SciTech Connect

    Das, Indra J.; Ding, George X.; Ahnesjoe, Anders

    2008-01-15

    Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields {>=}4x4 cm{sup 2}, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams.

  17. Fourth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Schlafke-Stelson, A.T.; Watson, E.E.

    1986-04-01

    The focus of the Fourth International Radiopharmaceutical Dosimetry Symposium was to explore the impact of current developments in nuclear medicine on absorbed dose calculations. This book contains the proceedings of the meeting including the edited discussion that followed the presentations. Topics that were addressed included the dosimetry associated with radiolabeled monoclonal antibodies and blood elements, ultrashort-lived radionuclides, and positron emitters. Some specific areas of discussion were variations in absorbed dose as a result of alterations in the kinetics, the influence of radioactive contaminants on dose, dose in children and in the fetus, available instrumentation and techniques for collecting the kinetic data needed for dose calculation, dosimetry requirements for the review and approval of new radiopharmaceuticals, and a comparison of the effect on the thyroid of internal versus external irradiation. New models for the urinary blader, skeleton including the active marrow, and the blood were presented. Several papers dealt with the validity of traditional ''average-organ'' dose estimates to express the dose from particulate radiation that has a short range in tissue. These problems are particularly important in the use of monoclonal antibodies and agents used to measure intracellular functions. These proceedings have been published to provide a resource volume for anyone interested in the calculation of absorbed radiation dose.

  18. Biological dosimetry: Mechanistic concepts

    SciTech Connect

    Preston, R.J.

    1990-01-01

    The study of the induction of chromosome aberrations by ionizing radiations has a 50 year history, having its initiation in the pioneering work of Karl Sax. Lea and his colleagues provided a more mathematical description of dose response curves and the effects of split doses, that allowed for the development of studies to better understand the process by which radiation induced chromosome aberrations. Subsequent studies have refined our understanding of the mechanism of induction, but many of the questions raised by these original studies still remain unanswered. It is the intention of this short review to revisit some of the questions pertinent to the mechanism of induction of chromosome aberrations and provide a personal view of what I think is happening. 19 refs.

  19. Energy response improvement for photon dosimetry using pulse analysis

    NASA Astrophysics Data System (ADS)

    Zaki, Dizaji H.

    2016-02-01

    During the last few years, active personal dosimeters have been developed and have replaced passive personal dosimeters in some external monitoring systems, frequently using silicon diode detectors. Incident photons interact with the constituents of the diode detector and produce electrons. These photon-induced electrons deposit energy in the detector's sensitive region and contribute to the response of diode detectors. To achieve an appropriate photon dosimetry response, the detectors are usually covered by a metallic layer with an optimum thickness. The metallic cover acts as an energy compensating shield. In this paper, a software process is performed for energy compensation. Selective data sampling based on pulse height is used to determine the photon dose equivalent. This method is applied to improve the energy response in photon dosimetry. The detector design is optimized for the response function and determination of the photon dose equivalent. Photon personal dose equivalent is determined in the energy range of 0.3-6 MeV. The error values of the calculated data for this wide energy range and measured data for 133Ba, 137Cs, 60Co and 241Am-Be sources respectively are up to 20% and 15%. Fairly good agreement is seen between simulation and dose values obtained from our process and specifications from several photon sources.

  20. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy Units, and Gamma Stereotactic Radiosurgery Units § 35.630 Dosimetry equipment. (a) Except for low...

  1. Fundamentals of materials, techniques and instrumentation for OSL and FNTD dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2013-02-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications including fiberoptic OSL/RL sensors with diameters as small as 300 μm. A new RL/OSL fiberoptic system has a high potential for in vivo and in vitro dosimetry in both radiation therapy and diagnostic mammography. Different aspects of instrumentation, data processing algorithms, post-irradiation and real-time measurements are described. The next technological breakthrough was done with Fluorescent Nuclear Track detectors (FNTD) that has some important advantages in measuring fast neutron and high energy heavy charge particles that became the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology were engineered and successfully demonstrated for occupational and accident dosimetry, for medical dosimetry and radiobiological research.

  2. Understanding human management of automation errors

    PubMed Central

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  3. The future of medical dosimetry.

    PubMed

    Adams, Robert D

    2015-01-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  4. The Future of Medical Dosimetry

    SciTech Connect

    Adams, Robert D.

    2015-07-01

    The world of health care delivery is becoming increasingly complex. The purpose of this manuscript is to analyze current metrics and analytically predict future practices and principles of medical dosimetry. The results indicate five potential areas precipitating change factors: a) evolutionary and revolutionary thinking processes, b) social factors, c) economic factors, d) political factors, and e) technological factors. Outcomes indicate that significant changes will occur in the job structure and content of being a practicing medical dosimetrist. Discussion indicates potential variables that can occur within each process and change factor and how the predicted outcomes can deviate from normative values. Finally, based on predicted outcomes, future opportunities for medical dosimetrists are given.

  5. Automation or De-automation

    NASA Astrophysics Data System (ADS)

    Gorlach, Igor; Wessel, Oliver

    2008-09-01

    In the global automotive industry, for decades, vehicle manufacturers have continually increased the level of automation of production systems in order to be competitive. However, there is a new trend to decrease the level of automation, especially in final car assembly, for reasons of economy and flexibility. In this research, the final car assembly lines at three production sites of Volkswagen are analysed in order to determine the best level of automation for each, in terms of manufacturing costs, productivity, quality and flexibility. The case study is based on the methodology proposed by the Fraunhofer Institute. The results of the analysis indicate that fully automated assembly systems are not necessarily the best option in terms of cost, productivity and quality combined, which is attributed to high complexity of final car assembly systems; some de-automation is therefore recommended. On the other hand, the analysis shows that low automation can result in poor product quality due to reasons related to plant location, such as inadequate workers' skills, motivation, etc. Hence, the automation strategy should be formulated on the basis of analysis of all relevant aspects of the manufacturing process, such as costs, quality, productivity and flexibility in relation to the local context. A more balanced combination of automated and manual assembly operations provides better utilisation of equipment, reduces production costs and improves throughput.

  6. Health physics research reactor reference dosimetry

    SciTech Connect

    Sims, C.S.; Ragan, G.E.

    1987-06-01

    Reference neutron dosimetry is developed for the Health Physics Research Reactor (HPRR) in the new operational configuration directly above its storage pit. This operational change was physically made early in CY 1985. The new reference dosimetry considered in this document is referred to as the 1986 HPRR reference dosimetry and it replaces any and all HPRR reference documents or papers issued prior to 1986. Reference dosimetry is developed for the unshielded HPRR as well as for the reactor with each of five different shield types and configurations. The reference dosimetry is presented in terms of three different dose and six different dose equivalent reporting conventions. These reporting conventions cover most of those in current use by dosimetrists worldwide. In addition to the reference neutron dosimetry, this document contains other useful dosimetry-related data for the HPRR in its new configuration. These data include dose-distance measurements and calculations, gamma dose measurements, neutron-to-gamma ratios, ''9-to-3 inch'' ratios, threshold detector unit measurements, 56-group neutron energy spectra, sulfur fluence measurements, and details concerning HPRR shields. 26 refs., 11 figs., 31 tabs.

  7. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  8. Automation pilot

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An important concept of the Action Information Management System (AIMS) approach is to evaluate office automation technology in the context of hands on use by technical program managers in the conduct of human acceptance difficulties which may accompany the transition to a significantly changing work environment. The improved productivity and communications which result from application of office automation technology are already well established for general office environments, but benefits unique to NASA are anticipated and these will be explored in detail.

  9. International intercomparison for criticality dosimetry: the case of biological dosimetry.

    PubMed

    Roy, L; Buard, V; Delbos, M; Durand, V; Paillole, N; Grégoire, E; Voisin, P

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety (IRSN) organized a biological dosimetry international intercomparison with the purpose of comparing (i) dicentrics yield produced in human lymphocytes; (ii) the gamma and neutron dose estimate according to the corresponding laboratory calibration curve. The experimental reactor SILENE was used with different configurations: bare source 4 Gy, lead shield 1 and 2 Gy and a 60Co source 2 Gy. An increasing variation of dicentric yield per cell was observed between participants when there were more damages in the samples. Doses were derived from the observed dicentric rates according to the dose-effect relationship provided by each laboratory. Differences in dicentric rate values are more important than those in the corresponding dose values. The doses obtained by the participants were found to be in agreement with the given physical dose within 20%. The evaluation of the respective gamma and neutron dose was achieved only by four laboratories, with some small variations among them.

  10. Computational methods in radionuclide dosimetry

    NASA Astrophysics Data System (ADS)

    Bardiès, M.; Myers, M. J.

    1996-10-01

    The various approaches in radionuclide dosimetry depend on the size and spatial relation of the sources and targets considered in conjunction with the emission range of the radionuclide used. We present some of the frequently reported computational techniques on the basis of the source/target size. For whole organs, or for sources or targets bigger than some centimetres, the acknowledged standard was introduced 30 years ago by the MIRD committee and is still being updated. That approach, based on the absorbed fraction concept, is mainly used for radioprotection purposes but has been updated to take into account the dosimetric challenge raised by therapeutic use of vectored radiopharmaceuticals. At this level, the most important computational effort is in the field of photon dosimetry. On the millimetre scale, photons can often be disregarded, and or electron dosimetry is generally reported. Heterogeneities at this level are mainly above the cell level, involving groups of cell or a part of an organ. The dose distribution pattern is often calculated by generalizing a point source dose distribution, but direct calculation by Monte Carlo techniques is also frequently reported because it allows media of inhomogeneous density to be considered. At the cell level, and electron (low-range or Auger) are the predominant emissions examined. Heterogeneities in the dose distribution are taken into account, mainly to determine the mean dose at the nucleus. At the DNA level, Auger electrons or -particles are considered from a microdosimetric point of view. These studies are often connected with radiobiological experiments on radionuclide toxicity.

  11. Emerging technological bases for retrospective dosimetry.

    PubMed

    Straume, T; Anspaugh, L R; Haskell, E H; Lucas, J N; Marchetti, A A; Likhtarev, I A; Chumak, V V; Romanyukha, A A; Khrouch, V T; Gavrilin YuI; Minenko, V F

    1997-01-01

    In this article we discuss examples of challenging problems in retrospective dosimetry and describe some promising solutions. The ability to make measurements by accelerator mass spectrometry and luminescence techniques promises to provide improved dosimetry for regions of Belarus, Ukraine and Russian Federation contaminated by radionuclides from the Chernobyl accident. In addition, it may soon be possible to resolve the large neutron discrepancy in the dosimetry system for Hiroshima through novel measurement techniques that can be used to reconstruct the fast-neutron fluence emitted by the bomb some 51 years ago. Important advances in molecular cytogenetics and electron paramagnetic resonance measurements have produced biodosimeters that show potential in retrospective dosimetry. The most promising of these are the frequency of reciprocal translocations measured in chromosomes of blood lymphocytes using fluorescence in situ hybridization and the electron paramagnetic resonance signal in tooth enamel.

  12. INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY

    EPA Science Inventory

    Interspecies Dosimetry Models for Pulmonary Pharmacology

    Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming

    Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...

  13. Intra-Operative Dosimetry in Prostate Brachytherapy

    DTIC Science & Technology

    2006-11-01

    phantoms and pre-recorded patient data. 15. SUBJECT TERMS Prostate Brachytherapy, X-ray reconstruction, C-arm, TRUS 16. SECURITY CLASSIFICATION...prostate brachytherapy system that provides dosimetry analysis (Aim-2), and evaluate the system experimentally on phantoms and pre-recorded patient data...prostate brachytherapy system to enable dosimetry calculation Aim-3: Experimental Validation: Evaluate the performance of the RUF system on phantoms and

  14. Old and New Models for Office Automation.

    ERIC Educational Resources Information Center

    Cole, Eliot

    1983-01-01

    Discusses organization design as context for office automation; mature computer-based systems as one application of organization design variables; and emerging office automation systems (organizational information management, personal information management) as another application of these variables. Management information systems models and…

  15. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  16. In vivo dosimetry in brachytherapy

    SciTech Connect

    Tanderup, Kari; Beddar, Sam; Andersen, Claus E.; Kertzscher, Gustavo; Cygler, Joanna E.

    2013-07-15

    In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.

  17. Design and development of an automated, portable and handheld tablet personal computer-based data acquisition system for monitoring electromyography signals during rehabilitation.

    PubMed

    Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S

    2013-03-01

    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.

  18. Habitat automation

    NASA Technical Reports Server (NTRS)

    Swab, Rodney E.

    1992-01-01

    A habitat, on either the surface of the Moon or Mars, will be designed and built with the proven technologies of that day. These technologies will be mature and readily available to the habitat designer. We believe an acceleration of the normal pace of automation would allow a habitat to be safer and more easily maintained than would be the case otherwise. This document examines the operation of a habitat and describes elements of that operation which may benefit from an increased use of automation. Research topics within the automation realm are then defined and discussed with respect to the role they can have in the design of the habitat. Problems associated with the integration of advanced technologies into real-world projects at NASA are also addressed.

  19. Interim status report of the TMI personnel-dosimetry project

    SciTech Connect

    Rich, B.L.; Alvarez, J.L.; Adams, S.R.

    1981-06-01

    The current 2-chip TLD personnel dosimeter in use at Three Mile Island (TMI) has been shown inadequate for the anticipated high beta/gamma fields during TMI recovery operations in some areas. This project surveyed the available dosimeter systems, set up an Idaho National Engineering Laboratory (INEL) prototype system, and compared this system with those commercial systems that could be made immediately available for comparison. Of the systems tested, the new INEL personnel dosimeter was found to produce the most accurate results for use in recovery operations at TMI-2. The other multiple-chip or multiple-filter systems were found less desirable at present. The most prominent deficiencies in the INEL dosimeter stem from the fact that it lacks a completely automated reader and its x-ray and thermal neutron responses require additional development. A automated prototype reader system may be in operation by the end of CY-1981. Three alternatives for operational dosimetry are discussed. A combination of a modified version of the presently used Harshaw 2-chip dosimeter and the INEL dosimeter is recommended.

  20. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  1. Automating Finance

    ERIC Educational Resources Information Center

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  2. Evaluation of an automated karyotyping system for chromosome aberration analysis

    NASA Technical Reports Server (NTRS)

    Prichard, Howard M.

    1987-01-01

    Chromosome aberration analysis is a promising complement to conventional radiation dosimetry, particularly in the complex radiation fields encountered in the space environment. The capabilities of a recently developed automated karyotyping system were evaluated both to determine current capabilities and limitations and to suggest areas where future development should be emphasized. Cells exposed to radiometric chemicals and to photon and particulate radiation were evaluated by manual inspection and by automated karyotyping. It was demonstrated that the evaluated programs were appropriate for image digitization, storage, and transmission. However, automated and semi-automated scoring techniques must be advanced significantly if in-flight chromosome aberration analysis is to be practical. A degree of artificial intelligence may be necessary to realize this goal.

  3. Improvement and calibration of a SSNT personal dosemeter and study of importance of albedo factor for dose calculation.

    PubMed

    Torkzadeh, F; Taheri, M

    2007-01-01

    The Neutriran albedo neutron dosemeter has been improved and calibrated for neutron personal dosimetry. The Monte Carlo code MCNP4b was used to calculate the thermal neutrons backscattered from the body (albedo factor). Backscattering from the wall, ceiling and floor in calibration room was considered also via simulation by MCNP4C. A semi automated counting system applying a high-resolution scanner was used for counting of tracks. An 241Am source was used to produce similar alpha particles from 10B (n,alpha)7Li reaction for the optimisation of scanner parameters to distinguish and separate the tracks in SSNTD, which lead to a better distinction between etched alpha tracks and, consequently, a higher linear region of dose characteristic.

  4. Developing an Optimum Protocol for Thermoluminescence Dosimetry with GR-200 Chips using Taguchi Method.

    PubMed

    Sadeghi, Maryam; Faghihi, Reza; Sina, Sedigheh

    2016-11-24

    Thermoluminescence dosimetry (TLD) is a powerful technique with wide applications in personal, environmental and clinical dosimetry. The optimum annealing, storage and reading protocols are very effective in accuracy of TLD response. The purpose of this study is to obtain an optimum protocol for GR-200; LiF: Mg, Cu, P, by optimizing the effective parameters, to increase the reliability of the TLD response using Taguchi method. Taguchi method has been used in this study for optimization of annealing, storage and reading protocols of the TLDs. A number of 108 GR-200 chips were divided into 27 groups, each containing four chips. The TLDs were exposed to three different doses, and stored, annealed and read out by different procedures as suggested by Taguchi Method. By comparing the signal-to-noise ratios the optimum dosimetry procedure was obtained. According to the results, the optimum values for annealing temperature (°C), Annealing Time (s), Annealing to Exposure time (d), Exposure to Readout time (d), Pre-heat Temperature (°C), Pre-heat Time (s), Heating Rate (°C/s), Maximum Temperature of Readout (°C), readout time (s) and Storage Temperature (°C) are 240, 90, 1, 2, 50, 0, 15, 240, 13 and -20, respectively. Using the optimum protocol, an efficient glow curve with low residual signals can be achieved. Using optimum protocol obtained by Taguchi method, the dosimetry can be effectively performed with great accuracy.

  5. Personnel neutron dosimetry at Department of Energy facilities

    SciTech Connect

    Brackenbush, L.W.; Endres, G.W.R.; Selby, J.M.; Vallario, E.J.

    1980-08-01

    This study assesses the state of personnel neutron dosimetry at DOE facilities. A survey of the personnel dosimetry systems in use at major DOE facilities was conducted, a literature search was made to determine recent advances in neutron dosimetry, and several dosimetry experts were interviewed. It was concluded that personnel neutron dosimeters do not meet current needs and that serious problems exist now and will increase in the future if neutron quality factors are increased and/or dose limits are lowered.

  6. Breast dosimetry in clinical mammography

    NASA Astrophysics Data System (ADS)

    Benevides, Luis Alberto Do Rego

    The objective of this study was show that a clinical dosimetry protocol that utilizes a dosimetric breast phantom series based on population anthropometric measurements can reliably predict the average glandular dose (AGD) imparted to the patient during a routine screening mammogram. In the study, AGD was calculated using entrance skin exposure and dose conversion factors based on fibroglandular content, compressed breast thickness, mammography unit parameters and modifying parameters for homogeneous phantom (phantom factor), compressed breast lateral dimensions (volume factor) and anatomical features (anatomical factor). The protocol proposes the use of a fiber-optic coupled (FOCD) or Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeter to measure the entrance skin exposure at the time of the mammogram without interfering with diagnostic information of the mammogram. The study showed that FOCD had sensitivity with less than 7% energy dependence, linear in all tube current-time product stations, and was reproducible within 2%. FOCD was superior to MOSFET dosimeter in sensitivity, reusability, and reproducibility. The patient fibroglandular content was evaluated using a calibrated modified breast tissue equivalent homogeneous phantom series (BRTES-MOD) designed from anthropomorphic measurements of a screening mammography population and whose elemental composition was referenced to International Commission on Radiation Units and Measurements Report 44 tissues. The patient fibroglandular content, compressed breast thickness along with unit parameters and spectrum half-value layer were used to derive the currently used dose conversion factor (DgN). The study showed that the use of a homogeneous phantom, patient compressed breast lateral dimensions and patient anatomical features can affect AGD by as much as 12%, 3% and 1%, respectively. The protocol was found to be superior to existing methodologies. In addition, the study population anthropometric

  7. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  8. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  9. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  10. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  11. 10 CFR 835.1304 - Nuclear accident dosimetry.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear accident dosimetry. 835.1304 Section 835.1304... Nuclear accident dosimetry. (a) Installations possessing sufficient quantities of fissile material to... nuclear accident is possible, shall provide nuclear accident dosimetry for those individuals. (b)...

  12. Dosimetry and Risk Assessment: Fundamental Concepts

    SciTech Connect

    Fisher, Darrell R.

    2005-12-29

    Radiation dosimetry is important for characterizing radiation exposures and for risk assessment. In a medical setting, dosimetry is important for evaluating the safety of administered radiopharmaceuticals and for planning the safe administration of therapeutic radionuclides. Environmental dosimetry helps establish the safety of radionuclide releases from electric power production and other human activities. Internal and external dosimetry help us understand the consequences of radiation exposure. The absorbed dose is the fundamental quantity in radiation dosimetry from which all other operational values in radiation protection are obtained. Equivalent dose to tissue and effective dose to the whole body are derivatives of absorbed dose and constructs of risk. Mathematical systems supported by computer software facilitate dose calculations and make it possible to estimate internal dose based on bioassay or other biokinetic data. Risk coefficients for radiation-induced cancer rely primarily on data from animal studies and long-term observations of the Hiroshima and Nagasaki bomb survivors. Low-dose research shows that mechanisms of radiation interactions with tissue are dose-dependent, but the resulting biological effects are not necessarily linear with absorbed dose. Thus, the analysis of radiation effects and associated risks must account for the influences of microscopic energy distributions at the cellular level, dose-rate, cellular repair of sub-lethal radiation damage, and modifying factors such as bystander effects, adaptive response, and genomic instability.

  13. Chemical dosimetry system for criticality accidents.

    PubMed

    Miljanić, Saveta; Ilijas, Boris

    2004-01-01

    Ruder Bosković Institute (RBI) criticality dosimetry system consists of a chemical dosimetry system for measuring the total (neutron + gamma) dose, and a thermoluminescent (TL) dosimetry system for a separate determination of the gamma ray component. The use of the chemical dosemeter solution chlorobenzene-ethanol-trimethylpentane (CET) is based on the radiolytic formation of hydrochloric acid, which protonates a pH indicator, thymolsulphonphthalein. The high molar absorptivity of its red form at 552 nm is responsible for a high sensitivity of the system: doses in the range 0.2-15 Gy can be measured. The dosemeter has been designed as a glass ampoule filled with the CET solution and inserted into a pen-shaped plastic holder. For dose determinations, a newly constructed optoelectronic reader has been used. The RBI team took part in the International Intercomparison of Criticality Accident Dosimetry Systems at the SILENE Reactor, Valduc, June 2002, with the CET dosimetry system. For gamma ray dose determination TLD-700 TL detectors were used. The results obtained with CET dosemeter show very good agreement with the reference values.

  14. Seventh Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Greene, R.T.

    1981-12-01

    The Seventh Personnel Dosimetry Intercomparison Study was conducted March 31-April 10, 1981, at the Oak Ridge National Laboratory. Dosimeters from 34 participating agencies were mounted on anthropomorphic phantoms and exposed to a range of low-level dose equivalents (1.5-15.0mSv neutron and 0.1-2.8 mSv gamma) which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor, operating in the steady-state mode, served as the source of radiation for two equivalent sets of six separate exposures. Lucite and concrete shields along with the unshielded reactor provided three different neutron and gamma spectra for five of the exposures in each set. Results reported by the participating agencies showed that no single type of neutron dosimeter exhibited acceptable performance characteristics for all mixed-field environments encountered in this study. Film, TLD, and TLD-albed dosimeters were found to be inadequate for neutron dose equivalent measurements when large numbers of slow neutrons are present unless significant corrections are made to measured results. Track dosimeters indicated the least sensitivity to spectral characteristics, but did not always yield to the most accurate results. Gamma dose measurements showed that TLD-700 dosimeters produced significantly more accurate results than film dosimeters which tend to overestimate gamma doses in mixed radiation fields.

  15. Patient dosimetry in nuclear medicine.

    PubMed

    Mattsson, Sören

    2015-07-01

    In diagnostic nuclear medicine, the biokinetics of the radiopharmaceutical (actually of the radionuclide) is determined for a number of representative patients. At therapy, it is essential to determine the patient's individual biokinetics of the radiopharmaceutical in order to calculate the absorbed doses to critical normal organs/tissues and to the target volume(s) with high accuracy. For the diagnostic situations, there is still a lack of quantitative determinations of the organ/tissue contents of radiopharmaceuticals and their variation with time. Planar gamma camera imaging using the conjugate view technique combined with a limited number of SPECT/CT images is the main method for such studies. In a similar way, PET/CT is used for 3D image-based internal dosimetry for PET substances. The transition from stylised reference phantoms to voxel phantoms will lead to improved dose estimates for diagnostic procedures. Examples of dose coefficients and effective doses for diagnostic substances are given. For the therapeutic situation, a pre-therapeutic low activity administration is used for quantitative measurements of organ/tissue distribution data by a gamma camera or a SPECT- or PET-unit. Together with CT and/or MR images this will be the base for individual dose calculations using Monte Carlo technique. Treatments based on administered activity should only be used if biological variations between patients are small or if a pre-therapeutic activity administration is impossible.

  16. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy

    PubMed Central

    O’ Doherty, Jim

    2016-01-01

    Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning. PMID:27182449

  17. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  18. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2016-11-24

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed.

  19. Dosimetry procedures for an industrial irradiation plant

    NASA Astrophysics Data System (ADS)

    Grahn, Ch.

    Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.

  20. Dosimetry of the Atomic Bomb Survivors

    SciTech Connect

    Sinclair, W.K.; Failla, P.

    1981-12-01

    A brief account of the presentations and discussions at the Late Effects Workshop on Dosimetry of the Atomic Bomb Survivors held in conjunction with the 29th Annual Meeting of the Radiation Reserch Society in Minneapolis, MN, on May 32, 1981 is presented. The following five papers are briefly reviewed: 1)Radiobiological significance of the Hiroshima/Nagasaki data by V.P. Bond; 2)Revised Dose Estimates at Hiroshima and Nagasaki, by W.E. Loewe; 3)Review of dosimetry for the Japanese atomic bomb survivors by G.D. Kerr; 4)Ichiban: numberoriginal studies, by J. Auxier; and 5)NCRP's involvement in the Hiroshima and Nagasaki Dosimetry, by H.O. Wyckoff. (JMT)

  1. Protocol for emergency EPR dosimetry in fingernails.

    PubMed

    Trompier, F; Kornak, L; Calas, C; Romanyukha, A; Leblanc, B; Mitchell, C A; Swartz, H M; Clairand, I

    2007-08-01

    There is an increased need for after-the-fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effective medical triage. Dosimetry based on EPR measurements of fingernails potentially could be an effective tool for this purpose. This paper presents the first operational protocols for EPR fingernail dosimetry, including guidelines for collection and storage of samples, parameters for EPR measurements, and the method of dose assessment. In a blinded test of this protocol application was carried out on nails freshly sampled and irradiated to 4 and 20 Gy; this protocol gave dose estimates with an error of less than 30%.

  2. Small Field: dosimetry in electron disequilibrium region

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.

    2010-11-01

    Small fields are more commonly used for radiation therapy because of the development of IMRT, stereotactic radiosurgery, and other special equipments such as Cyberknife and Tomotherapy. The dosimetry in the sub-centimeter field can result in substantial uncertainties because of the presence of electron disequilibrium due to the large dose gradients in the field. It is further complicated by the introduction of various radiation detectors, which usually perturb the conditions of disequilibrium. Hence additional corrections are required to maintain the dosimetric accuracy previously achieved for standard radiation dosimetry. A review of small field dosimetry provides some insights into the methods to characterize the detector convolution kernel and other methods to characterize detector perturbation effect.

  3. Reactor Dosimetry State of the Art 2008

    NASA Astrophysics Data System (ADS)

    Voorbraak, Wim; Debarberis, Luigi; D'Hondt, Pierre; Wagemans, Jan

    2009-08-01

    Oral session 1: Retrospective dosimetry. Retrospective dosimetry of VVER 440 reactor pressure vessel at the 3rd unit of Dukovany NPP / M. Marek ... [et al.]. Retrospective dosimetry study at the RPV of NPP Greifswald unit 1 / J. Konheiser ... [et al.]. Test of prototype detector for retrospective neutron dosimetry of reactor internals and vessel / K. Hayashi ... [et al.]. Neutron doses to the concrete vessel and tendons of a magnox reactor using retrospective dosimetry / D. A. Allen ... [et al.]. A retrospective dosimetry feasibility study for Atucha I / J. Wagemans ... [et al.]. Retrospective reactor dosimetry with zirconium alloy samples in a PWR / L. R. Greenwood and J. P. Foster -- Oral session 2: Experimental techniques. Characterizing the Time-dependent components of reactor n/y environments / P. J. Griffin, S. M. Luker and A. J. Suo-Anttila. Measurements of the recoil-ion response of silicon carbide detectors to fast neutrons / F. H. Ruddy, J. G. Seidel and F. Franceschini. Measurement of the neutron spectrum of the HB-4 cold source at the high flux isotope reactor at Oak Ridge National Laboratory / J. L. Robertson and E. B. Iverson. Feasibility of cavity ring-down laser spectroscopy for dose rate monitoring on nuclear reactor / H. Tomita ... [et al.]. Measuring transistor damage factors in a non-stable defect environment / D. B. King ... [et al.]. Neutron-detection based monitoring of void effects in boiling water reactors / J. Loberg ... [et al.] -- Poster session 1: Power reactor surveillance, retrospective dosimetry, benchmarks and inter-comparisons, adjustment methods, experimental techniques, transport calculations. Improved diagnostics for analysis of a reactor pulse radiation environment / S. M. Luker ... [et al.]. Simulation of the response of silicon carbide fast neutron detectors / F. Franceschini, F. H. Ruddy and B. Petrović. NSV A-3: a computer code for least-squares adjustment of neutron spectra and measured dosimeter responses / J. G

  4. Criteria for Personal Dosimetry in Mixed Radiation Fields in Space,

    DTIC Science & Technology

    1974-09-16

    of neutrons has not been reported on any manned mussion. Only limited data on thermal neutrons recorded with activation f9 ils and on a small section...the center. The bottom graph shows the distribution for neutron recoil protons from thermal fission of U-235 as reported by Kronenberg and Murphy (3...an equilibrium spectrum is established. For neutrons of galactic radiation, the equilibrium spectrum is a wide continuum extending from thermal to

  5. Dose evaluation in criticality accidents using response of Panasonic TL personal dosemeters (UD-809/UD-802).

    PubMed

    Zeyrek, C T; Gündüz, H

    2012-09-01

    This study gives the results of dosimetry measurements carried out in the Silène reactor at Valduc (France) with neutron and photon personal thermoluminescence dosemeters (TLDs) in mixed neutron and gamma radiation fields, in the frame of the international accident dosimetry intercomparison programme in 2002. The intercomparison consisted of a series of three irradiation scenarios. The scenarios took place at the Valduc site (France) by using the Silène experimental reactor. For neutron and photon dosimetry, Panasonic model UD-809 and UD-802 personal TLDs were used together.

  6. Advances in personnel neutron dosimetry: part 2

    SciTech Connect

    Vallario, E.; Faust, L.

    1983-08-01

    A continuation of the advances in personnel neutron dosimetry research programs and technology transfer reviews work on active dosimeters, electronic devices that determine the dose equivalent to a worker during an exposure to neutron radiation. Active dosemeters are routinely used for gamma radiation dosimetry. Experience with neutron-sensitive pocket rem-meters at several DOE laboratories covers three prototypes. Pocket rem-meters work well for detecting neutrons over a wide energy range. They give instantaneous readout of the accumulated neutron dose-equivalent. 1 figure.

  7. Practical neutron dosimetry at high energies

    SciTech Connect

    McCaslin, J.B.; Thomas, R.H.

    1980-10-01

    Dosimetry at high energy particle accelerators is discussed with emphasis on physical measurements which define the radiation environment and provide an immutable basis for the derivation of any quantities subsequently required for risk evaluation. Results of inter-laboratory dosimetric comparisons are reviewed and it is concluded that a well-supported systematic program is needed which would make possible detailed evaluations and inter-comparisons of instruments and techniques in well characterized high energy radiation fields. High-energy dosimetry is so coupled with radiation transport that it is clear their study should proceed concurrently.

  8. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  9. Technical basis for internal dosimetry at Hanford

    SciTech Connect

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  10. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  11. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  12. Recent progresses in tritium radioecology and dosimetry

    SciTech Connect

    Galeriu, D.; Davis, P.; Raskob, W.; Melintescu, A.

    2008-07-15

    In this paper, some aspects of recent progress in tritium radioecology and dosimetry are presented, with emphasis on atmospheric releases to terrestrial ecosystems. The processes involved in tritium transfer through the environment are discussed, together with the current status of environmental tritium models. Topics include the deposition and reemission of HT and HTO, models for the assessment of routine and accidental HTO emissions, a new approach to modeling the dynamics of tritium in mammals, the dose consequences of tritium releases and aspects of human dosimetry. The need for additional experimental data is identified, together with the attributes that would be desirable in the next generation of tritium codes. (authors)

  13. The Mayak Worker Dosimetry System (MWDS-2013): Internal Dosimetry Results.

    PubMed

    Vostrotin, Vadim; Birchall, Alan; Zhdanov, Alexey; Puncher, Matthew; Efimov, Alexander; Napier, Bruce; Sokolova, Alexandra; Miller, Scott; Suslova, Klara

    2016-09-24

    The distribution of calculated internal doses has been determined for 8043 Mayak Production Associate (Mayak PA) workers. This is a subset of the entire cohort of 25 757 workers, for whom monitoring data are available. Statistical characteristics of point estimates of accumulated doses to 17 different tissues and organs and the uncertainty ranges were calculated. Under the MWDS-2013 dosimetry system, the mean accumulated lung dose was 185 ± 594 mGy (geometric mean = 28 mGy; geometric standard deviation = 9.32; median value = 31 mGy; maximum value = 8980 mGy). The ranges of relative standard uncertainty were from 40 to 2200% for accumulated lung dose, from 25-90% to 2600-3000% for accumulated dose to different regions of respiratory tract, from 13-22% to 2300-2500% for systemic organs and tissues. The Mayak PA workers accumulated internal plutonium lung dose is shown to be close to log normal. The accumulated internal plutonium dose to systemic organs was close to a log triangle. The dependency of uncertainty of accumulated absorbed lung and liver doses on the dose estimates itself is also shown. The accumulated absorbed doses to lung, alveolar-interstitial region, liver, bone surface cells and red bone marrow calculated both with MWDS-2013 and MWDS-2008 have been compared. In general, the accumulated lung doses increased by a factor of 1.8 in median value, while the accumulated doses to systemic organs decreased by factor of 1.3-1.4 in median value. For the cases with identical initial data, accumulated lung doses increased by a factor of 2.1 in median value, while accumulated doses to systemic organs decreased by 8-13% in median value. For the cases with both identical initial data and all of plutonium activity in urine measurements above the decision threshold, accumulated lung doses increased by a factor of 2.7 in median value, while accumulated doses to systemic organs increased by 6-12% in median value.

  14. The practical application of scintillation dosimetry in small-field photon-beam radiotherapy.

    PubMed

    Burke, Elisa; Poppinga, Daniela; Schönfeld, Andreas A; Harder, Dietrich; Poppe, Björn; Looe, Hui Khee

    2017-03-22

    Plastic scintillation detectors are a new instrument of stereotactic photon-beam dosimetry. The clinical application of the plastic scintillation detector Exradin W1 at the Siemens Artiste and Elekta Synergy accelerators is a matter of current interest. In order to reduce the measurement uncertainty, precautions have to be taken with regard to the geometrical arrangement of the scintillator, the light-guide fiber and the photodiode in the radiation field. To determine the "Cerenkov light ratio" CLR with a type A uncertainty below 1%, the Cerenkov calibration procedure for small-field measurements based on the two-channel spectral method was used. Output factors were correctly measured with the W1 for field sizes down to 0.5×0.5cm(2) with a type A uncertainty of 1.8%. Measurements of small field dose profiles and percentage depth dose curves were carried out with the W1 using automated water phantom profile scans, and a type A uncertainty for dose maxima of 1.4% was achieved. The agreement with a synthetic diamond detector (microDiamond, PTW Freiburg) and a plane parallel ionization chamber (Roos chamber, PTW Freiburg) in relative dose measurements was excellent. In oversight of all results, the suitability of the plastic scintillation detector Exradin W1 for clinical dosimetry under stereotactic conditions, in particular the tried and tested procedures for CLR determination, output factor measurement and automated dose profile scans in water phantoms, have been confirmed.

  15. Improvement of Accuracy in Environmental Dosimetry by TLD Cards Using Three-dimensional Calibration Method

    PubMed Central

    HosseiniAliabadi, S. J.; Hosseini Pooya, S. M.; Afarideh, H.; Mianji, F.

