ERIC Educational Resources Information Center
Wang, Yinying; Bowers, Alex J.; Fikis, David J.
2017-01-01
Purpose: The purpose of this study is to describe the underlying topics and the topic evolution in the 50-year history of educational leadership research literature. Method: We used automated text data mining with probabilistic latent topic models to examine the full text of the entire publication history of all 1,539 articles published in…
Yendiki, Anastasia; Panneck, Patricia; Srinivasan, Priti; Stevens, Allison; Zöllei, Lilla; Augustinack, Jean; Wang, Ruopeng; Salat, David; Ehrlich, Stefan; Behrens, Tim; Jbabdi, Saad; Gollub, Randy; Fischl, Bruce
2011-01-01
We have developed a method for automated probabilistic reconstruction of a set of major white-matter pathways from diffusion-weighted MR images. Our method is called TRACULA (TRActs Constrained by UnderLying Anatomy) and utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual interaction with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. In this paper we illustrate the application of the method on data from a schizophrenia study and investigate whether the inclusion of both patients and healthy subjects in the training set affects our ability to reconstruct the pathways reliably. We show that, since our method does not constrain the exact spatial location or shape of the pathways but only their trajectory relative to the surrounding anatomical structures, a set a of healthy training subjects can be used to reconstruct the pathways accurately in patients as well as in controls. PMID:22016733
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
ERIC Educational Resources Information Center
Palka, Sean
2015-01-01
This research details a methodology designed for creating content in support of various phishing prevention tasks including live exercises and detection algorithm research. Our system uses probabilistic context-free grammars (PCFG) and variable interpolation as part of a multi-pass method to create diverse and consistent phishing email content on…
A Transferrable Belief Model Representation for Physical Security of Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Gerts
This work analyzed various probabilistic methods such as classic statistics, Bayesian inference, possibilistic theory, and Dempster-Shafer theory of belief functions for the potential insight offered into the physical security of nuclear materials as well as more broad application to nuclear non-proliferation automated decision making theory. A review of the fundamental heuristic and basic limitations of each of these methods suggested that the Dempster-Shafer theory of belief functions may offer significant capability. Further examination of the various interpretations of Dempster-Shafer theory, such as random set, generalized Bayesian, and upper/lower probability demonstrate some limitations. Compared to the other heuristics, the transferrable beliefmore » model (TBM), one of the leading interpretations of Dempster-Shafer theory, can improve the automated detection of the violation of physical security using sensors and human judgment. The improvement is shown to give a significant heuristic advantage over other probabilistic options by demonstrating significant successes for several classic gedanken experiments.« less
Initial Correction versus Negative Marking in Multiple Choice Examinations
ERIC Educational Resources Information Center
Van Hecke, Tanja
2015-01-01
Optimal assessment tools should measure in a limited time the knowledge of students in a correct and unbiased way. A method for automating the scoring is multiple choice scoring. This article compares scoring methods from a probabilistic point of view by modelling the probability to pass: the number right scoring, the initial correction (IC) and…
Sparks, Rachel; Bloch, B Nicolas; Feleppa, Ernest; Barratt, Dean; Madabhushi, Anant
2013-03-08
In this work, we present a novel, automated, registration method to fuse magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) images of the prostate. Our methodology consists of: (1) delineating the prostate on MRI, (2) building a probabilistic model of prostate location on TRUS, and (3) aligning the MRI prostate segmentation to the TRUS probabilistic model. TRUS-guided needle biopsy is the current gold standard for prostate cancer (CaP) diagnosis. Up to 40% of CaP lesions appear isoechoic on TRUS, hence TRUS-guided biopsy cannot reliably target CaP lesions and is associated with a high false negative rate. MRI is better able to distinguish CaP from benign prostatic tissue, but requires special equipment and training. MRI-TRUS fusion, whereby MRI is acquired pre-operatively and aligned to TRUS during the biopsy procedure, allows for information from both modalities to be used to help guide the biopsy. The use of MRI and TRUS in combination to guide biopsy at least doubles the yield of positive biopsies. Previous work on MRI-TRUS fusion has involved aligning manually determined fiducials or prostate surfaces to achieve image registration. The accuracy of these methods is dependent on the reader's ability to determine fiducials or prostate surfaces with minimal error, which is a difficult and time-consuming task. Our novel, fully automated MRI-TRUS fusion method represents a significant advance over the current state-of-the-art because it does not require manual intervention after TRUS acquisition. All necessary preprocessing steps (i.e. delineation of the prostate on MRI) can be performed offline prior to the biopsy procedure. We evaluated our method on seven patient studies, with B-mode TRUS and a 1.5 T surface coil MRI. Our method has a root mean square error (RMSE) for expertly selected fiducials (consisting of the urethra, calcifications, and the centroids of CaP nodules) of 3.39 ± 0.85 mm.
Bragman, Felix J.S.; McClelland, Jamie R.; Jacob, Joseph; Hurst, John R.; Hawkes, David J.
2017-01-01
A fully automated, unsupervised lobe segmentation algorithm is presented based on a probabilistic segmentation of the fissures and the simultaneous construction of a population model of the fissures. A two-class probabilistic segmentation segments the lung into candidate fissure voxels and the surrounding parenchyma. This was combined with anatomical information and a groupwise fissure prior to drive non-parametric surface fitting to obtain the final segmentation. The performance of our fissure segmentation was validated on 30 patients from the COPDGene cohort, achieving a high median F1-score of 0.90 and showed general insensitivity to filter parameters. We evaluated our lobe segmentation algorithm on the LOLA11 dataset, which contains 55 cases at varying levels of pathology. We achieved the highest score of 0.884 of the automated algorithms. Our method was further tested quantitatively and qualitatively on 80 patients from the COPDGene study at varying levels of functional impairment. Accurate segmentation of the lobes is shown at various degrees of fissure incompleteness for 96% of all cases. We also show the utility of including a groupwise prior in segmenting the lobes in regions of grossly incomplete fissures. PMID:28436850
Risk assessment for construction projects of transport infrastructure objects
NASA Astrophysics Data System (ADS)
Titarenko, Boris
2017-10-01
The paper analyzes and compares different methods of risk assessment for construction projects of transport objects. The management of such type of projects demands application of special probabilistic methods due to large level of uncertainty of their implementation. Risk management in the projects requires the use of probabilistic and statistical methods. The aim of the work is to develop a methodology for using traditional methods in combination with robust methods that allow obtaining reliable risk assessments in projects. The robust approach is based on the principle of maximum likelihood and in assessing the risk allows the researcher to obtain reliable results in situations of great uncertainty. The application of robust procedures allows to carry out a quantitative assessment of the main risk indicators of projects when solving the tasks of managing innovation-investment projects. Calculation of damage from the onset of a risky event is possible by any competent specialist. And an assessment of the probability of occurrence of a risky event requires the involvement of special probabilistic methods based on the proposed robust approaches. Practice shows the effectiveness and reliability of results. The methodology developed in the article can be used to create information technologies and their application in automated control systems for complex projects.
Automated Video Based Facial Expression Analysis of Neuropsychiatric Disorders
Wang, Peng; Barrett, Frederick; Martin, Elizabeth; Milanova, Marina; Gur, Raquel E.; Gur, Ruben C.; Kohler, Christian; Verma, Ragini
2008-01-01
Deficits in emotional expression are prominent in several neuropsychiatric disorders, including schizophrenia. Available clinical facial expression evaluations provide subjective and qualitative measurements, which are based on static 2D images that do not capture the temporal dynamics and subtleties of expression changes. Therefore, there is a need for automated, objective and quantitative measurements of facial expressions captured using videos. This paper presents a computational framework that creates probabilistic expression profiles for video data and can potentially help to automatically quantify emotional expression differences between patients with neuropsychiatric disorders and healthy controls. Our method automatically detects and tracks facial landmarks in videos, and then extracts geometric features to characterize facial expression changes. To analyze temporal facial expression changes, we employ probabilistic classifiers that analyze facial expressions in individual frames, and then propagate the probabilities throughout the video to capture the temporal characteristics of facial expressions. The applications of our method to healthy controls and case studies of patients with schizophrenia and Asperger’s syndrome demonstrate the capability of the video-based expression analysis method in capturing subtleties of facial expression. Such results can pave the way for a video based method for quantitative analysis of facial expressions in clinical research of disorders that cause affective deficits. PMID:18045693
Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions
Maruthapillai, Vasanthan; Murugappan, Murugappan
2016-01-01
In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject’s face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject’s face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network. PMID:26859884
Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions.
Maruthapillai, Vasanthan; Murugappan, Murugappan
2016-01-01
In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.
Discriminative parameter estimation for random walks segmentation.
Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan
2013-01-01
The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
Diagnostic Validity of an Automated Probabilistic Tractography in Amnestic Mild Cognitive Impairment
Jung, Won Sang; Um, Yoo Hyun; Kang, Dong Woo; Lee, Chang Uk; Woo, Young Sup; Bahk, Won-Myong
2018-01-01
Objective Although several prior works showed the white matter (WM) integrity changes in amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease, it is still unclear the diagnostic accuracy of the WM integrity measurements using diffusion tensor imaging (DTI) in discriminating aMCI from normal controls. The aim of this study is to explore diagnostic validity of whole brain automated probabilistic tractography in discriminating aMCI from normal controls. Methods One hundred-two subjects (50 aMCI and 52 normal controls) were included and underwent DTI scans. Whole brain WM tracts were reconstructed with automated probabilistic tractography. Fractional anisotropy (FA) and mean diffusivity (MD) values of the memory related WM tracts were measured and compared between the aMCI and the normal control groups. In addition, the diagnostic validities of these WM tracts were evaluated. Results Decreased FA and increased MD values of memory related WM tracts were observed in the aMCI group compared with the control group. Among FA and MD value of each tract, the FA value of left cingulum angular bundle showed the highest area under the curve (AUC) of 0.85 with a sensitivity of 88.2%, a specificity of 76.9% in differentiating MCI patients from control subjects. Furthermore, the combination FA values of WM integrity measures of memory related WM tracts showed AUC value of 0.98, a sensitivity of 96%, a specificity of 94.2%. Conclusion Our results with good diagnostic validity of WM integrity measurements suggest DTI might be promising neuroimaging tool for early detection of aMCI and AD patients. PMID:29739127
Martin, Sébastien; Troccaz, Jocelyne; Daanenc, Vincent
2010-04-01
The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented structures of the training set in order to get a probabilistic map on the atlas. The segmentation is then realized through a two stage procedure. In the first stage, the processed image is registered to the probabilistic atlas. Subsequently, a probabilistic segmentation is obtained by mapping the probabilistic map of the atlas to the patient's anatomy. In the second stage, a deformable surface evolves toward the prostate boundaries by merging information coming from the probabilistic segmentation, an image feature model and a statistical shape model. During the evolution of the surface, the probabilistic segmentation allows the introduction of a spatial constraint that prevents the deformable surface from leaking in an unlikely configuration. The proposed method is evaluated on 36 exams that were manually segmented by a single expert. A median Dice similarity coefficient of 0.86 and an average surface error of 2.41 mm are achieved. By merging prior knowledge, the presented method achieves a robust and completely automatic segmentation of the prostate in MR images. Results show that the use of a spatial constraint is useful to increase the robustness of the deformable model comparatively to a deformable surface that is only driven by an image appearance model.
Land use change monitoring in Maryland using a probabilistic sample and rapid photointerpretation
Tonya Lister; Andrew Lister; Eunice Alexander
2014-01-01
The U.S. state of Maryland needs to monitor land use change in order to address land management objectives. This paper presents a change detection method that, through automation and standard geographic information system (GIS) techniques, facilitates the estimation of landscape change via photointerpretation. Using the protocols developed, we show a net loss of forest...
NASA Astrophysics Data System (ADS)
Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.; Bloom, Joshua S.; Butler, Nathaniel R.; Brink, Henrik; Crellin-Quick, Arien
2012-12-01
With growing data volumes from synoptic surveys, astronomers necessarily must become more abstracted from the discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus on the frameworks that replace these human roles to provide accurate and well-calibrated probabilistic classification catalogs. Such catalogs inform the subsequent follow-up, allowing consumers to optimize the selection of specific sources for further study and permitting rigorous treatment of classification purities and efficiencies for population studies. Here, we describe a process to produce a probabilistic classification catalog of variability with machine learning from a multi-epoch photometric survey. In addition to producing accurate classifications, we show how to estimate calibrated class probabilities and motivate the importance of probability calibration. We also introduce a methodology for feature-based anomaly detection, which allows discovery of objects in the survey that do not fit within the predefined class taxonomy. Finally, we apply these methods to sources observed by the All-Sky Automated Survey (ASAS), and release the Machine-learned ASAS Classification Catalog (MACC), a 28 class probabilistic classification catalog of 50,124 ASAS sources in the ASAS Catalog of Variable Stars. We estimate that MACC achieves a sub-20% classification error rate and demonstrate that the class posterior probabilities are reasonably calibrated. MACC classifications compare favorably to the classifications of several previous domain-specific ASAS papers and to the ASAS Catalog of Variable Stars, which had classified only 24% of those sources into one of 12 science classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Joseph W.; Starr, Dan L.; Miller, Adam A.
2012-12-15
With growing data volumes from synoptic surveys, astronomers necessarily must become more abstracted from the discovery and introspection processes. Given the scarcity of follow-up resources, there is a particularly sharp onus on the frameworks that replace these human roles to provide accurate and well-calibrated probabilistic classification catalogs. Such catalogs inform the subsequent follow-up, allowing consumers to optimize the selection of specific sources for further study and permitting rigorous treatment of classification purities and efficiencies for population studies. Here, we describe a process to produce a probabilistic classification catalog of variability with machine learning from a multi-epoch photometric survey. In additionmore » to producing accurate classifications, we show how to estimate calibrated class probabilities and motivate the importance of probability calibration. We also introduce a methodology for feature-based anomaly detection, which allows discovery of objects in the survey that do not fit within the predefined class taxonomy. Finally, we apply these methods to sources observed by the All-Sky Automated Survey (ASAS), and release the Machine-learned ASAS Classification Catalog (MACC), a 28 class probabilistic classification catalog of 50,124 ASAS sources in the ASAS Catalog of Variable Stars. We estimate that MACC achieves a sub-20% classification error rate and demonstrate that the class posterior probabilities are reasonably calibrated. MACC classifications compare favorably to the classifications of several previous domain-specific ASAS papers and to the ASAS Catalog of Variable Stars, which had classified only 24% of those sources into one of 12 science classes.« less
NASA Astrophysics Data System (ADS)
Moloshnikov, I. A.; Sboev, A. G.; Rybka, R. B.; Gydovskikh, D. V.
2016-02-01
The composite algorithm integrating, on one hand, the algorithm of finding documents on a given topic, and, on the other hand, the method of emotiveness evaluation of topical texts is presented. This method is convenient for analysis of people opinions expressed in social media and, as a result, for automated analysis of event evolutions in social media. Some examples of such analysing are demonstrated and discussed.
NASA Astrophysics Data System (ADS)
Weigel, A. M.; Griffin, R.; Gallagher, D.
2015-12-01
Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the Gulf of Mexico, and improved the accuracy and resolution of the Probabilistic Storm Surge model.
Bhaganagarapu, Kaushik; Jackson, Graeme D; Abbott, David F
2013-01-01
An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available.
An Automated Method for Identifying Artifact in Independent Component Analysis of Resting-State fMRI
Bhaganagarapu, Kaushik; Jackson, Graeme D.; Abbott, David F.
2013-01-01
An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available. PMID:23847511
Alomari, Yazan M.; MdZin, Reena Rahayu
2015-01-01
Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved. PMID:25793010
Automated design of genetic toggle switches with predetermined bistability.
Chen, Shuobing; Zhang, Haoqian; Shi, Handuo; Ji, Weiyue; Feng, Jingchen; Gong, Yan; Yang, Zhenglin; Ouyang, Qi
2012-07-20
Synthetic biology aims to rationally construct biological devices with required functionalities. Methods that automate the design of genetic devices without post-hoc adjustment are therefore highly desired. Here we provide a method to predictably design genetic toggle switches with predetermined bistability. To accomplish this task, a biophysical model that links ribosome binding site (RBS) DNA sequence to toggle switch bistability was first developed by integrating a stochastic model with RBS design method. Then, to parametrize the model, a library of genetic toggle switch mutants was experimentally built, followed by establishing the equivalence between RBS DNA sequences and switch bistability. To test this equivalence, RBS nucleotide sequences for different specified bistabilities were in silico designed and experimentally verified. Results show that the deciphered equivalence is highly predictive for the toggle switch design with predetermined bistability. This method can be generalized to quantitative design of other probabilistic genetic devices in synthetic biology.
Dera, Dimah; Bouaynaya, Nidhal; Fathallah-Shaykh, Hassan M
2016-07-01
We address the problem of fully automated region discovery and robust image segmentation by devising a new deformable model based on the level set method (LSM) and the probabilistic nonnegative matrix factorization (NMF). We describe the use of NMF to calculate the number of distinct regions in the image and to derive the local distribution of the regions, which is incorporated into the energy functional of the LSM. The results demonstrate that our NMF-LSM method is superior to other approaches when applied to synthetic binary and gray-scale images and to clinical magnetic resonance images (MRI) of the human brain with and without a malignant brain tumor, glioblastoma multiforme. In particular, the NMF-LSM method is fully automated, highly accurate, less sensitive to the initial selection of the contour(s) or initial conditions, more robust to noise and model parameters, and able to detect as small distinct regions as desired. These advantages stem from the fact that the proposed method relies on histogram information instead of intensity values and does not introduce nuisance model parameters. These properties provide a general approach for automated robust region discovery and segmentation in heterogeneous images. Compared with the retrospective radiological diagnoses of two patients with non-enhancing grade 2 and 3 oligodendroglioma, the NMF-LSM detects earlier progression times and appears suitable for monitoring tumor response. The NMF-LSM method fills an important need of automated segmentation of clinical MRI.
2005-03-01
to obtain a protocol customized to the needs of a specific setting, under control of an automated theorem proving system that can guarantee...new “compositional” method for protocol design and implementation, in which small microprotocols are combined to obtain a protocol customized to the...and Network Centric Enterprise (NCES) visions. This final report documents a wide range of contributions and technology transitions, including: A
Woldegebriel, Michael; Zomer, Paul; Mol, Hans G J; Vivó-Truyols, Gabriel
2016-08-02
In this work, we introduce an automated, efficient, and elegant model to combine all pieces of evidence (e.g., expected retention times, peak shapes, isotope distributions, fragment-to-parent ratio) obtained from liquid chromatography-tandem mass spectrometry (LC-MS/MS/MS) data for screening purposes. Combining all these pieces of evidence requires a careful assessment of the uncertainties in the analytical system as well as all possible outcomes. To-date, the majority of the existing algorithms are highly dependent on user input parameters. Additionally, the screening process is tackled as a deterministic problem. In this work we present a Bayesian framework to deal with the combination of all these pieces of evidence. Contrary to conventional algorithms, the information is treated in a probabilistic way, and a final probability assessment of the presence/absence of a compound feature is computed. Additionally, all the necessary parameters except the chromatographic band broadening for the method are learned from the data in training and learning phase of the algorithm, avoiding the introduction of a large number of user-defined parameters. The proposed method was validated with a large data set and has shown improved sensitivity and specificity in comparison to a threshold-based commercial software package.
de Blank, Peter; Fisher, Michael J; Gittleman, Haley; Barnholtz-Sloan, Jill S; Badve, Chaitra; Berman, Jeffrey I
2018-01-01
Fractional anisotropy (FA) of the optic radiations has been associated with vision deficit in multiple intrinsic brain pathologies including NF1 associated optic pathway glioma, but hand-drawn regions of interest used in previous tractography methods limit consistency of this potential biomarker. We created an automated method to identify white matter tracts in the optic radiations and compared this method to previously reported hand-drawn tractography. Automated tractography of the optic radiation using probabilistic streamline fiber tracking between the lateral geniculate nucleus of the thalamus and the occipital cortex was compared to the hand-drawn method between regions of interest posterior to Meyer's loop and anterior to tract branching near the calcarine cortex. Reliability was assessed by two independent raters in a sample of 20 healthy child controls. Among 50 children with NF1-associated optic pathway glioma, the association of FA and visual acuity deficit was compared for both tractography methods. Hand-drawn tractography methods required 2.6±0.9min/participant; automated methods were performed in <1min of operator time for all participants. Cronbach's alpha was 0.83 between two independent raters for FA in hand-drawn tractography, but repeated automated tractography resulted in identical FA values (Cronbach's alpha=1). On univariate and multivariate analyses, FA was similarly associated with visual acuity loss using both methods. Receiver operator characteristic curves of both multivariate models demonstrated that both automated and hand-drawn tractography methods were equally able to distinguish normal from abnormal visual acuity. Automated tractography of the optic radiations offers a fast, reliable and consistent method of tract identification that is not reliant on operator time or expertise. This method of tract identification may be useful as DTI is developed as a potential biomarker for visual acuity. Copyright © 2017 Elsevier Inc. All rights reserved.
Automated Database Schema Design Using Mined Data Dependencies.
ERIC Educational Resources Information Center
Wong, S. K. M.; Butz, C. J.; Xiang, Y.
1998-01-01
Describes a bottom-up procedure for discovering multivalued dependencies in observed data without knowing a priori the relationships among the attributes. The proposed algorithm is an application of technique designed for learning conditional independencies in probabilistic reasoning; a prototype system for automated database schema design has…
Khan, Ali R; Wang, Lei; Beg, Mirza Faisal
2008-07-01
Fully-automated brain segmentation methods have not been widely adopted for clinical use because of issues related to reliability, accuracy, and limitations of delineation protocol. By combining the probabilistic-based FreeSurfer (FS) method with the Large Deformation Diffeomorphic Metric Mapping (LDDMM)-based label-propagation method, we are able to increase reliability and accuracy, and allow for flexibility in template choice. Our method uses the automated FreeSurfer subcortical labeling to provide a coarse-to-fine introduction of information in the LDDMM template-based segmentation resulting in a fully-automated subcortical brain segmentation method (FS+LDDMM). One major advantage of the FS+LDDMM-based approach is that the automatically generated segmentations generated are inherently smooth, thus subsequent steps in shape analysis can directly follow without manual post-processing or loss of detail. We have evaluated our new FS+LDDMM method on several databases containing a total of 50 subjects with different pathologies, scan sequences and manual delineation protocols for labeling the basal ganglia, thalamus, and hippocampus. In healthy controls we report Dice overlap measures of 0.81, 0.83, 0.74, 0.86 and 0.75 for the right caudate nucleus, putamen, pallidum, thalamus and hippocampus respectively. We also find statistically significant improvement of accuracy in FS+LDDMM over FreeSurfer for the caudate nucleus and putamen of Huntington's disease and Tourette's syndrome subjects, and the right hippocampus of Schizophrenia subjects.
Butler, Tracy; Zaborszky, Laszlo; Pirraglia, Elizabeth; Li, Jinyu; Wang, Xiuyuan Hugh; Li, Yi; Tsui, Wai; Talos, Delia; Devinsky, Orrin; Kuchna, Izabela; Nowicki, Krzysztof; French, Jacqueline; Kuzniecky, Rubin; Wegiel, Jerzy; Glodzik, Lidia; Rusinek, Henry; DeLeon, Mony J.; Thesen, Thomas
2014-01-01
Septal nuclei, located in basal forebrain, are strongly connected with hippocampi and important in learning and memory, but have received limited research attention in human MRI studies. While probabilistic maps for estimating septal volume on MRI are now available, they have not been independently validated against manual tracing of MRI, typically considered the gold standard for delineating brain structures. We developed a protocol for manual tracing of the human septal region on MRI based on examination of neuroanatomical specimens. We applied this tracing protocol to T1 MRI scans (n=86) from subjects with temporal epilepsy and healthy controls to measure septal volume. To assess the inter-rater reliability of the protocol, a second tracer used the same protocol on 20 scans that were randomly selected from the 72 healthy controls. In addition to measuring septal volume, maximum septal thickness between the ventricles was measured and recorded. The same scans (n=86) were also analysed using septal probabilistic maps and Dartel toolbox in SPM. Results show that our manual tracing algorithm is reliable, and that septal volume measurements obtained via manual and automated methods correlate significantly with each other (p<001). Both manual and automated methods detected significantly enlarged septal nuclei in patients with temporal lobe epilepsy in accord with a proposed compensatory neuroplastic process related to the strong connections between septal nuclei and hippocampi. Septal thickness, which was simple to measure with excellent inter-rater reliability, correlated well with both manual and automated septal volume, suggesting it could serve as an easy-to-measure surrogate for septal volume in future studies. Our results call attention to the important though understudied human septal region, confirm its enlargement in temporal lobe epilepsy, and provide a reliable new manual delineation protocol that will facilitate continued study of this critical region. PMID:24736183
Butler, Tracy; Zaborszky, Laszlo; Pirraglia, Elizabeth; Li, Jinyu; Wang, Xiuyuan Hugh; Li, Yi; Tsui, Wai; Talos, Delia; Devinsky, Orrin; Kuchna, Izabela; Nowicki, Krzysztof; French, Jacqueline; Kuzniecky, Rubin; Wegiel, Jerzy; Glodzik, Lidia; Rusinek, Henry; deLeon, Mony J; Thesen, Thomas
2014-08-15
Septal nuclei, located in basal forebrain, are strongly connected with hippocampi and important in learning and memory, but have received limited research attention in human MRI studies. While probabilistic maps for estimating septal volume on MRI are now available, they have not been independently validated against manual tracing of MRI, typically considered the gold standard for delineating brain structures. We developed a protocol for manual tracing of the human septal region on MRI based on examination of neuroanatomical specimens. We applied this tracing protocol to T1 MRI scans (n=86) from subjects with temporal epilepsy and healthy controls to measure septal volume. To assess the inter-rater reliability of the protocol, a second tracer used the same protocol on 20 scans that were randomly selected from the 72 healthy controls. In addition to measuring septal volume, maximum septal thickness between the ventricles was measured and recorded. The same scans (n=86) were also analyzed using septal probabilistic maps and DARTEL toolbox in SPM. Results show that our manual tracing algorithm is reliable, and that septal volume measurements obtained via manual and automated methods correlate significantly with each other (p<.001). Both manual and automated methods detected significantly enlarged septal nuclei in patients with temporal lobe epilepsy in accord with a proposed compensatory neuroplastic process related to the strong connections between septal nuclei and hippocampi. Septal thickness, which was simple to measure with excellent inter-rater reliability, correlated well with both manual and automated septal volume, suggesting it could serve as an easy-to-measure surrogate for septal volume in future studies. Our results call attention to the important though understudied human septal region, confirm its enlargement in temporal lobe epilepsy, and provide a reliable new manual delineation protocol that will facilitate continued study of this critical region. Copyright © 2014 Elsevier Inc. All rights reserved.
The Importance of Human Reliability Analysis in Human Space Flight: Understanding the Risks
NASA Technical Reports Server (NTRS)
Hamlin, Teri L.
2010-01-01
HRA is a method used to describe, qualitatively and quantitatively, the occurrence of human failures in the operation of complex systems that affect availability and reliability. Modeling human actions with their corresponding failure in a PRA (Probabilistic Risk Assessment) provides a more complete picture of the risk and risk contributions. A high quality HRA can provide valuable information on potential areas for improvement, including training, procedural, equipment design and need for automation.
Automated tissue segmentation of MR brain images in the presence of white matter lesions.
Valverde, Sergi; Oliver, Arnau; Roura, Eloy; González-Villà, Sandra; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Rovira, Àlex; Lladó, Xavier
2017-01-01
Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to the development of a wide number of automated tissue segmentation methods. However, white matter lesions are known to reduce the performance of automated tissue segmentation methods, which requires manual annotation of the lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue segmentation challenge database, which contains images with vascular WM lesions, and also on a set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance of our method with other state-of-the-art techniques. On the MRBrainS13 data, the presented approach was at the time of submission the best ranked unsupervised intensity model method of the challenge (7th position) and clearly outperformed the other unsupervised pipelines such as FAST and SPM12. On MS data, the differences in tissue segmentation between the images segmented with our method and the same images where manual expert annotations were used to refill lesions on T1-w images before segmentation were lower or similar to the best state-of-the-art pipeline incorporating automated lesion segmentation and filling. Our results show that the proposed pipeline achieved very competitive results on both vascular and MS lesions. A public version of this approach is available to download for the neuro-imaging community. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, X; Liu, S; Kalet, A
Purpose: The purpose of this work was to investigate the ability of a machine-learning based probabilistic approach to detect radiotherapy treatment plan anomalies given initial disease classes information. Methods In total we obtained 1112 unique treatment plans with five plan parameters and disease information from a Mosaiq treatment management system database for use in the study. The plan parameters include prescription dose, fractions, fields, modality and techniques. The disease information includes disease site, and T, M and N disease stages. A Bayesian network method was employed to model the probabilistic relationships between tumor disease information, plan parameters and an anomalymore » flag. A Bayesian learning method with Dirichlet prior was useed to learn the joint probabilities between dependent variables in error-free plan data and data with artificially induced anomalies. In the study, we randomly sampled data with anomaly in a specified anomaly space.We tested the approach with three groups of plan anomalies – improper concurrence of values of all five plan parameters and values of any two out of five parameters, and all single plan parameter value anomalies. Totally, 16 types of plan anomalies were covered by the study. For each type, we trained an individual Bayesian network. Results: We found that the true positive rate (recall) and positive predictive value (precision) to detect concurrence anomalies of five plan parameters in new patient cases were 94.45±0.26% and 93.76±0.39% respectively. To detect other 15 types of plan anomalies, the average recall and precision were 93.61±2.57% and 93.78±3.54% respectively. The computation time to detect the plan anomaly of each type in a new plan is ∼0.08 seconds. Conclusion: The proposed method for treatment plan anomaly detection was found effective in the initial tests. The results suggest that this type of models could be applied to develop plan anomaly detection tools to assist manual and automated plan checks. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less
NASA Astrophysics Data System (ADS)
McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A.; Purdie, Thomas G.
2017-08-01
Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.
McIntosh, Chris; Welch, Mattea; McNiven, Andrea; Jaffray, David A; Purdie, Thomas G
2017-07-06
Recent works in automated radiotherapy treatment planning have used machine learning based on historical treatment plans to infer the spatial dose distribution for a novel patient directly from the planning image. We present a probabilistic, atlas-based approach which predicts the dose for novel patients using a set of automatically selected most similar patients (atlases). The output is a spatial dose objective, which specifies the desired dose-per-voxel, and therefore replaces the need to specify and tune dose-volume objectives. Voxel-based dose mimicking optimization then converts the predicted dose distribution to a complete treatment plan with dose calculation using a collapsed cone convolution dose engine. In this study, we investigated automated planning for right-sided oropharaynx head and neck patients treated with IMRT and VMAT. We compare four versions of our dose prediction pipeline using a database of 54 training and 12 independent testing patients by evaluating 14 clinical dose evaluation criteria. Our preliminary results are promising and demonstrate that automated methods can generate comparable dose distributions to clinical. Overall, automated plans achieved an average of 0.6% higher dose for target coverage evaluation criteria, and 2.4% lower dose at the organs at risk criteria levels evaluated compared with clinical. There was no statistically significant difference detected in high-dose conformity between automated and clinical plans as measured by the conformation number. Automated plans achieved nine more unique criteria than clinical across the 12 patients tested and automated plans scored a significantly higher dose at the evaluation limit for two high-risk target coverage criteria and a significantly lower dose in one critical organ maximum dose. The novel dose prediction method with dose mimicking can generate complete treatment plans in 12-13 min without user interaction. It is a promising approach for fully automated treatment planning and can be readily applied to different treatment sites and modalities.
Formalizing Probabilistic Safety Claims
NASA Technical Reports Server (NTRS)
Herencia-Zapana, Heber; Hagen, George E.; Narkawicz, Anthony J.
2011-01-01
A safety claim for a system is a statement that the system, which is subject to hazardous conditions, satisfies a given set of properties. Following work by John Rushby and Bev Littlewood, this paper presents a mathematical framework that can be used to state and formally prove probabilistic safety claims. It also enables hazardous conditions, their uncertainties, and their interactions to be integrated into the safety claim. This framework provides a formal description of the probabilistic composition of an arbitrary number of hazardous conditions and their effects on system behavior. An example is given of a probabilistic safety claim for a conflict detection algorithm for aircraft in a 2D airspace. The motivation for developing this mathematical framework is that it can be used in an automated theorem prover to formally verify safety claims.
Automated segmentation of linear time-frequency representations of marine-mammal sounds.
Dadouchi, Florian; Gervaise, Cedric; Ioana, Cornel; Huillery, Julien; Mars, Jérôme I
2013-09-01
Many marine mammals produce highly nonlinear frequency modulations. Determining the time-frequency support of these sounds offers various applications, which include recognition, localization, and density estimation. This study introduces a low parameterized automated spectrogram segmentation method that is based on a theoretical probabilistic framework. In the first step, the background noise in the spectrogram is fitted with a Chi-squared distribution and thresholded using a Neyman-Pearson approach. In the second step, the number of false detections in time-frequency regions is modeled as a binomial distribution, and then through a Neyman-Pearson strategy, the time-frequency bins are gathered into regions of interest. The proposed method is validated on real data of large sequences of whistles from common dolphins, collected in the Bay of Biscay (France). The proposed method is also compared with two alternative approaches: the first is smoothing and thresholding of the spectrogram; the second is thresholding of the spectrogram followed by the use of morphological operators to gather the time-frequency bins and to remove false positives. This method is shown to increase the probability of detection for the same probability of false alarms.
Inclusion of temporal priors for automated neonatal EEG classification
NASA Astrophysics Data System (ADS)
Temko, Andriy; Stevenson, Nathan; Marnane, William; Boylan, Geraldine; Lightbody, Gordon
2012-08-01
The aim of this paper is to use recent advances in the clinical understanding of the temporal evolution of seizure burden in neonates with hypoxic ischemic encephalopathy to improve the performance of automated detection algorithms. Probabilistic weights are designed from temporal locations of neonatal seizure events relative to time of birth. These weights are obtained by fitting a skew-normal distribution to the temporal seizure density and introduced into the probabilistic framework of the previously developed neonatal seizure detector. The results are validated on the largest available clinical dataset, comprising 816.7 h. By exploiting these priors, the receiver operating characteristic area is increased by 23% (relative) reaching 96.74%. The number of false detections per hour is decreased from 0.45 to 0.25, while maintaining the correct detection of seizure burden at 70%.
Hierarchical probabilistic Gabor and MRF segmentation of brain tumours in MRI volumes.
Subbanna, Nagesh K; Precup, Doina; Collins, D Louis; Arbel, Tal
2013-01-01
In this paper, we present a fully automated hierarchical probabilistic framework for segmenting brain tumours from multispectral human brain magnetic resonance images (MRIs) using multiwindow Gabor filters and an adapted Markov Random Field (MRF) framework. In the first stage, a customised Gabor decomposition is developed, based on the combined-space characteristics of the two classes (tumour and non-tumour) in multispectral brain MRIs in order to optimally separate tumour (including edema) from healthy brain tissues. A Bayesian framework then provides a coarse probabilistic texture-based segmentation of tumours (including edema) whose boundaries are then refined at the voxel level through a modified MRF framework that carefully separates the edema from the main tumour. This customised MRF is not only built on the voxel intensities and class labels as in traditional MRFs, but also models the intensity differences between neighbouring voxels in the likelihood model, along with employing a prior based on local tissue class transition probabilities. The second inference stage is shown to resolve local inhomogeneities and impose a smoothing constraint, while also maintaining the appropriate boundaries as supported by the local intensity difference observations. The method was trained and tested on the publicly available MICCAI 2012 Brain Tumour Segmentation Challenge (BRATS) Database [1] on both synthetic and clinical volumes (low grade and high grade tumours). Our method performs well compared to state-of-the-art techniques, outperforming the results of the top methods in cases of clinical high grade and low grade tumour core segmentation by 40% and 45% respectively.
Aircraft Conflict Analysis and Real-Time Conflict Probing Using Probabilistic Trajectory Modeling
NASA Technical Reports Server (NTRS)
Yang, Lee C.; Kuchar, James K.
2000-01-01
Methods for maintaining separation between aircraft in the current airspace system have been built from a foundation of structured routes and evolved procedures. However, as the airspace becomes more congested and the chance of failures or operational error become more problematic, automated conflict alerting systems have been proposed to help provide decision support and to serve as traffic monitoring aids. The problem of conflict detection and resolution has been tackled from a number of different ways, but in this thesis, it is recast as a problem of prediction in the presence of uncertainties. Much of the focus is concentrated on the errors and uncertainties from the working trajectory model used to estimate future aircraft positions. The more accurate the prediction, the more likely an ideal (no false alarms, no missed detections) alerting system can be designed. Additional insights into the problem were brought forth by a review of current operational and developmental approaches found in the literature. An iterative, trial and error approach to threshold design was identified. When examined from a probabilistic perspective, the threshold parameters were found to be a surrogate to probabilistic performance measures. To overcome the limitations in the current iterative design method, a new direct approach is presented where the performance measures are directly computed and used to perform the alerting decisions. The methodology is shown to handle complex encounter situations (3-D, multi-aircraft, multi-intent, with uncertainties) with relative ease. Utilizing a Monte Carlo approach, a method was devised to perform the probabilistic computations in near realtime. Not only does this greatly increase the method's potential as an analytical tool, but it also opens up the possibility for use as a real-time conflict alerting probe. A prototype alerting logic was developed and has been utilized in several NASA Ames Research Center experimental studies.
Automated mitosis detection of stem cell populations in phase-contrast microscopy images.
Huh, Seungil; Ker, Dai Fei Elmer; Bise, Ryoma; Chen, Mei; Kanade, Takeo
2011-03-01
Due to the enormous potential and impact that stem cells may have on regenerative medicine, there has been a rapidly growing interest for tools to analyze and characterize the behaviors of these cells in vitro in an automated and high throughput fashion. Among these behaviors, mitosis, or cell division, is important since stem cells proliferate and renew themselves through mitosis. However, current automated systems for measuring cell proliferation often require destructive or sacrificial methods of cell manipulation such as cell lysis or in vitro staining. In this paper, we propose an effective approach for automated mitosis detection using phase-contrast time-lapse microscopy, which is a nondestructive imaging modality, thereby allowing continuous monitoring of cells in culture. In our approach, we present a probabilistic model for event detection, which can simultaneously 1) identify spatio-temporal patch sequences that contain a mitotic event and 2) localize a birth event, defined as the time and location at which cell division is completed and two daughter cells are born. Our approach significantly outperforms previous approaches in terms of both detection accuracy and computational efficiency, when applied to multipotent C3H10T1/2 mesenchymal and C2C12 myoblastic stem cell populations.
Neural network and wavelet average framing percentage energy for atrial fibrillation classification.
Daqrouq, K; Alkhateeb, A; Ajour, M N; Morfeq, A
2014-03-01
ECG signals are an important source of information in the diagnosis of atrial conduction pathology. Nevertheless, diagnosis by visual inspection is a difficult task. This work introduces a novel wavelet feature extraction method for atrial fibrillation derived from the average framing percentage energy (AFE) of terminal wavelet packet transform (WPT) sub signals. Probabilistic neural network (PNN) is used for classification. The presented method is shown to be a potentially effective discriminator in an automated diagnostic process. The ECG signals taken from the MIT-BIH database are used to classify different arrhythmias together with normal ECG. Several published methods were investigated for comparison. The best recognition rate selection was obtained for AFE. The classification performance achieved accuracy 97.92%. It was also suggested to analyze the presented system in an additive white Gaussian noise (AWGN) environment; 55.14% for 0dB and 92.53% for 5dB. It was concluded that the proposed approach of automating classification is worth pursuing with larger samples to validate and extend the present study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dengwang; Liu, Li; Chen, Jinhu
2014-06-01
Purpose: The aiming of this study was to extract liver structures for daily Cone beam CT (CBCT) images automatically. Methods: Datasets were collected from 50 intravenous contrast planning CT images, which were regarded as training dataset for probabilistic atlas and shape prior model construction. Firstly, probabilistic atlas and shape prior model based on sparse shape composition (SSC) were constructed by iterative deformable registration. Secondly, the artifacts and noise were removed from the daily CBCT image by an edge-preserving filtering using total variation with L1 norm (TV-L1). Furthermore, the initial liver region was obtained by registering the incoming CBCT image withmore » the atlas utilizing edge-preserving deformable registration with multi-scale strategy, and then the initial liver region was converted to surface meshing which was registered with the shape model where the major variation of specific patient was modeled by sparse vectors. At the last stage, the shape and intensity information were incorporated into joint probabilistic model, and finally the liver structure was extracted by maximum a posteriori segmentation.Regarding the construction process, firstly the manually segmented contours were converted into meshes, and then arbitrary patient data was chosen as reference image to register with the rest of training datasets by deformable registration algorithm for constructing probabilistic atlas and prior shape model. To improve the efficiency of proposed method, the initial probabilistic atlas was used as reference image to register with other patient data for iterative construction for removing bias caused by arbitrary selection. Results: The experiment validated the accuracy of the segmentation results quantitatively by comparing with the manually ones. The volumetric overlap percentage between the automatically generated liver contours and the ground truth were on an average 88%–95% for CBCT images. Conclusion: The experiment demonstrated that liver structures of CBCT with artifacts can be extracted accurately for following adaptive radiation therapy. This work is supported by National Natural Science Foundation of China (No. 61201441), Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province (No. BS2012DX038), Project of Shandong Province Higher Educational Science and Technology Program (No. J12LN23), Jinan youth science and technology star (No.20120109)« less
Toward automated assessment of health Web page quality using the DISCERN instrument.
Allam, Ahmed; Schulz, Peter J; Krauthammer, Michael
2017-05-01
As the Internet becomes the number one destination for obtaining health-related information, there is an increasing need to identify health Web pages that convey an accurate and current view of medical knowledge. In response, the research community has created multicriteria instruments for reliably assessing online medical information quality. One such instrument is DISCERN, which measures health Web page quality by assessing an array of features. In order to scale up use of the instrument, there is interest in automating the quality evaluation process by building machine learning (ML)-based DISCERN Web page classifiers. The paper addresses 2 key issues that are essential before constructing automated DISCERN classifiers: (1) generation of a robust DISCERN training corpus useful for training classification algorithms, and (2) assessment of the usefulness of the current DISCERN scoring schema as a metric for evaluating the performance of these algorithms. Using DISCERN, 272 Web pages discussing treatment options in breast cancer, arthritis, and depression were evaluated and rated by trained coders. First, different consensus models were compared to obtain a robust aggregated rating among the coders, suitable for a DISCERN ML training corpus. Second, a new DISCERN scoring criterion was proposed (features-based score) as an ML performance metric that is more reflective of the score distribution across different DISCERN quality criteria. First, we found that a probabilistic consensus model applied to the DISCERN instrument was robust against noise (random ratings) and superior to other approaches for building a training corpus. Second, we found that the established DISCERN scoring schema (overall score) is ill-suited to measure ML performance for automated classifiers. Use of a probabilistic consensus model is advantageous for building a training corpus for the DISCERN instrument, and use of a features-based score is an appropriate ML metric for automated DISCERN classifiers. The code for the probabilistic consensus model is available at https://bitbucket.org/A_2/em_dawid/ . © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
Goldstein, Mary K; Asch, Steven M; Mackey, Lester; Altman, Russ B
2017-01-01
Objective: Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. Materials and Methods: The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. Results: Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% (P < 10−20) by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics yield natural clinical interpretations (e.g., “critical care,” “pneumonia,” “neurologic evaluation”). Discussion: Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. Conclusion: Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support. PMID:27655861
Generative diffeomorphic modelling of large MRI data sets for probabilistic template construction.
Blaiotta, Claudia; Freund, Patrick; Cardoso, M Jorge; Ashburner, John
2018-02-01
In this paper we present a hierarchical generative model of medical image data, which can capture simultaneously the variability of both signal intensity and anatomical shapes across large populations. Such a model has a direct application for learning average-shaped probabilistic tissue templates in a fully automated manner. While in principle the generality of the proposed Bayesian approach makes it suitable to address a wide range of medical image computing problems, our work focuses primarily on neuroimaging applications. In particular we validate the proposed method on both real and synthetic brain MR scans including the cervical cord and demonstrate that it yields accurate alignment of brain and spinal cord structures, as compared to state-of-the-art tools for medical image registration. At the same time we illustrate how the resulting tissue probability maps can readily be used to segment, bias correct and spatially normalise unseen data, which are all crucial pre-processing steps for MR imaging studies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Automated liver segmentation using a normalized probabilistic atlas
NASA Astrophysics Data System (ADS)
Linguraru, Marius George; Li, Zhixi; Shah, Furhawn; Chin, See; Summers, Ronald M.
2009-02-01
Probabilistic atlases of anatomical organs, especially the brain and the heart, have become popular in medical image analysis. We propose the construction of probabilistic atlases which retain structural variability by using a size-preserving modified affine registration. The organ positions are modeled in the physical space by normalizing the physical organ locations to an anatomical landmark. In this paper, a liver probabilistic atlas is constructed and exploited to automatically segment liver volumes from abdominal CT data. The atlas is aligned with the patient data through a succession of affine and non-linear registrations. The overlap and correlation with manual segmentations are 0.91 (0.93 DICE coefficient) and 0.99 respectively. Little work has taken place on the integration of volumetric measures of liver abnormality to clinical evaluations, which rely on linear estimates of liver height. Our application measures the liver height at the mid-hepatic line (0.94 correlation with manual measurements) and indicates that its combination with volumetric estimates could assist the development of a noninvasive tool to assess hepatomegaly.
Automatized set-up procedure for transcranial magnetic stimulation protocols.
Harquel, S; Diard, J; Raffin, E; Passera, B; Dall'Igna, G; Marendaz, C; David, O; Chauvin, A
2017-06-01
Transcranial Magnetic Stimulation (TMS) established itself as a powerful technique for probing and treating the human brain. Major technological evolutions, such as neuronavigation and robotized systems, have continuously increased the spatial reliability and reproducibility of TMS, by minimizing the influence of human and experimental factors. However, there is still a lack of efficient set-up procedure, which prevents the automation of TMS protocols. For example, the set-up procedure for defining the stimulation intensity specific to each subject is classically done manually by experienced practitioners, by assessing the motor cortical excitability level over the motor hotspot (HS) of a targeted muscle. This is time-consuming and introduces experimental variability. Therefore, we developed a probabilistic Bayesian model (AutoHS) that automatically identifies the HS position. Using virtual and real experiments, we compared the efficacy of the manual and automated procedures. AutoHS appeared to be more reproducible, faster, and at least as reliable as classical manual procedures. By combining AutoHS with robotized TMS and automated motor threshold estimation methods, our approach constitutes the first fully automated set-up procedure for TMS protocols. The use of this procedure decreases inter-experimenter variability while facilitating the handling of TMS protocols used for research and clinical routine. Copyright © 2017 Elsevier Inc. All rights reserved.
Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index1
Zou, Kelly H.; Warfield, Simon K.; Bharatha, Aditya; Tempany, Clare M.C.; Kaus, Michael R.; Haker, Steven J.; Wells, William M.; Jolesz, Ferenc A.; Kikinis, Ron
2005-01-01
Rationale and Objectives To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy. Materials and Methods The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA). Results Example 1: The mean DSCs of 0.883 (range, 0.876–0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819–0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519–0.893), astrocytomas (0.487–0.972), and other mixed gliomas (0.490–0.899). Conclusion The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks. PMID:14974593
Sequence similarity is more relevant than species specificity in probabilistic backtranslation.
Ferro, Alfredo; Giugno, Rosalba; Pigola, Giuseppe; Pulvirenti, Alfredo; Di Pietro, Cinzia; Purrello, Michele; Ragusa, Marco
2007-02-21
Backtranslation is the process of decoding a sequence of amino acids into the corresponding codons. All synthetic gene design systems include a backtranslation module. The degeneracy of the genetic code makes backtranslation potentially ambiguous since most amino acids are encoded by multiple codons. The common approach to overcome this difficulty is based on imitation of codon usage within the target species. This paper describes EasyBack, a new parameter-free, fully-automated software for backtranslation using Hidden Markov Models. EasyBack is not based on imitation of codon usage within the target species, but instead uses a sequence-similarity criterion. The model is trained with a set of proteins with known cDNA coding sequences, constructed from the input protein by querying the NCBI databases with BLAST. Unlike existing software, the proposed method allows the quality of prediction to be estimated. When tested on a group of proteins that show different degrees of sequence conservation, EasyBack outperforms other published methods in terms of precision. The prediction quality of a protein backtranslation methis markedly increased by replacing the criterion of most used codon in the same species with a Hidden Markov Model trained with a set of most similar sequences from all species. Moreover, the proposed method allows the quality of prediction to be estimated probabilistically.
Databases Don't Measure Motivation
ERIC Educational Resources Information Center
Yeager, Joseph
2005-01-01
Automated persuasion is the Holy Grail of quantitatively biased data base designers. However, data base histories are, at best, probabilistic estimates of customer behavior and do not make use of more sophisticated qualitative motivational profiling tools. While usually absent from web designer thinking, qualitative motivational profiling can be…
Proceedings, Seminar on Probabilistic Methods in Geotechnical Engineering
NASA Astrophysics Data System (ADS)
Hynes-Griffin, M. E.; Buege, L. L.