    2015-01-01

    Introduction The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion This system can be utilized in large scale environmental monitoring with a higher accuracy. PMID:26157729

  16. A-bomb survivor dosimetry update

    SciTech Connect

    Loewe, W.E.

    1982-06-01

    A-bomb survivor data have been generally accepted as applicable. Also, the initial radiations have tended to be accepted as the dominant radiation source for all survivors. There was general acceptance of the essential reliability of both the biological effects data and the causative radiation dose values. There are considerations casting doubt on these acceptances, but very little quantification of th implied uncertainties has been attempted. The exception was A-bomb survivor dosimetry, where free-field kerma values for initial radiations were thought to be accurate to about 30%, and doses to individual survivors were treated as effectively error-free. In 1980, a major challenge to the accepted A-bomb survivor dosimetry was announced, and was quickly followed by a succession of explanations and displays showing the soundness of that challenge. In fact, a complete replacement set of free-field kerma values was provided which was suitable for use in constructing an entire new dosimetry for Hiroshima and Nagasaki. The new values showed many changes greater than the accepted 30% uncertainty. An approximate new dosimetry was indeed constructed, and used to convert existing leukemia cause-and-effect data from the old to the new dose values, by way of assessing the impact. (ERB)

  17. Personnel radiation dosimetry symposium: program and abstracts

    SciTech Connect

    Not Available

    1984-10-01

    The purpose was to provide applied and research dosimetrists with sufficient information to evaluate the status and direction of their programs relative to the latest guidelines and techniques. A technical program was presented concerning experience, requirements, and advances in gamma, beta, and neutron personnel dosimetry.

  18. Distribution effectiveness for space radiation dosimetry

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1975-01-01

    A simplified risk basis and a theory of hematological response are presented and applied to the problem of dosimetry in the manned space program. Unlike previous studies, the current work incorporates radiation exposure distribution effects into its definition of dose equivalent. The fractional cell lethality model for prediction of hematological response is integral in the analysis.

  19. Computational Techniques of Electromagnetic Dosimetry for Humans

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Fujiwara, Osamu

    There has been increasing public concern about the adverse health effects of human exposure to electromagnetic fields. This paper reviews the rationale of international safety guidelines for human protection against electromagnetic fields. Then, this paper also presents computational techniques to conduct dosimetry in anatomically-based human body models. Computational examples and remaining problems are also described briefly.

  20. Development of A-bomb survivor dosimetry

    SciTech Connect

    Kerr, G.D.

    1995-12-31

    An all important datum in risk assessment is the radiation dose to individual survivors of the bombings in Hiroshima and Nagasaki. The first set of dose estimates for survivors was based on a dosimetry system developed in 1957 by the Oak Ridge National Laboratory (ORNL). These Tentative 1957 Doses (T57D) were later replaced by a more extensive and refined set of Tentative 1965 Doses (T65D). The T65D system of dose estimation for survivors was also developed at ORNL and served as a basis for risk assessment throughout the 1970s. In the late 1970s, it was suggested that there were serious inadequacies with the T65D system, and these inadequacies were the topic of discussion at two symposia held in 1981. In early 1983, joint US- Japan research programs were established to conduct a thorough review of all aspects of the radiation dosimetry for the Hiroshima and Nagasaki A-bomb survivors. A number of important contributions to this review were made by ORNL staff members. The review was completed in 1986 and a new Dosimetry System 1986 (DS86) was adopted for use. This paper discusses the development of the various systems of A-bomb survivor dosimetry, and the status of the current DS86 system as it is being applied in the medical follow-up studies of the A-bomb survivors and their offspring.

  1. Dosimetry implant for treating restenosis and hyperplasia

    DOEpatents

    Srivastava, Suresh; Gonzales, Gilbert R; Howell, Roger W; Bolch, Wesley E; Adzic, Radoslav

    2014-09-16

    The present invention discloses a method of selectively providing radiation dosimetry to a subject in need of such treatment. The radiation is applied by an implant comprising a body member and .sup.117mSn electroplated at selected locations of the body member, emitting conversion electrons absorbed immediately adjacent selected locations while not affecting surrounding tissue outside of the immediately adjacent area.

  2. From ``micro`` to ``macro`` internal dosimetry

    SciTech Connect

    Fisher, D.R.

    1994-06-01

    Radiation dose is the amount of radiation energy deposited per unit mass of absorbing tissue. Internal dosimetry applies to assessments of dose to internal organs from penetrating radiation sources outside the body and from radionuclides taken into the body. Dosimetry is essential for correlating energy deposition with biological effects that are observed when living tissues are irradiated. Dose-response information provides the basis for radiation protection standards and risk assessment. Radiation interactions with living matter takes place on a microscopic scale, and the manifestation of damage may be evident at the cellular, multi-cellular, and even organ levels of biological organization. The relative biological effectiveness of ionization radiation is largely determined by the spatial distribution of energy deposition events within microscopic as well as macroscopic biological targets of interest. The spatial distribution of energy imparted is determined by the spatial distribution of radionuclides and properties of the emitted charged-particle radiation involved. The nonuniformity of energy deposition events in microscopic volumes, particularly from high linear energy transfer (LET) radiation, results in large variations in the amount of energy imparted to very small volumes or targets. Microdosimetry is the study of energy deposition events at the cellular level. Macrodosimetry is a term for conventional dose averaging at the tissue or organ level. In between is a level of dosimetry sometimes referred to as multi-cellular dosimetry. The distinction between these terms and their applications in assessment of dose from internally deposited radionuclides is described.

  3. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  4. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  5. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  6. 10 CFR 35.630 - Dosimetry equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Dosimetry equipment. 35.630 Section 35.630 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Photon Emitting Remote Afterloader Units, Teletherapy... American Association of Physicists in Medicine (AAPM). The calibration must have been performed within...

  7. Patient-specific internal radionuclide dosimetry.

    PubMed

    Tsougos, Ioannis; Loudos, George; Georgoulias, Panagiotis; Theodorou, Kiki; Kappas, Constantin

    2010-02-01

    The development of patient-specific treatment planning systems is of outmost importance in the development of radionuclide dosimetry, taking into account that quantitative three-dimensional nuclear medical imaging can be used in this regard. At present, the established method for dosimetry is based on the measurement of the biokinetics by serial gamma-camera scans, followed by calculations of the administered activity and the residence times, resulting in the radiation-absorbed doses of critical organs. However, the quantification of the activity in different organs from planar data is hampered by inaccurate attenuation and scatter correction as well as because of background and organ overlay. In contrast, dosimetry based on quantitative three-dimensional data can be more accurate and allows an individualized approach, provided that all effects that degrade the quantitative content of the images have been corrected for. In addition, inhomogeneous organ accumulation of the radionuclide can be detected and possibly taken into account. The aim of this work is to provide adequate information on internal emitter dosimetry and a state-of-the-art review of the current methodology and future trends.

  8. Dosimetry of an Implantable 252 Californium Source

    SciTech Connect

    Oliver, G.D. Jr.

    2001-08-29

    The radiation dose from 252 Californium needles designed for use as a source of neutrons for radiotherapy has been measured. The dosimetry information presented in this paper will enable clinical studies of neutron radiotherapy with 252 Californium needles to be planned and begun.

  9. Protocol for emergency EPR dosimetry in fingernails

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is an increased need for after-the fact dosimetry because of the high risk of radiation exposures due to terrorism or accidents. In case of such an event, a method is needed to make measurements of dose in a large number of individuals rapidly and with sufficient accuracy to facilitate effect...

  10. Methods of biological dosimetry employing chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2000-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods are provided to disable the hybridization capacity of shared, high copy repetitive sequences and/or remove such sequences to provide for useful contrast. Still further methods are provided to produce chromosome-specific staining reagents which are made specific to the targeted chromosomal material, which can be one or more whole chromosomes, one or more regions on one or more chromosomes, subsets of chromosomes and/or the entire genome. Probes and test kits are provided for use in tumor cytogenetics, in the detection of disease related loci, in analysis of structural abnormalities, such as translocations, and for biological dosimetry. Further, methods and prenatal test kits are provided to stain targeted chromosomal material of fetal cells, including fetal cells obtained from maternal blood. Still further, the invention provides for automated means to detect and analyse chromosomal abnormalities.

  11. Development of an automated multisample scanning system for nuclear track etched detectors

    NASA Astrophysics Data System (ADS)

    Tawara, H.; Eda, K.; Takahashi, K.; Doke, T.; Hasebe, N.; Kodaira, S.; Ota, S.; Kurano, M.; Yasuda, N.

    2008-08-01

    We have developed an automated scanning system for handling a large number of nuclear track etched detectors (NTEDs). The system consists of a magazine station for sample storage, a robotic sample loader, a high-speed wide-area digital imaging microscope device (modified HSP-1000) and PitFit software for analyzing etch pits. We investigated the performance of the system using CR-39 plastic NTED samples exposed to high-energy heavy ions and fast neutrons. When applying the system to fast neutron dosimetry, the typical scanning speed was about 100 samples/day with a scan area of 4 cm 2/sample. The neutron doses obtained from a fully automatic measurement agreed closely with those from a semi-automatic measurement. These results indicate the feasibility of fully automatic scanning of CR-39 personal neutron dosimeters. The system is also expected to be applicable to future large-scale experiments using CR-39 plastic and BP-1 glass NTEDs for observing ultraheavy galactic cosmic rays with high mass resolution.

  12. Automated Anti-Virus Deployment

    DTIC Science & Technology

    2004-11-01

    External collaborators and visitors also need to keep in contact with their home laboratories or institutes, using the Internet to exchange e - mails or...layered defence system deployed with other components like host or network- based intrusion detection, global and personal firewalls, logical network...and provides the standard services that are requested to a modern enterprise network: office automation, e - mail , Internet access and workgroup file

  13. State of the art of electronic personal dosimeters for neutrons

    NASA Astrophysics Data System (ADS)

    d'Errico, Francesco; Luszik-Bhadra, Marlies; Lahaye, Thierry

    2003-06-01

    Despite a widely recognised need, electronic devices for personal dosimetry of neutrons or mixed neutron-photon fields are still far less established than systems for photon or beta radiations. A large research project is in progress to evaluate different methods currently used or under development for electronic personal dosimetry in mixed neutron-photon fields. The study includes testing in calibration fields as well as in representative workplaces of the nuclear industry. This paper describes the commercial and laboratory systems under investigation and their response characteristics. These were determined so far with measurements using ISO standard monoenergetic beams up to 19 MeV at the PTB in Braunschweig, Germany.

  14. Dosimetry of the Leksell gamma knife

    NASA Astrophysics Data System (ADS)

    Meltsner, Sheridan Griffin

    No accepted official protocol exists for the dosimetry of the Leksell Gamma KnifeRTM (GK) stereotactic radiosurgery device. Establishment of a dosimetry protocol has been complicated by the unique partial-hemisphere arrangement of 201 separate 60Co beams simultaneously focused on the treatment volume and by the rigid geometry of the GK unit itself. This paper proposes an air kerma based dosimetry protocol using an in-air or in-acrylic phantom measurement to determine the dose rate of fields collimated by the 18 mm helmet of a GK unit. A small-volume ionization chamber was used to make measurements at the physical isocenter of three GK units. The dose rate to water was determined using a modified version of the AAPM Task Group 21 protocol designed for use with 60Co-based teletherapy machines. This experimentally determined dose rate was compared to the treatment planning system (TPS) dose rate that is determined by the clinical medical physicist at the time of machine commissioning. The TPS dose rate is defined as dose rate to water at a depth of 8 cm. The dose rate to water for the 18 mm helmet determined using the air kerma based calculations presented here is consistently between 1.5% and 2.9% higher than the TPS dose rate. These air kerma based measurements allow GK dosimetry to be performed with an established dosimetry protocol and without complications arising from the use of and possible variations in solid phantom material. Measurements were made with the same chamber in a spherical acrylic phantom for comparison. This methodology will allow future development of calibration methods appropriate for the smaller fields of GK units to be compared to a well established standard. Multiple three-dimensional dosimetry methods were also used to capture the dose distribution of the entire field of the GK. These methods included radiosensitive gel, a novel three-dimensional radiochromic film phantom, and Monte Carlo modeling. These methods were also compared to the

  15. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting.

    PubMed

    Lassmann, M; Chiesa, C; Flux, G; Bardiès, M

    2011-01-01

    Many recent publications in nuclear medicine contain data on dosimetric findings for existing and new diagnostic and therapeutic agents. In many of these articles, however, a description of the methodology applied for dosimetry is lacking or important details are omitted. The intention of the EANM Dosimetry Committee is to guide the reader through a series of suggestions for reporting dosimetric approaches. The authors are aware of the large amount of data required to report the way a given clinical dosimetry procedure was implemented. Another aim of this guidance document is to provide comprehensive information for preparing and submitting publications and reports containing data on internal dosimetry. This guidance document also contains a checklist which could be useful for reviewers of manuscripts submitted to scientific journals or for grant applications. In addition, this document could be used to decide which data are useful for a documentation of dosimetry results in individual patient records. This may be of importance when the approval of a new radiopharmaceutical by official bodies such as EMA or FDA is envisaged.

  16. TU-F-201-00: Radiochromic Film Dosimetry Update

    SciTech Connect

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  17. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  18. Neutron dosimetry using optically stimulated luminescence

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Eschbach, P. A.

    1991-06-01

    The addition of thermoluminescent (TL) materials within hydrogenous matrices to detect neutron induced proton recoils for radiation dosimetry is a well known concept. Previous attempts to implement this technique have met with limited success, primarily due to the high temperatures required for TL readout and the low melting temperatures of hydrogen-rich plastics. Research in recent years PNL has produced a new Optically Stimulated Luminescence (OSL) technique known as the Cooled Optically Stimulated Luminescence (COSL) that offers, for the first time, the capability of performing extremely sensitive radiation dosimetry at low temperatures. In addition to its extreme sensitivity, the COSL technique offers multiple readout capability, limited fading in a one year period, and the capability of analyzing single grains within a hydrogenous matrix.

  19. Criticality accident dosimetry with ESR spectroscopy.

    PubMed

    d'Errico, F; Fattibene, P; Onori, S; Pantaloni, M

    1996-01-01

    The suitability of the ESR alanine and sugar detectors for criticality accident dosimetry was experimentally investigated during an intercomparison of dosimetry techniques. Tests were performed irradiating detectors both free-in-air and on-phantom during controlled critcality excursions at the SILENE reactor in Valduc, France. Several grays of absorbed dose were imparted in neutron gamma-ray fields of various relative intensities and spectral distributions. Analysed results confirmed the potential of these systems which can immediately provide an acute dose assessment with an average underestimate of 30%in the various fields. This performance allows for the screening of severely exposed individuals and meets the IAEA recommendations on the early estimate of accident absorbed doses.

  20. Passive particle dosimetry. [silver halide crystal growth

    NASA Technical Reports Server (NTRS)

    Childs, C. B.

    1977-01-01

    Present methods of dosimetry are reviewed with emphasis on the processes using silver chloride crystals for ionizing particle dosimetry. Differences between the ability of various crystals to record ionizing particle paths are directly related to impurities in the range of a few ppm (parts per million). To understand the roles of these impurities in the process, a method for consistent production of high purity silver chloride, and silver bromide was developed which yields silver halides with detectable impurity content less than 1 ppm. This high purity silver chloride was used in growing crystals with controlled doping. Crystals were grown by both the Czochalski method and the Bridgman method, and the Bridgman grown crystals were used for the experiments discussed. The distribution coefficients of ten divalent cations were determined for the Bridgman crystals. The best dosimeters were made with silver chloride crystals containing 5 to 10 ppm of lead; other impurities tested did not produce proper dosimeters.

  1. Patient-specific dosimetry in radionuclide therapy.

    PubMed

    Lyra, Maria; Lagopati, Nefeli; Charalambatou, Paraskevi; Vamvakas, Ioannis

    2011-09-01

    This study presents an attempt to compare individualised palliative treatment absorbed doses, by planar images data and Monte Carlo simulation, in two in vivo treatment cases, one of bone metastases and the other of liver lesions. Medical Internal Radiation Dose schema was employed to estimate the absorbed doses. Radiopharmaceutical volume distributions and absorbed doses in the lesions as well as in critical organs were also calculated by Monte Carlo simulation. Individualised planar data calculations remain the method of choice in internal dosimetry in nuclear medicine, but with the disadvantage of attenuation and scatter corrections lack and organ overlay. The overall error is about 7 % for planar data calculations compared with that using Monte Carlo simulation. Patient-specific three-dimensional dosimetric calculations using single-photon emission computed tomography with a parallel computed tomography study is proposed as an accurate internal dosimetry with the additional use of dose-volume histograms, which express dose distributions in cases with obvious inhomogeneity.

  2. Trigeminal neuralgia treatment dosimetry of the Cyberknife

    SciTech Connect

    Ho, Anthony; Lo, Anthony T.; Dieterich, Sonja; Soltys, Scott G.; Gibbs, Iris C.; Chang, Steve G.; Adler, John R.

    2012-04-01

    There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patient's right, whereas the second is on the patient's left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.

  3. Absolute and relative dosimetry for ELIMED

    NASA Astrophysics Data System (ADS)

    Cirrone, G. A. P.; Cuttone, G.; Candiano, G.; Carpinelli, M.; Leonora, E.; Lo Presti, D.; Musumarra, A.; Pisciotta, P.; Raffaele, L.; Randazzo, N.; Romano, F.; Schillaci, F.; Scuderi, V.; Tramontana, A.; Cirio, R.; Marchetto, F.; Sacchi, R.; Giordanengo, S.; Monaco, V.

    2013-07-01

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  4. Fundamentals of Materials, Techniques, and Instrumentation for OSL and FNTD Dosimetry

    NASA Astrophysics Data System (ADS)

    Akselrod, M. S.

    2011-05-01

    The optically stimulated luminescence (OSL) technique has already become a successful commercial tool in personal radiation dosimetry, medical dosimetry, diagnostic imaging, geological and archeological dating. This review briefly describes the history and fundamental principles of OSL materials, methods and instrumentation. The advantages of OSL technology and instrumentation in comparison with thermoluminescent technique are analyzed. Progress in material and detector engineering has allowed new and promising developments regarding OSL applications in the medical field. Special attention is dedicated to Al2O3:C as a material of choice for many dosimetric applications. Different aspects of OSL theory, materials optical and dosimetric properties, instrumentation, and data processing algorithms are described. The next technological breakthrough was done with Fluorescent Nuclear Track Detectors (FNTD) that have some important advantages in measuring fast neutron and high energy heavy charge particles that have become the latest tool in radiation therapy. New Mg-doped aluminum oxide crystals and novel type of imaging instrumentation for FNTD technology are discussed with regard to application in mixed neutron-gamma fields, medical dosimetry and radiobiological research.

  5. Advances in personnel neutron dosimetry: part 3

    SciTech Connect

    Vallario, E.J.; Faust, L.G.

    1983-09-01

    DOE-sponsored evaluation and upgrading of personnel neutron dosimetry includes a review of new devices involving unique concepts: resonance ionization spectroscopy and organic semiconductor detectors. Resonance ionization spectroscopy uses a laser to detect atoms released by neutron interactions, while organic semiconductors contain large amounts of hydrogen. Although these and other research and evaluation projects reviewed in the first two articles appear promising, there is much more research needed, such as finding a chemically stable organic semiconductor that will be suitable.

  6. Permethrin Exposure Dosimetry: Biomarkers and Modifiable Factors

    DTIC Science & Technology

    2016-08-01

    the effect of body weight/BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers...Data collection for Study 2 is in progress. 15. SUBJECT TERMS Permethrin, biomarkers, military, dose, exposure dosimetry, military, energy expenditure...body weight/BMI and total energy expenditure on permethrin absorption and dose, as determined by measurement of urinary biomarkers (3PBA and cis- and

  7. Bayesian Methods for Radiation Detection and Dosimetry

    SciTech Connect

    Peter G. Groer

    2002-09-29

    We performed work in three areas: radiation detection, external and internal radiation dosimetry. In radiation detection we developed Bayesian techniques to estimate the net activity of high and low activity radioactive samples. These techniques have the advantage that the remaining uncertainty about the net activity is described by probability densities. Graphs of the densities show the uncertainty in pictorial form. Figure 1 below demonstrates this point. We applied stochastic processes for a method to obtain Bayesian estimates of 222Rn-daughter products from observed counting rates. In external radiation dosimetry we studied and developed Bayesian methods to estimate radiation doses to an individual with radiation induced chromosome aberrations. We analyzed chromosome aberrations after exposure to gammas and neutrons and developed a method for dose-estimation after criticality accidents. The research in internal radiation dosimetry focused on parameter estimation for compartmental models from observed compartmental activities. From the estimated probability densities of the model parameters we were able to derive the densities for compartmental activities for a two compartment catenary model at different times. We also calculated the average activities and their standard deviation for a simple two compartment model.

  8. Hanford Internal Dosimetry Project manual. Revision 1

    SciTech Connect

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  9. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  10. Static magnetic field therapy: dosimetry considerations.

    PubMed

    Colbert, Agatha P; Markov, Marko S; Souder, James S

    2008-06-01

    The widespread use of static magnetic field (SMF) therapy as a self-care physical intervention has led to the conduct of numerous randomized controlled trials (RCTs). A recent systematic review of SMF trials for pain reduction concluded that the evidence does not support the use of permanent magnets for pain relief. We argue that this conclusion is unwarranted if the SMF dosage was inadequate or inappropriate for the clinical condition treated. The purpose of this communication is to (1) provide a rationale and an explanation for each of 10 essential SMF dosing parameters that should be considered when conducting trials of SMF therapy, and (2) advocate for the conduct of Phase I studies to optimize SMF dosimetry for each condition prior to implementing a large-scale RCT. A previous critical review of SMF dosimetry in 56 clinical studies found that reporting SMF dosages in a majority of those studies was of such poor quality that the magnetic field exposure at the target tissue could not be characterized. Without knowing what magnetic field actually reached the target, it is impossible to judge dosage adequacy. In order to quantify SMF exposure at the site of pathology (target tissue/s), that site must be clearly named; the distance of the permanent magnet surface from the target must be delineated; the physical parameters of the applied permanent magnet must be described; and the dosing regimen must be precisely reported. If the SMF dosimetry is inadequate, any inferences drawn from reported negative findings are questionable.

  11. Influence of voxel S factors on three-dimensional internal dosimetry calculations.

    PubMed

    Berenato, Salvatore; Amato, Ernesto; Fischer, Alexander; Baldari, Sergio

    2016-10-01

    Internal dosimetry is a fundamental instrument for the personalization of nuclear medicine therapies, to maximize the therapeutic effect while minimizing the radiation burden to other organs. Three-dimensional (3D) dosimetry can quantify the impact of heterogeneous radiopharmaceutical distributions in organs, lesions and tissues. We analysed the influence of radionuclide voxel S factors in 3D dosimetry of (111)In, (177)Lu and (90)Y, the most used radionuclides in Peptide Receptor Radionuclide Therapy (PRRT). Calculations were carried out for kidneys on a workstation equipped with a software for 3D dosimetry (Imalytics STRATOS, Philips AG), adopting a computational anthropomorphic phantom and, retrospectively, the SPECT-CT image series of a clinical case of PRRT. Two sets of voxel S factors were adopted: the pre-loaded Philips kernels, calculated by direct Monte Carlo simulation, and the ones calculated through a previously proposed analytical approach. Philips (111)In kernel did not account for mono-energetic Auger or Conversion electrons. Results indicate a difference of about -32% in voxel S factors for (111)In in 4.42mm voxel size and around -35% in 4.80mm voxel size, particularly self-dose values; this lead to significant shift in dose histograms and average doses. For (177)Lu and (90)Y, differences are about 2% and 12% for 4.42mm voxels and about -8% and 9% for 4.80mm voxels, respectively, attributable to the different calculation methods of the voxel S factors; this does not lead to significant discrepancies between the two dose histograms. Consequently, voxel S factors must account accurately for all radiations emitted by the nuclide.

  12. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  13. Automated ISS Flight Utilities

    NASA Technical Reports Server (NTRS)

    Offermann, Jan Tuzlic

    2016-01-01

    During my internship at NASA Johnson Space Center, I worked in the Space Radiation Analysis Group (SRAG), where I was tasked with a number of projects focused on the automation of tasks and activities related to the operation of the International Space Station (ISS). As I worked on a number of projects, I have written short sections below to give a description for each, followed by more general remarks on the internship experience. My first project is titled "General Exposure Representation EVADOSE", also known as "GEnEVADOSE". This project involved the design and development of a C++/ ROOT framework focused on radiation exposure for extravehicular activity (EVA) planning for the ISS. The utility helps mission managers plan EVAs by displaying information on the cumulative radiation doses that crew will receive during an EVA as a function of the egress time and duration of the activity. SRAG uses a utility called EVADOSE, employing a model of the space radiation environment in low Earth orbit to predict these doses, as while outside the ISS the astronauts will have less shielding from charged particles such as electrons and protons. However, EVADOSE output is cumbersome to work with, and prior to GEnEVADOSE, querying data and producing graphs of ISS trajectories and cumulative doses versus egress time required manual work in Microsoft Excel. GEnEVADOSE automates all this work, reading in EVADOSE output file(s) along with a plaintext file input by the user providing input parameters. GEnEVADOSE will output a text file containing all the necessary dosimetry for each proposed EVA egress time, for each specified EVADOSE file. It also plots cumulative dose versus egress time and the ISS trajectory, and displays all of this information in an auto-generated presentation made in LaTeX. New features have also been added, such as best-case scenarios (egress times corresponding to the least dose), interpolated curves for trajectories, and the ability to query any time in the

  14. Dosimetry of criticality accidents using activations of the blood and hair

    SciTech Connect

    Hankins, D.E.

    1980-01-01

    The evaluation of the dose that a person received in a criticality accident can be difficult. Most accidents have occurred when the person was not wearing nuclear accident dosimetry and since the NRC no longer requires these dosimeters, future dose evaluations may have to be based on body activations and gamma-to-neutron dose ratios. To aid in a dose evaluation we have compiled in a table the results from numerous criticality accident studies using 10 different critical assemblies, each with different neutron leakage spectra. There are several problems involved in applying these results accurately, the most significant problem being the determination of the configuration of the fissile material at the time of the accident. Other problems include a lack of information concerning the location, orientation, and possible shielding between the person and the accident assembly.

  15. Neutron dosimetry and radiation damage calculations for HFBR

    SciTech Connect

    Greenwood, L.R.; Ratner, R.T.

    1998-03-01

    Neutron dosimetry measurements have been conducted for various positions of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) in order to measure the neutron flux and energy spectra. Neutron dosimetry results and radiation damage calculations are presented for positions V10, V14, and V15.

  16. Student Perceptions of an Online Medical Dosimetry Program

    ERIC Educational Resources Information Center

    Lenards, Nishele D.

    2007-01-01

    The University of Wisconsin--La Crosse offers the first web-based medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was need to…

  17. Basic principles in the radiation dosimetry of nuclear medicine.

    PubMed

    Stabin, Michael; Xu, Xie George

    2014-05-01

    The basic principles of the use of radiation dosimetry in nuclear medicine are reviewed. The basic structure of the main mathematical equations are given and formal dosimetry systems are discussed. An extensive overview of the history and current status of anthropomorphic models (phantoms) is given. The sources and magnitudes of uncertainties in calculated internal dose estimates are reviewed.

  18. Operational comparison of bubble (super heated drop) dosimetry with routine albedo TLD for a selected group of Pu-238 workers at Los Alamos National Laboratory

    SciTech Connect

    Romero, L.L.; Hoffman, J.M.; Foltyn, E.M.; Buhl, T.E.

    1998-09-01

    Personnel neutron dosimetry continues to be a difficult science due to the lack of availability of robust passive dosimeters that exhibit tissue- or near-tissue- equivalent response. This paper is an operational study that compares the use of albedo thermoluminescent dosimeters with bubble dosimeters to determine whether bubble dosimeters do provide a useful daily ALARA tool that can yield measurements close to the dose-of-record. A group of workers at Los Alamos National Laboratory (LANL) working on the Radioisotopic Thermoelectric Generators (RTG) for the NASA Cassini space mission wore both bubble dosimeters and albedo dosimeters over a period from 1993 through 1996. The personal albedo dosimeter was processed on a monthly basis and used as the dose-of-record. The results of this study indicated that cumulative daily bubble dosimetry results agreed with whole-body albedo dosimetry results within about 37% on average.

  19. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    PubMed Central

    Rühm, W.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Vanhavere, F.; Alves, J.; Bottollier Depois, J. F.; Fattibene, P.; Knežević, Ž.; Lopez, M. A.; Mayer, S.; Miljanić, S.; Neumaier, S.; Olko, P.; Stadtmann, H.; Tanner, R.; Woda, C.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises—based on input from EURADOS Working Groups (WGs) and Voting Members—five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). PMID:25752758

  20. Sandia National Laboratories Internal Dosimetry Technical Basis Manual (Rev 4)

    SciTech Connect

    Goke, Sarah Hayes; Elliott, Nathan Ryan

    2014-09-01

    The Sandia National Laboratories’ Internal Dosimetry Technical Basis Manual is intended to provide extended technical discussion and justification of the internal dosimetry program at SNL. It serves to record the approach to evaluating internal doses from radiobioassay data, and where appropriate, from workplace monitoring data per the Department of Energy Internal Dosimetry Program Guide DOE G 441.1C. The discussion contained herein is directed primarily to current and future SNL internal dosimetrists. In an effort to conserve space in the TBM and avoid duplication, it contains numerous references providing an entry point into the internal dosimetry literature relevant to this program. The TBM is not intended to act as a policy or procedure statement, but will supplement the information normally found in procedures or policy documents. The internal dosimetry program outlined in this manual is intended to meet the requirements of Federal Rule 10CFR835 for monitoring the workplace and for assessing internal radiation doses to workers.

  1. Postimplant Dosimetry Using a Monte Carlo Dose Calculation Engine: A New Clinical Standard

    SciTech Connect

    Carrier, Jean-Francois . E-mail: jean-francois.carrier.chum@ssss.gouv.qc.ca; D'Amours, Michel; Verhaegen, Frank; Reniers, Brigitte; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2007-07-15

    Purpose: To use the Monte Carlo (MC) method as a dose calculation engine for postimplant dosimetry. To compare the results with clinically approved data for a sample of 28 patients. Two effects not taken into account by the clinical calculation, interseed attenuation and tissue composition, are being specifically investigated. Methods and Materials: An automated MC program was developed. The dose distributions were calculated for the target volume and organs at risk (OAR) for 28 patients. Additional MC techniques were developed to focus specifically on the interseed attenuation and tissue effects. Results: For the clinical target volume (CTV) D{sub 90} parameter, the mean difference between the clinical technique and the complete MC method is 10.7 Gy, with cases reaching up to 17 Gy. For all cases, the clinical technique overestimates the deposited dose in the CTV. This overestimation is mainly from a combination of two effects: the interseed attenuation (average, 6.8 Gy) and tissue composition (average, 4.1 Gy). The deposited dose in the OARs is also overestimated in the clinical calculation. Conclusions: The clinical technique systematically overestimates the deposited dose in the prostate and in the OARs. To reduce this systematic inaccuracy, the MC method should be considered in establishing a new standard for clinical postimplant dosimetry and dose-outcome studies in a near future.

  2. Fluence-based dosimetry of proton and heavier ion beams using single track detectors

    NASA Astrophysics Data System (ADS)

    Klimpki, G.; Mescher, H.; Akselrod, M. S.; Jäkel, O.; Greilich, S.

    2016-02-01

    Due to their superior spatial resolution, small and biocompatible fluorescent nuclear track detectors (FNTDs) open up the possibility of characterizing swift heavy charged particle fields on a single track level. Permanently stored spectroscopic information such as energy deposition and particle field composition is of particular importance in heavy ion radiotherapy, since radiation quality is one of the decisive predictors for clinical outcome. Findings presented within this paper aim towards single track reconstruction and fluence-based dosimetry of proton and heavier ion fields. Three-dimensional information on individual ion trajectories through the detector volume is obtained using fully automated image processing software. Angular distributions of multidirectional fields can be measured accurately within  ±2° uncertainty. This translates into less than 5% overall fluence deviation from the chosen irradiation reference. The combination of single ion tracking with an improved energy loss calibration curve based on 90 FNTD irradiations with protons as well as helium, carbon and oxygen ions enables spectroscopic analysis of a detector irradiated in Bragg peak proximity of a 270 MeV u-1 carbon ion field. Fluence-based dosimetry results agree with treatment planning software reference.

  3. Electron dosimetry for 10-MEV linac

    NASA Astrophysics Data System (ADS)

    Mehta, K. K.; Chu, R.; VanDyk, G.

    Recent developments in electron accelerator technology may allow the role of high-energy machines to expand. Implementation of appropriate dosimetry and quality comtrol methods for non-homogeneous materials is an important part of the expansion of this technology. To implement such methods and provide electron dosimetry for an applications development program, we recently conducted several dosimetry experiments. Our 10-MeV prototype electron accelerator as well as the accelerator at the National Research Council of Canada were used for these experiments. Polystyrene and graphite phantoms were constructed to measure the dose profile with depth. This yielded the extrapolated range and hence the most probable energy of the electrons in the beam. A polymethyl methacrylate (PMMA) sandwich-type range finder was also designed and used to directly measure the range and therefore the electron energy. Some of the range-finder results indicated that the charge buildup in the non- conducting PMMA affected the dose distribution. The measured energy values agreed very well with the beam energy values calculated from the analyzing magnet current of the accelerator. Also, responses of a graphite calorimeter as well as of various dosimeters compared fairly well in an electron field. The interface effects near the surface of homogeneous products were studied by analyzing the transmitted dose measured by the red acrylic continuous dosimeter placed under the products. The same technique was also used to examine the nature of inhomogeneity of various food products. We found this dosimeter extremely convenient and useful for measuring dose distribution in a plane. A Monte Carlo computer code was used to compute the depth-dose distributions in various materials and to compute the dose distribution near the interface of acrylic and air. These results were then compared against the measured distributions.

  4. Improving neutron dosimetry using bubble detector technology

    SciTech Connect

    Buckner, M.A.

    1993-02-01

    Providing accurate neutron dosimetry for a variety of neutron energy spectra is a formidable task for any dosimetry system. Unless something is known about the neutron spectrum prior to processing the dosimeter, the calculated dose may vary greatly from that actually encountered; that is until now. The entrance of bubble detector technology into the field of neutron dosimetry has eliminated the necessity of having an a priori knowledge of the neutron energy spectra. Recently, a new approach in measuring personnel neutron dose equivalent was developed at Oak Ridge National Laboratory. By using bubble detectors in combination with current thermoluminescent dosimeters (TLDs) as a Combination Personnel Neutron Dosimeter (CPND), not only is it possible to provide accurate dose equivalent results, but a simple four-interval neutron energy spectrum is obtained as well. The components of the CPND are a Harshaw albedo TLD and two bubble detectors with theoretical energy thresholds of 100 key and 1500 keV. Presented are (1) a synoptic history surrounding emergence of bubble detector technology, (2) a brief overview of the current theory on mechanisms of interaction, (3) the data and analysis process involved in refining the response functions, (4) performance evaluation of the original CPND and a reevaluation of the same data under the modified method, (5) the procedure used to determine the reference values of component fluence and dose equivalent for field assessment, (6) analysis of the after-modification results, (7) a critique of some currently held assumptions, offering some alternative explanations, and (8) thoughts concerning potential applications and directions for future research.

  5. Model selection for radiochromic film dosimetry.

    PubMed

    Méndez, I

    2015-05-21

    The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to provide better results than using Micke-Mayer perturbation models. Among the models being compared, the triple-channel model with Truncated Normal perturbations, net optical density as the response and subject to the application of lateral corrections was found to be the most accurate model. The scope of this study was circumscribed by the limits under which the models were tested. In this study, the films were irradiated with megavoltage radiotherapy beams, with doses from about 20-600 cGy, entire (8 inch  × 10 inch) films were scanned, the functional form of the sensitometric curves was a polynomial and the different lots were calibrated using the plane-based method.