1983-09-01
Contents: Applications of Probabilistic Methods in Geotechnical Engineering; Probabilistic Seismic and Geotechnical Evaluation at a Dam Site; Probabilistic Slope Stability Methodology; Probability of Liquefaction in a 3-D Soil Deposit; Probabilistic Design of Flood Levees; Probabilistic and Statistical Methods for Determining Rock Mass Deformability Beneath Foundations: An Overview; Simple Statistical Methodology for Evaluating Rock Mechanics Exploration Data; New Developments in Statistical Techniques for Analyzing Rock Slope Stability.
Queries over Unstructured Data: Probabilistic Methods to the Rescue
NASA Astrophysics Data System (ADS)
Sarawagi, Sunita
Unstructured data like emails, addresses, invoices, call transcripts, reviews, and press releases are now an integral part of any large enterprise. A challenge of modern business intelligence applications is analyzing and querying data seamlessly across structured and unstructured sources. This requires the development of automated techniques for extracting structured records from text sources and resolving entity mentions in data from various sources. The success of any automated method for extraction and integration depends on how effectively it unifies diverse clues in the unstructured source and in existing structured databases. We argue that statistical learning techniques like Conditional Random Fields (CRFs) provide a accurate, elegant and principled framework for tackling these tasks. Given the inherent noise in real-world sources, it is important to capture the uncertainty of the above operations via imprecise data models. CRFs provide a sound probability distribution over extractions but are not easy to represent and query in a relational framework. We present methods of approximating this distribution to query-friendly row and column uncertainty models. Finally, we present models for representing the uncertainty of de-duplication and algorithms for various Top-K count queries on imprecise duplicates.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting sponsored by the Picatinny Arsenal during March 1-3, 2004 at Westin Morristown, will report progress on projects for probabilistic assessment of Army system and launch an initiative for probabilistic education. The meeting features several Army and industry Senior executives and Ivy League Professor to provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11s Probabilistic Methods Committee is to enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development.
Mah, Yee-Haur; Jager, Rolf; Kennard, Christopher; Husain, Masud; Nachev, Parashkev
2014-07-01
Making robust inferences about the functional neuroanatomy of the brain is critically dependent on experimental techniques that examine the consequences of focal loss of brain function. Unfortunately, the use of the most comprehensive such technique-lesion-function mapping-is complicated by the need for time-consuming and subjective manual delineation of the lesions, greatly limiting the practicability of the approach. Here we exploit a recently-described general measure of statistical anomaly, zeta, to devise a fully-automated, high-dimensional algorithm for identifying the parameters of lesions within a brain image given a reference set of normal brain images. We proceed to evaluate such an algorithm in the context of diffusion-weighted imaging of the commonest type of lesion used in neuroanatomical research: ischaemic damage. Summary performance metrics exceed those previously published for diffusion-weighted imaging and approach the current gold standard-manual segmentation-sufficiently closely for fully-automated lesion-mapping studies to become a possibility. We apply the new method to 435 unselected images of patients with ischaemic stroke to derive a probabilistic map of the pattern of damage in lesions involving the occipital lobe, demonstrating the variation of anatomical resolvability of occipital areas so as to guide future lesion-function studies of the region. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Townsend, J.; Meyers, C.; Ortega, R.; Peck, J.; Rheinfurth, M.; Weinstock, B.
1993-01-01
Probabilistic structural analyses and design methods are steadily gaining acceptance within the aerospace industry. The safety factor approach to design has long been the industry standard, and it is believed by many to be overly conservative and thus, costly. A probabilistic approach to design may offer substantial cost savings. This report summarizes several probabilistic approaches: the probabilistic failure analysis (PFA) methodology developed by Jet Propulsion Laboratory, fast probability integration (FPI) methods, the NESSUS finite element code, and response surface methods. Example problems are provided to help identify the advantages and disadvantages of each method.
Workload Capacity: A Response Time-Based Measure of Automation Dependence.
Yamani, Yusuke; McCarley, Jason S
2016-05-01
An experiment used the workload capacity measure C(t) to quantify the processing efficiency of human-automation teams and identify operators' automation usage strategies in a speeded decision task. Although response accuracy rates and related measures are often used to measure the influence of an automated decision aid on human performance, aids can also influence response speed. Mean response times (RTs), however, conflate the influence of the human operator and the automated aid on team performance and may mask changes in the operator's performance strategy under aided conditions. The present study used a measure of parallel processing efficiency, or workload capacity, derived from empirical RT distributions as a novel gauge of human-automation performance and automation dependence in a speeded task. Participants performed a speeded probabilistic decision task with and without the assistance of an automated aid. RT distributions were used to calculate two variants of a workload capacity measure, COR(t) and CAND(t). Capacity measures gave evidence that a diagnosis from the automated aid speeded human participants' responses, and that participants did not moderate their own decision times in anticipation of diagnoses from the aid. Workload capacity provides a sensitive and informative measure of human-automation performance and operators' automation dependence in speeded tasks. © 2016, Human Factors and Ergonomics Society.
Galleske, I; Castellanos, J
2002-05-01
This article proposes a procedure for the automatic determination of the elements of the covariance matrix of the gaussian kernel function of probabilistic neural networks. Two matrices, a rotation matrix and a matrix of variances, can be calculated by analyzing the local environment of each training pattern. The combination of them will form the covariance matrix of each training pattern. This automation has two advantages: First, it will free the neural network designer from indicating the complete covariance matrix, and second, it will result in a network with better generalization ability than the original model. A variation of the famous two-spiral problem and real-world examples from the UCI Machine Learning Repository will show a classification rate not only better than the original probabilistic neural network but also that this model can outperform other well-known classification techniques.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components
NASA Technical Reports Server (NTRS)
1991-01-01
The fourth year of technical developments on the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) system for Probabilistic Structural Analysis Methods is summarized. The effort focused on the continued expansion of the Probabilistic Finite Element Method (PFEM) code, the implementation of the Probabilistic Boundary Element Method (PBEM), and the implementation of the Probabilistic Approximate Methods (PAppM) code. The principal focus for the PFEM code is the addition of a multilevel structural dynamics capability. The strategy includes probabilistic loads, treatment of material, geometry uncertainty, and full probabilistic variables. Enhancements are included for the Fast Probability Integration (FPI) algorithms and the addition of Monte Carlo simulation as an alternate. Work on the expert system and boundary element developments continues. The enhanced capability in the computer codes is validated by applications to a turbine blade and to an oxidizer duct.
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Casas, Rafael; Linguraru, Marius G.
2016-03-01
Pleural effusion is an abnormal collection of fluid within the pleural cavity. Excessive accumulation of pleural fluid is an important bio-marker for various illnesses, including congestive heart failure, pneumonia, metastatic cancer, and pulmonary embolism. Quantification of pleural effusion can be indicative of the progression of disease as well as the effectiveness of any treatment being administered. Quantification, however, is challenging due to unpredictable amounts and density of fluid, complex topology of the pleural cavity, and the similarity in texture and intensity of pleural fluid to the surrounding tissues in computed tomography (CT) scans. Herein, we present an automated method for the segmentation of pleural effusion in CT scans based on spatial context information. The method consists of two stages: first, a probabilistic pleural effusion map is created using multi-atlas segmentation. The probabilistic map assigns a priori probabilities to the presence of pleural uid at every location in the CT scan. Second, a statistical pattern classification approach is designed to annotate pleural regions using local descriptors based on a priori probabilities, geometrical, and spatial features. Thirty seven CT scans from a diverse patient population containing confirmed cases of minimal to severe amounts of pleural effusion were used to validate the proposed segmentation method. An average Dice coefficient of 0.82685 and Hausdorff distance of 16.2155 mm was obtained.
Acoustic emission based damage localization in composites structures using Bayesian identification
NASA Astrophysics Data System (ADS)
Kundu, A.; Eaton, M. J.; Al-Jumali, S.; Sikdar, S.; Pullin, R.
2017-05-01
Acoustic emission based damage detection in composite structures is based on detection of ultra high frequency packets of acoustic waves emitted from damage sources (such as fibre breakage, fatigue fracture, amongst others) with a network of distributed sensors. This non-destructive monitoring scheme requires solving an inverse problem where the measured signals are linked back to the location of the source. This in turn enables rapid deployment of mitigative measures. The presence of significant amount of uncertainty associated with the operating conditions and measurements makes the problem of damage identification quite challenging. The uncertainties stem from the fact that the measured signals are affected by the irregular geometries, manufacturing imprecision, imperfect boundary conditions, existing damages/structural degradation, amongst others. This work aims to tackle these uncertainties within a framework of automated probabilistic damage detection. The method trains a probabilistic model of the parametrized input and output model of the acoustic emission system with experimental data to give probabilistic descriptors of damage locations. A response surface modelling the acoustic emission as a function of parametrized damage signals collected from sensors would be calibrated with a training dataset using Bayesian inference. This is used to deduce damage locations in the online monitoring phase. During online monitoring, the spatially correlated time data is utilized in conjunction with the calibrated acoustic emissions model to infer the probabilistic description of the acoustic emission source within a hierarchical Bayesian inference framework. The methodology is tested on a composite structure consisting of carbon fibre panel with stiffeners and damage source behaviour has been experimentally simulated using standard H-N sources. The methodology presented in this study would be applicable in the current form to structural damage detection under varying operational loads and would be investigated in future studies.
A probabilistic model for detecting rigid domains in protein structures.
Nguyen, Thach; Habeck, Michael
2016-09-01
Large-scale conformational changes in proteins are implicated in many important biological functions. These structural transitions can often be rationalized in terms of relative movements of rigid domains. There is a need for objective and automated methods that identify rigid domains in sets of protein structures showing alternative conformational states. We present a probabilistic model for detecting rigid-body movements in protein structures. Our model aims to approximate alternative conformational states by a few structural parts that are rigidly transformed under the action of a rotation and a translation. By using Bayesian inference and Markov chain Monte Carlo sampling, we estimate all parameters of the model, including a segmentation of the protein into rigid domains, the structures of the domains themselves, and the rigid transformations that generate the observed structures. We find that our Gibbs sampling algorithm can also estimate the optimal number of rigid domains with high efficiency and accuracy. We assess the power of our method on several thousand entries of the DynDom database and discuss applications to various complex biomolecular systems. The Python source code for protein ensemble analysis is available at: https://github.com/thachnguyen/motion_detection : mhabeck@gwdg.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
An automated approach for annual layer counting in ice cores
NASA Astrophysics Data System (ADS)
Winstrup, M.; Svensson, A.; Rasmussen, S. O.; Winther, O.; Steig, E.; Axelrod, A.
2012-04-01
The temporal resolution of some ice cores is sufficient to preserve seasonal information in the ice core record. In such cases, annual layer counting represents one of the most accurate methods to produce a chronology for the core. Yet, manual layer counting is a tedious and sometimes ambiguous job. As reliable layer recognition becomes more difficult, a manual approach increasingly relies on human interpretation of the available data. Thus, much may be gained by an automated and therefore objective approach for annual layer identification in ice cores. We have developed a novel method for automated annual layer counting in ice cores, which relies on Bayesian statistics. It uses algorithms from the statistical framework of Hidden Markov Models (HMM), originally developed for use in machine speech recognition. The strength of this layer detection algorithm lies in the way it is able to imitate the manual procedures for annual layer counting, while being based on purely objective criteria for annual layer identification. With this methodology, it is possible to determine the most likely position of multiple layer boundaries in an entire section of ice core data at once. It provides a probabilistic uncertainty estimate of the resulting layer count, hence ensuring a proper treatment of ambiguous layer boundaries in the data. Furthermore multiple data series can be incorporated to be used at once, hence allowing for a full multi-parameter annual layer counting method similar to a manual approach. In this study, the automated layer counting algorithm has been applied to data from the NGRIP ice core, Greenland. The NGRIP ice core has very high temporal resolution with depth, and hence the potential to be dated by annual layer counting far back in time. In previous studies [Andersen et al., 2006; Svensson et al., 2008], manual layer counting has been carried out back to 60 kyr BP. A comparison between the counted annual layers based on the two approaches will be presented and their differences discussed. Within the estimated uncertainties, the two methodologies agree. This shows the potential for a fully automated annual layer counting method to be operational for data sections where the annual layering is unknown.
Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software.
Ebersberger, Ullrich; Marcus, Roy P; Schoepf, U Joseph; Lo, Gladys G; Wang, Yining; Blanke, Philipp; Geyer, Lucas L; Gray, J Cranston; McQuiston, Andrew D; Cho, Young Jun; Scheuering, Michael; Canstein, Christian; Nikolaou, Konstantin; Hoffmann, Ellen; Bamberg, Fabian
2014-01-01
To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. • Myocardial perfusion CT is attractive for comprehensive coronary heart disease assessment. • Traditional image analysis methods are cumbersome and time-consuming. • Automated 3D perfusion software shortens analysis times. • Automated 3D perfusion software increases standardisation of myocardial perfusion CT. • Automated, standardised analysis fosters myocardial perfusion CT integration into clinical practice.
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
2014-01-01
Background Health and Demographic Surveillance Systems (HDSS) have been instrumental in advancing population and health research in low- and middle- income countries where vital registration systems are often weak. However, the utility of HDSS would be enhanced if their databases could be linked with those of local health facilities. We assess the feasibility of record linkage in rural South Africa using data from the Agincourt HDSS and a local health facility. Methods Using a gold standard dataset of 623 record pairs matched by means of fingerprints, we evaluate twenty record linkage scenarios (involving different identifiers, string comparison techniques and with and without clerical review) based on the Fellegi-Sunter probabilistic record linkage model. Matching rates and quality are measured by their sensitivity and positive predictive value (PPV). Background characteristics of matched and unmatched cases are compared to assess systematic bias in the resulting record-linked dataset. Results A hybrid approach of deterministic followed by probabilistic record linkage, and scenarios that use an extended set of identifiers including another household member’s first name yield the best results. The best fully automated record linkage scenario has a sensitivity of 83.6% and PPV of 95.1%. The sensitivity and PPV increase to 84.3% and 96.9%, respectively, when clerical review is undertaken on 10% of the record pairs. The likelihood of being linked is significantly lower for females, non-South Africans and the elderly. Conclusion Using records matched by means of fingerprints as the gold standard, we have demonstrated the feasibility of fully automated probabilistic record linkage using identifiers that are routinely collected in health facilities in South Africa. Our study also shows that matching statistics can be improved if other identifiers (e.g., another household member’s first name) are added to the set of matching variables, and, to a lesser extent, with clerical review. Matching success is, however, correlated with background characteristics that are indicative of the instability of personal attributes over time (e.g., surname in the case of women) or with misreporting (e.g., age). PMID:24884457
NASA Astrophysics Data System (ADS)
Murray, S.; Guerra, J. A.
2017-12-01
One essential component of operational space weather forecasting is the prediction of solar flares. Early flare forecasting work focused on statistical methods based on historical flaring rates, but more complex machine learning methods have been developed in recent years. A multitude of flare forecasting methods are now available, however it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Current operational space weather centres cannot rely on automated methods, and generally use statistical forecasts with a little human intervention. Space weather researchers are increasingly looking towards methods used in terrestrial weather to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. It has proved useful in areas such as magnetospheric modelling and coronal mass ejection arrival analysis, however has not yet been implemented in operational flare forecasting. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASSA, ASAP, MAG4, MOSWOC, NOAA, and Solar Monitor). Forecasts from each method are weighted by a factor that accounts for the method's ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. The results provide space weather forecasters with a set of parameters (combination weights, thresholds) that allow them to select the most appropriate values for constructing the 'best' ensemble forecast probability value, according to the performance metric of their choice. In this way different forecasts can be made to fit different end-user needs.
Building Scalable Knowledge Graphs for Earth Science
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian
2017-01-01
Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.
How to combine probabilistic and fuzzy uncertainties in fuzzy control
NASA Technical Reports Server (NTRS)
Nguyen, Hung T.; Kreinovich, Vladik YA.; Lea, Robert
1991-01-01
Fuzzy control is a methodology that translates natural-language rules, formulated by expert controllers, into the actual control strategy that can be implemented in an automated controller. In many cases, in addition to the experts' rules, additional statistical information about the system is known. It is explained how to use this additional information in fuzzy control methodology.
NASA Technical Reports Server (NTRS)
Cruse, T. A.
1987-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.
1988-01-01
The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.
Probabilistic structural analysis methods for space propulsion system components
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linguraru, Marius George; Panjwani, Neil; Fletcher, Joel G.
2011-12-15
Purpose: To evaluate the performance of a computer-aided detection (CAD) system for detecting colonic polyps at noncathartic computed tomography colonography (CTC) in conjunction with an automated image-based colon cleansing algorithm. Methods: An automated colon cleansing algorithm was designed to detect and subtract tagged-stool, accounting for heterogeneity and poor tagging, to be used in conjunction with a colon CAD system. The method is locally adaptive and combines intensity, shape, and texture analysis with probabilistic optimization. CTC data from cathartic-free bowel preparation were acquired for testing and training the parameters. Patients underwent various colonic preparations with barium or Gastroview in divided dosesmore » over 48 h before scanning. No laxatives were administered and no dietary modifications were required. Cases were selected from a polyp-enriched cohort and included scans in which at least 90% of the solid stool was visually estimated to be tagged and each colonic segment was distended in either the prone or supine view. The CAD system was run comparatively with and without the stool subtraction algorithm. Results: The dataset comprised 38 CTC scans from prone and/or supine scans of 19 patients containing 44 polyps larger than 10 mm (22 unique polyps, if matched between prone and supine scans). The results are robust on fine details around folds, thin-stool linings on the colonic wall, near polyps and in large fluid/stool pools. The sensitivity of the CAD system is 70.5% per polyp at a rate of 5.75 false positives/scan without using the stool subtraction module. This detection improved significantly (p = 0.009) after automated colon cleansing on cathartic-free data to 86.4% true positive rate at 5.75 false positives/scan. Conclusions: An automated image-based colon cleansing algorithm designed to overcome the challenges of the noncathartic colon significantly improves the sensitivity of colon CAD by approximately 15%.« less
Hanning, Uta; Sporns, Peter Bernhard; Lebiedz, Pia; Niederstadt, Thomas; Zoubi, Tarek; Schmidt, Rene; Knecht, Stefan; Heindel, Walter; Kemmling, André
2016-07-01
Early prediction of potential neurological recovery in patients after cardiac arrest is challenging. Recent studies suggest that the densitrometic gray-white matter ratio (GWR) determined from cranial computed tomography (CT) scans may be a reliable predictor of poor outcome. We evaluated an automated, rater independent method to determine GWR in CT as an early objective imaging predictor of clinical outcome. We analyzed imaging data of 84 patients after cardiac arrest that underwent noncontrast CT within 24h after arrest. To determine GWR in CT we applied two methods using a recently published automated probabilistic gray-white matter segmentation algorithm (GWR_aut) and conventional manual measurements within gray-white regions of interest (GWR_man). Neurological outcome was graded by the cerebral performance category (CPC). As part of standard routine CPC was assessed by the treating physician in the intensive care unit at admission and at discharge to normal ward. The performance of GWR measures (automated and manual) to predict the binary clinical endpoints of poor (CPC3-5) and good outcome (CPC1-2) was assessed by ROC analysis with increasing discrimination thresholds. Results of GWR_aut were compared to GWR_man of two raters. Of 84 patients, 55 (65%) showed a poor outcome. ROC curve analysis revealed reliable outcome prediction of GWR_aut (AUC 0.860) and GWR_man (AUC 0.707 and 0.699, respectively). Predictive power of GWR_aut was higher than GWR_man by each rater (p=0.019 and p=0.021, respectively) at an optimal cut-off of 1.084 to predict poor outcome (optimal criterion with 92.7% sensitivity, 72.4% specificity). Interrater reliability of GWR_man by intra-class correlation coefficient (ICC) was moderate (0.551). Automated quantification of GWR in CT may be used as an objective observer-independent imaging marker for outcome in patients after cardiac arrest. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Quantitative Rapid Assessment of Leukoaraiosis in CT : Comparison to Gold Standard MRI.
Hanning, Uta; Sporns, Peter Bernhard; Schmidt, Rene; Niederstadt, Thomas; Minnerup, Jens; Bier, Georg; Knecht, Stefan; Kemmling, André
2017-10-20
The severity of white matter lesions (WML) is a risk factor of hemorrhage and predictor of clinical outcome after ischemic stroke; however, in contrast to magnetic resonance imaging (MRI) reliable quantification for this surrogate marker is limited for computed tomography (CT), the leading stroke imaging technique. We aimed to present and evaluate a CT-based automated rater-independent method for quantification of microangiopathic white matter changes. Patients with suspected minor stroke (National Institutes of Health Stroke scale, NIHSS < 4) were screened for the analysis of non-contrast computerized tomography (NCCT) at admission and compared to follow-up MRI. The MRI-based WML volume and visual Fazekas scores were assessed as the gold standard reference. We employed a recently published probabilistic brain segmentation algorithm for CT images to determine the tissue-specific density of WM space. All voxel-wise densities were quantified in WM space and weighted according to partial probabilistic WM content. The resulting mean weighted density of WM space in NCCT, the surrogate of WML, was correlated with reference to MRI-based WML parameters. The process of CT-based tissue-specific segmentation was reliable in 79 cases with varying severity of microangiopathy. Voxel-wise weighted density within WM spaces showed a noticeable correlation (r = -0.65) with MRI-based WML volume. Particularly in patients with moderate or severe lesion load according to the visual Fazekas score the algorithm provided reliable prediction of MRI-based WML volume. Automated observer-independent quantification of voxel-wise WM density in CT significantly correlates with microangiopathic WM disease in gold standard MRI. This rapid surrogate of white matter lesion load in CT may support objective WML assessment and therapeutic decision-making during acute stroke triage.
Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components
NASA Technical Reports Server (NTRS)
1999-01-01
Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.
Three validation metrics for automated probabilistic image segmentation of brain tumours
Zou, Kelly H.; Wells, William M.; Kikinis, Ron; Warfield, Simon K.
2005-01-01
SUMMARY The validity of brain tumour segmentation is an important issue in image processing because it has a direct impact on surgical planning. We examined the segmentation accuracy based on three two-sample validation metrics against the estimated composite latent gold standard, which was derived from several experts’ manual segmentations by an EM algorithm. The distribution functions of the tumour and control pixel data were parametrically assumed to be a mixture of two beta distributions with different shape parameters. We estimated the corresponding receiver operating characteristic curve, Dice similarity coefficient, and mutual information, over all possible decision thresholds. Based on each validation metric, an optimal threshold was then computed via maximization. We illustrated these methods on MR imaging data from nine brain tumour cases of three different tumour types, each consisting of a large number of pixels. The automated segmentation yielded satisfactory accuracy with varied optimal thresholds. The performances of these validation metrics were also investigated via Monte Carlo simulation. Extensions of incorporating spatial correlation structures using a Markov random field model were considered. PMID:15083482
Automated diagnosis of epilepsy using CWT, HOS and texture parameters.
Acharya, U Rajendra; Yanti, Ratna; Zheng, Jia Wei; Krishnan, M Muthu Rama; Tan, Jen Hong; Martis, Roshan Joy; Lim, Choo Min
2013-06-01
Epilepsy is a chronic brain disorder which manifests as recurrent seizures. Electroencephalogram (EEG) signals are generally analyzed to study the characteristics of epileptic seizures. In this work, we propose a method for the automated classification of EEG signals into normal, interictal and ictal classes using Continuous Wavelet Transform (CWT), Higher Order Spectra (HOS) and textures. First the CWT plot was obtained for the EEG signals and then the HOS and texture features were extracted from these plots. Then the statistically significant features were fed to four classifiers namely Decision Tree (DT), K-Nearest Neighbor (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to select the best classifier. We observed that the SVM classifier with Radial Basis Function (RBF) kernel function yielded the best results with an average accuracy of 96%, average sensitivity of 96.9% and average specificity of 97% for 23.6 s duration of EEG data. Our proposed technique can be used as an automatic seizure monitoring software. It can also assist the doctors to cross check the efficacy of their prescribed drugs.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures is a major activity at Lewis Research Center. Recent activities have focused on extending the methods to include the combined uncertainties in several factors on structural response. This paper briefly describes recent progress on composite load spectra models, probabilistic finite element structural analysis, and probabilistic strength degradation modeling. Progress is described in terms of fundamental concepts, computer code development, and representative numerical results.
Integrated Risk-Informed Decision-Making for an ALMR PRISM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlheim, Michael David; Belles, Randy; Denning, Richard S.
Decision-making is the process of identifying decision alternatives, assessing those alternatives based on predefined metrics, selecting an alternative (i.e., making a decision), and then implementing that alternative. The generation of decisions requires a structured, coherent process, or a decision-making process. The overall objective for this work is that the generalized framework is adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or no human intervention. The overriding goal of automation is to replace ormore » supplement human decision makers with reconfigurable decision-making modules that can perform a given set of tasks rationally, consistently, and reliably. Risk-informed decision-making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The probabilistic portion of the decision-making engine of the supervisory control system is based on the control actions associated with an ALMR PRISM. Newly incorporated into the probabilistic models are the prognostic/diagnostic models developed by Pacific Northwest National Laboratory. These allow decisions to incorporate the health of components into the decision–making process. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic portion of the decision-making engine uses thermal-hydraulic modeling and components for an advanced liquid-metal reactor Power Reactor Inherently Safe Module. The deterministic multi-attribute decision-making framework uses various sensor data (e.g., reactor outlet temperature, steam generator drum level) and calculates its position within the challenge state, its trajectory, and its margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. The metrics that are evaluated are based on reactor trip set points. The integration of the deterministic calculations using multi-physics analyses and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermalhydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies, and developing a user interface to mimic display panels at a modern nuclear power plant.« less
Automated Stitching of Microtubule Centerlines across Serial Electron Tomograms
Weber, Britta; Tranfield, Erin M.; Höög, Johanna L.; Baum, Daniel; Antony, Claude; Hyman, Tony; Verbavatz, Jean-Marc; Prohaska, Steffen
2014-01-01
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort. PMID:25438148
Automated stitching of microtubule centerlines across serial electron tomograms.
Weber, Britta; Tranfield, Erin M; Höög, Johanna L; Baum, Daniel; Antony, Claude; Hyman, Tony; Verbavatz, Jean-Marc; Prohaska, Steffen
2014-01-01
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.
Automated extraction and validation of children's gait parameters with the Kinect.
Motiian, Saeid; Pergami, Paola; Guffey, Keegan; Mancinelli, Corrie A; Doretto, Gianfranco
2015-12-02
Gait analysis for therapy regimen prescription and monitoring requires patients to physically access clinics with specialized equipment. The timely availability of such infrastructure at the right frequency is especially important for small children. Besides being very costly, this is a challenge for many children living in rural areas. This is why this work develops a low-cost, portable, and automated approach for in-home gait analysis, based on the Microsoft Kinect. A robust and efficient method for extracting gait parameters is introduced, which copes with the high variability of noisy Kinect skeleton tracking data experienced across the population of young children. This is achieved by temporally segmenting the data with an approach based on coupling a probabilistic matching of stride template models, learned offline, with the estimation of their global and local temporal scaling. A preliminary study conducted on healthy children between 2 and 4 years of age is performed to analyze the accuracy, precision, repeatability, and concurrent validity of the proposed method against the GAITRite when measuring several spatial and temporal children's gait parameters. The method has excellent accuracy and good precision, with segmenting temporal sequences of body joint locations into stride and step cycles. Also, the spatial and temporal gait parameters, estimated automatically, exhibit good concurrent validity with those provided by the GAITRite, as well as very good repeatability. In particular, on a range of nine gait parameters, the relative and absolute agreements were found to be good and excellent, and the overall agreements were found to be good and moderate. This work enables and validates the automated use of the Kinect for children's gait analysis in healthy subjects. In particular, the approach makes a step forward towards developing a low-cost, portable, parent-operated in-home tool for clinicians assisting young children.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL Division and Probabilistic Methods Committee meeting during October 6-8 at the Best Western Sterling Inn, Sterling Heights (Detroit), Michigan is co-sponsored by US Army Tank-automotive & Armaments Command (TACOM). The meeting will provide an industry/government/academia forum to review RMSL technology; reliability and probabilistic technology; reliability-based design methods; software reliability; and maintainability standards. With over 100 members including members with national/international standing, the mission of the G-11's Probabilistic Methods Committee is to "enable/facilitate rapid deployment of probabilistic technology to enhance the competitiveness of our industries by better, faster, greener, smarter, affordable and reliable product development."
Automated diagnosis of dry eye using infrared thermography images
NASA Astrophysics Data System (ADS)
Acharya, U. Rajendra; Tan, Jen Hong; Koh, Joel E. W.; Sudarshan, Vidya K.; Yeo, Sharon; Too, Cheah Loon; Chua, Chua Kuang; Ng, E. Y. K.; Tong, Louis
2015-07-01
Dry Eye (DE) is a condition of either decreased tear production or increased tear film evaporation. Prolonged DE damages the cornea causing the corneal scarring, thinning and perforation. There is no single uniform diagnosis test available to date; combinations of diagnostic tests are to be performed to diagnose DE. The current diagnostic methods available are subjective, uncomfortable and invasive. Hence in this paper, we have developed an efficient, fast and non-invasive technique for the automated identification of normal and DE classes using infrared thermography images. The features are extracted from nonlinear method called Higher Order Spectra (HOS). Features are ranked using t-test ranking strategy. These ranked features are fed to various classifiers namely, K-Nearest Neighbor (KNN), Nave Bayesian Classifier (NBC), Decision Tree (DT), Probabilistic Neural Network (PNN), and Support Vector Machine (SVM) to select the best classifier using minimum number of features. Our proposed system is able to identify the DE and normal classes automatically with classification accuracy of 99.8%, sensitivity of 99.8%, and specificity if 99.8% for left eye using PNN and KNN classifiers. And we have reported classification accuracy of 99.8%, sensitivity of 99.9%, and specificity if 99.4% for right eye using SVM classifier with polynomial order 2 kernel.
Kang, Dongwan D.; Froula, Jeff; Egan, Rob; ...
2015-01-01
Grouping large genomic fragments assembled from shotgun metagenomic sequences to deconvolute complex microbial communities, or metagenome binning, enables the study of individual organisms and their interactions. Because of the complex nature of these communities, existing metagenome binning methods often miss a large number of microbial species. In addition, most of the tools are not scalable to large datasets. Here we introduce automated software called MetaBAT that integrates empirical probabilistic distances of genome abundance and tetranucleotide frequency for accurate metagenome binning. MetaBAT outperforms alternative methods in accuracy and computational efficiency on both synthetic and real metagenome datasets. Lastly, it automatically formsmore » hundreds of high quality genome bins on a very large assembly consisting millions of contigs in a matter of hours on a single node. MetaBAT is open source software and available at https://bitbucket.org/berkeleylab/metabat.« less
Development of a First-of-a-Kind Deterministic Decision-Making Tool for Supervisory Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetiner, Sacit M; Kisner, Roger A; Muhlheim, Michael David
2015-07-01
Decision-making is the process of identifying and choosing alternatives where each alternative offers a different approach or path to move from a given state or condition to a desired state or condition. The generation of consistent decisions requires that a structured, coherent process be defined, immediately leading to a decision-making framework. The overall objective of the generalized framework is for it to be adopted into an autonomous decision-making framework and tailored to specific requirements for various applications. In this context, automation is the use of computing resources to make decisions and implement a structured decision-making process with limited or nomore » human intervention. The overriding goal of automation is to replace or supplement human decision makers with reconfigurable decision- making modules that can perform a given set of tasks reliably. Risk-informed decision making requires a probabilistic assessment of the likelihood of success given the status of the plant/systems and component health, and a deterministic assessment between plant operating parameters and reactor protection parameters to prevent unnecessary trips and challenges to plant safety systems. The implementation of the probabilistic portion of the decision-making engine of the proposed supervisory control system was detailed in previous milestone reports. Once the control options are identified and ranked based on the likelihood of success, the supervisory control system transmits the options to the deterministic portion of the platform. The deterministic multi-attribute decision-making framework uses variable sensor data (e.g., outlet temperature) and calculates where it is within the challenge state, its trajectory, and margin within the controllable domain using utility functions to evaluate current and projected plant state space for different control decisions. Metrics to be evaluated include stability, cost, time to complete (action), power level, etc. The integration of deterministic calculations using multi-physics analyses (i.e., neutronics, thermal, and thermal-hydraulics) and probabilistic safety calculations allows for the examination and quantification of margin recovery strategies. This also provides validation of the control options identified from the probabilistic assessment. Thus, the thermal-hydraulics analyses are used to validate the control options identified from the probabilistic assessment. Future work includes evaluating other possible metrics and computational efficiencies.« less
NASA Astrophysics Data System (ADS)
Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.
2017-05-01
We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fully- integrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control trafficking of illegal drugs, explosive detection, or in other law enforcement applications.
NASA Astrophysics Data System (ADS)
Ohba, Masamichi; Nohara, Daisuke; Kadokura, Shinji
2016-04-01
Severe storms or other extreme weather events can interrupt the spin of wind turbines in large scale that cause unexpected "wind ramp events". In this study, we present an application of self-organizing maps (SOMs) for climatological attribution of the wind ramp events and their probabilistic prediction. The SOM is an automatic data-mining clustering technique, which allows us to summarize a high-dimensional data space in terms of a set of reference vectors. The SOM is applied to analyze and connect the relationship between atmospheric patterns over Japan and wind power generation. SOM is employed on sea level pressure derived from the JRA55 reanalysis over the target area (Tohoku region in Japan), whereby a two-dimensional lattice of weather patterns (WPs) classified during the 1977-2013 period is obtained. To compare with the atmospheric data, the long-term wind power generation is reconstructed by using a high-resolution surface observation network AMeDAS (Automated Meteorological Data Acquisition System) in Japan. Our analysis extracts seven typical WPs, which are linked to frequent occurrences of wind ramp events. Probabilistic forecasts to wind power generation and ramps are conducted by using the obtained SOM. The probability are derived from the multiple SOM lattices based on the matching of output from TIGGE multi-model global forecast to the WPs on the lattices. Since this method effectively takes care of the empirical uncertainties from the historical data, wind power generation and ramp is probabilistically forecasted from the forecasts of global models. The predictability skill of the forecasts for the wind power generation and ramp events show the relatively good skill score under the downscaling technique. It is expected that the results of this study provides better guidance to the user community and contribute to future development of system operation model for the transmission grid operator.
Robust identification of polyethylene terephthalate (PET) plastics through Bayesian decision.
Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah
2014-01-01
Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed.
Robust Identification of Polyethylene Terephthalate (PET) Plastics through Bayesian Decision
Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah
2014-01-01
Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed. PMID:25485630
Probabilistic finite elements for fracture mechanics
NASA Technical Reports Server (NTRS)
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Probabilistic Structural Analysis Methods (PSAM) for select space propulsion systems components
NASA Technical Reports Server (NTRS)
1991-01-01
Summarized here is the technical effort and computer code developed during the five year duration of the program for probabilistic structural analysis methods. The summary includes a brief description of the computer code manuals and a detailed description of code validation demonstration cases for random vibrations of a discharge duct, probabilistic material nonlinearities of a liquid oxygen post, and probabilistic buckling of a transfer tube liner.
Discriminative dictionary learning for abdominal multi-organ segmentation.
Tong, Tong; Wolz, Robin; Wang, Zehan; Gao, Qinquan; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku; Hajnal, Joseph V; Rueckert, Daniel
2015-07-01
An automated segmentation method is presented for multi-organ segmentation in abdominal CT images. Dictionary learning and sparse coding techniques are used in the proposed method to generate target specific priors for segmentation. The method simultaneously learns dictionaries which have reconstructive power and classifiers which have discriminative ability from a set of selected atlases. Based on the learnt dictionaries and classifiers, probabilistic atlases are then generated to provide priors for the segmentation of unseen target images. The final segmentation is obtained by applying a post-processing step based on a graph-cuts method. In addition, this paper proposes a voxel-wise local atlas selection strategy to deal with high inter-subject variation in abdominal CT images. The segmentation performance of the proposed method with different atlas selection strategies are also compared. Our proposed method has been evaluated on a database of 150 abdominal CT images and achieves a promising segmentation performance with Dice overlap values of 94.9%, 93.6%, 71.1%, and 92.5% for liver, kidneys, pancreas, and spleen, respectively. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fei, Cheng-Wei; Bai, Guang-Chen
2014-12-01
To improve the computational precision and efficiency of probabilistic design for mechanical dynamic assembly like the blade-tip radial running clearance (BTRRC) of gas turbine, a distribution collaborative probabilistic design method-based support vector machine of regression (SR)(called as DCSRM) is proposed by integrating distribution collaborative response surface method and support vector machine regression model. The mathematical model of DCSRM is established and the probabilistic design idea of DCSRM is introduced. The dynamic assembly probabilistic design of aeroengine high-pressure turbine (HPT) BTRRC is accomplished to verify the proposed DCSRM. The analysis results reveal that the optimal static blade-tip clearance of HPT is gained for designing BTRRC, and improving the performance and reliability of aeroengine. The comparison of methods shows that the DCSRM has high computational accuracy and high computational efficiency in BTRRC probabilistic analysis. The present research offers an effective way for the reliability design of mechanical dynamic assembly and enriches mechanical reliability theory and method.
English, Sangeeta B.; Shih, Shou-Ching; Ramoni, Marco F.; Smith, Lois E.; Butte, Atul J.
2014-01-01
Though genome-wide technologies, such as microarrays, are widely used, data from these methods are considered noisy; there is still varied success in downstream biological validation. We report a method that increases the likelihood of successfully validating microarray findings using real time RT-PCR, including genes at low expression levels and with small differences. We use a Bayesian network to identify the most relevant sources of noise based on the successes and failures in validation for an initial set of selected genes, and then improve our subsequent selection of genes for validation based on eliminating these sources of noise. The network displays the significant sources of noise in an experiment, and scores the likelihood of validation for every gene. We show how the method can significantly increase validation success rates. In conclusion, in this study, we have successfully added a new automated step to determine the contributory sources of noise that determine successful or unsuccessful downstream biological validation. PMID:18790084
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
NASA Technical Reports Server (NTRS)
Thacker, B. H.; Mcclung, R. C.; Millwater, H. R.
1990-01-01
An eigenvalue analysis of a typical space propulsion system turbopump blade is presented using an approximate probabilistic analysis methodology. The methodology was developed originally to investigate the feasibility of computing probabilistic structural response using closed-form approximate models. This paper extends the methodology to structures for which simple closed-form solutions do not exist. The finite element method will be used for this demonstration, but the concepts apply to any numerical method. The results agree with detailed analysis results and indicate the usefulness of using a probabilistic approximate analysis in determining efficient solution strategies.
Probabilistic classifiers with high-dimensional data
Kim, Kyung In; Simon, Richard
2011-01-01
For medical classification problems, it is often desirable to have a probability associated with each class. Probabilistic classifiers have received relatively little attention for small n large p classification problems despite of their importance in medical decision making. In this paper, we introduce 2 criteria for assessment of probabilistic classifiers: well-calibratedness and refinement and develop corresponding evaluation measures. We evaluated several published high-dimensional probabilistic classifiers and developed 2 extensions of the Bayesian compound covariate classifier. Based on simulation studies and analysis of gene expression microarray data, we found that proper probabilistic classification is more difficult than deterministic classification. It is important to ensure that a probabilistic classifier is well calibrated or at least not “anticonservative” using the methods developed here. We provide this evaluation for several probabilistic classifiers and also evaluate their refinement as a function of sample size under weak and strong signal conditions. We also present a cross-validation method for evaluating the calibration and refinement of any probabilistic classifier on any data set. PMID:21087946
Failed rib region prediction in a human body model during crash events with precrash braking.
Guleyupoglu, B; Koya, B; Barnard, R; Gayzik, F S
2018-02-28
The objective of this study is 2-fold. We used a validated human body finite element model to study the predicted chest injury (focusing on rib fracture as a function of element strain) based on varying levels of simulated precrash braking. Furthermore, we compare deterministic and probabilistic methods of rib injury prediction in the computational model. The Global Human Body Models Consortium (GHBMC) M50-O model was gravity settled in the driver position of a generic interior equipped with an advanced 3-point belt and airbag. Twelve cases were investigated with permutations for failure, precrash braking system, and crash severity. The severities used were median (17 kph), severe (34 kph), and New Car Assessment Program (NCAP; 56.4 kph). Cases with failure enabled removed rib cortical bone elements once 1.8% effective plastic strain was exceeded. Alternatively, a probabilistic framework found in the literature was used to predict rib failure. Both the probabilistic and deterministic methods take into consideration location (anterior, lateral, and posterior). The deterministic method is based on a rubric that defines failed rib regions dependent on a threshold for contiguous failed elements. The probabilistic method depends on age-based strain and failure functions. Kinematics between both methods were similar (peak max deviation: ΔX head = 17 mm; ΔZ head = 4 mm; ΔX thorax = 5 mm; ΔZ thorax = 1 mm). Seat belt forces at the time of probabilistic failed region initiation were lower than those at deterministic failed region initiation. The probabilistic method for rib fracture predicted more failed regions in the rib (an analog for fracture) than the deterministic method in all but 1 case where they were equal. The failed region patterns between models are similar; however, there are differences that arise due to stress reduced from element elimination that cause probabilistic failed regions to continue to rise after no deterministic failed region would be predicted. Both the probabilistic and deterministic methods indicate similar trends with regards to the effect of precrash braking; however, there are tradeoffs. The deterministic failed region method is more spatially sensitive to failure and is more sensitive to belt loads. The probabilistic failed region method allows for increased capability in postprocessing with respect to age. The probabilistic failed region method predicted more failed regions than the deterministic failed region method due to force distribution differences.
Dominating Scale-Free Networks Using Generalized Probabilistic Methods
Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.
2014-01-01
We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937
Is probabilistic bias analysis approximately Bayesian?
MacLehose, Richard F.; Gustafson, Paul
2011-01-01
Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias analysis bears a distinct resemblance to a Bayesian adjustment; however, it is not identical. Furthermore, without a formal theoretical framework (Bayesian or frequentist), the results of a probabilistic bias analysis remain somewhat difficult to interpret. We describe, both theoretically and empirically, the extent to which probabilistic bias analysis can be viewed as approximately Bayesian. While the differences between probabilistic bias analysis and Bayesian approaches to misclassification can be substantial, these situations often involve unrealistic prior specifications and are relatively easy to detect. Outside of these special cases, probabilistic bias analysis and Bayesian approaches to exposure misclassification in case-control studies appear to perform equally well. PMID:22157311
Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.
Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang
2016-01-15
Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis. Copyright © 2015 Elsevier Inc. All rights reserved.
Global/local methods for probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Wu, Y.-T.
1993-01-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Global/local methods for probabilistic structural analysis
NASA Astrophysics Data System (ADS)
Millwater, H. R.; Wu, Y.-T.
1993-04-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Probabilistic drug connectivity mapping
2014-01-01
Background The aim of connectivity mapping is to match drugs using drug-treatment gene expression profiles from multiple cell lines. This can be viewed as an information retrieval task, with the goal of finding the most relevant profiles for a given query drug. We infer the relevance for retrieval by data-driven probabilistic modeling of the drug responses, resulting in probabilistic connectivity mapping, and further consider the available cell lines as different data sources. We use a special type of probabilistic model to separate what is shared and specific between the sources, in contrast to earlier connectivity mapping methods that have intentionally aggregated all available data, neglecting information about the differences between the cell lines. Results We show that the probabilistic multi-source connectivity mapping method is superior to alternatives in finding functionally and chemically similar drugs from the Connectivity Map data set. We also demonstrate that an extension of the method is capable of retrieving combinations of drugs that match different relevant parts of the query drug response profile. Conclusions The probabilistic modeling-based connectivity mapping method provides a promising alternative to earlier methods. Principled integration of data from different cell lines helps to identify relevant responses for specific drug repositioning applications. PMID:24742351
Robson, Barry
2016-12-01
The Q-UEL language of XML-like tags and the associated software applications are providing a valuable toolkit for Evidence Based Medicine (EBM). In this paper the already existing applications, data bases, and tags are brought together with new ones. The particular Q-UEL embodiment used here is the BioIngine. The main challenge is one of bringing together the methods of symbolic reasoning and calculative probabilistic inference that underlie EBM and medical decision making. Some space is taken to review this background. The unification is greatly facilitated by Q-UEL's roots in the notation and algebra of Dirac, and by extending Q-UEL into the Wolfram programming environment. Further, the overall problem of integration is also a relatively simple one because of the nature of Q-UEL as a language for interoperability in healthcare and biomedicine, while the notion of workflow is facilitated because of the EBM best practice known as PICO. What remains difficult is achieving a high degree of overall automation because of a well-known difficulty in capturing human expertise in computers: the Feigenbaum bottleneck. Copyright © 2016 Elsevier Ltd. All rights reserved.
A framework for the probabilistic analysis of meteotsunamis
Geist, Eric L.; ten Brink, Uri S.; Gove, Matthew D.
2014-01-01
A probabilistic technique is developed to assess the hazard from meteotsunamis. Meteotsunamis are unusual sea-level events, generated when the speed of an atmospheric pressure or wind disturbance is comparable to the phase speed of long waves in the ocean. A general aggregation equation is proposed for the probabilistic analysis, based on previous frameworks established for both tsunamis and storm surges, incorporating different sources and source parameters of meteotsunamis. Parameterization of atmospheric disturbances and numerical modeling is performed for the computation of maximum meteotsunami wave amplitudes near the coast. A historical record of pressure disturbances is used to establish a continuous analytic distribution of each parameter as well as the overall Poisson rate of occurrence. A demonstration study is presented for the northeast U.S. in which only isolated atmospheric pressure disturbances from squall lines and derechos are considered. For this study, Automated Surface Observing System stations are used to determine the historical parameters of squall lines from 2000 to 2013. The probabilistic equations are implemented using a Monte Carlo scheme, where a synthetic catalog of squall lines is compiled by sampling the parameter distributions. For each entry in the catalog, ocean wave amplitudes are computed using a numerical hydrodynamic model. Aggregation of the results from the Monte Carlo scheme results in a meteotsunami hazard curve that plots the annualized rate of exceedance with respect to maximum event amplitude for a particular location along the coast. Results from using multiple synthetic catalogs, resampled from the parent parameter distributions, yield mean and quantile hazard curves. Further refinements and improvements for probabilistic analysis of meteotsunamis are discussed.
Probabilistic Learning in Junior High School: Investigation of Student Probabilistic Thinking Levels
NASA Astrophysics Data System (ADS)
Kurniasih, R.; Sujadi, I.
2017-09-01
This paper was to investigate level on students’ probabilistic thinking. Probabilistic thinking level is level of probabilistic thinking. Probabilistic thinking is thinking about probabilistic or uncertainty matter in probability material. The research’s subject was students in grade 8th Junior High School students. The main instrument is a researcher and a supporting instrument is probabilistic thinking skills test and interview guidelines. Data was analyzed using triangulation method. The results showed that the level of students probabilistic thinking before obtaining a teaching opportunity at the level of subjective and transitional. After the students’ learning level probabilistic thinking is changing. Based on the results of research there are some students who have in 8th grade level probabilistic thinking numerically highest of levels. Level of students’ probabilistic thinking can be used as a reference to make a learning material and strategy.
Wels, Michael; Carneiro, Gustavo; Aplas, Alexander; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin
2008-01-01
In this paper we present a fully automated approach to the segmentation of pediatric brain tumors in multi-spectral 3-D magnetic resonance images. It is a top-down segmentation approach based on a Markov random field (MRF) model that combines probabilistic boosting trees (PBT) and lower-level segmentation via graph cuts. The PBT algorithm provides a strong discriminative observation model that classifies tumor appearance while a spatial prior takes into account the pair-wise homogeneity in terms of classification labels and multi-spectral voxel intensities. The discriminative model relies not only on observed local intensities but also on surrounding context for detecting candidate regions for pathology. A mathematically sound formulation for integrating the two approaches into a unified statistical framework is given. The proposed method is applied to the challenging task of detection and delineation of pediatric brain tumors. This segmentation task is characterized by a high non-uniformity of both the pathology and the surrounding non-pathologic brain tissue. A quantitative evaluation illustrates the robustness of the proposed method. Despite dealing with more complicated cases of pediatric brain tumors the results obtained are mostly better than those reported for current state-of-the-art approaches to 3-D MR brain tumor segmentation in adult patients. The entire processing of one multi-spectral data set does not require any user interaction, and takes less time than previously proposed methods.