  6. In vivo light dosimetry for pleural PDT

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Culligan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2009-02-01

    In-vivo light Dosimetry for patients undergoing photodynamic therapy (PDT) is one of the important dosimetry quantities critical for predicting PDT outcome. This study examines the light fluence (rate) delivered to patients undergoing pleural PDT as a function of treatment time, treatment volume and surface area, and its accuracy as a function of the calibration accuracies of each isotropic detector and the calibration integrating sphere. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 year old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm^2 at 630nm. Fluence rate (mW/cm^2) and cumulative fluence (J/cm^2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate delivery varied from 37.84 to 94.05 mW/cm^2 and treatment time varied from 1762 to 5232s. We have established a correlation between the treatment time and the treatment volume. The results are discussed using an integrating sphere theory and the measured tissue optical properties. The result can be used as a clinical guideline for future pleural PDT treatment.

  7. Autonomy and Automation

    NASA Technical Reports Server (NTRS)

    Shively, Jay

    2017-01-01

    A significant level of debate and confusion has surrounded the meaning of the terms autonomy and automation. Automation is a multi-dimensional concept, and we propose that Remotely Piloted Aircraft Systems (RPAS) automation should be described with reference to the specific system and task that has been automated, the context in which the automation functions, and other relevant dimensions. In this paper, we present definitions of automation, pilot in the loop, pilot on the loop and pilot out of the loop. We further propose that in future, the International Civil Aviation Organization (ICAO) RPAS Panel avoids the use of the terms autonomy and autonomous when referring to automated systems on board RPA. Work Group 7 proposes to develop, in consultation with other workgroups, a taxonomy of Levels of Automation for RPAS.

  8. Patient Specific Dosimetry Phantoms Using Multichannel LDDMM of the Whole Body

    PubMed Central

    Tward, Daniel J.; Ceritoglu, Can; Kolasny, Anthony; Sturgeon, Gregory M.; Segars, W. Paul; Miller, Michael I.; Ratnanather, J. Tilak

    2011-01-01

    This paper describes an automated procedure for creating detailed patient-specific pediatric dosimetry phantoms from a small set of segmented organs in a child's CT scan. The algorithm involves full body mappings from adult template to pediatric images using multichannel large deformation diffeomorphic metric mapping (MC-LDDMM). The parallel implementation and performance of MC-LDDMM for this application is studied here for a sample of 4 pediatric patients, and from 1 to 24 processors. 93.84% of computation time is parallelized, and the efficiency of parallelization remains high until more than 8 processors are used. The performance of the algorithm was validated on a set of 24 male and 18 female pediatric patients. It was found to be accurate typically to within 1-2 voxels (2–4 mm) and robust across this large and variable data set. PMID:21960989

  9. US Army Radiological Bioassay and Dosimetry: The RBD software package

    SciTech Connect

    Eckerman, K. F.; Ward, R. C.; Maddox, L. B.

    1993-01-01

    The RBD (Radiological Bioassay and Dosimetry) software package was developed for the U. S. Army Material Command, Arlington, Virginia, to demonstrate compliance with the radiation protection guidance 10 CFR Part 20 (ref. 1). Designed to be run interactively on an IBM-compatible personal computer, RBD consists of a data base module to manage bioassay data and a computational module that incorporates algorithms for estimating radionuclide intake from either acute or chronic exposures based on measurement of the worker's rate of excretion of the radionuclide or the retained activity in the body. In estimating the intake,RBD uses a separate file for each radionuclide containing parametric representations of the retention and excretion functions. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent. For a given nuclide, if measurements exist for more than one type of assay, an auxiliary module, REPORT, estimates the intake by applying weights assigned in the nuclide file for each assay. Bioassay data and computed results (estimates of intake and committed dose equivalent) are stored in separate data bases, and the bioassay measurements used to compute a given result can be identified. The REPORT module creates a file containing committed effective dose equivalent for each individual that can be combined with the individual's external exposure.

  10. The next decade in external dosimetry

    SciTech Connect

    Griffith, R.V.

    1986-10-01

    As the radiation protection community moves through the last half of the '80s and into the next decade, we can expect the requirements for external dosimetry to become increasingly more restrictive and demanding. As in other health protection fields, growing regulatory and legal pressures, together with a natural evolution in philosophy, require the health physicist to display an increasing degree of accountability, rigor, and professionalism. The good news is that, for the most part, the technology necessary to solve many of the problems will be available or not far behind. This paper describes anticipated technology. 66 refs., 10 figs.

  11. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  12. Characteristics of in vivo radiotherapy dosimetry.

    PubMed

    Edwards, C R; Mountford, P J

    2009-11-01

    The recent discussion and debate about the use of in vivo dosimetry as a routine component of the radiotherapy treatment process has not included the limitations introduced by the physical characteristics of the detectors. Although a robust calibration procedure will ensure acceptable uncertainties in the measurements of tumour dose, further work is required to confirm the accuracy of critical organ measurements with a diode or a thermoluminescent dosemeter outside the main field owing to limitations caused by a non-uniform X-ray energy response of the detector, differences between the X-ray energy spectrum inside and outside the main field, and contaminating electrons.

  13. Neutron dosimetry of the Little Boy device

    SciTech Connect

    Pederson, R.A.; Plassmann, E.A.

    1984-01-01

    Neutron dose rates at several angular locations and at distances out to 0.5 mile have been measured during critical operation of the Little Boy replica. We used modified remmetes and thermoluminescent dosimetry techniques for the measurements. The present status of our analysis is presented including estimates of the neutron-dose-relaxation length in air and the variation of the neutron-to-gamma-ray dose ratio with distance from the replica. These results are preliminary and are subject to detector calibration measurements.

  14. USF/Russian dosimetry on STS-57

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The major purpose of this experiment was to conduct an international comparison of passive dosimetry methods in space. Two APD's were flown in the charged particle directional spectrometer (CPDS)/tissue equivalent proportional counter (TEPC) locker on the space shuttle during the STS-57 mission. Due to placement, the shielding and radiation environment of the APD's were nearly the same and the dosimeters distributed in the two boxes can be considered equally exposed. The dosimeter types included plastic nuclear track detectors (PNTD's), thermoluminescent detectors (TLD), nuclear emulsions, and thermal/resonance neutron detectors (TRND's). The USF dosimeters included PNTD's, TLD's, and TRND's, while the Russian dosimeters included PNTD's, TLD's, and nuclear emulsions.

  15. Is dosimetry still a necessity in current dental practice?

    PubMed

    Reddy, S S; Rakesh, N; Chauhan, Pallavi; Clint, Joseph Ben; Sharma, Shivani

    2015-12-01

    Today, dentists have a wide range of imaging modalities to choose from, the film based techniques, digital techniques, and the recent introduction of 3D volumetric or cone beam computed tomography (CBCT). The inherent design features of the new generation dental x-ray equipment has significantly improved over the years with no evidence of substandard x-ray units in operation. In dental facilities radiological workload is comparatively low, newer radiation equipments and accessories follow safety guidelines and employ better radiation protection measures for the patient and the operator. Dentists' knowledge and expertise in radiation protection measures is good, enabling them to carry out riskfree radiation procedures in their practice. Therefore, the present study is aimed at assessing the need for dosimeters in current dental scenario. 'Is there currently a significant risk from dental radiography to merit the use of personal dosimetery in dental practice. 'Dental health professionals (Oral radiologists) and radiographic assistants of fourteen dental colleges in Karnataka state participated in this questionnaire study. The questionnaire consisted of the following questions--the make, type, year of manufacture of radiographic machines used in their setup, number of radiographs made per day in the institution, type of receptors used, number of personnel at risk for radiation exposure, radiation protection measures used, regular monitoring by personal dosimeters, equivalent dosage readings for the past 12 months and whether the reading of thermoluminescent dosimeters (TLD) for any personnel had exceeded the recommended exposure value in the last 3 years. Dosimetry records of the radiology staff in the last three years shows doses no more than 1.50 mSv per year. The various institutions' dose (person mSv) was in the range of 3.70 mSv-3.90 mSv. Personal monitoring for Dentists can be omitted in the dental colleges since the estimated dose of oral radiologists

  16. Workflow automation architecture standard

    SciTech Connect

    Moshofsky, R.P.; Rohen, W.T.

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  17. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  18. Computer automation of high current ion implanters

    NASA Astrophysics Data System (ADS)

    Woodard, Ollie; Lindsey, Paul; Cecil, Joseph; Pipe, Robert

    1985-01-01

    Complete computer automation of a high current ion implanter has been achieved. Special design considerations were necessary for automation including the development of a simplified ion source, a simplified beam transport control function, and a computer aided real-time feedback dosimetry control system. A special, versatile software architecture was also necessary to allow protected operation by unskilled operators, as well as diagnostic and maintenance modes accessible only to qualified personnel. Integral mounting of the DEC LSI-11 computer in the implanter frame provided additional challenges regarding EMI control and the electrical isolation required. The end result is a system in which all pertinent functions of the implanter are computer monitored and controlled continuously, allowing for automatic set-up, operation, on-line fault detection and diagnostics, with recovery software to correct many transient problems as they occur. This paper will discuss both general and specific solutions to the design problems encountered, and will review the system performance from a user point of view.

  19. Dosimetry of inhaled radon and thoron progeny

    SciTech Connect

    James, A.C.

    1994-06-01

    This chapter reviews recent developments in modeling doses received by lung tissues, with particular emphasis on application of ICRP`s new dosimetric model of the respiratory tract for extrapolating to other environments the established risks from exposure to radon progeny in underground mines. Factors discussed include: (1) the influence of physical characteristics of radon progeny aerosols on dose per unit exposure, e.g., the unattached fraction, and the activity-size distributions of clustered and attached progeny; (2) the dependence of dose on breathing rate, and on the exposed subject (man, woman or child); (3) the variability of dose per unit exposure in a home when exposure is expressed in terms of potential {alpha} energy or radon gas concentration; (4) the comparative dosimetry of thoron progeny; and (5) the effects of air-cleaning on lung dose. Also discussed is the apparent discrepancy between lung cancer risk estimates derived purely from dosimetry and the lung cancer incidence observed in the epidemiological studies of radon-exposed underground miners. Application of ICRP`s recommended risk factors appears to overestimate radon lung-cancer risk for miners by a factor of three. ``Normalization`` of the calculated effective dose is therefore needed, at least for {alpha} dose from radon and thoron progeny, in order to obtain a realistic estimate of lung cancer risk.

  20. Dosimetry of two new interstitial brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Saidi, Pooneh; Sadeghi, Mahdi

    2011-01-01

    With increased demand for low 103Pd (palladium) seed sources, to treat prostate and eye cancers, new sources have been designed and introduced. This article presents the two new palladium brachytherapy sources, IR03-103Pd and IR04-103Pd that have been developed at Nuclear Science and Technology Research Institute. The dosimetry parameters such as the dose rate constant Λ, the radial dose function g(r), and the anisotropy function F(r,θ), around the sources have been characterized using Version 5 Monte Carlo radiation transport code in accordance with the update AAPM Task Group No. 43 report (TG-43U1). The results indicated the dose rate constant of 0.689±0.02 and 0.667±0.02 cGy h-1 U-1 for the IR03-103Pd and IR04-103Pd sources respectively, which are in acceptable agreement with other commercial seeds. The calculated results were compared with published results for those of other source manufacturers. However, they show an acceptable dose distribution, using for clinical applications is pending experimental dosimetry.

  1. Eleventh DOE workshop on personnel neutron dosimetry

    SciTech Connect

    Not Available

    1991-12-31

    Since its formation, the Office of Health (EH-40) has stressed the importance of the exchange of information related to and improvements in neutron dosimetry. This Workshop was the eleventh in the series sponsored by the Department of Energy (DOE). It provided a forum for operational personnel at DOE facilities to discuss current issues related to neutron dosimetry and for leading investigators in the field to discuss promising approaches for future research. A total of 26 papers were presented including the keynote address by Dr. Warren K. Sinclair, who spoke on, ``The 1990 Recommendations of the ICRP and their Biological Background.`` The first several papers discussed difficulties in measuring neutrons of different energies and ways of compensating or deriving correction factors at individual facilities. Presentations were also given by the US Navy and Air Force. Current research in neutron dosimeter development was the subject of the largest number of papers. These included a number on the development of neutron spectrometers. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  2. PDT dose dosimetry for pleural photodynamic therapy

    PubMed Central

    Sharikova, Anna V.; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2015-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in target tissue. Although existing systems are capable of measuring the light fluence in vivo, the concurrent measurement of photosensitizer in the treated tissue so far has been lacking. We have developed and tested a new method to simultaneously acquire light dosimetry and photosensitizer fluorescence data via the same isotropic detector, employing treatment light as the excitation source. A dichroic beamsplitter is used to split light from the isotropic detector into two fibers, one for light dosimetry, the other, after the 665 nm treatment light is removed by a band-stop filter, to a spectrometer for fluorescence detection. The light fluence varies significantly during treatment because of the source movement. The fluorescence signal is normalized by the light fluence measured at treatment wavelength. We have shown that the absolute photosensitizer concentration can be obtained by an optical properties correction factor and linear spectral fitting. Tissue optical properties are determined using an absorption spectroscopy probe immediately before PDT at the same sites. This novel method allows accurate real-time determination of delivered PDT dose using existing isotropic detectors, and may lead to a considerable improvement of PDT treatment quality compared to the currently employed systems. Preliminary data in patient studies is presented. PMID:25999645

  3. Acoustic images of gel dosimetry phantoms

    NASA Astrophysics Data System (ADS)

    Vieira, Silvio L.; Baggio, André; Kinnick, Randall R.; Fatemi, M.; Carneiro, Antonio Adilton O.

    2010-01-01

    This work presents Vibro-acoustography (VA) as a tool to visualize absorbed dose in a polymer gel dosimetry phantom. VA relies on the mechanical excitation introduced by the acoustic radiation force of focused modulated ultrasound in a small region of the object. A hydrophone or microphone is used to measure the sound emitted from the object in response to the excitation, and by using the amplitude or phase of this signal, an image of the object can be generated. To study the phenomena of dose distribution in a gel dosimetry phantom, continuous wave (CW), tone burst and multi-frequency VA were used to image this phantom. The phantom was designed using 'MAGIC' gel polymer with addition of glass microspheres at 2% w/w having an average diameter range between 40-75 μm. The gel was irradiated using conventional 10 MeV X-rays from a linear accelerator. The field size in the surface of the phantom was 1.0×1.0 cm2 and a source-surface distance (SSD) of 100 cm. The irradiated volume corresponds to an approximately 8.0 cm3, where a dose of 50 gray was delivered to the gel. Polymer gel dosimeters are sensitive to radiation-induced chemical changes that occur in the irradiated polymer. VA images of the gel dosimeter showed the irradiate area. It is concluded that VA imaging has potential to visualize dose distribution in a polymer gel dosimeter.

  4. Dosimetry of radium-223 and progeny

    SciTech Connect

    Fisher, D.R.; Sgouros, G.

    1999-01-01

    Radium-223 is a short-lived (11.4 d) alpha emitter with potential applications in radioimmunotherapy of cancer. Radium-223 can be complexed and linked to protein delivery molecules for specific tumor-cell targeting. It decays through a cascade of short-lived alpha- and beta-emitting daughters with emission of about 28 MeV of energy through complete decay. The first three alpha particles are essentially instantaneous. Photons associated with Ra-223 and progeny provide the means for tumor and normal-organ imaging and dosimetry. Two beta particles provide additional therapeutic value. Radium-223 may be produced economically and in sufficient amounts for widescale application. Many aspects of the chemistry of carrier-free isotope preparation, complexation, and linkage to the antibody have been developed and are being tested. The radiation dosimetry of a Ra-223-labeled antibody shows favorable tumor to normal tissue dose ratios for therapy. The 11.4-d half-life of Ra-223 allows sufficient time for immunoconjugate preparation, administration, and tumor localization by carrier antibodies before significant radiological decay takes place. If 0.01 percent of a 37 MBq (1 mCi) injection deposits in a one gram tumor mass, and if the activity is retained with a typical effective half-time (75 h), the absorbed dose will be 163 mGy MBq{sup {minus}1} (600 rad mCi{sup {minus}1}) administered. 49 refs., 5 figs., 2 tabs.

  5. Internal dosimetry verification and validation database.

    PubMed

    Miller, G; Bertelli, L; Little, T; Guilmette, R A

    2007-01-01

    Simulated-data internal dosimetry cases for use in intercomparison exercises or as a software verification and validation tool have been published on the internet (www.lanl.gov/bayesian/software Bayesian software package II). A user may validate their internal dosimetry code or method using this simulated bioassay data. Or, the user may choose to try out the Los Alamos National Laboratory codes ID and UF, which are also supplied. A Poisson-lognormal model of data uncertainty is assumed. A collection of different possible models for each nuclide (e.g. solubility types and particle sizes) are used. For example, for 238Pu, 14 different biokinetic models or types (8 inhalation, 4 wound and 2 ingestion) are assumed. Simulated data are generated for all the assumed biokinetic models, both for incidents, where the time of intake is known, and for non-incidents, where it is not. For the dose calculations, the route of intake, but not the biokinetic model, is considered to be known. The object is to correctly calculate the known true dose from simulated data covering a period of time. A 'correct' result has been defined in two ways: (1) that the credible limits of the calculated dose include the correct dose and (2) that the calculated dose is within a factor of 2 of the correct dose.

  6. Radiotherapy dosimetry using a commercial OSL system

    SciTech Connect

    Viamonte, A.; Rosa, L. A. R. da; Buckley, L. A.; Cherpak, A.; Cygler, J. E.

    2008-04-15

    A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al{sub 2}O{sub 3}:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for {sup 60}Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al{sub 2}O{sub 3}:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.

  7. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  8. Automation in Clinical Microbiology

    PubMed Central

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  9. Shoe-String Automation

    SciTech Connect

    Duncan, M.L.

    2001-07-30

    Faced with a downsizing organization, serious budget reductions and retirement of key metrology personnel, maintaining capabilities to provide necessary services to our customers was becoming increasingly difficult. It appeared that the only solution was to automate some of our more personnel-intensive processes; however, it was crucial that the most personnel-intensive candidate process be automated, at the lowest price possible and with the lowest risk of failure. This discussion relates factors in the selection of the Standard Leak Calibration System for automation, the methods of automation used to provide the lowest-cost solution and the benefits realized as a result of the automation.

  10. [Computational radiofrequency electromagnetic field dosimetry in evaluation of biological effects].

    PubMed

    Perov, S Iu; Kudryashov, Iu B; Rubtsova, N B

    2012-01-01

    Given growing computational resources, radiofrequency electromagnetic field dosimetry is becoming more vital in the study of biological effects of non-ionizing electromagnetic radiation. The study analyzes numerical methods which are used in theoretical dosimetry to assess the exposure level and specific absorption rate distribution. The advances of theoretical dosimetry are shown. Advantages and disadvantages of different methods are analyzed in respect to electromagnetic field biological effects. The finite-difference time-domain method was implemented in detail; also evaluated were possible uncertainties of complex biological structure simulation for bioelectromagnetic investigations.

  11. Dosimetry of Auger emitters: Physical and phenomenological approaches

    SciTech Connect

    Sastry, K.S.R.; Howell, R.W.; Rao, D.V.; Mylavarapu, V.B.; Kassis, A.I.; Adelstein, S.J.; Wright, H.A.; Hamm, R.N.; Turner, J.E.

    1987-01-01

    Recent radiobiological studies have demonstrated that Auger cascades can cause severe biological damage contrary to expectations based on conventional dosimetry. Several determinants govern these effects, including the nature of the Auger electron spectrum; localized energy deposition; cellular geometry; chemical form of the carrier; cellular localization, concentration, and subcellular distribution of the radionuclide. Conventional dosimetry is inadequate in that these considerations are ignored. Our results provide the basis for biophysical approaches toward subcellular dosimetry of Auger emitters in vitro and in vivo. 12 refs., 7 figs., 2 tabs.

  12. Permanent Breast Seed Implant Dosimetry Quality Assurance

    SciTech Connect

    Keller, Brian M.; Ravi, Ananth; Sankreacha, Raxa; Pignol, Jean-Philippe

    2012-05-01

    Purpose: A permanent breast seed implant is a novel method of accelerated partial breast irradiation for women with early-stage breast cancer. This article presents pre- and post-implant dosimetric data, relates these data to clinical outcomes, and makes recommendations for those interested in starting a program. Methods and Materials: A total of 95 consecutive patients were accrued into one of three clinical trials after breast-conserving surgery: a Phase I/II trial (67 patients with infiltrating ductal carcinoma); a Phase II registry trial (25 patients with infiltrating ductal carcinoma); or a multi-center Phase II trial for patients with ductal carcinoma in situ (3 patients). Contouring of the planning target volume (PTV) was done on a Pinnacle workstation and dosimetry calculations, including dose-volume histograms, were done using a Variseed planning computer. Results: The mean pre-implant PTV coverage for the V{sub 90}, V{sub 100}, V{sub 150}, and V{sub 200} were as follows: 98.8% {+-} 1.2% (range, 94.5-100%); 97.3% {+-} 2.1% (range, 90.3-99.9%), 68.8% {+-} 14.3% (range, 32.7-91.5%); and 27.8% {+-} 8.6% (range, 15.1-62.3%). The effect of seed motion was characterized by post-implant dosimetry performed immediately after the implantation (same day) and at 2 months after the implantation. The mean V{sub 100} changed from 85.6% to 88.4% (p = 0.004) and the mean V{sub 200} changed from 36.2% to 48.3% (p < 0.001). Skin toxicity was associated with maximum skin dose (p = 0.014). Conclusions: Preplanning dosimetry should aim for a V{sub 90} of approximately 100%, a V{sub 100} between 95% and 100%, and a V{sub 200} between 20% and 30%, as these numbers are associated with no local recurrences to date and good patient tolerance. In general, the target volume coverage improved over the duration of the seed therapy. The maximum skin dose, defined as the average dose over the hottest 1 Multiplication-Sign 1-cm{sup 2} surface area, should be limited to 90% of the

  13. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  14. Gamma-ray dosimetry measurements of the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We present the current status of our gamma-ray dosimetry results for the Little Boy replica. Both Geiger-Mueller and thermoluminescent detectors were used in the measurements. Future work is needed to test assumptions made in data analysis.

  15. Proceedings of the third conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R.E.; Sims, C.S.; Casson, W.H.

    1991-10-01

    The Third Conference on Radiation Protection and Dosimetry was held during October 21--24, 1991, at the Sheraton Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection, and providing them with sufficient information to evaluate their programs. To meet these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical session included external dosimetry, internal dosimetry, instruments, accident dosimetry, regulations and standards, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. Individual reports are processed separately on the database.

  16. Retrospective dosimetry analyses of reactor vessel cladding samples

    SciTech Connect

    Greenwood, L. R.; Soderquist, C. Z.; Fero, A. H.

    2011-07-01

    Reactor pressure vessel cladding samples for Ringhals Units 3 and 4 in Sweden were analyzed using retrospective reactor dosimetry techniques. The objective was to provide the best estimates of the neutron fluence for comparison with neutron transport calculations. A total of 51 stainless steel samples consisting of chips weighing approximately 100 to 200 mg were removed from selected locations around the pressure vessel and were sent to Pacific Northwest National Laboratory for analysis. The samples were fully characterized and analyzed for radioactive isotopes, with special interest in the presence of Nb-93m. The RPV cladding retrospective dosimetry results will be combined with a re-evaluation of the surveillance capsule dosimetry and with ex-vessel neutron dosimetry results to form a comprehensive 3D comparison of measurements to calculations performed with 3D deterministic transport code. (authors)

  17. Software for evaluation of EPR-dosimetry performance.

    PubMed

    Shishkina, E A; Timofeev, Yu S; Ivanov, D V

    2014-06-01

    Electron paramagnetic resonance (EPR) with tooth enamel is a method extensively used for retrospective external dosimetry. Different research groups apply different equipment, sample preparation procedures and spectrum processing algorithms for EPR dosimetry. A uniform algorithm for description and comparison of performances was designed and implemented in a new computer code. The aim of the paper is to introduce the new software 'EPR-dosimetry performance'. The computer code is a user-friendly tool for providing a full description of method-specific capabilities of EPR tooth dosimetry, from metrological characteristics to practical limitations in applications. The software designed for scientists and engineers has several applications, including support of method calibration by evaluation of calibration parameters, evaluation of critical value and detection limit for registration of radiation-induced signal amplitude, estimation of critical value and detection limit for dose evaluation, estimation of minimal detectable value for anthropogenic dose assessment and description of method uncertainty.

  18. Sci—Thur AM: YIS - 03: irtGPUMCD: a new GPU-calculated dosimetry code for {sup 177}Lu-octreotate radionuclide therapy of neuroendocrine tumors

    SciTech Connect

    Montégiani, Jean-François; Gaudin, Émilie; Després, Philippe; Jackson, Price A.; Beauregard, Jean-Mathieu

    2014-08-15

    In peptide receptor radionuclide therapy (PRRT), huge inter-patient variability in absorbed radiation doses per administered activity mandates the utilization of individualized dosimetry to evaluate therapeutic efficacy and toxicity. We created a reliable GPU-calculated dosimetry code (irtGPUMCD) and assessed {sup 177}Lu-octreotate renal dosimetry in eight patients (4 cycles of approximately 7.4 GBq). irtGPUMCD was derived from a brachytherapy dosimetry code (bGPUMCD), which was adapted to {sup 177}Lu PRRT dosimetry. Serial quantitative single-photon emission computed tomography (SPECT) images were obtained from three SPECT/CT acquisitions performed at 4, 24 and 72 hours after {sup 177}Lu-octreotate administration, and registered with non-rigid deformation of CT volumes, to obtain {sup 177}Lu-octreotate 4D quantitative biodistribution. Local energy deposition from the β disintegrations was assumed. Using Monte Carlo gamma photon transportation, irtGPUMCD computed dose rate at each time point. Average kidney absorbed dose was obtained from 1-cm{sup 3} VOI dose rate samples on each cortex, subjected to a biexponential curve fit. Integration of the latter time-dose rate curve yielded the renal absorbed dose. The mean renal dose per administered activity was 0.48 ± 0.13 Gy/GBq (range: 0.30–0.71 Gy/GBq). Comparison to another PRRT dosimetry code (VRAK: Voxelized Registration and Kinetics) showed fair accordance with irtGPUMCD (11.4 ± 6.8 %, range: 3.3–26.2%). These results suggest the possibility to use the irtGPUMCD code in order to personalize administered activity in PRRT. This could allow improving clinical outcomes by maximizing per-cycle tumor doses, without exceeding the tolerable renal dose.

  19. Extremity dosimetry at US Department of Energy facilities

    SciTech Connect

    Harty, R.; Reece, W.D.; MacLellan, J.A.

    1986-05-01

    A questionnaire on extremity dosimetry was distributed to DOE facilities along with a questionnaire on beta dosimetry. An informal telephone survey was conducted as a follow-up survey to answer a few additional questions concerning extremity monitoring practices. The responses to the questionnaire and the telephone survey are summarized in this report. Background information, developed from operational experience and a review of the current literature, is presented as a basis for understanding the information obtained by the survey and questionnaire.

  20. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-10-10

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP). It describes the roles of and relationships between the IDP and site contractors, and provides recommendations and guidance for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs. Guidance includes identifying conditions under which workers should be placed on bioassay programs, types, descritptions, and capabilities of measurements, suggested routine bioassay programs, limitations on services, and practices for recording and reporting results.

  1. Surveillance dosimetry of operating power plants

    SciTech Connect

    McElroy, W.N.; Davis, A.I.; Gold, R.

    1981-10-16

    The main focus of the research efforts presently underway is the LWR power reactor surveillance program in which metallurgical test specimens of the reactor PV and dosimetry sensors are placed in three or more surveillance capsules at or near the reactor PV inner wall. They are then irradiated in a temperature and neutron flux-spectrum environment as similar as possible to the PV itself for periods of about 1.5 to 15 effective full-power years (EFPY), with removal of the last capsule at a fluence corresponding to the 30- to 40-year plant end-of-life (EOL) fluence. Because the neutron flux level at the surveillance position is greater than at the vessel, the test is accelerated wit respect to the vessel exposure, allowing early assessment of EOL conditions.

  2. Dosimetry for radiocolloid therapy of cystic craniopharyngiomas.

    PubMed

    Rojas, E Leticia; Al-Dweri, Feras M O; Lallena, Antonio M; Bodineau, Coral; Galán, Pedro

    2003-09-01

    The dosimetry for radiocolloid therapy of cystic craniopharyngiomas is investigated. Analytical calculations based on the Loevinger and the Berger formulas for electrons and photons, respectively, are compared with Monte Carlo simulations. The role of the material of which the colloid introduced inside the craniopharyngioma is made of as well as that forming the cyst wall is analyzed. It is found that the analytical approaches provide a very good description of the simulated data in the conditions where they can be applied (i.e., in the case of a uniform and infinite homogeneous medium). However, the consideration of the different materials and interfaces produces a strong reduction of the dose delivered to the cyst wall in relation to that predicted by the Loevinger and the Berger formulas.

  3. Accidental neutron dosimetry with human hair

    NASA Astrophysics Data System (ADS)

    Ekendahl, Daniela; Bečková, Věra; Zdychová, Vlasta; Bulánek, Boris; Prouza, Zdeněk; Štefánik, Milan

    2014-11-01

    Human hair contains sulfur, which can be activated by fast neutrons. The 32S(n,p)32P reaction with a threshold of 2.5 MeV was used for fast neutron dose estimation. It is a very important parameter for individual dose reconstruction with regards to the heterogeneity of the neutron transfer to the human body. Samples of human hair were irradiated in a radial channel of a training reactor VR-1. 32P activity in hair was measured both, directly by means of a proportional counter, and as ash dispersed in a liquid scintillator. Based on neutron spectrum estimation, a relationship between the neutron dose and induced activity was derived. The experiment verified the practical feasibility of this dosimetry method in cases of criticality accidents or malevolent acts with nuclear materials.

  4. Pediatric renal iodine-123 orthoiodohippurate dosimetry

    SciTech Connect

    Marcus, C.S.; Kuperus, J.H.

    1985-10-01

    Radiation exposure to the kidney from iodine- ST orthoiodohippurate (( STI)OIH) and any associated ( SUI)OIH contamination may vary by a factor of several hundred depending upon the health of the kidney. Calculations of kidney dose were made for patients with the following renal states: normal, acute tubular necrosis (ATN), obstruction, and renal transplant. The dosimetry was based on a minimum practical administered activity (MPAA) of 200 microCi for pediatric patients and 500 microCi for adults. High-grade obstruction of recent onset and severe ATN are the only disease processes which could result in high exposures, and this is due primarily to the contribution of SUI. For selected cases, OIH labeled with pure STI should be very seriously considered.

  5. Neutron generator (HIRRAC) and dosimetry study.

    PubMed

    Endo, S; Hoshi, M; Takada, J; Tauchi, H; Matsuura, S; Takeoka, S; Kitagawa, K; Suga, S; Komatsu, K

    1999-12-01

    Dosimetry studies have been made for neutrons from a neutron generator at Hiroshima University (HIRRAC) which is designed for radiobiological research. Neutrons in an energy range from 0.07 to 2.7 MeV are available for biological irradiations. The produced neutron energies were measured and evaluated by a 3He-gas proportional counter. Energy spread was made certain to be small enough for radiobiological studies. Dose evaluations were performed by two different methods, namely use of tissue equivalent paired ionization chambers and activation of method with indium foils. Moreover, energy deposition spectra in small targets of tissue equivalent materials, so-called lineal energy spectrum, were also measured and are discussed. Specifications for biological irradiation are presented in terms of monoenergetic beam conditions, dose rates and deposited energy spectra.

  6. The radiation dosimetry of intrathecally administered radionuclides

    SciTech Connect

    Stabin, M.G.; Evans, J.F.

    1999-01-01

    The radiation dose to the spine, spinal cord, marrow, and other organs of the body from intrathecal administration of several radiopharmaceuticals was studied. Anatomic models were developed for the spine, spinal cerebrospinal fluid (CSF), spinal cord, spinal skeleton, cranial skeleton, and cranial CSF. A kinetic model for the transport of CSF was used to determine residence times in the CSF; material leaving the CSF was thereafter assumed to enter the bloodstream and follow the kinetics of the radiopharmaceutical as if intravenously administered. The radiation transport codes MCNP and ALGAMP were used to model the electron and photon transport and energy deposition. The dosimetry of Tc-99m DTPA and HSA, In-111 DTPA, I-131 HSA, and Yb-169 DTPA was studied. Radiation dose profiles for the spinal cord and marrow in the spine were developed and average doses to all other organs were estimated, including dose distributions within the bone and marrow.

  7. Liulin-type spectrometry-dosimetry instruments.

    PubMed

    Dachev, Ts; Dimitrov, Pl; Tomov, B; Matviichuk, Yu; Spurny, F; Ploc, O; Brabcova, K; Jadrnickova, I

    2011-03-01

    The main purpose of Liulin-type spectrometry-dosimetry instruments (LSDIs) is cosmic radiation monitoring at the workplaces. An LSDI functionally is a low mass, low power consumption or battery-operated dosemeter. LSDIs were calibrated in a wide range of radiation fields, including radiation sources, proton and heavy-ion accelerators and CERN-EC high-energy reference field. Since 2000, LSDIs have been used in the scientific programmes of four manned space flights on the American Laboratory and ESA Columbus modules and on the Russian segment of the International Space Station, one Moon spacecraft and three spacecraft around the Earth, one rocket, two balloons and many aircraft flights. In addition to relative low price, LSDIs have proved their ability to qualify the radiation field on the ground and on the above-mentioned carriers.

  8. Space radiation dosimetry using bubble detectors.

    PubMed

    Ing, H; Mortimer, A

    1994-10-01

    Bubble detectors--a new development in radiation detection--has only recently been used for radiation measurements in space. One important characteristic of the bubble detector is that it operates on a phenomenon which bears considerable resemblance to biological response. Recent experimental results from irradiating bubble detectors with high-energy heavy ions point to the need to re-examine the methodology used for assessing space radiation and the relevance of conventional quantities such as dose equivalent for space dosimetry. It may be that biological hazard associated with the intensely ionizing events--associated with nuclear fragmentation but delivering relatively small dose equivalent--may be much more important than that associated with lightly ionizing events which comprise the bulk of the conventional radiation dose equivalent.

  9. Dosimetry in mixed neutron-gamma fields

    SciTech Connect

    Remec, I.

    1998-04-01

    The gamma field accompanying neutrons may, in certain circumstances, play an important role in the analysis of neutron dosimetry and even in the interpretation of radiation induced steel embrittlement. At the High Flux Isotope Reactor pressure vessel the gamma induced reactions dominate the responses of {sup 237}Np and {sup 238}U dosimeters, and {sup 9}Be helium accumulation fluence monitors. The gamma induced atom displacement rate in steel is higher than corresponding neutron rate, and is the cause of ``accelerated embrittlement`` of HFIR materials. In a large body of water, adjacent to a fission plate, photofissions contribute significantly to the responses of fission monitors and need to be taken into account if the measurements are used for the qualification of the transport codes and cross-section libraries.

  10. Gastroesophageal scintiscanning in a pediatric population: dosimetry

    SciTech Connect

    Castronovo, F.P. Jr.

    1986-07-01

    The dosimetry associated with orally administered (/sup 99m/Tc)sulfur colloid for the diagnosis of gastroesophageal reflux has not been adequately described for the pediatric populations. Standard MIRD methodology was performed for the following: newborn, 1, 5, 10, and 15 yr old, and adult standard man. The critical organ for all pediatric groups was the lower large intestine with absorbed dose of 0.927, 0.380, 0.194, 0.120 and 0.0721 rad/100 microCi, respectively. For the adult the critical organ was the upper large intestine with an absorbed dose of 0.0518 rad/100 microCi. These data should be considered when administering (99mTc)sulfur colloid orally in a pediatric population.

  11. Review of the near-earth space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Guo, Jianming; Chen, Xiaoqian; Li, Shiyou

    2016-07-01

    The near-earth space radiation environment has a great effect to the spacecraft and maybe do harm to the astronaut's health. Thus, how to measure the radiation has become a serious challenge. In order to provide sufficient protection both for astronauts and for instruments on-board, dose equivalent and linear energy transfer should be measured instead of merely measuring total radiation dose. This paper reviews the methods of radiation measurement and presents a brief introduction of dosimetry instruments. The method can be divided into two different kinds, i.e., positive dosimetry and passive dosimetry. The former usually includes electronic devices which can be used for data storage and can offer simultaneous monitoring on space radiation. The passive dosimetry has a much simple structure, and need extra operation after on-orbit missions for measuring. To get more reliable data of radiation dosimetry, various instruments and methods had been applied in the spacecrafts and the manned spacecrafts in particular. The outlook of the development in the space radiation dosimetry measurement is also presented.