Griffis, Joseph C; Allendorfer, Jane B; Szaflarski, Jerzy P
2016-01-15
Manual lesion delineation by an expert is the standard for lesion identification in MRI scans, but it is time-consuming and can introduce subjective bias. Alternative methods often require multi-modal MRI data, user interaction, scans from a control population, and/or arbitrary statistical thresholding. We present an approach for automatically identifying stroke lesions in individual T1-weighted MRI scans using naïve Bayes classification. Probabilistic tissue segmentation and image algebra were used to create feature maps encoding information about missing and abnormal tissue. Leave-one-case-out training and cross-validation was used to obtain out-of-sample predictions for each of 30 cases with left hemisphere stroke lesions. Our method correctly predicted lesion locations for 30/30 un-trained cases. Post-processing with smoothing (8mm FWHM) and cluster-extent thresholding (100 voxels) was found to improve performance. Quantitative evaluations of post-processed out-of-sample predictions on 30 cases revealed high spatial overlap (mean Dice similarity coefficient=0.66) and volume agreement (mean percent volume difference=28.91; Pearson's r=0.97) with manual lesion delineations. Our automated approach agrees with manual tracing. It provides an alternative to automated methods that require multi-modal MRI data, additional control scans, or user interaction to achieve optimal performance. Our fully trained classifier has applications in neuroimaging and clinical contexts. Copyright © 2015 Elsevier B.V. All rights reserved.
Encoding probabilistic brain atlases using Bayesian inference.
Van Leemput, Koen
2009-06-01
This paper addresses the problem of creating probabilistic brain atlases from manually labeled training data. Probabilistic atlases are typically constructed by counting the relative frequency of occurrence of labels in corresponding locations across the training images. However, such an "averaging" approach generalizes poorly to unseen cases when the number of training images is limited, and provides no principled way of aligning the training datasets using deformable registration. In this paper, we generalize the generative image model implicitly underlying standard "average" atlases, using mesh-based representations endowed with an explicit deformation model. Bayesian inference is used to infer the optimal model parameters from the training data, leading to a simultaneous group-wise registration and atlas estimation scheme that encompasses standard averaging as a special case. We also use Bayesian inference to compare alternative atlas models in light of the training data, and show how this leads to a data compression problem that is intuitive to interpret and computationally feasible. Using this technique, we automatically determine the optimal amount of spatial blurring, the best deformation field flexibility, and the most compact mesh representation. We demonstrate, using 2-D training datasets, that the resulting models are better at capturing the structure in the training data than conventional probabilistic atlases. We also present experiments of the proposed atlas construction technique in 3-D, and show the resulting atlases' potential in fully-automated, pulse sequence-adaptive segmentation of 36 neuroanatomical structures in brain MRI scans.
Comparison of probabilistic and deterministic fiber tracking of cranial nerves.
Zolal, Amir; Sobottka, Stephan B; Podlesek, Dino; Linn, Jennifer; Rieger, Bernhard; Juratli, Tareq A; Schackert, Gabriele; Kitzler, Hagen H
2017-09-01
OBJECTIVE The depiction of cranial nerves (CNs) using diffusion tensor imaging (DTI) is of great interest in skull base tumor surgery and DTI used with deterministic tracking methods has been reported previously. However, there are still no good methods usable for the elimination of noise from the resulting depictions. The authors have hypothesized that probabilistic tracking could lead to more accurate results, because it more efficiently extracts information from the underlying data. Moreover, the authors have adapted a previously described technique for noise elimination using gradual threshold increases to probabilistic tracking. To evaluate the utility of this new approach, a comparison is provided with this work between the gradual threshold increase method in probabilistic and deterministic tracking of CNs. METHODS Both tracking methods were used to depict CNs II, III, V, and the VII+VIII bundle. Depiction of 240 CNs was attempted with each of the above methods in 30 healthy subjects, which were obtained from 2 public databases: the Kirby repository (KR) and Human Connectome Project (HCP). Elimination of erroneous fibers was attempted by gradually increasing the respective thresholds (fractional anisotropy [FA] and probabilistic index of connectivity [PICo]). The results were compared with predefined ground truth images based on corresponding anatomical scans. Two label overlap measures (false-positive error and Dice similarity coefficient) were used to evaluate the success of both methods in depicting the CN. Moreover, the differences between these parameters obtained from the KR and HCP (with higher angular resolution) databases were evaluated. Additionally, visualization of 10 CNs in 5 clinical cases was attempted with both methods and evaluated by comparing the depictions with intraoperative findings. RESULTS Maximum Dice similarity coefficients were significantly higher with probabilistic tracking (p < 0.001; Wilcoxon signed-rank test). The false-positive error of the last obtained depiction was also significantly lower in probabilistic than in deterministic tracking (p < 0.001). The HCP data yielded significantly better results in terms of the Dice coefficient in probabilistic tracking (p < 0.001, Mann-Whitney U-test) and in deterministic tracking (p = 0.02). The false-positive errors were smaller in HCP data in deterministic tracking (p < 0.001) and showed a strong trend toward significance in probabilistic tracking (p = 0.06). In the clinical cases, the probabilistic method visualized 7 of 10 attempted CNs accurately, compared with 3 correct depictions with deterministic tracking. CONCLUSIONS High angular resolution DTI scans are preferable for the DTI-based depiction of the cranial nerves. Probabilistic tracking with a gradual PICo threshold increase is more effective for this task than the previously described deterministic tracking with a gradual FA threshold increase and might represent a method that is useful for depicting cranial nerves with DTI since it eliminates the erroneous fibers without manual intervention.
Probabilistic Geoacoustic Inversion in Complex Environments
2015-09-30
Probabilistic Geoacoustic Inversion in Complex Environments Jan Dettmer School of Earth and Ocean Sciences, University of Victoria, Victoria BC...long-range inversion methods can fail to provide sufficient resolution. For proper quantitative examination of variability, parameter uncertainty must...project aims to advance probabilistic geoacoustic inversion methods for complex ocean environments for a range of geoacoustic data types. The work is
Augmenting Latent Dirichlet Allocation and Rank Threshold Detection with Ontologies
2010-03-01
Probabilistic Latent Semantic Indexing (PLSI) is an automated indexing information retrieval model [20]. It is based on a statistical latent class model which is...uses a statistical foundation that is more accurate in finding hidden semantic relationships [20]. The model uses factor analysis of count data, number...principle of statistical infer- ence which asserts that all of the information in a sample is contained in the likelihood function [20]. The statistical
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, Jeff; Ayala, Samuel
2000-01-01
NASA has funded several major programs (the Probabilistic Structural Analysis Methods Project is an example) to develop probabilistic structural analysis methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element software code, known as Numerical Evaluation of Stochastic Structures Under Stress, is used to determine the reliability of a critical weld of the Space Shuttle solid rocket booster aft skirt. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process. Also, analysis findings are compared with measured Space Shuttle flight data.
Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1998-01-01
The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.
Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign
2007-01-01
Background Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. Results The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. Conclusion Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download. PMID:17445273
Use of adjoint methods in the probabilistic finite element approach to fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted
1988-01-01
The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.
Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; ...
2015-10-01
Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phasesmore » are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.« less
A probabilistic Hu-Washizu variational principle
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Besterfield, G. H.
1987-01-01
A Probabilistic Hu-Washizu Variational Principle (PHWVP) for the Probabilistic Finite Element Method (PFEM) is presented. This formulation is developed for both linear and nonlinear elasticity. The PHWVP allows incorporation of the probabilistic distributions for the constitutive law, compatibility condition, equilibrium, domain and boundary conditions into the PFEM. Thus, a complete probabilistic analysis can be performed where all aspects of the problem are treated as random variables and/or fields. The Hu-Washizu variational formulation is available in many conventional finite element codes thereby enabling the straightforward inclusion of the probabilistic features into present codes.
Dynamic Probabilistic Instability of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2009-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.
Probabilistic boundary element method
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Raveendra, S. T.
1989-01-01
The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.
NASA Technical Reports Server (NTRS)
Price J. M.; Ortega, R.
1998-01-01
Probabilistic method is not a universally accepted approach for the design and analysis of aerospace structures. The validity of this approach must be demonstrated to encourage its acceptance as it viable design and analysis tool to estimate structural reliability. The objective of this Study is to develop a well characterized finite population of similar aerospace structures that can be used to (1) validate probabilistic codes, (2) demonstrate the basic principles behind probabilistic methods, (3) formulate general guidelines for characterization of material drivers (such as elastic modulus) when limited data is available, and (4) investigate how the drivers affect the results of sensitivity analysis at the component/failure mode level.
PROTAX-Sound: A probabilistic framework for automated animal sound identification
Somervuo, Panu; Ovaskainen, Otso
2017-01-01
Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities. PMID:28863178
PROTAX-Sound: A probabilistic framework for automated animal sound identification.
de Camargo, Ulisses Moliterno; Somervuo, Panu; Ovaskainen, Otso
2017-01-01
Autonomous audio recording is stimulating new field in bioacoustics, with a great promise for conducting cost-effective species surveys. One major current challenge is the lack of reliable classifiers capable of multi-species identification. We present PROTAX-Sound, a statistical framework to perform probabilistic classification of animal sounds. PROTAX-Sound is based on a multinomial regression model, and it can utilize as predictors any kind of sound features or classifications produced by other existing algorithms. PROTAX-Sound combines audio and image processing techniques to scan environmental audio files. It identifies regions of interest (a segment of the audio file that contains a vocalization to be classified), extracts acoustic features from them and compares with samples in a reference database. The output of PROTAX-Sound is the probabilistic classification of each vocalization, including the possibility that it represents species not present in the reference database. We demonstrate the performance of PROTAX-Sound by classifying audio from a species-rich case study of tropical birds. The best performing classifier achieved 68% classification accuracy for 200 bird species. PROTAX-Sound improves the classification power of current techniques by combining information from multiple classifiers in a manner that yields calibrated classification probabilities.
Transient-Free Operations With Physics-Based Real-time Analysis and Control
NASA Astrophysics Data System (ADS)
Kolemen, Egemen; Burrell, Keith; Eggert, William; Eldon, David; Ferron, John; Glasser, Alex; Humphreys, David
2016-10-01
In order to understand and predict disruptions, the two most common methods currently employed in tokamak analysis are the time-consuming ``kinetic EFITs,'' which are done offline with significant human involvement, and the search for correlations with global precursors using various parameterization techniques. We are developing automated ``kinetic EFITs'' at DIII-D to enable calculation of the stability as the plasma evolves close to the disruption. This allows us to quantify the probabilistic nature of the stability calculations and provides a stability metric for all possible linear perturbations to the plasma. This study also provides insight into how the control system can avoid the unstable operating space, which is critical for high-performance operations close to stability thresholds at ITER. A novel, efficient ideal stability calculation method and new real-time CER acquisition system are being developed, and a new 77-core server has been installed on the DIII-D PCS to enable experimental use. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
NASA Technical Reports Server (NTRS)
Ryan, Robert S.; Townsend, John S.
1993-01-01
The prospective improvement of probabilistic methods for space program analysis/design entails the further development of theories, codes, and tools which match specific areas of application, the drawing of lessons from previous uses of probability and statistics data bases, the enlargement of data bases (especially in the field of structural failures), and the education of engineers and managers on the advantages of these methods. An evaluation is presently made of the current limitations of probabilistic engineering methods. Recommendations are made for specific applications.
Sayers, Adrian; Ben-Shlomo, Yoav; Blom, Ashley W; Steele, Fiona
2016-01-01
Abstract Studies involving the use of probabilistic record linkage are becoming increasingly common. However, the methods underpinning probabilistic record linkage are not widely taught or understood, and therefore these studies can appear to be a ‘black box’ research tool. In this article, we aim to describe the process of probabilistic record linkage through a simple exemplar. We first introduce the concept of deterministic linkage and contrast this with probabilistic linkage. We illustrate each step of the process using a simple exemplar and describe the data structure required to perform a probabilistic linkage. We describe the process of calculating and interpreting matched weights and how to convert matched weights into posterior probabilities of a match using Bayes theorem. We conclude this article with a brief discussion of some of the computational demands of record linkage, how you might assess the quality of your linkage algorithm, and how epidemiologists can maximize the value of their record-linked research using robust record linkage methods. PMID:26686842
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
A probabilistic and continuous model of protein conformational space for template-free modeling.
Zhao, Feng; Peng, Jian; Debartolo, Joe; Freed, Karl F; Sosnick, Tobin R; Xu, Jinbo
2010-06-01
One of the major challenges with protein template-free modeling is an efficient sampling algorithm that can explore a huge conformation space quickly. The popular fragment assembly method constructs a conformation by stringing together short fragments extracted from the Protein Data Base (PDB). The discrete nature of this method may limit generated conformations to a subspace in which the native fold does not belong. Another worry is that a protein with really new fold may contain some fragments not in the PDB. This article presents a probabilistic model of protein conformational space to overcome the above two limitations. This probabilistic model employs directional statistics to model the distribution of backbone angles and 2(nd)-order Conditional Random Fields (CRFs) to describe sequence-angle relationship. Using this probabilistic model, we can sample protein conformations in a continuous space, as opposed to the widely used fragment assembly and lattice model methods that work in a discrete space. We show that when coupled with a simple energy function, this probabilistic method compares favorably with the fragment assembly method in the blind CASP8 evaluation, especially on alpha or small beta proteins. To our knowledge, this is the first probabilistic method that can search conformations in a continuous space and achieves favorable performance. Our method also generated three-dimensional (3D) models better than template-based methods for a couple of CASP8 hard targets. The method described in this article can also be applied to protein loop modeling, model refinement, and even RNA tertiary structure prediction.
Neural network approaches to capture temporal information
NASA Astrophysics Data System (ADS)
van Veelen, Martijn; Nijhuis, Jos; Spaanenburg, Ben
2000-05-01
The automated design and construction of neural networks receives growing attention of the neural networks community. Both the growing availability of computing power and development of mathematical and probabilistic theory have had severe impact on the design and modelling approaches of neural networks. This impact is most apparent in the use of neural networks to time series prediction. In this paper, we give our views on past, contemporary and future design and modelling approaches to neural forecasting.
Chen, Jonathan H; Goldstein, Mary K; Asch, Steven M; Mackey, Lester; Altman, Russ B
2017-05-01
Build probabilistic topic model representations of hospital admissions processes and compare the ability of such models to predict clinical order patterns as compared to preconstructed order sets. The authors evaluated the first 24 hours of structured electronic health record data for > 10 K inpatients. Drawing an analogy between structured items (e.g., clinical orders) to words in a text document, the authors performed latent Dirichlet allocation probabilistic topic modeling. These topic models use initial clinical information to predict clinical orders for a separate validation set of > 4 K patients. The authors evaluated these topic model-based predictions vs existing human-authored order sets by area under the receiver operating characteristic curve, precision, and recall for subsequent clinical orders. Existing order sets predict clinical orders used within 24 hours with area under the receiver operating characteristic curve 0.81, precision 16%, and recall 35%. This can be improved to 0.90, 24%, and 47% ( P < 10 -20 ) by using probabilistic topic models to summarize clinical data into up to 32 topics. Many of these latent topics yield natural clinical interpretations (e.g., "critical care," "pneumonia," "neurologic evaluation"). Existing order sets tend to provide nonspecific, process-oriented aid, with usability limitations impairing more precise, patient-focused support. Algorithmic summarization has the potential to breach this usability barrier by automatically inferring patient context, but with potential tradeoffs in interpretability. Probabilistic topic modeling provides an automated approach to detect thematic trends in patient care and generate decision support content. A potential use case finds related clinical orders for decision support. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Automation on the generation of genome-scale metabolic models.
Reyes, R; Gamermann, D; Montagud, A; Fuente, D; Triana, J; Urchueguía, J F; de Córdoba, P Fernández
2012-12-01
Nowadays, the reconstruction of genome-scale metabolic models is a nonautomatized and interactive process based on decision making. This lengthy process usually requires a full year of one person's work in order to satisfactory collect, analyze, and validate the list of all metabolic reactions present in a specific organism. In order to write this list, one manually has to go through a huge amount of genomic, metabolomic, and physiological information. Currently, there is no optimal algorithm that allows one to automatically go through all this information and generate the models taking into account probabilistic criteria of unicity and completeness that a biologist would consider. This work presents the automation of a methodology for the reconstruction of genome-scale metabolic models for any organism. The methodology that follows is the automatized version of the steps implemented manually for the reconstruction of the genome-scale metabolic model of a photosynthetic organism, Synechocystis sp. PCC6803. The steps for the reconstruction are implemented in a computational platform (COPABI) that generates the models from the probabilistic algorithms that have been developed. For validation of the developed algorithm robustness, the metabolic models of several organisms generated by the platform have been studied together with published models that have been manually curated. Network properties of the models, like connectivity and average shortest mean path of the different models, have been compared and analyzed.
Automated endoscopic navigation and advisory system from medical image
NASA Astrophysics Data System (ADS)
Kwoh, Chee K.; Khan, Gul N.; Gillies, Duncan F.
1999-05-01
In this paper, we present a review of the research conducted by our group to design an automatic endoscope navigation and advisory system. The whole system can be viewed as a two-layer system. The first layer is at the signal level, which consists of the processing that will be performed on a series of images to extract all the identifiable features. The information is purely dependent on what can be extracted from the 'raw' images. At the signal level, the first task is performed by detecting a single dominant feature, lumen. Few methods of identifying the lumen are proposed. The first method used contour extraction. Contours are extracted by edge detection, thresholding and linking. This method required images to be divided into overlapping squares (8 by 8 or 4 by 4) where line segments are extracted by using a Hough transform. Perceptual criteria such as proximity, connectivity, similarity in orientation, contrast and edge pixel intensity, are used to group edges both strong and weak. This approach is called perceptual grouping. The second method is based on a region extraction using split and merge approach using spatial domain data. An n-level (for a 2' by 2' image) quadtree based pyramid structure is constructed to find the most homogenous large dark region, which in most cases corresponds to the lumen. The algorithm constructs the quadtree from the bottom (pixel) level upward, recursively and computes the mean and variance of image regions corresponding to quadtree nodes. On reaching the root, the largest uniform seed region, whose mean corresponds to a lumen is selected that is grown by merging with its neighboring regions. In addition to the use of two- dimensional information in the form of regions and contours, three-dimensional shape can provide additional information that will enhance the system capabilities. Shape or depth information from an image is estimated by various methods. A particular technique suitable for endoscopy is the shape from shading, which is developed to obtain the relative depth of the colon surface in the image by assuming a point light source very close to the camera. If we assume the colon has a shape similar to a tube, then a reasonable approximation of the position of the center of the colon (lumen) will be a function of the direction in which the majority of the normal vectors of shape are pointing. The second layer is the control layer and at this level, a decision model must be built for endoscope navigation and advisory system. The system that we built is the models of probabilistic networks that create a basic, artificial intelligence system for navigation in the colon. We have constructed the probabilistic networks from correlated objective data using the maximum weighted spanning tree algorithm. In the construction of a probabilistic network, it is always assumed that the variables starting from the same parent are conditionally independent. However, this may not hold and will give rise to incorrect inferences. In these cases, we proposed the creation of a hidden node to modify the network topology, which in effect models the dependency of correlated variables, to solve the problem. The conditional probability matrices linking the hidden node to its neighbors are determined using a gradient descent method which minimizing the objective cost function. The error gradients can be treated as updating messages and ca be propagated in any direction throughout any singly connected network to adjust the network parameters. With the above two- level approach, we have been able to build an automated endoscope navigation and advisory system successfully.
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.
2003-01-01
The SAE G-11 RMSL (Reliability, Maintainability, Supportability, and Logistics) Division activities include identification and fulfillment of joint industry, government, and academia needs for development and implementation of RMSL technologies. Four Projects in the Probabilistic Methods area and two in the area of RMSL have been identified. These are: (1) Evaluation of Probabilistic Technology - progress has been made toward the selection of probabilistic application cases. Future effort will focus on assessment of multiple probabilistic softwares in solving selected engineering problems using probabilistic methods. Relevance to Industry & Government - Case studies of typical problems encountering uncertainties, results of solutions to these problems run by different codes, and recommendations on which code is applicable for what problems; (2) Probabilistic Input Preparation - progress has been made in identifying problem cases such as those with no data, little data and sufficient data. Future effort will focus on developing guidelines for preparing input for probabilistic analysis, especially with no or little data. Relevance to Industry & Government - Too often, we get bogged down thinking we need a lot of data before we can quantify uncertainties. Not True. There are ways to do credible probabilistic analysis with little data; (3) Probabilistic Reliability - probabilistic reliability literature search has been completed along with what differentiates it from statistical reliability. Work on computation of reliability based on quantification of uncertainties in primitive variables is in progress. Relevance to Industry & Government - Correct reliability computations both at the component and system level are needed so one can design an item based on its expected usage and life span; (4) Real World Applications of Probabilistic Methods (PM) - A draft of volume 1 comprising aerospace applications has been released. Volume 2, a compilation of real world applications of probabilistic methods with essential information demonstrating application type and timehost savings by the use of probabilistic methods for generic applications is in progress. Relevance to Industry & Government - Too often, we say, 'The Proof is in the Pudding'. With help from many contributors, we hope to produce such a document. Problem is - not too many people are coming forward due to proprietary nature. So, we are asking to document only minimum information including problem description, what method used, did it result in any savings, and how much?; (5) Software Reliability - software reliability concept, program, implementation, guidelines, and standards are being documented. Relevance to Industry & Government - software reliability is a complex issue that must be understood & addressed in all facets of business in industry, government, and other institutions. We address issues, concepts, ways to implement solutions, and guidelines for maximizing software reliability; (6) Maintainability Standards - maintainability/serviceability industry standard/guidelines and industry best practices and methodologies used in performing maintainability/ serviceability tasks are being documented. Relevance to Industry & Government - Any industry or government process, project, and/or tool must be maintained and serviced to realize the life and performance it was designed for. We address issues and develop guidelines for optimum performance & life.
Probabilistic simulation of stress concentration in composite laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, L.
1993-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The probabilistic composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties while probabilistic finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate stress concentration factors such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using it to simulate the stress concentration factors in composite laminates made from three different composite systems. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the stress concentration factors are influenced by local stiffness variables, by load eccentricities and by initial stress fields.
NASA Astrophysics Data System (ADS)
Sokol, Z.; Kitzmiller, D.; Pešice, P.; Guan, S.
2009-05-01
The NOAA National Weather Service has maintained an automated, centralized 0-3 h prediction system for probabilistic quantitative precipitation forecasts since 2001. This advective-statistical system (ADSTAT) produces probabilities that rainfall will exceed multiple threshold values up to 50 mm at some location within a 40-km grid box. Operational characteristics and development methods for the system are described. Although development data were stratified by season and time of day, ADSTAT utilizes only a single set of nation-wide equations that relate predictor variables derived from radar reflectivity, lightning, satellite infrared temperatures, and numerical prediction model output to rainfall occurrence. A verification study documented herein showed that the operational ADSTAT reliably models regional variations in the relative frequency of heavy rain events. This was true even in the western United States, where no regional-scale, gridded hourly precipitation data were available during the development period in the 1990s. An effort was recently launched to improve the quality of ADSTAT forecasts by regionalizing the prediction equations and to adapt the model for application in the Czech Republic. We have experimented with incorporating various levels of regional specificity in the probability equations. The geographic localization study showed that in the warm season, regional climate differences and variations in the diurnal temperature cycle have a marked effect on the predictor-predictand relationships, and thus regionalization would lead to better statistical reliability in the forecasts.
Reliability and risk assessment of structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1991-01-01
Development of reliability and risk assessment of structural components and structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) the evaluation of the various uncertainties in terms of cumulative distribution functions for various structural response variables based on known or assumed uncertainties in primitive structural variables; (2) evaluation of the failure probability; (3) reliability and risk-cost assessment; and (4) an outline of an emerging approach for eventual certification of man-rated structures by computational methods. Collectively, the results demonstrate that the structural durability/reliability of man-rated structural components and structures can be effectively evaluated by using formal probabilistic methods.
An advanced probabilistic structural analysis method for implicit performance functions
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.
1989-01-01
In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Králik, Juraj, E-mail: juraj.kralik@stuba.sk
2016-06-08
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Probabilistic safety assessment of the design of a tall buildings under the extreme load
NASA Astrophysics Data System (ADS)
Králik, Juraj
2016-06-01
The paper describes some experiences from the deterministic and probabilistic analysis of the safety of the tall building structure. There are presented the methods and requirements of Eurocode EN 1990, standard ISO 2394 and JCSS. The uncertainties of the model and resistance of the structures are considered using the simulation methods. The MONTE CARLO, LHS and RSM probabilistic methods are compared with the deterministic results. On the example of the probability analysis of the safety of the tall buildings is demonstrated the effectiveness of the probability design of structures using Finite Element Methods.
Improved segmentation of cerebellar structures in children
Narayanan, Priya Lakshmi; Boonazier, Natalie; Warton, Christopher; Molteno, Christopher D; Joseph, Jesuchristopher; Jacobson, Joseph L; Jacobson, Sandra W; Zöllei, Lilla; Meintjes, Ernesta M
2016-01-01
Background Consistent localization of cerebellar cortex in a standard coordinate system is important for functional studies and detection of anatomical alterations in studies of morphometry. To date, no pediatric cerebellar atlas is available. New method The probabilistic Cape Town Pediatric Cerebellar Atlas (CAPCA18) was constructed in the age-appropriate National Institute of Health Pediatric Database asymmetric template space using manual tracings of 16 cerebellar compartments in 18 healthy children (9–13 years) from Cape Town, South Africa. The individual atlases of the training subjects were also used to implement multi atlas label fusion using multi atlas majority voting (MAMV) and multi atlas generative model (MAGM) approaches. Segmentation accuracy in 14 test subjects was compared for each method to ‘gold standard’ manual tracings. Results Spatial overlap between manual tracings and CAPCA18 automated segmentation was 73% or higher for all lobules in both hemispheres, except VIIb and X. Automated segmentation using MAGM yielded the best segmentation accuracy over all lobules (mean Dice Similarity Coefficient 0.76; range 0.55–0.91). Comparison with existing methods In all lobules, spatial overlap of CAPCA18 segmentations with manual tracings was similar or higher than those obtained with SUIT (spatially unbiased infra-tentorial template), providing additional evidence of the benefits of an age appropriate atlas. MAGM segmentation accuracy was comparable to values reported recently by Park et al. (2014) in adults (across all lobules mean DSC = 0.73, range 0.40–0.89). Conclusions CAPCA18 and the associated multi atlases of the training subjects yield improved segmentation of cerebellar structures in children. PMID:26743973
Probabilistic dual heuristic programming-based adaptive critic
NASA Astrophysics Data System (ADS)
Herzallah, Randa
2010-02-01
Adaptive critic (AC) methods have common roots as generalisations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, non-linear and non-stationary environments. In this study, a novel probabilistic dual heuristic programming (DHP)-based AC controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) AC method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterised by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the probabilistic critic network is then calculated and shown to be equal to the analytically derived correct value. Full derivation of the Riccati solution for this non-standard stochastic linear quadratic control problem is also provided. Moreover, the performance of the proposed probabilistic controller is demonstrated on linear and non-linear control examples.
Probabilistic Aeroelastic Analysis of Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, S. K.; Stefko, G. L.
2004-01-01
A probabilistic approach is described for aeroelastic analysis of turbomachinery blade rows. Blade rows with subsonic flow and blade rows with supersonic flow with subsonic leading edge are considered. To demonstrate the probabilistic approach, the flutter frequency, damping and forced response of a blade row representing a compressor geometry is considered. The analysis accounts for uncertainties in structural and aerodynamic design variables. The results are presented in the form of probabilistic density function (PDF) and sensitivity factors. For subsonic flow cascade, comparisons are also made with different probabilistic distributions, probabilistic methods, and Monte-Carlo simulation. The approach shows that the probabilistic approach provides a more realistic and systematic way to assess the effect of uncertainties in design variables on the aeroelastic instabilities and response.
Probabilistic numerics and uncertainty in computations
Hennig, Philipp; Osborne, Michael A.; Girolami, Mark
2015-01-01
We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations. PMID:26346321
Probabilistic numerics and uncertainty in computations.
Hennig, Philipp; Osborne, Michael A; Girolami, Mark
2015-07-08
We deliver a call to arms for probabilistic numerical methods : algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data have led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimizers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.
NASA Astrophysics Data System (ADS)
Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang
2017-05-01
Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.
NESSUS/EXPERT - An expert system for probabilistic structural analysis methods
NASA Technical Reports Server (NTRS)
Millwater, H.; Palmer, K.; Fink, P.
1988-01-01
An expert system (NESSUS/EXPERT) is presented which provides assistance in using probabilistic structural analysis methods. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator. NESSUS/EXPERT was developed with a combination of FORTRAN and CLIPS, a C language expert system tool, to exploit the strengths of each language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
DOT National Transportation Integrated Search
2009-10-13
This paper describes a probabilistic approach to estimate the conditional probability of release of hazardous materials from railroad tank cars during train accidents. Monte Carlo methods are used in developing a probabilistic model to simulate head ...
Xiang, Kun; Li, Yinglei; Ford, William; Land, Walker; Schaffer, J David; Congdon, Robert; Zhang, Jing; Sadik, Omowunmi
2016-02-21
We hereby report the design and implementation of an Autonomous Microbial Cell Culture and Classification (AMC(3)) system for rapid detection of food pathogens. Traditional food testing methods require multistep procedures and long incubation period, and are thus prone to human error. AMC(3) introduces a "one click approach" to the detection and classification of pathogenic bacteria. Once the cultured materials are prepared, all operations are automatic. AMC(3) is an integrated sensor array platform in a microbial fuel cell system composed of a multi-potentiostat, an automated data collection system (Python program, Yocto Maxi-coupler electromechanical relay module) and a powerful classification program. The classification scheme consists of Probabilistic Neural Network (PNN), Support Vector Machines (SVM) and General Regression Neural Network (GRNN) oracle-based system. Differential Pulse Voltammetry (DPV) is performed on standard samples or unknown samples. Then, using preset feature extractions and quality control, accepted data are analyzed by the intelligent classification system. In a typical use, thirty-two extracted features were analyzed to correctly classify the following pathogens: Escherichia coli ATCC#25922, Escherichia coli ATCC#11775, and Staphylococcus epidermidis ATCC#12228. 85.4% accuracy range was recorded for unknown samples, and within a shorter time period than the industry standard of 24 hours.
NASA Astrophysics Data System (ADS)
Green, Rebecca M.; Bebbington, Mark S.; Cronin, Shane J.; Jones, Geoff
2014-09-01
Detailed tephrochronologies are built to underpin probabilistic volcanic hazard forecasting, and to understand the dynamics and history of diverse geomorphic, climatic, soil-forming and environmental processes. Complicating factors include highly variable tephra distribution over time; difficulty in correlating tephras from site to site based on physical and chemical properties; and uncertain age determinations. Multiple sites permit construction of more accurate composite tephra records, but correctly merging individual site records by recognizing common events and site-specific gaps is complex. We present an automated procedure for matching tephra sequences between multiple deposition sites using stochastic local optimization techniques. If individual tephra age determinations are not significantly different between sites, they are matched and a more precise age is assigned. Known stratigraphy and mineralogical or geochemical compositions are used to constrain tephra matches. We apply this method to match tephra records from five long sediment cores (≤ 75 cal ka BP) in Auckland, New Zealand. Sediments at these sites preserve basaltic tephras from local eruptions of the Auckland Volcanic Field as well as distal rhyolitic and andesitic tephras from Okataina, Taupo, Egmont, Tongariro, and Tuhua (Mayor Island) volcanic centers. The new correlated record compiled is statistically more likely than previously published arrangements from this area.
Structural reliability methods: Code development status
NASA Astrophysics Data System (ADS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-05-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Structural reliability methods: Code development status
NASA Technical Reports Server (NTRS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-01-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Probabilistic structural analysis methods for space transportation propulsion systems
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Moore, N.; Anis, C.; Newell, J.; Nagpal, V.; Singhal, S.
1991-01-01
Information on probabilistic structural analysis methods for space propulsion systems is given in viewgraph form. Information is given on deterministic certification methods, probability of failure, component response analysis, stress responses for 2nd stage turbine blades, Space Shuttle Main Engine (SSME) structural durability, and program plans. .
NASA Astrophysics Data System (ADS)
Gan, Yu; Yao, Xinwen; Chang, Ernest W.; Bin Amir, Syed A.; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine P.
2017-02-01
Breast cancer is the third leading cause of death in women in the United States. In human breast tissue, adipose cells are infiltrated or replaced by cancer cells during the development of breast tumor. Therefore, an adipose map can be an indicator of identifying cancerous region. We developed an automated classification method to generate adipose map within human breast. To facilitate the automated classification, we first mask the B-scans from OCT volumes by comparing the signal noise ratio with a threshold. Then, the image was divided into multiple blocks with a size of 30 pixels by 30 pixels. In each block, we extracted texture features such as local standard deviation, entropy, homogeneity, and coarseness. The features of each block were input to a probabilistic model, relevance vector machine (RVM), which was trained prior to the experiment, to classify tissue types. For each block within the B-scan, RVM identified the region with adipose tissue. We calculated the adipose ratio as the number of blocks identified as adipose over the total number of blocks within the B-scan. We obtained OCT images from patients (n = 19) in Columbia medical center. We automatically generated the adipose maps from 24 B-scans including normal samples (n = 16) and cancerous samples (n = 8). We found the adipose regions show an isolated pattern that in cancerous tissue while a clustered pattern in normal tissue. Moreover, the adipose ratio (52.30 ± 29.42%) in normal tissue was higher than the that in cancerous tissue (12.41 ± 10.07%).
Fully automatic detection of salient features in 3-d transesophageal images.
Curiale, Ariel H; Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Ren, Ben; Aja-Fernández, Santiago; Bosch, Johan G
2014-12-01
Most automated segmentation approaches to the mitral valve and left ventricle in 3-D echocardiography require a manual initialization. In this article, we propose a fully automatic scheme to initialize a multicavity segmentation approach in 3-D transesophageal echocardiography by detecting the left ventricle long axis, the mitral valve and the aortic valve location. Our approach uses a probabilistic and structural tissue classification to find structures such as the mitral and aortic valves; the Hough transform for circles to find the center of the left ventricle; and multidimensional dynamic programming to find the best position for the left ventricle long axis. For accuracy and agreement assessment, the proposed method was evaluated in 19 patients with respect to manual landmarks and as initialization of a multicavity segmentation approach for the left ventricle, the right ventricle, the left atrium, the right atrium and the aorta. The segmentation results revealed no statistically significant differences between manual and automated initialization in a paired t-test (p > 0.05). Additionally, small biases between manual and automated initialization were detected in the Bland-Altman analysis (bias, variance) for the left ventricle (-0.04, 0.10); right ventricle (-0.07, 0.18); left atrium (-0.01, 0.03); right atrium (-0.04, 0.13); and aorta (-0.05, 0.14). These results indicate that the proposed approach provides robust and accurate detection to initialize a multicavity segmentation approach without any user interaction. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Probabilistic structural analysis methods for improving Space Shuttle engine reliability
NASA Technical Reports Server (NTRS)
Boyce, L.
1989-01-01
Probabilistic structural analysis methods are particularly useful in the design and analysis of critical structural components and systems that operate in very severe and uncertain environments. These methods have recently found application in space propulsion systems to improve the structural reliability of Space Shuttle Main Engine (SSME) components. A computer program, NESSUS, based on a deterministic finite-element program and a method of probabilistic analysis (fast probability integration) provides probabilistic structural analysis for selected SSME components. While computationally efficient, it considers both correlated and nonnormal random variables as well as an implicit functional relationship between independent and dependent variables. The program is used to determine the response of a nickel-based superalloy SSME turbopump blade. Results include blade tip displacement statistics due to the variability in blade thickness, modulus of elasticity, Poisson's ratio or density. Modulus of elasticity significantly contributed to blade tip variability while Poisson's ratio did not. Thus, a rational method for choosing parameters to be modeled as random is provided.
Clayden, Jonathan D; Storkey, Amos J; Muñoz Maniega, Susana; Bastin, Mark E
2009-04-01
This work describes a reproducibility analysis of scalar water diffusion parameters, measured within white matter tracts segmented using a probabilistic shape modelling method. In common with previously reported neighbourhood tractography (NT) work, the technique optimises seed point placement for fibre tracking by matching the tracts generated using a number of candidate points against a reference tract, which is derived from a white matter atlas in the present study. No direct constraints are applied to the fibre tracking results. An Expectation-Maximisation algorithm is used to fully automate the procedure, and make dramatically more efficient use of data than earlier NT methods. Within-subject and between-subject variances for fractional anisotropy and mean diffusivity within the tracts are then separated using a random effects model. We find test-retest coefficients of variation (CVs) similar to those reported in another study using landmark-guided single seed points; and subject to subject CVs similar to a constraint-based multiple ROI method. We conclude that our approach is at least as effective as other methods for tract segmentation using tractography, whilst also having some additional benefits, such as its provision of a goodness-of-match measure for each segmentation.
Improving medium-range ensemble streamflow forecasts through statistical post-processing
NASA Astrophysics Data System (ADS)
Mendoza, Pablo; Wood, Andy; Clark, Elizabeth; Nijssen, Bart; Clark, Martyn; Ramos, Maria-Helena; Nowak, Kenneth; Arnold, Jeffrey
2017-04-01
Probabilistic hydrologic forecasts are a powerful source of information for decision-making in water resources operations. A common approach is the hydrologic model-based generation of streamflow forecast ensembles, which can be implemented to account for different sources of uncertainties - e.g., from initial hydrologic conditions (IHCs), weather forecasts, and hydrologic model structure and parameters. In practice, hydrologic ensemble forecasts typically have biases and spread errors stemming from errors in the aforementioned elements, resulting in a degradation of probabilistic properties. In this work, we compare several statistical post-processing techniques applied to medium-range ensemble streamflow forecasts obtained with the System for Hydromet Applications, Research and Prediction (SHARP). SHARP is a fully automated prediction system for the assessment and demonstration of short-term to seasonal streamflow forecasting applications, developed by the National Center for Atmospheric Research, University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. The suite of post-processing techniques includes linear blending, quantile mapping, extended logistic regression, quantile regression, ensemble analogs, and the generalized linear model post-processor (GLMPP). We assess and compare these techniques using multi-year hindcasts in several river basins in the western US. This presentation discusses preliminary findings about the effectiveness of the techniques for improving probabilistic skill, reliability, discrimination, sharpness and resolution.
NASA Technical Reports Server (NTRS)
Duffy, S. F.; Hu, J.; Hopkins, D. A.
1995-01-01
The article begins by examining the fundamentals of traditional deterministic design philosophy. The initial section outlines the concepts of failure criteria and limit state functions two traditional notions that are embedded in deterministic design philosophy. This is followed by a discussion regarding safety factors (a possible limit state function) and the common utilization of statistical concepts in deterministic engineering design approaches. Next the fundamental aspects of a probabilistic failure analysis are explored and it is shown that deterministic design concepts mentioned in the initial portion of the article are embedded in probabilistic design methods. For components fabricated from ceramic materials (and other similarly brittle materials) the probabilistic design approach yields the widely used Weibull analysis after suitable assumptions are incorporated. The authors point out that Weibull analysis provides the rare instance where closed form solutions are available for a probabilistic failure analysis. Since numerical methods are usually required to evaluate component reliabilities, a section on Monte Carlo methods is included to introduce the concept. The article concludes with a presentation of the technical aspects that support the numerical method known as fast probability integration (FPI). This includes a discussion of the Hasofer-Lind and Rackwitz-Fiessler approximations.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A probabilistic structural analysis method (PSAM) is described which makes an approximate calculation of the structural response of a system, including the associated probabilistic distributions, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The method employs the fast probability integration (FPI) algorithm of Wu and Wirsching. Typical solution strategies are illustrated by formulations for a representative critical component chosen from the Space Shuttle Main Engine (SSME) as part of a major NASA-sponsored program on PSAM. Typical results are presented to demonstrate the role of the methodology in engineering design and analysis.
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
Scalable Probabilistic Inference for Global Seismic Monitoring
NASA Astrophysics Data System (ADS)
Arora, N. S.; Dear, T.; Russell, S.
2011-12-01
We describe a probabilistic generative model for seismic events, their transmission through the earth, and their detection (or mis-detection) at seismic stations. We also describe an inference algorithm that constructs the most probable event bulletin explaining the observed set of detections. The model and inference are called NET-VISA (network processing vertically integrated seismic analysis) and is designed to replace the current automated network processing at the IDC, the SEL3 bulletin. Our results (attached table) demonstrate that NET-VISA significantly outperforms SEL3 by reducing the missed events from 30.3% down to 12.5%. The difference is even more dramatic for smaller magnitude events. NET-VISA has no difficulty in locating nuclear explosions as well. The attached figure demonstrates the location predicted by NET-VISA versus other bulletins for the second DPRK event. Further evaluation on dense regional networks demonstrates that NET-VISA finds many events missed in the LEB bulletin, which is produced by the human analysts. Large aftershock sequences, as produced by the 2004 December Sumatra earthquake and the 2011 March Tohoku earthquake, can pose a significant load for automated processing, often delaying the IDC bulletins by weeks or months. Indeed these sequences can overload the serial NET-VISA inference as well. We describe an enhancement to NET-VISA to make it multi-threaded, and hence take full advantage of the processing power of multi-core and -cpu machines. Our experiments show that the new inference algorithm is able to achieve 80% efficiency in parallel speedup.
Li, Zhixi; Peck, Kyung K.; Brennan, Nicole P.; Jenabi, Mehrnaz; Hsu, Meier; Zhang, Zhigang; Holodny, Andrei I.; Young, Robert J.
2014-01-01
Purpose The purpose of this study was to compare the deterministic and probabilistic tracking methods of diffusion tensor white matter fiber tractography in patients with brain tumors. Materials and Methods We identified 29 patients with left brain tumors <2 cm from the arcuate fasciculus who underwent pre-operative language fMRI and DTI. The arcuate fasciculus was reconstructed using a deterministic Fiber Assignment by Continuous Tracking (FACT) algorithm and a probabilistic method based on an extended Monte Carlo Random Walk algorithm. Tracking was controlled using two ROIs corresponding to Broca’s and Wernicke’s areas. Tracts in tumoraffected hemispheres were examined for extension between Broca’s and Wernicke’s areas, anterior-posterior length and volume, and compared with the normal contralateral tracts. Results Probabilistic tracts displayed more complete anterior extension to Broca’s area than did FACT tracts on the tumor-affected and normal sides (p < 0.0001). The median length ratio for tumor: normal sides was greater for probabilistic tracts than FACT tracts (p < 0.0001). The median tract volume ratio for tumor: normal sides was also greater for probabilistic tracts than FACT tracts (p = 0.01). Conclusion Probabilistic tractography reconstructs the arcuate fasciculus more completely and performs better through areas of tumor and/or edema. The FACT algorithm tends to underestimate the anterior-most fibers of the arcuate fasciculus, which are crossed by primary motor fibers. PMID:25328583
Memory Indexing: A Novel Method for Tracing Memory Processes in Complex Cognitive Tasks
ERIC Educational Resources Information Center
Renkewitz, Frank; Jahn, Georg
2012-01-01
We validate an eye-tracking method applicable for studying memory processes in complex cognitive tasks. The method is tested with a task on probabilistic inferences from memory. It provides valuable data on the time course of processing, thus clarifying previous results on heuristic probabilistic inference. Participants learned cue values of…
Probabilistic Parameter Uncertainty Analysis of Single Input Single Output Control Systems
NASA Technical Reports Server (NTRS)
Smith, Brett A.; Kenny, Sean P.; Crespo, Luis G.
2005-01-01
The current standards for handling uncertainty in control systems use interval bounds for definition of the uncertain parameters. This approach gives no information about the likelihood of system performance, but simply gives the response bounds. When used in design, current methods of m-analysis and can lead to overly conservative controller design. With these methods, worst case conditions are weighted equally with the most likely conditions. This research explores a unique approach for probabilistic analysis of control systems. Current reliability methods are examined showing the strong areas of each in handling probability. A hybrid method is developed using these reliability tools for efficiently propagating probabilistic uncertainty through classical control analysis problems. The method developed is applied to classical response analysis as well as analysis methods that explore the effects of the uncertain parameters on stability and performance metrics. The benefits of using this hybrid approach for calculating the mean and variance of responses cumulative distribution functions are shown. Results of the probabilistic analysis of a missile pitch control system, and a non-collocated mass spring system, show the added information provided by this hybrid analysis.
Fully probabilistic control for stochastic nonlinear control systems with input dependent noise.
Herzallah, Randa
2015-03-01
Robust controllers for nonlinear stochastic systems with functional uncertainties can be consistently designed using probabilistic control methods. In this paper a generalised probabilistic controller design for the minimisation of the Kullback-Leibler divergence between the actual joint probability density function (pdf) of the closed loop control system, and an ideal joint pdf is presented emphasising how the uncertainty can be systematically incorporated in the absence of reliable systems models. To achieve this objective all probabilistic models of the system are estimated from process data using mixture density networks (MDNs) where all the parameters of the estimated pdfs are taken to be state and control input dependent. Based on this dependency of the density parameters on the input values, explicit formulations to the construction of optimal generalised probabilistic controllers are obtained through the techniques of dynamic programming and adaptive critic methods. Using the proposed generalised probabilistic controller, the conditional joint pdfs can be made to follow the ideal ones. A simulation example is used to demonstrate the implementation of the algorithm and encouraging results are obtained. Copyright © 2014 Elsevier Ltd. All rights reserved.
Probabilistic Simulation of Stress Concentration in Composite Laminates
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Murthy, P. L. N.; Liaw, D. G.
1994-01-01
A computational methodology is described to probabilistically simulate the stress concentration factors (SCF's) in composite laminates. This new approach consists of coupling probabilistic composite mechanics with probabilistic finite element structural analysis. The composite mechanics is used to probabilistically describe all the uncertainties inherent in composite material properties, whereas the finite element is used to probabilistically describe the uncertainties associated with methods to experimentally evaluate SCF's, such as loads, geometry, and supports. The effectiveness of the methodology is demonstrated by using is to simulate the SCF's in three different composite laminates. Simulated results match experimental data for probability density and for cumulative distribution functions. The sensitivity factors indicate that the SCF's are influenced by local stiffness variables, by load eccentricities, and by initial stress fields.
Non-Deterministic Dynamic Instability of Composite Shells
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2004-01-01
A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.
An automated method for depth-dependent crustal anisotropy detection with receiver function
NASA Astrophysics Data System (ADS)
Licciardi, Andrea; Piana Agostinetti, Nicola
2015-04-01
Crustal seismic anisotropy can be generated by a variety of geological factors (e.g. alignment of minerals/cracks, presence of fluids etc...). In the case of transversely isotropic media approximation, information about strength and orientation of the anisotropic symmetry axis (including dip) can be extracted from the analysis of P-to-S conversions by means of teleseismic receiver functions (RF). Classically this has been achieved through probabilistic inversion encoding a forward solver for anisotropic media. This approach strongly relies on apriori choices regarding Earth's crust parameterization and velocity structure, requires an extensive knowledge of the RF method and involves time consuming trial and error steps. We present an automated method for reducing the non-uniqueness in this kind of inversions and for retrieving depth-dependent seismic anisotropy parameters in the crust with a resolution of some hundreds of meters. The method involves a multi-frequency approach (for better absolute Vs determination) and the decomposition of the RF data-set in its azimuthal harmonics (to separate the effects of isotropic and anisotropic component). A first inversion of the isotropic component (Zero-order harmonics) by means of a Reversible jump Markov Chain Monte Carlo (RjMCMC) provides the posterior probability distribution for the position of the velocity jumps at depth, from which information on the number of layers and the S-wave velocity structure below a broadband seismic station can be extracted. This information together with that encoded in the first order harmonic is jointly used in an automated way to: (1) determine the number of anisotropic layers and their approximate position at depth, and (2) narrow the search boundaries for layer thickness and S-wave velocity. Finaly, an inversion is carried out with a Neighbourhood Algorithm (NA), where the free parameters are represented by the anisotropic structure beneath the seismic station. We tested the method against synthetic RF with correlated Gaussian noise to investigate the resolution power for multiple and thin (1-5 km) anisotropic layers in the crust. The algorithm correctly retrieves the true models for the number and the position of the anisotropic layers, their strength and orientation of the anisotropic symmetry axis, although the trend direction is better constrained than the dip angle. The method is then applied to a real data-set and the results compared with previous RF studies.
Duraisamy, Baskar; Shanmugam, Jayanthi Venkatraman; Annamalai, Jayanthi
2018-02-19
An early intervention of Alzheimer's disease (AD) is highly essential due to the fact that this neuro degenerative disease generates major life-threatening issues, especially memory loss among patients in society. Moreover, categorizing NC (Normal Control), MCI (Mild Cognitive Impairment) and AD early in course allows the patients to experience benefits from new treatments. Therefore, it is important to construct a reliable classification technique to discriminate the patients with or without AD from the bio medical imaging modality. Hence, we developed a novel FCM based Weighted Probabilistic Neural Network (FWPNN) classification algorithm and analyzed the brain images related to structural MRI modality for better discrimination of class labels. Initially our proposed framework begins with brain image normalization stage. In this stage, ROI regions related to Hippo-Campus (HC) and Posterior Cingulate Cortex (PCC) from the brain images are extracted using Automated Anatomical Labeling (AAL) method. Subsequently, nineteen highly relevant AD related features are selected through Multiple-criterion feature selection method. At last, our novel FWPNN classification algorithm is imposed to remove suspicious samples from the training data with an end goal to enhance the classification performance. This newly developed classification algorithm combines both the goodness of supervised and unsupervised learning techniques. The experimental validation is carried out with the ADNI subset and then to the Bordex-3 city dataset. Our proposed classification approach achieves an accuracy of about 98.63%, 95.4%, 96.4% in terms of classification with AD vs NC, MCI vs NC and AD vs MCI. The experimental results suggest that the removal of noisy samples from the training data can enhance the decision generation process of the expert systems.
Commercialization of NESSUS: Status
NASA Technical Reports Server (NTRS)
Thacker, Ben H.; Millwater, Harry R.
1991-01-01
A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.
3D Imaging and Automated Ice Bottom Tracking of Canadian Arctic Archipelago Ice Sounding Data
NASA Astrophysics Data System (ADS)
Paden, J. D.; Xu, M.; Sprick, J.; Athinarapu, S.; Crandall, D.; Burgess, D. O.; Sharp, M. J.; Fox, G. C.; Leuschen, C.; Stumpf, T. M.
2016-12-01
The basal topography of the Canadian Arctic Archipelago ice caps is unknown for a number of the glaciers which drain the ice caps. The basal topography is needed for calculating present sea level contribution using the surface mass balance and discharge method and to understand future sea level contributions using ice flow model studies. During the NASA Operation IceBridge 2014 arctic campaign, the Multichannel Coherent Radar Depth Sounder (MCoRDS) used a three transmit beam setting (left beam, nadir beam, right beam) to illuminate a wide swath across the ice glacier in a single pass during three flights over the archipelago. In post processing we have used a combination of 3D imaging methods to produce images for each of the three beams which are then merged to produce a single digitally formed wide swath beam. Because of the high volume of data produced by 3D imaging, manual tracking of the ice bottom is impractical on a large scale. To solve this problem, we propose an automated technique for extracting ice bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first estimate layer boundaries to generate a seed surface, and then incorporate additional sources of evidence, such as ice masks, surface digital elevation models, and feedback from human users, to refine the surface in a discrete energy minimization formulation. We investigate the performance of the imaging and tracking algorithms using flight crossovers since crossing lines should produce consistent maps of the terrain beneath the ice surface and compare manually tracked "ground truth" to the automated tracking algorithms. We found the swath width at the nominal flight altitude of 1000 m to be approximately 3 km. Since many of the glaciers in the archipelago are narrower than this, the radar imaging, in these instances, was able to measure the full glacier cavity in a single pass.
RaptorX server: a resource for template-based protein structure modeling.
Källberg, Morten; Margaryan, Gohar; Wang, Sheng; Ma, Jianzhu; Xu, Jinbo
2014-01-01
Assigning functional properties to a newly discovered protein is a key challenge in modern biology. To this end, computational modeling of the three-dimensional atomic arrangement of the amino acid chain is often crucial in determining the role of the protein in biological processes. We present a community-wide web-based protocol, RaptorX server ( http://raptorx.uchicago.edu ), for automated protein secondary structure prediction, template-based tertiary structure modeling, and probabilistic alignment sampling.Given a target sequence, RaptorX server is able to detect even remotely related template sequences by means of a novel nonlinear context-specific alignment potential and probabilistic consistency algorithm. Using the protocol presented here it is thus possible to obtain high-quality structural models for many target protein sequences when only distantly related protein domains have experimentally solved structures. At present, RaptorX server can perform secondary and tertiary structure prediction of a 200 amino acid target sequence in approximately 30 min.
Students’ difficulties in probabilistic problem-solving
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Brown, Samuel M; Jones, Jason; Kuttler, Kathryn Gibb; Keddington, Roger K; Allen, Todd L; Haug, Peter
2016-08-22
Sepsis is an often-fatal syndrome resulting from severe infection. Rapid identification and treatment are critical for septic patients. We therefore developed a probabilistic model to identify septic patients in the emergency department (ED). We aimed to produce a model that identifies 80 % of sepsis patients, with no more than 15 false positive alerts per day, within one hour of ED admission, using routine clinical data. We developed the model using retrospective data for 132,748 ED encounters (549 septic), with manual chart review to confirm cases of severe sepsis or septic shock from January 2006 through December 2008. A naïve Bayes model was used to select model features, starting with clinician-proposed candidate variables, which were then used to calculate the probability of sepsis. We evaluated the accuracy of the resulting model in 93,733 ED encounters from April 2009 through June 2010. The final model included mean blood pressure, temperature, age, heart rate, and white blood cell count. The area under the receiver operating characteristic curve (AUC) for the continuous predictor model was 0.953. The binary alert achieved 76.4 % sensitivity with a false positive rate of 4.7 %. We developed and validated a probabilistic model to identify sepsis early in an ED encounter. Despite changes in process, organizational focus, and the H1N1 influenza pandemic, our model performed adequately in our validation cohort, suggesting that it will be generalizable.
P. B. Woodbury; D. A. Weinstein
2010-01-01
We reviewed probabilistic regional risk assessment methodologies to identify the methods that are currently in use and are capable of estimating threats to ecosystems from fire and fuels, invasive species, and their interactions with stressors. In a companion chapter, we highlight methods useful for evaluating risks from fire. In this chapter, we highlight methods...
NASA Astrophysics Data System (ADS)
Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.
2018-02-01
The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
False alarm reduction by the And-ing of multiple multivariate Gaussian classifiers
NASA Astrophysics Data System (ADS)
Dobeck, Gerald J.; Cobb, J. Tory
2003-09-01
The high-resolution sonar is one of the principal sensors used by the Navy to detect and classify sea mines in minehunting operations. For such sonar systems, substantial effort has been devoted to the development of automated detection and classification (D/C) algorithms. These have been spurred by several factors including (1) aids for operators to reduce work overload, (2) more optimal use of all available data, and (3) the introduction of unmanned minehunting systems. The environments where sea mines are typically laid (harbor areas, shipping lanes, and the littorals) give rise to many false alarms caused by natural, biologic, and man-made clutter. The objective of the automated D/C algorithms is to eliminate most of these false alarms while still maintaining a very high probability of mine detection and classification (PdPc). In recent years, the benefits of fusing the outputs of multiple D/C algorithms have been studied. We refer to this as Algorithm Fusion. The results have been remarkable, including reliable robustness to new environments. This paper describes a method for training several multivariate Gaussian classifiers such that their And-ing dramatically reduces false alarms while maintaining a high probability of classification. This training approach is referred to as the Focused- Training method. This work extends our 2001-2002 work where the Focused-Training method was used with three other types of classifiers: the Attractor-based K-Nearest Neighbor Neural Network (a type of radial-basis, probabilistic neural network), the Optimal Discrimination Filter Classifier (based linear discrimination theory), and the Quadratic Penalty Function Support Vector Machine (QPFSVM). Although our experience has been gained in the area of sea mine detection and classification, the principles described herein are general and can be applied to a wide range of pattern recognition and automatic target recognition (ATR) problems.
Non-unitary probabilistic quantum computing
NASA Technical Reports Server (NTRS)
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
The Statistical Loop Analyzer (SLA)
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1985-01-01
The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.
NASA Astrophysics Data System (ADS)
Viswanath, Satish; Bloch, B. Nicholas; Chappelow, Jonathan; Patel, Pratik; Rofsky, Neil; Lenkinski, Robert; Genega, Elizabeth; Madabhushi, Anant
2011-03-01
Currently, there is significant interest in developing methods for quantitative integration of multi-parametric (structural, functional) imaging data with the objective of building automated meta-classifiers to improve disease detection, diagnosis, and prognosis. Such techniques are required to address the differences in dimensionalities and scales of individual protocols, while deriving an integrated multi-parametric data representation which best captures all disease-pertinent information available. In this paper, we present a scheme called Enhanced Multi-Protocol Analysis via Intelligent Supervised Embedding (EMPrAvISE); a powerful, generalizable framework applicable to a variety of domains for multi-parametric data representation and fusion. Our scheme utilizes an ensemble of embeddings (via dimensionality reduction, DR); thereby exploiting the variance amongst multiple uncorrelated embeddings in a manner similar to ensemble classifier schemes (e.g. Bagging, Boosting). We apply this framework to the problem of prostate cancer (CaP) detection on 12 3 Tesla pre-operative in vivo multi-parametric (T2-weighted, Dynamic Contrast Enhanced, and Diffusion-weighted) magnetic resonance imaging (MRI) studies, in turn comprising a total of 39 2D planar MR images. We first align the different imaging protocols via automated image registration, followed by quantification of image attributes from individual protocols. Multiple embeddings are generated from the resultant high-dimensional feature space which are then combined intelligently to yield a single stable solution. Our scheme is employed in conjunction with graph embedding (for DR) and probabilistic boosting trees (PBTs) to detect CaP on multi-parametric MRI. Finally, a probabilistic pairwise Markov Random Field algorithm is used to apply spatial constraints to the result of the PBT classifier, yielding a per-voxel classification of CaP presence. Per-voxel evaluation of detection results against ground truth for CaP extent on MRI (obtained by spatially registering pre-operative MRI with available whole-mount histological specimens) reveals that EMPrAvISE yields a statistically significant improvement (AUC=0.77) over classifiers constructed from individual protocols (AUC=0.62, 0.62, 0.65, for T2w, DCE, DWI respectively) as well as one trained using multi-parametric feature concatenation (AUC=0.67).
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multifactor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multi-factor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Nucleosome positioning from tiling microarray data.
Yassour, Moran; Kaplan, Tommy; Jaimovich, Ariel; Friedman, Nir
2008-07-01
The packaging of DNA around nucleosomes in eukaryotic cells plays a crucial role in regulation of gene expression, and other DNA-related processes. To better understand the regulatory role of nucleosomes, it is important to pinpoint their position in a high (5-10 bp) resolution. Toward this end, several recent works used dense tiling arrays to map nucleosomes in a high-throughput manner. These data were then parsed and hand-curated, and the positions of nucleosomes were assessed. In this manuscript, we present a fully automated algorithm to analyze such data and predict the exact location of nucleosomes. We introduce a method, based on a probabilistic graphical model, to increase the resolution of our predictions even beyond that of the microarray used. We show how to build such a model and how to compile it into a simple Hidden Markov Model, allowing for a fast and accurate inference of nucleosome positions. We applied our model to nucleosomal data from mid-log yeast cells reported by Yuan et al. and compared our predictions to those of the original paper; to a more recent method that uses five times denser tiling arrays as explained by Lee et al.; and to a curated set of literature-based nucleosome positions. Our results suggest that by applying our algorithm to the same data used by Yuan et al. our fully automated model traced 13% more nucleosomes, and increased the overall accuracy by about 20%. We believe that such an improvement opens the way for a better understanding of the regulatory mechanisms controlling gene expression, and how they are encoded in the DNA.
Rajwa, Bartek; Wallace, Paul K.; Griffiths, Elizabeth A.; Dundar, Murat
2017-01-01
Objective Flow cytometry (FC) is a widely acknowledged technology in diagnosis of acute myeloid leukemia (AML) and has been indispensable in determining progression of the disease. Although FC plays a key role as a post-therapy prognosticator and evaluator of therapeutic efficacy, the manual analysis of cytometry data is a barrier to optimization of reproducibility and objectivity. This study investigates the utility of our recently introduced non-parametric Bayesian framework in accurately predicting the direction of change in disease progression in AML patients using FC data. Methods The highly flexible non-parametric Bayesian model based on the infinite mixture of infinite Gaussian mixtures is used for jointly modeling data from multiple FC samples to automatically identify functionally distinct cell populations and their local realizations. Phenotype vectors are obtained by characterizing each sample by the proportions of recovered cell populations, which are in turn used to predict the direction of change in disease progression for each patient. Results We used 200 diseased and non-diseased immunophenotypic panels for training and tested the system with 36 additional AML cases collected at multiple time points. The proposed framework identified the change in direction of disease progression with accuracies of 90% (9 out of 10) for relapsing cases and 100% (26 out of 26) for the remaining cases. Conclusions We believe that these promising results are an important first step towards the development of automated predictive systems for disease monitoring and continuous response evaluation. Significance Automated measurement and monitoring of therapeutic response is critical not only for objective evaluation of disease status prognosis but also for timely assessment of treatment strategies. PMID:27416585
A Review of Diagnostic Techniques for ISHM Applications
NASA Technical Reports Server (NTRS)
Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna
2005-01-01
System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between automated and human-performed tasks is a vital concern.
NASA Astrophysics Data System (ADS)
Donovan, Amy; Oppenheimer, Clive; Bravo, Michael
2012-12-01
This paper constitutes a philosophical and social scientific study of expert elicitation in the assessment and management of volcanic risk on Montserrat during the 1995-present volcanic activity. It outlines the broader context of subjective probabilistic methods and then uses a mixed-method approach to analyse the use of these methods in volcanic crises. Data from a global survey of volcanologists regarding the use of statistical methods in hazard assessment are presented. Detailed qualitative data from Montserrat are then discussed, particularly concerning the expert elicitation procedure that was pioneered during the eruptions. These data are analysed and conclusions about the use of these methods in volcanology are drawn. The paper finds that while many volcanologists are open to the use of these methods, there are still some concerns, which are similar to the concerns encountered in the literature on probabilistic and determinist approaches to seismic hazard analysis.
Probabilistic Structural Analysis of the SRB Aft Skirt External Fitting Modification
NASA Technical Reports Server (NTRS)
Townsend, John S.; Peck, J.; Ayala, S.
1999-01-01
NASA has funded several major programs (the PSAM Project is an example) to develop Probabilistic Structural Analysis Methods and tools for engineers to apply in the design and assessment of aerospace hardware. A probabilistic finite element design tool, known as NESSUS, is used to determine the reliability of the Space Shuttle Solid Rocket Booster (SRB) aft skirt critical weld. An external bracket modification to the aft skirt provides a comparison basis for examining the details of the probabilistic analysis and its contributions to the design process.
Probabilistic finite elements for fracture and fatigue analysis
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lawrence, M.; Besterfield, G. H.
1989-01-01
The fusion of the probabilistic finite element method (PFEM) and reliability analysis for probabilistic fracture mechanics (PFM) is presented. A comprehensive method for determining the probability of fatigue failure for curved crack growth was developed. The criterion for failure or performance function is stated as: the fatigue life of a component must exceed the service life of the component; otherwise failure will occur. An enriched element that has the near-crack-tip singular strain field embedded in the element is used to formulate the equilibrium equation and solve for the stress intensity factors at the crack-tip. Performance and accuracy of the method is demonstrated on a classical mode 1 fatigue problem.
Kabudula, Chodziwadziwa W; Clark, Benjamin D; Gómez-Olivé, Francesc Xavier; Tollman, Stephen; Menken, Jane; Reniers, Georges
2014-05-24
Health and Demographic Surveillance Systems (HDSS) have been instrumental in advancing population and health research in low- and middle- income countries where vital registration systems are often weak. However, the utility of HDSS would be enhanced if their databases could be linked with those of local health facilities. We assess the feasibility of record linkage in rural South Africa using data from the Agincourt HDSS and a local health facility. Using a gold standard dataset of 623 record pairs matched by means of fingerprints, we evaluate twenty record linkage scenarios (involving different identifiers, string comparison techniques and with and without clerical review) based on the Fellegi-Sunter probabilistic record linkage model. Matching rates and quality are measured by their sensitivity and positive predictive value (PPV). Background characteristics of matched and unmatched cases are compared to assess systematic bias in the resulting record-linked dataset. A hybrid approach of deterministic followed by probabilistic record linkage, and scenarios that use an extended set of identifiers including another household member's first name yield the best results. The best fully automated record linkage scenario has a sensitivity of 83.6% and PPV of 95.1%. The sensitivity and PPV increase to 84.3% and 96.9%, respectively, when clerical review is undertaken on 10% of the record pairs. The likelihood of being linked is significantly lower for females, non-South Africans and the elderly. Using records matched by means of fingerprints as the gold standard, we have demonstrated the feasibility of fully automated probabilistic record linkage using identifiers that are routinely collected in health facilities in South Africa. Our study also shows that matching statistics can be improved if other identifiers (e.g., another household member's first name) are added to the set of matching variables, and, to a lesser extent, with clerical review. Matching success is, however, correlated with background characteristics that are indicative of the instability of personal attributes over time (e.g., surname in the case of women) or with misreporting (e.g., age).
Zhen, Zonglei; Yang, Zetian; Huang, Lijie; Kong, Xiang-Zhen; Wang, Xu; Dang, Xiaobin; Huang, Yangyue; Song, Yiying; Liu, Jia
2015-06-01
Face-selective regions (FSRs) are among the most widely studied functional regions in the human brain. However, individual variability of the FSRs has not been well quantified. Here we use functional magnetic resonance imaging (fMRI) to localize the FSRs and quantify their spatial and functional variabilities in 202 healthy adults. The occipital face area (OFA), posterior and anterior fusiform face areas (pFFA and aFFA), posterior continuation of the superior temporal sulcus (pcSTS), and posterior and anterior STS (pSTS and aSTS) were delineated for each individual with a semi-automated procedure. A probabilistic atlas was constructed to characterize their interindividual variability, revealing that the FSRs were highly variable in location and extent across subjects. The variability of FSRs was further quantified on both functional (i.e., face selectivity) and spatial (i.e., volume, location of peak activation, and anatomical location) features. Considerable interindividual variability and rightward asymmetry were found in all FSRs on these features. Taken together, our work presents the first effort to characterize comprehensively the variability of FSRs in a large sample of healthy subjects, and invites future work on the origin of the variability and its relation to individual differences in behavioral performance. Moreover, the probabilistic functional atlas will provide an adequate spatial reference for mapping the face network. Copyright © 2015 Elsevier Inc. All rights reserved.
Probabilistic methods for rotordynamics analysis
NASA Technical Reports Server (NTRS)
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
Process for computing geometric perturbations for probabilistic analysis
Fitch, Simeon H. K. [Charlottesville, VA; Riha, David S [San Antonio, TX; Thacker, Ben H [San Antonio, TX
2012-04-10
A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.
Probabilistic Exposure Analysis for Chemical Risk Characterization
Bogen, Kenneth T.; Cullen, Alison C.; Frey, H. Christopher; Price, Paul S.
2009-01-01
This paper summarizes the state of the science of probabilistic exposure assessment (PEA) as applied to chemical risk characterization. Current probabilistic risk analysis methods applied to PEA are reviewed. PEA within the context of risk-based decision making is discussed, including probabilistic treatment of related uncertainty, interindividual heterogeneity, and other sources of variability. Key examples of recent experience gained in assessing human exposures to chemicals in the environment, and other applications to chemical risk characterization and assessment, are presented. It is concluded that, although improvements continue to be made, existing methods suffice for effective application of PEA to support quantitative analyses of the risk of chemically induced toxicity that play an increasing role in key decision-making objectives involving health protection, triage, civil justice, and criminal justice. Different types of information required to apply PEA to these different decision contexts are identified, and specific PEA methods are highlighted that are best suited to exposure assessment in these separate contexts. PMID:19223660
Probabilistic simulation of uncertainties in thermal structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael
1990-01-01
Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.
Fracture mechanics analysis of cracked structures using weight function and neural network method
NASA Astrophysics Data System (ADS)
Chen, J. G.; Zang, F. G.; Yang, Y.; Shi, K. K.; Fu, X. L.
2018-06-01
Stress intensity factors(SIFs) due to thermal-mechanical load has been established by using weight function method. Two reference stress states sere used to determine the coefficients in the weight function. Results were evaluated by using data from literature and show a good agreement between them. So, the SIFs can be determined quickly using the weight function obtained when cracks subjected to arbitrary loads, and presented method can be used for probabilistic fracture mechanics analysis. A probabilistic methodology considering Monte-Carlo with neural network (MCNN) has been developed. The results indicate that an accurate probabilistic characteristic of the KI can be obtained by using the developed method. The probability of failure increases with the increasing of loads, and the relationship between is nonlinear.
Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2011-01-01
A new method for spectral-spatial classification of hyperspectral images is proposed. The method is based on the integration of probabilistic classification within the hierarchical best merge region growing algorithm. For this purpose, preliminary probabilistic support vector machines classification is performed. Then, hierarchical step-wise optimization algorithm is applied, by iteratively merging regions with the smallest Dissimilarity Criterion (DC). The main novelty of this method consists in defining a DC between regions as a function of region statistical and geometrical features along with classification probabilities. Experimental results are presented on a 200-band AVIRIS image of the Northwestern Indiana s vegetation area and compared with those obtained by recently proposed spectral-spatial classification techniques. The proposed method improves classification accuracies when compared to other classification approaches.
Probabilistic Methods for Structural Design and Reliability
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Whitlow, Woodrow, Jr. (Technical Monitor)
2002-01-01
This report describes a formal method to quantify structural damage tolerance and reliability in the presence of a multitude of uncertainties in turbine engine components. The method is based at the material behavior level where primitive variables with their respective scatter ranges are used to describe behavior. Computational simulation is then used to propagate the uncertainties to the structural scale where damage tolerance and reliability are usually specified. Several sample cases are described to illustrate the effectiveness, versatility, and maturity of the method. Typical results from this method demonstrate, that it is mature and that it can be used to probabilistically evaluate turbine engine structural components. It may be inferred from the results that the method is suitable for probabilistically predicting the remaining life in aging or in deteriorating structures, for making strategic projections and plans, and for achieving better, cheaper, faster products that give competitive advantages in world markets.
Guided SAR image despeckling with probabilistic non local weights
NASA Astrophysics Data System (ADS)
Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny
2017-12-01
SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.
Bayesian probabilistic population projections for all countries.
Raftery, Adrian E; Li, Nan; Ševčíková, Hana; Gerland, Patrick; Heilig, Gerhard K
2012-08-28
Projections of countries' future populations, broken down by age and sex, are widely used for planning and research. They are mostly done deterministically, but there is a widespread need for probabilistic projections. We propose a bayesian method for probabilistic population projections for all countries. The total fertility rate and female and male life expectancies at birth are projected probabilistically using bayesian hierarchical models estimated via Markov chain Monte Carlo using United Nations population data for all countries. These are then converted to age-specific rates and combined with a cohort component projection model. This yields probabilistic projections of any population quantity of interest. The method is illustrated for five countries of different demographic stages, continents and sizes. The method is validated by an out of sample experiment in which data from 1950-1990 are used for estimation, and applied to predict 1990-2010. The method appears reasonably accurate and well calibrated for this period. The results suggest that the current United Nations high and low variants greatly underestimate uncertainty about the number of oldest old from about 2050 and that they underestimate uncertainty for high fertility countries and overstate uncertainty for countries that have completed the demographic transition and whose fertility has started to recover towards replacement level, mostly in Europe. The results also indicate that the potential support ratio (persons aged 20-64 per person aged 65+) will almost certainly decline dramatically in most countries over the coming decades.
a Probabilistic Embedding Clustering Method for Urban Structure Detection
NASA Astrophysics Data System (ADS)
Lin, X.; Li, H.; Zhang, Y.; Gao, L.; Zhao, L.; Deng, M.
2017-09-01
Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by "learning" via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.
COMMUNICATING PROBABILISTIC RISK OUTCOMES TO RISK MANAGERS
Increasingly, risk assessors are moving away from simple deterministic assessments to probabilistic approaches that explicitly incorporate ecological variability, measurement imprecision, and lack of knowledge (collectively termed "uncertainty"). While the new methods provide an...
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Development of probabilistic design method for annular fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, Takayuki
2007-07-01
The increase of linear power and burn-up during the reactor operation is considered as one measure to ensure the utility of fast reactors in the future; for this the application of annular oxide fuels is under consideration. The annular fuel design code CEPTAR was developed in the Japan Atomic Energy Agency (JAEA) and verified by using many irradiation experiences with oxide fuels. In addition, the probabilistic fuel design code BORNFREE was also developed to provide a safe and reasonable fuel design and to evaluate the design margins quantitatively. This study aimed at the development of a probabilistic design method formore » annular oxide fuels; this was implemented in the developed BORNFREE-CEPTAR code, and the code was used to make a probabilistic evaluation with regard to the permissive linear power. (author)« less
Rivas, Elena; Lang, Raymond; Eddy, Sean R
2012-02-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.
Rivas, Elena; Lang, Raymond; Eddy, Sean R.
2012-01-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H. W.; Kurth, R. E.
1991-01-01
The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.
Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin
2017-03-01
To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.
Glaucoma risk index: automated glaucoma detection from color fundus images.
Bock, Rüdiger; Meier, Jörg; Nyúl, László G; Hornegger, Joachim; Michelson, Georg
2010-06-01
Glaucoma as a neurodegeneration of the optic nerve is one of the most common causes of blindness. Because revitalization of the degenerated nerve fibers of the optic nerve is impossible early detection of the disease is essential. This can be supported by a robust and automated mass-screening. We propose a novel automated glaucoma detection system that operates on inexpensive to acquire and widely used digital color fundus images. After a glaucoma specific preprocessing, different generic feature types are compressed by an appearance-based dimension reduction technique. Subsequently, a probabilistic two-stage classification scheme combines these features types to extract the novel Glaucoma Risk Index (GRI) that shows a reasonable glaucoma detection performance. On a sample set of 575 fundus images a classification accuracy of 80% has been achieved in a 5-fold cross-validation setup. The GRI gains a competitive area under ROC (AUC) of 88% compared to the established topography-based glaucoma probability score of scanning laser tomography with AUC of 87%. The proposed color fundus image-based GRI achieves a competitive and reliable detection performance on a low-priced modality by the statistical analysis of entire images of the optic nerve head. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment
Karimzadehgan, Maryam; Zhai, ChengXiang
2011-01-01
Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970
Linguraru, Marius George; Pura, John A; Chowdhury, Ananda S; Summers, Ronald M
2010-01-01
The interpretation of medical images benefits from anatomical and physiological priors to optimize computer-aided diagnosis (CAD) applications. Diagnosis also relies on the comprehensive analysis of multiple organs and quantitative measures of soft tissue. An automated method optimized for medical image data is presented for the simultaneous segmentation of four abdominal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans were obtained at two phases: non-contrast and portal venous. Intra-patient data were spatially normalized by non-linear registration. Then 4D erosion using population historic information of contrast-enhanced liver, spleen, and kidneys was applied to multi-phase data to initialize the 4D graph and adapt to patient specific data. CT enhancement information and constraints on shape, from Parzen windows, and location, from a probabilistic atlas, were input into a new formulation of a 4D graph. Comparative results demonstrate the effects of appearance and enhancement, and shape and location on organ segmentation.
Probabilistic models of cognition: conceptual foundations.
Chater, Nick; Tenenbaum, Joshua B; Yuille, Alan
2006-07-01
Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, 'sophisticated' probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore how the approach relates to studies of explicit probabilistic reasoning, and give a brief overview of the field as it stands today.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... Role of Risk Analysis in Decision-Making AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... documents entitled, ``Using Probabilistic Methods to Enhance the Role of Risk Analysis in Decision- Making... Probabilistic Methods to Enhance the Role of Risk Analysis in Decision-Making, with Case Study Examples'' and...
Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave
2014-01-01
We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...
Probabilistic composite micromechanics
NASA Technical Reports Server (NTRS)
Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.
1988-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.
Probabilistic BPRRC: Robust Change Detection against Illumination Changes and Background Movements
NASA Astrophysics Data System (ADS)
Yokoi, Kentaro
This paper presents Probabilistic Bi-polar Radial Reach Correlation (PrBPRRC), a change detection method that is robust against illumination changes and background movements. Most of the traditional change detection methods are robust against either illumination changes or background movements; BPRRC is one of the illumination-robust change detection methods. We introduce a probabilistic background texture model into BPRRC and add the robustness against background movements including foreground invasions such as moving cars, walking people, swaying trees, and falling snow. We show the superiority of PrBPRRC in the environment with illumination changes and background movements by using three public datasets and one private dataset: ATON Highway data, Karlsruhe traffic sequence data, PETS 2007 data, and Walking-in-a-room data.
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
NASA Astrophysics Data System (ADS)
Schön, Thomas B.; Svensson, Andreas; Murray, Lawrence; Lindsten, Fredrik
2018-05-01
Probabilistic modeling provides the capability to represent and manipulate uncertainty in data, models, predictions and decisions. We are concerned with the problem of learning probabilistic models of dynamical systems from measured data. Specifically, we consider learning of probabilistic nonlinear state-space models. There is no closed-form solution available for this problem, implying that we are forced to use approximations. In this tutorial we will provide a self-contained introduction to one of the state-of-the-art methods-the particle Metropolis-Hastings algorithm-which has proven to offer a practical approximation. This is a Monte Carlo based method, where the particle filter is used to guide a Markov chain Monte Carlo method through the parameter space. One of the key merits of the particle Metropolis-Hastings algorithm is that it is guaranteed to converge to the "true solution" under mild assumptions, despite being based on a particle filter with only a finite number of particles. We will also provide a motivating numerical example illustrating the method using a modeling language tailored for sequential Monte Carlo methods. The intention of modeling languages of this kind is to open up the power of sophisticated Monte Carlo methods-including particle Metropolis-Hastings-to a large group of users without requiring them to know all the underlying mathematical details.
Alternate Methods in Refining the SLS Nozzle Plug Loads
NASA Technical Reports Server (NTRS)
Burbank, Scott; Allen, Andrew
2013-01-01
Numerical analysis has shown that the SLS nozzle environmental barrier (nozzle plug) design is inadequate for the prelaunch condition, which consists of two dominant loads: 1) the main engines startup pressure and 2) an environmentally induced pressure. Efforts to reduce load conservatisms included a dynamic analysis which showed a 31% higher safety factor compared to the standard static analysis. The environmental load is typically approached with a deterministic method using the worst possible combinations of pressures and temperatures. An alternate probabilistic approach, utilizing the distributions of pressures and temperatures, resulted in a 54% reduction in the environmental pressure load. A Monte Carlo simulation of environmental load that used five years of historical pressure and temperature data supported the results of the probabilistic analysis, indicating the probabilistic load is reflective of a 3-sigma condition (1 in 370 probability). Utilizing the probabilistic load analysis eliminated excessive conservatisms and will prevent a future overdesign of the nozzle plug. Employing a similar probabilistic approach to other design and analysis activities can result in realistic yet adequately conservative solutions.
NASA Astrophysics Data System (ADS)
Mayr, G. J.; Kneringer, P.; Dietz, S. J.; Zeileis, A.
2016-12-01
Low visibility or low cloud ceiling reduce the capacity of airports by requiring special low visibility procedures (LVP) for incoming/departing aircraft. Probabilistic forecasts when such procedures will become necessary help to mitigate delays and economic losses.We compare the performance of probabilistic nowcasts with two statistical methods: ordered logistic regression, and trees and random forests. These models harness historic and current meteorological measurements in the vicinity of the airport and LVP states, and incorporate diurnal and seasonal climatological information via generalized additive models (GAM). The methods are applied at Vienna International Airport (Austria). The performance is benchmarked against climatology, persistence and human forecasters.
NASA Technical Reports Server (NTRS)
Canfield, R. C.; Ricchiazzi, P. J.
1980-01-01
An approximate probabilistic radiative transfer equation and the statistical equilibrium equations are simultaneously solved for a model hydrogen atom consisting of three bound levels and ionization continuum. The transfer equation for L-alpha, L-beta, H-alpha, and the Lyman continuum is explicitly solved assuming complete redistribution. The accuracy of this approach is tested by comparing source functions and radiative loss rates to values obtained with a method that solves the exact transfer equation. Two recent model solar-flare chromospheres are used for this test. It is shown that for the test atmospheres the probabilistic method gives values of the radiative loss rate that are characteristically good to a factor of 2. The advantage of this probabilistic approach is that it retains a description of the dominant physical processes of radiative transfer in the complete redistribution case, yet it achieves a major reduction in computational requirements.
Pasta, D J; Taylor, J L; Henning, J M
1999-01-01
Decision-analytic models are frequently used to evaluate the relative costs and benefits of alternative therapeutic strategies for health care. Various types of sensitivity analysis are used to evaluate the uncertainty inherent in the models. Although probabilistic sensitivity analysis is more difficult theoretically and computationally, the results can be much more powerful and useful than deterministic sensitivity analysis. The authors show how a Monte Carlo simulation can be implemented using standard software to perform a probabilistic sensitivity analysis incorporating the bootstrap. The method is applied to a decision-analytic model evaluating the cost-effectiveness of Helicobacter pylori eradication. The necessary steps are straightforward and are described in detail. The use of the bootstrap avoids certain difficulties encountered with theoretical distributions. The probabilistic sensitivity analysis provided insights into the decision-analytic model beyond the traditional base-case and deterministic sensitivity analyses and should become the standard method for assessing sensitivity.
Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis
2013-09-01
During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modelingmore » and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.« less
NASA Astrophysics Data System (ADS)
Győri, Erzsébet; Gráczer, Zoltán; Tóth, László; Bán, Zoltán; Horváth, Tibor
2017-04-01
Liquefaction potential evaluations are generally made to assess the hazard from specific scenario earthquakes. These evaluations may estimate the potential in a binary fashion (yes/no), define a factor of safety or predict the probability of liquefaction given a scenario event. Usually the level of ground shaking is obtained from the results of PSHA. Although it is determined probabilistically, a single level of ground shaking is selected and used within the liquefaction potential evaluation. In contrary, the fully probabilistic liquefaction potential assessment methods provide a complete picture of liquefaction hazard, namely taking into account the joint probability distribution of PGA and magnitude of earthquake scenarios; both of which are key inputs in the stress-based simplified methods. Kramer and Mayfield (2007) has developed a fully probabilistic liquefaction potential evaluation method using a performance-based earthquake engineering (PBEE) framework. The results of the procedure are the direct estimate of the return period of liquefaction and the liquefaction hazard curves in function of depth. The method combines the disaggregation matrices computed for different exceedance frequencies during probabilistic seismic hazard analysis with one of the recent models for the conditional probability of liquefaction. We have developed a software for the assessment of performance-based liquefaction triggering on the basis of Kramer and Mayfield method. Originally the SPT based probabilistic method of Cetin et al. (2004) was built-in into the procedure of Kramer and Mayfield to compute the conditional probability however there is no professional consensus about its applicability. Therefore we have included not only Cetin's method but Idriss and Boulanger (2012) SPT based moreover Boulanger and Idriss (2014) CPT based procedures into our computer program. In 1956, a damaging earthquake of magnitude 5.6 occurred in Dunaharaszti, in Hungary. Its epicenter was located about 5 km from the southern boundary of Budapest. The quake caused serious damages in the epicentral area and in the southern districts of the capital. The epicentral area of the earthquake is located along the Danube River. Sand boils were observed in some locations that indicated the occurrence of liquefaction. Because their exact locations were recorded at the time of the earthquake, in situ geotechnical measurements (CPT and SPT) could be performed at two (Dunaharaszti and Taksony) sites. The different types of measurements enabled the probabilistic liquefaction hazard computations at the two studied sites. We have compared the return periods of liquefaction that were computed using different built-in simplified stress based methods.
An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 1. Theory
Yen, Chung-Cheng; Guymon, Gary L.
1990-01-01
An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.
An Efficient Deterministic-Probabilistic Approach to Modeling Regional Groundwater Flow: 1. Theory
NASA Astrophysics Data System (ADS)
Yen, Chung-Cheng; Guymon, Gary L.
1990-07-01
An efficient probabilistic model is developed and cascaded with a deterministic model for predicting water table elevations in regional aquifers. The objective is to quantify model uncertainty where precise estimates of water table elevations may be required. The probabilistic model is based on the two-point probability method which only requires prior knowledge of uncertain variables mean and coefficient of variation. The two-point estimate method is theoretically developed and compared with the Monte Carlo simulation method. The results of comparisons using hypothetical determinisitic problems indicate that the two-point estimate method is only generally valid for linear problems where the coefficients of variation of uncertain parameters (for example, storage coefficient and hydraulic conductivity) is small. The two-point estimate method may be applied to slightly nonlinear problems with good results, provided coefficients of variation are small. In such cases, the two-point estimate method is much more efficient than the Monte Carlo method provided the number of uncertain variables is less than eight.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Astrophysics Data System (ADS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Probabilistic terrain models from waveform airborne LiDAR: AutoProbaDTM project results
NASA Astrophysics Data System (ADS)
Jalobeanu, A.; Goncalves, G. R.
2012-12-01
The main objective of the AutoProbaDTM project was to develop new methods for automated probabilistic topographic map production using the latest LiDAR scanners. It included algorithmic development, implementation and validation over a 200 km2 test area in continental Portugal, representing roughly 100 GB of raw data and half a billion waveforms. We aimed to generate digital terrain models automatically, including ground topography as well as uncertainty maps, using Bayesian inference for model estimation and error propagation, and approaches based on image processing. Here we are presenting the results of the completed project (methodological developments and processing results from the test dataset). In June 2011, the test data were acquired in central Portugal, over an area of geomorphological and ecological interest, using a Riegl LMS-Q680i sensor. We managed to survey 70% of the test area at a satisfactory sampling rate, the angular spacing matching the laser beam divergence and the ground spacing nearly equal to the footprint (almost 4 pts/m2 for a 50cm footprint at 1500 m AGL). This is crucial for a correct processing as aliasing artifacts are significantly reduced. A reverse engineering had to be done as the data were delivered in a proprietary binary format, so we were able to read the waveforms and the essential parameters. A robust waveform processing method has been implemented and tested, georeferencing and geometric computations have been coded. Fast gridding and interpolation techniques have been developed. Validation is nearly completed, as well as geometric calibration, IMU error correction, full error propagation and large-scale DEM reconstruction. A probabilistic processing software package has been implemented and code optimization is in progress. This package includes new boresight calibration procedures, robust peak extraction modules, DEM gridding and interpolation methods, and means to visualize the produced uncertain surfaces (topography and accuracy map). Vegetation filtering for bare ground extraction has been left aside, and we wish to explore this research area in the future. A thorough validation of the new techniques and computed models has been conducted, using large numbers of ground control points (GCP) acquired with GPS, evenly distributed and classified according to ground cover and terrain characteristics. More than 16,000 GCP have been acquired during field work. The results are now freely accessible online through a web map service (GeoServer) thus allowing users to visualize data interactively without having to download the full processed dataset.
Fully probabilistic control design in an adaptive critic framework.
Herzallah, Randa; Kárný, Miroslav
2011-12-01
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Development of a probabilistic analysis methodology for structural reliability estimation
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.
1991-01-01
The novel probabilistic analysis method for assessment of structural reliability presented, which combines fast-convolution with an efficient structural reliability analysis, can after identifying the most important point of a limit state proceed to establish a quadratic-performance function. It then transforms the quadratic function into a linear one, and applies fast convolution. The method is applicable to problems requiring computer-intensive structural analysis. Five illustrative examples of the method's application are given.
McDonald, Gene D; Storrie-Lombardi, Michael C
2006-02-01
The relative abundance of the protein amino acids has been previously investigated as a potential marker for biogenicity in meteoritic samples. However, these investigations were executed without a quantitative metric to evaluate distribution variations, and they did not account for the possibility of interdisciplinary systematic error arising from inter-laboratory differences in extraction and detection techniques. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and stochastic probabilistic artificial neural networks (ANNs) were used to compare the distributions for nine protein amino acids previously reported for the Murchison carbonaceous chondrite, Mars meteorites (ALH84001, Nakhla, and EETA79001), prebiotic synthesis experiments, and terrestrial biota and sediments. These techniques allowed us (1) to identify a shift in terrestrial amino acid distributions secondary to diagenesis; (2) to detect differences in terrestrial distributions that may be systematic differences between extraction and analysis techniques in biological and geological laboratories; and (3) to determine that distributions in meteoritic samples appear more similar to prebiotic chemistry samples than they do to the terrestrial unaltered or diagenetic samples. Both diagenesis and putative interdisciplinary differences in analysis complicate interpretation of meteoritic amino acid distributions. We propose that the analysis of future samples from such diverse sources as meteoritic influx, sample return missions, and in situ exploration of Mars would be less ambiguous with adoption of standardized assay techniques, systematic inclusion of assay standards, and the use of a quantitative, probabilistic metric. We present here one such metric determined by sequential feature extraction and normalization (PCA), information-driven automated exploration of classification possibilities (HCA), and prediction of classification accuracy (ANNs).
Bayesian probabilistic population projections for all countries
Raftery, Adrian E.; Li, Nan; Ševčíková, Hana; Gerland, Patrick; Heilig, Gerhard K.
2012-01-01
Projections of countries’ future populations, broken down by age and sex, are widely used for planning and research. They are mostly done deterministically, but there is a widespread need for probabilistic projections. We propose a Bayesian method for probabilistic population projections for all countries. The total fertility rate and female and male life expectancies at birth are projected probabilistically using Bayesian hierarchical models estimated via Markov chain Monte Carlo using United Nations population data for all countries. These are then converted to age-specific rates and combined with a cohort component projection model. This yields probabilistic projections of any population quantity of interest. The method is illustrated for five countries of different demographic stages, continents and sizes. The method is validated by an out of sample experiment in which data from 1950–1990 are used for estimation, and applied to predict 1990–2010. The method appears reasonably accurate and well calibrated for this period. The results suggest that the current United Nations high and low variants greatly underestimate uncertainty about the number of oldest old from about 2050 and that they underestimate uncertainty for high fertility countries and overstate uncertainty for countries that have completed the demographic transition and whose fertility has started to recover towards replacement level, mostly in Europe. The results also indicate that the potential support ratio (persons aged 20–64 per person aged 65+) will almost certainly decline dramatically in most countries over the coming decades. PMID:22908249
A probabilistic approach to composite micromechanics
NASA Technical Reports Server (NTRS)
Stock, T. A.; Bellini, P. X.; Murthy, P. L. N.; Chamis, C. C.
1988-01-01
Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
NASA Astrophysics Data System (ADS)
Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.
2017-08-01
While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
An autonomous mobile system for the management of COPD.
van der Heijden, Maarten; Lucas, Peter J F; Lijnse, Bas; Heijdra, Yvonne F; Schermer, Tjard R J
2013-06-01
Managing chronic disease through automated systems has the potential to both benefit the patient and reduce health-care costs. We have developed and evaluated a disease management system for patients with chronic obstructive pulmonary disease (COPD). Its aim is to predict and detect exacerbations and, through this, help patients self-manage their disease to prevent hospitalisation. The carefully crafted intelligent system consists of a mobile device that is able to collect case-specific, subjective and objective, physiological data, and to alert the patient by a patient-specific interpretation of the data by means of probabilistic reasoning. Collected data are also sent to a central server for inspection by health-care professionals. We evaluated the probabilistic model using cross-validation and ROC analyses on data from an earlier study and by an independent data set. Furthermore a pilot with actual COPD patients has been conducted to test technical feasibility and to obtain user feedback. Model evaluation results show that we can reliably detect exacerbations. Pilot study results suggest that an intervention based on this system could be successful. Copyright © 2013 Elsevier Inc. All rights reserved.
Probabilistic liver atlas construction.
Dura, Esther; Domingo, Juan; Ayala, Guillermo; Marti-Bonmati, Luis; Goceri, E
2017-01-13
Anatomical atlases are 3D volumes or shapes representing an organ or structure of the human body. They contain either the prototypical shape of the object of interest together with other shapes representing its statistical variations (statistical atlas) or a probability map of belonging to the object (probabilistic atlas). Probabilistic atlases are mostly built with simple estimations only involving the data at each spatial location. A new method for probabilistic atlas construction that uses a generalized linear model is proposed. This method aims to improve the estimation of the probability to be covered by the liver. Furthermore, all methods to build an atlas involve previous coregistration of the sample of shapes available. The influence of the geometrical transformation adopted for registration in the quality of the final atlas has not been sufficiently investigated. The ability of an atlas to adapt to a new case is one of the most important quality criteria that should be taken into account. The presented experiments show that some methods for atlas construction are severely affected by the previous coregistration step. We show the good performance of the new approach. Furthermore, results suggest that extremely flexible registration methods are not always beneficial, since they can reduce the variability of the atlas and hence its ability to give sensible values of probability when used as an aid in segmentation of new cases.
NASA Technical Reports Server (NTRS)
Warner, James E.; Zubair, Mohammad; Ranjan, Desh
2017-01-01
This work investigates novel approaches to probabilistic damage diagnosis that utilize surrogate modeling and high performance computing (HPC) to achieve substantial computational speedup. Motivated by Digital Twin, a structural health management (SHM) paradigm that integrates vehicle-specific characteristics with continual in-situ damage diagnosis and prognosis, the methods studied herein yield near real-time damage assessments that could enable monitoring of a vehicle's health while it is operating (i.e. online SHM). High-fidelity modeling and uncertainty quantification (UQ), both critical to Digital Twin, are incorporated using finite element method simulations and Bayesian inference, respectively. The crux of the proposed Bayesian diagnosis methods, however, is the reformulation of the numerical sampling algorithms (e.g. Markov chain Monte Carlo) used to generate the resulting probabilistic damage estimates. To this end, three distinct methods are demonstrated for rapid sampling that utilize surrogate modeling and exploit various degrees of parallelism for leveraging HPC. The accuracy and computational efficiency of the methods are compared on the problem of strain-based crack identification in thin plates. While each approach has inherent problem-specific strengths and weaknesses, all approaches are shown to provide accurate probabilistic damage diagnoses and several orders of magnitude computational speedup relative to a baseline Bayesian diagnosis implementation.
Probabilistic Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1997-01-01
Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process, through composite mechanics and structural components. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength, For example, results show that: in situ fiber tensile strength is 90% of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables: a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide-spread scatter at 90% cyclic-stress to static-strength ratios.
Probabilistic population projections with migration uncertainty
Azose, Jonathan J.; Ševčíková, Hana; Raftery, Adrian E.
2016-01-01
We produce probabilistic projections of population for all countries based on probabilistic projections of fertility, mortality, and migration. We compare our projections to those from the United Nations’ Probabilistic Population Projections, which uses similar methods for fertility and mortality but deterministic migration projections. We find that uncertainty in migration projection is a substantial contributor to uncertainty in population projections for many countries. Prediction intervals for the populations of Northern America and Europe are over 70% wider, whereas prediction intervals for the populations of Africa, Asia, and the world as a whole are nearly unchanged. Out-of-sample validation shows that the model is reasonably well calibrated. PMID:27217571
Application of Probabilistic Analysis to Aircraft Impact Dynamics
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Padula, Sharon L.; Stockwell, Alan E.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stressstrain behaviors, laminated composites, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the uncertainty in the simulated responses. Several criteria are used to determine that a response surface method is the most appropriate probabilistic approach. The work is extended to compare optimization results with and without probabilistic constraints.
Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food.
Jacobs, Rianne; van der Voet, Hilko; Ter Braak, Cajo J F
Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We attempt to quantify some of this uncertainty by expanding a previous deterministic study on nanosilica (5-200 nm) in food into a fully integrated probabilistic risk assessment. We use the integrated probabilistic risk assessment method in which statistical distributions and bootstrap methods are used to quantify uncertainty and variability in the risk assessment. Due to the large amount of uncertainty present, this probabilistic method, which separates variability from uncertainty, contributed to a better understandable risk assessment. We found that quantifying the uncertainties did not increase the perceived risk relative to the outcome of the deterministic study. We pinpointed particular aspects of the hazard characterization that contributed most to the total uncertainty in the risk assessment, suggesting that further research would benefit most from obtaining more reliable data on those aspects.
Jorjani, Hadi; Zavolan, Mihaela
2014-04-01
Accurate identification of transcription start sites (TSSs) is an essential step in the analysis of transcription regulatory networks. In higher eukaryotes, the capped analysis of gene expression technology enabled comprehensive annotation of TSSs in genomes such as those of mice and humans. In bacteria, an equivalent approach, termed differential RNA sequencing (dRNA-seq), has recently been proposed, but the application of this approach to a large number of genomes is hindered by the paucity of computational analysis methods. With few exceptions, when the method has been used, annotation of TSSs has been largely done manually. In this work, we present a computational method called 'TSSer' that enables the automatic inference of TSSs from dRNA-seq data. The method rests on a probabilistic framework for identifying both genomic positions that are preferentially enriched in the dRNA-seq data as well as preferentially captured relative to neighboring genomic regions. Evaluating our approach for TSS calling on several publicly available datasets, we find that TSSer achieves high consistency with the curated lists of annotated TSSs, but identifies many additional TSSs. Therefore, TSSer can accelerate genome-wide identification of TSSs in bacterial genomes and can aid in further characterization of bacterial transcription regulatory networks. TSSer is freely available under GPL license at http://www.clipz.unibas.ch/TSSer/index.php
Characterization of the optic disc in retinal imagery using a probabilistic approach
NASA Astrophysics Data System (ADS)
Tobin, Kenneth W., Jr.; Chaum, Edward; Govindasamy, V. P.; Karnowski, Thomas P.; Sezer, Omer
2006-03-01
The application of computer based image analysis to the diagnosis of retinal disease is rapidly becoming a reality due to the broad-based acceptance of electronic imaging devices throughout the medical community and through the collection and accumulation of large patient histories in picture archiving and communications systems. Advances in the imaging of ocular anatomy and pathology can now provide data to diagnose and quantify specific diseases such as diabetic retinopathy (DR). Visual disability and blindness have a profound socioeconomic impact upon the diabetic population and DR is the leading cause of new blindness in working-age adults in the industrialized world. To reduce the impact of diabetes on vision loss, robust automation is required to achieve productive computer-based screening of large at-risk populations at lower cost. Through this research we are developing automation methods for locating and characterizing important structures in the human retina such as the vascular arcades, optic nerve, macula, and lesions. In this paper we present results for the automatic detection of the optic nerve using digital red-free fundus photography. Our method relies on the accurate segmentation of the vasculature of the retina along with spatial probability distributions describing the luminance across the retina and the density, average thickness, and average orientation of the vasculature in relation to the position of the optic nerve. With these features and other prior knowledge, we predict the location of the optic nerve in the retina using a two-class, Bayesian classifier. We report 81% detection performance on a broad range of red-free fundus images representing a population of over 345 patients with 19 different pathologies associated with DR.