  12. Boron dose determination for BNCT using Fricke and EPR dosimetry

    SciTech Connect

    Wielopolski, L.; Ciesielski, B.

    1995-02-01

    In Boron Neutron Capture Therapy (BNCT) the dominant dose delivered to the tumor is due to {alpha} and {sup 7}Li charged particles resulting from a neutron capture by {sup 10}B and is referred to herein as the boron dose. Boron dose is directly attributable to the following two independent factors, one boron concentration and the neutron capture energy dependent cross section of boron, and two the energy spectrum of the neutrons that interact with boron. The neutron energy distribution at a given point is dictated by the incident neutron energy distribution, the depth in tissue, geometrical factors such as beam size and patient`s dimensions. To account for these factors can be accommodated by using Monte Carlo theoretical simulations. However, in conventional experimental BNCT dosimetry, e.g., using TLDs or ionization chambers, it is only possible to estimate the boron dose. To overcome some of the limitations in the conventional dosimetry, modifications in ferrous sulfate dosimetry (Fricke) and Electron Paramagnetic Resonance (EPR) dosimetry in alanine, enable to measure specifically boron dose in a mixed gamma neutron radiation fields. The boron dose, in either of the dosimeters, is obtained as a difference between measurements with boronated and unboronated dosimeters. Since boron participates directly in the measurements, the boron dosimetry reflects the true contribution, integral of the neutron energy spectrum with boron cross section, of the boron dose to the total dose. Both methods are well established and used extensively in dosimetry, they are presented briefly here.

  13. Specific issues in small animal dosimetry and irradiator calibration

    PubMed Central

    Yoshizumi, Terry; Brady, Samuel L.; Robbins, Mike E.; Bourland, J. Daniel

    2013-01-01

    Purpose In response to the increased risk of radiological terrorist attack, a network of Centers for Medical Countermeasures against Radiation (CMCR) has been established in the United States, focusing on evaluating animal model responses to uniform, relatively homogenous whole- or partial-body radiation exposures at relatively high dose rates. The success of such studies is dependent not only on robust animal models but on accurate and reproducible dosimetry within and across CMCR. To address this issue, the Education and Training Core of the Duke University School of Medicine CMCR organised a one-day workshop on small animal dosimetry. Topics included accuracy in animal dosimetry accuracy, characteristics and differences of cesium-137 and X-ray irradiators, methods for dose measurement, and design of experimental irradiation geometries for uniform dose distributions. This paper summarises the information presented and discussed. Conclusions Without ensuring accurate and reproducible dosimetry the development and assessment of the efficacy of putative countermeasures will not prove successful. Radiation physics support is needed, but is often the weakest link in the small animal dosimetry chain. We recommend: (i) A user training program for new irradiator users, (ii) subsequent training updates, and (iii) the establishment of a national small animal dosimetry center for all CMCR members. PMID:21961967

  14. Neutron dosimetry in boron neutron capture therapy

    SciTech Connect

    Fairchild, R.G.; Miola, U.J.; Ettinger, K.V.

    1981-01-01

    The recent development of various borated compounds and the utilization of one of these (Na/sub 2/B/sub 12/H/sub 11/SH) to treat brain tumors in clinical studies in Japan has renewed interest in neutron capture therapy. In these procedures thermal neutrons interact with /sup 10/B in boron containing cells through the /sup 10/B(n,..cap alpha..)/sup 7/Li reaction producing charged particles with a maximum range of approx. 10..mu..m in tissue. Borated analogs of chlorpromazine, porphyrin, thiouracil and deoxyuridine promise improved tumor uptake and blood clearance. The therapy beam from the Medical Research Reactor in Brookhaven contains neutrons from a modified and filtered fission spectrum and dosimetric consequences of the use of the above mentioned compounds in conjunction with thermal and epithermal fluxes are discussed in the paper. One of the important problems of radiation dosimetry in capture therapy is determination of the flux profile and, hence, the dose profile in the brain. This has been achieved by constructing a brain phantom made of TE plastic. The lyoluminescence technique provides a convenient way of monitoring the neutron flux distributions; the detectors for this purpose utilize /sup 6/Li and /sup 10/B compounds. Such compounds have been synthesized specially for the purpose of dosimetry of thermal and epithermal beams. In addition, standard lyoluminescent phosphors, like glutamine, could be used to determine the collisional component of the dose as well as the contribution of the /sup 14/N(n,p)/sup 14/C reaction. Measurements of thermal flux were compared with calculations and with measurements done with activation foils.

  15. Real-time volumetric scintillation dosimetry

    NASA Astrophysics Data System (ADS)

    Beddar, S.

    2015-01-01

    The goal of this brief review is to review the current status of real-time 3D scintillation dosimetry and what has been done so far in this area. The basic concept is to use a large volume of a scintillator material (liquid or solid) to measure or image the dose distributions from external radiation therapy (RT) beams in three dimensions. In this configuration, the scintillator material fulfills the dual role of being the detector and the phantom material in which the measurements are being performed. In this case, dose perturbations caused by the introduction of a detector within a phantom will not be at issue. All the detector configurations that have been conceived to date used a Charge-Coupled Device (CCD) camera to measure the light produced within the scintillator. In order to accurately measure the scintillation light, one must correct for various optical artefacts that arise as the light propagates from the scintillating centers through the optical chain to the CCD chip. Quenching, defined in its simplest form as a nonlinear response to high-linear energy transfer (LET) charged particles, is one of the disadvantages when such systems are used to measure the absorbed dose from high-LET particles such protons. However, correction methods that restore the linear dose response through the whole proton range have been proven to be effective for both liquid and plastic scintillators. Volumetric scintillation dosimetry has the potential to provide fast, high-resolution and accurate 3D imaging of RT dose distributions. Further research is warranted to optimize the necessary image reconstruction methods and optical corrections needed to achieve its full potential.

  16. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-07-08

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction.

  17. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  18. SECONDARY STANDARD CALIBRATION, MEASUREMENT AND IRRADIATION CAPABILITIES OF THE INDIVIDUAL MONITORING SERVICE AT THE HELMHOLTZ ZENTRUM MÜNCHEN: ASPECTS OF UNCERTAINTY AND AUTOMATION.

    PubMed

    Greiter, M B; Denk, J; Hoedlmoser, H

    2016-09-01

    The individual monitoring service at the Helmholtz Zentrum München has adopted the recommendations of the ISO 4037 and 6980 standards series as base of its dosimetric systems for X-ray, gamma and beta dosimetry. These standards define technical requirements for radiation spectra and measurement processes, but leave flexibility in the implementation of irradiations as well as in the resulting uncertainty in dose or dose rate. This article provides an example for their practical implementation in the Munich IAEA/WHO secondary standard dosimetry laboratory. It focusses on two aspects: automation issues and uncertainties in calibration.

  19. Person Reliability

    ERIC Educational Resources Information Center

    Lumsden, James

    1977-01-01

    Person changes can be of three kinds: developmental trends, swells, and tremors. Person unreliability in the tremor sense (momentary fluctuations) can be estimated from person characteristic curves. Average person reliability for groups can be compared from item characteristic curves. (Author)

  20. Management Planning for Workplace Automation.

    ERIC Educational Resources Information Center

    McDole, Thomas L.

    Several factors must be considered when implementing office automation. Included among these are whether or not to automate at all, the effects of automation on employees, requirements imposed by automation on the physical environment, effects of automation on the total organization, and effects on clientele. The reasons behind the success or…

  1. Laboratory Automation and Middleware.

    PubMed

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory.

  2. Validation of a precision radiochromic film dosimetry system for quantitative two-dimensional imaging of acute exposure dose distributions.

    PubMed

    Dempsey, J F; Low, D A; Mutic, S; Markman, J; Kirov, A S; Nussbaum, G H; Williamson, J F

    2000-10-01

    We present an evaluation of the precision and accuracy of image-based radiochromic film (RCF) dosimetry performed using a commercial RCF product (Gafchromic MD-55-2, Nuclear Associates, Inc.) and a commercial high-spatial resolution (100 microm pixel size) He-Ne scanning-laser film-digitizer (Personal Densitometer, Molecular Dynamics, Inc.) as an optical density (OD) imaging system. The precision and accuracy of this dosimetry system are evaluated by performing RCF imaging dosimetry in well characterized conformal external beam and brachytherapy high dose-rate (HDR) radiation fields. Benchmarking of image-based RCF dosimetry is necessary due to many potential errors inherent to RCF dosimetry including: a temperature-dependent time evolution of RCF dose response; nonuniform response of RCF; and optical-polarization artifacts. In addition, laser-densitometer imaging artifacts can produce systematic OD measurement errors as large as 35% in the presence of high OD gradients. We present a RCF exposure and readout protocol that was developed for the accurate dosimetry of high dose rate (HDR) radiation sources. This protocol follows and expands upon the guidelines set forth by the American Association of Physicists in Medicine (AAPM) Task Group 55 report. Particular attention is focused on the OD imaging system, a scanning-laser film digitizer, modified to eliminate OD artifacts that were not addressed in the AAPM Task Group 55 report. RCF precision using this technique was evaluated with films given uniform 6 MV x-ray doses between 1 and 200 Gy. RCF absolute dose accuracy using this technique was evaluated by comparing RCF measurements to small volume ionization chamber measurements for conformal external-beam sources and an experimentally validated Monte Carlo photon-transport simulation code for a 192Ir brachytherapy source. Pixel-to-pixel standard deviations of uniformly irradiated films were less than 1% for doses between 10 and 150 Gy; between 1% and 5% for lower

  3. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    SciTech Connect

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I; Rozendaal, R; Spreeuw, H; Herk, M van

    2014-06-15

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is done offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.

  4. Design and Construction of an Optical Computed Tomography Scanner for Polymer Gel Dosimetry Application

    PubMed Central

    Zakariaee, Seyed Salman; Mesbahi, Asghar; Keshtkar, Ahmad; Azimirad, Vahid

    2014-01-01

    Polymer gel dosimeter is the only accurate three dimensional (3D) dosimeter that can measure the absorbed dose distribution in a perfect 3D setting. Gel dosimetry by using optical computed tomography (OCT) has been promoted by several researches. In the current study, we designed and constructed a prototype OCT system for gel dosimetry. First, the electrical system for optical scanning of the gel container using a Helium-Neon laser and a photocell was designed and constructed. Then, the mechanical part for two rotational and translational motions was designed and step motors were assembled to it. The data coming from photocell was grabbed by the home-built interface and sent to a personal computer. Data processing was carried out using MATLAB software. To calibrate the system and tune up the functionality of it, different objects was designed and scanned. Furthermore, the spatial and contrast resolution of the system was determined. The system was able to scan the gel dosimeter container with a diameter up to 11 cm inside the water phantom. The standard deviation of the pixels within water flask image was considered as the criteria for image uniformity. The uniformity of the system was about ±0.05%. The spatial resolution of the system was approximately 1 mm and contrast resolution was about 0.2%. Our primary results showed that this system is able to obtain two-dimensional, cross-sectional images from polymer gel samples. PMID:24761377

  5. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    SciTech Connect

    Straume, T.; Ricker, Y.; Thut, M.

    1988-08-29

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

  6. EDITORIAL: Special issue on radiation dosimetry Special issue on radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Sharpe, Peter

    2009-04-01

    This special issue of Metrologia on radiation dosimetry is the second in a trilogy on the subject of ionizing radiation measurements, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The work of Section II, on radionuclide metrology, was covered in issue 44(4), published in 2007, and that of Section III, on neutron metrology, will be covered in a special issue to be published shortly. This issue covers the work of Section I (x-rays and γ rays, and charged particles). The proposal to publish special issues of Metrologia covering the work of the CCRI Sections was first made in 2003 and refined at the two subsequent meetings of the CCRI in 2005 and 2007. The overall aim is to present the work of the CCRI to a wider metrological audience and to highlight the relevance and importance of the field. The main focus of our special issue on dosimetry metrology is on the 'state of the art' in the various areas covered, with an indication of the current developments taking place and the problems and challenges that remain. Where appropriate, this is set in a brief historical context, although it is not the aim to give a historical review. The need for accurate measurement has been appreciated from the pioneering days of the use of ionizing radiation in the early 20th century, particularly in the fields of diagnostic and therapeutic medicine. Over the years, the range of applications for ionizing radiation has expanded both in scope and in the types and energies of radiation employed. This has led to the need to develop a wide variety of measurement techniques and standards covering fields ranging from the low doses experienced in environmental and protection applications to the extremely high doses used in industrial processing. The different types of radiation employed give rise to the need for dose measurements in radiation beams whose effective penetration through a material such as water ranges from a

  7. Automating checks of plan check automation.

    PubMed

    Halabi, Tarek; Lu, Hsiao-Ming

    2014-07-08

    While a few physicists have designed new plan check automation solutions for their clinics, fewer, if any, managed to adapt existing solutions. As complex and varied as the systems they check, these programs must gain the full confidence of those who would run them on countless patient plans. The present automation effort, planCheck, therefore focuses on versatility and ease of implementation and verification. To demonstrate this, we apply planCheck to proton gantry, stereotactic proton gantry, stereotactic proton fixed beam (STAR), and IMRT treatments.

  8. WANTED: Fully Automated Indexing.

    ERIC Educational Resources Information Center

    Purcell, Royal

    1991-01-01

    Discussion of indexing focuses on the possibilities of fully automated indexing. Topics discussed include controlled indexing languages such as subject heading lists and thesauri, free indexing languages, natural indexing languages, computer-aided indexing, expert systems, and the need for greater creativity to further advance automated indexing.…

  9. The Automated Office.

    ERIC Educational Resources Information Center

    Naclerio, Nick

    1979-01-01

    Clerical personnel may be able to climb career ladders as a result of office automation and expanded job opportunities in the word processing area. Suggests opportunities in an automated office system and lists books and periodicals on word processing for counselors and teachers. (MF)

  10. Planning for Office Automation.

    ERIC Educational Resources Information Center

    Sherron, Gene T.

    1982-01-01

    The steps taken toward office automation by the University of Maryland are described. Office automation is defined and some types of word processing systems are described. Policies developed in the writing of a campus plan are listed, followed by a section on procedures adopted to implement the plan. (Author/MLW)

  11. Work and Programmable Automation.

    ERIC Educational Resources Information Center

    DeVore, Paul W.

    A new industrial era based on electronics and the microprocessor has arrived, an era that is being called intelligent automation. Intelligent automation, in the form of robots, replaces workers, and the new products, using microelectronic devices, require significantly less labor to produce than the goods they replace. The microprocessor thus…

  12. Order Division Automated System.

    ERIC Educational Resources Information Center

    Kniemeyer, Justin M.; And Others

    This publication was prepared by the Order Division Automation Project staff to fulfill the Library of Congress' requirement to document all automation efforts. The report was originally intended for internal use only and not for distribution outside the Library. It is now felt that the library community at-large may have an interest in the…

  13. Automation and Cataloging.

    ERIC Educational Resources Information Center

    Furuta, Kenneth; And Others

    1990-01-01

    These three articles address issues in library cataloging that are affected by automation: (1) the impact of automation and bibliographic utilities on professional catalogers; (2) the effect of the LASS microcomputer software on the cost of authority work in cataloging at the University of Arizona; and (3) online subject heading and classification…

  14. Automation in Immunohematology

    PubMed Central

    Bajpai, Meenu; Kaur, Ravneet; Gupta, Ekta

    2012-01-01

    There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process. PMID:22988378

  15. Advances in inspection automation

    NASA Astrophysics Data System (ADS)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  16. A probabilistic gastrointestinal tract dosimetry model

    NASA Astrophysics Data System (ADS)

    Huh, Chulhaeng

    In internal dosimetry, the tissues of the gastrointestinal (GI) tract represent one of the most radiosensitive organs of the body with the hematopoietic bone marrow. Endoscopic ultrasound is a unique tool to acquire in-vivo data on GI tract wall thicknesses of sufficient resolution needed in radiation dosimetry studies. Through their different echo texture and intensity, five layers of differing echo patterns for superficial mucosa, deep mucosa, submucosa, muscularis propria and serosa exist within the walls of organs composing the alimentary tract. Thicknesses for stomach mucosa ranged from 620 +/- 150 mum to 1320 +/- 80 mum (total stomach wall thicknesses from 2.56 +/- 0.12 to 4.12 +/- 0.11 mm). Measurements made for the rectal images revealed rectal mucosal thicknesses from 150 +/- 90 mum to 670 +/- 110 mum (total rectal wall thicknesses from 2.01 +/- 0.06 to 3.35 +/- 0.46 mm). The mucosa thus accounted for 28 +/- 3% and 16 +/- 6% of the total thickness of the stomach and rectal wall, respectively. Radiation transport simulations were then performed using the Monte Carlo N-particle transport code (MCNP) 4C transport code to calculate S values (Gy/Bq-s) for penetrating and nonpenetrating radiations such as photons, beta particles, conversion electrons and auger electrons of selected nuclides, I123, I131, Tc 99m and Y90 under two source conditions: content and mucosa sources, respectively. The results of this study demonstrate generally good agreement with published data for the stomach mucosa wall. The rectal mucosa data are consistently higher than published data compared with the large intestine due to different radiosensitive cell thicknesses (350 mum vs. a range spanning from 149 mum to 729 mum) and different geometry when a rectal content source is considered. Generally, the ICRP models have been designed to predict the amount of radiation dose in the human body from a "typical" or "reference" individual in a given population. The study has been performed to

  17. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  18. Automate it: ligand-binding assay productivity in a discovery bioanalytical setting.

    PubMed

    Leung, Sheldon S; Dreher, Elizabeth A

    2013-07-01

    In multiple industries, including the biopharmaceutical industry, automation is synonymous with increased productivity. Environments with high-throughput needs commonly employ automation for efficiency. However, in a discovery bioanalytical ligand-binding assay laboratory setting where the focus is not necessarily on sample analysis throughput, but instead on assay development and characterization, is automation applicable? Can automation enhance productivity when tasks are more customized than routine? In this Perspective we review the different categories of automation with ligand-binding assays with these questions in mind. In considering whether automation technology has progressed far enough to result in a positive return in investment in the discovery setting, the resource investment required to operate in this space was contrasted with the gain in productivity. In our opinion, technology advancements in automated technology platforms, and especially personal automation, have allowed these categories to strike the right balance for investment in the discovery laboratory setting.

  19. Automated Sample Deoxygenation for Improved Luminescence Measurements.

    DTIC Science & Technology

    1986-11-25

    fET-AY4 732 AUTOMATED SAMPLE DEOXYGENATION FOR IMPROVED LUMINESCENCE MEASUREMENTS U) EMORY UNIV RTLANTA GA DEPT OF CHEMISTRY M E ROLLIE ET AL 25 NOV... Deoxygenation for Improved Luminescence Measurements 12 PERSONAL AUTHOR(S) | ,Rollie, M.E.; Patonay, Gabor; and Warner, Isiah M. A .3a. TYPE OF REPORT...GROUP ISU*GRO P ,,,uminescence Spectroscopy; Fluorescence Analysis,* Room *f Temperature Phosphorescence; Deoxygenation ; Quenching ISTRACT (Continue on

  20. Overview of patient dosimetry in diagnostic radiology in the USA for the past 50 years

    SciTech Connect

    Huda, Walter; Nickoloff, Edward L.; Boone, John M.

    2008-12-15

    This review covers the role of medical physics in addressing issues directly related to patient dosimetry in radiography, fluoroscopy, mammography, and CT. The sections on radiography and fluoroscopy radiation doses review the changes that have occurred during the last 50 to 60 years. A number of technological improvements have contributed to both a significant reduction in patient and staff radiation doses and improvements to the image quality during this period of time. There has been a transition from film-screen radiography with hand dip film processing to electronic digital imaging utilizing CR and DR. Similarly, fluoroscopy has progressed by directly viewing image intensifiers in darkened rooms to modern flat panel image receptor systems utilizing pulsed radiation, automated variable filtration, and digitally processed images. Mammography is one of the most highly optimized imaging procedures performed, because it is a repetitive screening procedure that results in annual radiation exposure. Mammography is also the only imaging procedure in the United States in which the radiation dose is regulated by the federal government. Consequently, many medical physicists have studied the dosimetry associated with screen-film and digital mammography. In this review, a brief history of mammography dose assessment by medical physicists is discussed. CT was introduced into clinical practice in the early 1970s, and has grown into one of the most important modalities available for diagnostic imaging. CT dose quantities and measurement techniques are described, and values of radiation dose for different types of scanner are presented. Organ and effective doses to adult patients are surveyed from the earliest single slice scanners, to the latest versions that include up to two x-ray tubes and can incorporate as many as 256 detector channels. An overview is provided of doses received by pediatric patients undergoing CT examinations, as well as methods, and results, of studies

  1. Statistical construction of a Japanese male liver phantom for internal radionuclide dosimetry.

    PubMed

    Mofrad, Farshid Babapour; Zoroofi, Reza Aghaeizadeh; Tehrani-Fard, Ali Abbaspour; Akhlaghpoor, Shahram; Hori, Masatoshi; Chen, Yen-Wei; Sato, Yoshinobu

    2010-09-01

    A computational framework is presented, based on statistical shape modelling, for construction of race-specific organ models for internal radionuclide dosimetry and other nuclear-medicine applications. This approach was applied to the construction of a Japanese liver phantom, using the liver of the digital Zubal phantom as the template and 35 liver computed tomography (CT) scans of male Japanese individuals as a training set. The first step was the automated object-space registration (to align all the liver surfaces in one orientation), using a coherent-point-drift maximum-likelihood alignment algorithm, of each CT scan-derived manually contoured liver surface and the template Zubal liver phantom. Six landmark points, corresponding to the intersection of the contours of the maximum-area sagittal, transaxial and coronal liver sections were employed to perform the above task. To find correspondence points in livers (i.e. 2000 points for each liver), each liver surface was transformed into a mesh, was mapped for the parameter space of a sphere (parameterisation), yielding spherical harmonics (SPHARMs) shape descriptors. The resulting spherical transforms were then registered by minimising the root-mean-square distance among the SPHARMs coefficients. A mean shape (i.e. liver) and its dispersion (i.e. covariance matrix) were next calculated and analysed by principal components. Leave-one-out-tests using 5-35 principal components (or modes) demonstrated the fidelity of the foregoing statistical analysis. Finally, a voxelisation algorithm and a point-based registration is utilised to convert the SPHARM surfaces into its corresponding voxelised and adjusted the Zubal phantom data, respectively. The proposed technique used to create the race-specific statistical phantom maintains anatomic realism and provides the statistical parameters for application to radionuclide dosimetry.

  2. Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.

    SciTech Connect

    Ward, Dann C.

    2011-09-01

    This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

  3. Macroscopic to Microscopic Scales of Particulate Dosimetry: From Source to Fate in the Body

    EPA Science Inventory

    Additional perspective with regards to particle dosimetry is achieved by exploring dosimetry across a range of scales from macroscopic to microscopic in scope. Typically, one thinks of dosimetry as what happens when a particle is inhaled, where it is deposited, and how it is clea...

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  5. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  6. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  7. Student Perceptions of an Online Medical Dosimetry Program

    SciTech Connect

    Lenards, Nishele

    2011-07-01

    The University of Wisconsin-La Crosse offers the first online medical dosimetry program in the nation. There is no data to research a program of this type. This research consisted of the evaluation of other distance education programs including health profession programs in addition to face-to-face medical dosimetry programs. There was a need to collect and analyze student perceptions of online learning in medical dosimetry. This research provided a guide for future implementation by other programs as well as validated the University of Wisconsin-La Crosse program. Methodology used consisted of an electronic survey sent to all previous and currently enrolled students in the University of Wisconsin-La Crosse medical dosimetry program. The survey was both quantitative and qualitative in demonstrating attitudinal perceptions of students in the program. Quantitative data was collected and analyzed using a 5-point Likert scale. Qualitative data was gathered based on the open-ended responses and the identifying themes from the responses. The results demonstrated an overall satisfaction with this program, the instructor, and the online courses. Students felt a sense of belonging to the courses and the program. Considering that a majority of the students had never taken an online course previously, the students felt there were no technology issues. Future research should include an evaluation of board exam statistics for students enrolled in the online and face-to-face medical dosimetry programs.

  8. HADES PC network: an automated data entry system

    SciTech Connect

    Hegemann, D.L.

    1986-09-12

    Mound's Health Physics section is faced with an increasing need to store and retrieve radiological data. This need has been addressed by the Health Physics Automated Data Entry System (HADES) which assumed a full production status on April 1, 1986. Mound's Technical Computer Support group implemented HADES in a series of phases which allowed high priority needs to be immediately supported. As a result of the system's personal computer-based structure, additional capabilities such as automated data acquisition were easily brought on-line. Since its inception in the first quarter of 1984, HADES has matured into a cost-efficient automated data acquisition system for Mound's Health Physics section.

  9. Systematic review automation technologies.

    PubMed

    Tsafnat, Guy; Glasziou, Paul; Choong, Miew Keen; Dunn, Adam; Galgani, Filippo; Coiera, Enrico

    2014-07-09

    Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects.We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time.

  10. Systematic review automation technologies

    PubMed Central

    2014-01-01

    Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects. We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time. PMID:25005128

  11. Current personnel dosimetry practices at DOE facilities

    SciTech Connect

    Fix, J.J.

    1981-05-01

    Only three parameters were included in the personnel occupational exposure records by all facilities. These are employee name, social security number, and whole body dose. Approximate percentages of some other parameters included in the record systems are sex (50%), birthdate (90%), occupation (26%), previous employer radiation exposure (74%), etc. Statistical analysis of the data for such parameters as sex versus dose distribution, age versus dose distribution, cumulative lifetime dose, etc. was apparently seldom done. Less than 50% of the facilities reported having formal documentation for either the dosimeter, records system, or reader. Slightly greater than 50% of facilities reported having routine procedures in place. These are considered maximum percentages because some respondents considered computer codes as formal documentation. The repository receives data from DOE facilities regarding the (a) distribution of annual whole body doses, (b) significant internal depositions, and (c) individual doses upon termination. It is expected that numerous differences exist in the dose data submitted by the different facilities. Areas of significant differences would likely include the determination of non-measurable doses, the methods used to determine previous employer radiation dose, the methods of determining cumulative radiation dose, and assessment of internal doses. Undoubtedly, the accuracy of the different dosimetry systems, especially at low doses, is very important to the credibility of data summaries (e.g., man-rem) provided by the repository.

  12. Biological dosimetry in Russian and Italian astronauts

    NASA Astrophysics Data System (ADS)

    Greco, O.; Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Scampoli, P.; Snigiryova, G.; Obe, G.

    Large uncertainties are associated with estimates of equivalent dose and cancer risk for crews of longterm space missions. Biological dosimetry in astronauts is emerging as a useful technique to compare predictions based on quality factors and risk coefficients with actual measurements of biological damage in-flight. In the present study, chromosomal aberrations were analyzed in one Italian and eight Russian cosmonauts following missions of different duration on the MIR and the international space station (ISS). We used the technique of fluorescence in situ hybridization (FISH) to visualize translocations in chromosomes 1 and 2. In some cases, an increase in chromosome damage was observed after flight, but no correlation could be found between chromosome damage and flight history, in terms of number of flights at the time of sampling, duration in space and extra-vehicular activity. Blood samples from one of the cosmonauts were exposed in vitro to 6 MeV X-rays both before and after the flight. An enhancement in radiosensitivity induced by the spaceflight was observed.

  13. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  14. Biological dosimetry by interphase chromosome painting

    NASA Technical Reports Server (NTRS)

    Durante, M.; George, K.; Yang, T. C.

    1996-01-01

    Both fluorescence in situ hybridization of metaphase spreads with whole-chromosome probes and premature chromosome condensation in interphase nuclei have been used in the past to estimate the radiation dose to lymphocytes. We combined these techniques to evaluate the feasibility of using painted interphase chromosomes for biodosimetry. Human peripheral lymphocytes were exposed to gamma rays and fused to mitotic Chinese hamster cells either immediately after irradiation or after 8 h incubation at 37 degrees C. Interphase or metaphase human chromosomes were hybridized with a composite probe specific for human chromosomes 3 and 4. The dose-response curve for fragment induction immediately after irradiation was linear; these results reflected breakage frequency in the total genome in terms of DNA content per chromosome. At 8 h after irradiation, the dose-response curve for chromosome interchanges, the prevalent aberration in interphase chromosomes, was linear-quadratic and similar to that observed for metaphase chromosomes. These results suggest that painting prematurely condensed chromosomes can be useful for biological dosimetry when blood samples are available shortly after the exposure, or when interphase cells are to be scored instead of mitotic cells.

  15. Mayak worker dosimetry study: An overview

    SciTech Connect

    Vasilenko, E. K.; Khokhryakov, V. F.; Miller, S C.; Fix, Jack J.; Eckerman, Keith F.; Choe, Dong Ok; Gorelov, Mikhail; Khokhryakov, Victor V.; Knyazev, V.; Krahenbuhl, Melinda P.; Scherpelz, Robert I.; Smetanin, Mikhail; Suslova, K. G.; Vostrotin, V.

    2007-09-01

    The Mayak Production Association (MPA) was the first plutonium production plant in the former Soviet Union. Workers at the MPA were exposed to relatively large internal radiation intakes and external radiation exposures, particularly in the early years of plant operations. This paper describes the updated dosimetry database, Doses-2005. Doses-2005 represents a significant improvement in the determination of absorbed organ dose from external radiation and plutonium intake for the original cohort of 18,831 Mayak workers. The methods of dose reconstruction of absorbed organ doses from external radiation uses: 1) archive records of measured dose and worker exposure history, 2) measured energy and directional response characteristics of historical Mayak film dosimeters, and 3) calculated dose conversion factors for Mayak Study-defined exposure scenarios using Monte Carlo techniques. The methods of dose reconstruction for plutonium intake uses two revised models developed from empirical data derived from bioassay and autopsy cases and/or updates from prevailing or emerging International Commission on Radiological Protection models. Other sources of potential significant exposure to workers such as medical diagnostic x-rays, ambient onsite external radiation, neutron radiation, intake of airborne effluent, and intake of nuclides other than plutonium were evaluated to determine their impact on the dose estimates.

  16. Calibration facility for environment dosimetry instruments

    NASA Astrophysics Data System (ADS)

    Bercea, Sorin; Celarel, Aurelia; Cenusa, Constantin

    2013-12-01

    In the last ten years, the nuclear activities, as well as the major nuclear events (see Fukushima accident) had an increasing impact on the environment, merely by contamination with radioactive materials. The most conferment way to quickly identify the presence of some radioactive elements in the environment, is to measure the dose-equivalent rate H. In this situation, information concerning the values of H due only to the natural radiation background must exist. Usually, the values of H due to the natural radiation background, are very low (˜10-9 - 10-8 Sv/h). A correct measurement of H in this range involve a performing calibration of the measuring instruments in the measuring range corresponding to the natural radiation background lead to important problems due to the presence of the natural background itself the best way to overlap this difficulty is to set up the calibration stand in an area with very low natural radiation background. In Romania, we identified an area with such special conditions at 200 m dept, in a salt mine. This paper deals with the necessary requirements for such a calibration facility, as well as with the calibration stand itself. The paper includes also, a description of the calibration stand (and images) as well as the radiological and metrological parameters. This calibration facilities for environment dosimetry is one of the few laboratories in this field in Europe.

  17. Optical dosimetry for interstitial photodynamic therapy

    SciTech Connect

    Arnfield, M.R.; Tulip, J.; Chetner, M.; McPhee, M.S. )

    1989-07-01

    An approach to photodynamic treatment of tumors is the interstitial implantation of fiber optic light sources. Dosimetry is critical in identifying regions of low light intensity in the tumor which may prevent tumor cure. We describe a numerical technique for calculating light distributions within tumors, from multiple fiber optic sources. The method was tested using four translucent plastic needles, which were placed in a 0.94 X 0.94 cm grid pattern within excised Dunning R3327-AT rat prostate tumors. A cylindrical diffusing fiber tip, illuminated by 630 nm dye laser light was placed within one needle and a miniature light detector was placed within another. The average penetration depth in the tumor region between the two needles was calculated from the optical power measured by the detector, using a modified diffusion theory. Repeating the procedure for each pair of needles revealed significant variations in penetration depth within individual tumors. Average values of penetration depth, absorption coefficient, scattering coefficient, and mean scattering cosine were 0.282 cm, 0.469 cm-1, 250 cm-1 and 0.964, respectively. Calculated light distributions from four cylindrical sources in tumors gave reasonable agreement with direct light measurements using fiber optic probes.

  18. Reactor dosimetry and RPV life management

    SciTech Connect

    Belousov, S.; Ilieva, K.; Mitev, M.

    2011-07-01

    Reactor dosimetry (RD) is a tool that provides data for neutron fluence accumulated over the reactor pressure vessel (RPV) during the reactor operation. This information, however, is not sufficient for RPV lifetime assessment. The life management of RPV is a multidisciplinary task. To assess whether the RPV steel properties at the current stage (for actual accumulated neutron fluence) of reactor operation are still 'safe enough,' the dependence of material properties on the fluence must be known; this is a task for material science (MS). Moreover, the mechanical loading over the RPV during normal operation and accidence have to be known, as well, for evaluation, if the RPV material integrity in this loading condition and existing cracks is provided. The crack loading path in terms of stress intensity factor is carried out by structural analyses (SA). Pressure and temperature distribution over RPV used in these analyses are obtained from a thermal hydraulic (TH) calculation. The conjunction of RD and other disciplines in RPV integrity assessment is analyzed in accordance with the FFP (fitness for purpose) approach. It could help to improve the efficiency in multi-disciplinary tasks solutions. (authors)

  19. Millimeter wave dosimetry of human skin.

    PubMed

    Alekseev, S I; Radzievsky, A A; Logani, M K; Ziskin, M C

    2008-01-01

    To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

  20. Personnel real time dosimetry in interventional radiology.

    PubMed

    Servoli, L; Bissi, L; Fabiani, S; Magalotti, D; Placidi, P; Scorzoni, A; Calandra, A; Cicioni, R; Chiocchini, S; Dipilato, A C; Forini, N; Paolucci, M; Di Lorenzo, R; Cappotto, F P; Scarpignato, M; Maselli, A; Pentiricci, A

    2016-12-01

    Interventional radiology and hemodynamic procedures have rapidly grown in number in the past decade, increasing the importance of personnel dosimetry not only for patients but also for medical staff. The optimization of the absorbed dose during operations is one of the goals that fostered the development of real-time dosimetric systems. Indeed, introducing proper procedure optimization, like correlating dose rate measurements with medical staff position inside the operating room, the absorbed dose could be reduced. Real-time dose measurements would greatly facilitate this task through real-time monitoring and automatic data recording. Besides real-time dose monitoring could allow automatic data recording. In this work, we will describe the calibration and validation of a wireless real-time prototype dosimeter based on a new sensor device (CMOS imager). The validation measurement campaign in clinical conditions has demonstrated the prototype capability of measuring dose-rates with a frequency in the range of few Hz, and an uncertainty smaller than 10%.

  1. Dosimetry of in situ activated dysprosium microspheres.

    PubMed

    Adnani, N

    2004-03-07

    This paper presents the results of a study aimed at investigating the dosimetry of stable dysprosium microspheres activated, in situ, by a linac generated photon beam. In phantom measurements of the neutron flux within an 18 MV photon beam were performed using CR-39 detectors and gold activation. The results were used in conjunction with a Monte Carlo computer simulation to investigate the dose distribution resulting from the activation of dysprosium (Dy) microspheres using an 18 MV photon beam. Different depths, lesion volumes and volume concentrations of microspheres are investigated. The linac lower collimator jaws are assumed completely closed to shield the tumour volume from the photon dose. Using a single AP field with 0 x 0 cm2 field size (closed jaws), a photon dose rate of 600 MU min(-1) and 80 cm SSD for 10 min, an average dose exceeding 1 Gy can be delivered to spherical lesions of 0.5 cm and higher diameter. The variation of the average dose with the size of the lesion reaches saturation for tumour volumes exceeding 1 cm in diameter. This report shows that the photon beam of a high-energy linac can be used to activate Dy microspheres in situ and, as a result, deliver a significant dose of beta radiation. Non-radioactive Dy microspheres do not have the toxicity and imaging problems associated with commercially available yttrium-90 based products.