Ethnicity and Population Structure in Personal Naming Networks
Mateos, Pablo; Longley, Paul A.; O'Sullivan, David
2011-01-01
Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how ‘naming networks’, constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply ‘emerge’ from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new understandings of migration, identity, integration and social interaction across the world. PMID:21909399
Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
Engemann, Denis A; Gramfort, Alexandre
2015-03-01
Magnetoencephalography and electroencephalography (M/EEG) measure non-invasively the weak electromagnetic fields induced by post-synaptic neural currents. The estimation of the spatial covariance of the signals recorded on M/EEG sensors is a building block of modern data analysis pipelines. Such covariance estimates are used in brain-computer interfaces (BCI) systems, in nearly all source localization methods for spatial whitening as well as for data covariance estimation in beamformers. The rationale for such models is that the signals can be modeled by a zero mean Gaussian distribution. While maximizing the Gaussian likelihood seems natural, it leads to a covariance estimate known as empirical covariance (EC). It turns out that the EC is a poor estimate of the true covariance when the number of samples is small. To address this issue the estimation needs to be regularized. The most common approach downweights off-diagonal coefficients, while more advanced regularization methods are based on shrinkage techniques or generative models with low rank assumptions: probabilistic PCA (PPCA) and factor analysis (FA). Using cross-validation all of these models can be tuned and compared based on Gaussian likelihood computed on unseen data. We investigated these models on simulations, one electroencephalography (EEG) dataset as well as magnetoencephalography (MEG) datasets from the most common MEG systems. First, our results demonstrate that different models can be the best, depending on the number of samples, heterogeneity of sensor types and noise properties. Second, we show that the models tuned by cross-validation are superior to models with hand-selected regularization. Hence, we propose an automated solution to the often overlooked problem of covariance estimation of M/EEG signals. The relevance of the procedure is demonstrated here for spatial whitening and source localization of MEG signals. Copyright © 2015 Elsevier Inc. All rights reserved.
Influence Diagrams as Decision-Making Tools for Pesticide Risk Management
The pesticide policy arena is filled with discussion of probabilistic approaches to assess ecological risk, however, similar discussions about implementing formal probabilistic methods in pesticide risk decision making are less common. An influence diagram approach is proposed f...
Environmental probabilistic quantitative assessment methodologies
Crovelli, R.A.
1995-01-01
In this paper, four petroleum resource assessment methodologies are presented as possible pollution assessment methodologies, even though petroleum as a resource is desirable, whereas pollution is undesirable. A methodology is defined in this paper to consist of a probability model and a probabilistic method, where the method is used to solve the model. The following four basic types of probability models are considered: 1) direct assessment, 2) accumulation size, 3) volumetric yield, and 4) reservoir engineering. Three of the four petroleum resource assessment methodologies were written as microcomputer systems, viz. TRIAGG for direct assessment, APRAS for accumulation size, and FASPU for reservoir engineering. A fourth microcomputer system termed PROBDIST supports the three assessment systems. The three assessment systems have different probability models but the same type of probabilistic method. The type of advantages of the analytic method are in computational speed and flexibility, making it ideal for a microcomputer. -from Author
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, Robert J.; Kuhlman, Kristopher L
2016-05-01
We present a method of control variates for calculating improved estimates for mean performance quantities of interest, E(PQI) , computed from Monte Carlo probabilistic simulations. An example of a PQI is the concentration of a contaminant at a particular location in a problem domain computed from simulations of transport in porous media. To simplify the presentation, the method is described in the setting of a one- dimensional elliptical model problem involving a single uncertain parameter represented by a probability distribution. The approach can be easily implemented for more complex problems involving multiple uncertain parameters and in particular for application tomore » probabilistic performance assessment of deep geologic nuclear waste repository systems. Numerical results indicate the method can produce estimates of E(PQI)having superior accuracy on coarser meshes and reduce the required number of simulations needed to achieve an acceptable estimate.« less
Perez-Cruz, Pedro E.; dos Santos, Renata; Silva, Thiago Buosi; Crovador, Camila Souza; Nascimento, Maria Salete de Angelis; Hall, Stacy; Fajardo, Julieta; Bruera, Eduardo; Hui, David
2014-01-01
Context Survival prognostication is important during end-of-life. The accuracy of clinician prediction of survival (CPS) over time has not been well characterized. Objectives To examine changes in prognostication accuracy during the last 14 days of life in a cohort of patients with advanced cancer admitted to two acute palliative care units and to compare the accuracy between the temporal and probabilistic approaches. Methods Physicians and nurses prognosticated survival daily for cancer patients in two hospitals until death/discharge using two prognostic approaches: temporal and probabilistic. We assessed accuracy for each method daily during the last 14 days of life comparing accuracy at day −14 (baseline) with accuracy at each time point using a test of proportions. Results 6718 temporal and 6621 probabilistic estimations were provided by physicians and nurses for 311 patients, respectively. Median (interquartile range) survival was 8 (4, 20) days. Temporal CPS had low accuracy (10–40%) and did not change over time. In contrast, probabilistic CPS was significantly more accurate (p<.05 at each time point) but decreased close to death. Conclusion Probabilistic CPS was consistently more accurate than temporal CPS over the last 14 days of life; however, its accuracy decreased as patients approached death. Our findings suggest that better tools to predict impending death are necessary. PMID:24746583
NASA Technical Reports Server (NTRS)
Fayssal, Safie; Weldon, Danny
2008-01-01
The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.
General Purpose Probabilistic Programming Platform with Effective Stochastic Inference
2018-04-01
2.2 Venture 10 2.3 BayesDB 12 2.4 Picture 17 2.5 MetaProb 20 3.0 METHODS , ASSUMPTIONS, AND PROCEDURES 22 4.0 RESULTS AND DISCUSSION 23 4.1...The methods section outlines the research approach. The results and discussion section gives representative quantitative and qualitative results...modeling via CrossCat, a probabilistic method that emulates many of the judgment calls ordinarily made by a human data analyst. This AI assistance
Superposition-Based Analysis of First-Order Probabilistic Timed Automata
NASA Astrophysics Data System (ADS)
Fietzke, Arnaud; Hermanns, Holger; Weidenbach, Christoph
This paper discusses the analysis of first-order probabilistic timed automata (FPTA) by a combination of hierarchic first-order superposition-based theorem proving and probabilistic model checking. We develop the overall semantics of FPTAs and prove soundness and completeness of our method for reachability properties. Basically, we decompose FPTAs into their time plus first-order logic aspects on the one hand, and their probabilistic aspects on the other hand. Then we exploit the time plus first-order behavior by hierarchic superposition over linear arithmetic. The result of this analysis is the basis for the construction of a reachability equivalent (to the original FPTA) probabilistic timed automaton to which probabilistic model checking is finally applied. The hierarchic superposition calculus required for the analysis is sound and complete on the first-order formulas generated from FPTAs. It even works well in practice. We illustrate the potential behind it with a real-life DHCP protocol example, which we analyze by means of tool chain support.
Ali, Anjum A; Dale, Anders M; Badea, Alexandra; Johnson, G Allan
2005-08-15
We present the automated segmentation of magnetic resonance microscopy (MRM) images of the C57BL/6J mouse brain into 21 neuroanatomical structures, including the ventricular system, corpus callosum, hippocampus, caudate putamen, inferior colliculus, internal capsule, globus pallidus, and substantia nigra. The segmentation algorithm operates on multispectral, three-dimensional (3D) MR data acquired at 90-microm isotropic resolution. Probabilistic information used in the segmentation is extracted from training datasets of T2-weighted, proton density-weighted, and diffusion-weighted acquisitions. Spatial information is employed in the form of prior probabilities of occurrence of a structure at a location (location priors) and the pairwise probabilities between structures (contextual priors). Validation using standard morphometry indices shows good consistency between automatically segmented and manually traced data. Results achieved in the mouse brain are comparable with those achieved in human brain studies using similar techniques. The segmentation algorithm shows excellent potential for routine morphological phenotyping of mouse models.
Improving the reliability of automated non-destructive inspection
NASA Astrophysics Data System (ADS)
Brierley, N.; Tippetts, T.; Cawley, P.
2014-02-01
In automated NDE a region of an inspected component is often interrogated several times, be it within a single data channel, across multiple channels or over the course of repeated inspections. The systematic combination of these diverse readings is recognized to provide a means to improve the reliability of the inspection, for example by enabling noise suppression. Specifically, such data fusion makes it possible to declare regions of the component defect-free to a very high probability whilst readily identifying indications. Registration, aligning input datasets to a common coordinate system, is a critical pre-computation before meaningful data fusion takes place. A novel scheme based on a multiobjective optimization is described. The developed data fusion framework, that is able to identify and rate possible indications in the dataset probabilistically, based on local data statistics, is outlined. The process is demonstrated on large data sets from the industrial ultrasonic testing of aerospace turbine disks, with major improvements in the probability of detection and probability of false call being obtained.
Khan, F I; Abbasi, S A
2000-07-10
Fault tree analysis (FTA) is based on constructing a hypothetical tree of base events (initiating events) branching into numerous other sub-events, propagating the fault and eventually leading to the top event (accident). It has been a powerful technique used traditionally in identifying hazards in nuclear installations and power industries. As the systematic articulation of the fault tree is associated with assigning probabilities to each fault, the exercise is also sometimes called probabilistic risk assessment. But powerful as this technique is, it is also very cumbersome and costly, limiting its area of application. We have developed a new algorithm based on analytical simulation (named as AS-II), which makes the application of FTA simpler, quicker, and cheaper; thus opening up the possibility of its wider use in risk assessment in chemical process industries. Based on the methodology we have developed a computer-automated tool. The details are presented in this paper.
NASA Astrophysics Data System (ADS)
Klügel, J.
2006-12-01
Deterministic scenario-based seismic hazard analysis has a long tradition in earthquake engineering for developing the design basis of critical infrastructures like dams, transport infrastructures, chemical plants and nuclear power plants. For many applications besides of the design of infrastructures it is of interest to assess the efficiency of the design measures taken. These applications require a method allowing to perform a meaningful quantitative risk analysis. A new method for a probabilistic scenario-based seismic risk analysis has been developed based on a probabilistic extension of proven deterministic methods like the MCE- methodology. The input data required for the method are entirely based on the information which is necessary to perform any meaningful seismic hazard analysis. The method is based on the probabilistic risk analysis approach common for applications in nuclear technology developed originally by Kaplan & Garrick (1981). It is based (1) on a classification of earthquake events into different size classes (by magnitude), (2) the evaluation of the frequency of occurrence of events, assigned to the different classes (frequency of initiating events, (3) the development of bounding critical scenarios assigned to each class based on the solution of an optimization problem and (4) in the evaluation of the conditional probability of exceedance of critical design parameters (vulnerability analysis). The advantage of the method in comparison with traditional PSHA consists in (1) its flexibility, allowing to use different probabilistic models for earthquake occurrence as well as to incorporate advanced physical models into the analysis, (2) in the mathematically consistent treatment of uncertainties, and (3) in the explicit consideration of the lifetime of the critical structure as a criterion to formulate different risk goals. The method was applied for the evaluation of the risk of production interruption losses of a nuclear power plant during its residual lifetime.
A probabilistic approach to aircraft design emphasizing stability and control uncertainties
NASA Astrophysics Data System (ADS)
Delaurentis, Daniel Andrew
In order to address identified deficiencies in current approaches to aerospace systems design, a new method has been developed. This new method for design is based on the premise that design is a decision making activity, and that deterministic analysis and synthesis can lead to poor, or misguided decision making. This is due to a lack of disciplinary knowledge of sufficient fidelity about the product, to the presence of uncertainty at multiple levels of the aircraft design hierarchy, and to a failure to focus on overall affordability metrics as measures of goodness. Design solutions are desired which are robust to uncertainty and are based on the maximum knowledge possible. The new method represents advances in the two following general areas. 1. Design models and uncertainty. The research performed completes a transition from a deterministic design representation to a probabilistic one through a modeling of design uncertainty at multiple levels of the aircraft design hierarchy, including: (1) Consistent, traceable uncertainty classification and representation; (2) Concise mathematical statement of the Probabilistic Robust Design problem; (3) Variants of the Cumulative Distribution Functions (CDFs) as decision functions for Robust Design; (4) Probabilistic Sensitivities which identify the most influential sources of variability. 2. Multidisciplinary analysis and design. Imbedded in the probabilistic methodology is a new approach for multidisciplinary design analysis and optimization (MDA/O), employing disciplinary analysis approximations formed through statistical experimentation and regression. These approximation models are a function of design variables common to the system level as well as other disciplines. For aircraft, it is proposed that synthesis/sizing is the proper avenue for integrating multiple disciplines. Research hypotheses are translated into a structured method, which is subsequently tested for validity. Specifically, the implementation involves the study of the relaxed static stability technology for a supersonic commercial transport aircraft. The probabilistic robust design method is exercised resulting in a series of robust design solutions based on different interpretations of "robustness". Insightful results are obtained and the ability of the method to expose trends in the design space are noted as a key advantage.
NASA Astrophysics Data System (ADS)
Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.
2014-12-01
Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.
Beyond Captions: Linking Figures with Abstract Sentences in Biomedical Articles
Bockhorst, Joseph P.; Conroy, John M.; Agarwal, Shashank; O’Leary, Dianne P.; Yu, Hong
2012-01-01
Although figures in scientific articles have high information content and concisely communicate many key research findings, they are currently under utilized by literature search and retrieval systems. Many systems ignore figures, and those that do not typically only consider caption text. This study describes and evaluates a fully automated approach for associating figures in the body of a biomedical article with sentences in its abstract. We use supervised methods to learn probabilistic language models, hidden Markov models, and conditional random fields for predicting associations between abstract sentences and figures. Three kinds of evidence are used: text in abstract sentences and figures, relative positions of sentences and figures, and the patterns of sentence/figure associations across an article. Each information source is shown to have predictive value, and models that use all kinds of evidence are more accurate than models that do not. Our most accurate method has an -score of 69% on a cross-validation experiment, is competitive with the accuracy of human experts, has significantly better predictive accuracy than state-of-the-art methods and enables users to access figures associated with an abstract sentence with an average of 1.82 fewer mouse clicks. A user evaluation shows that human users find our system beneficial. The system is available at http://FigureItOut.askHERMES.org. PMID:22815711
A novel probabilistic framework for event-based speech recognition
NASA Astrophysics Data System (ADS)
Juneja, Amit; Espy-Wilson, Carol
2003-10-01
One of the reasons for unsatisfactory performance of the state-of-the-art automatic speech recognition (ASR) systems is the inferior acoustic modeling of low-level acoustic-phonetic information in the speech signal. An acoustic-phonetic approach to ASR, on the other hand, explicitly targets linguistic information in the speech signal, but such a system for continuous speech recognition (CSR) is not known to exist. A probabilistic and statistical framework for CSR based on the idea of the representation of speech sounds by bundles of binary valued articulatory phonetic features is proposed. Multiple probabilistic sequences of linguistically motivated landmarks are obtained using binary classifiers of manner phonetic features-syllabic, sonorant and continuant-and the knowledge-based acoustic parameters (APs) that are acoustic correlates of those features. The landmarks are then used for the extraction of knowledge-based APs for source and place phonetic features and their binary classification. Probabilistic landmark sequences are constrained using manner class language models for isolated or connected word recognition. The proposed method could overcome the disadvantages encountered by the early acoustic-phonetic knowledge-based systems that led the ASR community to switch to systems highly dependent on statistical pattern analysis methods and probabilistic language or grammar models.
Joint Probabilistic Projection of Female and Male Life Expectancy
Raftery, Adrian E.; Lalic, Nevena; Gerland, Patrick
2014-01-01
BACKGROUND The United Nations (UN) produces population projections for all countries every two years. These are used by international organizations, governments, the private sector and researchers for policy planning, for monitoring development goals, as inputs to economic and environmental models, and for social and health research. The UN is considering producing fully probabilistic population projections, for which joint probabilistic projections of future female and male life expectancy at birth are needed. OBJECTIVE We propose a methodology for obtaining joint probabilistic projections of female and male life expectancy at birth. METHODS We first project female life expectancy using a one-sex method for probabilistic projection of life expectancy. We then project the gap between female and male life expectancy. We propose an autoregressive model for the gap in a future time period for a particular country, which is a function of female life expectancy and a t-distributed random perturbation. This method takes into account mortality data limitations, is comparable across countries, and accounts for shocks. We estimate all parameters based on life expectancy estimates for 1950–2010. The methods are implemented in the bayesLife and bayesPop R packages. RESULTS We evaluated our model using out-of-sample projections for the period 1995–2010, and found that our method performed better than several possible alternatives. CONCLUSIONS We find that the average gap between female and male life expectancy has been increasing for female life expectancy below 75, and decreasing for female life expectancy above 75. Our projections of the gap are lower than the UN’s 2008 projections for most countries and so lead to higher projections of male life expectancy. PMID:25580082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yilmaz, Şeyda, E-mail: seydayilmaz@ktu.edu.tr; Bayrak, Erdem, E-mail: erdmbyrk@gmail.com; Bayrak, Yusuf, E-mail: bayrak@ktu.edu.tr
In this study we examined and compared the three different probabilistic distribution methods for determining the best suitable model in probabilistic assessment of earthquake hazards. We analyzed a reliable homogeneous earthquake catalogue between a time period 1900-2015 for magnitude M ≥ 6.0 and estimated the probabilistic seismic hazard in the North Anatolian Fault zone (39°-41° N 30°-40° E) using three distribution methods namely Weibull distribution, Frechet distribution and three-parameter Weibull distribution. The distribution parameters suitability was evaluated Kolmogorov-Smirnov (K-S) goodness-of-fit test. We also compared the estimated cumulative probability and the conditional probabilities of occurrence of earthquakes for different elapsed timemore » using these three distribution methods. We used Easyfit and Matlab software to calculate these distribution parameters and plotted the conditional probability curves. We concluded that the Weibull distribution method was the most suitable than other distribution methods in this region.« less
NASA Technical Reports Server (NTRS)
1992-01-01
The technical effort and computer code developed during the first year are summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis.
Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections
NASA Astrophysics Data System (ADS)
Wakazuki, Y.
2015-12-01
A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.
Probabilistic structural analysis using a general purpose finite element program
NASA Astrophysics Data System (ADS)
Riha, D. S.; Millwater, H. R.; Thacker, B. H.
1992-07-01
This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.
Qazi, Arish A; Pekar, Vladimir; Kim, John; Xie, Jason; Breen, Stephen L; Jaffray, David A
2011-11-01
Intensity modulated radiation therapy (IMRT) allows greater control over dose distribution, which leads to a decrease in radiation related toxicity. IMRT, however, requires precise and accurate delineation of the organs at risk and target volumes. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. State of the art auto-segmentation methods are either atlas-based, model-based or hybrid however, robust fully automated segmentation is often difficult due to the insufficient discriminative information provided by standard medical imaging modalities for certain tissue types. In this paper, the authors present a fully automated hybrid approach which combines deformable registration with the model-based approach to accurately segment normal and target tissues from head and neck CT images. The segmentation process starts by using an average atlas to reliably identify salient landmarks in the patient image. The relationship between these landmarks and the reference dataset serves to guide a deformable registration algorithm, which allows for a close initialization of a set of organ-specific deformable models in the patient image, ensuring their robust adaptation to the boundaries of the structures. Finally, the models are automatically fine adjusted by our boundary refinement approach which attempts to model the uncertainty in model adaptation using a probabilistic mask. This uncertainty is subsequently resolved by voxel classification based on local low-level organ-specific features. To quantitatively evaluate the method, they auto-segment several organs at risk and target tissues from 10 head and neck CT images. They compare the segmentations to the manual delineations outlined by the expert. The evaluation is carried out by estimating two common quantitative measures on 10 datasets: volume overlap fraction or the Dice similarity coefficient (DSC), and a geometrical metric, the median symmetric Hausdorff distance (HD), which is evaluated slice-wise. They achieve an average overlap of 93% for the mandible, 91% for the brainstem, 83% for the parotids, 83% for the submandibular glands, and 74% for the lymph node levels. Our automated segmentation framework is able to segment anatomy in the head and neck region with high accuracy within a clinically-acceptable segmentation time.
Structural system reliability calculation using a probabilistic fault tree analysis method
NASA Technical Reports Server (NTRS)
Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.
1992-01-01
The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.
PCEMCAN - Probabilistic Ceramic Matrix Composites Analyzer: User's Guide, Version 1.0
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Mital, Subodh K.; Murthy, Pappu L. N.
1998-01-01
PCEMCAN (Probabalistic CEramic Matrix Composites ANalyzer) is an integrated computer code developed at NASA Lewis Research Center that simulates uncertainties associated with the constituent properties, manufacturing process, and geometric parameters of fiber reinforced ceramic matrix composites and quantifies their random thermomechanical behavior. The PCEMCAN code can perform the deterministic as well as probabilistic analyses to predict thermomechanical properties. This User's guide details the step-by-step procedure to create input file and update/modify the material properties database required to run PCEMCAN computer code. An overview of the geometric conventions, micromechanical unit cell, nonlinear constitutive relationship and probabilistic simulation methodology is also provided in the manual. Fast probability integration as well as Monte-Carlo simulation methods are available for the uncertainty simulation. Various options available in the code to simulate probabilistic material properties and quantify sensitivity of the primitive random variables have been described. The description of deterministic as well as probabilistic results have been described using demonstration problems. For detailed theoretical description of deterministic and probabilistic analyses, the user is referred to the companion documents "Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composite Behavior," NASA TP-3602, 1996 and "Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites", NASA TM 4766, June 1997.
Proposal of a method for evaluating tsunami risk using response-surface methodology
NASA Astrophysics Data System (ADS)
Fukutani, Y.
2017-12-01
Information on probabilistic tsunami inundation hazards is needed to define and evaluate tsunami risk. Several methods for calculating these hazards have been proposed (e.g. Løvholt et al. (2012), Thio (2012), Fukutani et al. (2014), Goda et al. (2015)). However, these methods are inefficient, and their calculation cost is high, since they require multiple tsunami numerical simulations, therefore lacking versatility. In this study, we proposed a simpler method for tsunami risk evaluation using response-surface methodology. Kotani et al. (2016) proposed an evaluation method for the probabilistic distribution of tsunami wave-height using a response-surface methodology. We expanded their study and developed a probabilistic distribution of tsunami inundation depth. We set the depth (x1) and the slip (x2) of an earthquake fault as explanatory variables and tsunami inundation depth (y) as an object variable. Subsequently, tsunami risk could be evaluated by conducting a Monte Carlo simulation, assuming that the generation probability of an earthquake follows a Poisson distribution, the probability distribution of tsunami inundation depth follows the distribution derived from a response-surface, and the damage probability of a target follows a log normal distribution. We applied the proposed method to a wood building located on the coast of Tokyo Bay. We implemented a regression analysis based on the results of 25 tsunami numerical calculations and developed a response-surface, which was defined as y=ax1+bx2+c (a:0.2615, b:3.1763, c=-1.1802). We assumed proper probabilistic distribution for earthquake generation, inundation height, and vulnerability. Based on these probabilistic distributions, we conducted Monte Carlo simulations of 1,000,000 years. We clarified that the expected damage probability of the studied wood building is 22.5%, assuming that an earthquake occurs. The proposed method is therefore a useful and simple way to evaluate tsunami risk using a response-surface and Monte Carlo simulation without conducting multiple tsunami numerical simulations.
76 FR 28102 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
..., Probabilistic Risk Assessment Branch, Division of Risk Analysis, Office of Nuclear Regulatory Research, U.S... approaches and methods (whether quantitative or qualitative, deterministic or probabilistic), data, and... uses in evaluating specific problems or postulated accidents, and data that the staff needs in its...
Campbell, Kieran R; Yau, Christopher
2017-03-15
Modeling bifurcations in single-cell transcriptomics data has become an increasingly popular field of research. Several methods have been proposed to infer bifurcation structure from such data, but all rely on heuristic non-probabilistic inference. Here we propose the first generative, fully probabilistic model for such inference based on a Bayesian hierarchical mixture of factor analyzers. Our model exhibits competitive performance on large datasets despite implementing full Markov-Chain Monte Carlo sampling, and its unique hierarchical prior structure enables automatic determination of genes driving the bifurcation process. We additionally propose an Empirical-Bayes like extension that deals with the high levels of zero-inflation in single-cell RNA-seq data and quantify when such models are useful. We apply or model to both real and simulated single-cell gene expression data and compare the results to existing pseudotime methods. Finally, we discuss both the merits and weaknesses of such a unified, probabilistic approach in the context practical bioinformatics analyses.
Probabilistic Analysis and Density Parameter Estimation Within Nessus
NASA Astrophysics Data System (ADS)
Godines, Cody R.; Manteufel, Randall D.
2002-12-01
This NASA educational grant has the goal of promoting probabilistic analysis methods to undergraduate and graduate UTSA engineering students. Two undergraduate-level and one graduate-level course were offered at UTSA providing a large number of students exposure to and experience in probabilistic techniques. The grant provided two research engineers from Southwest Research Institute the opportunity to teach these courses at UTSA, thereby exposing a large number of students to practical applications of probabilistic methods and state-of-the-art computational methods. In classroom activities, students were introduced to the NESSUS computer program, which embodies many algorithms in probabilistic simulation and reliability analysis. Because the NESSUS program is used at UTSA in both student research projects and selected courses, a student version of a NESSUS manual has been revised and improved, with additional example problems being added to expand the scope of the example application problems. This report documents two research accomplishments in the integration of a new sampling algorithm into NESSUS and in the testing of the new algorithm. The new Latin Hypercube Sampling (LHS) subroutines use the latest NESSUS input file format and specific files for writing output. The LHS subroutines are called out early in the program so that no unnecessary calculations are performed. Proper correlation between sets of multidimensional coordinates can be obtained by using NESSUS' LHS capabilities. Finally, two types of correlation are written to the appropriate output file. The program enhancement was tested by repeatedly estimating the mean, standard deviation, and 99th percentile of four different responses using Monte Carlo (MC) and LHS. These test cases, put forth by the Society of Automotive Engineers, are used to compare probabilistic methods. For all test cases, it is shown that LHS has a lower estimation error than MC when used to estimate the mean, standard deviation, and 99th percentile of the four responses at the 50 percent confidence level and using the same number of response evaluations for each method. In addition, LHS requires fewer calculations than MC in order to be 99.7 percent confident that a single mean, standard deviation, or 99th percentile estimate will be within at most 3 percent of the true value of the each parameter. Again, this is shown for all of the test cases studied. For that reason it can be said that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ; furthermore, the newest LHS module is a valuable new enhancement of the program.
Probabilistic Analysis and Density Parameter Estimation Within Nessus
NASA Technical Reports Server (NTRS)
Godines, Cody R.; Manteufel, Randall D.; Chamis, Christos C. (Technical Monitor)
2002-01-01
This NASA educational grant has the goal of promoting probabilistic analysis methods to undergraduate and graduate UTSA engineering students. Two undergraduate-level and one graduate-level course were offered at UTSA providing a large number of students exposure to and experience in probabilistic techniques. The grant provided two research engineers from Southwest Research Institute the opportunity to teach these courses at UTSA, thereby exposing a large number of students to practical applications of probabilistic methods and state-of-the-art computational methods. In classroom activities, students were introduced to the NESSUS computer program, which embodies many algorithms in probabilistic simulation and reliability analysis. Because the NESSUS program is used at UTSA in both student research projects and selected courses, a student version of a NESSUS manual has been revised and improved, with additional example problems being added to expand the scope of the example application problems. This report documents two research accomplishments in the integration of a new sampling algorithm into NESSUS and in the testing of the new algorithm. The new Latin Hypercube Sampling (LHS) subroutines use the latest NESSUS input file format and specific files for writing output. The LHS subroutines are called out early in the program so that no unnecessary calculations are performed. Proper correlation between sets of multidimensional coordinates can be obtained by using NESSUS' LHS capabilities. Finally, two types of correlation are written to the appropriate output file. The program enhancement was tested by repeatedly estimating the mean, standard deviation, and 99th percentile of four different responses using Monte Carlo (MC) and LHS. These test cases, put forth by the Society of Automotive Engineers, are used to compare probabilistic methods. For all test cases, it is shown that LHS has a lower estimation error than MC when used to estimate the mean, standard deviation, and 99th percentile of the four responses at the 50 percent confidence level and using the same number of response evaluations for each method. In addition, LHS requires fewer calculations than MC in order to be 99.7 percent confident that a single mean, standard deviation, or 99th percentile estimate will be within at most 3 percent of the true value of the each parameter. Again, this is shown for all of the test cases studied. For that reason it can be said that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ; furthermore, the newest LHS module is a valuable new enhancement of the program.
New decoding methods of interleaved burst error-correcting codes
NASA Astrophysics Data System (ADS)
Nakano, Y.; Kasahara, M.; Namekawa, T.
1983-04-01
A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.
Weickert, Thomas W.; Goldberg, Terry E.; Egan, Michael F.; Apud, Jose A.; Meeter, Martijn; Myers, Catherine E.; Gluck, Mark A; Weinberger, Daniel R.
2010-01-01
Background While patients with schizophrenia display an overall probabilistic category learning performance deficit, the extent to which this deficit occurs in unaffected siblings of patients with schizophrenia is unknown. There are also discrepant findings regarding probabilistic category learning acquisition rate and performance in patients with schizophrenia. Methods A probabilistic category learning test was administered to 108 patients with schizophrenia, 82 unaffected siblings, and 121 healthy participants. Results Patients with schizophrenia displayed significant differences from their unaffected siblings and healthy participants with respect to probabilistic category learning acquisition rates. Although siblings on the whole failed to differ from healthy participants on strategy and quantitative indices of overall performance and learning acquisition, application of a revised learning criterion enabling classification into good and poor learners based on individual learning curves revealed significant differences between percentages of sibling and healthy poor learners: healthy (13.2%), siblings (34.1%), patients (48.1%), yielding a moderate relative risk. Conclusions These results clarify previous discrepant findings pertaining to probabilistic category learning acquisition rate in schizophrenia and provide the first evidence for the relative risk of probabilistic category learning abnormalities in unaffected siblings of patients with schizophrenia, supporting genetic underpinnings of probabilistic category learning deficits in schizophrenia. These findings also raise questions regarding the contribution of antipsychotic medication to the probabilistic category learning deficit in schizophrenia. The distinction between good and poor learning may be used to inform genetic studies designed to detect schizophrenia risk alleles. PMID:20172502
Probabilistic liquefaction triggering based on the cone penetration test
Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Tokimatsu, K.
2005-01-01
Performance-based earthquake engineering requires a probabilistic treatment of potential failure modes in order to accurately quantify the overall stability of the system. This paper is a summary of the application portions of the probabilistic liquefaction triggering correlations proposed recently proposed by Moss and co-workers. To enable probabilistic treatment of liquefaction triggering, the variables comprising the seismic load and the liquefaction resistance were treated as inherently uncertain. Supporting data from an extensive Cone Penetration Test (CPT)-based liquefaction case history database were used to develop a probabilistic correlation. The methods used to measure the uncertainty of the load and resistance variables, how the interactions of these variables were treated using Bayesian updating, and how reliability analysis was applied to produce curves of equal probability of liquefaction are presented. The normalization for effective overburden stress, the magnitude correlated duration weighting factor, and the non-linear shear mass participation factor used are also discussed.
Probabilistic thinking and death anxiety: a terror management based study.
Hayslip, Bert; Schuler, Eric R; Page, Kyle S; Carver, Kellye S
2014-01-01
Terror Management Theory has been utilized to understand how death can change behavioral outcomes and social dynamics. One area that is not well researched is why individuals willingly engage in risky behavior that could accelerate their mortality. One method of distancing a potential life threatening outcome when engaging in risky behaviors is through stacking probability in favor of the event not occurring, termed probabilistic thinking. The present study examines the creation and psychometric properties of the Probabilistic Thinking scale in a sample of young, middle aged, and older adults (n = 472). The scale demonstrated adequate internal consistency reliability for each of the four subscales, excellent overall internal consistency, and good construct validity regarding relationships with measures of death anxiety. Reliable age and gender effects in probabilistic thinking were also observed. The relationship of probabilistic thinking as part of a cultural buffer against death anxiety is discussed, as well as its implications for Terror Management research.
A probabilistic method to diagnose faults of air handling units
NASA Astrophysics Data System (ADS)
Dey, Debashis
Air handling unit (AHU) is one of the most extensively used equipment in large commercial buildings. This device is typically customized and lacks quality system integration which can result in hardwire failures and controller errors. Air handling unit Performance Assessment Rules (APAR) is a fault detection tool that uses a set of expert rules derived from mass and energy balances to detect faults in air handling units. APAR is computationally simple enough that it can be embedded in commercial building automation and control systems and relies only upon sensor data and control signals that are commonly available in these systems. Although APAR has many advantages over other methods, for example no training data required and easy to implement commercially, most of the time it is unable to provide the diagnosis of the faults. For instance, a fault on temperature sensor could be fixed bias, drifting bias, inappropriate location, complete failure. Also a fault in mixing box can be return and outdoor damper leak or stuck. In addition, when multiple rules are satisfied the list of faults increases. There is no proper way to have the correct diagnosis for rule based fault detection system. To overcome this limitation we proposed Bayesian Belief Network (BBN) as a diagnostic tool. BBN can be used to simulate diagnostic thinking of FDD experts through a probabilistic way. In this study we developed a new way to detect and diagnose faults in AHU through combining APAR rules and Bayesian Belief network. Bayesian Belief Network is used as a decision support tool for rule based expert system. BBN is highly capable to prioritize faults when multiple rules are satisfied simultaneously. Also it can get information from previous AHU operating conditions and maintenance records to provide proper diagnosis. The proposed model is validated with real time measured data of a campus building at University of Texas at San Antonio (UTSA).The results show that BBN is correctly able to prioritize faults which can be verified by manual investigation.
Development of probabilistic emission inventories of air toxics for Jacksonville, Florida, USA.
Zhao, Yuchao; Frey, H Christopher
2004-11-01
Probabilistic emission inventories were developed for 1,3-butadiene, mercury (Hg), arsenic (As), benzene, formaldehyde, and lead for Jacksonville, FL. To quantify inter-unit variability in empirical emission factor data, the Maximum Likelihood Estimation (MLE) method or the Method of Matching Moments was used to fit parametric distributions. For data sets that contain nondetected measurements, a method based upon MLE was used for parameter estimation. To quantify the uncertainty in urban air toxic emission factors, parametric bootstrap simulation and empirical bootstrap simulation were applied to uncensored and censored data, respectively. The probabilistic emission inventories were developed based on the product of the uncertainties in the emission factors and in the activity factors. The uncertainties in the urban air toxics emission inventories range from as small as -25 to +30% for Hg to as large as -83 to +243% for As. The key sources of uncertainty in the emission inventory for each toxic are identified based upon sensitivity analysis. Typically, uncertainty in the inventory of a given pollutant can be attributed primarily to a small number of source categories. Priorities for improving the inventories and for refining the probabilistic analysis are discussed.
Bayesian Probabilistic Projections of Life Expectancy for All Countries
Raftery, Adrian E.; Chunn, Jennifer L.; Gerland, Patrick; Ševčíková, Hana
2014-01-01
We propose a Bayesian hierarchical model for producing probabilistic forecasts of male period life expectancy at birth for all the countries of the world from the present to 2100. Such forecasts would be an input to the production of probabilistic population projections for all countries, which is currently being considered by the United Nations. To evaluate the method, we did an out-of-sample cross-validation experiment, fitting the model to the data from 1950–1995, and using the estimated model to forecast for the subsequent ten years. The ten-year predictions had a mean absolute error of about 1 year, about 40% less than the current UN methodology. The probabilistic forecasts were calibrated, in the sense that (for example) the 80% prediction intervals contained the truth about 80% of the time. We illustrate our method with results from Madagascar (a typical country with steadily improving life expectancy), Latvia (a country that has had a mortality crisis), and Japan (a leading country). We also show aggregated results for South Asia, a region with eight countries. Free publicly available R software packages called bayesLife and bayesDem are available to implement the method. PMID:23494599
Offerman, Theo; Palley, Asa B
2016-01-01
Strictly proper scoring rules are designed to truthfully elicit subjective probabilistic beliefs from risk neutral agents. Previous experimental studies have identified two problems with this method: (i) risk aversion causes agents to bias their reports toward the probability of [Formula: see text], and (ii) for moderate beliefs agents simply report [Formula: see text]. Applying a prospect theory model of risk preferences, we show that loss aversion can explain both of these behavioral phenomena. Using the insights of this model, we develop a simple off-the-shelf probability assessment mechanism that encourages loss-averse agents to report true beliefs. In an experiment, we demonstrate the effectiveness of this modification in both eliminating uninformative reports and eliciting true probabilistic beliefs.
Lesion segmentation from multimodal MRI using random forest following ischemic stroke.
Mitra, Jhimli; Bourgeat, Pierrick; Fripp, Jurgen; Ghose, Soumya; Rose, Stephen; Salvado, Olivier; Connelly, Alan; Campbell, Bruce; Palmer, Susan; Sharma, Gagan; Christensen, Soren; Carey, Leeanne
2014-09-01
Understanding structure-function relationships in the brain after stroke is reliant not only on the accurate anatomical delineation of the focal ischemic lesion, but also on previous infarcts, remote changes and the presence of white matter hyperintensities. The robust definition of primary stroke boundaries and secondary brain lesions will have significant impact on investigation of brain-behavior relationships and lesion volume correlations with clinical measures after stroke. Here we present an automated approach to identify chronic ischemic infarcts in addition to other white matter pathologies, that may be used to aid the development of post-stroke management strategies. Our approach uses Bayesian-Markov Random Field (MRF) classification to segment probable lesion volumes present on fluid attenuated inversion recovery (FLAIR) MRI. Thereafter, a random forest classification of the information from multimodal (T1-weighted, T2-weighted, FLAIR, and apparent diffusion coefficient (ADC)) MRI images and other context-aware features (within the probable lesion areas) was used to extract areas with high likelihood of being classified as lesions. The final segmentation of the lesion was obtained by thresholding the random forest probabilistic maps. The accuracy of the automated lesion delineation method was assessed in a total of 36 patients (24 male, 12 female, mean age: 64.57±14.23yrs) at 3months after stroke onset and compared with manually segmented lesion volumes by an expert. Accuracy assessment of the automated lesion identification method was performed using the commonly used evaluation metrics. The mean sensitivity of segmentation was measured to be 0.53±0.13 with a mean positive predictive value of 0.75±0.18. The mean lesion volume difference was observed to be 32.32%±21.643% with a high Pearson's correlation of r=0.76 (p<0.0001). The lesion overlap accuracy was measured in terms of Dice similarity coefficient with a mean of 0.60±0.12, while the contour accuracy was observed with a mean surface distance of 3.06mm±3.17mm. The results signify that our method was successful in identifying most of the lesion areas in FLAIR with a low false positive rate. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Tzikang J.; Shiao, Michael
2016-04-01
This paper verified a generic and efficient assessment concept for probabilistic fatigue life management. The concept is developed based on an integration of damage tolerance methodology, simulations methods1, 2, and a probabilistic algorithm RPI (recursive probability integration)3-9 considering maintenance for damage tolerance and risk-based fatigue life management. RPI is an efficient semi-analytical probabilistic method for risk assessment subjected to various uncertainties such as the variability in material properties including crack growth rate, initial flaw size, repair quality, random process modeling of flight loads for failure analysis, and inspection reliability represented by probability of detection (POD). In addition, unlike traditional Monte Carlo simulations (MCS) which requires a rerun of MCS when maintenance plan is changed, RPI can repeatedly use a small set of baseline random crack growth histories excluding maintenance related parameters from a single MCS for various maintenance plans. In order to fully appreciate the RPI method, a verification procedure was performed. In this study, MC simulations in the orders of several hundred billions were conducted for various flight conditions, material properties, and inspection scheduling, POD and repair/replacement strategies. Since the MC simulations are time-consuming methods, the simulations were conducted parallelly on DoD High Performance Computers (HPC) using a specialized random number generator for parallel computing. The study has shown that RPI method is several orders of magnitude more efficient than traditional Monte Carlo simulations.
Extending the Fellegi-Sunter probabilistic record linkage method for approximate field comparators.
DuVall, Scott L; Kerber, Richard A; Thomas, Alun
2010-02-01
Probabilistic record linkage is a method commonly used to determine whether demographic records refer to the same person. The Fellegi-Sunter method is a probabilistic approach that uses field weights based on log likelihood ratios to determine record similarity. This paper introduces an extension of the Fellegi-Sunter method that incorporates approximate field comparators in the calculation of field weights. The data warehouse of a large academic medical center was used as a case study. The approximate comparator extension was compared with the Fellegi-Sunter method in its ability to find duplicate records previously identified in the data warehouse using different demographic fields and matching cutoffs. The approximate comparator extension misclassified 25% fewer pairs and had a larger Welch's T statistic than the Fellegi-Sunter method for all field sets and matching cutoffs. The accuracy gain provided by the approximate comparator extension grew as less information was provided and as the matching cutoff increased. Given the ubiquity of linkage in both clinical and research settings, the incremental improvement of the extension has the potential to make a considerable impact.
Probabilistic framework for product design optimization and risk management
NASA Astrophysics Data System (ADS)
Keski-Rahkonen, J. K.
2018-05-01
Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.
Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.
Efficient Sensitivity Methods for Probabilistic Lifing and Engine Prognostics
2010-09-01
AFRL-RX-WP-TR-2010-4297 EFFICIENT SENSITIVITY METHODS FOR PROBABILISTIC LIFING AND ENGINE PROGNOSTICS Harry Millwater , Ronald Bagley, Jose...5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) Harry Millwater , Ronald Bagley, Jose Garza, D. Wagner, Andrew Bates, and Andy Voorhees 5d...Reliability Assessment, MIL-HDBK-1823, 30 April 1999. 9. Leverant GR, Millwater HR, McClung RC, Enright MP, A New Tool for Design and Certification of
NASA Technical Reports Server (NTRS)
1991-01-01
The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.
Krejsa, Martin; Janas, Petr; Yilmaz, Işık; Marschalko, Marian; Bouchal, Tomas
2013-01-01
The load-carrying system of each construction should fulfill several conditions which represent reliable criteria in the assessment procedure. It is the theory of structural reliability which determines probability of keeping required properties of constructions. Using this theory, it is possible to apply probabilistic computations based on the probability theory and mathematic statistics. Development of those methods has become more and more popular; it is used, in particular, in designs of load-carrying structures with the required level or reliability when at least some input variables in the design are random. The objective of this paper is to indicate the current scope which might be covered by the new method—Direct Optimized Probabilistic Calculation (DOProC) in assessments of reliability of load-carrying structures. DOProC uses a purely numerical approach without any simulation techniques. This provides more accurate solutions to probabilistic tasks, and, in some cases, such approach results in considerably faster completion of computations. DOProC can be used to solve efficiently a number of probabilistic computations. A very good sphere of application for DOProC is the assessment of the bolt reinforcement in the underground and mining workings. For the purposes above, a special software application—“Anchor”—has been developed. PMID:23935412
Constructing Sample Space with Combinatorial Reasoning: A Mixed Methods Study
ERIC Educational Resources Information Center
McGalliard, William A., III.
2012-01-01
Recent curricular developments suggest that students at all levels need to be statistically literate and able to efficiently and accurately make probabilistic decisions. Furthermore, statistical literacy is a requirement to being a well-informed citizen of society. Research also recognizes that the ability to reason probabilistically is supported…
One of the major recommendations of the National Academy of Science to the USEPA, NMFS and USFWS was to utilize probabilistic methods when assessing the risks of pesticides to federally listed endangered and threatened species. The Terrestrial Investigation Model (TIM, version 3....
Three key areas of scientific inquiry in the study of human exposure to environmental contaminants are 1) assessment of aggregate (i.e., multi-pathway, multi-route) exposures, 2) application of probabilistic methods to exposure prediction, and 3) the interpretation of biomarker m...
EXPERIENCES WITH USING PROBABILISTIC EXPOSURE ANALYSIS METHODS IN THE U.S. EPA
Over the past decade various Offices and Programs within the U.S. EPA have either initiated or increased the development and application of probabilistic exposure analysis models. These models have been applied to a broad range of research or regulatory problems in EPA, such as e...
NASA Astrophysics Data System (ADS)
Lowe, R.; Ballester, J.; Robine, J.; Herrmann, F. R.; Jupp, T. E.; Stephenson, D.; Rodó, X.
2013-12-01
Users of climate information often require probabilistic information on which to base their decisions. However, communicating information contained within a probabilistic forecast presents a challenge. In this paper we demonstrate a novel visualisation technique to display ternary probabilistic forecasts on a map in order to inform decision making. In this method, ternary probabilistic forecasts, which assign probabilities to a set of three outcomes (e.g. low, medium, and high risk), are considered as a point in a triangle of barycentric coordinates. This allows a unique colour to be assigned to each forecast from a continuum of colours defined on the triangle. Colour saturation increases with information gain relative to the reference forecast (i.e. the long term average). This provides additional information to decision makers compared with conventional methods used in seasonal climate forecasting, where one colour is used to represent one forecast category on a forecast map (e.g. red = ';dry'). We use the tool to present climate-related mortality projections across Europe. Temperature and humidity are related to human mortality via location-specific transfer functions, calculated using historical data. Daily mortality data at the NUTS2 level for 16 countries in Europe were obtain from 1998-2005. Transfer functions were calculated for 54 aggregations in Europe, defined using criteria related to population and climatological similarities. Aggregations are restricted to fall within political boundaries to avoid problems related to varying adaptation policies between countries. A statistical model is fit to cold and warm tails to estimate future mortality using forecast temperatures, in a Bayesian probabilistic framework. Using predefined categories of temperature-related mortality risk, we present maps of probabilistic projections for human mortality at seasonal to decadal time scales. We demonstrate the information gained from using this technique compared to more traditional methods to display ternary probabilistic forecasts. This technique allows decision makers to identify areas where the model predicts with certainty area-specific heat waves or cold snaps, in order to effectively target resources to those areas most at risk, for a given season or year. It is hoped that this visualisation tool will facilitate the interpretation of the probabilistic forecasts not only for public health decision makers but also within a multi-sectoral climate service framework.
Bayesian-information-gap decision theory with an application to CO 2 sequestration
O'Malley, D.; Vesselinov, V. V.
2015-09-04
Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less
Probabilistic finite elements for fatigue and fracture analysis
NASA Astrophysics Data System (ADS)
Belytschko, Ted; Liu, Wing Kam
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Fan, Jung-Wei; Friedman, Carol
2011-01-01
Biomedical natural language processing (BioNLP) is a useful technique that unlocks valuable information stored in textual data for practice and/or research. Syntactic parsing is a critical component of BioNLP applications that rely on correctly determining the sentence and phrase structure of free text. In addition to dealing with the vast amount of domain-specific terms, a robust biomedical parser needs to model the semantic grammar to obtain viable syntactic structures. With either a rule-based or corpus-based approach, the grammar engineering process requires substantial time and knowledge from experts, and does not always yield a semantically transferable grammar. To reduce the human effort and to promote semantic transferability, we propose an automated method for deriving a probabilistic grammar based on a training corpus consisting of concept strings and semantic classes from the Unified Medical Language System (UMLS), a comprehensive terminology resource widely used by the community. The grammar is designed to specify noun phrases only due to the nominal nature of the majority of biomedical terminological concepts. Evaluated on manually parsed clinical notes, the derived grammar achieved a recall of 0.644, precision of 0.737, and average cross-bracketing of 0.61, which demonstrated better performance than a control grammar with the semantic information removed. Error analysis revealed shortcomings that could be addressed to improve performance. The results indicated the feasibility of an approach which automatically incorporates terminology semantics in the building of an operational grammar. Although the current performance of the unsupervised solution does not adequately replace manual engineering, we believe once the performance issues are addressed, it could serve as an aide in a semi-supervised solution. PMID:21549857
NASA Technical Reports Server (NTRS)
Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael
2011-01-01
In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.
Probabilistic numerical methods for PDE-constrained Bayesian inverse problems
NASA Astrophysics Data System (ADS)
Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark
2017-06-01
This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.
Huang, Haiyan; Liu, Chun-Chi; Zhou, Xianghong Jasmine
2010-04-13
The rapid accumulation of gene expression data has offered unprecedented opportunities to study human diseases. The National Center for Biotechnology Information Gene Expression Omnibus is currently the largest database that systematically documents the genome-wide molecular basis of diseases. However, thus far, this resource has been far from fully utilized. This paper describes the first study to transform public gene expression repositories into an automated disease diagnosis database. Particularly, we have developed a systematic framework, including a two-stage Bayesian learning approach, to achieve the diagnosis of one or multiple diseases for a query expression profile along a hierarchical disease taxonomy. Our approach, including standardizing cross-platform gene expression data and heterogeneous disease annotations, allows analyzing both sources of information in a unified probabilistic system. A high level of overall diagnostic accuracy was shown by cross validation. It was also demonstrated that the power of our method can increase significantly with the continued growth of public gene expression repositories. Finally, we showed how our disease diagnosis system can be used to characterize complex phenotypes and to construct a disease-drug connectivity map.
Du, Yuncheng; Budman, Hector M; Duever, Thomas A
2016-06-01
Accurate automated quantitative analysis of living cells based on fluorescence microscopy images can be very useful for fast evaluation of experimental outcomes and cell culture protocols. In this work, an algorithm is developed for fast differentiation of normal and apoptotic viable Chinese hamster ovary (CHO) cells. For effective segmentation of cell images, a stochastic segmentation algorithm is developed by combining a generalized polynomial chaos expansion with a level set function-based segmentation algorithm. This approach provides a probabilistic description of the segmented cellular regions along the boundary, from which it is possible to calculate morphological changes related to apoptosis, i.e., the curvature and length of a cell's boundary. These features are then used as inputs to a support vector machine (SVM) classifier that is trained to distinguish between normal and apoptotic viable states of CHO cell images. The use of morphological features obtained from the stochastic level set segmentation of cell images in combination with the trained SVM classifier is more efficient in terms of differentiation accuracy as compared with the original deterministic level set method.
Random mechanics: Nonlinear vibrations, turbulences, seisms, swells, fatigue
NASA Astrophysics Data System (ADS)
Kree, P.; Soize, C.
The random modeling of physical phenomena, together with probabilistic methods for the numerical calculation of random mechanical forces, are analytically explored. Attention is given to theoretical examinations such as probabilistic concepts, linear filtering techniques, and trajectory statistics. Applications of the methods to structures experiencing atmospheric turbulence, the quantification of turbulence, and the dynamic responses of the structures are considered. A probabilistic approach is taken to study the effects of earthquakes on structures and to the forces exerted by ocean waves on marine structures. Theoretical analyses by means of vector spaces and stochastic modeling are reviewed, as are Markovian formulations of Gaussian processes and the definition of stochastic differential equations. Finally, random vibrations with a variable number of links and linear oscillators undergoing the square of Gaussian processes are investigated.
Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S.P.; Stover, R.L.; Hashimoto, P.S.
1989-01-01
Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs.
Bayesian Probabilistic Projection of International Migration.
Azose, Jonathan J; Raftery, Adrian E
2015-10-01
We propose a method for obtaining joint probabilistic projections of migration for all countries, broken down by age and sex. Joint trajectories for all countries are constrained to satisfy the requirement of zero global net migration. We evaluate our model using out-of-sample validation and compare point projections to the projected migration rates from a persistence model similar to the method used in the United Nations' World Population Prospects, and also to a state-of-the-art gravity model.
Probabilistic structural analysis methods and applications
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.
1988-01-01
An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.
Uncertainty characterization approaches for risk assessment of DBPs in drinking water: a review.
Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James
2009-04-01
The management of risk from disinfection by-products (DBPs) in drinking water has become a critical issue over the last three decades. The areas of concern for risk management studies include (i) human health risk from DBPs, (ii) disinfection performance, (iii) technical feasibility (maintenance, management and operation) of treatment and disinfection approaches, and (iv) cost. Human health risk assessment is typically considered to be the most important phase of the risk-based decision-making or risk management studies. The factors associated with health risk assessment and other attributes are generally prone to considerable uncertainty. Probabilistic and non-probabilistic approaches have both been employed to characterize uncertainties associated with risk assessment. The probabilistic approaches include sampling-based methods (typically Monte Carlo simulation and stratified sampling) and asymptotic (approximate) reliability analysis (first- and second-order reliability methods). Non-probabilistic approaches include interval analysis, fuzzy set theory and possibility theory. However, it is generally accepted that no single method is suitable for the entire spectrum of problems encountered in uncertainty analyses for risk assessment. Each method has its own set of advantages and limitations. In this paper, the feasibility and limitations of different uncertainty analysis approaches are outlined for risk management studies of drinking water supply systems. The findings assist in the selection of suitable approaches for uncertainty analysis in risk management studies associated with DBPs and human health risk.
Constructing probabilistic scenarios for wide-area solar power generation
Woodruff, David L.; Deride, Julio; Staid, Andrea; ...
2017-12-22
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less
Constructing probabilistic scenarios for wide-area solar power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, David L.; Deride, Julio; Staid, Andrea
Optimizing thermal generation commitments and dispatch in the presence of high penetrations of renewable resources such as solar energy requires a characterization of their stochastic properties. In this study, we describe novel methods designed to create day-ahead, wide-area probabilistic solar power scenarios based only on historical forecasts and associated observations of solar power production. Each scenario represents a possible trajectory for solar power in next-day operations with an associated probability computed by algorithms that use historical forecast errors. Scenarios are created by segmentation of historic data, fitting non-parametric error distributions using epi-splines, and then computing specific quantiles from these distributions.more » Additionally, we address the challenge of establishing an upper bound on solar power output. Our specific application driver is for use in stochastic variants of core power systems operations optimization problems, e.g., unit commitment and economic dispatch. These problems require as input a range of possible future realizations of renewables production. However, the utility of such probabilistic scenarios extends to other contexts, e.g., operator and trader situational awareness. Finally, we compare the performance of our approach to a recently proposed method based on quantile regression, and demonstrate that our method performs comparably to this approach in terms of two widely used methods for assessing the quality of probabilistic scenarios: the Energy score and the Variogram score.« less
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
Implications of Big Data Analytics on Population Health Management.
Bradley, Paul S
2013-09-01
As healthcare providers transition to outcome-based reimbursements, it is imperative that they make the transition to population health management to stay viable. Providers already have big data assets in the form of electronic health records and financial billing system. Integrating these disparate sources together in patient-centered datasets provides the foundation for probabilistic modeling of their patient populations. These models are the core technology to compute and track the health and financial risk status of the patient population being served. We show how the probabilistic formulation allows for straightforward, early identification of a change in health and risk status. Knowing when a patient is likely to shift to a less healthy, higher risk category allows the provider to intervene to avert or delay the shift. These automated, proactive alerts are critical in maintaining and improving the health of a population of patients. We discuss results of leveraging these models with an urban healthcare provider to track and monitor type 2 diabetes patients. When intervention outcome data are available, data mining and predictive modeling technology are primed to recommend the best type of intervention (prescriptions, physical therapy, discharge protocols, etc.) with the best likely outcome.
ERIC Educational Resources Information Center
Vahabi, Mandana
2010-01-01
Objective: To test whether the format in which women receive probabilistic information about breast cancer and mammography affects their comprehension. Methods: A convenience sample of 180 women received pre-assembled randomized packages containing a breast health information brochure, with probabilities presented in either verbal or numeric…
On the Measurement and Properties of Ambiguity in Probabilistic Expectations
ERIC Educational Resources Information Center
Pickett, Justin T.; Loughran, Thomas A.; Bushway, Shawn
2015-01-01
Survey respondents' probabilistic expectations are now widely used in many fields to study risk perceptions, decision-making processes, and behavior. Researchers have developed several methods to account for the fact that the probability of an event may be more ambiguous for some respondents than others, but few prior studies have empirically…
2018-03-01
MARCH 2018 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR FORCE RESEARCH LABORATORY INFORMATION...SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory/RITA DARPA 525 Brooks Road 675 North Randolph Street Rome...1 3.0 METHODS , ASSUMPTIONS, AND PROCEDURES
Reliability, Risk and Cost Trade-Offs for Composite Designs
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.
1996-01-01
Risk and cost trade-offs have been simulated using a probabilistic method. The probabilistic method accounts for all naturally-occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry and loading conditions. The probability density function of first buckling load for a set of uncertain variables is computed. The probabilistic sensitivity factors of uncertain variables to the first buckling load is calculated. The reliability-based cost for a composite fuselage panel is defined and minimized with respect to requisite design parameters. The optimization is achieved by solving a system of nonlinear algebraic equations whose coefficients are functions of probabilistic sensitivity factors. With optimum design parameters such as the mean and coefficient of variation (representing range of scatter) of uncertain variables, the most efficient and economical manufacturing procedure can be selected. In this paper, optimum values of the requisite design parameters for a predetermined cost due to failure occurrence are computationally determined. The results for the fuselage panel analysis show that the higher the cost due to failure occurrence, the smaller the optimum coefficient of variation of fiber modulus (design parameter) in longitudinal direction.
Development of probabilistic regional climate scenario in East Asia
NASA Astrophysics Data System (ADS)
Dairaku, K.; Ueno, G.; Ishizaki, N. N.
2015-12-01
Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in East Asia (CORDEX-EA and Japan), the probability distribution of 2m air temperature was estimated by using developed regression model. The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. Probabilistic climate information in present (1969-1998) and future (2069-2098) climate was developed using CMIP3 SRES A1b scenarios 21 models and the observation data (CRU_TS3.22 & University of Delaware in CORDEX-EA, NIAES AMeDAS mesh data in Japan). The prototype of probabilistic information in CORDEX-EA and Japan represent the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Appropriate combination of statistical methods and optimization of climate ensemble experiments using multi-General Circulation Models (GCMs) and multi-regional climate models (RCMs) ensemble downscaling experiments are investigated.
Probabilistic Design Storm Method for Improved Flood Estimation in Ungauged Catchments
NASA Astrophysics Data System (ADS)
Berk, Mario; Å pačková, Olga; Straub, Daniel
2017-12-01
The design storm approach with event-based rainfall-runoff models is a standard method for design flood estimation in ungauged catchments. The approach is conceptually simple and computationally inexpensive, but the underlying assumptions can lead to flawed design flood estimations. In particular, the implied average recurrence interval (ARI) neutrality between rainfall and runoff neglects uncertainty in other important parameters, leading to an underestimation of design floods. The selection of a single representative critical rainfall duration in the analysis leads to an additional underestimation of design floods. One way to overcome these nonconservative approximations is the use of a continuous rainfall-runoff model, which is associated with significant computational cost and requires rainfall input data that are often not readily available. As an alternative, we propose a novel Probabilistic Design Storm method that combines event-based flood modeling with basic probabilistic models and concepts from reliability analysis, in particular the First-Order Reliability Method (FORM). The proposed methodology overcomes the limitations of the standard design storm approach, while utilizing the same input information and models without excessive computational effort. Additionally, the Probabilistic Design Storm method allows deriving so-called design charts, which summarize representative design storm events (combinations of rainfall intensity and other relevant parameters) for floods with different return periods. These can be used to study the relationship between rainfall and runoff return periods. We demonstrate, investigate, and validate the method by means of an example catchment located in the Bavarian Pre-Alps, in combination with a simple hydrological model commonly used in practice.
Evidence-based risk communication: a systematic review.
Zipkin, Daniella A; Umscheid, Craig A; Keating, Nancy L; Allen, Elizabeth; Aung, KoKo; Beyth, Rebecca; Kaatz, Scott; Mann, Devin M; Sussman, Jeremy B; Korenstein, Deborah; Schardt, Connie; Nagi, Avishek; Sloane, Richard; Feldstein, David A
2014-08-19
Effective communication of risks and benefits to patients is critical for shared decision making. To review the comparative effectiveness of methods of communicating probabilistic information to patients that maximize their cognitive and behavioral outcomes. PubMed (1966 to March 2014) and CINAHL, EMBASE, and the Cochrane Central Register of Controlled Trials (1966 to December 2011) using several keywords and structured terms. Prospective or cross-sectional studies that recruited patients or healthy volunteers and compared any method of communicating probabilistic information with another method. Two independent reviewers extracted study characteristics and assessed risk of bias. Eighty-four articles, representing 91 unique studies, evaluated various methods of numerical and visual risk display across several risk scenarios and with diverse outcome measures. Studies showed that visual aids (icon arrays and bar graphs) improved patients' understanding and satisfaction. Presentations including absolute risk reductions were better than those including relative risk reductions for maximizing accuracy and seemed less likely than presentations with relative risk reductions to influence decisions to accept therapy. The presentation of numbers needed to treat reduced understanding. Comparative effects of presentations of frequencies (such as 1 in 5) versus event rates (percentages, such as 20%) were inconclusive. Most studies were small and highly variable in terms of setting, context, and methods of administering interventions. Visual aids and absolute risk formats can improve patients' understanding of probabilistic information, whereas numbers needed to treat can lessen their understanding. Due to study heterogeneity, the superiority of any single method for conveying probabilistic information is not established, but there are several good options to help clinicians communicate with patients. None.
Scalable DB+IR Technology: Processing Probabilistic Datalog with HySpirit.
Frommholz, Ingo; Roelleke, Thomas
2016-01-01
Probabilistic Datalog (PDatalog, proposed in 1995) is a probabilistic variant of Datalog and a nice conceptual idea to model Information Retrieval in a logical, rule-based programming paradigm. Making PDatalog work in real-world applications requires more than probabilistic facts and rules, and the semantics associated with the evaluation of the programs. We report in this paper some of the key features of the HySpirit system required to scale the execution of PDatalog programs. Firstly, there is the requirement to express probability estimation in PDatalog. Secondly, fuzzy-like predicates are required to model vague predicates (e.g. vague match of attributes such as age or price). Thirdly, to handle large data sets there are scalability issues to be addressed, and therefore, HySpirit provides probabilistic relational indexes and parallel and distributed processing . The main contribution of this paper is a consolidated view on the methods of the HySpirit system to make PDatalog applicable in real-scale applications that involve a wide range of requirements typical for data (information) management and analysis.
Eddy, Sean R.
2008-01-01
Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236
NASA Astrophysics Data System (ADS)
Yu, Bo; Ning, Chao-lie; Li, Bing
2017-03-01
A probabilistic framework for durability assessment of concrete structures in marine environments was proposed in terms of reliability and sensitivity analysis, which takes into account the uncertainties under the environmental, material, structural and executional conditions. A time-dependent probabilistic model of chloride ingress was established first to consider the variations in various governing parameters, such as the chloride concentration, chloride diffusion coefficient, and age factor. Then the Nataf transformation was adopted to transform the non-normal random variables from the original physical space into the independent standard Normal space. After that the durability limit state function and its gradient vector with respect to the original physical parameters were derived analytically, based on which the first-order reliability method was adopted to analyze the time-dependent reliability and parametric sensitivity of concrete structures in marine environments. The accuracy of the proposed method was verified by comparing with the second-order reliability method and the Monte Carlo simulation. Finally, the influences of environmental conditions, material properties, structural parameters and execution conditions on the time-dependent reliability of concrete structures in marine environments were also investigated. The proposed probabilistic framework can be implemented in the decision-making algorithm for the maintenance and repair of deteriorating concrete structures in marine environments.
Navarro-Patón, R; Freire-Tellado, M; Basanta-Camiño, S; Barcala-Furelos, R; Arufe-Giraldez, V; Rodriguez-Fernández, J E
2018-05-01
To evaluate the learning of basic life support (BLS) measures on the part of laypersons after 3different teaching programs. A quasi-experimental before-after study involving a non-probabilistic sample without a control group was carried out. Primary school teacher students from the University of Santiago (Spain). A total of 124 students (68.8% women and 31.2% men) aged 20-39 years (M=22.23; SD=3.79), with no previous knowledge of BLS, were studied. Three teaching programs were used: a traditional course, an audio-visual approach and feedback devices. Chest compressions as sole cardiopulmonary resuscitation skill evaluation: average compression depth, compression rate, chest recoil percentage and percentage of correct compressions. Automated external defibrillator: time needed to apply a shock before and after the course. There were significant differences in the results obtained after 2minutes of chest compressions, depending on the training program received, with feedback devices having a clear advantage referred to average compression depth (p<0.001), compression rate (p<0.001), chest recoil percentage (p<0.001) and percentage of correct compressions (p<0.001). Regarding automated external defibrillator, statistically significant differences were found in T after (p=0.025). The teaching course using feedback devices obtained the best results in terms of the quality of chest compressions, followed by the traditional course and audio-visual approach. These favorable results were present in both men and women. All 3teaching methods reached the goal of reducing defibrillation time. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; White, K, Preston, Jr.
2012-01-01
The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques. This recommended procedure would be used as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. This document contains the outcome of the assessment.
A new discriminative kernel from probabilistic models.
Tsuda, Koji; Kawanabe, Motoaki; Rätsch, Gunnar; Sonnenburg, Sören; Müller, Klaus-Robert
2002-10-01
Recently, Jaakkola and Haussler (1999) proposed a method for constructing kernel functions from probabilistic models. Their so-called Fisher kernel has been combined with discriminative classifiers such as support vector machines and applied successfully in, for example, DNA and protein analysis. Whereas the Fisher kernel is calculated from the marginal log-likelihood, we propose the TOP kernel derived; from tangent vectors of posterior log-odds. Furthermore, we develop a theoretical framework on feature extractors from probabilistic models and use it for analyzing the TOP kernel. In experiments, our new discriminative TOP kernel compares favorably to the Fisher kernel.
NASA Technical Reports Server (NTRS)
Rajagopal, K. R.
1992-01-01
The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.
NASA Astrophysics Data System (ADS)
Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude
2010-02-01
Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.
101 Labeled Brain Images and a Consistent Human Cortical Labeling Protocol
Klein, Arno; Tourville, Jason
2012-01-01
We introduce the Mindboggle-101 dataset, the largest and most complete set of free, publicly accessible, manually labeled human brain images. To manually label the macroscopic anatomy in magnetic resonance images of 101 healthy participants, we created a new cortical labeling protocol that relies on robust anatomical landmarks and minimal manual edits after initialization with automated labels. The “Desikan–Killiany–Tourville” (DKT) protocol is intended to improve the ease, consistency, and accuracy of labeling human cortical areas. Given how difficult it is to label brains, the Mindboggle-101 dataset is intended to serve as brain atlases for use in labeling other brains, as a normative dataset to establish morphometric variation in a healthy population for comparison against clinical populations, and contribute to the development, training, testing, and evaluation of automated registration and labeling algorithms. To this end, we also introduce benchmarks for the evaluation of such algorithms by comparing our manual labels with labels automatically generated by probabilistic and multi-atlas registration-based approaches. All data and related software and updated information are available on the http://mindboggle.info/data website. PMID:23227001
Probabilistic Aeroelastic Analysis Developed for Turbomachinery Components
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Mital, Subodh K.; Stefko, George L.; Pai, Shantaram S.
2003-01-01
Aeroelastic analyses for advanced turbomachines are being developed for use at the NASA Glenn Research Center and industry. However, these analyses at present are used for turbomachinery design with uncertainties accounted for by using safety factors. This approach may lead to overly conservative designs, thereby reducing the potential of designing higher efficiency engines. An integration of the deterministic aeroelastic analysis methods with probabilistic analysis methods offers the potential to design efficient engines with fewer aeroelastic problems and to make a quantum leap toward designing safe reliable engines. In this research, probabilistic analysis is integrated with aeroelastic analysis: (1) to determine the parameters that most affect the aeroelastic characteristics (forced response and stability) of a turbomachine component such as a fan, compressor, or turbine and (2) to give the acceptable standard deviation on the design parameters for an aeroelastically stable system. The approach taken is to combine the aeroelastic analysis of the MISER (MIStuned Engine Response) code with the FPI (fast probability integration) code. The role of MISER is to provide the functional relationships that tie the structural and aerodynamic parameters (the primitive variables) to the forced response amplitudes and stability eigenvalues (the response properties). The role of FPI is to perform probabilistic analyses by utilizing the response properties generated by MISER. The results are a probability density function for the response properties. The probabilistic sensitivities of the response variables to uncertainty in primitive variables are obtained as a byproduct of the FPI technique. The combined analysis of aeroelastic and probabilistic analysis is applied to a 12-bladed cascade vibrating in bending and torsion. Out of the total 11 design parameters, 6 are considered as having probabilistic variation. The six parameters are space-to-chord ratio (SBYC), stagger angle (GAMA), elastic axis (ELAXS), Mach number (MACH), mass ratio (MASSR), and frequency ratio (WHWB). The cascade is considered to be in subsonic flow with Mach 0.7. The results of the probabilistic aeroelastic analysis are the probability density function of predicted aerodynamic damping and frequency for flutter and the response amplitudes for forced response.
Probabilistic topic modeling for the analysis and classification of genomic sequences
2015-01-01
Background Studies on genomic sequences for classification and taxonomic identification have a leading role in the biomedical field and in the analysis of biodiversity. These studies are focusing on the so-called barcode genes, representing a well defined region of the whole genome. Recently, alignment-free techniques are gaining more importance because they are able to overcome the drawbacks of sequence alignment techniques. In this paper a new alignment-free method for DNA sequences clustering and classification is proposed. The method is based on k-mers representation and text mining techniques. Methods The presented method is based on Probabilistic Topic Modeling, a statistical technique originally proposed for text documents. Probabilistic topic models are able to find in a document corpus the topics (recurrent themes) characterizing classes of documents. This technique, applied on DNA sequences representing the documents, exploits the frequency of fixed-length k-mers and builds a generative model for a training group of sequences. This generative model, obtained through the Latent Dirichlet Allocation (LDA) algorithm, is then used to classify a large set of genomic sequences. Results and conclusions We performed classification of over 7000 16S DNA barcode sequences taken from Ribosomal Database Project (RDP) repository, training probabilistic topic models. The proposed method is compared to the RDP tool and Support Vector Machine (SVM) classification algorithm in a extensive set of trials using both complete sequences and short sequence snippets (from 400 bp to 25 bp). Our method reaches very similar results to RDP classifier and SVM for complete sequences. The most interesting results are obtained when short sequence snippets are considered. In these conditions the proposed method outperforms RDP and SVM with ultra short sequences and it exhibits a smooth decrease of performance, at every taxonomic level, when the sequence length is decreased. PMID:25916734
Representing and computing regular languages on massively parallel networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.I.; O'Sullivan, J.A.; Boysam, B.
1991-01-01
This paper proposes a general method for incorporating rule-based constraints corresponding to regular languages into stochastic inference problems, thereby allowing for a unified representation of stochastic and syntactic pattern constraints. The authors' approach first established the formal connection of rules to Chomsky grammars, and generalizes the original work of Shannon on the encoding of rule-based channel sequences to Markov chains of maximum entropy. This maximum entropy probabilistic view leads to Gibb's representations with potentials which have their number of minima growing at precisely the exponential rate that the language of deterministically constrained sequences grow. These representations are coupled to stochasticmore » diffusion algorithms, which sample the language-constrained sequences by visiting the energy minima according to the underlying Gibbs' probability law. The coupling to stochastic search methods yields the all-important practical result that fully parallel stochastic cellular automata may be derived to generate samples from the rule-based constraint sets. The production rules and neighborhood state structure of the language of sequences directly determines the necessary connection structures of the required parallel computing surface. Representations of this type have been mapped to the DAP-510 massively-parallel processor consisting of 1024 mesh-connected bit-serial processing elements for performing automated segmentation of electron-micrograph images.« less
Probabilistic Simulation of Multi-Scale Composite Behavior
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2012-01-01
A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.
NASA Astrophysics Data System (ADS)
Sanchez, J.
2018-06-01
In this paper, the application and analysis of the asymptotic approximation method to a single degree-of-freedom has recently been produced. The original concepts are summarized, and the necessary probabilistic concepts are developed and applied to single degree-of-freedom systems. Then, these concepts are united, and the theoretical and computational models are developed. To determine the viability of the proposed method in a probabilistic context, numerical experiments are conducted, and consist of a frequency analysis, analysis of the effects of measurement noise, and a statistical analysis. In addition, two examples are presented and discussed.
Large-scale automated histology in the pursuit of connectomes.
Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert
2011-11-09
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.
Large-Scale Automated Histology in the Pursuit of Connectomes
Bharioke, Arjun; Blinder, Pablo; Bock, Davi D.; Briggman, Kevin L.; Chklovskii, Dmitri B.; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P.; Lee, Wei-Chung Allen; Meyer, Hanno S.; Micheva, Kristina D.; Oberlaender, Marcel; Prohaska, Steffen; Reid, R. Clay; Smith, Stephen J.; Takemura, Shinya; Tsai, Philbert S.; Sakmann, Bert
2011-01-01
How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity. PMID:22072665
Quantitative consensus of supervised learners for diffuse lung parenchymal HRCT patterns
NASA Astrophysics Data System (ADS)
Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.
2013-03-01
Automated lung parenchymal classification usually relies on supervised learning of expert chosen regions representative of the visually differentiable HRCT patterns specific to different pathologies (eg. emphysema, ground glass, honey combing, reticular and normal). Considering the elusiveness of a single most discriminating similarity measure, a plurality of weak learners can be combined to improve the machine learnability. Though a number of quantitative combination strategies exist, their efficacy is data and domain dependent. In this paper, we investigate multiple (N=12) quantitative consensus approaches to combine the clusters obtained with multiple (n=33) probability density-based similarity measures. Our study shows that hypergraph based meta-clustering and probabilistic clustering provides optimal expert-metric agreement.
Probability or Reasoning: Current Thinking and Realistic Strategies for Improved Medical Decisions
2017-01-01
A prescriptive model approach in decision making could help achieve better diagnostic accuracy in clinical practice through methods that are less reliant on probabilistic assessments. Various prescriptive measures aimed at regulating factors that influence heuristics and clinical reasoning could support clinical decision-making process. Clinicians could avoid time-consuming decision-making methods that require probabilistic calculations. Intuitively, they could rely on heuristics to obtain an accurate diagnosis in a given clinical setting. An extensive literature review of cognitive psychology and medical decision-making theory was performed to illustrate how heuristics could be effectively utilized in daily practice. Since physicians often rely on heuristics in realistic situations, probabilistic estimation might not be a useful tool in everyday clinical practice. Improvements in the descriptive model of decision making (heuristics) may allow for greater diagnostic accuracy. PMID:29209469
Probability or Reasoning: Current Thinking and Realistic Strategies for Improved Medical Decisions.
Nantha, Yogarabindranath Swarna
2017-11-01
A prescriptive model approach in decision making could help achieve better diagnostic accuracy in clinical practice through methods that are less reliant on probabilistic assessments. Various prescriptive measures aimed at regulating factors that influence heuristics and clinical reasoning could support clinical decision-making process. Clinicians could avoid time-consuming decision-making methods that require probabilistic calculations. Intuitively, they could rely on heuristics to obtain an accurate diagnosis in a given clinical setting. An extensive literature review of cognitive psychology and medical decision-making theory was performed to illustrate how heuristics could be effectively utilized in daily practice. Since physicians often rely on heuristics in realistic situations, probabilistic estimation might not be a useful tool in everyday clinical practice. Improvements in the descriptive model of decision making (heuristics) may allow for greater diagnostic accuracy.
Composite Load Spectra for Select Space Propulsion Structural Components
NASA Technical Reports Server (NTRS)
Ho, Hing W.; Newell, James F.
1994-01-01
Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.
1983-07-01
be a useful tool for assessing kowledge , but there are several problems with this item format. These problems include the possibility of an examinee...1959. -Kane, M. T., & Moloney, J. M. The effect of SSM grading on reliability when residual items have no discriminating power . Paper presented at
Methods for estimating the amount of vernal pool habitat in the northeastern United States
Van Meter, R.; Bailey, L.L.; Grant, E.H.C.
2008-01-01
The loss of small, seasonal wetlands is a major concern for a variety of state, local, and federal organizations in the northeastern U.S. Identifying and estimating the number of vernal pools within a given region is critical to developing long-term conservation and management strategies for these unique habitats and their faunal communities. We use three probabilistic sampling methods (simple random sampling, adaptive cluster sampling, and the dual frame method) to estimate the number of vernal pools on protected, forested lands. Overall, these methods yielded similar values of vernal pool abundance for each study area, and suggest that photographic interpretation alone may grossly underestimate the number of vernal pools in forested habitats. We compare the relative efficiency of each method and discuss ways of improving precision. Acknowledging that the objectives of a study or monitoring program ultimately determine which sampling designs are most appropriate, we recommend that some type of probabilistic sampling method be applied. We view the dual-frame method as an especially useful way of combining incomplete remote sensing methods, such as aerial photograph interpretation, with a probabilistic sample of the entire area of interest to provide more robust estimates of the number of vernal pools and a more representative sample of existing vernal pool habitats.
Probabilistic Assessment of Fracture Progression in Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon; Mauget, Bertrand; Huang, Dade; Addi, Frank
1999-01-01
This report describes methods and corresponding computer codes that are used to evaluate progressive damage and fracture and to perform probabilistic assessment in built-up composite structures. Structural response is assessed probabilistically, during progressive fracture. The effects of design variable uncertainties on structural fracture progression are quantified. The fast probability integrator (FPI) is used to assess the response scatter in the composite structure at damage initiation. The sensitivity of the damage response to design variables is computed. The methods are general purpose and are applicable to stitched and unstitched composites in all types of structures and fracture processes starting from damage initiation to unstable propagation and to global structure collapse. The methods are demonstrated for a polymer matrix composite stiffened panel subjected to pressure. The results indicated that composite constituent properties, fabrication parameters, and respective uncertainties have a significant effect on structural durability and reliability. Design implications with regard to damage progression, damage tolerance, and reliability of composite structures are examined.
Probabilistic segmentation and intensity estimation for microarray images.
Gottardo, Raphael; Besag, Julian; Stephens, Matthew; Murua, Alejandro
2006-01-01
We describe a probabilistic approach to simultaneous image segmentation and intensity estimation for complementary DNA microarray experiments. The approach overcomes several limitations of existing methods. In particular, it (a) uses a flexible Markov random field approach to segmentation that allows for a wider range of spot shapes than existing methods, including relatively common 'doughnut-shaped' spots; (b) models the image directly as background plus hybridization intensity, and estimates the two quantities simultaneously, avoiding the common logical error that estimates of foreground may be less than those of the corresponding background if the two are estimated separately; and (c) uses a probabilistic modeling approach to simultaneously perform segmentation and intensity estimation, and to compute spot quality measures. We describe two approaches to parameter estimation: a fast algorithm, based on the expectation-maximization and the iterated conditional modes algorithms, and a fully Bayesian framework. These approaches produce comparable results, and both appear to offer some advantages over other methods. We use an HIV experiment to compare our approach to two commercial software products: Spot and Arrayvision.
Probabilistic biological network alignment.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.
Hiraishi, Kunihiko
2014-01-01
One of the significant topics in systems biology is to develop control theory of gene regulatory networks (GRNs). In typical control of GRNs, expression of some genes is inhibited (activated) by manipulating external stimuli and expression of other genes. It is expected to apply control theory of GRNs to gene therapy technologies in the future. In this paper, a control method using a Boolean network (BN) is studied. A BN is widely used as a model of GRNs, and gene expression is expressed by a binary value (ON or OFF). In particular, a context-sensitive probabilistic Boolean network (CS-PBN), which is one of the extended models of BNs, is used. For CS-PBNs, the verification problem and the optimal control problem are considered. For the verification problem, a solution method using the probabilistic model checker PRISM is proposed. For the optimal control problem, a solution method using polynomial optimization is proposed. Finally, a numerical example on the WNT5A network, which is related to melanoma, is presented. The proposed methods provide us useful tools in control theory of GRNs. PMID:24587766
Probabilistic Component Mode Synthesis of Nondeterministic Substructures
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1996-01-01
Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. We present a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.
A probabilistic method for testing and estimating selection differences between populations
He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li
2015-01-01
Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. PMID:26463656
Nagarajan, Mahesh B; Raman, Steven S; Lo, Pechin; Lin, Wei-Chan; Khoshnoodi, Pooria; Sayre, James W; Ramakrishna, Bharath; Ahuja, Preeti; Huang, Jiaoti; Margolis, Daniel J A; Lu, David S K; Reiter, Robert E; Goldin, Jonathan G; Brown, Matthew S; Enzmann, Dieter R
2018-02-19
We present a method for generating a T2 MR-based probabilistic model of tumor occurrence in the prostate to guide the selection of anatomical sites for targeted biopsies and serve as a diagnostic tool to aid radiological evaluation of prostate cancer. In our study, the prostate and any radiological findings within were segmented retrospectively on 3D T2-weighted MR images of 266 subjects who underwent radical prostatectomy. Subsequent histopathological analysis determined both the ground truth and the Gleason grade of the tumors. A randomly chosen subset of 19 subjects was used to generate a multi-subject-derived prostate template. Subsequently, a cascading registration algorithm involving both affine and non-rigid B-spline transforms was used to register the prostate of every subject to the template. Corresponding transformation of radiological findings yielded a population-based probabilistic model of tumor occurrence. The quality of our probabilistic model building approach was statistically evaluated by measuring the proportion of correct placements of tumors in the prostate template, i.e., the number of tumors that maintained their anatomical location within the prostate after their transformation into the prostate template space. Probabilistic model built with tumors deemed clinically significant demonstrated a heterogeneous distribution of tumors, with higher likelihood of tumor occurrence at the mid-gland anterior transition zone and the base-to-mid-gland posterior peripheral zones. Of 250 MR lesions analyzed, 248 maintained their original anatomical location with respect to the prostate zones after transformation to the prostate. We present a robust method for generating a probabilistic model of tumor occurrence in the prostate that could aid clinical decision making, such as selection of anatomical sites for MR-guided prostate biopsies.
Fifth Annual Workshop on the Application of Probabilistic Methods for Gas Turbine Engines
NASA Technical Reports Server (NTRS)
Briscoe, Victoria (Compiler)
2002-01-01
These are the proceedings of the 5th Annual FAA/Air Force/NASA/Navy Workshop on the Probabilistic Methods for Gas Turbine Engines hosted by NASA Glenn Research Center and held at the Holiday Inn Cleveland West. The history of this series of workshops stems from the recognition that both military and commercial aircraft engines are inevitably subjected to similar design and manufacturing principles. As such, it was eminently logical to combine knowledge bases on how some of these overlapping principles and methodologies are being applied. We have started the process by creating synergy and cooperation between the FAA, Air Force, Navy, and NASA in these workshops. The recent 3-day workshop was specifically designed to benefit the development of probabilistic methods for gas turbine engines by addressing recent technical accomplishments and forging new ideas. We accomplished our goals of minimizing duplication, maximizing the dissemination of information, and improving program planning to all concerned. This proceeding includes the final agenda, abstracts, presentations, and panel notes, plus the valuable contact information from our presenters and attendees. We hope that this proceeding will be a tool to enhance understanding of the developers and users of probabilistic methods. The fifth workshop doubled its attendance and had the success of collaboration with the many diverse groups represented including government, industry, academia, and our international partners. So, "Start your engines!" and utilize these proceedings towards creating safer and more reliable gas turbine engines for our commercial and military partners.
Arlt, Sönke; Buchert, Ralph; Spies, Lothar; Eichenlaub, Martin; Lehmbeck, Jan T; Jahn, Holger
2013-06-01
Fully automated magnetic resonance imaging (MRI)-based volumetry may serve as biomarker for the diagnosis in patients with mild cognitive impairment (MCI) or dementia. We aimed at investigating the relation between fully automated MRI-based volumetric measures and neuropsychological test performance in amnestic MCI and patients with mild dementia due to Alzheimer's disease (AD) in a cross-sectional and longitudinal study. In order to assess a possible prognostic value of fully automated MRI-based volumetry for future cognitive performance, the rate of change of neuropsychological test performance over time was also tested for its correlation with fully automated MRI-based volumetry at baseline. In 50 subjects, 18 with amnestic MCI, 21 with mild AD, and 11 controls, neuropsychological testing and T1-weighted MRI were performed at baseline and at a mean follow-up interval of 2.1 ± 0.5 years (n = 19). Fully automated MRI volumetry of the grey matter volume (GMV) was performed using a combined stereotactic normalisation and segmentation approach as provided by SPM8 and a set of pre-defined binary lobe masks. Left and right hippocampus masks were derived from probabilistic cytoarchitectonic maps. Volumes of the inner and outer liquor space were also determined automatically from the MRI. Pearson's test was used for the correlation analyses. Left hippocampal GMV was significantly correlated with performance in memory tasks, and left temporal GMV was related to performance in language tasks. Bilateral frontal, parietal and occipital GMVs were correlated to performance in neuropsychological tests comprising multiple domains. Rate of GMV change in the left hippocampus was correlated with decline of performance in the Boston Naming Test (BNT), Mini-Mental Status Examination, and trail making test B (TMT-B). The decrease of BNT and TMT-A performance over time correlated with the loss of grey matter in multiple brain regions. We conclude that fully automated MRI-based volumetry allows detection of regional grey matter volume loss that correlates with neuropsychological performance in patients with amnestic MCI or mild AD. Because of the high level of automation, MRI-based volumetry may easily be integrated into clinical routine to complement the current diagnostic procedure.
Evaluation of Lithofacies Up-Scaling Methods for Probabilistic Prediction of Carbon Dioxide Behavior
NASA Astrophysics Data System (ADS)
Park, J. Y.; Lee, S.; Lee, Y. I.; Kihm, J. H.; Kim, J. M.
2017-12-01
Behavior of carbon dioxide injected into target reservoir (storage) formations is highly dependent on heterogeneities of geologic lithofacies and properties. These heterogeneous lithofacies and properties basically have probabilistic characteristics. Thus, their probabilistic evaluation has to be implemented properly into predicting behavior of injected carbon dioxide in heterogeneous storage formations. In this study, a series of three-dimensional geologic modeling is performed first using SKUA-GOCAD (ASGA and Paradigm) to establish lithofacies models of the Janggi Conglomerate in the Janggi Basin, Korea within a modeling domain. The Janggi Conglomerate is composed of mudstone, sandstone, and conglomerate, and it has been identified as a potential reservoir rock (clastic saline formation) for geologic carbon dioxide storage. Its lithofacies information are obtained from four boreholes and used in lithofacies modeling. Three different up-scaling methods (i.e., nearest to cell center, largest proportion, and random) are applied, and lithofacies modeling is performed 100 times for each up-scaling method. The lithofacies models are then compared and analyzed with the borehole data to evaluate the relative suitability of the three up-scaling methods. Finally, the lithofacies models are converted into coarser lithofacies models within the same modeling domain with larger grid blocks using the three up-scaling methods, and a series of multiphase thermo-hydrological numerical simulation is performed using TOUGH2-MP (Zhang et al., 2008) to predict probabilistically behavior of injected carbon dioxide. The coarser lithofacies models are also compared and analyzed with the borehole data and finer lithofacies models to evaluate the relative suitability of the three up-scaling methods. Three-dimensional geologic modeling, up-scaling, and multiphase thermo-hydrological numerical simulation as linked methodologies presented in this study can be utilized as a practical probabilistic evaluation tool to predict behavior of injected carbon dioxide and even to analyze its leakage risk. This work was supported by the Korea CCS 2020 Project of the Korea Carbon Capture and Sequestration R&D Center (KCRC) funded by the National Research Foundation (NRF), Ministry of Science and ICT (MSIT), Korea.
Fast, Nonlinear, Fully Probabilistic Inversion of Large Geophysical Problems
NASA Astrophysics Data System (ADS)
Curtis, A.; Shahraeeni, M.; Trampert, J.; Meier, U.; Cho, G.
2010-12-01
Almost all Geophysical inverse problems are in reality nonlinear. Fully nonlinear inversion including non-approximated physics, and solving for probability distribution functions (pdf’s) that describe the solution uncertainty, generally requires sampling-based Monte-Carlo style methods that are computationally intractable in most large problems. In order to solve such problems, physical relationships are usually linearized leading to efficiently-solved, (possibly iterated) linear inverse problems. However, it is well known that linearization can lead to erroneous solutions, and in particular to overly optimistic uncertainty estimates. What is needed across many Geophysical disciplines is a method to invert large inverse problems (or potentially tens of thousands of small inverse problems) fully probabilistically and without linearization. This talk shows how very large nonlinear inverse problems can be solved fully probabilistically and incorporating any available prior information using mixture density networks (driven by neural network banks), provided the problem can be decomposed into many small inverse problems. In this talk I will explain the methodology, compare multi-dimensional pdf inversion results to full Monte Carlo solutions, and illustrate the method with two applications: first, inverting surface wave group and phase velocities for a fully-probabilistic global tomography model of the Earth’s crust and mantle, and second inverting industrial 3D seismic data for petrophysical properties throughout and around a subsurface hydrocarbon reservoir. The latter problem is typically decomposed into 104 to 105 individual inverse problems, each solved fully probabilistically and without linearization. The results in both cases are sufficiently close to the Monte Carlo solution to exhibit realistic uncertainty, multimodality and bias. This provides far greater confidence in the results, and in decisions made on their basis.
Sarma-based key-group method for rock slope reliability analyses
NASA Astrophysics Data System (ADS)
Yarahmadi Bafghi, A. R.; Verdel, T.
2005-08-01
The methods used in conducting static stability analyses have remained pertinent to this day for reasons of both simplicity and speed of execution. The most well-known of these methods for purposes of stability analysis of fractured rock masses is the key-block method (KBM).This paper proposes an extension to the KBM, called the key-group method (KGM), which combines not only individual key-blocks but also groups of collapsable blocks into an iterative and progressive analysis of the stability of discontinuous rock slopes. To take intra-group forces into account, the Sarma method has been implemented within the KGM in order to generate a Sarma-based KGM, abbreviated SKGM. We will discuss herein the hypothesis behind this new method, details regarding its implementation, and validation through comparison with results obtained from the distinct element method.Furthermore, as an alternative to deterministic methods, reliability analyses or probabilistic analyses have been proposed to take account of the uncertainty in analytical parameters and models. The FOSM and ASM probabilistic methods could be implemented within the KGM and SKGM framework in order to take account of the uncertainty due to physical and mechanical data (density, cohesion and angle of friction). We will then show how such reliability analyses can be introduced into SKGM to give rise to the probabilistic SKGM (PSKGM) and how it can be used for rock slope reliability analyses. Copyright
Scalable Quantum Networks for Distributed Computing and Sensing
2016-04-01
probabilistic measurement , so we developed quantum memories and guided-wave implementations of same, demonstrating controlled delay of a heralded single...Second, fundamental scalability requires a method to synchronize protocols based on quantum measurements , which are inherently probabilistic. To meet...AFRL-AFOSR-UK-TR-2016-0007 Scalable Quantum Networks for Distributed Computing and Sensing Ian Walmsley THE UNIVERSITY OF OXFORD Final Report 04/01
Effects of delay and probability combinations on discounting in humans
Cox, David J.; Dallery, Jesse
2017-01-01
To determine discount rates, researchers typically adjust the amount of an immediate or certain option relative to a delayed or uncertain option. Because this adjusting amount method can be relatively time consuming, researchers have developed more efficient procedures. One such procedure is a 5-trial adjusting delay procedure, which measures the delay at which an amount of money loses half of its value (e.g., $1000 is valued at $500 with a 10-year delay to its receipt). Experiment 1 (n = 212) used 5-trial adjusting delay or probability tasks to measure delay discounting of losses, probabilistic gains, and probabilistic losses. Experiment 2 (n = 98) assessed combined probabilistic and delayed alternatives. In both experiments, we compared results from 5-trial adjusting delay or probability tasks to traditional adjusting amount procedures. Results suggest both procedures produced similar rates of probability and delay discounting in six out of seven comparisons. A magnitude effect consistent with previous research was observed for probabilistic gains and losses, but not for delayed losses. Results also suggest that delay and probability interact to determine the value of money. Five-trial methods may allow researchers to assess discounting more efficiently as well as study more complex choice scenarios. PMID:27498073
Event-Based Media Enrichment Using an Adaptive Probabilistic Hypergraph Model.
Liu, Xueliang; Wang, Meng; Yin, Bao-Cai; Huet, Benoit; Li, Xuelong
2015-11-01
Nowadays, with the continual development of digital capture technologies and social media services, a vast number of media documents are captured and shared online to help attendees record their experience during events. In this paper, we present a method combining semantic inference and multimodal analysis for automatically finding media content to illustrate events using an adaptive probabilistic hypergraph model. In this model, media items are taken as vertices in the weighted hypergraph and the task of enriching media to illustrate events is formulated as a ranking problem. In our method, each hyperedge is constructed using the K-nearest neighbors of a given media document. We also employ a probabilistic representation, which assigns each vertex to a hyperedge in a probabilistic way, to further exploit the correlation among media data. Furthermore, we optimize the hypergraph weights in a regularization framework, which is solved as a second-order cone problem. The approach is initiated by seed media and then used to rank the media documents using a transductive inference process. The results obtained from validating the approach on an event dataset collected from EventMedia demonstrate the effectiveness of the proposed approach.
Economic Dispatch for Microgrid Containing Electric Vehicles via Probabilistic Modeling: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Yin; Gao, Wenzhong; Momoh, James
In this paper, an economic dispatch model with probabilistic modeling is developed for a microgrid. The electric power supply in a microgrid consists of conventional power plants and renewable energy power plants, such as wind and solar power plants. Because of the fluctuation in the output of solar and wind power plants, an empirical probabilistic model is developed to predict their hourly output. According to different characteristics of wind and solar power plants, the parameters for probabilistic distribution are further adjusted individually for both. On the other hand, with the growing trend in plug-in electric vehicles (PHEVs), an integrated microgridmore » system must also consider the impact of PHEVs. The charging loads from PHEVs as well as the discharging output via the vehicle-to-grid (V2G) method can greatly affect the economic dispatch for all of the micro energy sources in a microgrid. This paper presents an optimization method for economic dispatch in a microgrid considering conventional power plants, renewable power plants, and PHEVs. The simulation results reveal that PHEVs with V2G capability can be an indispensable supplement in a modern microgrid.« less
A Probabilistic Design Method Applied to Smart Composite Structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1995-01-01
A probabilistic design method is described and demonstrated using a smart composite wing. Probabilistic structural design incorporates naturally occurring uncertainties including those in constituent (fiber/matrix) material properties, fabrication variables, structure geometry and control-related parameters. Probabilistic sensitivity factors are computed to identify those parameters that have a great influence on a specific structural reliability. Two performance criteria are used to demonstrate this design methodology. The first criterion requires that the actuated angle at the wing tip be bounded by upper and lower limits at a specified reliability. The second criterion requires that the probability of ply damage due to random impact load be smaller than an assigned value. When the relationship between reliability improvement and the sensitivity factors is assessed, the results show that a reduction in the scatter of the random variable with the largest sensitivity factor (absolute value) provides the lowest failure probability. An increase in the mean of the random variable with a negative sensitivity factor will reduce the failure probability. Therefore, the design can be improved by controlling or selecting distribution parameters associated with random variables. This can be implemented during the manufacturing process to obtain maximum benefit with minimum alterations.
Sjöberg, C; Ahnesjö, A
2013-06-01
Label fusion multi-atlas approaches for image segmentation can give better segmentation results than single atlas methods. We present a multi-atlas label fusion strategy based on probabilistic weighting of distance maps. Relationships between image similarities and segmentation similarities are estimated in a learning phase and used to derive fusion weights that are proportional to the probability for each atlas to improve the segmentation result. The method was tested using a leave-one-out strategy on a database of 21 pre-segmented prostate patients for different image registrations combined with different image similarity scorings. The probabilistic weighting yields results that are equal or better compared to both fusion with equal weights and results using the STAPLE algorithm. Results from the experiments demonstrate that label fusion by weighted distance maps is feasible, and that probabilistic weighted fusion improves segmentation quality more the stronger the individual atlas segmentation quality depends on the corresponding registered image similarity. The regions used for evaluation of the image similarity measures were found to be more important than the choice of similarity measure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Merchant, D. H.
1976-01-01
Methods are presented for calculating design limit loads compatible with probabilistic structural design criteria. The approach is based on the concept that the desired limit load, defined as the largest load occurring in a mission, is a random variable having a specific probability distribution which may be determined from extreme-value theory. The design limit load, defined as a particular of this random limit load, is the value conventionally used in structural design. Methods are presented for determining the limit load probability distributions from both time-domain and frequency-domain dynamic load simulations. Numerical demonstrations of the method are also presented.
Evaluation of mouse red blood cell and platelet counting with an automated hematology analyzer.
Fukuda, Teruko; Asou, Eri; Nogi, Kimiko; Goto, Kazuo
2017-10-07
An evaluation of mouse red blood cell (RBC) and platelet (PLT) counting with an automated hematology analyzer was performed with three strains of mice, C57BL/6 (B6), BALB/c (BALB) and DBA/2 (D2). There were no significant differences in RBC and PLT counts between manual and automated optical methods in any of the samples, except for D2 mice. For D2, RBC counts obtained using the manual method were significantly lower than those obtained using the automated optical method (P<0.05), and PLT counts obtained using the manual method were higher than those obtained using the automated optical method (P<0.05). An automated hematology analyzer can be used for RBC and PLT counting; however, an appropriate method should be selected when D2 mice samples are used.
CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential
Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Der Kiureghian, A.; Cetin, K.O.