  2. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    NASA Astrophysics Data System (ADS)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  3. Managing laboratory automation

    PubMed Central

    Saboe, Thomas J.

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Finally, some comments on future automation need are discussed. PMID:18925018

  4. ESR Dosimetry for Atomic Bomb Survivors Using Shell Buttons and Tooth Enamel

    NASA Astrophysics Data System (ADS)

    Ikeya, Motoji; Miyajima, Junko; Okajima, Shunzo

    1984-09-01

    Atomic bomb radiation doses to humans at Nagasaki and Hiroshima are investigated by electron spin resonance (ESR) from shell buttons and tooth enamel voluntarily supplied by survivors. A shell button gives a dose of 2.1± 0.2 Gy with ESR signals at g=2.001 and g=1.997 while the signal at g=1.997 for the tooth enamel of the same person is 1.9± 0.5 Gy. Other teeth show doses from about 0.5 Gy to 3 Gy. An apparent shielding converted to a concrete thickness is given using the T65D calculated in 1965. Teeth extracted during dental treatment should be preserved for cumulative radiation dosimetry.

  5. Investigation of thermoluminescence properties of mobile phone screen displays as dosimeters for accidental dosimetry

    NASA Astrophysics Data System (ADS)

    Mrozik, Anna; Marczewska, B.; Bilski, P.; Kłosowski, M.

    2014-11-01

    The rapid assessment of the radiation dose after unexpected exposure is a task of accidental dosimetry. In case of a radiological accident glasses originating from mobile phone screens, placed usually near the human body, could be used as emergency thermoluminescent (TL) personal dosimeters. The time between irradiation and TL readout is crucial and therefore preparation of the mobile phone screens and their readout conditions should be optimized. The influence of the samples etching, bleaching and selection of the optical filters based on measurement of the emission spectrum of irradiated glass samples during heating for different types of mobile phones were the subjects of our investigation. Obtained results showed that glasses extracted from different brands of mobile phones have different dosimetric properties but all of them give a luminescent signal which can be used to calculate the dose.

  6. A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Penjweini, Rozhin; Gemmell, Nathan R.; Veilleux, Israel; McCarthy, Aongus; Buller, Gerald S.; Hadfield, Robert H.; Wilson, Brian C.; Zhu, Timothy C.

    2016-01-01

    Accurate photodynamic therapy (PDT) dosimetry is critical for the use of PDT in the treatment of malignant and nonmalignant localized diseases. A singlet oxygen explicit dosimetry (SOED) model has been developed for in vivo purposes. It involves the measurement of the key components in PDT—light fluence (rate), photosensitizer concentration, and ground-state oxygen concentration ([3O2])—to calculate the amount of reacted singlet oxygen ([1O2]rx), the main cytotoxic component in type II PDT. Experiments were performed in phantoms with the photosensitizer Photofrin and in solution using phosphorescence-based singlet oxygen luminescence dosimetry (SOLD) to validate the SOED model. Oxygen concentration and photosensitizer photobleaching versus time were measured during PDT, along with direct SOLD measurements of singlet oxygen and triplet state lifetime (τΔ and τt), for various photosensitizer concentrations to determine necessary photophysical parameters. SOLD-determined cumulative [1O2]rx was compared to SOED-calculated [1O2]rx for various photosensitizer concentrations to show a clear correlation between the two methods. This illustrates that explicit dosimetry can be used when phosphorescence-based dosimetry is not feasible. Using SOED modeling, we have also shown evidence that SOLD-measured [1O2]rx using a 523 nm pulsed laser can be used to correlate to singlet oxygen generated by a 630 nm laser during a clinical malignant pleural mesothelioma (MPM) PDT protocol by using a conversion formula. PMID:27929427

  7. A transferability study of the EPR-tooth-dosimetry technique.

    PubMed

    Sholom, S; Chumak, V; Desrosiers, M; Bouville, A

    2006-01-01

    The transferability of a measurement protocol from one laboratory to another is an important feature of any mature, standardised protocol. The electron paramagnetic resonance (EPR)-tooth dosimetry technique that was developed in Scientific Center for Radiation Medicine, AMS, Ukraine (SCRM) for routine dosimetry of Chernobyl liquidators has demonstrated consistent results in several inter-laboratory measurement comparisons. Transferability to the EPR dosimetry laboratory at the National Institute of Standards and Technology (NIST) was examined. Several approaches were used to test the technique, including dose reconstruction of SCRM-NIST inter-comparison samples. The study has demonstrated full transferability of the technique and the possibility to reproduce results in a different laboratory environment.

  8. Report from the dosimetry working group to CEDR project management

    SciTech Connect

    Fix, J J

    1994-08-01

    On August 2, 1989, Admiral Watkins, Secretary of the US Department of Energy (DOE), presented a four-point program designed to enhance the DOE epidemiology program. One part of this program was the establishment of a Comprehensive Epidemiologic Data Resource (CEDR) to facilitate independent research to validate and supplement DOE research on human health effects. A Dosimetry Working Group was formed during May 1991 to evaluate radiation dose variables and associated documentation that would be most useful to researchers for retrospective and prospective studies. The Working Group consisted of thirteen individuals with expertise and experience in health physics, epidemiology, dosimetry, computing, and industrial hygiene. A final report was delivered to CEDR Project Management during February 1992. The report contains a number of major recommendations concerning collection, interpretation, and documentation of dosimetry data to maximize their usefulness to researchers using CEDR for examining possible health effects of occupational exposure to ionizing radiation.

  9. Optical-CT gel-dosimetry I: basic investigations.

    PubMed

    Oldham, Mark; Siewerdsen, Jeffrey H; Kumar, Sai; Wong, John; Jaffray, David A

    2003-04-01

    Comprehensive verification of the intricate dose distributions associated with advanced radiation treatments is now an immediate and substantial problem. The task is challenging using traditional dosimeters because of restrictions to point measurements (ion chambers, diodes, TLD, etc.) or planar measurements (film). In essence, rapid advances in the technology to deliver radiation treatments have not been paralleled by corresponding advances in the ability to verify these treatments. A potential solution has emerged in the form of water equivalent three dimensional (3D) gel-dosimetry. In this paper we present basic characterization and performance studies of a prototype optical-CT scanning system developed in our laboratory. An analysis of the potential role or scope of gel dosimetry, in relation to other dosimeters, and to verification across the spectrum of therapeutic techniques is also given. The characterization studies enabled the determination of nominal operating conditions for optical-CT scanning. "Finger" phantoms are introduced as a powerful and flexible tool for the investigation of optical-CT performance. The modulation-transfer function (MTF) of the system is determined to be better than 10% out to 1 mm(-1), confirming sub-mm imaging ability. System performance is demonstrated by the acquisition of a 1 x 1 x 1 mm3 dataset through the dose distribution delivered by an x-ray lens that focuses x rays in the energy range 40-80 KeV. This 3D measurement would be extremely difficult to achieve with other dosimetry techniques and highlights some of the strengths of gel dosimetry. Finally, an optical Monte Carlo model is introduced and shown to have potential to model light transport through gel-dosimetry systems, and to provide a tool for the study and optimization of optical-CT gel dosimetry. The model utilizes Mie scattering theory and requires knowledge of the variation of the particle size distribution with dose. The latter was determined here using the

  10. Automated decision stations

    NASA Technical Reports Server (NTRS)

    Tischendorf, Mark

    1990-01-01

    This paper discusses the combination of software robots and expert systems to automate everyday business tasks. Tasks which require people to repetitively interact with multiple systems screens as well as multiple systems.

  11. Automating the Media Center.

    ERIC Educational Resources Information Center

    Holloway, Mary A.

    1988-01-01

    Discusses the need to develop more efficient information retrieval skills by the use of new technology. Lists four stages used in automating the media center. Describes North Carolina's pilot programs. Proposes benefits and looks at the media center's future. (MVL)

  12. Planning for Office Automation.

    ERIC Educational Resources Information Center

    Mick, Colin K.

    1983-01-01

    Outlines a practical approach to planning for office automation termed the "Focused Process Approach" (the "what" phase, "how" phase, "doing" phase) which is a synthesis of the problem-solving and participatory planning approaches. Thirteen references are provided. (EJS)

  13. Xenon International Automated Control

    SciTech Connect

    2016-08-05

    The Xenon International Automated Control software monitors, displays status, and allows for manual operator control as well as fully automatic control of multiple commercial and PNNL designed hardware components to generate and transmit atmospheric radioxenon concentration measurements every six hours.

  14. From Aeronautics to Space: Lessons in Human Automation

    NASA Technical Reports Server (NTRS)

    Connors, Mary M.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Civilian air flight continues on a growth curve, as more and more people utilize air travel to meet business and personal travel needs: This consumer-driven demand has resulted in the adoption of new methods to increase air system capacity and to make the air transportation system increasingly more efficient. As a consequence, civilian aviation, as an industry, has assumed a leading role in the use of automated systems, and, by implication, in the understanding of how human openers interact with these systems. Aeronautical automation systems serve a variety of roles. These include controlling aircraft and aiding, advising and monitoring numerous functions in the aircraft/airspace system. Experiences in the use of human/automation systems gathered from aviation are, in many cases, generalizable to other industries having similar requirements for human and non-human intelligent system interaction. However, the human/automation lessons learned from aviation have special relevance to the space application, where many of the same operational demands prevail. The application of aeronautical lessons of human-automated interaction to spaceflight is the subject of this paper. The discussion will address: the progress that has been made through aeronautically-based research and experience in understanding human/automation interaction, ways that this understanding can be applied to the needs of space, and the limits of our present understanding of human/automations systems. Suggestions will be offered related to human-automation research generally, and to the particular needs of the space endeavor.

  15. Faraday cup: absolute dosimetry for ELIMED beam line

    NASA Astrophysics Data System (ADS)

    Leanza, R.; Romano, F.; Scuderi, V.; Amico, A. G.; Cuttone, G.; Larosa, G.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Schillaci, F.; Cirrone, G. A. P.

    2017-03-01

    The scientific community has shown a growing interest towards multidisciplinary applications of laser-driven beams. In this framework, the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline will be the first transport beamline dedicated to the medical and multidisciplinary studies with laser-accelerated ion beams. Detectors for dosimetry represent one of key-element of the ELIMED beamline, allowing a dose delivering with good result as required in the clinical applications. In this contribution, a Faraday Cup for absolute dosimetry, designed and realized at INFN-LNS, is described.

  16. Current state of the art brachytherapy treatment planning dosimetry algorithms

    PubMed Central

    Pantelis, E; Karaiskos, P

    2014-01-01

    Following literature contributions delineating the deficiencies introduced by the approximations of conventional brachytherapy dosimetry, different model-based dosimetry algorithms have been incorporated into commercial systems for 192Ir brachytherapy treatment planning. The calculation settings of these algorithms are pre-configured according to criteria established by their developers for optimizing computation speed vs accuracy. Their clinical use is hence straightforward. A basic understanding of these algorithms and their limitations is essential, however, for commissioning; detecting differences from conventional algorithms; explaining their origin; assessing their impact; and maintaining global uniformity of clinical practice. PMID:25027247

  17. Third conference on radiation protection and dosimetry. Program and abstracts

    SciTech Connect

    1991-01-01

    This conference has been designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To partly fulfill these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection has been prepared. General topics include external dosimetry, internal dosimetry, instruments, regulations and standards, accreditation and test programs, research advances, and applied program experience. This publication provides a summary of the technical program and a collection of abstracts of the oral presentations.

  18. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  19. The use of a portable electronic device in accident dosimetry.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2008-01-01

    The use of a portable electronic device in accident dosimetry has been investigated. The thermoluminescence properties of a surface-mount alumina-rich ceramic resonator from a USB flash drive were investigated. The following characteristics were verified: the absence of a zero-dose signal, gamma dose response, dose recycling behaviour, fading and optical bleaching. Finally, this component has been successfully used to determine a simulated accident dose (1 d following the irradiation event). It is concluded that it should be possible to perform rapid and reliable accident dose assessments with such components using conventional thermoluminescence dosimetry equipment.

  20. Automated Cyber Red Teaming

    DTIC Science & Technology

    2015-04-01

    possible attack paths for CRT. This report surveys the current state-of-the- art planning techniques, tools and frameworks, their performance at...6 3.3 State of the art Automated Planning ..................................................................... 7 3.3.1...automated planning to CRT problems. Finally, we recommend several state-of-the- art planning tools for trial and, more generally, when it is suitable to use

  1. Automating Index Preparation

    DTIC Science & Technology

    1987-03-23

    Automating Index Preparation* Pehong Chent Michael A. Harrison Computer Science Division University of CaliforniaI Berkeley, CA 94720 March 23, 1987...Abstract Index preparation is a tedious and time-consuming task. In this paper we indicate * how the indexing process can be automated in a way which...identified and analyzed. Specifically, we describe a framework for placing index commands in the document and a general purpose index processor which

  2. Automated Pilot Advisory System

    NASA Technical Reports Server (NTRS)

    Parks, J. L., Jr.; Haidt, J. G.

    1981-01-01

    An Automated Pilot Advisory System (APAS) was developed and operationally tested to demonstrate the concept that low cost automated systems can provide air traffic and aviation weather advisory information at high density uncontrolled airports. The system was designed to enhance the see and be seen rule of flight, and pilots who used the system preferred it over the self announcement system presently used at uncontrolled airports.

  3. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  4. Automated Status Notification System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA Lewis Research Center's Automated Status Notification System (ASNS) was born out of need. To prevent "hacker attacks," Lewis' telephone system needed to monitor communications activities 24 hr a day, 7 days a week. With decreasing staff resources, this continuous monitoring had to be automated. By utilizing existing communications hardware, a UNIX workstation, and NAWK (a pattern scanning and processing language), we implemented a continuous monitoring system.

  5. Automated Groundwater Screening

    SciTech Connect

    Taylor, Glenn A.; Collard, Leonard, B.

    2005-10-31

    The Automated Intruder Analysis has been extended to include an Automated Ground Water Screening option. This option screens 825 radionuclides while rigorously applying the National Council on Radiation Protection (NCRP) methodology. An extension to that methodology is presented to give a more realistic screening factor for those radionuclides which have significant daughters. The extension has the promise of reducing the number of radionuclides which must be tracked by the customer. By combining the Automated Intruder Analysis with the Automated Groundwater Screening a consistent set of assumptions and databases is used. A method is proposed to eliminate trigger values by performing rigorous calculation of the screening factor thereby reducing the number of radionuclides sent to further analysis. Using the same problem definitions as in previous groundwater screenings, the automated groundwater screening found one additional nuclide, Ge-68, which failed the screening. It also found that 18 of the 57 radionuclides contained in NCRP Table 3.1 failed the screening. This report describes the automated groundwater screening computer application.

  6. Metrology automation reliability

    NASA Astrophysics Data System (ADS)

    Chain, Elizabeth E.

    1996-09-01

    At Motorola's MOS-12 facility automated measurements on 200- mm diameter wafers proceed in a hands-off 'load-and-go' mode requiring only wafer loading, measurement recipe loading, and a 'run' command for processing. Upon completion of all sample measurements, the data is uploaded to the factory's data collection software system via a SECS II interface, eliminating the requirement of manual data entry. The scope of in-line measurement automation has been extended to the entire metrology scheme from job file generation to measurement and data collection. Data analysis and comparison to part specification limits is also carried out automatically. Successful integration of automated metrology into the factory measurement system requires that automated functions, such as autofocus and pattern recognition algorithms, display a high degree of reliability. In the 24- hour factory reliability data can be collected automatically on every part measured. This reliability data is then uploaded to the factory data collection software system at the same time as the measurement data. Analysis of the metrology reliability data permits improvements to be made as needed, and provides an accurate accounting of automation reliability. This reliability data has so far been collected for the CD-SEM (critical dimension scanning electron microscope) metrology tool, and examples are presented. This analysis method can be applied to such automated in-line measurements as CD, overlay, particle and film thickness measurements.

  7. Elements of EAF automation processes

    NASA Astrophysics Data System (ADS)

    Ioana, A.; Constantin, N.; Dragna, E. C.

    2017-01-01

    Our article presents elements of Electric Arc Furnace (EAF) automation. So, we present and analyze detailed two automation schemes: the scheme of electrical EAF automation system; the scheme of thermic EAF automation system. The application results of these scheme of automation consists in: the sensitive reduction of specific consummation of electrical energy of Electric Arc Furnace, increasing the productivity of Electric Arc Furnace, increase the quality of the developed steel, increasing the durability of the building elements of Electric Arc Furnace.

  8. Tenth ORNL Personnel Dosimetry Intercomparison Study

    SciTech Connect

    Swaja, R.E.; Chou, T.L.; Sims, C.S.; Greene, R.T.

    1985-03-01

    The Tenth Personnel Dosimetry Intercomparison Study was conducted at the Oak Ridge National Laboratory during April 9-11, 1984. Dosemeter badges from 31 participating organizations were mounted on 40cm Lucite phantoms and exposed to a range of dose equivalents which could be encountered during routine personnel monitoring in mixed radiation fields. The Health Physics Research Reactor served as the only source of radiation for eight of the ten irradiations which included a low (approx. 0.50 mSv) and high (approx. 10.00 mSv) neutron dose equivalent run for each of four shield conditions. Two irradiations were also conducted for which concrete- and Lucite-shield reactor irradiations were gamma-enhanced using a /sup 137/Cs source. Results indicated that some participants had difficulty obtaining measurable indication of neutron and gamma exposures at dose equivalents less than about 0.50 mSv and 0.20 mSv, respectively. Albedo dosemeters provided the best overall accuracy and precision for the neutron measurements. Direct interaction TLD systems showed significant variation in accuracy with incident spectrum, and threshold neutron dosemeters (film and recoil track) underestimated reference values by more than 50%. Gamma dose equivalents estimated in the mixed fields were higher than reference values with TL gamma dosemeters generally yielding more accurate results than film. Under the conditions of this study in which participants had information concerning exposure conditions and radiation field characteristics prior to dosemeter evaluation, only slightly more than half of all reported results met regulatory standards for neutron and gamma accuracy. 19 refs., 2 figs., 29 tabs.

  9. Subwavelength films for standoff radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Suter, Jonathan D.

    2015-05-01

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiationsensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  10. Activities at the NEA for Dosimetry Applications

    NASA Astrophysics Data System (ADS)

    Henriksson, H.; Kodeli, I.

    2009-08-01

    The Nuclear Energy Agency (NEA) is a specialised agency within the Organisation for Economic Co-operation and Development (OECD) that assists its member countries in maintaining and further developing, through international co-operation, the scientific and technological use of nuclear energy for peaceful purposes. The main role of the NEA is the collection, validation and distribution of basic nuclear data, computer codes covering the areas of nuclear research and engineering, and experimental data. The activities linked to dosimetry applications are described in this paper, such as those of the Working Party on international nuclear data Evaluation Co-operation (WPEC) established at the NEA to promote the exchange of nuclear data evaluations, measurements, nuclear model calculations and validation. Collection, validation, and distribution of the computer codes and nuclear data libraries will be presented and, in particular, the Joint Evaluated Fusion and Fission (JEFF) library project. For the verification of activation and transport nuclear data, as well as computational methods, several integral experimental databases are collected and distributed by the Data Bank, for example the Shielding Integral Benchmark Archive Database (SINBAD), the International Criticality Safety Benchmark Experiments Project (ICSBEP) and the International Reactor Physics Experiments (IRPhE). Another important activity at the NEA is the collection of experimental differential nuclear reaction data for the EXFOR database. A recent WPEC project emphasizes the need for a coherent format that could be used for computer code calculations and improved validation of experimental data. JANIS is a graphical visualization tool that has been found to be useful for checking the content of EXFOR.

  11. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  12. Subwavelength films for standoff radiation dosimetry

    SciTech Connect

    Alvine, Kyle J.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan L.; Suter, Jonathan D.

    2015-05-22

    We present optical subwavelength nanostructure architecture suitable for standoff radiation dosimetry with remote optical readout in the visible or infrared spectral regions. To achieve this, films of subwavelength structures are fabricated over several square inches via the creation of a 2D non-close packed (NCP) array template of radiation-sensitive polymeric nanoparticles, followed by magnetron sputtering of a metallic coating to form a 2D array of separated hemispherical nanoscale metallic shells. The nanoshells are highly reflective at resonance in the visible or infrared depending on design. These structures and their behavior are based on the open ring resonator (ORR) architecture and have their analog in resonant inductive-capacitive (LC) circuits, which display a resonance wavelength that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any modification of the nanostructure material properties due to radiation alters the inductive or capacitive behavior of the subwavelength features, which in turn changes their optical properties resulting in a shift in the optical resonance. This shift in resonance may be remotely interrogated actively using either laser illumination or passively by hyperspectral or multispectral sensing with broadband illumination. These structures may be designed to be either anisotropic or isotropic, which can also offer polarization-sensitive interrogation. We present experimental measurements of a radiation induced shift in the optical resonance of a subwavelength film after exposure to an absorbed dose of gamma radiation from 2 Mrad up to 62 Mrad demonstrating the effect. Interestingly the resonance shift is non-monotonic for this material system and possible radiation damage mechanisms to the nanoparticles are discussed.

  13. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect

    Rathbone, Bruce A.

    2010-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the

  14. Dosimetry quality assurance in Martin Marietta Energy Systems' centralized external dosimetry system

    SciTech Connect

    Souleyrette, M.L.

    1992-10-23

    External dosimetry needs at the four Martin Marietta Energy Systems facilities are served by Energy Systems Centralized External Dosimetry System (CEDS). The CEDS is a four plant program with four dosimeter distribution centers and two dosimeter processing centers. Each plant has its own distribution center, while processing centers are located at ORNL and the Y-12 Plant. The program has been granted accreditation by the Department of Energy Laboratory Accreditation Program (DOELAP). The CEDS is a TLD based system which is responsible for whole-body beta-gamma, neutron, and extremity monitoring. Beta-gamma monitoring is performed using the Harshaw/Solon Technologies model 8805 dosimeter. Effective October 1, 1992 the standard silver mylar has been replaced with an Avery mylar foil blackened on the underside with ink. This was done in an effort to reduce the number of light induced suspect readings. At this time we have little operational experience with the new blackened mylars-The CEDS neutron dosimeter is the Harshaw model 8806B. This card/holder configuration contains two TLD-600/TLD-700 chip pairs; one pair is located beneath a cadmium filter and one pair is located beneath a plastic filter. In routine personnel monitoring the CEDS neutron dosimeter is always paired with a CEDS beta-gamma dosimeter.The CEDS extremity dosimeter is composed of a Harshaw thin TLD-700 dosiclip placed inside a Teledyne RB-4 finger sachet. The finger sachet provides approximately 7 mg/cm[sup 2] filtration over the chip. A teflon ring surrounds the dosiclip to help prevent tearing of the vinyl sachet.

  15. Automated videography for residential communications

    NASA Astrophysics Data System (ADS)

    Kurtz, Andrew F.; Neustaedter, Carman; Blose, Andrew C.

    2010-02-01

    The current widespread use of webcams for personal video communication over the Internet suggests that opportunities exist to develop video communications systems optimized for domestic use. We discuss both prior and existing technologies, and the results of user studies that indicate potential needs and expectations for people relative to personal video communications. In particular, users anticipate an easily used, high image quality video system, which enables multitasking communications during the course of real-world activities and provides appropriate privacy controls. To address these needs, we propose a potential approach premised on automated capture of user activity. We then describe a method that adapts cinematography principles, with a dual-camera videography system, to automatically control image capture relative to user activity, using semantic or activity-based cues to determine user position and motion. In particular, we discuss an approach to automatically manage shot framing, shot selection, and shot transitions, with respect to one or more local users engaged in real-time, unscripted events, while transmitting the resulting video to a remote viewer. The goal is to tightly frame subjects (to provide more detail), while minimizing subject loss and repeated abrupt shot framing changes in the images as perceived by a remote viewer. We also discuss some aspects of the system and related technologies that we have experimented with thus far. In summary, the method enables users to participate in interactive video-mediated communications while engaged in other activities.

  16. Review of physics, instrumentation and dosimetry of radioactive isotopes

    NASA Technical Reports Server (NTRS)

    Sinclair, W. K.

    1967-01-01

    General radioactive isotope information, stressing radioactivity, methods of measurement, and dosimetry of radioactive nuclides have been reviewed to serve as a reference for the medical profession. Instability of radionuclides, principal types of emission, and measurement of ionizing radiation are among the topics discussed.

  17. In vivo dosimetry with silicon diodes in total body irradiation

    NASA Astrophysics Data System (ADS)

    Oliveira, F. F.; Amaral, L. L.; Costa, A. M.; Netto, T. G.

    2014-02-01

    The aim of this work is the characterization and application of silicon diode detectors for in vivo dosimetry in total body irradiation (TBI) treatments. It was evaluated the diode response with temperature, dose rate, gantry angulations and field size. A maximum response variation of 2.2% was obtained for temperature dependence. The response variation for dose rate and angular was within 1.2%. For field size dependence, the detector response increased with field until reach a saturation region, where no more primary radiation beam contributes for dose. The calibration was performed in a TBI setup. Different lateral thicknesses from one patient were simulated and then the calibration factors were determined by means of maximum depth dose readings. Subsequent to calibration, in vivo dosimetry measurements were performed. The response difference between diode readings and the prescribed dose for all treatments was below 4%. This difference is in agreement as recommended by the International Commission on Radiation Units and Measurements (ICRU), which is ±5%. The present work to test the applicability of a silicon diode dosimetry system for performing in vivo dose measurements in TBI techniques presented good results. These measurements demonstrated the value of diode dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in TBI treatments.

  18. Radiation dosimetry onboard the International Space Station ISS.

    PubMed

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is onboard the International Space Station (ISS) is accomplished to one part as "operational" dosimetry accomplished to one part as "operational" dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on "scientific" dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities.

  19. Metamorphic modifications and EPR dosimetry in tooth enamel.

    PubMed

    Brik, A; Radchuk, V; Scherbina, O; Matyash, M; Gaver, O

    1996-01-01

    It is shown that metamorphic modifications in tooth enamel have an essential influence on the results of EPR dosimetry. The metamorphic modifications in minerals of biological origin proceed more quickly than in usual natural minerals. The approaches which at present are applied for reconstruction of doses connected with Chernobyl accident need additional investigation.

  20. Dosimetry for audit and clinical trials: challenges and requirements

    NASA Astrophysics Data System (ADS)

    Kron, T.; Haworth, A.; Williams, I.

    2013-06-01

    Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

  1. Bayesian internal dosimetry calculations using Markov Chain Monte Carlo.

    PubMed

    Miller, G; Martz, H F; Little, T T; Guilmette, R

    2002-01-01

    A new numerical method for solving the inverse problem of internal dosimetry is described. The new method uses Markov Chain Monte Carlo and the Metropolis algorithm. Multiple intake amounts, biokinetic types, and times of intake are determined from bioassay data by integrating over the Bayesian posterior distribution. The method appears definitive, but its application requires a large amount of computing time.

  2. Dosimetry studies on prototype 241Am sources for brachytherapy.

    PubMed

    Nath, R; Gray, L

    1987-06-01

    Sealed sources of 241Am emit primarily 60 keV photons which, because of multiple Compton scattering, produce dose distributions in water that are comparable to those from 226Ra or 137Cs. However, americium gamma rays can be shielded by thin layers of high atomic number materials since the half value layer thickness is only 1/8th of a mm of lead for americium gamma rays as compared to a value of 12 mm for 226Ra gamma rays. This may allow effective in vivo shielding of critical organs, for example; the bladder can be partially shielded by hypaque solution, and the rectum and sigmoid colon by barium sulfate. In addition, the exposure to medical personnel involved in intracavitary application and patient care may be reduced substantially by the use of relatively thin lead aprons and light weight, portable shields. To investigate the feasibility of 241Am sources for intracavitary irradiation, dosimetry studies on prototype 241Am sources have been performed and a computer model for the determination of dose distributions around encapsulated cylindrical sources of 241Am has been developed and tested. Results of dosimetry measurements using ionization chambers, lithium fluoride thermoluminescent dosimeters, a scanning scintillation probe, and film dosimetry, confirm theoretical predictions that these sources can deliver dose rates adequate for intracavitary irradiation. Further dosimetry measurements in simulated clinical situations using lead foils and test tubes filled with hypaque or barium sulfate, confirm the predicted effectiveness of in vivo shielding which can be readily achieved with 241Am sources.

  3. IMRT verification using a radiochromic/optical-CT dosimetry system

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Guo, Pengyi; Gluckman, Gary; Adamovics, John

    2006-12-01

    This work represents our first experiences relating to IMRT verification using a relatively new 3D dosimetry system consisting of a PRESAGETM dosimeter (Heuris Inc, Pharma LLC) and an optical-CT scanning system (OCTOPUSTM TM MGS Inc). This work builds in a step-wise manner on prior work in our lab.

  4. Dose calibration optimization and error propagation in polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, A.; Hilts, M.

    2014-02-01

    This study reports on the relative precision, relative error, and dose differences observed when using a new full-image calibration technique in NIPAM-based x-ray CT polymer gel dosimetry. The effects of calibration parameters (e.g. gradient thresholding, dose bin size, calibration fit function, and spatial remeshing) on subsequent errors in calibrated gel images are reported. It is found that gradient thresholding, dose bin size, and fit function all play a primary role in affecting errors in calibrated images. Spatial remeshing induces minimal reductions or increases in errors in calibrated images. This study also reports on a full error propagation throughout the CT gel image pre-processing and calibration procedure thus giving, for the first time, a realistic view of the errors incurred in calibrated CT polymer gel dosimetry. While the work is based on CT polymer gel dosimetry, the formalism is valid for and easily extended to MRI or optical CT dosimetry protocols. Hence, the procedures developed within the work are generally applicable to calibration of polymer gel dosimeters.

  5. BUILDING 122 CONTAINS THREE GENERAL AREAS: OFFICE AREAS, INTERNAL DOSIMETRY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING 122 CONTAINS THREE GENERAL AREAS: OFFICE AREAS, INTERNAL DOSIMETRY, AND MEDICAL/HEALTH. BUILDING 122 SHARES A COMMON WALL WITH BUILDING 121, THE PLANT SECURITY BUILDING. THE TWO-STORY BUILDING IN THE BACKGROUND IS BUILDING 111. (9/26/52) - Rocky Flats Plant, Emergency Medical Services Facility, Southwest corner of Central & Third Avenues, Golden, Jefferson County, CO

  6. Bioelectromagnetics, Carl Durney, and dosimetry: some historical remarks.

    PubMed

    Schwan, H P

    1999-01-01

    The contributions of Carl Durney to dosimetry have decisively advanced the bioelectromagnetics field and led to significant revisions of relevant health standards. Three items come to mind while studying his work: 1. The work of Carl Durney and his colleagues in dosimetry has advanced the bioelectromagnetics field most significantly whereas more abundant work of a biomedical nature has had less impact. More biophysics work is desirable. 2. The rationale for the specific absorption rate as a basis of health standards needs further elaboration. The need for scaling animal results is stressed. 3. Dosimetry at the cellular level (microdosimetry) is essential if one cares to discuss direct field interactions at the cellular and macromolecular level. Carl Durney's recognition of this need is stated. Carl Durney's wide range of productive interests is indicated by several tables. They summarize his many contributions to electrical engineering, education, bioelectromagnetic dosimetry, hyperthermia, NMR, and field-induced biophysical phenomena at the molecular and cellular level. His scientific work is summarized, including how his interest changed with time. His scientific accomplishment and productive interaction with students, colleagues, and society sets an example to be admired.

  7. Quality assurance of personal beta particle dosemeters used for individual monitoring of occupationally exposed persons.

    PubMed

    Helmstädter, Klaus; Ambrosi, Peter

    2007-01-01

    As a result of investigations and intercomparison measurements organised from 1996 to 1999 by PTB, several types of personal dosemeters, all based on TLD, were selected by the dosimetry services for the measurement of the personal dose equivalent Hp(0.07) in beta and/or photon radiation fields. These dosemeters have now the status of legal personal beta partial-body dosemeters. Workplaces at which beta radiation might significantly contribute to the doses to the extremities are to be found today with increasing frequency in radiation therapy, radiation source production and nuclear power plants. Quality assurance for beta personal dosemeters is stipulated by guidelines for the official dosimetry service and is carried out by way of the intercomparison measurements organised periodically by the PTB. The results are evaluated based on the recommendations of the German Commission on Radiological Protection (SSK). The procedure of these intercomparison measurements will be explained in detail. The experience gained from three series of comparisons with seven types of fingerring dosemeters will be described and the results will be presented. The anonymity of the dosemeter types and of the participants in the intercomparison will be preserved.

  8. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases.

    PubMed

    Hänscheid, Heribert; Canzi, Cristina; Eschner, Wolfgang; Flux, Glenn; Luster, Markus; Strigari, Lidia; Lassmann, Michael

    2013-07-01

    The EANM Dosimetry Committee Series "Standard Operational Procedures for Pre-Therapeutic Dosimetry" (SOP) provides advice to scientists and clinicians on how to perform patient-specific absorbed dose assessments. This particular SOP describes how to tailor the therapeutic activity to be administered for radioiodine therapy of benign thyroid diseases such as Graves' disease or hyperthyroidism. Pretherapeutic dosimetry is based on the assessment of the individual (131)I kinetics in the target tissue after the administration of a tracer activity. The present SOP makes proposals on the equipment to be used and guides the user through the measurements. Time schedules for the measurement of the fractional (131)I uptake in the diseased tissue are recommended and it is shown how to calculate from these datasets the therapeutic activity necessary to administer a predefined target dose in the subsequent therapy. Potential sources of error are pointed out and the inherent uncertainties of the procedures depending on the number of measurements are discussed. The theoretical background and the derivation of the listed equations from compartment models of the iodine kinetics are explained in a supplementary file published online only.

  9. Development of probabilistic internal dosimetry computer code

    NASA Astrophysics Data System (ADS)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki

    2017-02-01

    Internal radiation dose assessment involves biokinetic models, the corresponding parameters, measured data, and many assumptions. Every component considered in the internal dose assessment has its own uncertainty, which is propagated in the intake activity and internal dose estimates. For research or scientific purposes, and for retrospective dose reconstruction for accident scenarios occurring in workplaces having a large quantity of unsealed radionuclides, such as nuclear power plants, nuclear fuel cycle facilities, and facilities in which nuclear medicine is practiced, a quantitative uncertainty assessment of the internal dose is often required. However, no calculation tools or computer codes that incorporate all the relevant processes and their corresponding uncertainties, i.e., from the measured data to the committed dose, are available. Thus, the objective of the present study is to develop an integrated probabilistic internal-dose-assessment computer code. First, the uncertainty components in internal dosimetry are identified, and quantitative uncertainty data are collected. Then, an uncertainty database is established for each component. In order to propagate these uncertainties in an internal dose assessment, a probabilistic internal-dose-assessment system that employs the Bayesian and Monte Carlo methods. Based on the developed system, we developed a probabilistic internal-dose-assessment code by using MATLAB so as to estimate the dose distributions from the measured data with uncertainty. Using the developed code, we calculated the internal dose distribution and statistical values ( e.g. the 2.5th, 5th, median, 95th, and 97.5th percentiles) for three sample scenarios. On the basis of the distributions, we performed a sensitivity analysis to determine the influence of each component on the resulting dose in order to identify the major component of the uncertainty in a bioassay. The results of this study can be applied to various situations. In cases of

  10. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  11. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    SciTech Connect

    Andersen, Claus E.

    2011-05-05

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al{sub 2}O{sub 3}:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  12. GENII: The Hanford Environmental Radiation Dosimetry Software System: Volume 2, Users' manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-11-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). The purpose of this coupled system of computer codes is to analyze environmental contamination of, air, water, or soil. This is accomplished by calculating radiation doses to individuals or populations. GENII is described in three volumes of documentation. This second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. The first volume describes the theoretical considerations of the system. The third volume is a Code Maintenance Manual for the user who requires knowledge of code detail. It includes logic diagrams, global dictionary, worksheets, example hand calculations, and listings of the code and its associated data libraries. 27 refs., 17 figs., 23 tabs.

  13. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  14. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Moser, R. L.; Veatch, M.