2006-01-01
This paper presents a complete methodology for both probabilistic and deterministic assessment of seismic soil liquefaction triggering potential based on the cone penetration test (CPT). A comprehensive worldwide set of CPT-based liquefaction field case histories were compiled and back analyzed, and the data then used to develop probabilistic triggering correlations. Issues investigated in this study include improved normalization of CPT resistance measurements for the influence of effective overburden stress, and adjustment to CPT tip resistance for the potential influence of "thin" liquefiable layers. The effects of soil type and soil character (i.e., "fines" adjustment) for the new correlations are based on a combination of CPT tip and sleeve resistance. To quantify probability for performancebased engineering applications, Bayesian "regression" methods were used, and the uncertainties of all variables comprising both the seismic demand and the liquefaction resistance were estimated and included in the analysis. The resulting correlations were developed using a Bayesian framework and are presented in both probabilistic and deterministic formats. The results are compared to previous probabilistic and deterministic correlations. ?? 2006 ASCE.
NASA Astrophysics Data System (ADS)
Pappenberger, F.; Stephens, E. M.; Thielen, J.; Salomon, P.; Demeritt, D.; van Andel, S.; Wetterhall, F.; Alfieri, L.
2011-12-01
The aim of this paper is to understand and to contribute to improved communication of the probabilistic flood forecasts generated by Hydrological Ensemble Prediction Systems (HEPS) with particular focus on the inter expert communication. Different users are likely to require different kinds of information from HEPS and thus different visualizations. The perceptions of this expert group are important both because they are the designers and primary users of existing HEPS. Nevertheless, they have sometimes resisted the release of uncertainty information to the general public because of doubts about whether it can be successfully communicated in ways that would be readily understood to non-experts. In this paper we explore the strengths and weaknesses of existing HEPS visualization methods and thereby formulate some wider recommendations about best practice for HEPS visualization and communication. We suggest that specific training on probabilistic forecasting would foster use of probabilistic forecasts with a wider range of applications. The result of a case study exercise showed that there is no overarching agreement between experts on how to display probabilistic forecasts and what they consider essential information that should accompany plots and diagrams. In this paper we propose a list of minimum properties that, if consistently displayed with probabilistic forecasts, would make the products more easily understandable.
Probabilistic Design and Analysis Framework
NASA Technical Reports Server (NTRS)
Strack, William C.; Nagpal, Vinod K.
2010-01-01
PRODAF is a software package designed to aid analysts and designers in conducting probabilistic analysis of components and systems. PRODAF can integrate multiple analysis programs to ease the tedious process of conducting a complex analysis process that requires the use of multiple software packages. The work uses a commercial finite element analysis (FEA) program with modules from NESSUS to conduct a probabilistic analysis of a hypothetical turbine blade, disk, and shaft model. PRODAF applies the response surface method, at the component level, and extrapolates the component-level responses to the system level. Hypothetical components of a gas turbine engine are first deterministically modeled using FEA. Variations in selected geometrical dimensions and loading conditions are analyzed to determine the effects of the stress state within each component. Geometric variations include the cord length and height for the blade, inner radius, outer radius, and thickness, which are varied for the disk. Probabilistic analysis is carried out using developing software packages like System Uncertainty Analysis (SUA) and PRODAF. PRODAF was used with a commercial deterministic FEA program in conjunction with modules from the probabilistic analysis program, NESTEM, to perturb loads and geometries to provide a reliability and sensitivity analysis. PRODAF simplified the handling of data among the various programs involved, and will work with many commercial and opensource deterministic programs, probabilistic programs, or modules.
Probabilistic combination of static and dynamic gait features for verification
NASA Astrophysics Data System (ADS)
Bazin, Alex I.; Nixon, Mark S.
2005-03-01
This paper describes a novel probabilistic framework for biometric identification and data fusion. Based on intra and inter-class variation extracted from training data, posterior probabilities describing the similarity between two feature vectors may be directly calculated from the data using the logistic function and Bayes rule. Using a large publicly available database we show the two imbalanced gait modalities may be fused using this framework. All fusion methods tested provide an improvement over the best modality, with the weighted sum rule giving the best performance, hence showing that highly imbalanced classifiers may be fused in a probabilistic setting; improving not only the performance, but also generalized application capability.
A generative, probabilistic model of local protein structure.
Boomsma, Wouter; Mardia, Kanti V; Taylor, Charles C; Ferkinghoff-Borg, Jesper; Krogh, Anders; Hamelryck, Thomas
2008-07-01
Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state. Our method represents a significant theoretical and practical improvement over the widely used fragment assembly technique by avoiding the drawbacks associated with a discrete and nonprobabilistic approach.
NASA Technical Reports Server (NTRS)
Basu, Saikat; Ganguly, Sangram; Michaelis, Andrew; Votava, Petr; Roy, Anshuman; Mukhopadhyay, Supratik; Nemani, Ramakrishna
2015-01-01
Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets, which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.
NASA Astrophysics Data System (ADS)
Basu, S.; Ganguly, S.; Michaelis, A.; Votava, P.; Roy, A.; Mukhopadhyay, S.; Nemani, R. R.
2015-12-01
Tree cover delineation is a useful instrument in deriving Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) airborne imagery data. Numerous algorithms have been designed to address this problem, but most of them do not scale to these datasets which are of the order of terabytes. In this paper, we present a semi-automated probabilistic framework for the segmentation and classification of 1-m National Agriculture Imagery Program (NAIP) for tree-cover delineation for the whole of Continental United States, using a High Performance Computing Architecture. Classification is performed using a multi-layer Feedforward Backpropagation Neural Network and segmentation is performed using a Statistical Region Merging algorithm. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field, which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by relabeling misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the whole state of California, spanning a total of 11,095 NAIP tiles covering a total geographical area of 163,696 sq. miles. The framework produced true positive rates of around 88% for fragmented forests and 74% for urban tree cover areas, with false positive rates lower than 2% for both landscapes. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR canopy height model (CHM) showed the effectiveness of our framework for generating accurate high-resolution tree-cover maps.
A Probabilistic Approach to Network Event Formation from Pre-Processed Waveform Data
NASA Astrophysics Data System (ADS)
Kohl, B. C.; Given, J.
2017-12-01
The current state of the art for seismic event detection still largely depends on signal detection at individual sensor stations, including picking accurate arrivals times and correctly identifying phases, and relying on fusion algorithms to associate individual signal detections to form event hypotheses. But increasing computational capability has enabled progress toward the objective of fully utilizing body-wave recordings in an integrated manner to detect events without the necessity of previously recorded ground truth events. In 2011-2012 Leidos (then SAIC) operated a seismic network to monitor activity associated with geothermal field operations in western Nevada. We developed a new association approach for detecting and quantifying events by probabilistically combining pre-processed waveform data to deal with noisy data and clutter at local distance ranges. The ProbDet algorithm maps continuous waveform data into continuous conditional probability traces using a source model (e.g. Brune earthquake or Mueller-Murphy explosion) to map frequency content and an attenuation model to map amplitudes. Event detection and classification is accomplished by combining the conditional probabilities from the entire network using a Bayesian formulation. This approach was successful in producing a high-Pd, low-Pfa automated bulletin for a local network and preliminary tests with regional and teleseismic data show that it has promise for global seismic and nuclear monitoring applications. The approach highlights several features that we believe are essential to achieving low-threshold automated event detection: Minimizes the utilization of individual seismic phase detections - in traditional techniques, errors in signal detection, timing, feature measurement and initial phase ID compound and propagate into errors in event formation, Has a formalized framework that utilizes information from non-detecting stations, Has a formalized framework that utilizes source information, in particular the spectral characteristics of events of interest, Is entirely model-based, i.e. does not rely on a priori's - particularly important for nuclear monitoring, Does not rely on individualized signal detection thresholds - it's the network solution that matters.
Campbell, Kieran R.
2016-01-01
Single cell gene expression profiling can be used to quantify transcriptional dynamics in temporal processes, such as cell differentiation, using computational methods to label each cell with a ‘pseudotime’ where true time series experimentation is too difficult to perform. However, owing to the high variability in gene expression between individual cells, there is an inherent uncertainty in the precise temporal ordering of the cells. Pre-existing methods for pseudotime estimation have predominantly given point estimates precluding a rigorous analysis of the implications of uncertainty. We use probabilistic modelling techniques to quantify pseudotime uncertainty and propagate this into downstream differential expression analysis. We demonstrate that reliance on a point estimate of pseudotime can lead to inflated false discovery rates and that probabilistic approaches provide greater robustness and measures of the temporal resolution that can be obtained from pseudotime inference. PMID:27870852
Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.
2014-02-01
The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; White, K. Preston, Jr.
2012-01-01
The NASA Engineering and Safety Center was requested to improve on the Best Practices document produced for the NESC assessment, Verification of Probabilistic Requirements for the Constellation Program, by giving a recommended procedure for using acceptance sampling by variables techniques as an alternative to the potentially resource-intensive acceptance sampling by attributes method given in the document. In this paper, the results of empirical tests intended to assess the accuracy of acceptance sampling plan calculators implemented for six variable distributions are presented.
Feature selection using probabilistic prediction of support vector regression.
Yang, Jian-Bo; Ong, Chong-Jin
2011-06-01
This paper presents a new wrapper-based feature selection method for support vector regression (SVR) using its probabilistic predictions. The method computes the importance of a feature by aggregating the difference, over the feature space, of the conditional density functions of the SVR prediction with and without the feature. As the exact computation of this importance measure is expensive, two approximations are proposed. The effectiveness of the measure using these approximations, in comparison to several other existing feature selection methods for SVR, is evaluated on both artificial and real-world problems. The result of the experiments show that the proposed method generally performs better than, or at least as well as, the existing methods, with notable advantage when the dataset is sparse.
Probabilistic Sizing and Verification of Space Ceramic Structures
NASA Astrophysics Data System (ADS)
Denaux, David; Ballhause, Dirk; Logut, Daniel; Lucarelli, Stefano; Coe, Graham; Laine, Benoit
2012-07-01
Sizing of ceramic parts is best optimised using a probabilistic approach which takes into account the preexisting flaw distribution in the ceramic part to compute a probability of failure of the part depending on the applied load, instead of a maximum allowable load as for a metallic part. This requires extensive knowledge of the material itself but also an accurate control of the manufacturing process. In the end, risk reduction approaches such as proof testing may be used to lower the final probability of failure of the part. Sizing and verification of ceramic space structures have been performed by Astrium for more than 15 years, both with Zerodur and SiC: Silex telescope structure, Seviri primary mirror, Herschel telescope, Formosat-2 instrument, and other ceramic structures flying today. Throughout this period of time, Astrium has investigated and developed experimental ceramic analysis tools based on the Weibull probabilistic approach. In the scope of the ESA/ESTEC study: “Mechanical Design and Verification Methodologies for Ceramic Structures”, which is to be concluded in the beginning of 2012, existing theories, technical state-of-the-art from international experts, and Astrium experience with probabilistic analysis tools have been synthesized into a comprehensive sizing and verification method for ceramics. Both classical deterministic and more optimised probabilistic methods are available, depending on the criticality of the item and on optimisation needs. The methodology, based on proven theory, has been successfully applied to demonstration cases and has shown its practical feasibility.
Ibrahim, Sarah A; Martini, Luigi
2014-08-01
Dissolution method transfer is a complicated yet common process in the pharmaceutical industry. With increased pharmaceutical product manufacturing and dissolution acceptance requirements, dissolution testing has become one of the most labor-intensive quality control testing methods. There is an increased trend for automation in dissolution testing, particularly for large pharmaceutical companies to reduce variability and increase personnel efficiency. There is no official guideline for dissolution testing method transfer from a manual, semi-automated, to automated dissolution tester. In this study, a manual multipoint dissolution testing procedure for an enteric-coated aspirin tablet was transferred effectively and reproducibly to a fully automated dissolution testing device, RoboDis II. Enteric-coated aspirin samples were used as a model formulation to assess the feasibility and accuracy of media pH change during continuous automated dissolution testing. Several RoboDis II parameters were evaluated to ensure the integrity and equivalency of dissolution method transfer from a manual dissolution tester. This current study provides a systematic outline for the transfer of the manual dissolution testing protocol to an automated dissolution tester. This study further supports that automated dissolution testers compliant with regulatory requirements and similar to manual dissolution testers facilitate method transfer. © 2014 Society for Laboratory Automation and Screening.
Probabilistic simulation of multi-scale composite behavior
NASA Technical Reports Server (NTRS)
Liaw, D. G.; Shiao, M. C.; Singhal, S. N.; Chamis, Christos C.
1993-01-01
A methodology is developed to computationally assess the probabilistic composite material properties at all composite scale levels due to the uncertainties in the constituent (fiber and matrix) properties and in the fabrication process variables. The methodology is computationally efficient for simulating the probability distributions of material properties. The sensitivity of the probabilistic composite material property to each random variable is determined. This information can be used to reduce undesirable uncertainties in material properties at the macro scale of the composite by reducing the uncertainties in the most influential random variables at the micro scale. This methodology was implemented into the computer code PICAN (Probabilistic Integrated Composite ANalyzer). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in the material properties of a typical laminate and comparing the results with the Monte Carlo simulation method. The experimental data of composite material properties at all scales fall within the scatters predicted by PICAN.
Wang, Yue; Adalý, Tülay; Kung, Sun-Yuan; Szabo, Zsolt
2007-01-01
This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches. PMID:18172510
Heck, Daniel W; Hilbig, Benjamin E; Moshagen, Morten
2017-08-01
Decision strategies explain how people integrate multiple sources of information to make probabilistic inferences. In the past decade, increasingly sophisticated methods have been developed to determine which strategy explains decision behavior best. We extend these efforts to test psychologically more plausible models (i.e., strategies), including a new, probabilistic version of the take-the-best (TTB) heuristic that implements a rank order of error probabilities based on sequential processing. Within a coherent statistical framework, deterministic and probabilistic versions of TTB and other strategies can directly be compared using model selection by minimum description length or the Bayes factor. In an experiment with inferences from given information, only three of 104 participants were best described by the psychologically plausible, probabilistic version of TTB. Similar as in previous studies, most participants were classified as users of weighted-additive, a strategy that integrates all available information and approximates rational decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
Probabilistic double guarantee kidnapping detection in SLAM.
Tian, Yang; Ma, Shugen
2016-01-01
For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work. In order to increase the adaptability of DGKD in a large-scale environment, an improved method called probabilistic double guarantee kidnapping detection is proposed in this paper to combine probability of features' positions and the robot's posture. Simulation results demonstrate the validity and accuracy of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purdie, Thomas G., E-mail: Tom.Purdie@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Techna Institute, University Health Network, Toronto, Ontario
Purpose: To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to definemore » and simplify the technical aspects of the treatment planning process. Results: Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Conclusions: Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented improvements in care for breast cancer patients, using technologies that are widely available and already in clinical use.« less
Alternative Approaches to Mission Control Automation at NASA's Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rackley, Michael; Cooter, Miranda; Davis, George; Mackey, Jennifer
2001-01-01
To meet its objective of reducing operations costs without incurring a corresponding increase in risk, NASA is seeking new methods to automate mission operations. This paper examines the state of the art in automating ground operations for space missions. A summary of available technologies and methods for automating mission operations is provided. Responses from interviews with several space mission FOTs (Flight Operations Teams) to assess the degree and success of those technologies and methods implemented are presented. Mission operators that were interviewed approached automation using different tools and methods resulting in varying degrees of success - from nearly completely automated to nearly completely manual. Two key criteria for successful automation are the active participation of the FOT in the planning, designing, testing, and implementation of the system and the relative degree of complexity of the mission.
Exploration of Advanced Probabilistic and Stochastic Design Methods
NASA Technical Reports Server (NTRS)
Mavris, Dimitri N.
2003-01-01
The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and tutorials are attached in electronic form with the enclosed CD.
Huang, Jianyan; Maram, Jyotsna; Tepelus, Tudor C; Modak, Cristina; Marion, Ken; Sadda, SriniVas R; Chopra, Vikas; Lee, Olivia L
2017-08-07
To determine the reliability of corneal endothelial cell density (ECD) obtained by automated specular microscopy versus that of validated manual methods and factors that predict such reliability. Sharp central images from 94 control and 106 glaucomatous eyes were captured with Konan specular microscope NSP-9900. All images were analyzed by trained graders using Konan CellChek Software, employing the fully- and semi-automated methods as well as Center Method. Images with low cell count (input cells number <100) and/or guttata were compared with the Center and Flex-Center Methods. ECDs were compared and absolute error was used to assess variation. The effect on ECD of age, cell count, cell size, and cell size variation was evaluated. No significant difference was observed between the Center and Flex-Center Methods in corneas with guttata (p=0.48) or low ECD (p=0.11). No difference (p=0.32) was observed in ECD of normal controls <40 yrs old between the fully-automated method and manual Center Method. However, in older controls and glaucomatous eyes, ECD was overestimated by the fully-automated method (p=0.034) and semi-automated method (p=0.025) as compared to manual method. Our findings show that automated analysis significantly overestimates ECD in the eyes with high polymegathism and/or large cell size, compared to the manual method. Therefore, we discourage reliance upon the fully-automated method alone to perform specular microscopy analysis, particularly if an accurate ECD value is imperative. Copyright © 2017. Published by Elsevier España, S.L.U.
A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects
Slob, Wout
2015-01-01
Background When chemical health hazards have been identified, probabilistic dose–response assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. Objectives We developed a unified framework for probabilistic dose–response assessment. Methods We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose–response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent” sizes for this underlying individual response; and d) dose–response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose–response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Results Probabilistically derived exposure limits are based on estimating a “target human dose” (HDMI), which requires risk management–informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%–10% effect sizes. Conclusions Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions. Citation Chiu WA, Slob W. 2015. A unified probabilistic framework for dose–response assessment of human health effects. Environ Health Perspect 123:1241–1254; http://dx.doi.org/10.1289/ehp.1409385 PMID:26006063
A Guide to the Literature on Learning Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Friedland, Peter (Technical Monitor)
1994-01-01
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and more generally, learning probabilistic graphical models. Because many problems in artificial intelligence, statistics and neural networks can be represented as a probabilistic graphical model, this area provides a unifying perspective on learning. This paper organizes the research in this area along methodological lines of increasing complexity.
PREDICT: Privacy and Security Enhancing Dynamic Information Monitoring
2015-08-03
consisting of global server-side probabilistic assignment by an untrusted server using cloaked locations, followed by feedback-loop guided local...12], consisting of global server-side probabilistic assignment by an untrusted server using cloaked locations, followed by feedback-loop guided...these methods achieve high sensing coverage with low cost using cloaked locations [3]. In follow-on work, the issue of mobility is addressed. Task
The purpose of this SOP is to describe the procedures undertaken to calculate the ingestion exposure using composite food chemical residue values from the day of direct measurements. The calculation is based on the probabilistic approach. This SOP uses data that have been proper...
Development of Advanced Life Cycle Costing Methods for Technology Benefit/Cost/Risk Assessment
NASA Technical Reports Server (NTRS)
Yackovetsky, Robert (Technical Monitor)
2002-01-01
The overall objective of this three-year grant is to provide NASA Langley's System Analysis Branch with improved affordability tools and methods based on probabilistic cost assessment techniques. In order to accomplish this objective, the Aerospace Systems Design Laboratory (ASDL) needs to pursue more detailed affordability, technology impact, and risk prediction methods and to demonstrate them on variety of advanced commercial transports. The affordability assessment, which is a cornerstone of ASDL methods, relies on the Aircraft Life Cycle Cost Analysis (ALCCA) program originally developed by NASA Ames Research Center and enhanced by ASDL. This grant proposed to improve ALCCA in support of the project objective by updating the research, design, test, and evaluation cost module, as well as the engine development cost module. Investigations into enhancements to ALCCA include improved engine development cost, process based costing, supportability cost, and system reliability with airline loss of revenue for system downtime. A probabilistic, stand-alone version of ALCCA/FLOPS will also be developed under this grant in order to capture the uncertainty involved in technology assessments. FLOPS (FLight Optimization System program) is an aircraft synthesis and sizing code developed by NASA Langley Research Center. This probabilistic version of the coupled program will be used within a Technology Impact Forecasting (TIF) method to determine what types of technologies would have to be infused in a system in order to meet customer requirements. A probabilistic analysis of the CER's (cost estimating relationships) within ALCCA will also be carried out under this contract in order to gain some insight as to the most influential costs and the impact that code fidelity could have on future RDS (Robust Design Simulation) studies.
A probabilistic method for testing and estimating selection differences between populations.
He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li
2015-12-01
Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. © 2015 He et al.; Published by Cold Spring Harbor Laboratory Press.
Middlebrooks, E H; Tuna, I S; Grewal, S S; Almeida, L; Heckman, M G; Lesser, E R; Foote, K D; Okun, M S; Holanda, V M
2018-06-01
Although globus pallidus internus deep brain stimulation is a widely accepted treatment for Parkinson disease, there is persistent variability in outcomes that is not yet fully understood. In this pilot study, we aimed to investigate the potential role of globus pallidus internus segmentation using probabilistic tractography as a supplement to traditional targeting methods. Eleven patients undergoing globus pallidus internus deep brain stimulation were included in this retrospective analysis. Using multidirection diffusion-weighted MR imaging, we performed probabilistic tractography at all individual globus pallidus internus voxels. Each globus pallidus internus voxel was then assigned to the 1 ROI with the greatest number of propagated paths. On the basis of deep brain stimulation programming settings, the volume of tissue activated was generated for each patient using a finite element method solution. For each patient, the volume of tissue activated within each of the 10 segmented globus pallidus internus regions was calculated and examined for association with a change in the Unified Parkinson Disease Rating Scale, Part III score before and after treatment. Increasing volume of tissue activated was most strongly correlated with a change in the Unified Parkinson Disease Rating Scale, Part III score for the primary motor region (Spearman r = 0.74, P = .010), followed by the supplementary motor area/premotor cortex (Spearman r = 0.47, P = .15). In this pilot study, we assessed a novel method of segmentation of the globus pallidus internus based on probabilistic tractography as a supplement to traditional targeting methods. Our results suggest that our method may be an independent predictor of deep brain stimulation outcome, and evaluation of a larger cohort or prospective study is warranted to validate these findings. © 2018 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Ren, Weiwei; Yang, Tao; Shi, Pengfei; Xu, Chong-yu; Zhang, Ke; Zhou, Xudong; Shao, Quanxi; Ciais, Philippe
2018-06-01
Climate change imposes profound influence on regional hydrological cycle and water security in many alpine regions worldwide. Investigating regional climate impacts using watershed scale hydrological models requires a large number of input data such as topography, meteorological and hydrological data. However, data scarcity in alpine regions seriously restricts evaluation of climate change impacts on water cycle using conventional approaches based on global or regional climate models, statistical downscaling methods and hydrological models. Therefore, this study is dedicated to development of a probabilistic model to replace the conventional approaches for streamflow projection. The probabilistic model was built upon an advanced Bayesian Neural Network (BNN) approach directly fed by the large-scale climate predictor variables and tested in a typical data sparse alpine region, the Kaidu River basin in Central Asia. Results show that BNN model performs better than the general methods across a number of statistical measures. The BNN method with flexible model structures by active indicator functions, which reduce the dependence on the initial specification for the input variables and the number of hidden units, can work well in a data limited region. Moreover, it can provide more reliable streamflow projections with a robust generalization ability. Forced by the latest bias-corrected GCM scenarios, streamflow projections for the 21st century under three RCP emission pathways were constructed and analyzed. Briefly, the proposed probabilistic projection approach could improve runoff predictive ability over conventional methods and provide better support to water resources planning and management under data limited conditions as well as enable a facilitated climate change impact analysis on runoff and water resources in alpine regions worldwide.
Aviation Safety Risk Modeling: Lessons Learned From Multiple Knowledge Elicitation Sessions
NASA Technical Reports Server (NTRS)
Luxhoj, J. T.; Ancel, E.; Green, L. L.; Shih, A. T.; Jones, S. M.; Reveley, M. S.
2014-01-01
Aviation safety risk modeling has elements of both art and science. In a complex domain, such as the National Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation Problems (FLAP), and Runway Incursion (RI) mishap scenarios. The intent of these safety risk models is to support a portfolio analysis of NASA's Aviation Safety Program (AvSP). These models use the flexible, probabilistic approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of aviation system risk factors. Each KE session had a different set of experts with diverse expertise, such as pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-level risk model. There were numerous "lessons learned" from these KE sessions that deal with behavioral aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, and model verification/validation that are presented in this paper.
Mahajan, Ruhi; Viangteeravat, Teeradache; Akbilgic, Oguz
2017-12-01
A timely diagnosis of congestive heart failure (CHF) is crucial to evade a life-threatening event. This paper presents a novel probabilistic symbol pattern recognition (PSPR) approach to detect CHF in subjects from their cardiac interbeat (R-R) intervals. PSPR discretizes each continuous R-R interval time series by mapping them onto an eight-symbol alphabet and then models the pattern transition behavior in the symbolic representation of the series. The PSPR-based analysis of the discretized series from 107 subjects (69 normal and 38 CHF subjects) yielded discernible features to distinguish normal subjects and subjects with CHF. In addition to PSPR features, we also extracted features using the time-domain heart rate variability measures such as average and standard deviation of R-R intervals. An ensemble of bagged decision trees was used to classify two groups resulting in a five-fold cross-validation accuracy, specificity, and sensitivity of 98.1%, 100%, and 94.7%, respectively. However, a 20% holdout validation yielded an accuracy, specificity, and sensitivity of 99.5%, 100%, and 98.57%, respectively. Results from this study suggest that features obtained with the combination of PSPR and long-term heart rate variability measures can be used in developing automated CHF diagnosis tools. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ishizaki, N. N.; Dairaku, K.; Ueno, G.
2016-12-01
We have developed a statistical downscaling method for estimating probabilistic climate projection using CMIP5 multi general circulation models (GCMs). A regression model was established so that the combination of weights of GCMs reflects the characteristics of the variation of observations at each grid point. Cross validations were conducted to select GCMs and to evaluate the regression model to avoid multicollinearity. By using spatially high resolution observation system, we conducted statistically downscaled probabilistic climate projections with 20-km horizontal grid spacing. Root mean squared errors for monthly mean air surface temperature and precipitation estimated by the regression method were the smallest compared with the results derived from a simple ensemble mean of GCMs and a cumulative distribution function based bias correction method. Projected changes in the mean temperature and precipitation were basically similar to those of the simple ensemble mean of GCMs. Mean precipitation was generally projected to increase associated with increased temperature and consequent increased moisture content in the air. Weakening of the winter monsoon may affect precipitation decrease in some areas. Temperature increase in excess of 4 K was expected in most areas of Japan in the end of 21st century under RCP8.5 scenario. The estimated probability of monthly precipitation exceeding 300 mm would increase around the Pacific side during the summer and the Japan Sea side during the winter season. This probabilistic climate projection based on the statistical method can be expected to bring useful information to the impact studies and risk assessments.
Zulkifley, Mohd Asyraf; Rawlinson, David; Moran, Bill
2012-01-01
In video analytics, robust observation detection is very important as the content of the videos varies a lot, especially for tracking implementation. Contrary to the image processing field, the problems of blurring, moderate deformation, low illumination surroundings, illumination change and homogenous texture are normally encountered in video analytics. Patch-Based Observation Detection (PBOD) is developed to improve detection robustness to complex scenes by fusing both feature- and template-based recognition methods. While we believe that feature-based detectors are more distinctive, however, for finding the matching between the frames are best achieved by a collection of points as in template-based detectors. Two methods of PBOD—the deterministic and probabilistic approaches—have been tested to find the best mode of detection. Both algorithms start by building comparison vectors at each detected points of interest. The vectors are matched to build candidate patches based on their respective coordination. For the deterministic method, patch matching is done in 2-level test where threshold-based position and size smoothing are applied to the patch with the highest correlation value. For the second approach, patch matching is done probabilistically by modelling the histograms of the patches by Poisson distributions for both RGB and HSV colour models. Then, maximum likelihood is applied for position smoothing while a Bayesian approach is applied for size smoothing. The result showed that probabilistic PBOD outperforms the deterministic approach with average distance error of 10.03% compared with 21.03%. This algorithm is best implemented as a complement to other simpler detection methods due to heavy processing requirement. PMID:23202226
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; Ferri, Aldo A.
1995-01-01
Standard methods of structural dynamic analysis assume that the structural characteristics are deterministic. Recognizing that these characteristics are actually statistical in nature, researchers have recently developed a variety of methods that use this information to determine probabilities of a desired response characteristic, such as natural frequency, without using expensive Monte Carlo simulations. One of the problems in these methods is correctly identifying the statistical properties of primitive variables such as geometry, stiffness, and mass. This paper presents a method where the measured dynamic properties of substructures are used instead as the random variables. The residual flexibility method of component mode synthesis is combined with the probabilistic methods to determine the cumulative distribution function of the system eigenvalues. A simple cantilever beam test problem is presented that illustrates the theory.
Zhang, Lei; Zeng, Zhi; Ji, Qiang
2011-09-01
Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.
Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William
2009-01-01
This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad Atif; Curtis, Andrew
2018-04-01
We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.
Purdie, Thomas G; Dinniwell, Robert E; Fyles, Anthony; Sharpe, Michael B
2014-11-01
To demonstrate the large-scale clinical implementation and performance of an automated treatment planning methodology for tangential breast intensity modulated radiation therapy (IMRT). Automated planning was used to prospectively plan tangential breast IMRT treatment for 1661 patients between June 2009 and November 2012. The automated planning method emulates the manual steps performed by the user during treatment planning, including anatomical segmentation, beam placement, optimization, dose calculation, and plan documentation. The user specifies clinical requirements of the plan to be generated through a user interface embedded in the planning system. The automated method uses heuristic algorithms to define and simplify the technical aspects of the treatment planning process. Automated planning was used in 1661 of 1708 patients receiving tangential breast IMRT during the time interval studied. Therefore, automated planning was applicable in greater than 97% of cases. The time for treatment planning using the automated process is routinely 5 to 6 minutes on standard commercially available planning hardware. We have shown a consistent reduction in plan rejections from plan reviews through the standard quality control process or weekly quality review multidisciplinary breast rounds as we have automated the planning process for tangential breast IMRT. Clinical plan acceptance increased from 97.3% using our previous semiautomated inverse method to 98.9% using the fully automated method. Automation has become the routine standard method for treatment planning of tangential breast IMRT at our institution and is clinically feasible on a large scale. The method has wide clinical applicability and can add tremendous efficiency, standardization, and quality to the current treatment planning process. The use of automated methods can allow centers to more rapidly adopt IMRT and enhance access to the documented improvements in care for breast cancer patients, using technologies that are widely available and already in clinical use. Copyright © 2014 Elsevier Inc. All rights reserved.
Durability reliability analysis for corroding concrete structures under uncertainty
NASA Astrophysics Data System (ADS)
Zhang, Hao
2018-02-01
This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.
NASA Technical Reports Server (NTRS)
McGhee, David S.; Peck, Jeff A.; McDonald, Emmett J.
2012-01-01
This paper examines Probabilistic Sensitivity Analysis (PSA) methods and tools in an effort to understand their utility in vehicle loads and dynamic analysis. Specifically, this study addresses how these methods may be used to establish limits on payload mass and cg location and requirements on adaptor stiffnesses while maintaining vehicle loads and frequencies within established bounds. To this end, PSA methods and tools are applied to a realistic, but manageable, integrated launch vehicle analysis where payload and payload adaptor parameters are modeled as random variables. This analysis is used to study both Regional Response PSA (RRPSA) and Global Response PSA (GRPSA) methods, with a primary focus on sampling based techniques. For contrast, some MPP based approaches are also examined.
Young, Jonathan; Modat, Marc; Cardoso, Manuel J; Mendelson, Alex; Cash, Dave; Ourselin, Sebastien
2013-01-01
Accurately identifying the patients that have mild cognitive impairment (MCI) who will go on to develop Alzheimer's disease (AD) will become essential as new treatments will require identification of AD patients at earlier stages in the disease process. Most previous work in this area has centred around the same automated techniques used to diagnose AD patients from healthy controls, by coupling high dimensional brain image data or other relevant biomarker data to modern machine learning techniques. Such studies can now distinguish between AD patients and controls as accurately as an experienced clinician. Models trained on patients with AD and control subjects can also distinguish between MCI patients that will convert to AD within a given timeframe (MCI-c) and those that remain stable (MCI-s), although differences between these groups are smaller and thus, the corresponding accuracy is lower. The most common type of classifier used in these studies is the support vector machine, which gives categorical class decisions. In this paper, we introduce Gaussian process (GP) classification to the problem. This fully Bayesian method produces naturally probabilistic predictions, which we show correlate well with the actual chances of converting to AD within 3 years in a population of 96 MCI-s and 47 MCI-c subjects. Furthermore, we show that GPs can integrate multimodal data (in this study volumetric MRI, FDG-PET, cerebrospinal fluid, and APOE genotype with the classification process through the use of a mixed kernel). The GP approach aids combination of different data sources by learning parameters automatically from training data via type-II maximum likelihood, which we compare to a more conventional method based on cross validation and an SVM classifier. When the resulting probabilities from the GP are dichotomised to produce a binary classification, the results for predicting MCI conversion based on the combination of all three types of data show a balanced accuracy of 74%. This is a substantially higher accuracy than could be obtained using any individual modality or using a multikernel SVM, and is competitive with the highest accuracy yet achieved for predicting conversion within three years on the widely used ADNI dataset.
NASA Astrophysics Data System (ADS)
Králik, Juraj
2017-07-01
The paper presents the probabilistic and sensitivity analysis of the efficiency of the damping devices cover of nuclear power plant under impact of the container of nuclear fuel of type TK C30 drop. The finite element idealization of nuclear power plant structure is used in space. The steel pipe damper system is proposed for dissipation of the kinetic energy of the container free fall. The experimental results of the shock-damper basic element behavior under impact loads are presented. The Newmark integration method is used for solution of the dynamic equations. The sensitivity and probabilistic analysis of damping devices was realized in the AntHILL and ANSYS software.
The application of probabilistic design theory to high temperature low cycle fatigue
NASA Technical Reports Server (NTRS)
Wirsching, P. H.
1981-01-01
Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.
Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products.
Medema, Marnix H; Paalvast, Yared; Nguyen, Don D; Melnik, Alexey; Dorrestein, Pieter C; Takano, Eriko; Breitling, Rainer
2014-09-01
Nonribosomally and ribosomally synthesized bioactive peptides constitute a source of molecules of great biomedical importance, including antibiotics such as penicillin, immunosuppressants such as cyclosporine, and cytostatics such as bleomycin. Recently, an innovative mass-spectrometry-based strategy, peptidogenomics, has been pioneered to effectively mine microbial strains for novel peptidic metabolites. Even though mass-spectrometric peptide detection can be performed quite fast, true high-throughput natural product discovery approaches have still been limited by the inability to rapidly match the identified tandem mass spectra to the gene clusters responsible for the biosynthesis of the corresponding compounds. With Pep2Path, we introduce a software package to fully automate the peptidogenomics approach through the rapid Bayesian probabilistic matching of mass spectra to their corresponding biosynthetic gene clusters. Detailed benchmarking of the method shows that the approach is powerful enough to correctly identify gene clusters even in data sets that consist of hundreds of genomes, which also makes it possible to match compounds from unsequenced organisms to closely related biosynthetic gene clusters in other genomes. Applying Pep2Path to a data set of compounds without known biosynthesis routes, we were able to identify candidate gene clusters for the biosynthesis of five important compounds. Notably, one of these clusters was detected in a genome from a different subphylum of Proteobacteria than that in which the molecule had first been identified. All in all, our approach paves the way towards high-throughput discovery of novel peptidic natural products. Pep2Path is freely available from http://pep2path.sourceforge.net/, implemented in Python, licensed under the GNU General Public License v3 and supported on MS Windows, Linux and Mac OS X.
Multiatlas segmentation of thoracic and abdominal anatomy with level set-based local search.
Schreibmann, Eduard; Marcus, David M; Fox, Tim
2014-07-08
Segmentation of organs at risk (OARs) remains one of the most time-consuming tasks in radiotherapy treatment planning. Atlas-based segmentation methods using single templates have emerged as a practical approach to automate the process for brain or head and neck anatomy, but pose significant challenges in regions where large interpatient variations are present. We show that significant changes are needed to autosegment thoracic and abdominal datasets by combining multi-atlas deformable registration with a level set-based local search. Segmentation is hierarchical, with a first stage detecting bulk organ location, and a second step adapting the segmentation to fine details present in the patient scan. The first stage is based on warping multiple presegmented templates to the new patient anatomy using a multimodality deformable registration algorithm able to cope with changes in scanning conditions and artifacts. These segmentations are compacted in a probabilistic map of organ shape using the STAPLE algorithm. Final segmentation is obtained by adjusting the probability map for each organ type, using customized combinations of delineation filters exploiting prior knowledge of organ characteristics. Validation is performed by comparing automated and manual segmentation using the Dice coefficient, measured at an average of 0.971 for the aorta, 0.869 for the trachea, 0.958 for the lungs, 0.788 for the heart, 0.912 for the liver, 0.884 for the kidneys, 0.888 for the vertebrae, 0.863 for the spleen, and 0.740 for the spinal cord. Accurate atlas segmentation for abdominal and thoracic regions can be achieved with the usage of a multi-atlas and perstructure refinement strategy. To improve clinical workflow and efficiency, the algorithm was embedded in a software service, applying the algorithm automatically on acquired scans without any user interaction.
Quantification of EEG reactivity in comatose patients
Hermans, Mathilde C.; Westover, M. Brandon; van Putten, Michel J.A.M.; Hirsch, Lawrence J.; Gaspard, Nicolas
2016-01-01
Objective EEG reactivity is an important predictor of outcome in comatose patients. However, visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches. Methods In EEG segments recorded during reactivity testing in 59 comatose patients, 13 quantitative EEG parameters were used to compare the spectral characteristics of 1-minute segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was quantified with probability values estimated using combinations of these parameters. The accuracy of probability values as a reactivity classifier was evaluated against the consensus assessment of three expert clinical electroencephalographers using visual analysis. Results The binary classifier assessing spectral temporal symmetry in four frequency bands (delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual case. Conclusion Automated quantitative EEG approaches based on probabilistic description of spectral temporal symmetry reliably quantify EEG reactivity. Significance Quantitative EEG may be useful for evaluating reactivity in comatose patients, offering increased objectivity. PMID:26183757
Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov
2015-08-01
Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.
NASA Astrophysics Data System (ADS)
Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron
2005-04-01
Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.
Integration of NASA-Developed Lifing Technology for PM Alloys into DARWIN (registered trademark)
NASA Technical Reports Server (NTRS)
McClung, R. Craig; Enright, Michael P.; Liang, Wuwei
2011-01-01
In recent years, Southwest Research Institute (SwRI) and NASA Glenn Research Center (GRC) have worked independently on the development of probabilistic life prediction methods for materials used in gas turbine engine rotors. The two organizations have addressed different but complementary technical challenges. This report summarizes a brief investigation into the current status of the relevant technology at SwRI and GRC with a view towards a future integration of methods and models developed by GRC for probabilistic lifing of powder metallurgy (P/M) nickel turbine rotor alloys into the DARWIN (Darwin Corporation) software developed by SwRI.
Speech processing using maximum likelihood continuity mapping
Hogden, John E.
2000-01-01
Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.
Speech processing using maximum likelihood continuity mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogden, J.E.
Speech processing is obtained that, given a probabilistic mapping between static speech sounds and pseudo-articulator positions, allows sequences of speech sounds to be mapped to smooth sequences of pseudo-articulator positions. In addition, a method for learning a probabilistic mapping between static speech sounds and pseudo-articulator position is described. The method for learning the mapping between static speech sounds and pseudo-articulator position uses a set of training data composed only of speech sounds. The said speech processing can be applied to various speech analysis tasks, including speech recognition, speaker recognition, speech coding, speech synthesis, and voice mimicry.
Method and system for dynamic probabilistic risk assessment
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)
2013-01-01
The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.
A Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans
2014-01-01
An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results. PMID:25276219
A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints
NASA Astrophysics Data System (ADS)
Wei, Helin; Wang, Kuisheng
2011-11-01
Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.
Effects of delay and probability combinations on discounting in humans.
Cox, David J; Dallery, Jesse
2016-10-01
To determine discount rates, researchers typically adjust the amount of an immediate or certain option relative to a delayed or uncertain option. Because this adjusting amount method can be relatively time consuming, researchers have developed more efficient procedures. One such procedure is a 5-trial adjusting delay procedure, which measures the delay at which an amount of money loses half of its value (e.g., $1000 is valued at $500 with a 10-year delay to its receipt). Experiment 1 (n=212) used 5-trial adjusting delay or probability tasks to measure delay discounting of losses, probabilistic gains, and probabilistic losses. Experiment 2 (n=98) assessed combined probabilistic and delayed alternatives. In both experiments, we compared results from 5-trial adjusting delay or probability tasks to traditional adjusting amount procedures. Results suggest both procedures produced similar rates of probability and delay discounting in six out of seven comparisons. A magnitude effect consistent with previous research was observed for probabilistic gains and losses, but not for delayed losses. Results also suggest that delay and probability interact to determine the value of money. Five-trial methods may allow researchers to assess discounting more efficiently as well as study more complex choice scenarios. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Kejiang; Achari, Gopal; Pei, Yuansheng
2010-10-01
Different types of uncertain information-linguistic, probabilistic, and possibilistic-exist in site characterization. Their representation and propagation significantly influence the management of contaminated sites. In the absence of a framework with which to properly represent and integrate these quantitative and qualitative inputs together, decision makers cannot fully take advantage of the available and necessary information to identify all the plausible alternatives. A systematic methodology was developed in the present work to incorporate linguistic, probabilistic, and possibilistic information into the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), a subgroup of Multi-Criteria Decision Analysis (MCDA) methods for ranking contaminated sites. The identification of criteria based on the paradigm of comparative risk assessment provides a rationale for risk-based prioritization. Uncertain linguistic, probabilistic, and possibilistic information identified in characterizing contaminated sites can be properly represented as numerical values, intervals, probability distributions, and fuzzy sets or possibility distributions, and linguistic variables according to their nature. These different kinds of representation are first transformed into a 2-tuple linguistic representation domain. The propagation of hybrid uncertainties is then carried out in the same domain. This methodology can use the original site information directly as much as possible. The case study shows that this systematic methodology provides more reasonable results. © 2010 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yun, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Cui, Wan-Zhao, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Wang, Hong-Guang
2015-05-15
Effects of the secondary electron emission (SEE) phenomenon of metal surface on the multipactor analysis of microwave components are investigated numerically and experimentally in this paper. Both the secondary electron yield (SEY) and the emitted energy spectrum measurements are performed on silver plated samples for accurate description of the SEE phenomenon. A phenomenological probabilistic model based on SEE physics is utilized and fitted accurately to the measured SEY and emitted energy spectrum of the conditioned surface material of microwave components. Specially, the phenomenological probabilistic model is extended to the low primary energy end lower than 20 eV mathematically, since no accuratemore » measurement data can be obtained. Embedding the phenomenological probabilistic model into the Electromagnetic Particle-In-Cell (EM-PIC) method, the electronic resonant multipacting in microwave components can be tracked and hence the multipactor threshold can be predicted. The threshold prediction error of the transformer and the coaxial filter is 0.12 dB and 1.5 dB, respectively. Simulation results demonstrate that the discharge threshold is strongly dependent on the SEYs and its energy spectrum in the low energy end (lower than 50 eV). Multipacting simulation results agree quite well with experiments in practical components, while the phenomenological probabilistic model fit both the SEY and the emission energy spectrum better than the traditionally used model and distribution. The EM-PIC simulation method with the phenomenological probabilistic model for the surface collision simulation has been demonstrated for predicting the multipactor threshold in metal components for space application.« less
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...
2017-07-11
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
Probabilistic power flow using improved Monte Carlo simulation method with correlated wind sources
NASA Astrophysics Data System (ADS)
Bie, Pei; Zhang, Buhan; Li, Hang; Deng, Weisi; Wu, Jiasi
2017-01-01
Probabilistic Power Flow (PPF) is a very useful tool for power system steady-state analysis. However, the correlation among different random injection power (like wind power) brings great difficulties to calculate PPF. Monte Carlo simulation (MCS) and analytical methods are two commonly used methods to solve PPF. MCS has high accuracy but is very time consuming. Analytical method like cumulants method (CM) has high computing efficiency but the cumulants calculating is not convenient when wind power output does not obey any typical distribution, especially when correlated wind sources are considered. In this paper, an Improved Monte Carlo simulation method (IMCS) is proposed. The joint empirical distribution is applied to model different wind power output. This method combines the advantages of both MCS and analytical method. It not only has high computing efficiency, but also can provide solutions with enough accuracy, which is very suitable for on-line analysis.
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera.
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-08-31
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments.
A Probabilistic Feature Map-Based Localization System Using a Monocular Camera
Kim, Hyungjin; Lee, Donghwa; Oh, Taekjun; Choi, Hyun-Taek; Myung, Hyun
2015-01-01
Image-based localization is one of the most widely researched localization techniques in the robotics and computer vision communities. As enormous image data sets are provided through the Internet, many studies on estimating a location with a pre-built image-based 3D map have been conducted. Most research groups use numerous image data sets that contain sufficient features. In contrast, this paper focuses on image-based localization in the case of insufficient images and features. A more accurate localization method is proposed based on a probabilistic map using 3D-to-2D matching correspondences between a map and a query image. The probabilistic feature map is generated in advance by probabilistic modeling of the sensor system as well as the uncertainties of camera poses. Using the conventional PnP algorithm, an initial camera pose is estimated on the probabilistic feature map. The proposed algorithm is optimized from the initial pose by minimizing Mahalanobis distance errors between features from the query image and the map to improve accuracy. To verify that the localization accuracy is improved, the proposed algorithm is compared with the conventional algorithm in a simulation and realenvironments. PMID:26404284
Development of Probabilistic Flood Inundation Mapping For Flooding Induced by Dam Failure
NASA Astrophysics Data System (ADS)
Tsai, C.; Yeh, J. J. J.
2017-12-01
A primary function of flood inundation mapping is to forecast flood hazards and assess potential losses. However, uncertainties limit the reliability of inundation hazard assessments. Major sources of uncertainty should be taken into consideration by an optimal flood management strategy. This study focuses on the 20km reach downstream of the Shihmen Reservoir in Taiwan. A dam failure induced flood herein provides the upstream boundary conditions of flood routing. The two major sources of uncertainty that are considered in the hydraulic model and the flood inundation mapping herein are uncertainties in the dam break model and uncertainty of the roughness coefficient. The perturbance moment method is applied to a dam break model and the hydro system model to develop probabilistic flood inundation mapping. Various numbers of uncertain variables can be considered in these models and the variability of outputs can be quantified. The probabilistic flood inundation mapping for dam break induced floods can be developed with consideration of the variability of output using a commonly used HEC-RAS model. Different probabilistic flood inundation mappings are discussed and compared. Probabilistic flood inundation mappings are hoped to provide new physical insights in support of the evaluation of concerning reservoir flooded areas.
van der Slegt, Jasper; Verbogt, Nathalie Pa; Mulder, Paul Gh; Steunenberg, Stijn L; Steunenberg, Bastiaan E; van der Laan, Lijckle
2016-10-01
An automated ankle-brachial index device could lead to potential time savings and more accuracy in ankle-brachial index-determination after vascular surgery. This prospective cross-sectional study compared postprocedural ankle-brachial indices measured by a manual method with ankle-brachial indices of an automated plethysmographic method. Forty-two patients were included. No significant difference in time performing a measurement was observed (1.1 min, 95% CI: -0.2 to +2.4; P = 0.095). Mean ankle-brachial index with the automated method was 0.105 higher (95% CI: 0.017 to 0.193; P = 0.020) than with the manual method, with limits of agreement of -0.376 and +0.587. Total variance amounted to 0.0759 and the correlation between both methods was 0.60. Reliability expressed as maximum absolute difference (95% level) between duplicate ankle-brachial index-measurements under identical conditions was 0.350 (manual) and 0.152 (automated), although not significant (p = 0.053). Finally, the automated method had 34% points higher failure rate than the manual method. In conclusion based on this study, the automated ankle-brachial index-method seems not to be clinically applicable for measuring ankle-brachial index postoperatively in patients with vascular disease. © The Author(s) 2016.
Multiple hypothesis tracking for the cyber domain
NASA Astrophysics Data System (ADS)
Schwoegler, Stefan; Blackman, Sam; Holsopple, Jared; Hirsch, Michael J.
2011-09-01
This paper discusses how methods used for conventional multiple hypothesis tracking (MHT) can be extended to domain-agnostic tracking of entities from non-kinematic constraints such as those imposed by cyber attacks in a potentially dense false alarm background. MHT is widely recognized as the premier method to avoid corrupting tracks with spurious data in the kinematic domain but it has not been extensively applied to other problem domains. The traditional approach is to tightly couple track maintenance (prediction, gating, filtering, probabilistic pruning, and target confirmation) with hypothesis management (clustering, incompatibility maintenance, hypothesis formation, and Nassociation pruning). However, by separating the domain specific track maintenance portion from the domain agnostic hypothesis management piece, we can begin to apply the wealth of knowledge gained from ground and air tracking solutions to the cyber (and other) domains. These realizations led to the creation of Raytheon's Multiple Hypothesis Extensible Tracking Architecture (MHETA). In this paper, we showcase MHETA for the cyber domain, plugging in a well established method, CUBRC's INFormation Engine for Real-time Decision making, (INFERD), for the association portion of the MHT. The result is a CyberMHT. We demonstrate the power of MHETA-INFERD using simulated data. Using metrics from both the tracking and cyber domains, we show that while no tracker is perfect, by applying MHETA-INFERD, advanced nonkinematic tracks can be captured in an automated way, perform better than non-MHT approaches, and decrease analyst response time to cyber threats.
Learning a Health Knowledge Graph from Electronic Medical Records.
Rotmensch, Maya; Halpern, Yoni; Tlimat, Abdulhakim; Horng, Steven; Sontag, David
2017-07-20
Demand for clinical decision support systems in medicine and self-diagnostic symptom checkers has substantially increased in recent years. Existing platforms rely on knowledge bases manually compiled through a labor-intensive process or automatically derived using simple pairwise statistics. This study explored an automated process to learn high quality knowledge bases linking diseases and symptoms directly from electronic medical records. Medical concepts were extracted from 273,174 de-identified patient records and maximum likelihood estimation of three probabilistic models was used to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian network using noisy OR gates. A graph of disease-symptom relationships was elicited from the learned parameters and the constructed knowledge graphs were evaluated and validated, with permission, against Google's manually-constructed knowledge graph and against expert physician opinions. Our study shows that direct and automated construction of high quality health knowledge graphs from medical records using rudimentary concept extraction is feasible. The noisy OR model produces a high quality knowledge graph reaching precision of 0.85 for a recall of 0.6 in the clinical evaluation. Noisy OR significantly outperforms all tested models across evaluation frameworks (p < 0.01).
NASA Astrophysics Data System (ADS)
Miltiadou, Milto; Campbell, Neil D. F.; Gonzalez Aracil, Susana; Brown, Tony; Grant, Michael G.
2018-05-01
In Australia, many birds and arboreal animals use hollows for shelters, but studies predict shortage of hollows in near future. Aged dead trees are more likely to contain hollows and therefore automated detection of them plays a substantial role in preserving biodiversity and consequently maintaining a resilient ecosystem. For this purpose full-waveform LiDAR data were acquired from a native Eucalypt forest in Southern Australia. The structure of the forest significantly varies in terms of tree density, age and height. Additionally, Eucalyptus camaldulensis have multiple trunk splits making tree delineation very challenging. For that reason, this paper investigates automated detection of dead standing Eucalyptus camaldulensis without tree delineation. It also presents the new feature of the open source software DASOS, which extracts features for 3D object detection in voxelised FW LiDAR. A random forest classifier, a weighted-distance KNN algorithm and a seed growth algorithm are used to create a 2D probabilistic field and to then predict potential positions of dead trees. It is shown that tree health assessment is possible without tree delineation but since it is a new research directions there are many improvements to be made.
Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni
2016-01-01
How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a “specialized” domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the “community structure” of the ToH and their difficulties in executing so-called “counterintuitive” movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand—a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits. PMID:27074140
Donnarumma, Francesco; Maisto, Domenico; Pezzulo, Giovanni
2016-04-01
How do humans and other animals face novel problems for which predefined solutions are not available? Human problem solving links to flexible reasoning and inference rather than to slow trial-and-error learning. It has received considerable attention since the early days of cognitive science, giving rise to well known cognitive architectures such as SOAR and ACT-R, but its computational and brain mechanisms remain incompletely known. Furthermore, it is still unclear whether problem solving is a "specialized" domain or module of cognition, in the sense that it requires computations that are fundamentally different from those supporting perception and action systems. Here we advance a novel view of human problem solving as probabilistic inference with subgoaling. In this perspective, key insights from cognitive architectures are retained such as the importance of using subgoals to split problems into subproblems. However, here the underlying computations use probabilistic inference methods analogous to those that are increasingly popular in the study of perception and action systems. To test our model we focus on the widely used Tower of Hanoi (ToH) task, and show that our proposed method can reproduce characteristic idiosyncrasies of human problem solvers: their sensitivity to the "community structure" of the ToH and their difficulties in executing so-called "counterintuitive" movements. Our analysis reveals that subgoals have two key roles in probabilistic inference and problem solving. First, prior beliefs on (likely) useful subgoals carve the problem space and define an implicit metric for the problem at hand-a metric to which humans are sensitive. Second, subgoals are used as waypoints in the probabilistic problem solving inference and permit to find effective solutions that, when unavailable, lead to problem solving deficits. Our study thus suggests that a probabilistic inference scheme enhanced with subgoals provides a comprehensive framework to study problem solving and its deficits.
NASA Astrophysics Data System (ADS)
Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin
2011-06-01
We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets—consisting of 20 and 18 volumes, respectively—provided by the Internet Brain Segmentation Repository.
Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin
2011-06-07
We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets-consisting of 20 and 18 volumes, respectively-provided by the Internet Brain Segmentation Repository.
Probabilistic analysis of tsunami hazards
Geist, E.L.; Parsons, T.
2006-01-01
Determining the likelihood of a disaster is a key component of any comprehensive hazard assessment. This is particularly true for tsunamis, even though most tsunami hazard assessments have in the past relied on scenario or deterministic type models. We discuss probabilistic tsunami hazard analysis (PTHA) from the standpoint of integrating computational methods with empirical analysis of past tsunami runup. PTHA is derived from probabilistic seismic hazard analysis (PSHA), with the main difference being that PTHA must account for far-field sources. The computational methods rely on numerical tsunami propagation models rather than empirical attenuation relationships as in PSHA in determining ground motions. Because a number of source parameters affect local tsunami runup height, PTHA can become complex and computationally intensive. Empirical analysis can function in one of two ways, depending on the length and completeness of the tsunami catalog. For site-specific studies where there is sufficient tsunami runup data available, hazard curves can primarily be derived from empirical analysis, with computational methods used to highlight deficiencies in the tsunami catalog. For region-wide analyses and sites where there are little to no tsunami data, a computationally based method such as Monte Carlo simulation is the primary method to establish tsunami hazards. Two case studies that describe how computational and empirical methods can be integrated are presented for Acapulco, Mexico (site-specific) and the U.S. Pacific Northwest coastline (region-wide analysis).
A model-based test for treatment effects with probabilistic classifications.
Cavagnaro, Daniel R; Davis-Stober, Clintin P
2018-05-21
Within modern psychology, computational and statistical models play an important role in describing a wide variety of human behavior. Model selection analyses are typically used to classify individuals according to the model(s) that best describe their behavior. These classifications are inherently probabilistic, which presents challenges for performing group-level analyses, such as quantifying the effect of an experimental manipulation. We answer this challenge by presenting a method for quantifying treatment effects in terms of distributional changes in model-based (i.e., probabilistic) classifications across treatment conditions. The method uses hierarchical Bayesian mixture modeling to incorporate classification uncertainty at the individual level into the test for a treatment effect at the group level. We illustrate the method with several worked examples, including a reanalysis of the data from Kellen, Mata, and Davis-Stober (2017), and analyze its performance more generally through simulation studies. Our simulations show that the method is both more powerful and less prone to type-1 errors than Fisher's exact test when classifications are uncertain. In the special case where classifications are deterministic, we find a near-perfect power-law relationship between the Bayes factor, derived from our method, and the p value obtained from Fisher's exact test. We provide code in an online supplement that allows researchers to apply the method to their own data. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Random matrix approach to group correlations in development country financial market
NASA Astrophysics Data System (ADS)
Qohar, Ulin Nuha Abdul; Lim, Kyuseong; Kim, Soo Yong; Liong, The Houw; Purqon, Acep
2015-12-01
Financial market is a borderless economic activity, everyone in this world has the right to participate in stock transactions. The movement of stocks is interesting to be discussed in various sciences, ranging from economists to mathe-maticians try to explain and predict the stock movement. Econophysics, as a discipline that studies the economic behavior using one of the methods in particle physics to explain stock movement. Stocks tend to be unpredictable probabilistic regarded as a probabilistic particle. Random Matrix Theory is one method used to analyze probabilistic particle is used to analyze the characteristics of the movement in the stock collection of developing country stock market shares of the correlation matrix. To obtain the characteristics of the developing country stock market and use characteristics of stock markets of developed countries as a parameter for comparison. The result shows market wide effect is not happened in Philipine market and weak in Indonesia market. Contrary, developed country (US) has strong market wide effect.
Unsteady Probabilistic Analysis of a Gas Turbine System
NASA Technical Reports Server (NTRS)
Brown, Marilyn
2003-01-01
In this work, we have considered an annular cascade configuration subjected to unsteady inflow conditions. The unsteady response calculation has been implemented into the time marching CFD code, MSUTURBO. The computed steady state results for the pressure distribution demonstrated good agreement with experimental data. We have computed results for the amplitudes of the unsteady pressure over the blade surfaces. With the increase in gas turbine engine structural complexity and performance over the past 50 years, structural engineers have created an array of safety nets to ensure against component failures in turbine engines. In order to reduce what is now considered to be excessive conservatism and yet maintain the same adequate margins of safety, there is a pressing need to explore methods of incorporating probabilistic design procedures into engine development. Probabilistic methods combine and prioritize the statistical distributions of each design variable, generate an interactive distribution and offer the designer a quantified relationship between robustness, endurance and performance. The designer can therefore iterate between weight reduction, life increase, engine size reduction, speed increase etc.
Optimization of Adaptive Intraply Hybrid Fiber Composites with Reliability Considerations
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1994-01-01
The reliability with bounded distribution parameters (mean, standard deviation) was maximized and the reliability-based cost was minimized for adaptive intra-ply hybrid fiber composites by using a probabilistic method. The probabilistic method accounts for all naturally occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry, and control-related parameters. Probabilistic sensitivity factors were computed and used in the optimization procedures. For actuated change in the angle of attack of an airfoil-like composite shell structure with an adaptive torque plate, the reliability was maximized to 0.9999 probability, with constraints on the mean and standard deviation of the actuation material volume ratio (percentage of actuation composite material in a ply) and the actuation strain coefficient. The reliability-based cost was minimized for an airfoil-like composite shell structure with an adaptive skin and a mean actuation material volume ratio as the design parameter. At a O.9-mean actuation material volume ratio, the minimum cost was obtained.
A simulation-based probabilistic design method for arctic sea transport systems
NASA Astrophysics Data System (ADS)
Martin, Bergström; Ove, Erikstad Stein; Sören, Ehlers
2016-12-01
When designing an arctic cargo ship, it is necessary to consider multiple stochastic factors. This paper evaluates the merits of a simulation-based probabilistic design method specifically developed to deal with this challenge. The outcome of the paper indicates that the incorporation of simulations and probabilistic design parameters into the design process enables more informed design decisions. For instance, it enables the assessment of the stochastic transport capacity of an arctic ship, as well as of its long-term ice exposure that can be used to determine an appropriate level of ice-strengthening. The outcome of the paper also indicates that significant gains in transport system cost-efficiency can be obtained by extending the boundaries of the design task beyond the individual vessel. In the case of industrial shipping, this allows for instance the consideration of port-based cargo storage facilities allowing for temporary shortages in transport capacity and thus a reduction in the required fleet size / ship capacity.
Interrelation Between Safety Factors and Reliability
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Chamis, Christos C. (Technical Monitor)
2001-01-01
An evaluation was performed to establish relationships between safety factors and reliability relationships. Results obtained show that the use of the safety factor is not contradictory to the employment of the probabilistic methods. In many cases the safety factors can be directly expressed by the required reliability levels. However, there is a major difference that must be emphasized: whereas the safety factors are allocated in an ad hoc manner, the probabilistic approach offers a unified mathematical framework. The establishment of the interrelation between the concepts opens an avenue to specify safety factors based on reliability. In cases where there are several forms of failure, then the allocation of safety factors should he based on having the same reliability associated with each failure mode. This immediately suggests that by the probabilistic methods the existing over-design or under-design can be eliminated. The report includes three parts: Part 1-Random Actual Stress and Deterministic Yield Stress; Part 2-Deterministic Actual Stress and Random Yield Stress; Part 3-Both Actual Stress and Yield Stress Are Random.
Characterizing the topology of probabilistic biological networks.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Biological interactions are often uncertain events, that may or may not take place with some probability. This uncertainty leads to a massive number of alternative interaction topologies for each such network. The existing studies analyze the degree distribution of biological networks by assuming that all the given interactions take place under all circumstances. This strong and often incorrect assumption can lead to misleading results. In this paper, we address this problem and develop a sound mathematical basis to characterize networks in the presence of uncertain interactions. Using our mathematical representation, we develop a method that can accurately describe the degree distribution of such networks. We also take one more step and extend our method to accurately compute the joint-degree distributions of node pairs connected by edges. The number of possible network topologies grows exponentially with the number of uncertain interactions. However, the mathematical model we develop allows us to compute these degree distributions in polynomial time in the number of interactions. Our method works quickly even for entire protein-protein interaction (PPI) networks. It also helps us find an adequate mathematical model using MLE. We perform a comparative study of node-degree and joint-degree distributions in two types of biological networks: the classical deterministic networks and the more flexible probabilistic networks. Our results confirm that power-law and log-normal models best describe degree distributions for both probabilistic and deterministic networks. Moreover, the inverse correlation of degrees of neighboring nodes shows that, in probabilistic networks, nodes with large number of interactions prefer to interact with those with small number of interactions more frequently than expected. We also show that probabilistic networks are more robust for node-degree distribution computation than the deterministic ones. all the data sets used, the software implemented and the alignments found in this paper are available at http://bioinformatics.cise.ufl.edu/projects/probNet/.
Exploring the calibration of a wind forecast ensemble for energy applications
NASA Astrophysics Data System (ADS)
Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne
2015-04-01
In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.
Guo, Guang-Hui; Wu, Feng-Chang; He, Hong-Ping; Feng, Cheng-Lian; Zhang, Rui-Qing; Li, Hui-Xian
2012-04-01
Probabilistic approaches, such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS), and non-probabilistic approaches, such as interval analysis, fuzzy set theory and variance propagation, were used to characterize uncertainties associated with risk assessment of sigma PAH8 in surface water of Taihu Lake. The results from MCS and LHS were represented by probability distributions of hazard quotients of sigma PAH8 in surface waters of Taihu Lake. The probabilistic distribution of hazard quotient were obtained from the results of MCS and LHS based on probabilistic theory, which indicated that the confidence intervals of hazard quotient at 90% confidence level were in the range of 0.000 18-0.89 and 0.000 17-0.92, with the mean of 0.37 and 0.35, respectively. In addition, the probabilities that the hazard quotients from MCS and LHS exceed the threshold of 1 were 9.71% and 9.68%, respectively. The sensitivity analysis suggested the toxicity data contributed the most to the resulting distribution of quotients. The hazard quotient of sigma PAH8 to aquatic organisms ranged from 0.000 17 to 0.99 using interval analysis. The confidence interval was (0.001 5, 0.016 3) at the 90% confidence level calculated using fuzzy set theory, and the confidence interval was (0.000 16, 0.88) at the 90% confidence level based on the variance propagation. These results indicated that the ecological risk of sigma PAH8 to aquatic organisms were low. Each method has its own set of advantages and limitations, which was based on different theory; therefore, the appropriate method should be selected on a case-by-case to quantify the effects of uncertainties on the ecological risk assessment. Approach based on the probabilistic theory was selected as the most appropriate method to assess the risk of sigma PAH8 in surface water of Taihu Lake, which provided an important scientific foundation of risk management and control for organic pollutants in water.
Briggs, Andrew H; Ades, A E; Price, Martin J
2003-01-01
In structuring decision models of medical interventions, it is commonly recommended that only 2 branches be used for each chance node to avoid logical inconsistencies that can arise during sensitivity analyses if the branching probabilities do not sum to 1. However, information may be naturally available in an unconditional form, and structuring a tree in conditional form may complicate rather than simplify the sensitivity analysis of the unconditional probabilities. Current guidance emphasizes using probabilistic sensitivity analysis, and a method is required to provide probabilistic probabilities over multiple branches that appropriately represents uncertainty while satisfying the requirement that mutually exclusive event probabilities should sum to 1. The authors argue that the Dirichlet distribution, the multivariate equivalent of the beta distribution, is appropriate for this purpose and illustrate its use for generating a fully probabilistic transition matrix for a Markov model. Furthermore, they demonstrate that by adopting a Bayesian approach, the problem of observing zero counts for transitions of interest can be overcome.
Coupled Multi-Disciplinary Optimization for Structural Reliability and Affordability
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
A computational simulation method is presented for Non-Deterministic Multidisciplinary Optimization of engine composite materials and structures. A hypothetical engine duct made with ceramic matrix composites (CMC) is evaluated probabilistically in the presence of combined thermo-mechanical loading. The structure is tailored by quantifying the uncertainties in all relevant design variables such as fabrication, material, and loading parameters. The probabilistic sensitivities are used to select critical design variables for optimization. In this paper, two approaches for non-deterministic optimization are presented. The non-deterministic minimization of combined failure stress criterion is carried out by: (1) performing probabilistic evaluation first and then optimization and (2) performing optimization first and then probabilistic evaluation. The first approach shows that the optimization feasible region can be bounded by a set of prescribed probability limits and that the optimization follows the cumulative distribution function between those limits. The second approach shows that the optimization feasible region is bounded by 0.50 and 0.999 probabilities.
Sáez, Carlos; Zurriaga, Oscar; Pérez-Panadés, Jordi; Melchor, Inma; Robles, Montserrat; García-Gómez, Juan M
2016-11-01
To assess the variability in data distributions among data sources and over time through a case study of a large multisite repository as a systematic approach to data quality (DQ). Novel probabilistic DQ control methods based on information theory and geometry are applied to the Public Health Mortality Registry of the Region of Valencia, Spain, with 512 143 entries from 2000 to 2012, disaggregated into 24 health departments. The methods provide DQ metrics and exploratory visualizations for (1) assessing the variability among multiple sources and (2) monitoring and exploring changes with time. The methods are suited to big data and multitype, multivariate, and multimodal data. The repository was partitioned into 2 probabilistically separated temporal subgroups following a change in the Spanish National Death Certificate in 2009. Punctual temporal anomalies were noticed due to a punctual increment in the missing data, along with outlying and clustered health departments due to differences in populations or in practices. Changes in protocols, differences in populations, biased practices, or other systematic DQ problems affected data variability. Even if semantic and integration aspects are addressed in data sharing infrastructures, probabilistic variability may still be present. Solutions include fixing or excluding data and analyzing different sites or time periods separately. A systematic approach to assessing temporal and multisite variability is proposed. Multisite and temporal variability in data distributions affects DQ, hindering data reuse, and an assessment of such variability should be a part of systematic DQ procedures. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Probabilistic objective functions for margin-less IMRT planning
NASA Astrophysics Data System (ADS)
Bohoslavsky, Román; Witte, Marnix G.; Janssen, Tomas M.; van Herk, Marcel
2013-06-01
We present a method to implement probabilistic treatment planning of intensity-modulated radiation therapy using custom software plugins in a commercial treatment planning system. Our method avoids the definition of safety-margins by directly including the effect of geometrical uncertainties during optimization when objective functions are evaluated. Because the shape of the resulting dose distribution implicitly defines the robustness of the plan, the optimizer has much more flexibility than with a margin-based approach. We expect that this added flexibility helps to automatically strike a better balance between target coverage and dose reduction for surrounding healthy tissue, especially for cases where the planning target volume overlaps organs at risk. Prostate cancer treatment planning was chosen to develop our method, including a novel technique to include rotational uncertainties. Based on population statistics, translations and rotations are simulated independently following a marker-based IGRT correction strategy. The effects of random and systematic errors are incorporated by first blurring and then shifting the dose distribution with respect to the clinical target volume. For simplicity and efficiency, dose-shift invariance and a rigid-body approximation are assumed. Three prostate cases were replanned using our probabilistic objective functions. To compare clinical and probabilistic plans, an evaluation tool was used that explicitly incorporates geometric uncertainties using Monte-Carlo methods. The new plans achieved similar or better dose distributions than the original clinical plans in terms of expected target coverage and rectum wall sparing. Plan optimization times were only about a factor of two higher than in the original clinical system. In conclusion, we have developed a practical planning tool that enables margin-less probability-based treatment planning with acceptable planning times, achieving the first system that is feasible for clinical implementation.
High Cycle Fatigue (HCF) Science and Technology Program 2002 Annual Report
2003-08-01
Turbine Engine Airfoils, Phase I 4.3 Probabilistic Design of Turbine Engine Airfoils, Phase II 4.4 Probabilistic Blade Design System 4.5...XTL17/SE2 7.4 Conclusion 8.0 TEST AND EVALUATION 8.1 Characterization Test Protocol 8.2 Demonstration Test Protocol 8.3 Development of Multi ...transparent and opaque overlays for processing. The objective of the SBIR Phase I program was to identify and evaluate promising methods for
Probabilistic fracture finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-01-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Probabilistic fracture finite elements
NASA Astrophysics Data System (ADS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-05-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Quantification of uncertainties in the performance of smart composite structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1993-01-01
A composite wing with spars, bulkheads, and built-in control devices is evaluated using a method for the probabilistic assessment of smart composite structures. Structural responses (such as change in angle of attack, vertical displacements, and stresses in regular plies with traditional materials and in control plies with mixed traditional and actuation materials) are probabilistically assessed to quantify their respective scatter. Probabilistic sensitivity factors are computed to identify those parameters that have a significant influence on a specific structural response. Results show that the uncertainties in the responses of smart composite structures can be quantified. Responses such as structural deformation, ply stresses, frequencies, and buckling loads in the presence of defects can be reliably controlled to satisfy specified design requirements.
Di Maio, Francesco; Zio, Enrico; Smith, Curtis; ...
2015-07-06
The present special issue contains an overview of the research in the field of Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) of Nuclear Power Plants (NPPs). Traditionally, safety regulation for NPPs design and operation has been based on Deterministic Safety Assessment (DSA) methods to verify criteria that assure plant safety in a number of postulated Design Basis Accident (DBA) scenarios. Referring to such criteria, it is also possible to identify those plant Structures, Systems, and Components (SSCs) and activities that are most important for safety within those postulated scenarios. Then, the design, operation, and maintenance of these “safety-related” SSCs andmore » activities are controlled through regulatory requirements and supported by Probabilistic Safety Assessment (PSA).« less
Lu, Yi; Liang, Hongmin; Han, Dan; Mo, Yin; Li, Zongfang; Cheng, Yuqi; Xu, Xiufeng; Shen, Zonglin; Tan, Chunyan; Zhao, Wei; Zhu, Yun; Sun, Xuejin
2016-01-01
Previous MRI studies confirmed abnormalities in the limbic-cortical-striatal-pallidal-thalamic (LCSPT) network or limbic-cortico-striatal-thalamic-cortical (LCSTC) circuits in patients with major depressive disorder (MDD), but few studies have investigated the subcortical structural abnormalities. Therefore, we sought to determine whether focal subcortical grey matter (GM) changes might be present in MDD at an early stage. We recruited 30 first episode, untreated patients with major depressive disorder (MDD) and 26 healthy control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetric and shape analyses were used to assess volume and shape changes of the subcortical GM structures, respectively. In addition, probabilistic tractography methods were used to demonstrate the relationship between the subcortical and the cortical GM. Compared to healthy controls, MDD patients had significant volume reductions in the bilateral putamen and left thalamus (FWE-corrected, p < 0.05). Meanwhile, the vertex-based shape analysis showed regionally contracted areas on the dorsolateral and ventromedial aspects of the bilateral putamen, and on the dorsal and ventral aspects of left thalamus in MDD patients (FWE-corrected, p < 0.05). Additionally, a negative correlation was found between local atrophy in the dorsal aspects of the left thalamus and clinical variables representing severity. Furthermore, probabilistic tractography demonstrated that the area of shape deformation of the bilateral putamen and left thalamus have connections with the frontal and temporal lobes, which were found to be related to major depression. Our results suggested that structural abnormalities in the putamen and thalamus might be present in the early stages of MDD, which support the role of subcortical structure in the pathophysiology of MDD. Meanwhile, the present study showed that these subcortical structural abnormalities might be the potential trait markers of MDD.
Automated image quality assessment for chest CT scans.
Reeves, Anthony P; Xie, Yiting; Liu, Shuang
2018-02-01
Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.
Comparison of the economic impact of different wind power forecast systems for producers
NASA Astrophysics Data System (ADS)
Alessandrini, S.; Davò, F.; Sperati, S.; Benini, M.; Delle Monache, L.
2014-05-01
Deterministic forecasts of wind production for the next 72 h at a single wind farm or at the regional level are among the main end-users requirement. However, for an optimal management of wind power production and distribution it is important to provide, together with a deterministic prediction, a probabilistic one. A deterministic forecast consists of a single value for each time in the future for the variable to be predicted, while probabilistic forecasting informs on probabilities for potential future events. This means providing information about uncertainty (i.e. a forecast of the PDF of power) in addition to the commonly provided single-valued power prediction. A significant probabilistic application is related to the trading of energy in day-ahead electricity markets. It has been shown that, when trading future wind energy production, using probabilistic wind power predictions can lead to higher benefits than those obtained by using deterministic forecasts alone. In fact, by using probabilistic forecasting it is possible to solve economic model equations trying to optimize the revenue for the producer depending, for example, on the specific penalties for forecast errors valid in that market. In this work we have applied a probabilistic wind power forecast systems based on the "analog ensemble" method for bidding wind energy during the day-ahead market in the case of a wind farm located in Italy. The actual hourly income for the plant is computed considering the actual selling energy prices and penalties proportional to the unbalancing, defined as the difference between the day-ahead offered energy and the actual production. The economic benefit of using a probabilistic approach for the day-ahead energy bidding are evaluated, resulting in an increase of 23% of the annual income for a wind farm owner in the case of knowing "a priori" the future energy prices. The uncertainty on price forecasting partly reduces the economic benefit gained by using a probabilistic energy forecast system.
The meta-Gaussian Bayesian Processor of forecasts and associated preliminary experiments
NASA Astrophysics Data System (ADS)
Chen, Fajing; Jiao, Meiyan; Chen, Jing
2013-04-01
Public weather services are trending toward providing users with probabilistic weather forecasts, in place of traditional deterministic forecasts. Probabilistic forecasting techniques are continually being improved to optimize available forecasting information. The Bayesian Processor of Forecast (BPF), a new statistical method for probabilistic forecast, can transform a deterministic forecast into a probabilistic forecast according to the historical statistical relationship between observations and forecasts generated by that forecasting system. This technique accounts for the typical forecasting performance of a deterministic forecasting system in quantifying the forecast uncertainty. The meta-Gaussian likelihood model is suitable for a variety of stochastic dependence structures with monotone likelihood ratios. The meta-Gaussian BPF adopting this kind of likelihood model can therefore be applied across many fields, including meteorology and hydrology. The Bayes theorem with two continuous random variables and the normal-linear BPF are briefly introduced. The meta-Gaussian BPF for a continuous predictand using a single predictor is then presented and discussed. The performance of the meta-Gaussian BPF is tested in a preliminary experiment. Control forecasts of daily surface temperature at 0000 UTC at Changsha and Wuhan stations are used as the deterministic forecast data. These control forecasts are taken from ensemble predictions with a 96-h lead time generated by the National Meteorological Center of the China Meteorological Administration, the European Centre for Medium-Range Weather Forecasts, and the US National Centers for Environmental Prediction during January 2008. The results of the experiment show that the meta-Gaussian BPF can transform a deterministic control forecast of surface temperature from any one of the three ensemble predictions into a useful probabilistic forecast of surface temperature. These probabilistic forecasts quantify the uncertainty of the control forecast; accordingly, the performance of the probabilistic forecasts differs based on the source of the underlying deterministic control forecasts.
Zhang, Kejiang; Achari, Gopal; Li, Hua
2009-11-03
Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.
Kumar, Vineet
2011-12-01
The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.
Galtier, N; Boursot, P
2000-03-01
A new, model-based method was devised to locate nucleotide changes in a given phylogenetic tree. For each site, the posterior probability of any possible change in each branch of the tree is computed. This probabilistic method is a valuable alternative to the maximum parsimony method when base composition is skewed (i.e., different from 25% A, 25% C, 25% G, 25% T): computer simulations showed that parsimony misses more rare --> common than common --> rare changes, resulting in biased inferred change matrices, whereas the new method appeared unbiased. The probabilistic method was applied to the analysis of the mutation and substitution processes in the mitochondrial control region of mouse. Distinct change patterns were found at the polymorphism (within species) and divergence (between species) levels, rejecting the hypothesis of a neutral evolution of base composition in mitochondrial DNA.
Probabilistic Methods for Uncertainty Propagation Applied to Aircraft Design
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Lin, Hong-Zong; Khalessi, Mohammad R.
2002-01-01
Three methods of probabilistic uncertainty propagation and quantification (the method of moments, Monte Carlo simulation, and a nongradient simulation search method) are applied to an aircraft analysis and conceptual design program to demonstrate design under uncertainty. The chosen example problems appear to have discontinuous design spaces and thus these examples pose difficulties for many popular methods of uncertainty propagation and quantification. However, specific implementation features of the first and third methods chosen for use in this study enable successful propagation of small uncertainties through the program. Input uncertainties in two configuration design variables are considered. Uncertainties in aircraft weight are computed. The effects of specifying required levels of constraint satisfaction with specified levels of input uncertainty are also demonstrated. The results show, as expected, that the designs under uncertainty are typically heavier and more conservative than those in which no input uncertainties exist.
NASA Astrophysics Data System (ADS)
Maurya, S. P.; Singh, K. H.; Singh, N. P.
2018-05-01
In present study, three recently developed geostatistical methods, single attribute analysis, multi-attribute analysis and probabilistic neural network algorithm have been used to predict porosity in inter well region for Blackfoot field, Alberta, Canada, an offshore oil field. These techniques make use of seismic attributes, generated by model based inversion and colored inversion techniques. The principle objective of the study is to find the suitable combination of seismic inversion and geostatistical techniques to predict porosity and identification of prospective zones in 3D seismic volume. The porosity estimated from these geostatistical approaches is corroborated with the well log porosity. The results suggest that all the three implemented geostatistical methods are efficient and reliable to predict the porosity but the multi-attribute and probabilistic neural network analysis provide more accurate and high resolution porosity sections. A low impedance (6000-8000 m/s g/cc) and high porosity (> 15%) zone is interpreted from inverted impedance and porosity sections respectively between 1060 and 1075 ms time interval and is characterized as reservoir. The qualitative and quantitative results demonstrate that of all the employed geostatistical methods, the probabilistic neural network along with model based inversion is the most efficient method for predicting porosity in inter well region.
Probabilistic Analysis of a Composite Crew Module
NASA Technical Reports Server (NTRS)
Mason, Brian H.; Krishnamurthy, Thiagarajan
2011-01-01
An approach for conducting reliability-based analysis (RBA) of a Composite Crew Module (CCM) is presented. The goal is to identify and quantify the benefits of probabilistic design methods for the CCM and future space vehicles. The coarse finite element model from a previous NASA Engineering and Safety Center (NESC) project is used as the baseline deterministic analysis model to evaluate the performance of the CCM using a strength-based failure index. The first step in the probabilistic analysis process is the determination of the uncertainty distributions for key parameters in the model. Analytical data from water landing simulations are used to develop an uncertainty distribution, but such data were unavailable for other load cases. The uncertainty distributions for the other load scale factors and the strength allowables are generated based on assumed coefficients of variation. Probability of first-ply failure is estimated using three methods: the first order reliability method (FORM), Monte Carlo simulation, and conditional sampling. Results for the three methods were consistent. The reliability is shown to be driven by first ply failure in one region of the CCM at the high altitude abort load set. The final predicted probability of failure is on the order of 10-11 due to the conservative nature of the factors of safety on the deterministic loads.
NASA Astrophysics Data System (ADS)
Tang, Zhongqian; Zhang, Hua; Yi, Shanzhen; Xiao, Yangfan
2018-03-01
GIS-based multi-criteria decision analysis (MCDA) is increasingly used to support flood risk assessment. However, conventional GIS-MCDA methods fail to adequately represent spatial variability and are accompanied with considerable uncertainty. It is, thus, important to incorporate spatial variability and uncertainty into GIS-based decision analysis procedures. This research develops a spatially explicit, probabilistic GIS-MCDA approach for the delineation of potentially flood susceptible areas. The approach integrates the probabilistic and the local ordered weighted averaging (OWA) methods via Monte Carlo simulation, to take into account the uncertainty related to criteria weights, spatial heterogeneity of preferences and the risk attitude of the analyst. The approach is applied to a pilot study for the Gucheng County, central China, heavily affected by the hazardous 2012 flood. A GIS database of six geomorphological and hydrometeorological factors for the evaluation of susceptibility was created. Moreover, uncertainty and sensitivity analysis were performed to investigate the robustness of the model. The results indicate that the ensemble method improves the robustness of the model outcomes with respect to variation in criteria weights and identifies which criteria weights are most responsible for the variability of model outcomes. Therefore, the proposed approach is an improvement over the conventional deterministic method and can provides a more rational, objective and unbiased tool for flood susceptibility evaluation.
Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Horta, Lucas G.
2012-01-01
Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.
Perez-Cruz, Pedro E; Dos Santos, Renata; Silva, Thiago Buosi; Crovador, Camila Souza; Nascimento, Maria Salete de Angelis; Hall, Stacy; Fajardo, Julieta; Bruera, Eduardo; Hui, David
2014-11-01
Survival prognostication is important during the end of life. The accuracy of clinician prediction of survival (CPS) over time has not been well characterized. The aims of the study were to examine changes in prognostication accuracy during the last 14 days of life in a cohort of patients with advanced cancer admitted to two acute palliative care units and to compare the accuracy between the temporal and probabilistic approaches. Physicians and nurses prognosticated survival daily for cancer patients in two hospitals until death/discharge using two prognostic approaches: temporal and probabilistic. We assessed accuracy for each method daily during the last 14 days of life comparing accuracy at Day -14 (baseline) with accuracy at each time point using a test of proportions. A total of 6718 temporal and 6621 probabilistic estimations were provided by physicians and nurses for 311 patients, respectively. Median (interquartile range) survival was 8 days (4-20 days). Temporal CPS had low accuracy (10%-40%) and did not change over time. In contrast, probabilistic CPS was significantly more accurate (P < .05 at each time point) but decreased close to death. Probabilistic CPS was consistently more accurate than temporal CPS over the last 14 days of life; however, its accuracy decreased as patients approached death. Our findings suggest that better tools to predict impending death are necessary. Copyright © 2014 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
A Parallel Fast Sweeping Method for the Eikonal Equation
NASA Astrophysics Data System (ADS)
Baker, B.
2017-12-01
Recently, there has been an exciting emergence of probabilistic methods for travel time tomography. Unlike gradient-based optimization strategies, probabilistic tomographic methods are resistant to becoming trapped in a local minimum and provide a much better quantification of parameter resolution than, say, appealing to ray density or performing checkerboard reconstruction tests. The benefits associated with random sampling methods however are only realized by successive computation of predicted travel times in, potentially, strongly heterogeneous media. To this end this abstract is concerned with expediting the solution of the Eikonal equation. While many Eikonal solvers use a fast marching method, the proposed solver will use the iterative fast sweeping method because the eight fixed sweep orderings in each iteration are natural targets for parallelization. To reduce the number of iterations and grid points required the high-accuracy finite difference stencil of Nobel et al., 2014 is implemented. A directed acyclic graph (DAG) is created with a priori knowledge of the sweep ordering and finite different stencil. By performing a topological sort of the DAG sets of independent nodes are identified as candidates for concurrent updating. Additionally, the proposed solver will also address scalability during earthquake relocation, a necessary step in local and regional earthquake tomography and a barrier to extending probabilistic methods from active source to passive source applications, by introducing an asynchronous parallel forward solve phase for all receivers in the network. Synthetic examples using the SEG over-thrust model will be presented.
2014-01-01
Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods. PMID:25374614
Improved Hierarchical Optimization-Based Classification of Hyperspectral Images Using Shape Analysis
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.
2012-01-01
A new spectral-spatial method for classification of hyperspectral images is proposed. The HSegClas method is based on the integration of probabilistic classification and shape analysis within the hierarchical step-wise optimization algorithm. First, probabilistic support vector machines classification is applied. Then, at each iteration two neighboring regions with the smallest Dissimilarity Criterion (DC) are merged, and classification probabilities are recomputed. The important contribution of this work consists in estimating a DC between regions as a function of statistical, classification and geometrical (area and rectangularity) features. Experimental results are presented on a 102-band ROSIS image of the Center of Pavia, Italy. The developed approach yields more accurate classification results when compared to previously proposed methods.
A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks
Yin, Junming; Ho, Qirong; Xing, Eric P.
2014-01-01
We propose a scalable approach for making inference about latent spaces of large networks. With a succinct representation of networks as a bag of triangular motifs, a parsimonious statistical model, and an efficient stochastic variational inference algorithm, we are able to analyze real networks with over a million vertices and hundreds of latent roles on a single machine in a matter of hours, a setting that is out of reach for many existing methods. When compared to the state-of-the-art probabilistic approaches, our method is several orders of magnitude faster, with competitive or improved accuracy for latent space recovery and link prediction. PMID:25400487
Probabilistic simulation of uncertainties in composite uniaxial strengths
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Stock, T. A.
1990-01-01
Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.
Probabilistic assessment method of the non-monotonic dose-responses-Part I: Methodological approach.
Chevillotte, Grégoire; Bernard, Audrey; Varret, Clémence; Ballet, Pascal; Bodin, Laurent; Roudot, Alain-Claude
2017-08-01
More and more studies aim to characterize non-monotonic dose response curves (NMDRCs). The greatest difficulty is to assess the statistical plausibility of NMDRCs from previously conducted dose response studies. This difficulty is linked to the fact that these studies present (i) few doses tested, (ii) a low sample size per dose, and (iii) the absence of any raw data. In this study, we propose a new methodological approach to probabilistically characterize NMDRCs. The methodology is composed of three main steps: (i) sampling from summary data to cover all the possibilities that may be presented by the responses measured by dose and to obtain a new raw database, (ii) statistical analysis of each sampled dose-response curve to characterize the slopes and their signs, and (iii) characterization of these dose-response curves according to the variation of the sign in the slope. This method allows characterizing all types of dose-response curves and can be applied both to continuous data and to discrete data. The aim of this study is to present the general principle of this probabilistic method which allows to assess the non-monotonic dose responses curves, and to present some results. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Novel TRM Calculation Method by Probabilistic Concept
NASA Astrophysics Data System (ADS)
Audomvongseree, Kulyos; Yokoyama, Akihiko; Verma, Suresh Chand; Nakachi, Yoshiki
In a new competitive environment, it becomes possible for the third party to access a transmission facility. From this structure, to efficiently manage the utilization of the transmission network, a new definition about Available Transfer Capability (ATC) has been proposed. According to the North American ElectricReliability Council (NERC)’s definition, ATC depends on several parameters, i. e. Total Transfer Capability (TTC), Transmission Reliability Margin (TRM), and Capacity Benefit Margin (CBM). This paper is focused on the calculation of TRM which is one of the security margin reserved for any uncertainty of system conditions. The TRM calculation by probabilistic method is proposed in this paper. Based on the modeling of load forecast error and error in transmission line limitation, various cases of transmission transfer capability and its related probabilistic nature can be calculated. By consideration of the proposed concept of risk analysis, the appropriate required amount of TRM can be obtained. The objective of this research is to provide realistic information on the actual ability of the network which may be an alternative choice for system operators to make an appropriate decision in the competitive market. The advantages of the proposed method are illustrated by application to the IEEJ-WEST10 model system.
Frost, Anja; Renners, Eike; Hötter, Michael; Ostermann, Jörn
2013-01-01
An important part of computed tomography is the calculation of a three-dimensional reconstruction of an object from series of X-ray images. Unfortunately, some applications do not provide sufficient X-ray images. Then, the reconstructed objects no longer truly represent the original. Inside of the volumes, the accuracy seems to vary unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction, voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the measured X-rays, as well as the inclusion of a priori knowledge about the materials that the object receiving the X-ray examination consists of. For each voxel, the proposed method outputs a numerical value that represents the probability of existence of a predefined material at the position of the voxel while doing X-ray. Such a probabilistic quality measure was lacking so far. In our experiment, false reconstructed areas get detected by their low probability. In exact reconstructed areas, a high probability predominates. Receiver Operating Characteristics not only confirm the reliability of our quality measure but also demonstrate that existing methods are less suitable for evaluating a reconstruction. PMID:23344378
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)
NASA Technical Reports Server (NTRS)
Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis;
2011-01-01
Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.
Fast probabilistic file fingerprinting for big data
2013-01-01
Background Biological data acquisition is raising new challenges, both in data analysis and handling. Not only is it proving hard to analyze the data at the rate it is generated today, but simply reading and transferring data files can be prohibitively slow due to their size. This primarily concerns logistics within and between data centers, but is also important for workstation users in the analysis phase. Common usage patterns, such as comparing and transferring files, are proving computationally expensive and are tying down shared resources. Results We present an efficient method for calculating file uniqueness for large scientific data files, that takes less computational effort than existing techniques. This method, called Probabilistic Fast File Fingerprinting (PFFF), exploits the variation present in biological data and computes file fingerprints by sampling randomly from the file instead of reading it in full. Consequently, it has a flat performance characteristic, correlated with data variation rather than file size. We demonstrate that probabilistic fingerprinting can be as reliable as existing hashing techniques, with provably negligible risk of collisions. We measure the performance of the algorithm on a number of data storage and access technologies, identifying its strengths as well as limitations. Conclusions Probabilistic fingerprinting may significantly reduce the use of computational resources when comparing very large files. Utilisation of probabilistic fingerprinting techniques can increase the speed of common file-related workflows, both in the data center and for workbench analysis. The implementation of the algorithm is available as an open-source tool named pfff, as a command-line tool as well as a C library. The tool can be downloaded from http://biit.cs.ut.ee/pfff. PMID:23445565
Study on the evaluation method for fault displacement based on characterized source model
NASA Astrophysics Data System (ADS)
Tonagi, M.; Takahama, T.; Matsumoto, Y.; Inoue, N.; Irikura, K.; Dalguer, L. A.
2016-12-01
In IAEA Specific Safety Guide (SSG) 9 describes that probabilistic methods for evaluating fault displacement should be used if no sufficient basis is provided to decide conclusively that the fault is not capable by using the deterministic methodology. In addition, International Seismic Safety Centre compiles as ANNEX to realize seismic hazard for nuclear facilities described in SSG-9 and shows the utility of the deterministic and probabilistic evaluation methods for fault displacement. In Japan, it is required that important nuclear facilities should be established on ground where fault displacement will not arise when earthquakes occur in the future. Under these situations, based on requirements, we need develop evaluation methods for fault displacement to enhance safety in nuclear facilities. We are studying deterministic and probabilistic methods with tentative analyses using observed records such as surface fault displacement and near-fault strong ground motions of inland crustal earthquake which fault displacements arose. In this study, we introduce the concept of evaluation methods for fault displacement. After that, we show parts of tentative analysis results for deterministic method as follows: (1) For the 1999 Chi-Chi earthquake, referring slip distribution estimated by waveform inversion, we construct a characterized source model (Miyake et al., 2003, BSSA) which can explain observed near-fault broad band strong ground motions. (2) Referring a characterized source model constructed in (1), we study an evaluation method for surface fault displacement using hybrid method, which combines particle method and distinct element method. At last, we suggest one of the deterministic method to evaluate fault displacement based on characterized source model. This research was part of the 2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.
De novo identification of highly diverged protein repeats by probabilistic consistency.
Biegert, A; Söding, J
2008-03-15
An estimated 25% of all eukaryotic proteins contain repeats, which underlines the importance of duplication for evolving new protein functions. Internal repeats often correspond to structural or functional units in proteins. Methods capable of identifying diverged repeated segments or domains at the sequence level can therefore assist in predicting domain structures, inferring hypotheses about function and mechanism, and investigating the evolution of proteins from smaller fragments. We present HHrepID, a method for the de novo identification of repeats in protein sequences. It is able to detect the sequence signature of structural repeats in many proteins that have not yet been known to possess internal sequence symmetry, such as outer membrane beta-barrels. HHrepID uses HMM-HMM comparison to exploit evolutionary information in the form of multiple sequence alignments of homologs. In contrast to a previous method, the new method (1) generates a multiple alignment of repeats; (2) utilizes the transitive nature of homology through a novel merging procedure with fully probabilistic treatment of alignments; (3) improves alignment quality through an algorithm that maximizes the expected accuracy; (4) is able to identify different kinds of repeats within complex architectures by a probabilistic domain boundary detection method and (5) improves sensitivity through a new approach to assess statistical significance. Server: http://toolkit.tuebingen.mpg.de/hhrepid; Executables: ftp://ftp.tuebingen.mpg.de/pub/protevo/HHrepID
Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B.; Torres, Vicente E.; Yu, Alan S.L.; Mrug, Michal; Bennett, William M.; Flessner, Michael F.; Landsittel, Doug P.
2016-01-01
Background and objectives Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Design, setting, participants, & measurements Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2–weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Results Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable. Conclusions We have developed a fully automated method for segmentation of kidneys from abdominal magnetic resonance images in patients with autosomal dominant polycystic kidney disease with varying kidney volumes. The performance of the automated method was in good agreement with that of manual method. PMID:26797708
Kim, Youngwoo; Ge, Yinghui; Tao, Cheng; Zhu, Jianbing; Chapman, Arlene B; Torres, Vicente E; Yu, Alan S L; Mrug, Michal; Bennett, William M; Flessner, Michael F; Landsittel, Doug P; Bae, Kyongtae T
2016-04-07
Our study developed a fully automated method for segmentation and volumetric measurements of kidneys from magnetic resonance images in patients with autosomal dominant polycystic kidney disease and assessed the performance of the automated method with the reference manual segmentation method. Study patients were selected from the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. At the enrollment of the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease Study in 2000, patients with autosomal dominant polycystic kidney disease were between 15 and 46 years of age with relatively preserved GFRs. Our fully automated segmentation method was on the basis of a spatial prior probability map of the location of kidneys in abdominal magnetic resonance images and regional mapping with total variation regularization and propagated shape constraints that were formulated into a level set framework. T2-weighted magnetic resonance image sets of 120 kidneys were selected from 60 patients with autosomal dominant polycystic kidney disease and divided into the training and test datasets. The performance of the automated method in reference to the manual method was assessed by means of two metrics: Dice similarity coefficient and intraclass correlation coefficient of segmented kidney volume. The training and test sets were swapped for crossvalidation and reanalyzed. Successful segmentation of kidneys was performed with the automated method in all test patients. The segmented kidney volumes ranged from 177.2 to 2634 ml (mean, 885.4±569.7 ml). The mean Dice similarity coefficient ±SD between the automated and manual methods was 0.88±0.08. The mean correlation coefficient between the two segmentation methods for the segmented volume measurements was 0.97 (P<0.001 for each crossvalidation set). The results from the crossvalidation sets were highly comparable. We have developed a fully automated method for segmentation of kidneys from abdominal magnetic resonance images in patients with autosomal dominant polycystic kidney disease with varying kidney volumes. The performance of the automated method was in good agreement with that of manual method. Copyright © 2016 by the American Society of Nephrology.
NASA Astrophysics Data System (ADS)
Gao, Yi
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
Watch what you say, your computer might be listening: A review of automated speech recognition
NASA Technical Reports Server (NTRS)
Degennaro, Stephen V.
1991-01-01
Spoken language is the most convenient and natural means by which people interact with each other and is, therefore, a promising candidate for human-machine interactions. Speech also offers an additional channel for hands-busy applications, complementing the use of motor output channels for control. Current speech recognition systems vary considerably across a number of important characteristics, including vocabulary size, speaking mode, training requirements for new speakers, robustness to acoustic environments, and accuracy. Algorithmically, these systems range from rule-based techniques through more probabilistic or self-learning approaches such as hidden Markov modeling and neural networks. This tutorial begins with a brief summary of the relevant features of current speech recognition systems and the strengths and weaknesses of the various algorithmic approaches.
Serang, Oliver
2014-01-01
Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called "causal independence"). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to O(k log(k)2) and the space to O(k log(k)) where k is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions.
Serang, Oliver
2014-01-01
Exact Bayesian inference can sometimes be performed efficiently for special cases where a function has commutative and associative symmetry of its inputs (called “causal independence”). For this reason, it is desirable to exploit such symmetry on big data sets. Here we present a method to exploit a general form of this symmetry on probabilistic adder nodes by transforming those probabilistic adder nodes into a probabilistic convolution tree with which dynamic programming computes exact probabilities. A substantial speedup is demonstrated using an illustration example that can arise when identifying splice forms with bottom-up mass spectrometry-based proteomics. On this example, even state-of-the-art exact inference algorithms require a runtime more than exponential in the number of splice forms considered. By using the probabilistic convolution tree, we reduce the runtime to and the space to where is the number of variables joined by an additive or cardinal operator. This approach, which can also be used with junction tree inference, is applicable to graphs with arbitrary dependency on counting variables or cardinalities and can be used on diverse problems and fields like forward error correcting codes, elemental decomposition, and spectral demixing. The approach also trivially generalizes to multiple dimensions. PMID:24626234
Experiences with Probabilistic Analysis Applied to Controlled Systems
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Giesy, Daniel P.
2004-01-01
This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.