    1983-01-01

    Generic power-system elements and their potential faults are identified. Automation functions and their resulting benefits are defined and automation functions between power subsystem, central spacecraft computer, and ground flight-support personnel are partitioned. All automation activities were categorized as data handling, monitoring, routine control, fault handling, planning and operations, or anomaly handling. Incorporation of all these classes of tasks, except for anomaly handling, in power subsystem hardware and software was concluded to be mandatory to meet the design and operational requirements of the space station. The key drivers are long mission lifetime, modular growth, high-performance flexibility, a need to accommodate different electrical user-load equipment, onorbit assembly/maintenance/servicing, and potentially large number of power subsystem components. A significant effort in algorithm development and validation is essential in meeting the 1987 technology readiness date for the space station.

  15. Fully automated protein purification

    PubMed Central

    Camper, DeMarco V.; Viola, Ronald E.

    2009-01-01

    Obtaining highly purified proteins is essential to begin investigating their functional and structural properties. The steps that are typically involved in purifying proteins can include an initial capture, intermediate purification, and a final polishing step. Completing these steps can take several days and require frequent attention to ensure success. Our goal was to design automated protocols that will allow the purification of proteins with minimal operator intervention. Separate methods have been produced and tested that automate the sample loading, column washing, sample elution and peak collection steps for ion-exchange, metal affinity, hydrophobic interaction and gel filtration chromatography. These individual methods are designed to be coupled and run sequentially in any order to achieve a flexible and fully automated protein purification protocol. PMID:19595984

  16. Automated telescope scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1988-01-01

    With the ever increasing level of automation of astronomical telescopes the benefits and feasibility of automated planning and scheduling are becoming more apparent. Improved efficiency and increased overall telescope utilization are the most obvious goals. Automated scheduling at some level has been done for several satellite observatories, but the requirements on these systems were much less stringent than on modern ground or satellite observatories. The scheduling problem is particularly acute for Hubble Space Telescope: virtually all observations must be planned in excruciating detail weeks to months in advance. Space Telescope Science Institute has recently made significant progress on the scheduling problem by exploiting state-of-the-art artificial intelligence software technology. What is especially interesting is that this effort has already yielded software that is well suited to scheduling groundbased telescopes, including the problem of optimizing the coordinated scheduling of more than one telescope.

  17. Automation, task difficulty, and aircrew performance.

    PubMed

    Bowers, C; Thornton, C; Braun, C; Morgan, B B; Salas, E

    1998-01-01

    The effects of an automated system on team processes and performance were assessed in a laboratory simulation. Two-person crews were required to fly a complex emergency-response scenario under conditions of low and high workload. These flights were completed with or without the aid of an autopilot. The results indicated that the autopilot was effective in reducing subjective workload. However, the automation was associated with improved performance on only 1 of 4 performance measures. Furthermore, it was observed that problem-solving performance was worse in the autopilot condition during the high-workload flights. Investigation of crew process data indicated that workload savings afforded by the autopilot might have been invested in more explicit coordination. The results are discussed in terms of their implications for military aviators' performance, system design, and team training.

  18. Automating the CMS DAQ

    SciTech Connect

    Bauer, G.; et al.

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  19. Automated Library System Specifications.

    DTIC Science & Technology

    1986-06-01

    AD-A78 95 AUTOMATED LIBRARY SYSTEM SPECIFICATIONS(U) ARMY LIBRARY /i MANAGEMENT OFFICE ALEXANDRIA VA ASSISTANT CHIEF OF STAFF FOR INFORMATION... MANAGEMENT M B BONNETT JUN 86 UNCLASSIFIED F/G 9/2 NLEElIIhllEEEEE IllEEEEEllllEI .1lm lliml * ~I fI.L25 MI, [OCM RL,;OCLUTO fl. ’N k~ AUTOMATED LIBRARY...SYSTEM SPECIFICATIONS .,I Prepared by Mary B. Bonnett ARMY LIBRARY MANAGEMENT OFFICE OFFICE OF THE ASSISTANT CHIEF OF STAFF FOR INFORMATION MANAGEMENT Lij

  20. Automated gas chromatography

    DOEpatents

    Mowry, Curtis D.; Blair, Dianna S.; Rodacy, Philip J.; Reber, Stephen D.

    1999-01-01

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute.

  1. Automated knowledge generation

    NASA Technical Reports Server (NTRS)

    Myler, Harley R.; Gonzalez, Avelino J.

    1988-01-01

    The general objectives of the NASA/UCF Automated Knowledge Generation Project were the development of an intelligent software system that could access CAD design data bases, interpret them, and generate a diagnostic knowledge base in the form of a system model. The initial area of concentration is in the diagnosis of the process control system using the Knowledge-based Autonomous Test Engineer (KATE) diagnostic system. A secondary objective was the study of general problems of automated knowledge generation. A prototype was developed, based on object-oriented language (Flavors).

  2. SU-D-BRD-03: Improving Plan Quality with Automation of Treatment Plan Checks

    SciTech Connect

    Covington, E; Younge, K; Chen, X; Lee, C; Matuszak, M; Kessler, M; Acosta, E; Orow, A; Filpansick, S; Moran, J; Keranen, W

    2015-06-15

    Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One example is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827.

  3. Personality disorders

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000939.htm Personality disorders To use the sharing features on this page, please enable JavaScript. Personality disorders are a group of mental conditions in ...

  4. Personality Disorders

    MedlinePlus

    Personality disorders are a group of mental illnesses. They involve long-term patterns of thoughts and behaviors ... serious problems with relationships and work. People with personality disorders have trouble dealing with everyday stresses and ...

  5. Altering user' acceptance of automation through prior automation exposure.

    PubMed

    Bekier, Marek; Molesworth, Brett R C

    2016-08-22

    Air navigation service providers worldwide see increased use of automation as one solution to overcome the capacity constraints imbedded in the present air traffic management (ATM) system. However, increased use of automation within any system is dependent on user acceptance. The present research sought to determine if the point at which an individual is no longer willing to accept or cooperate with automation can be manipulated. Forty participants underwent training on a computer-based air traffic control programme, followed by two ATM exercises (order counterbalanced), one with and one without the aid of automation. Results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation ('tipping point') decreased; suggesting it is indeed possible to alter automation acceptance. Practitioner Summary: This paper investigates whether the point at which a user of automation rejects automation (i.e. 'tipping point') is constant or can be manipulated. The results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation decreased; suggesting it is possible to alter automation acceptance.

  6. Performance of the CEDS Accident Dosimetry System at the 1995 Los Alamos National Laboratory Nuclear Accident Dosimetry Intercomparison

    SciTech Connect

    McMahan, K.L.; Schwanke, L.J.

    1996-12-01

    In July 1995, LANL hosted an accident dosimetry intercomparison. When all reactors on the Oak Ridge Reservation were idled in 1988, the Health Physics Research Reactor (HPRR), which had been used for 22 previous intercomparisons dating from 1965, was shut down for an indefinite period. The LANL group began characterization of two critical assemblies for dosimetry purposes. As a result, NAD-23 was conceived and 10 DOE facilities accepted invitations to participate in the intercomparison. This report is a summary of the performance of one of the participants, the Centralized External Dosimetry System (CEDS). The CEDS is a cooperative personnel dosimetry arrangement between three DOE sites in Oak Ridge, Tennessee. Many successes and failures are reported herein. Generally, the TL dosimeters performed poorly and always over-reported the delivered dose. The TLD processing procedures contain efforts that would lead to large biases in the reported absorbed dose, and omit several key steps in the TLD reading process. The supralinear behavior of lithium fluoride (LiF) has not been characterized for this particular dosimeter and application (i.e., in high-dose mixed neutron/gamma fields). The use of TLD materials may also be precluded given the limitations of the LiF material itself, the TLD reading system, and the upper dose level to which accident dosimetry systems are required to perform as set forth in DOE regulations. The indium foil results confirm the expected inability of that material to predict the magnitude of the wearer`s dose reliably, although it is quite suitable as a quick-sort material. Biological sample (hair) results were above the minimum detectable activity (MDA) for only one of the tests. Several questions as to the best methods for sample handling and processing remain.

  7. Automated Bilingual Circulation System Using PC Local Area Networks.

    ERIC Educational Resources Information Center

    Iskanderani, A. I.; Anwar, M. A.

    1992-01-01

    Describes a local automated bilingual circulation system using personal computers in a local area network that was developed at King Abdulaziz University (Saudi Arabia) for Arabic and English materials. Topics addressed include the system structure, hardware, major features, storage requirements, and costs. (nine references) (LRW)

  8. Patient-specific dosimetry using quantitative SPECT imaging and three-dimensional discrete fourier transform convolution

    SciTech Connect

    Akabani, G.; Hawkins, W.G.; Eckblade, M.B.; Leichner, P.K.

    1997-02-01

    The objective of this study was to develop a three-dimensional discrete Fourier transform (3D-DFT) convolution method to perform the dosimetry for {sup 131}I-labeled antibodies in soft tissues. Mathematical and physical phantoms were used to compare 3D-DFT with Monte Carlo transport (MCT) calculations based on the EGS4 code. The mathematical and physical phantoms consisted of a sphere and cylinder, respectively, containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the circular harmonic transform (CHT) algorithm. The radial dose profile obtained from MCT calculations and the 3D-DFT convolution method for the mathematical phantom were in close agreement. The root mean square error (RMSE) for the two methods was <0.1%, with a maximum difference <21%. Results obtained for the physical phantom gave a RMSE <0.1% and a maximum difference of <13%; isodose contours were in good agreement. SPECT data for two patients who had undergone {sup 131}I radioimmunotherapy (RIT) were used to compare absorbed-dose rates and isodose rate contours with the two methods of calculations. This yielded a RMSE <0.02% and a maximum difference of <13%. Our results showed that the 3D-DFT convolution method compared well with MCT calculations. The 3D-DFT approach is computationally much more efficient and, hence, the method of choice. This method is patient-specific and applicable to the dosimetry of soft-tissue tumors and normal organs. It can be implemented on personal computers. 22 refs., 6 figs., 2 tabs.

  9. Automating Small Libraries.

    ERIC Educational Resources Information Center

    Swan, James

    1996-01-01

    Presents a four-phase plan for small libraries strategizing for automation: inventory and weeding, data conversion, implementation, and enhancements. Other topics include selecting a system, MARC records, compatibility, ease of use, industry standards, searching capabilities, support services, system security, screen displays, circulation modules,…

  10. Automated conflict resolution issues

    NASA Technical Reports Server (NTRS)

    Wike, Jeffrey S.

    1991-01-01

    A discussion is presented of how conflicts for Space Network resources should be resolved in the ATDRSS era. The following topics are presented: a description of how resource conflicts are currently resolved; a description of issues associated with automated conflict resolution; present conflict resolution strategies; and topics for further discussion.

  11. Automated Accounting. Instructor Guide.

    ERIC Educational Resources Information Center

    Moses, Duane R.

    This curriculum guide was developed to assist business instructors using Dac Easy Accounting College Edition Version 2.0 software in their accounting programs. The module consists of four units containing assignment sheets and job sheets designed to enable students to master competencies identified in the area of automated accounting. The first…

  12. Automated Student Model Improvement

    ERIC Educational Resources Information Center

    Koedinger, Kenneth R.; McLaughlin, Elizabeth A.; Stamper, John C.

    2012-01-01

    Student modeling plays a critical role in developing and improving instruction and instructional technologies. We present a technique for automated improvement of student models that leverages the DataShop repository, crowd sourcing, and a version of the Learning Factors Analysis algorithm. We demonstrate this method on eleven educational…

  13. Personnel Department Automation.

    ERIC Educational Resources Information Center

    Wilkinson, David

    In 1989, the Austin Independent School District's Office of Research and Evaluation was directed to monitor the automation of personnel information and processes in the district's Department of Personnel. Earlier, a study committee appointed by the Superintendent during the 1988-89 school year identified issues related to Personnel Department…

  14. Automated Essay Scoring

    ERIC Educational Resources Information Center

    Dikli, Semire

    2006-01-01

    The impacts of computers on writing have been widely studied for three decades. Even basic computers functions, i.e. word processing, have been of great assistance to writers in modifying their essays. The research on Automated Essay Scoring (AES) has revealed that computers have the capacity to function as a more effective cognitive tool (Attali,…

  15. Automated Microbial Genome Annotation

    SciTech Connect

    Land, Miriam

    2009-05-29

    Miriam Land of the DOE Joint Genome Institute at Oak Ridge National Laboratory gives a talk on the current state and future challenges of moving toward automated microbial genome annotation at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  16. Automated Administrative Data Bases

    NASA Technical Reports Server (NTRS)

    Marrie, M. D.; Jarrett, J. R.; Reising, S. A.; Hodge, J. E.

    1984-01-01

    Improved productivity and more effective response to information requirements for internal management, NASA Centers, and Headquarters resulted from using automated techniques. Modules developed to provide information on manpower, RTOPS, full time equivalency, and physical space reduced duplication, increased communication, and saved time. There is potential for greater savings by sharing and integrating with those who have the same requirements.

  17. Automated Management Of Documents

    NASA Technical Reports Server (NTRS)

    Boy, Guy

    1995-01-01

    Report presents main technical issues involved in computer-integrated documentation. Problems associated with automation of management and maintenance of documents analyzed from perspectives of artificial intelligence and human factors. Technologies that may prove useful in computer-integrated documentation reviewed: these include conventional approaches to indexing and retrieval of information, use of hypertext, and knowledge-based artificial-intelligence systems.

  18. Building Automation Systems.

    ERIC Educational Resources Information Center

    Honeywell, Inc., Minneapolis, Minn.

    A number of different automation systems for use in monitoring and controlling building equipment are described in this brochure. The system functions include--(1) collection of information, (2) processing and display of data at a central panel, and (3) taking corrective action by sounding alarms, making adjustments, or automatically starting and…

  19. Guide to Library Automation.

    ERIC Educational Resources Information Center

    Toohill, Barbara G.

    Directed toward librarians and library administrators who wish to procure automated systems or services for their libraries, this guide offers practical suggestions, advice, and methods for determining requirements, estimating costs and benefits, writing specifications procuring systems, negotiating contracts, and installing systems. The advice…

  20. Microcontroller for automation application

    NASA Technical Reports Server (NTRS)

    Cooper, H. W.

    1975-01-01

    The description of a microcontroller currently being developed for automation application was given. It is basically an 8-bit microcomputer with a 40K byte random access memory/read only memory, and can control a maximum of 12 devices through standard 15-line interface ports.

  1. Automated EEG acquisition

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.; Hillman, C. E., Jr.

    1977-01-01

    Automated self-contained portable device can be used by technicians with minimal training. Data acquired from patient at remote site are transmitted to centralized interpretation center using conventional telephone equipment. There, diagnostic information is analyzed, and results are relayed back to remote site.

  2. SU-E-T-345: Validation of a Patient-Specific Monte Carlo Targeted Radionuclide Therapy Dosimetry Platform

    SciTech Connect

    Besemer, A; Bednarz, B

    2014-06-01

    Purpose: There is a compelling need for personalized dosimetry in targeted radionuclide therapy given that conventional dose calculation methods fail to accurately predict dose response relationships. To address this need, we have developed a Geant4-based Monte Carlo patient-specific 3D dosimetry platform for TRT. This platform calculates patient-specific dose distributions based on serial CT/PET or CT/SPECT images acquired after injection of the TRT agent. In this work, S-values and specific absorbed fractions (SAFs) were calculated using this platform and benchmarked against reference values. Methods: S-values for 1, 10, 100, and 1000g spherical tumors with uniform activity distributions of I-124, I-125, I-131, F-18, and Ra-223 were calculated and compared to OLINDA/EXM reference values. SAFs for monoenergetic photons of 0.01, 0.1, and 1 MeV and S factors for monoenergetic electrons of 0.935 MeV were calculated for the liver, kidneys, lungs, pancreas, spleen, and adrenals in the Zubal Phantom and compared with previously published values. Sufficient particles were simulated to keep the voxel statistical uncertainty below 5%. Results: The calculated spherical S-values agreed within a few percent of reference data from OLINDA/EXM for each radionuclide and sphere size. The comparison of photon SAFs and electron S-values with previously published values showed good agreement with the previously published values. The S-values and SAFs of the source organs agreed within 1%. Conclusion: Our platform has been benchmarked against reference values for a variety of radionuclides and over a wide range of energies and tumor sizes. Therefore, this platform could be used to provide accurate patientspecific dosimetry for use in radiopharmaceutical clinical trials.

  3. EPR/PTFE dosimetry for test reactor environments

    SciTech Connect

    Vehar, D.W.; Griffin, P.J.; Quirk, T.J.

    2011-07-01

    The use of Electron Paramagnetic Resonance (EPR) spectroscopy with materials such as alanine is well established as a technique for measurement of ionizing radiation absorbed dose in photon and electron fields such as Co-60, high-energy bremsstrahlung and electron-beam fields [1]. In fact, EPR/Alanine dosimetry has become a routine transfer standard for national standards bodies such as NIST and NPL. In 1992 the Radiation Metrology Laboratory (RML) at Sandia National Laboratories implemented EPR/Alanine capabilities for use in routine and calibration activities at its Co-60 and pulsed-power facilities. At that time it also investigated the usefulness of the system for measurement of absorbed dose in the mixed neutron/photon environments of reactors such as the Sandia Pulsed Reactor and the Annular Core Research Reactor used for hardness testing of electronics. The RML concluded that the neutron response of alanine was a sufficiently high fraction of the overall dosimeter response that the resulting uncertainties in the photon dose would be unacceptably large for silicon-device testing. However, it also suggested that non-hydrogenous materials such as polytetrafluoroethylene (PTFE) would exhibit smaller neutron response and might be useful in mixed environments. Preliminary research with PTFE in photon environments indicated considerable promise, but further development was not pursued at that time. Because of renewed interest in absorbed dose measurements that could better define the individual contributions of photon and neutron components to the overall dose delivered to a test object, the RML has re-initiated the development of an EPR/PTFE dosimetry system. This effort consists of three stages: 1) Identification of PTFE materials that may be suitable for dosimetry applications. It was speculated that the inconsistency of EPR signatures in the earlier samples may have been due to variability in PTFE manufacturing processes. 2) Characterization of dosimetry in

  4. A practical three-dimensional dosimetry system for radiation therapy

    SciTech Connect

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full

  5. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  6. Automated Inadvertent Intruder Application

    SciTech Connect

    Koffman, Larry D.; Lee, Patricia L.; Cook, James R.; Wilhite, Elmer L.

    2008-01-15

    The Environmental Analysis and Performance Modeling group of Savannah River National Laboratory (SRNL) conducts performance assessments of the Savannah River Site (SRS) low-level waste facilities to meet the requirements of DOE Order 435.1. These performance assessments, which result in limits on the amounts of radiological substances that can be placed in the waste disposal facilities, consider numerous potential exposure pathways that could occur in the future. One set of exposure scenarios, known as inadvertent intruder analysis, considers the impact on hypothetical individuals who are assumed to inadvertently intrude onto the waste disposal site. Inadvertent intruder analysis considers three distinct scenarios for exposure referred to as the agriculture scenario, the resident scenario, and the post-drilling scenario. Each of these scenarios has specific exposure pathways that contribute to the overall dose for the scenario. For the inadvertent intruder analysis, the calculation of dose for the exposure pathways is a relatively straightforward algebraic calculation that utilizes dose conversion factors. Prior to 2004, these calculations were performed using an Excel spreadsheet. However, design checks of the spreadsheet calculations revealed that errors could be introduced inadvertently when copying spreadsheet formulas cell by cell and finding these errors was tedious and time consuming. This weakness led to the specification of functional requirements to create a software application that would automate the calculations for inadvertent intruder analysis using a controlled source of input parameters. This software application, named the Automated Inadvertent Intruder Application, has undergone rigorous testing of the internal calculations and meets software QA requirements. The Automated Inadvertent Intruder Application was intended to replace the previous spreadsheet analyses with an automated application that was verified to produce the same calculations and

  7. TU-F-201-01: General Aspects of Radiochromic Film Dosimetry

    SciTech Connect

    Niroomand-Rad, A.

    2015-06-15

    Since the introduction of radiochromic films (RCF) for radiation dosimetry, the scope of RCF dosimetry has expanded steadily to include many medical applications, such as radiation therapy and diagnostic radiology. The AAPM Task Group (TG) 55 published a report on the recommendations for RCF dosimetry in 1998. As the technology is advancing rapidly, and its routine clinical use is expanding, TG 235 has been formed to provide an update to TG-55 on radiochromic film dosimetry. RCF dosimetry applications in clinical radiotherapy have become even more widespread, expanding from primarily brachytherapy and radiosurgery applications, and gravitating towards (but not limited to) external beam therapy (photon, electron and protons), such as quality assurance for IMRT, VMAT, Tomotherapy, SRS/SRT, and SBRT. In addition, RCF applications now extend to measurements of radiation dose in particle beams and patients undergoing medical exams, especially fluoroscopically guided interventional procedures and CT. The densitometers/scanners used for RCF dosimetry have also evolved from the He-Ne laser scanner to CCD-based scanners, including roller-based scanner, light box-based digital camera, and flatbed color scanner. More recently, multichannel RCF dosimetry introduced a new paradigm for external beam dose QA for its high accuracy and efficiency. This course covers in detail the recent advancements in RCF dosimetry. Learning Objectives: Introduce the paradigm shift on multichannel film dosimetry Outline the procedures to achieve accurate dosimetry with a RCF dosimetry system Provide comprehensive guidelines on RCF dosimetry for various clinical applications One of the speakers has a research agreement from Ashland Inc., the manufacturer of Gafchromic film.

  8. The US Department of Energy Personnel Dosimetry Evaluation and Upgrade Program

    SciTech Connect

    Faust, L.G.; Stroud, C.M.; Swinth, K.L.; Vallario, E.J.

    1987-11-01

    The US Department of Energy (DOE) Personnel Dosimetry Evaluation and Upgrade Program is designed to identify and evaluate dosimetry deficiencies and to conduct innovative research and development programs that will improve overall capabilities, thus ensuring that DOE can comply with applicable standards and regulations for dose measurement. To achieve these goals, two programs were initiated to evaluate and upgrade beta measurement and neutron dosimetry. 3 refs.

  9. Automating spectral measurements

    NASA Astrophysics Data System (ADS)

    Goldstein, Fred T.

    2008-09-01

    This paper discusses the architecture of software utilized in spectroscopic measurements. As optical coatings become more sophisticated, there is mounting need to automate data acquisition (DAQ) from spectrophotometers. Such need is exacerbated when 100% inspection is required, ancillary devices are utilized, cost reduction is crucial, or security is vital. While instrument manufacturers normally provide point-and-click DAQ software, an application programming interface (API) may be missing. In such cases automation is impossible or expensive. An API is typically provided in libraries (*.dll, *.ocx) which may be embedded in user-developed applications. Users can thereby implement DAQ automation in several Windows languages. Another possibility, developed by FTG as an alternative to instrument manufacturers' software, is the ActiveX application (*.exe). ActiveX, a component of many Windows applications, provides means for programming and interoperability. This architecture permits a point-and-click program to act as automation client and server. Excel, for example, can control and be controlled by DAQ applications. Most importantly, ActiveX permits ancillary devices such as barcode readers and XY-stages to be easily and economically integrated into scanning procedures. Since an ActiveX application has its own user-interface, it can be independently tested. The ActiveX application then runs (visibly or invisibly) under DAQ software control. Automation capabilities are accessed via a built-in spectro-BASIC language with industry-standard (VBA-compatible) syntax. Supplementing ActiveX, spectro-BASIC also includes auxiliary serial port commands for interfacing programmable logic controllers (PLC). A typical application is automatic filter handling.

  10. Phantom Positioning Variation in the Gamma Knife® Perfexion Dosimetry

    NASA Astrophysics Data System (ADS)

    Costa, N. A.; Potiens, M. P. A.; Saraiva, C. W. C.

    2016-07-01

    The use of small volume ionization chamber has become required for the dosimetry of equipments that use small radiation fields such as the Gamma Knife® Perfexion (GKP) unit. In this work, a pinpoint ionization chamber was inserted into the dosimetry phantom and measurements were performed with the phantom in different positions, in order to verify if the change in the phantom positioning affects the dosimetry of the GKP. Four different phantom positions were performed. The variation in the result is within the range allowed for the dosimetry of a GKP equipment.

  11. Handbook for the Department of Energy Laboratory Accreditation Program for personnel dosimetry systems

    SciTech Connect

    Not Available

    1986-12-01

    The program contained in this Handbook provides a significant advance in the field of radiation protection through a structured means for assuring the quality of personnel dosimetry performance. Since personnel dosimetry performance is directly related to the assurance of worker safety, it has been of key interest to the Department of Energy. Studies conducted over the past three decades have clearly demonstrated a need for personnel dosimetry performance criteria, related testing programs, and improvements in dosimetry technology. In responding to these needs, the DOE Office of Nuclear Safety (EH) has developed and initiated a DOE Laboratory Accreditation Program (DOELAP) which is intended to improve the quality of personnel dosimetry through (1) performance testing, (2) dosimetry and calibration intercomparisons, and (3) applied research. In the interest of improving dosimetry technology, the DOE Laboratory Accreditation Program (DOELAP) is also designed to encourage cooperation and technical interchange between DOE laboratories. Dosimetry intercomparison programs have been scheduled which include the use of transport standard instruments, transport standard radioactive sources and special dosimeters. The dosimeters used in the intercomparison program are designed to obtain optimum data on the comparison of dosimetry calibration methodologies and capabilities. This data is used in part to develop enhanced calibration protocols. In the interest of overall calibration update, assistance and guidance for the calibration of personnel dosimeters is available through the DOELAP support laboratories. 20 refs., 1 tab.

  12. Dosimetry using environmental and biological materials. Final report

    SciTech Connect

    Haskell, E.; Kenner, G.; Hayes, R.

    1998-02-01

    This report summarizes a five year effort to improve the sensitivity and reliability of retrospective dosimetry methods, to collaborate with laboratories engaged in related research and to share the technology with startup laboratories seeking similar capabilities. This research program has focused on validation of electron paramagnetic resonance (EPR) as a dosimetry tool and on optimization of the technique by reducing the lower limits of detection, simplifying the process of sample preparation and analysis and speeding analysis to allow greater throughput in routine measurement situations. The authors have investigated the dosimetric signal of hard tissues in enamel, deorganified dentin, synthetic carbonated apatites and synthetic hydroxyapatite. This research has resulted in a total of 27 manuscripts which have been published, are in press, or have been submitted for publication. Of these manuscripts, 14 are included in this report and were indexed separately for inclusion in the data base.

  13. NCRP PROGRAM AREA COMMITTEE 6: RADIATION DOSIMETRY AND MEASUREMENTS

    PubMed Central

    Simon, Steven L.; Zeman, Gary H.

    2015-01-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry – one of the most fundamental scientific areas of the Council’s expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards such as effects on lens of the eye, and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever emerging challenges. PMID:26717161

  14. A new technique for dosimetry reaction cross-section evaluation

    SciTech Connect

    Badikov, S.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: An objective of this paper is a unification of the procedure for dosimetry reaction cross-section evaluation. A set of requirements for the unified evaluation procedure is presented. A new code (ORTHO) was developed in order to meet these requirements. A statistical model, an algorithm, and the basic formulae employed in the code are described. The code was used for Ti48(n,p) reaction cross-section evaluation. The results of the evaluation are compared to International Reactor Dosimetry File (IRDF)-2002 data. The evaluated cross-sections and their correlations from this work are in good agreement with the IRDF-2002 evaluated data, whereas the uncertainties of the evaluated cross-sections are inconsistent. (authors)

  15. NCRP Program Area Committee 6: Radiation Measurements and Dosimetry.

    PubMed

    Simon, Steven L; Zeman, Gary H

    2016-02-01

    Program Area Committee (PAC) 6 of the National Council on Radiation Protection and Measurements provides guidance for radiation measurements and dosimetry--one of the most fundamental scientific areas of the Council's expertise. Seminal reports published by PAC 6 over many decades have documented the scientific and technical foundations of radiation measurements and dosimetry for generations of radiation scientists and radiation protection professionals. Ongoing work of PAC 6 is driven by advancing technology, such as development of new types of instruments, biodosimetry and nanotechnology; by evolving understanding of radiation hazards, such as effects on the lens of the eye and risks as from some high-dose medical imaging procedures; and by new situations faced in the modern socio-political environment including radiological and nuclear threats. The activities of PAC 6 are intended to formulate and document the dosimetric framework for radiological science to address these ever-emerging challenges.

  16. The specifics of dosimetry for food irradiation applications

    NASA Astrophysics Data System (ADS)

    Kuntz, Florent; Strasser, Alain

    2016-12-01

    Dose measurement applied to food irradiation is obviously a very important and critical aspect of this process. It is described in many standards and guides. The application of appropriate dosimetry tools is explained. This helps to ensure traceability of this measurement and number of dosimeters available on the market are well studied even though theirs response should be characterized while used in routine processing conditions. When employed in low energy radiation fields, these dosimeters may exhibit specific response compared to the usual Cobalt 60 source irradiation. Traceable calibration or correction factor assessment of this energy dependency is mandatory. It is to mention that the absorbed dose is measured in the dosimeter itself and unfortunately not in/on the food product. However, existing dosimetry systems fulfill all relevant requirements.

  17. Methods and computer readable medium for improved radiotherapy dosimetry planning

    DOEpatents

    Wessol, Daniel E.; Frandsen, Michael W.; Wheeler, Floyd J.; Nigg, David W.

    2005-11-15

    Methods and computer readable media are disclosed for ultimately developing a dosimetry plan for a treatment volume irradiated during radiation therapy with a radiation source concentrated internally within a patient or incident from an external beam. The dosimetry plan is available in near "real-time" because of the novel geometric model construction of the treatment volume which in turn allows for rapid calculations to be performed for simulated movements of particles along particle tracks therethrough. The particles are exemplary representations of alpha, beta or gamma emissions emanating from an internal radiation source during various radiotherapies, such as brachytherapy or targeted radionuclide therapy, or they are exemplary representations of high-energy photons, electrons, protons or other ionizing particles incident on the treatment volume from an external source. In a preferred embodiment, a medical image of a treatment volume irradiated during radiotherapy having a plurality of pixels of information is obtained.

  18. Clinical applications of alanine/electron spin resonance dosimetry.

    PubMed

    Baffa, Oswaldo; Kinoshita, Angela

    2014-05-01

    This paper discusses the clinical applications of electron spin resonance (ESR) dosimetry focusing on the ESR/alanine system. A review of few past studies in this area is presented offering a critical overview of the challenges and opportunities for extending this system into clinical applications. Alanine/ESR dosimetry fulfills many of the required properties for several clinical applications such as water-equivalent composition, independence of the sensitivity for the energy range used in therapy and high precision. Improvements in sensitivity and the development of minidosimeters coupled with the use of a spectrometer of higher microwave frequency expanded the possibilities for clinical applications to the new modalities of radiotherapy (intensity-modulated radiation therapy and radiosurgery) and to the detection of low doses such as those present in some radiological image procedures.

  19. Latest developments in silica-based thermoluminescence spectrometry and dosimetry.

    PubMed

    Bradley, D A; Jafari, S M; Siti Shafiqah, A S; Tamcheck, N; Shutt, A; Siti Rozaila, Z; Abdul Sani, S F; Sabtu, Siti Norbaini; Alanazi, Abdulaziz; Amouzad Mahdiraji, G; Abdul Rashid, H A; Maah, M J

    2016-11-01

    Using irradiated doped-silica preforms from which fibres for thermoluminescence dosimetry applications can be fabricated we have carried out a range of luminescence studies, the TL yield of the fibre systems offering many advantages over conventional passive dosimetry types. In this paper we investigate such media, showing emission spectra for irradiated preforms and the TL response of glass beads following irradiation to an (241)Am-Be neutron source located in a tank of water, the glass fibres and beads offering the advantage of being able to be placed directly into liquid. The outcomes from these and other lines of research are intended to inform development of doped silica radiation dosimeters of versatile utility, extending from environmental evaluations through to clinical and industrial applications.

  20. KCl:Dy phosphor for thermoluminescence dosimetry of ionizing radiation.

    PubMed

    Bhujbal, P M; Dhoble, S J

    2013-01-01

    The thermoluminescence (TL) characterizations of γ-irradiated KCl:Dy phosphor for radiation dosimetry are reported. All phosphors were synthesized via a wet chemical route. Minimum fading of TL intensity is recorded in the prepared material. TL in samples containing different concentrations of Dy impurity was studied at different γ-irradiation doses. Peak TL intensities varied sublinearly with γ-ray dose in all samples, but were linear between 0.08 to 0.75 kGy for the KCl:Dy (0.1 mol%) sample. This material may be useful for dosimetry within this range of γ-ray dose. TL peak height was found to be dependant on the concentration (0.05-0.5 mol%) of added Dy in the host.

  1. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    SciTech Connect

    Smart, Richard

    2011-05-05

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  2. Dosimetry of Radiopharmaceuticals for Diagnostic and Therapeutic Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Smart, Richard

    2011-05-01

    A standard formalism for radionuclide internal radiation dosimetry was developed in the 1960s and continues to be refined today. Early work was based on a mathematical phantom but this is being replaced by phantoms developed from whole-body CT scans to give more realistic dose estimates. The largest contributors to the uncertainties in these dose estimates are the errors associated with in vivo activity quantitation, the variability of the biokinetics between patients and the limited information that can be obtained on these kinetics in individual patients. Despite these limitations, pre-treatment patient-specific dosimetry is being increasing used, particularly to limit the toxicity to non-target organs such as the bone marrow.

  3. Computer simulations for internal dosimetry using voxel models.

    PubMed

    Kinase, Sakae; Mohammadi, Akram; Takahashi, Masa; Saito, Kimiaki; Zankl, Maria; Kramer, Richard

    2011-07-01

    In the Japan Atomic Energy Agency, several studies have been conducted on the use of voxel models for internal dosimetry. Absorbed fractions (AFs) and S values have been evaluated for preclinical assessments of radiopharmaceuticals using human voxel models and a mouse voxel model. Computational calibration of in vivo measurement system has been also made using Japanese and Caucasian voxel models. In addition, for radiation protection of the environment, AFs have been evaluated using a frog voxel model. Each study was performed by using Monte Carlo simulations. Consequently, it was concluded that these data of Monte Carlo simulations and voxel models could adequately reproduce measurement results. Voxel models were found to be a significant tool for internal dosimetry since the models are anatomically realistic. This fact indicates that several studies on correction of the in vivo measurement efficiency for the variability of human subjects and interspecies scaling of organ doses will succeed.

  4. ACS Algorithm in Discrete Ordinates for Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Walters, William; Haghighat, Alireza

    2016-02-01

    The Adaptive Collision Source (ACS) method can solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. This is similar to, and essentially an extension of, the first collision source method. Previously, the ACS methodology has been implemented into the TITAN discrete ordinates code, and has shown speedups of 2-4 on a simple test problem, with very little loss of accuracy (within a provided adaptive tolerance). This work examines the use of the ACS method for a more realistic problem: pressure vessel dosimetry with the VENUS-2 MOX-fuelled reactor dosimetry benchmark. The ACS method proved to be able to obtain accurate results while being approximately twice as efficient as using a constant quadrature in a standard source iteration scheme.

  5. Consistency of external dosimetry in epidemiologic studies of nuclear workers

    SciTech Connect

    Fix, J.J.; Gilbert, E.S.

    1991-10-01

    To make the best use of available epidemiologic data in assessing risks from exposure to low-level radiation, it is important that biases and uncertainties in estimated doses be understood and documented. With this understanding, analyses of mortality data can be strengthened by including the use of correction factors where judged appropriate, excluding portions of the data where uncertainty in dose estimates is judged to be very large, and conducting sensitivity analyses to examine the effect of alternative assumptions about dosimetry errors and biases on results. It is hoped that the pooling of data from several epidemiologic studies and improved understanding of dosimetry will lead to better estimates of radiation risks. 10 refs., 4 tabs.

  6. Internal radiation dosimetry for clinical testing of radiolabeled monoclonal antibodies

    SciTech Connect

    Fisher, D.R.; Durham, J.S.; Hui, T.E.; Hill, R.L.

    1990-11-01

    In gauging the efficacy of radiolabeled monoclonal antibodies in cancer treatment, it is important to know the amount of radiation energy absorbed by tumors and normal tissue per unit administered activity. This paper describes methods for estimating absorbed doses to human tumors and normal tissues, including intraperitoneal tissue surfaces, red marrow, and the intestinal tract from incorporated radionuclides. These methods use the Medical Internal Radiation Dose (MIRD) scheme; however, they also incorporate enhancements designed to solve specific dosimetry problems encountered during clinical studies, such as patient-specific organ masses obtained from computerized tomography (CT) volumetrics, estimates of the dose to tumor masses within normal organs, and multicellular dosimetry for studying dose inhomogeneities in solid tumors. Realistic estimates of absorbed dose are provided within the short time requirements of physicians so that decisions can be made with regard to patient treatment and procurement of radiolabeled antibodies. Some areas in which further research could improve dose assessment are also discussed. 16 refs., 3 figs.

  7. EPR dosimetry in a mixed neutron and gamma radiation field.

    PubMed

    Trompier, F; Fattibene, P; Tikunov, D; Bartolotta, A; Carosi, A; Doca, M C

    2004-01-01

    Suitability of Electron Paramagnetic Resonance (EPR) spectroscopy for criticality dosimetry was evaluated for tooth enamel, mannose and alanine pellets during the 'international intercomparison of criticality dosimetry techniques' at the SILENE reactor held in Valduc in June 2002, France. These three materials were irradiated in neutron and gamma-ray fields of various relative intensities and spectral distributions in order to evaluate their neutron sensitivity. The neutron response was found to be around 10% for tooth enamel, 45% for mannose and between 40 and 90% for alanine pellets according their type. According to the IAEA recommendations on the early estimate of criticality accident absorbed dose, analyzed results show the EPR potentiality and complementarity with regular criticality techniques.

  8. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    PubMed Central

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed. PMID:25799311

  9. Dosimetry and microdosimetry using COTS ICs: A comparative study

    NASA Technical Reports Server (NTRS)

    Scheick, L.; Swift, G.; Guertin, S.; Roth, D.; McNulty, P.; Nguyen, D.

    2002-01-01

    A new method using an array of MOS transistors formeasuring dose absorbed from ionizing radiation is compared to previous dosimetric methods., The accuracy and precision of dosimetry based on COTS SRAMs, DRAMs, and WPROMs are compared and contrasted. Applications of these devices in various space missions will be discussed. TID results are presented for this summary and microdosimetricresults will be added to the full paper. Finally, an analysis of the optimal condition for a digital dosimeter will be presented.

  10. Optimization of the double dosimetry algorithm for interventional cardiologists

    NASA Astrophysics Data System (ADS)

    Chumak, Vadim; Morgun, Artem; Bakhanova, Elena; Voloskiy, Vitalii; Borodynchik, Elena

    2014-11-01

    A double dosimetry method is recommended in interventional cardiology (IC) to assess occupational exposure; yet currently there is no common and universal algorithm for effective dose estimation. In this work, flexible and adaptive algorithm building methodology was developed and some specific algorithm applicable for typical irradiation conditions of IC procedures was obtained. It was shown that the obtained algorithm agrees well with experimental measurements and is less conservative compared to other known algorithms.

  11. Radiochromic Film Dosimetry and its Applications in Radiotherapy

    SciTech Connect

    Williams, Matthew; Metcalfe, Peter

    2011-05-05

    Radiochromic film can be a fast and inexpensive means for performing accurate quantitative radiation dosimetry. The development of new radiochromic compositions that have greater dose sensitivity and fewer environmental dependencies has led to an ever increasing use of the film in radiotherapy applications. In this report the various physical and dosimetric properties of radiochromic film are presented and the strategies to adequately manage these properties when using radiochromic film for radiotherapy applications are discussed.

  12. Shared dosimetry error in epidemiological dose-response analyses

    DOE PAGES

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; ...

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takesmore » up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.« less

  13. Shared Dosimetry Error in Epidemiological Dose-Response Analyses

    SciTech Connect

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. Use of these methods for several studies, including the Mayak Worker Cohort and the U.S. Atomic Veterans Study, is discussed.

  14. Radiological protection and medical dosimetry for the Skylab crewmen

    NASA Technical Reports Server (NTRS)

    Bailey, J. V.; Hoffman, R. A.; English, R. A.

    1977-01-01

    Dosimetry results for Skylab crewmembers show that the Skylab 4 crewmen received the highest dose equivalents but remained well within the established limits for Skylab missions below the threshold of significant clinical effects. These dose equivalents apply specificially to long term effects such as general life shortening, increased neoplasm incidence, and cataract production. A Skylab crewman could fly a mission comparable to one 84-day Skylab 4 mission per year for 50 years before exceeding these career limits.

  15. Shared dosimetry error in epidemiological dose-response analyses

    SciTech Connect

    Stram, Daniel O.; Preston, Dale L.; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J.; Boice, John; Beck, Harold; Till, John; Bouville, Andre; Zeeb, Hajo

    2015-03-23

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  16. Shared dosimetry error in epidemiological dose-response analyses.

    PubMed

    Stram, Daniel O; Preston, Dale L; Sokolnikov, Mikhail; Napier, Bruce; Kopecky, Kenneth J; Boice, John; Beck, Harold; Till, John; Bouville, Andre

    2015-01-01

    Radiation dose reconstruction systems for large-scale epidemiological studies are sophisticated both in providing estimates of dose and in representing dosimetry uncertainty. For example, a computer program was used by the Hanford Thyroid Disease Study to provide 100 realizations of possible dose to study participants. The variation in realizations reflected the range of possible dose for each cohort member consistent with the data on dose determinates in the cohort. Another example is the Mayak Worker Dosimetry System 2013 which estimates both external and internal exposures and provides multiple realizations of "possible" dose history to workers given dose determinants. This paper takes up the problem of dealing with complex dosimetry systems that provide multiple realizations of dose in an epidemiologic analysis. In this paper we derive expected scores and the information matrix for a model used widely in radiation epidemiology, namely the linear excess relative risk (ERR) model that allows for a linear dose response (risk in relation to radiation) and distinguishes between modifiers of background rates and of the excess risk due to exposure. We show that treating the mean dose for each individual (calculated by averaging over the realizations) as if it was true dose (ignoring both shared and unshared dosimetry errors) gives asymptotically unbiased estimates (i.e. the score has expectation zero) and valid tests of the null hypothesis that the ERR slope β is zero. Although the score is unbiased the information matrix (and hence the standard errors of the estimate of β) is biased for β≠0 when ignoring errors in dose estimates, and we show how to adjust the information matrix to remove this bias, using the multiple realizations of dose. The use of these methods in the context of several studies including, the Mayak Worker Cohort, and the U.S. Atomic Veterans Study, is discussed.

  17. Verification of total body photon irradiation dosimetry techniques

    SciTech Connect

    Kirby, T.H.; Hanson, W.F.; Cates, D.A.

    1988-05-01

    A method of verifying the dosimetry of patients undergoing total body irradiation (TBI) with photon beams having energies from cobalt-60 to 25 MV is presented. A simple set of spot checks at the TBI axis has been used to verify data used for TBI dosimetry. Calculations to verify dose delivered to TBI patients are done in the same manner as those irradiated at standard treatment distances. A simple method of effective field size determination for various anatomical locations in a typical adult is presented. Measurements in an Alderson phantom with thermoluminescent dosimeters and an ion chamber at several anatomical locations indicate that this calculational method can predict the dose along the patient axis to within 4% for /sup 60/Co and 18-MV photon beams, provided the dosimetry data are appropriate (as determined by the spot checks). Results of intercomparisons of TBI beam calibration, off-axis and depth-dose data at various institutions visited by the Radiological Physics Center are also presented.

  18. International cooperative effort to establish dosimetry standardization for radiation processing

    SciTech Connect

    Farrar, H. IV

    1989-01-01

    Radiation processing is a rapidly developing technology with numerous applications in food treatment, sterilization, and polymer modification. The effectiveness of the process depends, however, on the proper application of dose and its measurement. These aspects are being considered by a wide group of experts from around the world who have joined together to write a comprehensive set of standards for dosimetry for radiation processing. Originally formed in 1984 to develop standards for food processing dosimetry, the group has now expanded into a full subcommittee of the American Society for Testing and Materials (ASTM), with 97 members from 19 countries. The scope of the standards now includes dosimetry for all forms of radiation processing. The group has now completed and published four standards, and is working on an additional seven. Three are specifically for food applications and the others are for all radiation applications, including food processing. Together, this set of standards will specify acceptable guidelines and methods for accomplishing the required irradiation treatment, and will be available for adoption by national regulatory agencies in their procedures and protocols. 1 tab.

  19. A small-scale anatomical dosimetry model of the liver

    NASA Astrophysics Data System (ADS)

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-01

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  20. A review of instruments and methods for dosimetry in space

    NASA Astrophysics Data System (ADS)

    Caffrey, Jarvis A.; Hamby, D. M.

    2011-02-01

    Instruments and methods recently used for space radiation dosimetry are reviewed for the purposes of comparison and reference. Passive detection methods mentioned include track-etch, luminescent, nuclear emulsion, and metal foil detectors. These can provide a reliable source of data for all types of radiation, but often require processing that cannot occur in space. Experimental methods of LET determination using TLDs, such as the high temperature peak ratio (HTR) method, are also discussed. Portable readout passive detectors including Pille, MOSFET, and bubble detector systems provide a novel alternative to traditional passive detectors, but research is more limited and their widespread use has yet to be established. Active detectors including DOSTEL, CPDS, RRMD-III, TEPC, R-16, BBND, and the Liulin series are examined for technical details. These instruments allow the determination of dose in real-time, and some can determine LET of incident particles by measuring energy deposition over a known path-length, but size and power consumption limit their practical use for dosimetry. Improved neutron dosimetry and development of a small active or portable readout personnel dosimeter capable of accurate LET determination are important steps for managing the effects of long-term exposure to the space radiation environment.

  1. Effects of water on fingernail electron paramagnetic resonance dosimetry

    PubMed Central

    Zhang, Tengda; Zhao, Zhixin; Zhang, Haiying; Zhai, Hezheng; Ruan, Shuzhou; Jiao, Ling; Zhang, Wenyi

    2016-01-01

    Electron paramagnetic resonance (EPR) is a promising biodosimetric method, and fingernails are sensitive biomaterials to ionizing radiation. Therefore, kinetic energy released per unit mass (kerma) can be estimated by measuring the level of free radicals within fingernails, using EPR. However, to date this dosimetry has been deficient and insufficiently accurate. In the sampling processes and measurements, water plays a significant role. This paper discusses many effects of water on fingernail EPR dosimetry, including disturbance to EPR measurements and two different effects on the production of free radicals. Water that is unable to contact free radicals can promote the production of free radicals due to indirect ionizing effects. Therefore, varying water content within fingernails can lead to varying growth rates in the free radical concentration after irradiation—these two variables have a linear relationship, with a slope of 1.8143. Thus, EPR dosimetry needs to be adjusted according to the water content of the fingernails of an individual. When the free radicals are exposed to water, the eliminating effect will appear. Therefore, soaking fingernail pieces in water before irradiation, as many researchers have previously done, can cause estimation errors. In addition, nails need to be dehydrated before making accurately quantitative EPR measurements. PMID:27342838

  2. Tumor dosimetry in radioimmunotherapy: Methods of calculation for beta particles

    SciTech Connect

    Leichner, P.K. ); Kwok, C.S. )

    1993-03-01

    Calculational methods of beta-particle dosimetry in radioimmunotherapy (RIT) are reviewed for clinical and experimental studies and computer modeling of tumors. In clinical studies, absorbed-dose estimates are usually based on the [ital in]-[ital vivo] quantitation of the activity in tumors from gamma camera images. Because of the limited spatial resolution of gamma cameras, clinical dosimetry is necessarily limited to the macroscopic level (macrodosimetry) and the MIRD formalism for absorbed-dose calculations is appropriate. In experimental RIT, tumor dimensions are often comparable to or smaller than the beta-particle range of commonly used radionuclides (for example, [sup 131]I, [sup 67]Cu, [sup 186]Re, [sup 188]Re, [sup 90]Y) and deviations from the equilibrium dose must be taken into account in absorbed-dose calculations. Additionally, if small tumors are growing rapidly at the time of RIT, the effects of tumor growth will need to be included in absorbed-dose estimates. In computer modeling of absorbed-dose distributions, analytical, numerical, and Monte Carlo methods have been used to investigate the consequences of uniform and nonuniform activity distributions and the effects of inhomogeneous media. Measurements and calculations of the local absorbed dose at the multicellular level have shown that variations in this dose are large. Knowledge of the absorbed dose is essential for any form of radiotherapy. Therefore, it is important that clinical, experimental, and theoretical investigations continue to provide information on tumor dosimetry that is necessary for a better understanding of the radiobiological effects of RIT.

  3. Proceedings of the second conference on radiation protection and dosimetry

    SciTech Connect

    Swaja, R. E.; Sims, C. S.

    1988-11-01

    The Second Conference on Radiation Protection and Dosimetry was held during October 31--November 3, 1988, at the Holiday Inn, Crowne Plaza Hotel in Orlando, Florida. This meeting was designed with the objectives of promoting communication among applied, research, regulatory, and standards personnel involved in radiation protection and providing them with sufficient information to evaluate their programs. To facilitate meeting these objectives, a technical program consisting of more than 75 invited and contributed oral presentations encompassing all aspects of radiation protection was prepared. General topics considered in the technical sessions included external dosimetry, internal dosimetry, calibration, standards and regulations, instrumentation, accreditation and test programs, research advances, and applied program experience. In addition, special sessions were held to afford attendees the opportunity to make short presentations of recent work or to discuss topics of general interest. This document provides a summary of the conference technical program and a partial collection of full papers for the oral presentations in order of delivery. Individual papers were processed separately for the data base.

  4. INTRINSIC DOSIMETRY: A POTENTIAL NEW TOOL FOR NUCLEAR FORENSICS INVESTIGATIONS

    SciTech Connect

    Clark, Richard A.; Miller, Steven D.; Robertson, Dave J.; Gregg, Roger A.; Murphy, Mark K.; Schwantes, Jon M.

    2010-08-11

    Thermoluminescence (TL) dosimetry was used to measure dose effects on the raw stock material of borosilicate container glass from different geographical locations. Effects were studied at times up to 60 days post-irradiation at doses from 0.15 to 20 Gy. The minimum detectable dose using this technique was estimated to be 0.15 Gy which is roughly equivalent to a 24 hr irradiation 1 cm from a 50 ng source of 60Co. Two peaks were identified in the TL glow curve, a relatively unstable peak around 125°C and a more stable peak around 225°C. Differences in TL glow curve shape and intensity were also observed for the glasses from different geographical origins. We investigate radiation induced defects in glass to further develop the technique of intrinsic dosimetry–the measurement of the total absorbed dose received by the walls of a container holding radioactive material. Intrinsic dosimetry is intended to be used as an interrogation tool to provide enhanced pathway information on interdicted or newly discovered waste containers of unknown origin or history by considering the total absorbed dose received by a container in tandem with the physical characteristics of the radioactive material housed within that container. One hypothetical scenario is presented to illustrate the application of intrinsic dosimetry to waste management and nuclear forensics.

  5. On the reliability of 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Vandecasteele, J.

    2013-06-01

    Gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as it covers the whole treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. A major obstacle that has hindered the wider dissemination of polymer gel dosimetry in radiotherapy centres is the lack of confidence in the reliability of the measured dose. Discrepancies in dose response of small versus large polymer gel dosimeters have been reported and although several hypothesis for these discrepancies have been postulated, the actual contribution of these error sources to the overall inaccuracy of the dose maps has not been determined. Several gel dosimetry research groups have chosen to use an internal calibration of gel dosimeters. In this study, the inter-and intra-batch reproducibility of the current state-of-the-art 3D gel dosimeters has been assessed. It is demonstrated that with a carefully designed scanning set-up, the overall accuracy that can be obtained with an independent calibration is well within 5% of all pixels.

  6. A small-scale anatomical dosimetry model of the liver.

    PubMed

    Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders

    2014-07-07

    Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and (125)I, (90)Y, (211)At, (99m)Tc, (111)In, (177)Lu, (131)I and (18)F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons ((125)I) or high-LET alpha particles ((211)At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.

  7. Real-time dosimetry in radiotherapy using tailored optical fibers

    NASA Astrophysics Data System (ADS)

    Rahman, A. K. M. Mizanur; Zubair, H. T.; Begum, Mahfuza; Abdul-Rashid, H. A.; Yusoff, Z.; Omar, Nasr Y. M.; Ung, N. M.; Mat-Sharif, K. A.; Bradley, D. A.

    2016-05-01

    Real-time dosimetry plays an important role for accurate patient-dose measurement during radiotherapy. A tiny piece of laboratory fabricated Ge-doped optical fiber has been investigated as a radioluminescence (RL) sensor for real-time dosimetry over the dose range from 1 Gy to 8 Gy under 6 MV photon beam by LINAC. Fiber-coupled software-based RL prototype system was used to assess essential dosimetric characteristics including dose response linearity, dose rate dependency, sensitivity, repeatability and output dependence on field sizes. The consistency level of RL photon counts versus dose rate was also compared with that of standard Al2O3:C chips. Sensitivity of Ge-doped fiber were found to be sufficiently sensitive for practical use and also provided linear dose responses for various dose rates from 100 cGy/min to 600 cGy/min using both 6 MV photon and 6 MeV electron beams. SEM-EDX analysis was performed to identify Ge-dopant concentration level within the optical fiber RL material. Accumulated doses were also estimated using simple integral technique and the error was found to be around less than 1% under dissimilar dose rates or repeat measurements. The evaluation of the Ge-doped optical fiber based RL dosimeter system indicates its potential in medical dosimetry.

  8. MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry

    PubMed Central

    Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo

    2016-01-01

    The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy–30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6–7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping. PMID:27076349

  9. Performance and approval procedures for active personal dosemeters.

    PubMed

    Ginjaume, M

    2011-03-01

    Active personal dosemeters (APDs) are well accepted as useful and reliable instruments for individual dosimetry measurements. The increasing concern about studying the behaviour of APDs in pulsed fields is illustrated through revision of the results of the most representative studies on the performance of APDs in the last 5 y. The deficiencies of APDs in pulsed fields are discussed together with proposals to overcome them. Although there are no legal constraints or technical limitations for recognising APDs for legal dosimetry in facilities with continuous radiation fields, APDs continue to be mainly used as operational dosemeters. The approval procedures applicable to APDs, especially the approach undertaken by Germany, are presented. Finally, some trends in the developments and use of APDs are summarised.

  10. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    Wildfires have a profound impact upon the biosphere and our society in general. They cause loss of life, destruction of personal property and natural resources and alter the chemistry of the atmosphere. In response to the concern over the consequences of wildland fire and to support the fire management community, the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) located in Camp Springs, Maryland gradually developed an operational system to routinely monitor wildland fire by satellite observations. The Hazard Mapping System, as it is known today, allows a team of trained fire analysts to examine and integrate, on a daily basis, remote sensing data from Geostationary Operational Environmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors and generate a 24 hour fire product for the conterminous United States. Although assisted by automated fire detection algorithms, N O M has not been able to eliminate the human element from their fire detection procedures. As a consequence, the manually intensive effort has prevented NOAA from transitioning to a global fire product as urged particularly by climate modelers. NASA at Goddard Space Flight Center in Greenbelt, Maryland is helping N O M more fully automate the Hazard Mapping System by training neural networks to mimic the decision-making process of the frre analyst team as well as the automated algorithms.

  11. Automated campaign system

    NASA Astrophysics Data System (ADS)

    Vondran, Gary; Chao, Hui; Lin, Xiaofan; Beyer, Dirk; Joshi, Parag; Atkins, Brian; Obrador, Pere

    2006-02-01

    To run a targeted campaign involves coordination and management across numerous organizations and complex process flows. Everything from market analytics on customer databases, acquiring content and images, composing the materials, meeting the sponsoring enterprise brand standards, driving through production and fulfillment, and evaluating results; all processes are currently performed by experienced highly trained staff. Presented is a developed solution that not only brings together technologies that automate each process, but also automates the entire flow so that a novice user could easily run a successful campaign from their desktop. This paper presents the technologies, structure, and process flows used to bring this system together. Highlighted will be how the complexity of running a targeted campaign is hidden from the user through technologies, all while providing the benefits of a professionally managed campaign.

  12. Automated macromolecular crystallization screening

    DOEpatents

    Segelke, Brent W.; Rupp, Bernhard; Krupka, Heike I.

    2005-03-01

    An automated macromolecular crystallization screening system wherein a multiplicity of reagent mixes are produced. A multiplicity of analysis plates is produced utilizing the reagent mixes combined with a sample. The analysis plates are incubated to promote growth of crystals. Images of the crystals are made. The images are analyzed with regard to suitability of the crystals for analysis by x-ray crystallography. A design of reagent mixes is produced based upon the expected suitability of the crystals for analysis by x-ray crystallography. A second multiplicity of mixes of the reagent components is produced utilizing the design and a second multiplicity of reagent mixes is used for a second round of automated macromolecular crystallization screening. In one embodiment the multiplicity of reagent mixes are produced by a random selection of reagent components.

  13. Terminal automation system maintenance

    SciTech Connect

    Coffelt, D.; Hewitt, J.

    1997-01-01

    Nothing has improved petroleum product loading in recent years more than terminal automation systems. The presence of terminal automation systems (TAS) at loading racks has increased operational efficiency and safety and enhanced their accounting and management capabilities. However, like all finite systems, they occasionally malfunction or fail. Proper servicing and maintenance can minimize this. And in the unlikely event a TAS breakdown does occur, prompt and effective troubleshooting can reduce its impact on terminal productivity. To accommodate around-the-clock loading at racks, increasingly unattended by terminal personnel, TAS maintenance, servicing and troubleshooting has become increasingly demanding. It has also become increasingly important. After 15 years of trial and error at petroleum and petrochemical storage and transfer terminals, a number of successful troubleshooting programs have been developed. These include 24-hour {open_quotes}help hotlines,{close_quotes} internal (terminal company) and external (supplier) support staff, and {open_quotes}layered{close_quotes} support. These programs are described.

  14. Automated Chromosome Breakage Assessment

    NASA Technical Reports Server (NTRS)

    Castleman, Kenneth

    1985-01-01

    An automated karyotyping machine was built at JPL in 1972. It does computerized karyotyping, but it has some hardware limitations. The image processing hardware that was available at a reasonable price in 1972 was marginal, at best, for this job. In the meantime, NASA has developed an interest in longer term spaceflights and an interest in using chromosome breakage studies as a dosimeter for radiation or perhaps other damage that might occur to the tissues. This uses circulating lymphocytes as a physiological dosimeter looking for chromosome breakage on long-term spaceflights. For that reason, we have reactivated the automated karyotyping work at JPL. An update on that work, and a description of where it appears to be headed is presented.

  15. The automation of science.

    PubMed

    King, Ross D; Rowland, Jem; Oliver, Stephen G; Young, Michael; Aubrey, Wayne; Byrne, Emma; Liakata, Maria; Markham, Magdalena; Pir, Pinar; Soldatova, Larisa N; Sparkes, Andrew; Whelan, Kenneth E; Clare, Amanda

    2009-04-03

    The basis of science is the hypothetico-deductive method and the recording of experiments in sufficient detail to enable reproducibility. We report the development of Robot Scientist "Adam," which advances the automation of both. Adam has autonomously generated functional genomics hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses by using laboratory automation. We have confirmed Adam's conclusions through manual experiments. To describe Adam's research, we have developed an ontology and logical language. The resulting formalization involves over 10,000 different research units in a nested treelike structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical description. This formalization describes how a machine contributed to scientific knowledge.

  16. Automated gas chromatography

    DOEpatents

    Mowry, C.D.; Blair, D.S.; Rodacy, P.J.; Reber, S.D.

    1999-07-13

    An apparatus and process for the continuous, near real-time monitoring of low-level concentrations of organic compounds in a liquid, and, more particularly, a water stream. A small liquid volume of flow from a liquid process stream containing organic compounds is diverted by an automated process to a heated vaporization capillary where the liquid volume is vaporized to a gas that flows to an automated gas chromatograph separation column to chromatographically separate the organic compounds. Organic compounds are detected and the information transmitted to a control system for use in process control. Concentrations of organic compounds less than one part per million are detected in less than one minute. 7 figs.

  17. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  18. Automated Assembly Center (AAC)

    NASA Technical Reports Server (NTRS)

    Stauffer, Robert J.

    1993-01-01

    The objectives of this project are as follows: to integrate advanced assembly and assembly support technology under a comprehensive architecture; to implement automated assembly technologies in the production of high-visibility DOD weapon systems; and to document the improved cost, quality, and lead time. This will enhance the production of DOD weapon systems by utilizing the latest commercially available technologies combined into a flexible system that will be able to readily incorporate new technologies as they emerge. Automated assembly encompasses the following areas: product data, process planning, information management policies and framework, three schema architecture, open systems communications, intelligent robots, flexible multi-ability end effectors, knowledge-based/expert systems, intelligent workstations, intelligent sensor systems, and PDES/PDDI data standards.

  19. The automated command transmission

    NASA Astrophysics Data System (ADS)

    Inoue, Y.; Satoh, S.

    A technique for automated command transmission (ACT) to GEO-stationed satellites is presented. The system is intended for easing the command center workload. The ACT system determines the relation of the commands to on-board units, connects the telemetry with on-board units, defines the control path on the spacecraft, identifies the correspondence of back-up units to primary units, and ascertains sunlight or eclipse conditions. The system also has the address of satellite and command decoders, the ID and content for the mission command sequence, group and inhibit codes, a listing of all available commands, and restricts the data to a command sequence. Telemetry supplies data for automated problem correction. All other missions operations are terminated during system recovery data processing after a crash. The ACT system is intended for use with the GMS spacecraft.

  20. Reference dosimetry measurements for the international intercomparison of criticality accident dosimetry SILENE 9-21 June 2002.

    PubMed

    Asselineau, B; Trompier, F; Texier, C; Itié, C; Médioni, R; Tikunov, D; Muller, H; Pelcot, G

    2004-01-01

    An international intercomparison of criticality accident dosimetry systems took place in the SILENE reactor, in June 2002. Participants from 60 laboratories irradiated their dosemeters (physical and biological) using two different configurations of the reactor. In preparation for this intercomparison, the leakage radiation fields were characterised by spectrometry and dosimetry measurements using the ROSPEC spectrometer associated with a NE-213 scintillator, ionisation chambers, GM counters, diodes and thermoluminescence dosemeters (TLDs). For this intercomparison, a large area was required to irradiate the dosemeters both in free air and on phantoms. Therefore, measurements of the uniformity of the field were performed with activation detectors and TLDs for neutron and gammas, respectively. This paper describes the procedures used and the results obtained.

  1. Automated RSO Stability Analysis

    NASA Astrophysics Data System (ADS)

    Johnson, T.

    2016-09-01

    A methodology for assessing the attitude stability of a Resident Space Object (RSO) using visual magnitude data is presented and then scaled to run in an automated fashion across the entire satellite catalog. Results obtained by applying the methodology to the Commercial Space Operations Center (COMSpOC) catalog are presented and summarized, identifying objects that have changed stability. We also examine the timeline for detecting the transition from stable to unstable attitude

  2. Automation in Photogrammetry,

    DTIC Science & Technology

    1980-07-25

    Allam , 1978), and the OM-Bendix AS-lIB-X (Scarano and Bruma, 1976). The UNAMACE and GPM-2 employ analog (electronic) correlation technology. However...Survey (USGS) and the Surveys and Mapping Branch (Canada) have formed integrated systems based on the Gestalt GPM 2 (Brunson and Olson, 1978; Allam , 1978...ten years off, and the full automation of planimetric extraction may be more than 20 years in the future. REFERENCES Allam , M. M., 1978. The Role of

  3. Automated Nitrocellulose Analysis

    DTIC Science & Technology

    1978-12-01

    is acceptable. (4) As would be expected from the theory of osmosis , a high saline content in the dialysis recipient stream (countersolution) is of...Block 39, II different from Report; IS. SUPPLEMENTARY NOTES IS. KEY WOROS (Continue on rereri Analysis Automated analysis Dialysis Glyceryl...Technicon AutoAnalyzer, involves aspiration of a stirred nitrocellulose suspension, dialysis against 9 percent saline, and hydrolysis with 5N sodium

  4. Automated Cooperative Trajectories

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  5. Power subsystem automation study

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Sewy, D.; Pickering, C.; Sauers, R.

    1984-01-01

    The purpose of the phase 2 of the power subsystem automation study was to demonstrate the feasibility of using computer software to manage an aspect of the electrical power subsystem on a space station. The state of the art in expert systems software was investigated in this study. This effort resulted in the demonstration of prototype expert system software for managing one aspect of a simulated space station power subsystem.

  6. Automated Microfluidics for Genomics

    DTIC Science & Technology

    2007-11-02

    the automation of it, see [4]. In the Genomation Laboratory at the Univ. of Washington (http://rcs.ee.washington.edu/GNL/genomation.html) and with Orca ...reproducible biology without contamination . The high throughput capability is competitive with large scale robotic batch processing. III. INSTRUMENTATION...essentially arbitrary low volume, and without any contact that might cause contamination . A. ACAPELLA-5K Core Processor The ACAPELLA-5K was designed with

  7. Automated RTOP Management System

    NASA Technical Reports Server (NTRS)

    Hayes, P.

    1984-01-01

    The structure of NASA's Office of Aeronautics and Space Technology electronic information system network from 1983 to 1985 is illustrated. The RTOP automated system takes advantage of existing hardware, software, and expertise, and provides: (1) computerized cover sheet and resources forms; (2) electronic signature and transmission; (3) a data-based information system; (4) graphics; (5) intercenter communications; (6) management information; and (7) text editing. The system is coordinated with Headquarters efforts in codes R,E, and T.

  8. Automated Microbial Metabolism Laboratory

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the automated microbial metabolism laboratory (AMML) concept is reported. The focus of effort of AMML was on the advanced labeled release experiment. Labeled substrates, inhibitors, and temperatures were investigated to establish a comparative biochemical profile. Profiles at three time intervals on soil and pure cultures of bacteria isolated from soil were prepared to establish a complete library. The development of a strategy for the return of a soil sample from Mars is also reported.

  9. Cavendish Balance Automation

    NASA Technical Reports Server (NTRS)

    Thompson, Bryan

    2000-01-01

    This is the final report for a project carried out to modify a manual commercial Cavendish Balance for automated use in cryostat. The scope of this project was to modify an off-the-shelf manually operated Cavendish Balance to allow for automated operation for periods of hours or days in cryostat. The purpose of this modification was to allow the balance to be used in the study of effects of superconducting materials on the local gravitational field strength to determine if the strength of gravitational fields can be reduced. A Cavendish Balance was chosen because it is a fairly simple piece of equipment for measuring gravity, one the least accurately known and least understood physical constants. The principle activities that occurred under this purchase order were: (1) All the components necessary to hold and automate the Cavendish Balance in a cryostat were designed. Engineering drawings were made of custom parts to be fabricated, other off-the-shelf parts were procured; (2) Software was written in LabView to control the automation process via a stepper motor controller and stepper motor, and to collect data from the balance during testing; (3)Software was written to take the data collected from the Cavendish Balance and reduce it to give a value for the gravitational constant; (4) The components of the system were assembled and fitted to a cryostat. Also the LabView hardware including the control computer, stepper motor driver, data collection boards, and necessary cabling were assembled; and (5) The system was operated for a number of periods, data collected, and reduced to give an average value for the gravitational constant.

  10. Automated trabecular bone histomorphometry

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S. S.

    1985-01-01

    The toxicity of alpha-emitting bone-seeking radionuclides and the relationship between bone tumor incidence and the local dosimetry of radionuclides in bone are investigated. The microdistributions of alpha-emitting radionuclides in the trabecular bone from the proximal humerus, distal humerus, proximal ulna, proximal femur, and distal femur of six young adult beagles injected with Am-241 (three with 2.8 micro-Ci/kg and three with 0.9 micro-Ci/kg) are estimated using a computer-controlled microscope photometer system; the components of the University of Utah Optical Track Scanner are described. The morphometric parameters for the beagles are calculated and analyzed. It is observed that the beagles injected with 0.9 micro-Ci of Am-241/kg showed an increase in the percentage of bone and trabecular bone thickness, and a reduction in the width of the bone marrow space and surface/volume ratio. The data reveal that radiation damage causes abnormal bone structure.

  11. Quasi 3D dosimetry (EPID, conventional 2D/3D detector matrices)

    NASA Astrophysics Data System (ADS)

    Bäck, A.

    2015-01-01

    Patient specific pretreatment measurement for IMRT and VMAT QA should preferably give information with a high resolution in 3D. The ability to distinguish complex treatment plans, i.e. treatment plans with a difference between measured and calculated dose distributions that exceeds a specified tolerance, puts high demands on the dosimetry system used for the pretreatment measurements and the results of the measurement evaluation needs a clinical interpretation. There are a number of commercial dosimetry systems designed for pretreatment IMRT QA measurements. 2D arrays such as MapCHECK® (Sun Nuclear), MatriXXEvolution (IBA Dosimetry) and OCTAVIOUS® 1500 (PTW), 3D phantoms such as OCTAVIUS® 4D (PTW), ArcCHECK® (Sun Nuclear) and Delta4 (ScandiDos) and software for EPID dosimetry and 3D reconstruction of the dose in the patient geometry such as EPIDoseTM (Sun Nuclear) and Dosimetry CheckTM (Math Resolutions) are available. None of those dosimetry systems can measure the 3D dose distribution with a high resolution (full 3D dose distribution). Those systems can be called quasi 3D dosimetry systems. To be able to estimate the delivered dose in full 3D the user is dependent on a calculation algorithm in the software of the dosimetry system. All the vendors of the dosimetry systems mentioned above provide calculation algorithms to reconstruct a full 3D dose in the patient geometry. This enables analyzes of the difference between measured and calculated dose distributions in DVHs of the structures of clinical interest which facilitates the clinical interpretation and is a promising tool to be used for pretreatment IMRT QA measurements. However, independent validation studies on the accuracy of those algorithms are scarce. Pretreatment IMRT QA using the quasi 3D dosimetry systems mentioned above rely on both measurement uncertainty and accuracy of calculation algorithms. In this article, these quasi 3D dosimetry systems and their use in patient specific pretreatment IMRT

  12. Examination of Automation-Induced Complacency and Individual Difference Variates

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; DeVries, Holly; Freeman, Fred G.; Mikulka, Peter

    2001-01-01

    Automation-induced complacency has been documented as a cause or contributing factor in many airplane accidents throughout the last two decades. It is surmised that the condition results when a crew is working in highly reliable automated environments in which they serve as supervisory controllers monitoring system states for occasional automation failures. Although many reports have discussed the dangers of complacency, little empirical research has been produced to substantiate its harmful effects on performance as well as what factors produce complacency. There have been some suggestions, however, that individual characteristics could serve as possible predictors of performance in automated systems. The present study examined relationship between the individual differences of complacency potential, boredom proneness, and cognitive failure, automation-induced complacency. Workload and boredom scores were also collected and analyzed in relation to the three individual differences. The results of the study demonstrated that there are personality individual differences that are related to whether an individual will succumb to automation-induced complacency. Theoretical and practical implications are discussed.

  13. Autonomy, Automation, and Systems

    NASA Astrophysics Data System (ADS)

    Turner, Philip R.

    1987-02-01

    Aerospace industry interest in autonomy and automation, given fresh impetus by the national goal of establishing a Space Station, is becoming a major item of research and technology development. The promise of new technology arising from research in Artificial Intelligence (AI) has focused much attention on its potential in autonomy and automation. These technologies can improve performance in autonomous control functions that involve planning, scheduling, and fault diagnosis of complex systems. There are, however, many aspects of system and subsystem design in an autonomous system that impact AI applications, but do not directly involve AI technology. Development of a system control architecture, establishment of an operating system within the design, providing command and sensory data collection features appropriate to automated operation, and the use of design analysis tools to support system engineering are specific examples of major design issues. Aspects such as these must also receive attention and technology development support if we are to implement complex autonomous systems within the realistic limitations of mass, power, cost, and available flight-qualified technology that are all-important to a flight project.

  14. Automating existing stations

    SciTech Connect

    Little, J.E.

    1986-09-01

    The task was to automate 20 major compressor stations along ANR Pipeline Co.'s Southeastern and Southwestern pipelines in as many months. Meeting this schedule required standardized hardware and software design. Working with Bristol Babcock Co., ANR came up with an off-the-shelf station automation package suitable for a variety of compressor stations. The project involved 148 engines with 488,880-hp in the 20 stations. ANR Pipeline developed software for these engines and compressors, including horsepower prediction and efficiency. The system places processors ''intelligence'' at each station and engine to monitor and control operations. The station processor receives commands from the company's gas dispatch center at Detroit and informs dispatchers of alarms, conditions, and decision it makes. The automation system is controlled by the Detroit center through a central communications network. Operating orders from the center are sent to the station processor, which obeys orders using the most efficient means of operation at the station's disposal. In a malfunction, a control and communications backup system takes over. Commands and information are directly transmitted between the center and the individual compressor stations. Stations receive their orders based on throughput, with suction and discharge pressure overrides. Additionally, a discharge temperature override protects pipeline coatings.

  15. Automation in biological crystallization.

    PubMed

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  16. Automation in biological crystallization

    PubMed Central

    Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen

    2014-01-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074

  17. Automation of optical tweezers

    NASA Astrophysics Data System (ADS)

    Hsieh, Tseng-Ming; Chang, Bo-Jui; Hsu, Long

    2000-07-01

    Optical tweezers is a newly developed instrument, which makes possible the manipulation of micro-optical particles under a microscope. In this paper, we present the automation of an optical tweezers which consists of a modified optical tweezers, equipped with two motorized actuators to deflect a 1 W argon laser beam, and a computer control system including a joystick. The trapping of a single bead and a group of lactoacidofilus was shown, separately. With the aid of the joystick and two auxiliary cursers superimposed on the real-time image of a trapped bead, we demonstrated the simple and convenient operation of the automated optical tweezers. By steering the joystick and then pressing a button on it, we assign a new location for the trapped bead to move to. The increment of the motion 0.04 (mu) m for a 20X objective, is negligible. With a fast computer for image processing, the manipulation of the trapped bead is smooth and accurate. The automation of the optical tweezers is also programmable. This technique may be applied to accelerate the DNA hybridization in a gene chip. The combination of the modified optical tweezers with the computer control system provides a tool for precise manipulation of micro particles in many scientific fields.

  18. Updating and extending the IRDF-2002 dosimetry library

    SciTech Connect

    Capote, R.; Zolotarev, K.I.; Pronyaev, V.G.; Trkov, A.

    2011-07-01

    The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been also evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form of

  19. Air kerma based dosimetry calibration for the Leksell Gamma Knife

    SciTech Connect

    Meltsner, Sheridan Griffin; DeWerd, Larry A.

    2009-02-15

    No accepted official protocol exists for the dosimetry of the Leksell Gamma Knife registered (GK) stereotactic radiosurgery device. Establishment of a dosimetry protocol has been complicated by the unique partial-hemisphere arrangement of 201 individual {sup 60}Co beams simultaneously focused on the treatment volume and by the rigid geometry of the GK unit itself. This article proposes an air kerma based dosimetry protocol using either an in-air or in-acrylic phantom measurement to determine the absorbed dose rate of fields of the 18 mm helmet of a GK unit. A small-volume air ionization chamber was used to make measurements at the physical isocenter of three GK units. The absorbed dose rate to water was determined using a modified version of the AAPM Task Group 21 protocol designed for use with {sup 60}Co-based teletherapy machines. This experimentally determined absorbed dose rate was compared to the treatment planning system (TPS) absorbed dose rate. The TPS used with the GK unit is Leksell GammaPlan. The TPS absorbed dose rate at the time of treatment is the absorbed dose rate determined by the physicist at the time of machine commissioning decay corrected to the treatment date. The TPS absorbed dose rate is defined as absorbed dose rate to water at the isocenter of a water phantom with a radius of 8 cm. Measurements were performed on model B and C Gamma Knife units. The absorbed dose rate to water for the 18 mm helmet determined using air-kerma based calculations is consistently between 1.5% and 2.9% higher than the absorbed dose rate provided by the TPS. These air kerma based measurements allow GK dosimetry to be performed with an established dosimetry protocol and without complications arising from the use of and possible variations in solid phantom material. Measurements were also made with the same ionization chamber in a spherical acrylic phantom for comparison. This methodology will allow further development of calibration methods appropriate for the

  20. An international dosimetry exchange for BNCT part II: computational dosimetry normalizations.

    PubMed

    Riley, K J; Binns, P J; Harling, O K; Albritton, J R; Kiger, W S; Rezaei, A; Sköld, K; Seppälä, T; Savolainen, S; Auterinen, I; Marek, M; Viererbl, L; Nievaart, V A; Moss, R L

    2008-12-01

    The meaningful sharing and combining of clinical results from different centers in the world performing boron neutron capture therapy (BNCT) requires improved precision in dose specification between programs. To this end absorbed dose normalizations were performed for the European clinical centers at the Joint Research Centre of the European Commission, Petten (The Netherlands), Nuclear Research Institute, Rez (Czech Republic), VTT, Espoo (Finland), and Studsvik, Nyköping (Sweden). Each European group prepared a treatment plan calculation that was bench-marked against Massachusetts Institute of Technology (MIT) dosimetry performed in a large, water-filled phantom to uniformly evaluate dose specifications with an estimated precision of +/-2%-3%. These normalizations were compared with those derived from an earlier exchange between Brookhaven National Laboratory (BNL) and MIT in the USA. Neglecting the uncertainties related to biological weighting factors, large variations between calculated and measured dose are apparent that depend upon the 10B uptake in tissue. Assuming a boron concentration of 15 microg g(-1) in normal tissue, differences in the evaluated maximum dose to brain for the same nominal specification of 10 Gy(w) at the different facilities range between 7.6 and 13.2 Gy(w) in the trials using boronophenylalanine (BPA) as the boron delivery compound and between 8.9 and 11.1 Gy(w) in the two boron sulfhydryl (BSH) studies. Most notably, the value for the same specified dose of 10 Gy(w) determined at the different participating centers using BPA is significantly higher than at BNL by 32% (MIT), 43% (VTT), 49% (JRC), and 74% (Studsvik). Conversion of dose specification is now possible between all active participants and should be incorporated into future multi-center patient analyses.

  1. Mystery Person

    ERIC Educational Resources Information Center

    O'Brien, Tom

    2011-01-01

    This article features a mathematical game called "Mystery Person." The author describes how the Mystery Person game was tried with first-graders [age 6]. The Mystery games involve the generation of key questions, the coordination of information--often very complex information--and the formulation of consequences based on this…

  2. Personal Finance.

    ERIC Educational Resources Information Center

    Wagner, June G.

    2003-01-01

    This newsletter presents four articles designed to help business educators educate learners in grades K-12 about personal finance. "Now More Than Ever: The Need for Financial Literacy" examines the following topics: evidence that the United States is becoming a nation of debtors; the plummeting personal savings rate; the increasing…

  3. Automated Proactive Fault Isolation: A Key to Automated Commissioning

    SciTech Connect

    Katipamula, Srinivas; Brambley, Michael R.

    2007-07-31

    In this paper, we present a generic model for automated continuous commissioing and then delve in detail into one of the processes, proactive testing for fault isolation, which is key to automating commissioning. The automated commissioining process uses passive observation-based fault detction and diagnostic techniques, followed by automated proactive testing for fault isolation, automated fault evaluation, and automated reconfiguration of controls together to continuously keep equipment controlled and running as intended. Only when hard failures occur or a physical replacement is required does the process require human intervention, and then sufficient information is provided by the automated commissioning system to target manual maintenance where it is needed. We then focus on fault isolation by presenting detailed logic that can be used to automatically isolate faults in valves, a common component in HVAC systems, as an example of how automated proactive fault isolation can be accomplished. We conclude the paper with a discussion of how this approach to isolating faults can be applied to other common HVAC components and their automated commmissioning and a summary of key conclusions of the paper.

  4. Computer Aided Dosimetry and Verification of Exposure to Radiation

    DTIC Science & Technology

    2002-06-01

    system identified may have numerous decision parameters, each with varying levels of automation. For this project, system parameters that have high levels ...of automation and simultaneously high confidence levels are very important to real-time data fusion. In some cases, improvements in the levels of...6.3.1 MCNP ...................................................................... 45 6.3.2 MCNPX

  5. Develop real-time dosimetry concepts and instrumentation for long term missions

    NASA Technical Reports Server (NTRS)

    Braby, L. A.

    1981-01-01

    The development of a rugged portable dosimetry system, based on microdosimetry techniques, which will measure dose and evaluate dose equivalent in a mixed radiation field is described. Progress in the desired dosimetry system can be divided into three distinct areas: development of the radiation detector, and electron system are presented. The mathematical techniques required are investigated.

  6. Dosimetry and quantitative radionuclide imaging in radioimmunotherapy: Final report, July 15, 1992-July 14, 1996

    SciTech Connect

    Leichner, P.K.

    1996-09-01

    Brief summaries of the principal accomplishments of this project on the development of quantitative SPECT for high energy photons (87Y, 19F) and stability testing of 87Y-labeled antibodies in the nude mouse model, development of an unified approach to photon and beta particle dosimetry, quantitative SPECT for nonuniform attenuation, and development of patient-specific dosimetry in radioimmunotherapy.

  7. Relationship between student selection criteria and learner success for medical dosimetry students.

    PubMed

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-01-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student׳s previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant׳s undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  8. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    SciTech Connect

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2003-01-03

    This manual describes the technical basis for the design of the routine radiobioassay monitoring program and assessments of internal dose. Its purpose is to provide a historical record of the methods, models, and assumptions used for internal dosimetry at Hanford, and serve as a technical reference for radiation protection and dosimetry staff.

  9. Relationship between student selection criteria and learner success for medical dosimetry students

    SciTech Connect

    Baker, Jamie; Tucker, Debra; Raynes, Edilberto; Aitken, Florence; Allen, Pamela

    2016-04-01

    Medical dosimetry education occupies a specialized branch of allied health higher education. Noted international shortages of health care workers, reduced university funding, limitations on faculty staffing, trends in learner attrition, and increased enrollment of nontraditional students force medical dosimetry educational leadership to reevaluate current admission practices. Program officials wish to select medical dosimetry students with the best chances of successful graduation. The purpose of the quantitative ex post facto correlation study was to investigate the relationship between applicant characteristics (cumulative undergraduate grade point average (GPA), science grade point average (SGPA), prior experience as a radiation therapist, and previous academic degrees) and the successful completion of a medical dosimetry program, as measured by graduation. A key finding from the quantitative study was the statistically significant positive correlation between a student's previous degree and his or her successful graduation from the medical dosimetry program. Future research investigations could include a larger research sample, representative of more medical dosimetry student populations, and additional studies concerning the relationship of previous work as a radiation therapist and the effect on success as a medical dosimetry student. Based on the quantitative correlation analysis, medical dosimetry leadership on admissions committees could revise student selection rubrics to place less emphasis on an applicant's undergraduate cumulative GPA and increase the weight assigned to previous degrees.

  10. SU-E-T-475: Improvements to Total Body Irradiation Dosimetry Efficiency with EBT3 Radiochromic Film and a Template System

    SciTech Connect

    Butson, M; Pope, D; Whitaker, M

    2015-06-15

    Purpose: Total Body Irradiation (TBI) treatments are mainly used in a preparative regimen for haematopoietic stem cell (or bone marrow) transplantation. Our standard regimen is a 12 Gy / 6 fraction bi-daily technique. To evaluate the delivered dose homogeneity to the patient, EBT3 Gafchromic film is positioned at the head, neck, chest, pelvis and groin for all fractions. A system has been developed to simply and accurately prepare and readout the films for patient dose assessment. Methods: A process involving easy preparation and analysis has been produced to minimise the time requirements for TBI dosimetry. One sheet of EBT3 film is used to prepare treatment dosimeters for all fractions, including calibration films, and an automated dose analysis system for easy evaluation and calculation of estimated in-vivo doses was developed. A desktop scanner is used with a dedicated TBI film template to accurately position the films for Image J analysis and extraction. Dental wax bolus and zip-lock bag holders are used to hold the EBT3 film in place during irradiation. Results: To adequately provide dosimetry information for a 6 fraction, TBI patient, only one sheet of Gafchromic EBT3 film is required. The dosimeters are cut, using a template, into 19 mm squares which are then placed between two 30 mm x 30 mm x 4.5 mm wax blocks for bolus. All packages are prepared before the first treatment fraction. The scanning and analysis process can be completed in less than 10 minutes after a 240 min development period. Results have shown that a high level of accuracy and reproducibility can be achieved using the template system provided. Conclusion: Gafchromic EBT3 film provides an adequate in-vivo dosimetry measure for TBI patients. Using a template based system on a dedicated desktop scanner, in-vivo results can be ascertained quickly and accurately.

  11. Synthesis Of Realistic Animations Of A Person Speaking

    NASA Technical Reports Server (NTRS)

    Scott, Kenneth C.; Kagels, David S.; Watson, Stephen H.; Rom, Hillel S.; Lorre, Jean J.; Wright, John R.; Duxbury, Elizabeth D.

    1995-01-01

    Actors computer program implements automated process that synthesizes realistic animations of person speaking. Produces "newscaster" type video sequences. Uses images of person and, therefore, not limited to cartoons and cartoonlike movies. Potential applications also include use of process for automatically producing on-the-fly animations for human/computer interfaces and for reducing bandwidth needed to transmit video telephone signals.

  12. Automation in organizations: Eternal conflict

    NASA Technical Reports Server (NTRS)

    Dieterly, D. L.

    1981-01-01

    Some ideas on and insights into the problems associated with automation in organizations are presented with emphasis on the concept of automation, its relationship to the individual, and its impact on system performance. An analogy is drawn, based on an American folk hero, to emphasize the extent of the problems encountered when dealing with automation within an organization. A model is proposed to focus attention on a set of appropriate dimensions. The function allocation process becomes a prominent aspect of the model. The current state of automation research is mentioned in relation to the ideas introduced. Proposed directions for an improved understanding of automation's effect on the individual's efficiency are discussed. The importance of understanding the individual's perception of the system in terms of the degree of automation is highlighted.

  13. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed

  14. The Abbreviation of Personality, or how to Measure 200 Personality Scales with 200 Items

    PubMed Central

    Yarkoni, Tal

    2010-01-01

    Personality researchers have recently advocated the use of very short personality inventories in order to minimize administration time. However, few such inventories are currently available. Here I introduce an automated method that can be used to abbreviate virtually any personality inventory with minimal effort. After validating the method against existing measures in Studies 1 and 2, a new 181-item inventory is generated in Study 3 that accurately recaptures scores on 8 different broadband inventories comprising 203 distinct scales. Collectively, the results validate a powerful new way to improve the efficiency of personality measurement in research settings. PMID:20419061

  15. Participation through Automation: Fully Automated Critical PeakPricing in Commercial Buildings

    SciTech Connect

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Kiliccote,Sila; Linkugel, Eric

    2006-06-20

    California electric utilities have been exploring the use of dynamic critical peak prices (CPP) and other demand response programs to help reduce peaks in customer electric loads. CPP is a tariff design to promote demand response. Levels of automation in DR can be defined as follows: Manual Demand Response involves a potentially labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. They refer to this as Auto-DR. This paper describes the development, testing, and results from automated CPP (Auto-CPP) as part of a utility project in California. The paper presents the project description and test methodology. This is followed by a discussion of Auto-DR strategies used in the field test buildings. They present a sample Auto-CPP load shape case study, and a selection of the Auto-CPP response data from September 29, 2005. If all twelve sites reached their maximum saving simultaneously, a total of approximately 2 MW of DR is available from these twelve sites that represent about two million ft{sup 2}. The average DR was about half that value, at about 1 MW. These savings translate to about 0.5 to 1.0 W/ft{sup 2} of demand reduction. They are continuing field demonstrations and economic evaluations to pursue increasing penetrations of automated DR that has demonstrated ability to provide a valuable DR resource for California.

  16. 77 FR 48527 - National Customs Automation Program (NCAP) Test Concerning Automated Commercial Environment (ACE...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Automated Commercial Environment (ACE) Simplified Entry: Modification of Participant Selection Criteria and... (NCAP) test concerning the simplified entry functionality in the Automated Commercial Environment (ACE...) National Customs Automation Program (NCAP) test concerning Automated Commercial Environment...

  17. Comparison of Different Internal Dosimetry Systems for Selected Radionuclides Important to Nuclear Power Production

    SciTech Connect

    Leggett, Richard Wayne; Eckerman, Keith F; Manger, Ryan P

    2013-08-01

    This report compares three different radiation dosimetry systems currently applied by various U.S. Federal agencies and dose estimates based on these three dosimetry systems for a set of radionuclides often identified in power reactor effluents. These dosimetry systems were developed and applied by the International Commission on Radiological Protection at different times over the past six decades. Two primary modes of intake of radionuclides are addressed: ingestion in drinking water and inhalation. Estimated doses to individual organs and to the whole body based on each dosimetry system are compared for each of four age groups: infant, child, teenager, and adult. Substantial differences between dosimetry systems in estimated dose per unit intake are found for some individual radionuclides, but differences in estimated dose per unit intake generally are modest for mixtures of radionuclides typically found in nuclear power plant effluents.

  18. Personal Competencies in Personalized Learning

    ERIC Educational Resources Information Center

    Redding, Sam

    2014-01-01

    Personal competencies--cognitive, metacognitive, motivational, and social/emotional--are applied by students in learning (mastery of knowledge and skills). These competencies are both acquired through learning and applied in the learning process. Personalized learning--a promising approach to education made practical by advances in…

  19. World-wide distribution automation systems

    SciTech Connect

    Devaney, T.M.

    1994-12-31

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems.

  20. Using and Explaining Individual Dosimetry Data.

    PubMed

    Miyazaki, Makoto

    2017-03-01

    Measurement of individual radiation dose is crucial for planning protective measures after nuclear accidents. The purpose of this article is to explain the various initiatives taken after the TEPCO Fukushima Daiichi Nuclear Power Plant accident, including the D-shuttle project wherein residents from affected areas wore a personal dosimeter to measure their own external exposure. The experience in Fukushima revealed several issues such as gaining residents' trust and ensuring appropriate communication of the measured data. The D-shuttle project also revealed that obtaining individual dose measurement data had 2 purposes, as the information obtained was to be utilized by the residents for self-protection and by the authorities for deriving the dose distribution of the population to aid in designing large-scale protection measures. The lessons learned are that both the residents and the authorities need to understand and share the meaning of individual dose measurements and the measurement results must be used with due respect for the residents' privacy and other concerns.

  1. Automating CPM-GOMS

    NASA Technical Reports Server (NTRS)

    John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger

    2002-01-01

    CPM-GOMS is a modeling method that combines the task decomposition of a GOMS analysis with a model of human resource usage at the level of cognitive, perceptual, and motor operations. CPM-GOMS models have made accurate predictions about skilled user behavior in routine tasks, but developing such models is tedious and error-prone. We describe a process for automatically generating CPM-GOMS models from a hierarchical task decomposition expressed in a cognitive modeling tool called Apex. Resource scheduling in Apex automates the difficult task of interleaving the cognitive, perceptual, and motor resources underlying common task operators (e.g. mouse move-and-click). Apex's UI automatically generates PERT charts, which allow modelers to visualize a model's complex parallel behavior. Because interleaving and visualization is now automated, it is feasible to construct arbitrarily long sequences of behavior. To demonstrate the process, we present a model of automated teller interactions in Apex and discuss implications for user modeling. available to model human users, the Goals, Operators, Methods, and Selection (GOMS) method [6, 21] has been the most widely used, providing accurate, often zero-parameter, predictions of the routine performance of skilled users in a wide range of procedural tasks [6, 13, 15, 27, 28]. GOMS is meant to model routine behavior. The user is assumed to have methods that apply sequences of operators and to achieve a goal. Selection rules are applied when there is more than one method to achieve a goal. Many routine tasks lend themselves well to such decomposition. Decomposition produces a representation of the task as a set of nested goal states that include an initial state and a final state. The iterative decomposition into goals and nested subgoals can terminate in primitives of any desired granularity, the choice of level of detail dependent on the predictions required. Although GOMS has proven useful in HCI, tools to support the

  2. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    2000-01-01

    An automated propellant blending apparatus and method that uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation is discussed. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  3. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  4. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  5. Automated wire preparation system

    NASA Astrophysics Data System (ADS)

    McCulley, Deborah J.

    The first step toward an automated wire harness facility for the aerospace industry has been taken by implementing the Wire Vektor 2000 into the wire harness preparation area. An overview of the Wire Vektor 2000 is given, including the facilities for wire cutting, marking, and transporting, for wire end processing, and for system control. Production integration in the Wire Vektor 2000 system is addressed, considering the hardware/software debug system and the system throughput. The manufacturing changes that have to be made in implementing the Wire Vektor 2000 are discussed.

  6. Automated Propellant Blending

    NASA Technical Reports Server (NTRS)

    Hohmann, Carl W. (Inventor); Harrington, Douglas W. (Inventor); Dutton, Maureen L. (Inventor); Tipton, Billy Charles, Jr. (Inventor); Bacak, James W. (Inventor); Salazar, Frank (Inventor)

    1999-01-01

    An automated propellant blending apparatus and method uses closely metered addition of countersolvent to a binder solution with propellant particles dispersed therein to precisely control binder precipitation and particle aggregation. A profile of binder precipitation versus countersolvent-solvent ratio is established empirically and used in a computer algorithm to establish countersolvent addition parameters near the cloud point for controlling the transition of properties of the binder during agglomeration and finishing of the propellant composition particles. The system is remotely operated by computer for safety, reliability and improved product properties, and also increases product output.

  7. Automation of a fixed-bed continuous–flow reactor

    PubMed Central

    Alcántara, R.; Canoira, L.; Conde, R.; Fernández-Sánchez, J. M.; Navarro, A.

    1994-01-01

    This paper describes the design and operation of a laboratory plant with a fixed-bed continuous-flow reactor, fully automated and controlled from a personal computer. The automated variables include two gas flows, one liquid flow, six temperatures, two pressures, one circulation of a cooling liquid, and 10 electrovalves. An adaptive-predictive control system was used. The chemical process chosen to run the automated reactor was the conversion of methanol to gasoline over a ZSM-5 catalyst. This is a highly exothermal process, so a cascade control system had to be used to control the reactor internal temperature. Pressure and weight hourly space velocity (WHSV) were fixed at 1 arm and 1.5h-1 respectively. Accurate control (±0.2°C) of the reactor’s internal temperature was achieved and repeatability for the conversion of methanol to gasoline was good. PMID:18924990

  8. Automated System Marketplace 1995: The Changing Face of Automation.

    ERIC Educational Resources Information Center

    Barry, Jeff; And Others

    1995-01-01

    Discusses trends in the automated system marketplace with specific attention to online vendors and their customers: academic, public, school, and special libraries. Presents vendor profiles; tables and charts on computer systems and sales; and sidebars that include a vendor source list and the differing views on procuring an automated library…

  9. Personal Computers.

    ERIC Educational Resources Information Center

    Toong, Hoo-min D.; Gupta, Amar

    1982-01-01

    Describes the hardware, software, applications, and current proliferation of personal computers (microcomputers). Includes discussions of microprocessors, memory, output (including printers), application programs, the microcomputer industry, and major microcomputer manufacturers (Apple, Radio Shack, Commodore, and IBM). (JN)

  10. Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verification

    SciTech Connect

    Sanchez-Doblado, Francisco . E-mail: paco@us.es; Hartmann, Guenther H.; Pena, Javier; Capote, Roberto; Paiusco, Marta; Rhein, Bernhard; Leal, Antonio; Lagares, Juan Ignacio

    2007-05-01

    Purpose: Intensity-modulated radiotherapy (IMRT) represents an important method for improving RT. The IMRT relative dosimetry checks are well established; however, open questions remain in reference dosimetry with ionization chambers (ICs). The main problem is the departure of the measurement conditions from the reference ones; thus, additional uncertainty is introduced into the dose determination. The goal of this study was to assess this effect systematically. Methods and Materials: Monte Carlo calculations and dosimetric measurements with five different detectors were performed for a number of representative IMRT cases, covering both step-and-shoot and dynamic delivery. Results: Using ICs with volumes of about 0.125 cm{sup 3} or less, good agreement was observed among the detectors in most of the situations studied. These results also agreed well with the Monte Carlo-calculated nonreference correction factors (c factors). Additionally, we found a general correlation between the IC position relative to a segment and the derived correction factor c, which can be used to estimate the expected overall uncertainty of the treatment. Conclusion: The increase of the reference dose relative standard uncertainty measured with ICs introduced by nonreference conditions when verifying an entire IMRT plan is about 1-1.5%, provided that appropriate small-volume chambers are used. The overall standard uncertainty of the measured IMRT dose amounts to about 2.3%, including the 0.5% of reproducibility and 1.5% of uncertainty associated with the beam calibration factor. Solid state detectors and large-volume chambers are not well suited to IMRT verification dosimetry because of the greater uncertainties. An action level of 5% is appropriate for IMRT verification. Greater discrepancies should lead to a review of the dosimetric procedure, including visual inspection of treatment segments and energy fluence.

  11. RADON PROGENY AS AN EXPERIMENTAL TOOL FOR DOSIMETRY OF NANOAEROSOLS

    SciTech Connect

    Ruzer, Lev; Ruzer, Lev S.; Apte, Michael G.

    2008-02-25

    The study of aerosol exposure and dosimetry measurements and related quantitation of health effects are important to the understanding of the consequences of air pollution, and are discussed widely in the scientific literature. During the last 10 years the need to correlate aerosol exposure and biological effects has become especially important due to rapid development of a new, revolutionary industry ?-- nanotechnology. Nanoproduct commerce is predicted to top $1 trillion by 2015. Quantitative assessment of aerosol particle behavior in air and in lung deposition, and dosimetry in different parts of the lung, particularly for nanoaerosols, remains poor despite several decades of study. Direct measurements on humans are still needed in order to validate the hollow cast, animal studies, and lung deposition modeling. We discuss here the use of nanoscale radon decay products as an experimental tool in the study of local deposition and lung dosimetry for nanoaerosols. The issue of the safe use of radon progeny in such measurements is discussed based on a comparison of measured exposure in 3 settings: general population, miners, and in a human experiment conducted at the Paul Scherer Institute (PSI) in Switzerland. One of the properties of radon progeny is that they consist partly of 1 nm radioactive particles called unattached activity; having extremely small size and high diffusion coefficients, these particles can be potentially useful as radioactive tracers in the study of nanometer-sized aerosols. We present a theoretical and experimental study of the correlation between the unattached activity and aerosol particle surface area, together with a description of its calibration and method for measurement of the unattached fraction.

  12. In-vivo Light dosimetry for pleural PDT

    PubMed Central

    Dimofte, Andreea; Zhu, Timothy C.; Finlay, Jarod C.; Cullighan, Melissa; Edmonds, Christine E.; Friedberg, Joseph S.; Cengel, Keith; Hahn, Stephen M.

    2015-01-01

    In-vivo light dosimetry for patients undergoing photodynamic therapy (PDT) is one of the critical dosimetry quantities for predicting PDT outcome. This study examines the relationship between the PDT treatment time and thoracic treatment volume and surface area for patients undergoing pleural PDT. In addition, the mean light fluence (rate) and its accuracy were quantified. The patients studied here were enrolled in Phase II clinical trial of Photofrin-mediated PDT for the treatment of non-small cell lung cancer with pleural effusion. The ages of the patients studied varied from 34 to 69 years old. All patients were administered 2mg per kg body weight Photoprin 24 hours before the surgery. Patients undergoing photodynamic therapy (PDT) are treated with laser light with a light fluence of 60 J/cm2 at 630nm. Fluence rate (mW/cm2) and cumulative fluence (J/cm2) was monitored at 7 different sites during the entire light treatment delivery. Isotropic detectors were used for in-vivo light dosimetry. The anisotropy of each isotropic detector was found to be within 30%. The mean fluence rate deliver varied from 37.84 to 94.05 mW/cm2 and treatment time varied from 1762 to 5232s. We found a linear correlation between the total treatment time and the treatment area: t (sec) = 4.80 A (cm2). A similar correlation exists between the treatment time and the treatment volume: t (sec) = 2.33 V (cm3). The results can be explained using an integrating sphere theory and the measured tissue optical properties assuming that the saline liquid has a mean absorption coefficient of 0.05 cm−1. Our long term accuracy studies confirmed light fluence rate measurement accuracy of ±10%. The results can be used as a clinical guideline for future pleural PDT treatment. PMID:25914792

  13. Dose verification of eye plaque brachytherapy using spectroscopic dosimetry.

    PubMed

    Jarema, T; Cutajar, D; Weaver, M; Petasecca, M; Lerch, M; Kejda, A; Rosenfeld, A

    2016-09-01

    Eye plaque brachytherapy has been developed and refined for the last 80 years, demonstrating effective results in the treatment of ocular malignancies. Current dosimetry techniques for eye plaque brachytherapy (such as TLD- and film-based techniques) are time consuming and cannot be used prior to treatment in a sterile environment. The measurement of the expected dose distribution within the eye, prior to insertion within the clinical setting, would be advantageous, as any errors in source loading will lead to an erroneous dose distribution and inferior treatment outcomes. This study investigated the use of spectroscopic dosimetry techniques for real-time quality assurance of I-125 based eye plaques, immediately prior to insertion. A silicon detector based probe, operating in spectroscopy mode was constructed, containing a small (1 mm(3)) silicon detector, mounted within a ceramic holder, all encapsulated within a rubber sheath to prevent water infiltration of the electronics. Preliminary tests of the prototype demonstrated that the depth dose distribution through the central axis of an I-125 based eye plaque may be determined from AAPM Task Group 43 recommendations to a deviation of 6 % at 3 mm depth, 7 % at 5 mm depth, 1 % at 10 mm depth and 13 % at 20 mm depth, with the deviations attributed to the construction of the probe. A new probe design aims to reduce these discrepancies, however the concept of spectroscopic dosimetry shows great promise for use in eye plaque quality assurance in the clinical setting.

  14. Personalized ophthalmology

    PubMed Central

    Porter, LF; Black, GCM

    2014-01-01

    Porter L.F., Black G.C.M. Personalized ophthalmology. Clin Genet 2014: 86: 1–11. © 2014 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd., 2014 Ophthalmology has been an early adopter of personalized medicine. Drawing on genomic advances to improve molecular diagnosis, such as next-generation sequencing, and basic and translational research to develop novel therapies, application of genetic technologies in ophthalmology now heralds development of gene replacement therapies for some inherited monogenic eye diseases. It also promises to alter prediction, diagnosis and management of the complex disease age-related macular degeneration. Personalized ophthalmology is underpinned by an understanding of the molecular basis of eye disease. Two important areas of focus are required for adoption of personalized approaches: disease stratification and individualization. Disease stratification relies on phenotypic and genetic assessment leading to molecular diagnosis; individualization encompasses all aspects of patient management from optimized genetic counseling and conventional therapies to trials of novel DNA-based therapies. This review discusses the clinical implications of these twin strategies. Advantages and implications of genetic testing for patients with inherited eye diseases, choice of molecular diagnostic modality, drivers for adoption of personalized ophthalmology, service planning implications, ethical considerations and future challenges are considered. Indeed, whilst many difficulties remain, personalized ophthalmology truly has the potential to revolutionize the specialty. PMID:24665880

  15. Space station advanced automation

    NASA Technical Reports Server (NTRS)

    Woods, Donald

    1990-01-01

    In the development of a safe, productive and maintainable space station, Automation and Robotics (A and R) has been identified as an enabling technology which will allow efficient operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very complex, and interdependent. The usage of Advanced Automation (AA) will help restructure, and integrate system status so that station and ground personnel can operate more efficiently. To use AA technology for the augmentation of system management functions requires a development model which consists of well defined phases of: evaluation, development, integration, and maintenance. The evaluation phase will consider system management functions against traditional solutions, implementation techniques and requirements; the end result of this phase should be a well developed concept along with a feasibility analysis. In the development phase the AA system will be developed in accordance with a traditional Life Cycle Model (LCM) modified for Knowledge Based System (KBS) applications. A way by which both knowledge bases and reasoning techniques can be reused to control costs is explained. During the integration phase the KBS software must be integrated with conventional software, and verified and validated. The Verification and Validation (V and V) techniques applicable to these KBS are based on the ideas of consistency, minimal competency, and graph theory. The maintenance phase will be aided by having well designed and documented KBS software.

  16. Automated office blood pressure.

    PubMed

    Myers, Martin G; Godwin, Marshall

    2012-05-01

    Manual blood pressure (BP) is gradually disappearing from clinical practice with the mercury sphygmomanometer now considered to be an environmental hazard. Manual BP is also subject to measurement error on the part of the physician/nurse and patient-related anxiety which can result in poor quality BP measurements and office-induced (white coat) hypertension. Automated office (AO) BP with devices such as the BpTRU (BpTRU Medical Devices, Coquitlam, BC) has already replaced conventional manual BP in many primary care practices in Canada and has also attracted interest in other countries where research studies using AOBP have been undertaken. The basic principles of AOBP include multiple readings taken with a fully automated recorder with the patient resting alone in a quiet room. When these principles are followed, office-induced hypertension is eliminated and AOBP exhibits a much stronger correlation with the awake ambulatory BP as compared with routine manual BP measurements. Unlike routine manual BP, AOBP correlates as well with left ventricular mass as does the awake ambulatory BP. AOBP also simplifies the definition of hypertension in that the cut point for a normal AOBP (< 135/85 mm Hg) is the same as for the awake ambulatory BP and home BP. This article summarizes the currently available evidence supporting the use of AOBP in routine clinical practice and proposes an algorithm in which AOBP replaces manual BP for the diagnosis and management of hypertension.

  17. Maneuver Automation Software

    NASA Technical Reports Server (NTRS)

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; Illsley, Jeannette

    2009-01-01

    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  18. Agile automated vision

    NASA Astrophysics Data System (ADS)

    Fandrich, Juergen; Schmitt, Lorenz A.

    1994-11-01

    The microelectronic industry is a protagonist in driving automated vision to new paradigms. Today semiconductor manufacturers use vision systems quite frequently in their fabs in the front-end process. In fact, the process depends on reliable image processing systems. In the back-end process, where ICs are assembled and packaged, today vision systems are only partly used. But in the next years automated vision will become compulsory for the back-end process as well. Vision will be fully integrated into every IC package production machine to increase yields and reduce costs. Modem high-speed material processing requires dedicated and efficient concepts in image processing. But the integration of various equipment in a production plant leads to unifying handling of data flow and interfaces. Only agile vision systems can act with these contradictions: fast, reliable, adaptable, scalable and comprehensive. A powerful hardware platform is a unneglectable requirement for the use of advanced and reliable, but unfortunately computing intensive image processing algorithms. The massively parallel SIMD hardware product LANTERN/VME supplies a powerful platform for existing and new functionality. LANTERN/VME is used with a new optical sensor for IC package lead inspection. This is done in 3D, including horizontal and coplanarity inspection. The appropriate software is designed for lead inspection, alignment and control tasks in IC package production and handling equipment, like Trim&Form, Tape&Reel and Pick&Place machines.

  19. Automating quantum experiment control

    NASA Astrophysics Data System (ADS)

    Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.

    2017-03-01

    The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.

  20. Application of EPR retrospective dosimetry for large-scale accidental situation.

    PubMed

    Skvortsov, V G; Ivannikov, A I; Stepanenko, V F; Tsyb, A F; Khamidova, L G; Kondrashov, A E; Tikunov, D D

    2000-05-01

    Above 3000 tooth enamel samples, collected at population of radioactive contaminated territories after Chernobyl accident, the Chernobyl liquidators, the retired military of high radiation risk and the population of control radiation free territories were investigated by EPR spectroscopy method in order to obtain accumulated individual exposure doses. Results of EPR spectra measurements are stored in data bank; enamel samples are also stored in order to provide the possibility to repeat the measurements in future. Statistical analysis of results has allowed to detect the contribution into EPR signal in tooth enamel due to the action of the natural background radiation, and the radioactive contamination of territory. In general, the average doses of external exposure of the population obtained with EPR spectroscopy of teeth enamel are consistent with results based on other methods of direct and retrospective dosimetry. Essential exceeding of the individual doses above the average level within the population groups was observed for some persons. That gave the possibility to detect the individuals with overexposure, which were included into groups for medical monitoring.